xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_err.c (revision be969b7cfbcfa8a835a528f1dc467f0975c6d883)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 
4 #include "hclge_err.h"
5 
6 static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
7 	{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err",
8 	  .reset_level = HNAE3_NONE_RESET },
9 	{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err",
10 	  .reset_level = HNAE3_NONE_RESET },
11 	{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err",
12 	  .reset_level = HNAE3_NONE_RESET },
13 	{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err",
14 	  .reset_level = HNAE3_NONE_RESET },
15 	{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err",
16 	  .reset_level = HNAE3_NONE_RESET },
17 	{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err",
18 	  .reset_level = HNAE3_NONE_RESET },
19 	{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err",
20 	  .reset_level = HNAE3_NONE_RESET },
21 	{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err",
22 	  .reset_level = HNAE3_NONE_RESET },
23 	{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err",
24 	  .reset_level = HNAE3_NONE_RESET },
25 	{ /* sentinel */ }
26 };
27 
28 static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
29 	{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err",
30 	  .reset_level = HNAE3_NONE_RESET },
31 	{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err",
32 	  .reset_level = HNAE3_NONE_RESET },
33 	{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err",
34 	  .reset_level = HNAE3_NONE_RESET },
35 	{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err",
36 	  .reset_level = HNAE3_NONE_RESET },
37 	{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err",
38 	  .reset_level = HNAE3_NONE_RESET },
39 	{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err",
40 	  .reset_level = HNAE3_NONE_RESET },
41 	{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err",
42 	  .reset_level = HNAE3_NONE_RESET },
43 	{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err",
44 	  .reset_level = HNAE3_NONE_RESET },
45 	{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
46 	  .reset_level = HNAE3_NONE_RESET },
47 	{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
48 	  .reset_level = HNAE3_NONE_RESET },
49 	{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
50 	  .reset_level = HNAE3_NONE_RESET },
51 	{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
52 	  .reset_level = HNAE3_NONE_RESET },
53 	{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err",
54 	  .reset_level = HNAE3_NONE_RESET },
55 	{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err",
56 	  .reset_level = HNAE3_NONE_RESET },
57 	{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
58 	  .reset_level = HNAE3_NONE_RESET },
59 	{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
60 	  .reset_level = HNAE3_NONE_RESET },
61 	{ /* sentinel */ }
62 };
63 
64 static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
65 	{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err",
66 	  .reset_level = HNAE3_NONE_RESET },
67 	{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err",
68 	  .reset_level = HNAE3_NONE_RESET },
69 	{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err",
70 	  .reset_level = HNAE3_NONE_RESET },
71 	{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err",
72 	  .reset_level = HNAE3_NONE_RESET },
73 	{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err",
74 	  .reset_level = HNAE3_NONE_RESET },
75 	{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err",
76 	  .reset_level = HNAE3_NONE_RESET },
77 	{ /* sentinel */ }
78 };
79 
80 static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
81 	{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err",
82 	  .reset_level = HNAE3_NONE_RESET },
83 	{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err",
84 	  .reset_level = HNAE3_NONE_RESET },
85 	{ /* sentinel */ }
86 };
87 
88 static const struct hclge_hw_error hclge_igu_int[] = {
89 	{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err",
90 	  .reset_level = HNAE3_GLOBAL_RESET },
91 	{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err",
92 	  .reset_level = HNAE3_GLOBAL_RESET },
93 	{ /* sentinel */ }
94 };
95 
96 static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
97 	{ .int_msk = BIT(0), .msg = "rx_buf_overflow",
98 	  .reset_level = HNAE3_GLOBAL_RESET },
99 	{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow",
100 	  .reset_level = HNAE3_GLOBAL_RESET },
101 	{ .int_msk = BIT(2), .msg = "rx_stp_fifo_underflow",
102 	  .reset_level = HNAE3_GLOBAL_RESET },
103 	{ .int_msk = BIT(3), .msg = "tx_buf_overflow",
104 	  .reset_level = HNAE3_GLOBAL_RESET },
105 	{ .int_msk = BIT(4), .msg = "tx_buf_underrun",
106 	  .reset_level = HNAE3_GLOBAL_RESET },
107 	{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow",
108 	  .reset_level = HNAE3_GLOBAL_RESET },
109 	{ /* sentinel */ }
110 };
111 
112 static const struct hclge_hw_error hclge_ncsi_err_int[] = {
113 	{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err",
114 	  .reset_level = HNAE3_NONE_RESET },
115 	{ /* sentinel */ }
116 };
117 
118 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
119 	{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err",
120 	  .reset_level = HNAE3_GLOBAL_RESET },
121 	{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err",
122 	  .reset_level = HNAE3_GLOBAL_RESET },
123 	{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err",
124 	  .reset_level = HNAE3_GLOBAL_RESET },
125 	{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err",
126 	  .reset_level = HNAE3_GLOBAL_RESET },
127 	{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err",
128 	  .reset_level = HNAE3_GLOBAL_RESET },
129 	{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err",
130 	  .reset_level = HNAE3_GLOBAL_RESET },
131 	{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err",
132 	  .reset_level = HNAE3_GLOBAL_RESET },
133 	{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err",
134 	  .reset_level = HNAE3_GLOBAL_RESET },
135 	{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err",
136 	  .reset_level = HNAE3_GLOBAL_RESET },
137 	{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err",
138 	  .reset_level = HNAE3_GLOBAL_RESET },
139 	{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err",
140 	  .reset_level = HNAE3_GLOBAL_RESET },
141 	{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err",
142 	  .reset_level = HNAE3_GLOBAL_RESET },
143 	{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err",
144 	  .reset_level = HNAE3_GLOBAL_RESET },
145 	{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err",
146 	  .reset_level = HNAE3_GLOBAL_RESET },
147 	{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err",
148 	  .reset_level = HNAE3_GLOBAL_RESET },
149 	{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err",
150 	  .reset_level = HNAE3_GLOBAL_RESET },
151 	{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err",
152 	  .reset_level = HNAE3_GLOBAL_RESET },
153 	{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err",
154 	  .reset_level = HNAE3_GLOBAL_RESET },
155 	{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err",
156 	  .reset_level = HNAE3_GLOBAL_RESET },
157 	{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err",
158 	  .reset_level = HNAE3_GLOBAL_RESET },
159 	{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err",
160 	  .reset_level = HNAE3_GLOBAL_RESET },
161 	{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err",
162 	  .reset_level = HNAE3_GLOBAL_RESET },
163 	{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err",
164 	  .reset_level = HNAE3_GLOBAL_RESET },
165 	{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err",
166 	  .reset_level = HNAE3_GLOBAL_RESET },
167 	{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err",
168 	  .reset_level = HNAE3_GLOBAL_RESET },
169 	{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err",
170 	  .reset_level = HNAE3_GLOBAL_RESET },
171 	{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err",
172 	  .reset_level = HNAE3_GLOBAL_RESET },
173 	{ .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err",
174 	  .reset_level = HNAE3_GLOBAL_RESET },
175 	{ .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err",
176 	  .reset_level = HNAE3_GLOBAL_RESET },
177 	{ .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err",
178 	  .reset_level = HNAE3_GLOBAL_RESET },
179 	{ .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
180 	  .reset_level = HNAE3_GLOBAL_RESET },
181 	{ /* sentinel */ }
182 };
183 
184 static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
185 	{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err",
186 	  .reset_level = HNAE3_NONE_RESET },
187 	{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err",
188 	  .reset_level = HNAE3_NONE_RESET },
189 	{ /* sentinel */ }
190 };
191 
192 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
193 	{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err",
194 	  .reset_level = HNAE3_GLOBAL_RESET },
195 	{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err",
196 	  .reset_level = HNAE3_GLOBAL_RESET },
197 	{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err",
198 	  .reset_level = HNAE3_GLOBAL_RESET },
199 	{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err",
200 	  .reset_level = HNAE3_GLOBAL_RESET },
201 	{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err",
202 	  .reset_level = HNAE3_GLOBAL_RESET },
203 	{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err",
204 	  .reset_level = HNAE3_GLOBAL_RESET },
205 	{ /* sentinel */ }
206 };
207 
208 static const struct hclge_hw_error hclge_tm_sch_rint[] = {
209 	{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err",
210 	  .reset_level = HNAE3_GLOBAL_RESET },
211 	{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err",
212 	  .reset_level = HNAE3_GLOBAL_RESET },
213 	{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err",
214 	  .reset_level = HNAE3_GLOBAL_RESET },
215 	{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
216 	  .reset_level = HNAE3_GLOBAL_RESET },
217 	{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
218 	  .reset_level = HNAE3_GLOBAL_RESET },
219 	{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
220 	  .reset_level = HNAE3_GLOBAL_RESET },
221 	{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
222 	  .reset_level = HNAE3_GLOBAL_RESET },
223 	{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
224 	  .reset_level = HNAE3_GLOBAL_RESET },
225 	{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
226 	  .reset_level = HNAE3_GLOBAL_RESET },
227 	{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
228 	  .reset_level = HNAE3_GLOBAL_RESET },
229 	{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
230 	  .reset_level = HNAE3_GLOBAL_RESET },
231 	{ .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err",
232 	  .reset_level = HNAE3_GLOBAL_RESET },
233 	{ .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err",
234 	  .reset_level = HNAE3_GLOBAL_RESET },
235 	{ .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
236 	  .reset_level = HNAE3_GLOBAL_RESET },
237 	{ .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
238 	  .reset_level = HNAE3_GLOBAL_RESET },
239 	{ .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
240 	  .reset_level = HNAE3_GLOBAL_RESET },
241 	{ .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
242 	  .reset_level = HNAE3_GLOBAL_RESET },
243 	{ .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
244 	  .reset_level = HNAE3_GLOBAL_RESET },
245 	{ .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
246 	  .reset_level = HNAE3_GLOBAL_RESET },
247 	{ .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
248 	  .reset_level = HNAE3_GLOBAL_RESET },
249 	{ .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
250 	  .reset_level = HNAE3_GLOBAL_RESET },
251 	{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err",
252 	  .reset_level = HNAE3_GLOBAL_RESET },
253 	{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err",
254 	  .reset_level = HNAE3_GLOBAL_RESET },
255 	{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err",
256 	  .reset_level = HNAE3_GLOBAL_RESET },
257 	{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err",
258 	  .reset_level = HNAE3_GLOBAL_RESET },
259 	{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err",
260 	  .reset_level = HNAE3_GLOBAL_RESET },
261 	{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err",
262 	  .reset_level = HNAE3_GLOBAL_RESET },
263 	{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err",
264 	  .reset_level = HNAE3_GLOBAL_RESET },
265 	{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err",
266 	  .reset_level = HNAE3_GLOBAL_RESET },
267 	{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err",
268 	  .reset_level = HNAE3_GLOBAL_RESET },
269 	{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err",
270 	  .reset_level = HNAE3_GLOBAL_RESET },
271 	{ /* sentinel */ }
272 };
273 
274 static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
275 	{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err",
276 	  .reset_level = HNAE3_GLOBAL_RESET },
277 	{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err",
278 	  .reset_level = HNAE3_GLOBAL_RESET },
279 	{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err",
280 	  .reset_level = HNAE3_GLOBAL_RESET },
281 	{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err",
282 	  .reset_level = HNAE3_GLOBAL_RESET },
283 	{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err",
284 	  .reset_level = HNAE3_GLOBAL_RESET },
285 	{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err",
286 	  .reset_level = HNAE3_GLOBAL_RESET },
287 	{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err",
288 	  .reset_level = HNAE3_GLOBAL_RESET },
289 	{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err",
290 	  .reset_level = HNAE3_GLOBAL_RESET },
291 	{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err",
292 	  .reset_level = HNAE3_GLOBAL_RESET },
293 	{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err",
294 	  .reset_level = HNAE3_GLOBAL_RESET },
295 	{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err",
296 	  .reset_level = HNAE3_GLOBAL_RESET },
297 	{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err",
298 	  .reset_level = HNAE3_GLOBAL_RESET },
299 	{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err",
300 	  .reset_level = HNAE3_GLOBAL_RESET },
301 	{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err",
302 	  .reset_level = HNAE3_GLOBAL_RESET },
303 	{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err",
304 	  .reset_level = HNAE3_GLOBAL_RESET },
305 	{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err",
306 	  .reset_level = HNAE3_GLOBAL_RESET },
307 	{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err",
308 	  .reset_level = HNAE3_GLOBAL_RESET },
309 	{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err",
310 	  .reset_level = HNAE3_GLOBAL_RESET },
311 	{ /* sentinel */ }
312 };
313 
314 static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
315 	{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err",
316 	  .reset_level = HNAE3_GLOBAL_RESET },
317 	{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err",
318 	  .reset_level = HNAE3_GLOBAL_RESET },
319 	{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err",
320 	  .reset_level = HNAE3_GLOBAL_RESET },
321 	{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err",
322 	  .reset_level = HNAE3_GLOBAL_RESET },
323 	{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err",
324 	  .reset_level = HNAE3_GLOBAL_RESET },
325 	{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err",
326 	  .reset_level = HNAE3_GLOBAL_RESET },
327 	{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err",
328 	  .reset_level = HNAE3_GLOBAL_RESET },
329 	{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
330 	  .reset_level = HNAE3_GLOBAL_RESET },
331 	{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
332 	  .reset_level = HNAE3_GLOBAL_RESET },
333 	{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
334 	  .reset_level = HNAE3_GLOBAL_RESET },
335 	{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err",
336 	  .reset_level = HNAE3_GLOBAL_RESET },
337 	{ /* sentinel */ }
338 };
339 
340 static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
341 	{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err",
342 	  .reset_level = HNAE3_NONE_RESET },
343 	{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err",
344 	  .reset_level = HNAE3_GLOBAL_RESET },
345 	{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err",
346 	  .reset_level = HNAE3_NONE_RESET },
347 	{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err",
348 	  .reset_level = HNAE3_GLOBAL_RESET },
349 	{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err",
350 	  .reset_level = HNAE3_NONE_RESET },
351 	{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err",
352 	  .reset_level = HNAE3_GLOBAL_RESET },
353 	{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err",
354 	  .reset_level = HNAE3_NONE_RESET },
355 	{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err",
356 	  .reset_level = HNAE3_GLOBAL_RESET },
357 	{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err",
358 	  .reset_level = HNAE3_GLOBAL_RESET },
359 	{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err",
360 	  .reset_level = HNAE3_GLOBAL_RESET },
361 	{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err",
362 	  .reset_level = HNAE3_GLOBAL_RESET },
363 	{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err",
364 	  .reset_level = HNAE3_GLOBAL_RESET },
365 	{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err",
366 	  .reset_level = HNAE3_GLOBAL_RESET },
367 	{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err",
368 	  .reset_level = HNAE3_GLOBAL_RESET },
369 	{ /* sentinel */ }
370 };
371 
372 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
373 	{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
374 	  .reset_level = HNAE3_GLOBAL_RESET },
375 	{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
376 	  .reset_level = HNAE3_GLOBAL_RESET },
377 	{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
378 	  .reset_level = HNAE3_GLOBAL_RESET },
379 	{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
380 	  .reset_level = HNAE3_GLOBAL_RESET },
381 	{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err",
382 	  .reset_level = HNAE3_GLOBAL_RESET },
383 	{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err",
384 	  .reset_level = HNAE3_GLOBAL_RESET },
385 	{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err",
386 	  .reset_level = HNAE3_GLOBAL_RESET },
387 	{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err",
388 	  .reset_level = HNAE3_GLOBAL_RESET },
389 	{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err",
390 	  .reset_level = HNAE3_GLOBAL_RESET },
391 	{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err",
392 	  .reset_level = HNAE3_GLOBAL_RESET },
393 	{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err",
394 	  .reset_level = HNAE3_GLOBAL_RESET },
395 	{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err",
396 	  .reset_level = HNAE3_GLOBAL_RESET },
397 	{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err",
398 	  .reset_level = HNAE3_GLOBAL_RESET },
399 	{ .int_msk = BIT(26), .msg = "rd_bus_err",
400 	  .reset_level = HNAE3_GLOBAL_RESET },
401 	{ .int_msk = BIT(27), .msg = "wr_bus_err",
402 	  .reset_level = HNAE3_GLOBAL_RESET },
403 	{ .int_msk = BIT(28), .msg = "reg_search_miss",
404 	  .reset_level = HNAE3_GLOBAL_RESET },
405 	{ .int_msk = BIT(29), .msg = "rx_q_search_miss",
406 	  .reset_level = HNAE3_NONE_RESET },
407 	{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect",
408 	  .reset_level = HNAE3_NONE_RESET },
409 	{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl",
410 	  .reset_level = HNAE3_GLOBAL_RESET },
411 	{ /* sentinel */ }
412 };
413 
414 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
415 	{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err",
416 	  .reset_level = HNAE3_GLOBAL_RESET },
417 	{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err",
418 	  .reset_level = HNAE3_GLOBAL_RESET },
419 	{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err",
420 	  .reset_level = HNAE3_GLOBAL_RESET },
421 	{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err",
422 	  .reset_level = HNAE3_GLOBAL_RESET },
423 	{ /* sentinel */ }
424 };
425 
426 static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
427 	{ .int_msk = BIT(0), .msg = "over_8bd_no_fe",
428 	  .reset_level = HNAE3_FUNC_RESET },
429 	{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err",
430 	  .reset_level = HNAE3_NONE_RESET },
431 	{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err",
432 	  .reset_level = HNAE3_NONE_RESET },
433 	{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison",
434 	  .reset_level = HNAE3_FUNC_RESET },
435 	{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison",
436 	  .reset_level = HNAE3_FUNC_RESET },
437 	{ .int_msk = BIT(5), .msg = "buf_wait_timeout",
438 	  .reset_level = HNAE3_NONE_RESET },
439 	{ /* sentinel */ }
440 };
441 
442 static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
443 	{ .int_msk = BIT(0), .msg = "buf_sum_err",
444 	  .reset_level = HNAE3_NONE_RESET },
445 	{ .int_msk = BIT(1), .msg = "ppp_mb_num_err",
446 	  .reset_level = HNAE3_NONE_RESET },
447 	{ .int_msk = BIT(2), .msg = "ppp_mbid_err",
448 	  .reset_level = HNAE3_GLOBAL_RESET },
449 	{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err",
450 	  .reset_level = HNAE3_GLOBAL_RESET },
451 	{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err",
452 	  .reset_level = HNAE3_GLOBAL_RESET },
453 	{ .int_msk = BIT(5), .msg = "cks_edit_position_err",
454 	  .reset_level = HNAE3_GLOBAL_RESET },
455 	{ .int_msk = BIT(6), .msg = "cks_edit_condition_err",
456 	  .reset_level = HNAE3_GLOBAL_RESET },
457 	{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err",
458 	  .reset_level = HNAE3_GLOBAL_RESET },
459 	{ .int_msk = BIT(8), .msg = "vlan_num_ot_err",
460 	  .reset_level = HNAE3_GLOBAL_RESET },
461 	{ .int_msk = BIT(9), .msg = "vlan_num_in_err",
462 	  .reset_level = HNAE3_GLOBAL_RESET },
463 	{ /* sentinel */ }
464 };
465 
466 #define HCLGE_SSU_MEM_ECC_ERR(x) \
467 	{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err", \
468 	  .reset_level = HNAE3_GLOBAL_RESET }
469 
470 static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
471 	HCLGE_SSU_MEM_ECC_ERR(0),
472 	HCLGE_SSU_MEM_ECC_ERR(1),
473 	HCLGE_SSU_MEM_ECC_ERR(2),
474 	HCLGE_SSU_MEM_ECC_ERR(3),
475 	HCLGE_SSU_MEM_ECC_ERR(4),
476 	HCLGE_SSU_MEM_ECC_ERR(5),
477 	HCLGE_SSU_MEM_ECC_ERR(6),
478 	HCLGE_SSU_MEM_ECC_ERR(7),
479 	HCLGE_SSU_MEM_ECC_ERR(8),
480 	HCLGE_SSU_MEM_ECC_ERR(9),
481 	HCLGE_SSU_MEM_ECC_ERR(10),
482 	HCLGE_SSU_MEM_ECC_ERR(11),
483 	HCLGE_SSU_MEM_ECC_ERR(12),
484 	HCLGE_SSU_MEM_ECC_ERR(13),
485 	HCLGE_SSU_MEM_ECC_ERR(14),
486 	HCLGE_SSU_MEM_ECC_ERR(15),
487 	HCLGE_SSU_MEM_ECC_ERR(16),
488 	HCLGE_SSU_MEM_ECC_ERR(17),
489 	HCLGE_SSU_MEM_ECC_ERR(18),
490 	HCLGE_SSU_MEM_ECC_ERR(19),
491 	HCLGE_SSU_MEM_ECC_ERR(20),
492 	HCLGE_SSU_MEM_ECC_ERR(21),
493 	HCLGE_SSU_MEM_ECC_ERR(22),
494 	HCLGE_SSU_MEM_ECC_ERR(23),
495 	HCLGE_SSU_MEM_ECC_ERR(24),
496 	HCLGE_SSU_MEM_ECC_ERR(25),
497 	HCLGE_SSU_MEM_ECC_ERR(26),
498 	HCLGE_SSU_MEM_ECC_ERR(27),
499 	HCLGE_SSU_MEM_ECC_ERR(28),
500 	HCLGE_SSU_MEM_ECC_ERR(29),
501 	HCLGE_SSU_MEM_ECC_ERR(30),
502 	HCLGE_SSU_MEM_ECC_ERR(31),
503 	{ /* sentinel */ }
504 };
505 
506 static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
507 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
508 	  .reset_level = HNAE3_FUNC_RESET },
509 	{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port",
510 	  .reset_level = HNAE3_GLOBAL_RESET },
511 	{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port",
512 	  .reset_level = HNAE3_GLOBAL_RESET },
513 	{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port",
514 	  .reset_level = HNAE3_GLOBAL_RESET },
515 	{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port",
516 	  .reset_level = HNAE3_GLOBAL_RESET },
517 	{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port",
518 	  .reset_level = HNAE3_GLOBAL_RESET },
519 	{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port",
520 	  .reset_level = HNAE3_GLOBAL_RESET },
521 	{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port",
522 	  .reset_level = HNAE3_GLOBAL_RESET },
523 	{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port",
524 	  .reset_level = HNAE3_GLOBAL_RESET },
525 	{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port",
526 	  .reset_level = HNAE3_GLOBAL_RESET },
527 	{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port",
528 	  .reset_level = HNAE3_GLOBAL_RESET },
529 	{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port",
530 	  .reset_level = HNAE3_GLOBAL_RESET },
531 	{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port",
532 	  .reset_level = HNAE3_GLOBAL_RESET },
533 	{ /* sentinel */ }
534 };
535 
536 static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
537 	{ .int_msk = BIT(0), .msg = "ig_mac_inf_int",
538 	  .reset_level = HNAE3_GLOBAL_RESET },
539 	{ .int_msk = BIT(1), .msg = "ig_host_inf_int",
540 	  .reset_level = HNAE3_GLOBAL_RESET },
541 	{ .int_msk = BIT(2), .msg = "ig_roc_buf_int",
542 	  .reset_level = HNAE3_GLOBAL_RESET },
543 	{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int",
544 	  .reset_level = HNAE3_GLOBAL_RESET },
545 	{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int",
546 	  .reset_level = HNAE3_GLOBAL_RESET },
547 	{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int",
548 	  .reset_level = HNAE3_GLOBAL_RESET },
549 	{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int",
550 	  .reset_level = HNAE3_GLOBAL_RESET },
551 	{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int",
552 	  .reset_level = HNAE3_GLOBAL_RESET },
553 	{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int",
554 	  .reset_level = HNAE3_GLOBAL_RESET },
555 	{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int",
556 	  .reset_level = HNAE3_GLOBAL_RESET },
557 	{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int",
558 	  .reset_level = HNAE3_GLOBAL_RESET },
559 	{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int",
560 	  .reset_level = HNAE3_GLOBAL_RESET },
561 	{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int",
562 	  .reset_level = HNAE3_GLOBAL_RESET },
563 	{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int",
564 	  .reset_level = HNAE3_GLOBAL_RESET },
565 	{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int",
566 	  .reset_level = HNAE3_GLOBAL_RESET },
567 	{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int",
568 	  .reset_level = HNAE3_GLOBAL_RESET },
569 	{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int",
570 	  .reset_level = HNAE3_GLOBAL_RESET },
571 	{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int",
572 	  .reset_level = HNAE3_GLOBAL_RESET },
573 	{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int",
574 	  .reset_level = HNAE3_GLOBAL_RESET },
575 	{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int",
576 	  .reset_level = HNAE3_GLOBAL_RESET },
577 	{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int",
578 	  .reset_level = HNAE3_GLOBAL_RESET },
579 	{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int",
580 	  .reset_level = HNAE3_GLOBAL_RESET },
581 	{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int",
582 	  .reset_level = HNAE3_GLOBAL_RESET },
583 	{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int",
584 	  .reset_level = HNAE3_GLOBAL_RESET },
585 	{ /* sentinel */ }
586 };
587 
588 static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
589 	{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg",
590 	  .reset_level = HNAE3_GLOBAL_RESET },
591 	{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg",
592 	  .reset_level = HNAE3_GLOBAL_RESET },
593 	{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg",
594 	  .reset_level = HNAE3_GLOBAL_RESET },
595 	{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg",
596 	  .reset_level = HNAE3_GLOBAL_RESET },
597 	{ /* sentinel */ }
598 };
599 
600 static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
601 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
602 	  .reset_level = HNAE3_FUNC_RESET },
603 	{ .int_msk = BIT(9), .msg = "low_water_line_err_port",
604 	  .reset_level = HNAE3_NONE_RESET },
605 	{ .int_msk = BIT(10), .msg = "hi_water_line_err_port",
606 	  .reset_level = HNAE3_GLOBAL_RESET },
607 	{ /* sentinel */ }
608 };
609 
610 static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
611 	{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
612 	{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
613 	{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
614 	{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
615 	{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
616 	{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
617 	{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
618 	{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
619 	{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
620 	{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
621 	{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
622 	{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
623 	{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
624 	{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
625 	{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
626 	{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
627 	{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
628 	{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
629 	{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
630 	{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
631 	{ /* sentinel */ }
632 };
633 
634 static void hclge_log_error(struct device *dev, char *reg,
635 			    const struct hclge_hw_error *err,
636 			    u32 err_sts, unsigned long *reset_requests)
637 {
638 	while (err->msg) {
639 		if (err->int_msk & err_sts) {
640 			dev_err(dev, "%s %s found [error status=0x%x]\n",
641 				reg, err->msg, err_sts);
642 			if (err->reset_level &&
643 			    err->reset_level != HNAE3_NONE_RESET)
644 				set_bit(err->reset_level, reset_requests);
645 		}
646 		err++;
647 	}
648 }
649 
650 /* hclge_cmd_query_error: read the error information
651  * @hdev: pointer to struct hclge_dev
652  * @desc: descriptor for describing the command
653  * @cmd:  command opcode
654  * @flag: flag for extended command structure
655  *
656  * This function query the error info from hw register/s using command
657  */
658 static int hclge_cmd_query_error(struct hclge_dev *hdev,
659 				 struct hclge_desc *desc, u32 cmd, u16 flag)
660 {
661 	struct device *dev = &hdev->pdev->dev;
662 	int desc_num = 1;
663 	int ret;
664 
665 	hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
666 	if (flag) {
667 		desc[0].flag |= cpu_to_le16(flag);
668 		hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
669 		desc_num = 2;
670 	}
671 
672 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
673 	if (ret)
674 		dev_err(dev, "query error cmd failed (%d)\n", ret);
675 
676 	return ret;
677 }
678 
679 static int hclge_clear_mac_tnl_int(struct hclge_dev *hdev)
680 {
681 	struct hclge_desc desc;
682 
683 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_MAC_TNL_INT, false);
684 	desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_CLR);
685 
686 	return hclge_cmd_send(&hdev->hw, &desc, 1);
687 }
688 
689 static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
690 {
691 	struct device *dev = &hdev->pdev->dev;
692 	struct hclge_desc desc[2];
693 	int ret;
694 
695 	/* configure common error interrupts */
696 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
697 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
698 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
699 
700 	if (en) {
701 		desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
702 		desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
703 					HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
704 		desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
705 		desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
706 					      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
707 		desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
708 	}
709 
710 	desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
711 	desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
712 				HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
713 	desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
714 	desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
715 				      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
716 	desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
717 
718 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
719 	if (ret)
720 		dev_err(dev,
721 			"fail(%d) to configure common err interrupts\n", ret);
722 
723 	return ret;
724 }
725 
726 static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
727 {
728 	struct device *dev = &hdev->pdev->dev;
729 	struct hclge_desc desc;
730 	int ret;
731 
732 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
733 		return 0;
734 
735 	/* configure NCSI error interrupts */
736 	hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
737 	if (en)
738 		desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
739 
740 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
741 	if (ret)
742 		dev_err(dev,
743 			"fail(%d) to configure  NCSI error interrupts\n", ret);
744 
745 	return ret;
746 }
747 
748 static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
749 {
750 	struct device *dev = &hdev->pdev->dev;
751 	struct hclge_desc desc;
752 	int ret;
753 
754 	/* configure IGU,EGU error interrupts */
755 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
756 	if (en)
757 		desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
758 
759 	desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
760 
761 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
762 	if (ret) {
763 		dev_err(dev,
764 			"fail(%d) to configure IGU common interrupts\n", ret);
765 		return ret;
766 	}
767 
768 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
769 	if (en)
770 		desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
771 
772 	desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
773 
774 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
775 	if (ret) {
776 		dev_err(dev,
777 			"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
778 		return ret;
779 	}
780 
781 	ret = hclge_config_ncsi_hw_err_int(hdev, en);
782 
783 	return ret;
784 }
785 
786 static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
787 					    bool en)
788 {
789 	struct device *dev = &hdev->pdev->dev;
790 	struct hclge_desc desc[2];
791 	int ret;
792 
793 	/* configure PPP error interrupts */
794 	hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
795 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
796 	hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
797 
798 	if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
799 		if (en) {
800 			desc[0].data[0] =
801 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
802 			desc[0].data[1] =
803 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
804 			desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
805 		}
806 
807 		desc[1].data[0] =
808 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
809 		desc[1].data[1] =
810 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
811 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
812 			desc[1].data[2] =
813 				cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
814 	} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
815 		if (en) {
816 			desc[0].data[0] =
817 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
818 			desc[0].data[1] =
819 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
820 		}
821 
822 		desc[1].data[0] =
823 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
824 		desc[1].data[1] =
825 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
826 	}
827 
828 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
829 	if (ret)
830 		dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
831 
832 	return ret;
833 }
834 
835 static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
836 {
837 	int ret;
838 
839 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
840 					       en);
841 	if (ret)
842 		return ret;
843 
844 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
845 					       en);
846 
847 	return ret;
848 }
849 
850 static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
851 {
852 	struct device *dev = &hdev->pdev->dev;
853 	struct hclge_desc desc;
854 	int ret;
855 
856 	/* configure TM SCH hw errors */
857 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
858 	if (en)
859 		desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
860 
861 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
862 	if (ret) {
863 		dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
864 		return ret;
865 	}
866 
867 	/* configure TM QCN hw errors */
868 	ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG, 0);
869 	if (ret) {
870 		dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret);
871 		return ret;
872 	}
873 
874 	hclge_cmd_reuse_desc(&desc, false);
875 	if (en)
876 		desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
877 
878 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
879 	if (ret)
880 		dev_err(dev,
881 			"fail(%d) to configure TM QCN mem errors\n", ret);
882 
883 	return ret;
884 }
885 
886 static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
887 {
888 	struct device *dev = &hdev->pdev->dev;
889 	struct hclge_desc desc;
890 	int ret;
891 
892 	/* configure MAC common error interrupts */
893 	hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
894 	if (en)
895 		desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
896 
897 	desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
898 
899 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
900 	if (ret)
901 		dev_err(dev,
902 			"fail(%d) to configure MAC COMMON error intr\n", ret);
903 
904 	return ret;
905 }
906 
907 int hclge_config_mac_tnl_int(struct hclge_dev *hdev, bool en)
908 {
909 	struct hclge_desc desc;
910 
911 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_TNL_INT_EN, false);
912 	if (en)
913 		desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN);
914 	else
915 		desc.data[0] = 0;
916 
917 	desc.data[1] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN_MASK);
918 
919 	return hclge_cmd_send(&hdev->hw, &desc, 1);
920 }
921 
922 static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
923 					     bool en)
924 {
925 	struct device *dev = &hdev->pdev->dev;
926 	struct hclge_desc desc[2];
927 	int desc_num = 1;
928 	int ret;
929 
930 	/* configure PPU error interrupts */
931 	if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
932 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
933 		desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
934 		hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
935 		if (en) {
936 			desc[0].data[0] =
937 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN);
938 			desc[0].data[1] =
939 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN);
940 			desc[1].data[3] =
941 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN);
942 			desc[1].data[4] =
943 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN);
944 		}
945 
946 		desc[1].data[0] =
947 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK);
948 		desc[1].data[1] =
949 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK);
950 		desc[1].data[2] =
951 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK);
952 		desc[1].data[3] |=
953 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK);
954 		desc_num = 2;
955 	} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
956 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
957 		if (en)
958 			desc[0].data[0] =
959 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2);
960 
961 		desc[0].data[2] =
962 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK);
963 	} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
964 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
965 		if (en)
966 			desc[0].data[0] =
967 				cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN);
968 
969 		desc[0].data[2] =
970 			cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK);
971 	} else {
972 		dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
973 		return -EINVAL;
974 	}
975 
976 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
977 
978 	return ret;
979 }
980 
981 static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
982 {
983 	struct device *dev = &hdev->pdev->dev;
984 	int ret;
985 
986 	ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
987 						en);
988 	if (ret) {
989 		dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
990 			ret);
991 		return ret;
992 	}
993 
994 	ret = hclge_config_ppu_error_interrupts(hdev,
995 						HCLGE_PPU_MPF_OTHER_INT_CMD,
996 						en);
997 	if (ret) {
998 		dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
999 		return ret;
1000 	}
1001 
1002 	ret = hclge_config_ppu_error_interrupts(hdev,
1003 						HCLGE_PPU_PF_OTHER_INT_CMD, en);
1004 	if (ret)
1005 		dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
1006 			ret);
1007 	return ret;
1008 }
1009 
1010 static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
1011 {
1012 	struct device *dev = &hdev->pdev->dev;
1013 	struct hclge_desc desc[2];
1014 	int ret;
1015 
1016 	/* configure SSU ecc error interrupts */
1017 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
1018 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1019 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
1020 	if (en) {
1021 		desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
1022 		desc[0].data[1] =
1023 			cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
1024 		desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
1025 	}
1026 
1027 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
1028 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
1029 	desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
1030 
1031 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1032 	if (ret) {
1033 		dev_err(dev,
1034 			"fail(%d) to configure SSU ECC error interrupt\n", ret);
1035 		return ret;
1036 	}
1037 
1038 	/* configure SSU common error interrupts */
1039 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
1040 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1041 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
1042 
1043 	if (en) {
1044 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1045 			desc[0].data[0] =
1046 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
1047 		else
1048 			desc[0].data[0] =
1049 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
1050 		desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
1051 		desc[0].data[2] =
1052 			cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
1053 	}
1054 
1055 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
1056 				HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
1057 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
1058 
1059 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1060 	if (ret)
1061 		dev_err(dev,
1062 			"fail(%d) to configure SSU COMMON error intr\n", ret);
1063 
1064 	return ret;
1065 }
1066 
1067 /* hclge_query_bd_num: query number of buffer descriptors
1068  * @hdev: pointer to struct hclge_dev
1069  * @is_ras: true for ras, false for msix
1070  * @mpf_bd_num: number of main PF interrupt buffer descriptors
1071  * @pf_bd_num: number of not main PF interrupt buffer descriptors
1072  *
1073  * This function querys number of mpf and pf buffer descriptors.
1074  */
1075 static int hclge_query_bd_num(struct hclge_dev *hdev, bool is_ras,
1076 			      int *mpf_bd_num, int *pf_bd_num)
1077 {
1078 	struct device *dev = &hdev->pdev->dev;
1079 	u32 mpf_min_bd_num, pf_min_bd_num;
1080 	enum hclge_opcode_type opcode;
1081 	struct hclge_desc desc_bd;
1082 	int ret;
1083 
1084 	if (is_ras) {
1085 		opcode = HCLGE_QUERY_RAS_INT_STS_BD_NUM;
1086 		mpf_min_bd_num = HCLGE_MPF_RAS_INT_MIN_BD_NUM;
1087 		pf_min_bd_num = HCLGE_PF_RAS_INT_MIN_BD_NUM;
1088 	} else {
1089 		opcode = HCLGE_QUERY_MSIX_INT_STS_BD_NUM;
1090 		mpf_min_bd_num = HCLGE_MPF_MSIX_INT_MIN_BD_NUM;
1091 		pf_min_bd_num = HCLGE_PF_MSIX_INT_MIN_BD_NUM;
1092 	}
1093 
1094 	hclge_cmd_setup_basic_desc(&desc_bd, opcode, true);
1095 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1096 	if (ret) {
1097 		dev_err(dev, "fail(%d) to query msix int status bd num\n",
1098 			ret);
1099 		return ret;
1100 	}
1101 
1102 	*mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1103 	*pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1104 	if (*mpf_bd_num < mpf_min_bd_num || *pf_bd_num < pf_min_bd_num) {
1105 		dev_err(dev, "Invalid bd num: mpf(%d), pf(%d)\n",
1106 			*mpf_bd_num, *pf_bd_num);
1107 		return -EINVAL;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 /* hclge_handle_mpf_ras_error: handle all main PF RAS errors
1114  * @hdev: pointer to struct hclge_dev
1115  * @desc: descriptor for describing the command
1116  * @num:  number of extended command structures
1117  *
1118  * This function handles all the main PF RAS errors in the
1119  * hw register/s using command.
1120  */
1121 static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
1122 				      struct hclge_desc *desc,
1123 				      int num)
1124 {
1125 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1126 	struct device *dev = &hdev->pdev->dev;
1127 	__le32 *desc_data;
1128 	u32 status;
1129 	int ret;
1130 
1131 	/* query all main PF RAS errors */
1132 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
1133 				   true);
1134 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1135 	if (ret) {
1136 		dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
1137 		return ret;
1138 	}
1139 
1140 	/* log HNS common errors */
1141 	status = le32_to_cpu(desc[0].data[0]);
1142 	if (status)
1143 		hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
1144 				&hclge_imp_tcm_ecc_int[0], status,
1145 				&ae_dev->hw_err_reset_req);
1146 
1147 	status = le32_to_cpu(desc[0].data[1]);
1148 	if (status)
1149 		hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
1150 				&hclge_cmdq_nic_mem_ecc_int[0], status,
1151 				&ae_dev->hw_err_reset_req);
1152 
1153 	if ((le32_to_cpu(desc[0].data[2])) & BIT(0))
1154 		dev_warn(dev, "imp_rd_data_poison_err found\n");
1155 
1156 	status = le32_to_cpu(desc[0].data[3]);
1157 	if (status)
1158 		hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
1159 				&hclge_tqp_int_ecc_int[0], status,
1160 				&ae_dev->hw_err_reset_req);
1161 
1162 	status = le32_to_cpu(desc[0].data[4]);
1163 	if (status)
1164 		hclge_log_error(dev, "MSIX_ECC_INT_STS",
1165 				&hclge_msix_sram_ecc_int[0], status,
1166 				&ae_dev->hw_err_reset_req);
1167 
1168 	/* log SSU(Storage Switch Unit) errors */
1169 	desc_data = (__le32 *)&desc[2];
1170 	status = le32_to_cpu(*(desc_data + 2));
1171 	if (status)
1172 		hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
1173 				&hclge_ssu_mem_ecc_err_int[0], status,
1174 				&ae_dev->hw_err_reset_req);
1175 
1176 	status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
1177 	if (status) {
1178 		dev_err(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
1179 			status);
1180 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1181 	}
1182 
1183 	status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
1184 	if (status)
1185 		hclge_log_error(dev, "SSU_COMMON_ERR_INT",
1186 				&hclge_ssu_com_err_int[0], status,
1187 				&ae_dev->hw_err_reset_req);
1188 
1189 	/* log IGU(Ingress Unit) errors */
1190 	desc_data = (__le32 *)&desc[3];
1191 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
1192 	if (status)
1193 		hclge_log_error(dev, "IGU_INT_STS",
1194 				&hclge_igu_int[0], status,
1195 				&ae_dev->hw_err_reset_req);
1196 
1197 	/* log PPP(Programmable Packet Process) errors */
1198 	desc_data = (__le32 *)&desc[4];
1199 	status = le32_to_cpu(*(desc_data + 1));
1200 	if (status)
1201 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
1202 				&hclge_ppp_mpf_abnormal_int_st1[0], status,
1203 				&ae_dev->hw_err_reset_req);
1204 
1205 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
1206 	if (status)
1207 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
1208 				&hclge_ppp_mpf_abnormal_int_st3[0], status,
1209 				&ae_dev->hw_err_reset_req);
1210 
1211 	/* log PPU(RCB) errors */
1212 	desc_data = (__le32 *)&desc[5];
1213 	status = le32_to_cpu(*(desc_data + 1));
1214 	if (status) {
1215 		dev_err(dev,
1216 			"PPU_MPF_ABNORMAL_INT_ST1 rpu_rx_pkt_ecc_mbit_err found\n");
1217 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1218 	}
1219 
1220 	status = le32_to_cpu(*(desc_data + 2));
1221 	if (status)
1222 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1223 				&hclge_ppu_mpf_abnormal_int_st2[0], status,
1224 				&ae_dev->hw_err_reset_req);
1225 
1226 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
1227 	if (status)
1228 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
1229 				&hclge_ppu_mpf_abnormal_int_st3[0], status,
1230 				&ae_dev->hw_err_reset_req);
1231 
1232 	/* log TM(Traffic Manager) errors */
1233 	desc_data = (__le32 *)&desc[6];
1234 	status = le32_to_cpu(*desc_data);
1235 	if (status)
1236 		hclge_log_error(dev, "TM_SCH_RINT",
1237 				&hclge_tm_sch_rint[0], status,
1238 				&ae_dev->hw_err_reset_req);
1239 
1240 	/* log QCN(Quantized Congestion Control) errors */
1241 	desc_data = (__le32 *)&desc[7];
1242 	status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
1243 	if (status)
1244 		hclge_log_error(dev, "QCN_FIFO_RINT",
1245 				&hclge_qcn_fifo_rint[0], status,
1246 				&ae_dev->hw_err_reset_req);
1247 
1248 	status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
1249 	if (status)
1250 		hclge_log_error(dev, "QCN_ECC_RINT",
1251 				&hclge_qcn_ecc_rint[0], status,
1252 				&ae_dev->hw_err_reset_req);
1253 
1254 	/* log NCSI errors */
1255 	desc_data = (__le32 *)&desc[9];
1256 	status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
1257 	if (status)
1258 		hclge_log_error(dev, "NCSI_ECC_INT_RPT",
1259 				&hclge_ncsi_err_int[0], status,
1260 				&ae_dev->hw_err_reset_req);
1261 
1262 	/* clear all main PF RAS errors */
1263 	hclge_cmd_reuse_desc(&desc[0], false);
1264 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1265 	if (ret)
1266 		dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
1267 
1268 	return ret;
1269 }
1270 
1271 /* hclge_handle_pf_ras_error: handle all PF RAS errors
1272  * @hdev: pointer to struct hclge_dev
1273  * @desc: descriptor for describing the command
1274  * @num:  number of extended command structures
1275  *
1276  * This function handles all the PF RAS errors in the
1277  * hw register/s using command.
1278  */
1279 static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
1280 				     struct hclge_desc *desc,
1281 				     int num)
1282 {
1283 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1284 	struct device *dev = &hdev->pdev->dev;
1285 	__le32 *desc_data;
1286 	u32 status;
1287 	int ret;
1288 
1289 	/* query all PF RAS errors */
1290 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
1291 				   true);
1292 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1293 	if (ret) {
1294 		dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
1295 		return ret;
1296 	}
1297 
1298 	/* log SSU(Storage Switch Unit) errors */
1299 	status = le32_to_cpu(desc[0].data[0]);
1300 	if (status)
1301 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1302 				&hclge_ssu_port_based_err_int[0], status,
1303 				&ae_dev->hw_err_reset_req);
1304 
1305 	status = le32_to_cpu(desc[0].data[1]);
1306 	if (status)
1307 		hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
1308 				&hclge_ssu_fifo_overflow_int[0], status,
1309 				&ae_dev->hw_err_reset_req);
1310 
1311 	status = le32_to_cpu(desc[0].data[2]);
1312 	if (status)
1313 		hclge_log_error(dev, "SSU_ETS_TCG_INT",
1314 				&hclge_ssu_ets_tcg_int[0], status,
1315 				&ae_dev->hw_err_reset_req);
1316 
1317 	/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
1318 	desc_data = (__le32 *)&desc[1];
1319 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
1320 	if (status)
1321 		hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
1322 				&hclge_igu_egu_tnl_int[0], status,
1323 				&ae_dev->hw_err_reset_req);
1324 
1325 	/* log PPU(RCB) errors */
1326 	desc_data = (__le32 *)&desc[3];
1327 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
1328 	if (status) {
1329 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
1330 				&hclge_ppu_pf_abnormal_int[0], status,
1331 				&ae_dev->hw_err_reset_req);
1332 		hclge_report_hw_error(hdev, HNAE3_PPU_POISON_ERROR);
1333 	}
1334 
1335 	/* clear all PF RAS errors */
1336 	hclge_cmd_reuse_desc(&desc[0], false);
1337 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1338 	if (ret)
1339 		dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
1340 
1341 	return ret;
1342 }
1343 
1344 static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
1345 {
1346 	u32 mpf_bd_num, pf_bd_num, bd_num;
1347 	struct hclge_desc *desc;
1348 	int ret;
1349 
1350 	/* query the number of registers in the RAS int status */
1351 	ret = hclge_query_bd_num(hdev, true, &mpf_bd_num, &pf_bd_num);
1352 	if (ret)
1353 		return ret;
1354 
1355 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1356 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1357 	if (!desc)
1358 		return -ENOMEM;
1359 
1360 	/* handle all main PF RAS errors */
1361 	ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
1362 	if (ret) {
1363 		kfree(desc);
1364 		return ret;
1365 	}
1366 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1367 
1368 	/* handle all PF RAS errors */
1369 	ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
1370 	kfree(desc);
1371 
1372 	return ret;
1373 }
1374 
1375 static int hclge_log_rocee_axi_error(struct hclge_dev *hdev)
1376 {
1377 	struct device *dev = &hdev->pdev->dev;
1378 	struct hclge_desc desc[3];
1379 	int ret;
1380 
1381 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1382 				   true);
1383 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1384 				   true);
1385 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1386 				   true);
1387 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1388 	desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1389 
1390 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 3);
1391 	if (ret) {
1392 		dev_err(dev, "failed(%d) to query ROCEE AXI error sts\n", ret);
1393 		return ret;
1394 	}
1395 
1396 	dev_err(dev, "AXI1: %08X %08X %08X %08X %08X %08X\n",
1397 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1398 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1399 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1400 	dev_err(dev, "AXI2: %08X %08X %08X %08X %08X %08X\n",
1401 		le32_to_cpu(desc[1].data[0]), le32_to_cpu(desc[1].data[1]),
1402 		le32_to_cpu(desc[1].data[2]), le32_to_cpu(desc[1].data[3]),
1403 		le32_to_cpu(desc[1].data[4]), le32_to_cpu(desc[1].data[5]));
1404 	dev_err(dev, "AXI3: %08X %08X %08X %08X\n",
1405 		le32_to_cpu(desc[2].data[0]), le32_to_cpu(desc[2].data[1]),
1406 		le32_to_cpu(desc[2].data[2]), le32_to_cpu(desc[2].data[3]));
1407 
1408 	return 0;
1409 }
1410 
1411 static int hclge_log_rocee_ecc_error(struct hclge_dev *hdev)
1412 {
1413 	struct device *dev = &hdev->pdev->dev;
1414 	struct hclge_desc desc[2];
1415 	int ret;
1416 
1417 	ret = hclge_cmd_query_error(hdev, &desc[0],
1418 				    HCLGE_QUERY_ROCEE_ECC_RAS_INFO_CMD,
1419 				    HCLGE_CMD_FLAG_NEXT);
1420 	if (ret) {
1421 		dev_err(dev, "failed(%d) to query ROCEE ECC error sts\n", ret);
1422 		return ret;
1423 	}
1424 
1425 	dev_err(dev, "ECC1: %08X %08X %08X %08X %08X %08X\n",
1426 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1427 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1428 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1429 	dev_err(dev, "ECC2: %08X %08X %08X\n", le32_to_cpu(desc[1].data[0]),
1430 		le32_to_cpu(desc[1].data[1]), le32_to_cpu(desc[1].data[2]));
1431 
1432 	return 0;
1433 }
1434 
1435 static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
1436 {
1437 	struct device *dev = &hdev->pdev->dev;
1438 	struct hclge_desc desc[2];
1439 	int ret;
1440 
1441 	/* read overflow error status */
1442 	ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD,
1443 				    0);
1444 	if (ret) {
1445 		dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
1446 		return ret;
1447 	}
1448 
1449 	/* log overflow error */
1450 	if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1451 		const struct hclge_hw_error *err;
1452 		u32 err_sts;
1453 
1454 		err = &hclge_rocee_qmm_ovf_err_int[0];
1455 		err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
1456 			  le32_to_cpu(desc[0].data[0]);
1457 		while (err->msg) {
1458 			if (err->int_msk == err_sts) {
1459 				dev_err(dev, "%s [error status=0x%x] found\n",
1460 					err->msg,
1461 					le32_to_cpu(desc[0].data[0]));
1462 				break;
1463 			}
1464 			err++;
1465 		}
1466 	}
1467 
1468 	if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1469 		dev_err(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
1470 			le32_to_cpu(desc[0].data[1]));
1471 	}
1472 
1473 	if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1474 		dev_err(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
1475 			le32_to_cpu(desc[0].data[2]));
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 static enum hnae3_reset_type
1482 hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
1483 {
1484 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1485 	struct device *dev = &hdev->pdev->dev;
1486 	struct hclge_desc desc[2];
1487 	unsigned int status;
1488 	int ret;
1489 
1490 	/* read RAS error interrupt status */
1491 	ret = hclge_cmd_query_error(hdev, &desc[0],
1492 				    HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0);
1493 	if (ret) {
1494 		dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
1495 		/* reset everything for now */
1496 		return HNAE3_GLOBAL_RESET;
1497 	}
1498 
1499 	status = le32_to_cpu(desc[0].data[0]);
1500 
1501 	if (status & HCLGE_ROCEE_AXI_ERR_INT_MASK) {
1502 		if (status & HCLGE_ROCEE_RERR_INT_MASK)
1503 			dev_err(dev, "ROCEE RAS AXI rresp error\n");
1504 
1505 		if (status & HCLGE_ROCEE_BERR_INT_MASK)
1506 			dev_err(dev, "ROCEE RAS AXI bresp error\n");
1507 
1508 		reset_type = HNAE3_FUNC_RESET;
1509 
1510 		hclge_report_hw_error(hdev, HNAE3_ROCEE_AXI_RESP_ERROR);
1511 
1512 		ret = hclge_log_rocee_axi_error(hdev);
1513 		if (ret)
1514 			return HNAE3_GLOBAL_RESET;
1515 	}
1516 
1517 	if (status & HCLGE_ROCEE_ECC_INT_MASK) {
1518 		dev_err(dev, "ROCEE RAS 2bit ECC error\n");
1519 		reset_type = HNAE3_GLOBAL_RESET;
1520 
1521 		ret = hclge_log_rocee_ecc_error(hdev);
1522 		if (ret)
1523 			return HNAE3_GLOBAL_RESET;
1524 	}
1525 
1526 	if (status & HCLGE_ROCEE_OVF_INT_MASK) {
1527 		ret = hclge_log_rocee_ovf_error(hdev);
1528 		if (ret) {
1529 			dev_err(dev, "failed(%d) to process ovf error\n", ret);
1530 			/* reset everything for now */
1531 			return HNAE3_GLOBAL_RESET;
1532 		}
1533 	}
1534 
1535 	/* clear error status */
1536 	hclge_cmd_reuse_desc(&desc[0], false);
1537 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1538 	if (ret) {
1539 		dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
1540 		/* reset everything for now */
1541 		return HNAE3_GLOBAL_RESET;
1542 	}
1543 
1544 	return reset_type;
1545 }
1546 
1547 int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
1548 {
1549 	struct device *dev = &hdev->pdev->dev;
1550 	struct hclge_desc desc;
1551 	int ret;
1552 
1553 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2 ||
1554 	    !hnae3_dev_roce_supported(hdev))
1555 		return 0;
1556 
1557 	hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
1558 	if (en) {
1559 		/* enable ROCEE hw error interrupts */
1560 		desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
1561 		desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
1562 
1563 		hclge_log_and_clear_rocee_ras_error(hdev);
1564 	}
1565 	desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
1566 	desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
1567 
1568 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1569 	if (ret)
1570 		dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
1571 
1572 	return ret;
1573 }
1574 
1575 static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
1576 {
1577 	struct hclge_dev *hdev = ae_dev->priv;
1578 	enum hnae3_reset_type reset_type;
1579 
1580 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
1581 		return;
1582 
1583 	reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
1584 	if (reset_type != HNAE3_NONE_RESET)
1585 		set_bit(reset_type, &ae_dev->hw_err_reset_req);
1586 }
1587 
1588 static const struct hclge_hw_blk hw_blk[] = {
1589 	{
1590 	  .msk = BIT(0), .name = "IGU_EGU",
1591 	  .config_err_int = hclge_config_igu_egu_hw_err_int,
1592 	},
1593 	{
1594 	  .msk = BIT(1), .name = "PPP",
1595 	  .config_err_int = hclge_config_ppp_hw_err_int,
1596 	},
1597 	{
1598 	  .msk = BIT(2), .name = "SSU",
1599 	  .config_err_int = hclge_config_ssu_hw_err_int,
1600 	},
1601 	{
1602 	  .msk = BIT(3), .name = "PPU",
1603 	  .config_err_int = hclge_config_ppu_hw_err_int,
1604 	},
1605 	{
1606 	  .msk = BIT(4), .name = "TM",
1607 	  .config_err_int = hclge_config_tm_hw_err_int,
1608 	},
1609 	{
1610 	  .msk = BIT(5), .name = "COMMON",
1611 	  .config_err_int = hclge_config_common_hw_err_int,
1612 	},
1613 	{
1614 	  .msk = BIT(8), .name = "MAC",
1615 	  .config_err_int = hclge_config_mac_err_int,
1616 	},
1617 	{ /* sentinel */ }
1618 };
1619 
1620 int hclge_config_nic_hw_error(struct hclge_dev *hdev, bool state)
1621 {
1622 	const struct hclge_hw_blk *module = hw_blk;
1623 	int ret = 0;
1624 
1625 	while (module->name) {
1626 		if (module->config_err_int) {
1627 			ret = module->config_err_int(hdev, state);
1628 			if (ret)
1629 				return ret;
1630 		}
1631 		module++;
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
1638 {
1639 	struct hclge_dev *hdev = ae_dev->priv;
1640 	struct device *dev = &hdev->pdev->dev;
1641 	u32 status;
1642 
1643 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1644 		dev_err(dev,
1645 			"Can't recover - RAS error reported during dev init\n");
1646 		return PCI_ERS_RESULT_NONE;
1647 	}
1648 
1649 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1650 
1651 	if (status & HCLGE_RAS_REG_NFE_MASK ||
1652 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
1653 		ae_dev->hw_err_reset_req = 0;
1654 	else
1655 		goto out;
1656 
1657 	/* Handling Non-fatal HNS RAS errors */
1658 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1659 		dev_err(dev,
1660 			"HNS Non-Fatal RAS error(status=0x%x) identified\n",
1661 			status);
1662 		hclge_handle_all_ras_errors(hdev);
1663 	}
1664 
1665 	/* Handling Non-fatal Rocee RAS errors */
1666 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
1667 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
1668 		dev_err(dev, "ROCEE Non-Fatal RAS error identified\n");
1669 		hclge_handle_rocee_ras_error(ae_dev);
1670 	}
1671 
1672 	if (ae_dev->hw_err_reset_req)
1673 		return PCI_ERS_RESULT_NEED_RESET;
1674 
1675 out:
1676 	return PCI_ERS_RESULT_RECOVERED;
1677 }
1678 
1679 static int hclge_clear_hw_msix_error(struct hclge_dev *hdev,
1680 				     struct hclge_desc *desc, bool is_mpf,
1681 				     u32 bd_num)
1682 {
1683 	if (is_mpf)
1684 		desc[0].opcode =
1685 			cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT);
1686 	else
1687 		desc[0].opcode = cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT);
1688 
1689 	desc[0].flag = cpu_to_le16(HCLGE_CMD_FLAG_NO_INTR | HCLGE_CMD_FLAG_IN);
1690 
1691 	return hclge_cmd_send(&hdev->hw, &desc[0], bd_num);
1692 }
1693 
1694 /* hclge_query_8bd_info: query information about over_8bd_nfe_err
1695  * @hdev: pointer to struct hclge_dev
1696  * @vf_id: Index of the virtual function with error
1697  * @q_id: Physical index of the queue with error
1698  *
1699  * This function get specific index of queue and function which causes
1700  * over_8bd_nfe_err by using command. If vf_id is 0, it means error is
1701  * caused by PF instead of VF.
1702  */
1703 static int hclge_query_over_8bd_err_info(struct hclge_dev *hdev, u16 *vf_id,
1704 					 u16 *q_id)
1705 {
1706 	struct hclge_query_ppu_pf_other_int_dfx_cmd *req;
1707 	struct hclge_desc desc;
1708 	int ret;
1709 
1710 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PPU_PF_OTHER_INT_DFX, true);
1711 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1712 	if (ret)
1713 		return ret;
1714 
1715 	req = (struct hclge_query_ppu_pf_other_int_dfx_cmd *)desc.data;
1716 	*vf_id = le16_to_cpu(req->over_8bd_no_fe_vf_id);
1717 	*q_id = le16_to_cpu(req->over_8bd_no_fe_qid);
1718 
1719 	return 0;
1720 }
1721 
1722 /* hclge_handle_over_8bd_err: handle MSI-X error named over_8bd_nfe_err
1723  * @hdev: pointer to struct hclge_dev
1724  * @reset_requests: reset level that we need to trigger later
1725  *
1726  * over_8bd_nfe_err is a special MSI-X because it may caused by a VF, in
1727  * that case, we need to trigger VF reset. Otherwise, a PF reset is needed.
1728  */
1729 static void hclge_handle_over_8bd_err(struct hclge_dev *hdev,
1730 				      unsigned long *reset_requests)
1731 {
1732 	struct device *dev = &hdev->pdev->dev;
1733 	u16 vf_id;
1734 	u16 q_id;
1735 	int ret;
1736 
1737 	ret = hclge_query_over_8bd_err_info(hdev, &vf_id, &q_id);
1738 	if (ret) {
1739 		dev_err(dev, "fail(%d) to query over_8bd_no_fe info\n",
1740 			ret);
1741 		return;
1742 	}
1743 
1744 	dev_err(dev, "PPU_PF_ABNORMAL_INT_ST over_8bd_no_fe found, vf_id(%u), queue_id(%u)\n",
1745 		vf_id, q_id);
1746 
1747 	if (vf_id) {
1748 		if (vf_id >= hdev->num_alloc_vport) {
1749 			dev_err(dev, "invalid vf id(%u)\n", vf_id);
1750 			return;
1751 		}
1752 
1753 		/* If we need to trigger other reset whose level is higher
1754 		 * than HNAE3_VF_FUNC_RESET, no need to trigger a VF reset
1755 		 * here.
1756 		 */
1757 		if (*reset_requests != 0)
1758 			return;
1759 
1760 		ret = hclge_inform_reset_assert_to_vf(&hdev->vport[vf_id]);
1761 		if (ret)
1762 			dev_err(dev, "inform reset to vf(%u) failed %d!\n",
1763 				hdev->vport->vport_id, ret);
1764 	} else {
1765 		set_bit(HNAE3_FUNC_RESET, reset_requests);
1766 	}
1767 }
1768 
1769 /* hclge_handle_mpf_msix_error: handle all main PF MSI-X errors
1770  * @hdev: pointer to struct hclge_dev
1771  * @desc: descriptor for describing the command
1772  * @mpf_bd_num: number of extended command structures
1773  * @reset_requests: record of the reset level that we need
1774  *
1775  * This function handles all the main PF MSI-X errors in the hw register/s
1776  * using command.
1777  */
1778 static int hclge_handle_mpf_msix_error(struct hclge_dev *hdev,
1779 				       struct hclge_desc *desc,
1780 				       int mpf_bd_num,
1781 				       unsigned long *reset_requests)
1782 {
1783 	struct device *dev = &hdev->pdev->dev;
1784 	__le32 *desc_data;
1785 	u32 status;
1786 	int ret;
1787 	/* query all main PF MSIx errors */
1788 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
1789 				   true);
1790 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
1791 	if (ret) {
1792 		dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret);
1793 		return ret;
1794 	}
1795 
1796 	/* log MAC errors */
1797 	desc_data = (__le32 *)&desc[1];
1798 	status = le32_to_cpu(*desc_data);
1799 	if (status)
1800 		hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
1801 				&hclge_mac_afifo_tnl_int[0], status,
1802 				reset_requests);
1803 
1804 	/* log PPU(RCB) MPF errors */
1805 	desc_data = (__le32 *)&desc[5];
1806 	status = le32_to_cpu(*(desc_data + 2)) &
1807 			HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
1808 	if (status)
1809 		dev_err(dev, "PPU_MPF_ABNORMAL_INT_ST2 rx_q_search_miss found [dfx status=0x%x\n]",
1810 			status);
1811 
1812 	/* clear all main PF MSIx errors */
1813 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1814 	if (ret)
1815 		dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret);
1816 
1817 	return ret;
1818 }
1819 
1820 /* hclge_handle_pf_msix_error: handle all PF MSI-X errors
1821  * @hdev: pointer to struct hclge_dev
1822  * @desc: descriptor for describing the command
1823  * @mpf_bd_num: number of extended command structures
1824  * @reset_requests: record of the reset level that we need
1825  *
1826  * This function handles all the PF MSI-X errors in the hw register/s using
1827  * command.
1828  */
1829 static int hclge_handle_pf_msix_error(struct hclge_dev *hdev,
1830 				      struct hclge_desc *desc,
1831 				      int pf_bd_num,
1832 				      unsigned long *reset_requests)
1833 {
1834 	struct device *dev = &hdev->pdev->dev;
1835 	__le32 *desc_data;
1836 	u32 status;
1837 	int ret;
1838 
1839 	/* query all PF MSIx errors */
1840 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
1841 				   true);
1842 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
1843 	if (ret) {
1844 		dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret);
1845 		return ret;
1846 	}
1847 
1848 	/* log SSU PF errors */
1849 	status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
1850 	if (status)
1851 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1852 				&hclge_ssu_port_based_pf_int[0],
1853 				status, reset_requests);
1854 
1855 	/* read and log PPP PF errors */
1856 	desc_data = (__le32 *)&desc[2];
1857 	status = le32_to_cpu(*desc_data);
1858 	if (status)
1859 		hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
1860 				&hclge_ppp_pf_abnormal_int[0],
1861 				status, reset_requests);
1862 
1863 	/* log PPU(RCB) PF errors */
1864 	desc_data = (__le32 *)&desc[3];
1865 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
1866 	if (status)
1867 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
1868 				&hclge_ppu_pf_abnormal_int[0],
1869 				status, reset_requests);
1870 
1871 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_OVER_8BD_ERR_MASK;
1872 	if (status)
1873 		hclge_handle_over_8bd_err(hdev, reset_requests);
1874 
1875 	/* clear all PF MSIx errors */
1876 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1877 	if (ret)
1878 		dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret);
1879 
1880 	return ret;
1881 }
1882 
1883 static int hclge_handle_all_hw_msix_error(struct hclge_dev *hdev,
1884 					  unsigned long *reset_requests)
1885 {
1886 	struct hclge_mac_tnl_stats mac_tnl_stats;
1887 	struct device *dev = &hdev->pdev->dev;
1888 	u32 mpf_bd_num, pf_bd_num, bd_num;
1889 	struct hclge_desc *desc;
1890 	u32 status;
1891 	int ret;
1892 
1893 	/* query the number of bds for the MSIx int status */
1894 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1895 	if (ret)
1896 		goto out;
1897 
1898 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1899 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1900 	if (!desc)
1901 		return -ENOMEM;
1902 
1903 	ret = hclge_handle_mpf_msix_error(hdev, desc, mpf_bd_num,
1904 					  reset_requests);
1905 	if (ret)
1906 		goto msi_error;
1907 
1908 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1909 	ret = hclge_handle_pf_msix_error(hdev, desc, pf_bd_num, reset_requests);
1910 	if (ret)
1911 		goto msi_error;
1912 
1913 	/* query and clear mac tnl interruptions */
1914 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_MAC_TNL_INT,
1915 				   true);
1916 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1917 	if (ret) {
1918 		dev_err(dev, "query mac tnl int cmd failed (%d)\n", ret);
1919 		goto msi_error;
1920 	}
1921 
1922 	status = le32_to_cpu(desc->data[0]);
1923 	if (status) {
1924 		/* When mac tnl interrupt occurs, we record current time and
1925 		 * register status here in a fifo, then clear the status. So
1926 		 * that if link status changes suddenly at some time, we can
1927 		 * query them by debugfs.
1928 		 */
1929 		mac_tnl_stats.time = local_clock();
1930 		mac_tnl_stats.status = status;
1931 		kfifo_put(&hdev->mac_tnl_log, mac_tnl_stats);
1932 		ret = hclge_clear_mac_tnl_int(hdev);
1933 		if (ret)
1934 			dev_err(dev, "clear mac tnl int failed (%d)\n", ret);
1935 	}
1936 
1937 msi_error:
1938 	kfree(desc);
1939 out:
1940 	return ret;
1941 }
1942 
1943 int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
1944 			       unsigned long *reset_requests)
1945 {
1946 	struct device *dev = &hdev->pdev->dev;
1947 
1948 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1949 		dev_err(dev,
1950 			"Can't handle - MSIx error reported during dev init\n");
1951 		return 0;
1952 	}
1953 
1954 	return hclge_handle_all_hw_msix_error(hdev, reset_requests);
1955 }
1956 
1957 void hclge_handle_all_hns_hw_errors(struct hnae3_ae_dev *ae_dev)
1958 {
1959 #define HCLGE_DESC_NO_DATA_LEN 8
1960 
1961 	struct hclge_dev *hdev = ae_dev->priv;
1962 	struct device *dev = &hdev->pdev->dev;
1963 	u32 mpf_bd_num, pf_bd_num, bd_num;
1964 	struct hclge_desc *desc;
1965 	u32 status;
1966 	int ret;
1967 
1968 	ae_dev->hw_err_reset_req = 0;
1969 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1970 
1971 	/* query the number of bds for the MSIx int status */
1972 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1973 	if (ret)
1974 		return;
1975 
1976 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1977 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1978 	if (!desc)
1979 		return;
1980 
1981 	/* Clear HNS hw errors reported through msix  */
1982 	memset(&desc[0].data[0], 0xFF, mpf_bd_num * sizeof(struct hclge_desc) -
1983 	       HCLGE_DESC_NO_DATA_LEN);
1984 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1985 	if (ret) {
1986 		dev_err(dev, "fail(%d) to clear mpf msix int during init\n",
1987 			ret);
1988 		goto msi_error;
1989 	}
1990 
1991 	memset(&desc[0].data[0], 0xFF, pf_bd_num * sizeof(struct hclge_desc) -
1992 	       HCLGE_DESC_NO_DATA_LEN);
1993 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1994 	if (ret) {
1995 		dev_err(dev, "fail(%d) to clear pf msix int during init\n",
1996 			ret);
1997 		goto msi_error;
1998 	}
1999 
2000 	/* Handle Non-fatal HNS RAS errors */
2001 	if (status & HCLGE_RAS_REG_NFE_MASK) {
2002 		dev_err(dev, "HNS hw error(RAS) identified during init\n");
2003 		hclge_handle_all_ras_errors(hdev);
2004 	}
2005 
2006 msi_error:
2007 	kfree(desc);
2008 }
2009