xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_err.c (revision 10a708c24a31ae1be1ea23d1c38da2691d1fd65c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 
4 #include "hclge_err.h"
5 
6 static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
7 	{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err",
8 	  .reset_level = HNAE3_NONE_RESET },
9 	{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err",
10 	  .reset_level = HNAE3_NONE_RESET },
11 	{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err",
12 	  .reset_level = HNAE3_NONE_RESET },
13 	{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err",
14 	  .reset_level = HNAE3_NONE_RESET },
15 	{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err",
16 	  .reset_level = HNAE3_NONE_RESET },
17 	{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err",
18 	  .reset_level = HNAE3_NONE_RESET },
19 	{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err",
20 	  .reset_level = HNAE3_NONE_RESET },
21 	{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err",
22 	  .reset_level = HNAE3_NONE_RESET },
23 	{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err",
24 	  .reset_level = HNAE3_NONE_RESET },
25 	{ /* sentinel */ }
26 };
27 
28 static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
29 	{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err",
30 	  .reset_level = HNAE3_NONE_RESET },
31 	{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err",
32 	  .reset_level = HNAE3_NONE_RESET },
33 	{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err",
34 	  .reset_level = HNAE3_NONE_RESET },
35 	{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err",
36 	  .reset_level = HNAE3_NONE_RESET },
37 	{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err",
38 	  .reset_level = HNAE3_NONE_RESET },
39 	{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err",
40 	  .reset_level = HNAE3_NONE_RESET },
41 	{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err",
42 	  .reset_level = HNAE3_NONE_RESET },
43 	{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err",
44 	  .reset_level = HNAE3_NONE_RESET },
45 	{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
46 	  .reset_level = HNAE3_NONE_RESET },
47 	{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
48 	  .reset_level = HNAE3_NONE_RESET },
49 	{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
50 	  .reset_level = HNAE3_NONE_RESET },
51 	{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
52 	  .reset_level = HNAE3_NONE_RESET },
53 	{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err",
54 	  .reset_level = HNAE3_NONE_RESET },
55 	{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err",
56 	  .reset_level = HNAE3_NONE_RESET },
57 	{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
58 	  .reset_level = HNAE3_NONE_RESET },
59 	{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
60 	  .reset_level = HNAE3_NONE_RESET },
61 	{ /* sentinel */ }
62 };
63 
64 static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
65 	{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err",
66 	  .reset_level = HNAE3_NONE_RESET },
67 	{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err",
68 	  .reset_level = HNAE3_NONE_RESET },
69 	{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err",
70 	  .reset_level = HNAE3_NONE_RESET },
71 	{ .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err",
72 	  .reset_level = HNAE3_NONE_RESET },
73 	{ .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err",
74 	  .reset_level = HNAE3_NONE_RESET },
75 	{ .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err",
76 	  .reset_level = HNAE3_NONE_RESET },
77 	{ /* sentinel */ }
78 };
79 
80 static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
81 	{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err",
82 	  .reset_level = HNAE3_NONE_RESET },
83 	{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err",
84 	  .reset_level = HNAE3_NONE_RESET },
85 	{ /* sentinel */ }
86 };
87 
88 static const struct hclge_hw_error hclge_igu_int[] = {
89 	{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err",
90 	  .reset_level = HNAE3_GLOBAL_RESET },
91 	{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err",
92 	  .reset_level = HNAE3_GLOBAL_RESET },
93 	{ /* sentinel */ }
94 };
95 
96 static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
97 	{ .int_msk = BIT(0), .msg = "rx_buf_overflow",
98 	  .reset_level = HNAE3_GLOBAL_RESET },
99 	{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow",
100 	  .reset_level = HNAE3_GLOBAL_RESET },
101 	{ .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow",
102 	  .reset_level = HNAE3_GLOBAL_RESET },
103 	{ .int_msk = BIT(3), .msg = "tx_buf_overflow",
104 	  .reset_level = HNAE3_GLOBAL_RESET },
105 	{ .int_msk = BIT(4), .msg = "tx_buf_underrun",
106 	  .reset_level = HNAE3_GLOBAL_RESET },
107 	{ .int_msk = BIT(5), .msg = "rx_stp_buf_overflow",
108 	  .reset_level = HNAE3_GLOBAL_RESET },
109 	{ /* sentinel */ }
110 };
111 
112 static const struct hclge_hw_error hclge_ncsi_err_int[] = {
113 	{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err",
114 	  .reset_level = HNAE3_NONE_RESET },
115 	{ /* sentinel */ }
116 };
117 
118 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
119 	{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err",
120 	  .reset_level = HNAE3_GLOBAL_RESET },
121 	{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err",
122 	  .reset_level = HNAE3_GLOBAL_RESET },
123 	{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err",
124 	  .reset_level = HNAE3_GLOBAL_RESET },
125 	{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err",
126 	  .reset_level = HNAE3_GLOBAL_RESET },
127 	{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err",
128 	  .reset_level = HNAE3_GLOBAL_RESET },
129 	{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err",
130 	  .reset_level = HNAE3_GLOBAL_RESET },
131 	{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err",
132 	  .reset_level = HNAE3_GLOBAL_RESET },
133 	{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err",
134 	  .reset_level = HNAE3_GLOBAL_RESET },
135 	{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err",
136 	  .reset_level = HNAE3_GLOBAL_RESET },
137 	{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err",
138 	  .reset_level = HNAE3_GLOBAL_RESET },
139 	{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err",
140 	  .reset_level = HNAE3_GLOBAL_RESET },
141 	{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err",
142 	  .reset_level = HNAE3_GLOBAL_RESET },
143 	{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err",
144 	  .reset_level = HNAE3_GLOBAL_RESET },
145 	{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err",
146 	  .reset_level = HNAE3_GLOBAL_RESET },
147 	{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err",
148 	  .reset_level = HNAE3_GLOBAL_RESET },
149 	{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err",
150 	  .reset_level = HNAE3_GLOBAL_RESET },
151 	{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err",
152 	  .reset_level = HNAE3_GLOBAL_RESET },
153 	{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err",
154 	  .reset_level = HNAE3_GLOBAL_RESET },
155 	{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err",
156 	  .reset_level = HNAE3_GLOBAL_RESET },
157 	{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err",
158 	  .reset_level = HNAE3_GLOBAL_RESET },
159 	{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err",
160 	  .reset_level = HNAE3_GLOBAL_RESET },
161 	{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err",
162 	  .reset_level = HNAE3_GLOBAL_RESET },
163 	{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err",
164 	  .reset_level = HNAE3_GLOBAL_RESET },
165 	{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err",
166 	  .reset_level = HNAE3_GLOBAL_RESET },
167 	{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err",
168 	  .reset_level = HNAE3_GLOBAL_RESET },
169 	{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err",
170 	  .reset_level = HNAE3_GLOBAL_RESET },
171 	{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err",
172 	  .reset_level = HNAE3_GLOBAL_RESET },
173 	{ .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err",
174 	  .reset_level = HNAE3_GLOBAL_RESET },
175 	{ .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err",
176 	  .reset_level = HNAE3_GLOBAL_RESET },
177 	{ .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err",
178 	  .reset_level = HNAE3_GLOBAL_RESET },
179 	{ .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
180 	  .reset_level = HNAE3_GLOBAL_RESET },
181 	{ /* sentinel */ }
182 };
183 
184 static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
185 	{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err",
186 	  .reset_level = HNAE3_NONE_RESET },
187 	{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err",
188 	  .reset_level = HNAE3_NONE_RESET },
189 	{ /* sentinel */ }
190 };
191 
192 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
193 	{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err",
194 	  .reset_level = HNAE3_GLOBAL_RESET },
195 	{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err",
196 	  .reset_level = HNAE3_GLOBAL_RESET },
197 	{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err",
198 	  .reset_level = HNAE3_GLOBAL_RESET },
199 	{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err",
200 	  .reset_level = HNAE3_GLOBAL_RESET },
201 	{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err",
202 	  .reset_level = HNAE3_GLOBAL_RESET },
203 	{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err",
204 	  .reset_level = HNAE3_GLOBAL_RESET },
205 	{ /* sentinel */ }
206 };
207 
208 static const struct hclge_hw_error hclge_tm_sch_rint[] = {
209 	{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err",
210 	  .reset_level = HNAE3_GLOBAL_RESET },
211 	{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err",
212 	  .reset_level = HNAE3_GLOBAL_RESET },
213 	{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err",
214 	  .reset_level = HNAE3_GLOBAL_RESET },
215 	{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
216 	  .reset_level = HNAE3_GLOBAL_RESET },
217 	{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
218 	  .reset_level = HNAE3_GLOBAL_RESET },
219 	{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
220 	  .reset_level = HNAE3_GLOBAL_RESET },
221 	{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
222 	  .reset_level = HNAE3_GLOBAL_RESET },
223 	{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
224 	  .reset_level = HNAE3_GLOBAL_RESET },
225 	{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
226 	  .reset_level = HNAE3_GLOBAL_RESET },
227 	{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
228 	  .reset_level = HNAE3_GLOBAL_RESET },
229 	{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
230 	  .reset_level = HNAE3_GLOBAL_RESET },
231 	{ .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err",
232 	  .reset_level = HNAE3_GLOBAL_RESET },
233 	{ .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err",
234 	  .reset_level = HNAE3_GLOBAL_RESET },
235 	{ .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
236 	  .reset_level = HNAE3_GLOBAL_RESET },
237 	{ .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
238 	  .reset_level = HNAE3_GLOBAL_RESET },
239 	{ .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
240 	  .reset_level = HNAE3_GLOBAL_RESET },
241 	{ .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
242 	  .reset_level = HNAE3_GLOBAL_RESET },
243 	{ .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
244 	  .reset_level = HNAE3_GLOBAL_RESET },
245 	{ .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
246 	  .reset_level = HNAE3_GLOBAL_RESET },
247 	{ .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
248 	  .reset_level = HNAE3_GLOBAL_RESET },
249 	{ .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
250 	  .reset_level = HNAE3_GLOBAL_RESET },
251 	{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err",
252 	  .reset_level = HNAE3_GLOBAL_RESET },
253 	{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err",
254 	  .reset_level = HNAE3_GLOBAL_RESET },
255 	{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err",
256 	  .reset_level = HNAE3_GLOBAL_RESET },
257 	{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err",
258 	  .reset_level = HNAE3_GLOBAL_RESET },
259 	{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err",
260 	  .reset_level = HNAE3_GLOBAL_RESET },
261 	{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err",
262 	  .reset_level = HNAE3_GLOBAL_RESET },
263 	{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err",
264 	  .reset_level = HNAE3_GLOBAL_RESET },
265 	{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err",
266 	  .reset_level = HNAE3_GLOBAL_RESET },
267 	{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err",
268 	  .reset_level = HNAE3_GLOBAL_RESET },
269 	{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err",
270 	  .reset_level = HNAE3_GLOBAL_RESET },
271 	{ /* sentinel */ }
272 };
273 
274 static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
275 	{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err",
276 	  .reset_level = HNAE3_GLOBAL_RESET },
277 	{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err",
278 	  .reset_level = HNAE3_GLOBAL_RESET },
279 	{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err",
280 	  .reset_level = HNAE3_GLOBAL_RESET },
281 	{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err",
282 	  .reset_level = HNAE3_GLOBAL_RESET },
283 	{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err",
284 	  .reset_level = HNAE3_GLOBAL_RESET },
285 	{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err",
286 	  .reset_level = HNAE3_GLOBAL_RESET },
287 	{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err",
288 	  .reset_level = HNAE3_GLOBAL_RESET },
289 	{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err",
290 	  .reset_level = HNAE3_GLOBAL_RESET },
291 	{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err",
292 	  .reset_level = HNAE3_GLOBAL_RESET },
293 	{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err",
294 	  .reset_level = HNAE3_GLOBAL_RESET },
295 	{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err",
296 	  .reset_level = HNAE3_GLOBAL_RESET },
297 	{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err",
298 	  .reset_level = HNAE3_GLOBAL_RESET },
299 	{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err",
300 	  .reset_level = HNAE3_GLOBAL_RESET },
301 	{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err",
302 	  .reset_level = HNAE3_GLOBAL_RESET },
303 	{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err",
304 	  .reset_level = HNAE3_GLOBAL_RESET },
305 	{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err",
306 	  .reset_level = HNAE3_GLOBAL_RESET },
307 	{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err",
308 	  .reset_level = HNAE3_GLOBAL_RESET },
309 	{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err",
310 	  .reset_level = HNAE3_GLOBAL_RESET },
311 	{ /* sentinel */ }
312 };
313 
314 static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
315 	{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err",
316 	  .reset_level = HNAE3_GLOBAL_RESET },
317 	{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err",
318 	  .reset_level = HNAE3_GLOBAL_RESET },
319 	{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err",
320 	  .reset_level = HNAE3_GLOBAL_RESET },
321 	{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err",
322 	  .reset_level = HNAE3_GLOBAL_RESET },
323 	{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err",
324 	  .reset_level = HNAE3_GLOBAL_RESET },
325 	{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err",
326 	  .reset_level = HNAE3_GLOBAL_RESET },
327 	{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err",
328 	  .reset_level = HNAE3_GLOBAL_RESET },
329 	{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
330 	  .reset_level = HNAE3_GLOBAL_RESET },
331 	{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
332 	  .reset_level = HNAE3_GLOBAL_RESET },
333 	{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
334 	  .reset_level = HNAE3_GLOBAL_RESET },
335 	{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err",
336 	  .reset_level = HNAE3_GLOBAL_RESET },
337 	{ /* sentinel */ }
338 };
339 
340 static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
341 	{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err",
342 	  .reset_level = HNAE3_NONE_RESET },
343 	{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err",
344 	  .reset_level = HNAE3_GLOBAL_RESET },
345 	{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err",
346 	  .reset_level = HNAE3_NONE_RESET },
347 	{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err",
348 	  .reset_level = HNAE3_GLOBAL_RESET },
349 	{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err",
350 	  .reset_level = HNAE3_NONE_RESET },
351 	{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err",
352 	  .reset_level = HNAE3_GLOBAL_RESET },
353 	{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err",
354 	  .reset_level = HNAE3_NONE_RESET },
355 	{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err",
356 	  .reset_level = HNAE3_GLOBAL_RESET },
357 	{ .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err",
358 	  .reset_level = HNAE3_GLOBAL_RESET },
359 	{ .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err",
360 	  .reset_level = HNAE3_GLOBAL_RESET },
361 	{ .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err",
362 	  .reset_level = HNAE3_GLOBAL_RESET },
363 	{ .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err",
364 	  .reset_level = HNAE3_GLOBAL_RESET },
365 	{ .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err",
366 	  .reset_level = HNAE3_GLOBAL_RESET },
367 	{ .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err",
368 	  .reset_level = HNAE3_GLOBAL_RESET },
369 	{ /* sentinel */ }
370 };
371 
372 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
373 	{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
374 	  .reset_level = HNAE3_GLOBAL_RESET },
375 	{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
376 	  .reset_level = HNAE3_GLOBAL_RESET },
377 	{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
378 	  .reset_level = HNAE3_GLOBAL_RESET },
379 	{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
380 	  .reset_level = HNAE3_GLOBAL_RESET },
381 	{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err",
382 	  .reset_level = HNAE3_GLOBAL_RESET },
383 	{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err",
384 	  .reset_level = HNAE3_GLOBAL_RESET },
385 	{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err",
386 	  .reset_level = HNAE3_GLOBAL_RESET },
387 	{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err",
388 	  .reset_level = HNAE3_GLOBAL_RESET },
389 	{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err",
390 	  .reset_level = HNAE3_GLOBAL_RESET },
391 	{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err",
392 	  .reset_level = HNAE3_GLOBAL_RESET },
393 	{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err",
394 	  .reset_level = HNAE3_GLOBAL_RESET },
395 	{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err",
396 	  .reset_level = HNAE3_GLOBAL_RESET },
397 	{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err",
398 	  .reset_level = HNAE3_GLOBAL_RESET },
399 	{ .int_msk = BIT(26), .msg = "rd_bus_err",
400 	  .reset_level = HNAE3_GLOBAL_RESET },
401 	{ .int_msk = BIT(27), .msg = "wr_bus_err",
402 	  .reset_level = HNAE3_GLOBAL_RESET },
403 	{ .int_msk = BIT(28), .msg = "reg_search_miss",
404 	  .reset_level = HNAE3_GLOBAL_RESET },
405 	{ .int_msk = BIT(29), .msg = "rx_q_search_miss",
406 	  .reset_level = HNAE3_NONE_RESET },
407 	{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect",
408 	  .reset_level = HNAE3_NONE_RESET },
409 	{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl",
410 	  .reset_level = HNAE3_GLOBAL_RESET },
411 	{ /* sentinel */ }
412 };
413 
414 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
415 	{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err",
416 	  .reset_level = HNAE3_GLOBAL_RESET },
417 	{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err",
418 	  .reset_level = HNAE3_GLOBAL_RESET },
419 	{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err",
420 	  .reset_level = HNAE3_GLOBAL_RESET },
421 	{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err",
422 	  .reset_level = HNAE3_GLOBAL_RESET },
423 	{ /* sentinel */ }
424 };
425 
426 static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
427 	{ .int_msk = BIT(0), .msg = "over_8bd_no_fe",
428 	  .reset_level = HNAE3_FUNC_RESET },
429 	{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err",
430 	  .reset_level = HNAE3_NONE_RESET },
431 	{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err",
432 	  .reset_level = HNAE3_NONE_RESET },
433 	{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison",
434 	  .reset_level = HNAE3_FUNC_RESET },
435 	{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison",
436 	  .reset_level = HNAE3_FUNC_RESET },
437 	{ .int_msk = BIT(5), .msg = "buf_wait_timeout",
438 	  .reset_level = HNAE3_NONE_RESET },
439 	{ /* sentinel */ }
440 };
441 
442 static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
443 	{ .int_msk = BIT(0), .msg = "buf_sum_err",
444 	  .reset_level = HNAE3_NONE_RESET },
445 	{ .int_msk = BIT(1), .msg = "ppp_mb_num_err",
446 	  .reset_level = HNAE3_NONE_RESET },
447 	{ .int_msk = BIT(2), .msg = "ppp_mbid_err",
448 	  .reset_level = HNAE3_GLOBAL_RESET },
449 	{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err",
450 	  .reset_level = HNAE3_GLOBAL_RESET },
451 	{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err",
452 	  .reset_level = HNAE3_GLOBAL_RESET },
453 	{ .int_msk = BIT(5), .msg = "cks_edit_position_err",
454 	  .reset_level = HNAE3_GLOBAL_RESET },
455 	{ .int_msk = BIT(6), .msg = "cks_edit_condition_err",
456 	  .reset_level = HNAE3_GLOBAL_RESET },
457 	{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err",
458 	  .reset_level = HNAE3_GLOBAL_RESET },
459 	{ .int_msk = BIT(8), .msg = "vlan_num_ot_err",
460 	  .reset_level = HNAE3_GLOBAL_RESET },
461 	{ .int_msk = BIT(9), .msg = "vlan_num_in_err",
462 	  .reset_level = HNAE3_GLOBAL_RESET },
463 	{ /* sentinel */ }
464 };
465 
466 #define HCLGE_SSU_MEM_ECC_ERR(x) \
467 	{ .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err", \
468 	  .reset_level = HNAE3_GLOBAL_RESET }
469 
470 static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
471 	HCLGE_SSU_MEM_ECC_ERR(0),
472 	HCLGE_SSU_MEM_ECC_ERR(1),
473 	HCLGE_SSU_MEM_ECC_ERR(2),
474 	HCLGE_SSU_MEM_ECC_ERR(3),
475 	HCLGE_SSU_MEM_ECC_ERR(4),
476 	HCLGE_SSU_MEM_ECC_ERR(5),
477 	HCLGE_SSU_MEM_ECC_ERR(6),
478 	HCLGE_SSU_MEM_ECC_ERR(7),
479 	HCLGE_SSU_MEM_ECC_ERR(8),
480 	HCLGE_SSU_MEM_ECC_ERR(9),
481 	HCLGE_SSU_MEM_ECC_ERR(10),
482 	HCLGE_SSU_MEM_ECC_ERR(11),
483 	HCLGE_SSU_MEM_ECC_ERR(12),
484 	HCLGE_SSU_MEM_ECC_ERR(13),
485 	HCLGE_SSU_MEM_ECC_ERR(14),
486 	HCLGE_SSU_MEM_ECC_ERR(15),
487 	HCLGE_SSU_MEM_ECC_ERR(16),
488 	HCLGE_SSU_MEM_ECC_ERR(17),
489 	HCLGE_SSU_MEM_ECC_ERR(18),
490 	HCLGE_SSU_MEM_ECC_ERR(19),
491 	HCLGE_SSU_MEM_ECC_ERR(20),
492 	HCLGE_SSU_MEM_ECC_ERR(21),
493 	HCLGE_SSU_MEM_ECC_ERR(22),
494 	HCLGE_SSU_MEM_ECC_ERR(23),
495 	HCLGE_SSU_MEM_ECC_ERR(24),
496 	HCLGE_SSU_MEM_ECC_ERR(25),
497 	HCLGE_SSU_MEM_ECC_ERR(26),
498 	HCLGE_SSU_MEM_ECC_ERR(27),
499 	HCLGE_SSU_MEM_ECC_ERR(28),
500 	HCLGE_SSU_MEM_ECC_ERR(29),
501 	HCLGE_SSU_MEM_ECC_ERR(30),
502 	HCLGE_SSU_MEM_ECC_ERR(31),
503 	{ /* sentinel */ }
504 };
505 
506 static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
507 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
508 	  .reset_level = HNAE3_GLOBAL_RESET },
509 	{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port",
510 	  .reset_level = HNAE3_GLOBAL_RESET },
511 	{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port",
512 	  .reset_level = HNAE3_GLOBAL_RESET },
513 	{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port",
514 	  .reset_level = HNAE3_GLOBAL_RESET },
515 	{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port",
516 	  .reset_level = HNAE3_GLOBAL_RESET },
517 	{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port",
518 	  .reset_level = HNAE3_GLOBAL_RESET },
519 	{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port",
520 	  .reset_level = HNAE3_GLOBAL_RESET },
521 	{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port",
522 	  .reset_level = HNAE3_GLOBAL_RESET },
523 	{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port",
524 	  .reset_level = HNAE3_GLOBAL_RESET },
525 	{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port",
526 	  .reset_level = HNAE3_GLOBAL_RESET },
527 	{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port",
528 	  .reset_level = HNAE3_GLOBAL_RESET },
529 	{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port",
530 	  .reset_level = HNAE3_GLOBAL_RESET },
531 	{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port",
532 	  .reset_level = HNAE3_GLOBAL_RESET },
533 	{ /* sentinel */ }
534 };
535 
536 static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
537 	{ .int_msk = BIT(0), .msg = "ig_mac_inf_int",
538 	  .reset_level = HNAE3_GLOBAL_RESET },
539 	{ .int_msk = BIT(1), .msg = "ig_host_inf_int",
540 	  .reset_level = HNAE3_GLOBAL_RESET },
541 	{ .int_msk = BIT(2), .msg = "ig_roc_buf_int",
542 	  .reset_level = HNAE3_GLOBAL_RESET },
543 	{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int",
544 	  .reset_level = HNAE3_GLOBAL_RESET },
545 	{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int",
546 	  .reset_level = HNAE3_GLOBAL_RESET },
547 	{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int",
548 	  .reset_level = HNAE3_GLOBAL_RESET },
549 	{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int",
550 	  .reset_level = HNAE3_GLOBAL_RESET },
551 	{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int",
552 	  .reset_level = HNAE3_GLOBAL_RESET },
553 	{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int",
554 	  .reset_level = HNAE3_GLOBAL_RESET },
555 	{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int",
556 	  .reset_level = HNAE3_GLOBAL_RESET },
557 	{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int",
558 	  .reset_level = HNAE3_GLOBAL_RESET },
559 	{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int",
560 	  .reset_level = HNAE3_GLOBAL_RESET },
561 	{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int",
562 	  .reset_level = HNAE3_GLOBAL_RESET },
563 	{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int",
564 	  .reset_level = HNAE3_GLOBAL_RESET },
565 	{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int",
566 	  .reset_level = HNAE3_GLOBAL_RESET },
567 	{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int",
568 	  .reset_level = HNAE3_GLOBAL_RESET },
569 	{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int",
570 	  .reset_level = HNAE3_GLOBAL_RESET },
571 	{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int",
572 	  .reset_level = HNAE3_GLOBAL_RESET },
573 	{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int",
574 	  .reset_level = HNAE3_GLOBAL_RESET },
575 	{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int",
576 	  .reset_level = HNAE3_GLOBAL_RESET },
577 	{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int",
578 	  .reset_level = HNAE3_GLOBAL_RESET },
579 	{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int",
580 	  .reset_level = HNAE3_GLOBAL_RESET },
581 	{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int",
582 	  .reset_level = HNAE3_GLOBAL_RESET },
583 	{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int",
584 	  .reset_level = HNAE3_GLOBAL_RESET },
585 	{ /* sentinel */ }
586 };
587 
588 static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
589 	{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg",
590 	  .reset_level = HNAE3_GLOBAL_RESET },
591 	{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg",
592 	  .reset_level = HNAE3_GLOBAL_RESET },
593 	{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg",
594 	  .reset_level = HNAE3_GLOBAL_RESET },
595 	{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg",
596 	  .reset_level = HNAE3_GLOBAL_RESET },
597 	{ /* sentinel */ }
598 };
599 
600 static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
601 	{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port",
602 	  .reset_level = HNAE3_GLOBAL_RESET },
603 	{ .int_msk = BIT(9), .msg = "low_water_line_err_port",
604 	  .reset_level = HNAE3_NONE_RESET },
605 	{ .int_msk = BIT(10), .msg = "hi_water_line_err_port",
606 	  .reset_level = HNAE3_GLOBAL_RESET },
607 	{ /* sentinel */ }
608 };
609 
610 static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
611 	{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
612 	{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
613 	{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
614 	{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
615 	{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
616 	{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
617 	{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
618 	{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
619 	{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
620 	{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
621 	{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
622 	{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
623 	{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
624 	{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
625 	{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
626 	{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
627 	{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
628 	{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
629 	{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
630 	{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
631 	{ /* sentinel */ }
632 };
633 
634 static void hclge_log_error(struct device *dev, char *reg,
635 			    const struct hclge_hw_error *err,
636 			    u32 err_sts, unsigned long *reset_requests)
637 {
638 	while (err->msg) {
639 		if (err->int_msk & err_sts) {
640 			dev_warn(dev, "%s %s found [error status=0x%x]\n",
641 				 reg, err->msg, err_sts);
642 			if (err->reset_level &&
643 			    err->reset_level != HNAE3_NONE_RESET)
644 				set_bit(err->reset_level, reset_requests);
645 		}
646 		err++;
647 	}
648 }
649 
650 /* hclge_cmd_query_error: read the error information
651  * @hdev: pointer to struct hclge_dev
652  * @desc: descriptor for describing the command
653  * @cmd:  command opcode
654  * @flag: flag for extended command structure
655  *
656  * This function query the error info from hw register/s using command
657  */
658 static int hclge_cmd_query_error(struct hclge_dev *hdev,
659 				 struct hclge_desc *desc, u32 cmd, u16 flag)
660 {
661 	struct device *dev = &hdev->pdev->dev;
662 	int desc_num = 1;
663 	int ret;
664 
665 	hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
666 	if (flag) {
667 		desc[0].flag |= cpu_to_le16(flag);
668 		hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
669 		desc_num = 2;
670 	}
671 
672 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
673 	if (ret)
674 		dev_err(dev, "query error cmd failed (%d)\n", ret);
675 
676 	return ret;
677 }
678 
679 static int hclge_clear_mac_tnl_int(struct hclge_dev *hdev)
680 {
681 	struct hclge_desc desc;
682 
683 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_MAC_TNL_INT, false);
684 	desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_CLR);
685 
686 	return hclge_cmd_send(&hdev->hw, &desc, 1);
687 }
688 
689 static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
690 {
691 	struct device *dev = &hdev->pdev->dev;
692 	struct hclge_desc desc[2];
693 	int ret;
694 
695 	/* configure common error interrupts */
696 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
697 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
698 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
699 
700 	if (en) {
701 		desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
702 		desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
703 					HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
704 		desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
705 		desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
706 					      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
707 		desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
708 	}
709 
710 	desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
711 	desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
712 				HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
713 	desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
714 	desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
715 				      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
716 	desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
717 
718 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
719 	if (ret)
720 		dev_err(dev,
721 			"fail(%d) to configure common err interrupts\n", ret);
722 
723 	return ret;
724 }
725 
726 static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
727 {
728 	struct device *dev = &hdev->pdev->dev;
729 	struct hclge_desc desc;
730 	int ret;
731 
732 	if (hdev->pdev->revision < 0x21)
733 		return 0;
734 
735 	/* configure NCSI error interrupts */
736 	hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
737 	if (en)
738 		desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
739 
740 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
741 	if (ret)
742 		dev_err(dev,
743 			"fail(%d) to configure  NCSI error interrupts\n", ret);
744 
745 	return ret;
746 }
747 
748 static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
749 {
750 	struct device *dev = &hdev->pdev->dev;
751 	struct hclge_desc desc;
752 	int ret;
753 
754 	/* configure IGU,EGU error interrupts */
755 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
756 	if (en)
757 		desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
758 
759 	desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
760 
761 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
762 	if (ret) {
763 		dev_err(dev,
764 			"fail(%d) to configure IGU common interrupts\n", ret);
765 		return ret;
766 	}
767 
768 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
769 	if (en)
770 		desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
771 
772 	desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
773 
774 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
775 	if (ret) {
776 		dev_err(dev,
777 			"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
778 		return ret;
779 	}
780 
781 	ret = hclge_config_ncsi_hw_err_int(hdev, en);
782 
783 	return ret;
784 }
785 
786 static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
787 					    bool en)
788 {
789 	struct device *dev = &hdev->pdev->dev;
790 	struct hclge_desc desc[2];
791 	int ret;
792 
793 	/* configure PPP error interrupts */
794 	hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
795 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
796 	hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
797 
798 	if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
799 		if (en) {
800 			desc[0].data[0] =
801 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
802 			desc[0].data[1] =
803 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
804 			desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
805 		}
806 
807 		desc[1].data[0] =
808 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
809 		desc[1].data[1] =
810 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
811 		if (hdev->pdev->revision >= 0x21)
812 			desc[1].data[2] =
813 				cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
814 	} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
815 		if (en) {
816 			desc[0].data[0] =
817 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
818 			desc[0].data[1] =
819 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
820 		}
821 
822 		desc[1].data[0] =
823 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
824 		desc[1].data[1] =
825 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
826 	}
827 
828 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
829 	if (ret)
830 		dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
831 
832 	return ret;
833 }
834 
835 static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
836 {
837 	int ret;
838 
839 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
840 					       en);
841 	if (ret)
842 		return ret;
843 
844 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
845 					       en);
846 
847 	return ret;
848 }
849 
850 static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
851 {
852 	struct device *dev = &hdev->pdev->dev;
853 	struct hclge_desc desc;
854 	int ret;
855 
856 	/* configure TM SCH hw errors */
857 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
858 	if (en)
859 		desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
860 
861 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
862 	if (ret) {
863 		dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
864 		return ret;
865 	}
866 
867 	/* configure TM QCN hw errors */
868 	ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG, 0);
869 	if (ret) {
870 		dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret);
871 		return ret;
872 	}
873 
874 	hclge_cmd_reuse_desc(&desc, false);
875 	if (en)
876 		desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
877 
878 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
879 	if (ret)
880 		dev_err(dev,
881 			"fail(%d) to configure TM QCN mem errors\n", ret);
882 
883 	return ret;
884 }
885 
886 static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
887 {
888 	struct device *dev = &hdev->pdev->dev;
889 	struct hclge_desc desc;
890 	int ret;
891 
892 	/* configure MAC common error interrupts */
893 	hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
894 	if (en)
895 		desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
896 
897 	desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
898 
899 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
900 	if (ret)
901 		dev_err(dev,
902 			"fail(%d) to configure MAC COMMON error intr\n", ret);
903 
904 	return ret;
905 }
906 
907 int hclge_config_mac_tnl_int(struct hclge_dev *hdev, bool en)
908 {
909 	struct hclge_desc desc;
910 
911 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_TNL_INT_EN, false);
912 	if (en)
913 		desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN);
914 	else
915 		desc.data[0] = 0;
916 
917 	desc.data[1] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN_MASK);
918 
919 	return hclge_cmd_send(&hdev->hw, &desc, 1);
920 }
921 
922 static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
923 					     bool en)
924 {
925 	struct device *dev = &hdev->pdev->dev;
926 	struct hclge_desc desc[2];
927 	int desc_num = 1;
928 	int ret;
929 
930 	/* configure PPU error interrupts */
931 	if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
932 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
933 		desc[0].flag |= HCLGE_CMD_FLAG_NEXT;
934 		hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
935 		if (en) {
936 			desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN;
937 			desc[0].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN;
938 			desc[1].data[3] = HCLGE_PPU_MPF_ABNORMAL_INT3_EN;
939 			desc[1].data[4] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN;
940 		}
941 
942 		desc[1].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK;
943 		desc[1].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK;
944 		desc[1].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK;
945 		desc[1].data[3] |= HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK;
946 		desc_num = 2;
947 	} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
948 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
949 		if (en)
950 			desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2;
951 
952 		desc[0].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
953 	} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
954 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
955 		if (en)
956 			desc[0].data[0] = HCLGE_PPU_PF_ABNORMAL_INT_EN;
957 
958 		desc[0].data[2] = HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK;
959 	} else {
960 		dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
961 		return -EINVAL;
962 	}
963 
964 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
965 
966 	return ret;
967 }
968 
969 static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
970 {
971 	struct device *dev = &hdev->pdev->dev;
972 	int ret;
973 
974 	ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
975 						en);
976 	if (ret) {
977 		dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
978 			ret);
979 		return ret;
980 	}
981 
982 	ret = hclge_config_ppu_error_interrupts(hdev,
983 						HCLGE_PPU_MPF_OTHER_INT_CMD,
984 						en);
985 	if (ret) {
986 		dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
987 		return ret;
988 	}
989 
990 	ret = hclge_config_ppu_error_interrupts(hdev,
991 						HCLGE_PPU_PF_OTHER_INT_CMD, en);
992 	if (ret)
993 		dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
994 			ret);
995 	return ret;
996 }
997 
998 static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
999 {
1000 	struct device *dev = &hdev->pdev->dev;
1001 	struct hclge_desc desc[2];
1002 	int ret;
1003 
1004 	/* configure SSU ecc error interrupts */
1005 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
1006 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1007 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
1008 	if (en) {
1009 		desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
1010 		desc[0].data[1] =
1011 			cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
1012 		desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
1013 	}
1014 
1015 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
1016 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
1017 	desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
1018 
1019 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1020 	if (ret) {
1021 		dev_err(dev,
1022 			"fail(%d) to configure SSU ECC error interrupt\n", ret);
1023 		return ret;
1024 	}
1025 
1026 	/* configure SSU common error interrupts */
1027 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
1028 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1029 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
1030 
1031 	if (en) {
1032 		if (hdev->pdev->revision >= 0x21)
1033 			desc[0].data[0] =
1034 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
1035 		else
1036 			desc[0].data[0] =
1037 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
1038 		desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
1039 		desc[0].data[2] =
1040 			cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
1041 	}
1042 
1043 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
1044 				HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
1045 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
1046 
1047 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1048 	if (ret)
1049 		dev_err(dev,
1050 			"fail(%d) to configure SSU COMMON error intr\n", ret);
1051 
1052 	return ret;
1053 }
1054 
1055 /* hclge_query_bd_num: query number of buffer descriptors
1056  * @hdev: pointer to struct hclge_dev
1057  * @is_ras: true for ras, false for msix
1058  * @mpf_bd_num: number of main PF interrupt buffer descriptors
1059  * @pf_bd_num: number of not main PF interrupt buffer descriptors
1060  *
1061  * This function querys number of mpf and pf buffer descriptors.
1062  */
1063 static int hclge_query_bd_num(struct hclge_dev *hdev, bool is_ras,
1064 			      int *mpf_bd_num, int *pf_bd_num)
1065 {
1066 	struct device *dev = &hdev->pdev->dev;
1067 	u32 mpf_min_bd_num, pf_min_bd_num;
1068 	enum hclge_opcode_type opcode;
1069 	struct hclge_desc desc_bd;
1070 	int ret;
1071 
1072 	if (is_ras) {
1073 		opcode = HCLGE_QUERY_RAS_INT_STS_BD_NUM;
1074 		mpf_min_bd_num = HCLGE_MPF_RAS_INT_MIN_BD_NUM;
1075 		pf_min_bd_num = HCLGE_PF_RAS_INT_MIN_BD_NUM;
1076 	} else {
1077 		opcode = HCLGE_QUERY_MSIX_INT_STS_BD_NUM;
1078 		mpf_min_bd_num = HCLGE_MPF_MSIX_INT_MIN_BD_NUM;
1079 		pf_min_bd_num = HCLGE_PF_MSIX_INT_MIN_BD_NUM;
1080 	}
1081 
1082 	hclge_cmd_setup_basic_desc(&desc_bd, opcode, true);
1083 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1084 	if (ret) {
1085 		dev_err(dev, "fail(%d) to query msix int status bd num\n",
1086 			ret);
1087 		return ret;
1088 	}
1089 
1090 	*mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1091 	*pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1092 	if (*mpf_bd_num < mpf_min_bd_num || *pf_bd_num < pf_min_bd_num) {
1093 		dev_err(dev, "Invalid bd num: mpf(%d), pf(%d)\n",
1094 			*mpf_bd_num, *pf_bd_num);
1095 		return -EINVAL;
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /* hclge_handle_mpf_ras_error: handle all main PF RAS errors
1102  * @hdev: pointer to struct hclge_dev
1103  * @desc: descriptor for describing the command
1104  * @num:  number of extended command structures
1105  *
1106  * This function handles all the main PF RAS errors in the
1107  * hw register/s using command.
1108  */
1109 static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
1110 				      struct hclge_desc *desc,
1111 				      int num)
1112 {
1113 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1114 	struct device *dev = &hdev->pdev->dev;
1115 	__le32 *desc_data;
1116 	u32 status;
1117 	int ret;
1118 
1119 	/* query all main PF RAS errors */
1120 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
1121 				   true);
1122 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1123 	if (ret) {
1124 		dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
1125 		return ret;
1126 	}
1127 
1128 	/* log HNS common errors */
1129 	status = le32_to_cpu(desc[0].data[0]);
1130 	if (status)
1131 		hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
1132 				&hclge_imp_tcm_ecc_int[0], status,
1133 				&ae_dev->hw_err_reset_req);
1134 
1135 	status = le32_to_cpu(desc[0].data[1]);
1136 	if (status)
1137 		hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
1138 				&hclge_cmdq_nic_mem_ecc_int[0], status,
1139 				&ae_dev->hw_err_reset_req);
1140 
1141 	if ((le32_to_cpu(desc[0].data[2])) & BIT(0))
1142 		dev_warn(dev, "imp_rd_data_poison_err found\n");
1143 
1144 	status = le32_to_cpu(desc[0].data[3]);
1145 	if (status)
1146 		hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
1147 				&hclge_tqp_int_ecc_int[0], status,
1148 				&ae_dev->hw_err_reset_req);
1149 
1150 	status = le32_to_cpu(desc[0].data[4]);
1151 	if (status)
1152 		hclge_log_error(dev, "MSIX_ECC_INT_STS",
1153 				&hclge_msix_sram_ecc_int[0], status,
1154 				&ae_dev->hw_err_reset_req);
1155 
1156 	/* log SSU(Storage Switch Unit) errors */
1157 	desc_data = (__le32 *)&desc[2];
1158 	status = le32_to_cpu(*(desc_data + 2));
1159 	if (status)
1160 		hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
1161 				&hclge_ssu_mem_ecc_err_int[0], status,
1162 				&ae_dev->hw_err_reset_req);
1163 
1164 	status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
1165 	if (status) {
1166 		dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
1167 			 status);
1168 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1169 	}
1170 
1171 	status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
1172 	if (status)
1173 		hclge_log_error(dev, "SSU_COMMON_ERR_INT",
1174 				&hclge_ssu_com_err_int[0], status,
1175 				&ae_dev->hw_err_reset_req);
1176 
1177 	/* log IGU(Ingress Unit) errors */
1178 	desc_data = (__le32 *)&desc[3];
1179 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
1180 	if (status)
1181 		hclge_log_error(dev, "IGU_INT_STS",
1182 				&hclge_igu_int[0], status,
1183 				&ae_dev->hw_err_reset_req);
1184 
1185 	/* log PPP(Programmable Packet Process) errors */
1186 	desc_data = (__le32 *)&desc[4];
1187 	status = le32_to_cpu(*(desc_data + 1));
1188 	if (status)
1189 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
1190 				&hclge_ppp_mpf_abnormal_int_st1[0], status,
1191 				&ae_dev->hw_err_reset_req);
1192 
1193 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
1194 	if (status)
1195 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
1196 				&hclge_ppp_mpf_abnormal_int_st3[0], status,
1197 				&ae_dev->hw_err_reset_req);
1198 
1199 	/* log PPU(RCB) errors */
1200 	desc_data = (__le32 *)&desc[5];
1201 	status = le32_to_cpu(*(desc_data + 1));
1202 	if (status) {
1203 		dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST1 %s found\n",
1204 			 "rpu_rx_pkt_ecc_mbit_err");
1205 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1206 	}
1207 
1208 	status = le32_to_cpu(*(desc_data + 2));
1209 	if (status)
1210 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1211 				&hclge_ppu_mpf_abnormal_int_st2[0], status,
1212 				&ae_dev->hw_err_reset_req);
1213 
1214 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
1215 	if (status)
1216 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
1217 				&hclge_ppu_mpf_abnormal_int_st3[0], status,
1218 				&ae_dev->hw_err_reset_req);
1219 
1220 	/* log TM(Traffic Manager) errors */
1221 	desc_data = (__le32 *)&desc[6];
1222 	status = le32_to_cpu(*desc_data);
1223 	if (status)
1224 		hclge_log_error(dev, "TM_SCH_RINT",
1225 				&hclge_tm_sch_rint[0], status,
1226 				&ae_dev->hw_err_reset_req);
1227 
1228 	/* log QCN(Quantized Congestion Control) errors */
1229 	desc_data = (__le32 *)&desc[7];
1230 	status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
1231 	if (status)
1232 		hclge_log_error(dev, "QCN_FIFO_RINT",
1233 				&hclge_qcn_fifo_rint[0], status,
1234 				&ae_dev->hw_err_reset_req);
1235 
1236 	status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
1237 	if (status)
1238 		hclge_log_error(dev, "QCN_ECC_RINT",
1239 				&hclge_qcn_ecc_rint[0], status,
1240 				&ae_dev->hw_err_reset_req);
1241 
1242 	/* log NCSI errors */
1243 	desc_data = (__le32 *)&desc[9];
1244 	status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
1245 	if (status)
1246 		hclge_log_error(dev, "NCSI_ECC_INT_RPT",
1247 				&hclge_ncsi_err_int[0], status,
1248 				&ae_dev->hw_err_reset_req);
1249 
1250 	/* clear all main PF RAS errors */
1251 	hclge_cmd_reuse_desc(&desc[0], false);
1252 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1253 	if (ret)
1254 		dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
1255 
1256 	return ret;
1257 }
1258 
1259 /* hclge_handle_pf_ras_error: handle all PF RAS errors
1260  * @hdev: pointer to struct hclge_dev
1261  * @desc: descriptor for describing the command
1262  * @num:  number of extended command structures
1263  *
1264  * This function handles all the PF RAS errors in the
1265  * hw register/s using command.
1266  */
1267 static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
1268 				     struct hclge_desc *desc,
1269 				     int num)
1270 {
1271 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1272 	struct device *dev = &hdev->pdev->dev;
1273 	__le32 *desc_data;
1274 	u32 status;
1275 	int ret;
1276 
1277 	/* query all PF RAS errors */
1278 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
1279 				   true);
1280 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1281 	if (ret) {
1282 		dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
1283 		return ret;
1284 	}
1285 
1286 	/* log SSU(Storage Switch Unit) errors */
1287 	status = le32_to_cpu(desc[0].data[0]);
1288 	if (status)
1289 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1290 				&hclge_ssu_port_based_err_int[0], status,
1291 				&ae_dev->hw_err_reset_req);
1292 
1293 	status = le32_to_cpu(desc[0].data[1]);
1294 	if (status)
1295 		hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
1296 				&hclge_ssu_fifo_overflow_int[0], status,
1297 				&ae_dev->hw_err_reset_req);
1298 
1299 	status = le32_to_cpu(desc[0].data[2]);
1300 	if (status)
1301 		hclge_log_error(dev, "SSU_ETS_TCG_INT",
1302 				&hclge_ssu_ets_tcg_int[0], status,
1303 				&ae_dev->hw_err_reset_req);
1304 
1305 	/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
1306 	desc_data = (__le32 *)&desc[1];
1307 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
1308 	if (status)
1309 		hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
1310 				&hclge_igu_egu_tnl_int[0], status,
1311 				&ae_dev->hw_err_reset_req);
1312 
1313 	/* log PPU(RCB) errors */
1314 	desc_data = (__le32 *)&desc[3];
1315 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
1316 	if (status)
1317 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
1318 				&hclge_ppu_pf_abnormal_int[0], status,
1319 				&ae_dev->hw_err_reset_req);
1320 
1321 	/* clear all PF RAS errors */
1322 	hclge_cmd_reuse_desc(&desc[0], false);
1323 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1324 	if (ret)
1325 		dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
1326 
1327 	return ret;
1328 }
1329 
1330 static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
1331 {
1332 	u32 mpf_bd_num, pf_bd_num, bd_num;
1333 	struct hclge_desc *desc;
1334 	int ret;
1335 
1336 	/* query the number of registers in the RAS int status */
1337 	ret = hclge_query_bd_num(hdev, true, &mpf_bd_num, &pf_bd_num);
1338 	if (ret)
1339 		return ret;
1340 
1341 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1342 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1343 	if (!desc)
1344 		return -ENOMEM;
1345 
1346 	/* handle all main PF RAS errors */
1347 	ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
1348 	if (ret) {
1349 		kfree(desc);
1350 		return ret;
1351 	}
1352 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1353 
1354 	/* handle all PF RAS errors */
1355 	ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
1356 	kfree(desc);
1357 
1358 	return ret;
1359 }
1360 
1361 static int hclge_log_rocee_axi_error(struct hclge_dev *hdev)
1362 {
1363 	struct device *dev = &hdev->pdev->dev;
1364 	struct hclge_desc desc[3];
1365 	int ret;
1366 
1367 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1368 				   true);
1369 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1370 				   true);
1371 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
1372 				   true);
1373 	desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1374 	desc[1].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
1375 
1376 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 3);
1377 	if (ret) {
1378 		dev_err(dev, "failed(%d) to query ROCEE AXI error sts\n", ret);
1379 		return ret;
1380 	}
1381 
1382 	dev_info(dev, "AXI1: %08X %08X %08X %08X %08X %08X\n",
1383 		 le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1384 		 le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1385 		 le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1386 	dev_info(dev, "AXI2: %08X %08X %08X %08X %08X %08X\n",
1387 		 le32_to_cpu(desc[1].data[0]), le32_to_cpu(desc[1].data[1]),
1388 		 le32_to_cpu(desc[1].data[2]), le32_to_cpu(desc[1].data[3]),
1389 		 le32_to_cpu(desc[1].data[4]), le32_to_cpu(desc[1].data[5]));
1390 	dev_info(dev, "AXI3: %08X %08X %08X %08X\n",
1391 		 le32_to_cpu(desc[2].data[0]), le32_to_cpu(desc[2].data[1]),
1392 		 le32_to_cpu(desc[2].data[2]), le32_to_cpu(desc[2].data[3]));
1393 
1394 	return 0;
1395 }
1396 
1397 static int hclge_log_rocee_ecc_error(struct hclge_dev *hdev)
1398 {
1399 	struct device *dev = &hdev->pdev->dev;
1400 	struct hclge_desc desc[2];
1401 	int ret;
1402 
1403 	ret = hclge_cmd_query_error(hdev, &desc[0],
1404 				    HCLGE_QUERY_ROCEE_ECC_RAS_INFO_CMD,
1405 				    HCLGE_CMD_FLAG_NEXT);
1406 	if (ret) {
1407 		dev_err(dev, "failed(%d) to query ROCEE ECC error sts\n", ret);
1408 		return ret;
1409 	}
1410 
1411 	dev_info(dev, "ECC1: %08X %08X %08X %08X %08X %08X\n",
1412 		 le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
1413 		 le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
1414 		 le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
1415 	dev_info(dev, "ECC2: %08X %08X %08X\n", le32_to_cpu(desc[1].data[0]),
1416 		 le32_to_cpu(desc[1].data[1]), le32_to_cpu(desc[1].data[2]));
1417 
1418 	return 0;
1419 }
1420 
1421 static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
1422 {
1423 	struct device *dev = &hdev->pdev->dev;
1424 	struct hclge_desc desc[2];
1425 	int ret;
1426 
1427 	/* read overflow error status */
1428 	ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD,
1429 				    0);
1430 	if (ret) {
1431 		dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
1432 		return ret;
1433 	}
1434 
1435 	/* log overflow error */
1436 	if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1437 		const struct hclge_hw_error *err;
1438 		u32 err_sts;
1439 
1440 		err = &hclge_rocee_qmm_ovf_err_int[0];
1441 		err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
1442 			  le32_to_cpu(desc[0].data[0]);
1443 		while (err->msg) {
1444 			if (err->int_msk == err_sts) {
1445 				dev_warn(dev, "%s [error status=0x%x] found\n",
1446 					 err->msg,
1447 					 le32_to_cpu(desc[0].data[0]));
1448 				break;
1449 			}
1450 			err++;
1451 		}
1452 	}
1453 
1454 	if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1455 		dev_warn(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
1456 			 le32_to_cpu(desc[0].data[1]));
1457 	}
1458 
1459 	if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
1460 		dev_warn(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
1461 			 le32_to_cpu(desc[0].data[2]));
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static enum hnae3_reset_type
1468 hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
1469 {
1470 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1471 	struct device *dev = &hdev->pdev->dev;
1472 	struct hclge_desc desc[2];
1473 	unsigned int status;
1474 	int ret;
1475 
1476 	/* read RAS error interrupt status */
1477 	ret = hclge_cmd_query_error(hdev, &desc[0],
1478 				    HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0);
1479 	if (ret) {
1480 		dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
1481 		/* reset everything for now */
1482 		return HNAE3_GLOBAL_RESET;
1483 	}
1484 
1485 	status = le32_to_cpu(desc[0].data[0]);
1486 
1487 	if (status & HCLGE_ROCEE_AXI_ERR_INT_MASK) {
1488 		if (status & HCLGE_ROCEE_RERR_INT_MASK)
1489 			dev_warn(dev, "ROCEE RAS AXI rresp error\n");
1490 
1491 		if (status & HCLGE_ROCEE_BERR_INT_MASK)
1492 			dev_warn(dev, "ROCEE RAS AXI bresp error\n");
1493 
1494 		reset_type = HNAE3_FUNC_RESET;
1495 
1496 		ret = hclge_log_rocee_axi_error(hdev);
1497 		if (ret)
1498 			return HNAE3_GLOBAL_RESET;
1499 	}
1500 
1501 	if (status & HCLGE_ROCEE_ECC_INT_MASK) {
1502 		dev_warn(dev, "ROCEE RAS 2bit ECC error\n");
1503 		reset_type = HNAE3_GLOBAL_RESET;
1504 
1505 		ret = hclge_log_rocee_ecc_error(hdev);
1506 		if (ret)
1507 			return HNAE3_GLOBAL_RESET;
1508 	}
1509 
1510 	if (status & HCLGE_ROCEE_OVF_INT_MASK) {
1511 		ret = hclge_log_rocee_ovf_error(hdev);
1512 		if (ret) {
1513 			dev_err(dev, "failed(%d) to process ovf error\n", ret);
1514 			/* reset everything for now */
1515 			return HNAE3_GLOBAL_RESET;
1516 		}
1517 	}
1518 
1519 	/* clear error status */
1520 	hclge_cmd_reuse_desc(&desc[0], false);
1521 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1522 	if (ret) {
1523 		dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
1524 		/* reset everything for now */
1525 		return HNAE3_GLOBAL_RESET;
1526 	}
1527 
1528 	return reset_type;
1529 }
1530 
1531 int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
1532 {
1533 	struct device *dev = &hdev->pdev->dev;
1534 	struct hclge_desc desc;
1535 	int ret;
1536 
1537 	if (hdev->pdev->revision < 0x21 || !hnae3_dev_roce_supported(hdev))
1538 		return 0;
1539 
1540 	hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
1541 	if (en) {
1542 		/* enable ROCEE hw error interrupts */
1543 		desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
1544 		desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
1545 
1546 		hclge_log_and_clear_rocee_ras_error(hdev);
1547 	}
1548 	desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
1549 	desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
1550 
1551 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1552 	if (ret)
1553 		dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
1554 
1555 	return ret;
1556 }
1557 
1558 static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
1559 {
1560 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
1561 	struct hclge_dev *hdev = ae_dev->priv;
1562 
1563 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
1564 	    hdev->pdev->revision < 0x21)
1565 		return;
1566 
1567 	reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
1568 	if (reset_type != HNAE3_NONE_RESET)
1569 		set_bit(reset_type, &ae_dev->hw_err_reset_req);
1570 }
1571 
1572 static const struct hclge_hw_blk hw_blk[] = {
1573 	{
1574 	  .msk = BIT(0), .name = "IGU_EGU",
1575 	  .config_err_int = hclge_config_igu_egu_hw_err_int,
1576 	},
1577 	{
1578 	  .msk = BIT(1), .name = "PPP",
1579 	  .config_err_int = hclge_config_ppp_hw_err_int,
1580 	},
1581 	{
1582 	  .msk = BIT(2), .name = "SSU",
1583 	  .config_err_int = hclge_config_ssu_hw_err_int,
1584 	},
1585 	{
1586 	  .msk = BIT(3), .name = "PPU",
1587 	  .config_err_int = hclge_config_ppu_hw_err_int,
1588 	},
1589 	{
1590 	  .msk = BIT(4), .name = "TM",
1591 	  .config_err_int = hclge_config_tm_hw_err_int,
1592 	},
1593 	{
1594 	  .msk = BIT(5), .name = "COMMON",
1595 	  .config_err_int = hclge_config_common_hw_err_int,
1596 	},
1597 	{
1598 	  .msk = BIT(8), .name = "MAC",
1599 	  .config_err_int = hclge_config_mac_err_int,
1600 	},
1601 	{ /* sentinel */ }
1602 };
1603 
1604 int hclge_config_nic_hw_error(struct hclge_dev *hdev, bool state)
1605 {
1606 	const struct hclge_hw_blk *module = hw_blk;
1607 	int ret = 0;
1608 
1609 	while (module->name) {
1610 		if (module->config_err_int) {
1611 			ret = module->config_err_int(hdev, state);
1612 			if (ret)
1613 				return ret;
1614 		}
1615 		module++;
1616 	}
1617 
1618 	return ret;
1619 }
1620 
1621 pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
1622 {
1623 	struct hclge_dev *hdev = ae_dev->priv;
1624 	struct device *dev = &hdev->pdev->dev;
1625 	u32 status;
1626 
1627 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1628 		dev_err(dev,
1629 			"Can't recover - RAS error reported during dev init\n");
1630 		return PCI_ERS_RESULT_NONE;
1631 	}
1632 
1633 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1634 
1635 	if (status & HCLGE_RAS_REG_NFE_MASK ||
1636 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
1637 		ae_dev->hw_err_reset_req = 0;
1638 	else
1639 		goto out;
1640 
1641 	/* Handling Non-fatal HNS RAS errors */
1642 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1643 		dev_warn(dev,
1644 			 "HNS Non-Fatal RAS error(status=0x%x) identified\n",
1645 			 status);
1646 		hclge_handle_all_ras_errors(hdev);
1647 	}
1648 
1649 	/* Handling Non-fatal Rocee RAS errors */
1650 	if (hdev->pdev->revision >= 0x21 &&
1651 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
1652 		dev_warn(dev, "ROCEE Non-Fatal RAS error identified\n");
1653 		hclge_handle_rocee_ras_error(ae_dev);
1654 	}
1655 
1656 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
1657 		goto out;
1658 
1659 	if (ae_dev->hw_err_reset_req)
1660 		return PCI_ERS_RESULT_NEED_RESET;
1661 
1662 out:
1663 	return PCI_ERS_RESULT_RECOVERED;
1664 }
1665 
1666 static int hclge_clear_hw_msix_error(struct hclge_dev *hdev,
1667 				     struct hclge_desc *desc, bool is_mpf,
1668 				     u32 bd_num)
1669 {
1670 	if (is_mpf)
1671 		desc[0].opcode =
1672 			cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT);
1673 	else
1674 		desc[0].opcode = cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT);
1675 
1676 	desc[0].flag = cpu_to_le16(HCLGE_CMD_FLAG_NO_INTR | HCLGE_CMD_FLAG_IN);
1677 
1678 	return hclge_cmd_send(&hdev->hw, &desc[0], bd_num);
1679 }
1680 
1681 /* hclge_query_8bd_info: query information about over_8bd_nfe_err
1682  * @hdev: pointer to struct hclge_dev
1683  * @vf_id: Index of the virtual function with error
1684  * @q_id: Physical index of the queue with error
1685  *
1686  * This function get specific index of queue and function which causes
1687  * over_8bd_nfe_err by using command. If vf_id is 0, it means error is
1688  * caused by PF instead of VF.
1689  */
1690 static int hclge_query_over_8bd_err_info(struct hclge_dev *hdev, u16 *vf_id,
1691 					 u16 *q_id)
1692 {
1693 	struct hclge_query_ppu_pf_other_int_dfx_cmd *req;
1694 	struct hclge_desc desc;
1695 	int ret;
1696 
1697 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PPU_PF_OTHER_INT_DFX, true);
1698 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1699 	if (ret)
1700 		return ret;
1701 
1702 	req = (struct hclge_query_ppu_pf_other_int_dfx_cmd *)desc.data;
1703 	*vf_id = le16_to_cpu(req->over_8bd_no_fe_vf_id);
1704 	*q_id = le16_to_cpu(req->over_8bd_no_fe_qid);
1705 
1706 	return 0;
1707 }
1708 
1709 /* hclge_handle_over_8bd_err: handle MSI-X error named over_8bd_nfe_err
1710  * @hdev: pointer to struct hclge_dev
1711  * @reset_requests: reset level that we need to trigger later
1712  *
1713  * over_8bd_nfe_err is a special MSI-X because it may caused by a VF, in
1714  * that case, we need to trigger VF reset. Otherwise, a PF reset is needed.
1715  */
1716 static void hclge_handle_over_8bd_err(struct hclge_dev *hdev,
1717 				      unsigned long *reset_requests)
1718 {
1719 	struct device *dev = &hdev->pdev->dev;
1720 	u16 vf_id;
1721 	u16 q_id;
1722 	int ret;
1723 
1724 	ret = hclge_query_over_8bd_err_info(hdev, &vf_id, &q_id);
1725 	if (ret) {
1726 		dev_err(dev, "fail(%d) to query over_8bd_no_fe info\n",
1727 			ret);
1728 		return;
1729 	}
1730 
1731 	dev_warn(dev, "PPU_PF_ABNORMAL_INT_ST over_8bd_no_fe found, vf_id(%d), queue_id(%d)\n",
1732 		 vf_id, q_id);
1733 
1734 	if (vf_id) {
1735 		if (vf_id >= hdev->num_alloc_vport) {
1736 			dev_err(dev, "invalid vf id(%d)\n", vf_id);
1737 			return;
1738 		}
1739 
1740 		/* If we need to trigger other reset whose level is higher
1741 		 * than HNAE3_VF_FUNC_RESET, no need to trigger a VF reset
1742 		 * here.
1743 		 */
1744 		if (*reset_requests != 0)
1745 			return;
1746 
1747 		ret = hclge_inform_reset_assert_to_vf(&hdev->vport[vf_id]);
1748 		if (ret)
1749 			dev_warn(dev, "inform reset to vf(%d) failed %d!\n",
1750 				 hdev->vport->vport_id, ret);
1751 	} else {
1752 		set_bit(HNAE3_FUNC_RESET, reset_requests);
1753 	}
1754 }
1755 
1756 /* hclge_handle_mpf_msix_error: handle all main PF MSI-X errors
1757  * @hdev: pointer to struct hclge_dev
1758  * @desc: descriptor for describing the command
1759  * @mpf_bd_num: number of extended command structures
1760  * @reset_requests: record of the reset level that we need
1761  *
1762  * This function handles all the main PF MSI-X errors in the hw register/s
1763  * using command.
1764  */
1765 static int hclge_handle_mpf_msix_error(struct hclge_dev *hdev,
1766 				       struct hclge_desc *desc,
1767 				       int mpf_bd_num,
1768 				       unsigned long *reset_requests)
1769 {
1770 	struct device *dev = &hdev->pdev->dev;
1771 	__le32 *desc_data;
1772 	u32 status;
1773 	int ret;
1774 	/* query all main PF MSIx errors */
1775 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
1776 				   true);
1777 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
1778 	if (ret) {
1779 		dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret);
1780 		return ret;
1781 	}
1782 
1783 	/* log MAC errors */
1784 	desc_data = (__le32 *)&desc[1];
1785 	status = le32_to_cpu(*desc_data);
1786 	if (status)
1787 		hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
1788 				&hclge_mac_afifo_tnl_int[0], status,
1789 				reset_requests);
1790 
1791 	/* log PPU(RCB) MPF errors */
1792 	desc_data = (__le32 *)&desc[5];
1793 	status = le32_to_cpu(*(desc_data + 2)) &
1794 			HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
1795 	if (status)
1796 		dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST2 rx_q_search_miss found [dfx status=0x%x\n]",
1797 			 status);
1798 
1799 	/* clear all main PF MSIx errors */
1800 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1801 	if (ret)
1802 		dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret);
1803 
1804 	return ret;
1805 }
1806 
1807 /* hclge_handle_pf_msix_error: handle all PF MSI-X errors
1808  * @hdev: pointer to struct hclge_dev
1809  * @desc: descriptor for describing the command
1810  * @mpf_bd_num: number of extended command structures
1811  * @reset_requests: record of the reset level that we need
1812  *
1813  * This function handles all the PF MSI-X errors in the hw register/s using
1814  * command.
1815  */
1816 static int hclge_handle_pf_msix_error(struct hclge_dev *hdev,
1817 				      struct hclge_desc *desc,
1818 				      int pf_bd_num,
1819 				      unsigned long *reset_requests)
1820 {
1821 	struct device *dev = &hdev->pdev->dev;
1822 	__le32 *desc_data;
1823 	u32 status;
1824 	int ret;
1825 
1826 	/* query all PF MSIx errors */
1827 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
1828 				   true);
1829 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
1830 	if (ret) {
1831 		dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret);
1832 		return ret;
1833 	}
1834 
1835 	/* log SSU PF errors */
1836 	status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
1837 	if (status)
1838 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
1839 				&hclge_ssu_port_based_pf_int[0],
1840 				status, reset_requests);
1841 
1842 	/* read and log PPP PF errors */
1843 	desc_data = (__le32 *)&desc[2];
1844 	status = le32_to_cpu(*desc_data);
1845 	if (status)
1846 		hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
1847 				&hclge_ppp_pf_abnormal_int[0],
1848 				status, reset_requests);
1849 
1850 	/* log PPU(RCB) PF errors */
1851 	desc_data = (__le32 *)&desc[3];
1852 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
1853 	if (status)
1854 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
1855 				&hclge_ppu_pf_abnormal_int[0],
1856 				status, reset_requests);
1857 
1858 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_OVER_8BD_ERR_MASK;
1859 	if (status)
1860 		hclge_handle_over_8bd_err(hdev, reset_requests);
1861 
1862 	/* clear all PF MSIx errors */
1863 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1864 	if (ret)
1865 		dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret);
1866 
1867 	return ret;
1868 }
1869 
1870 static int hclge_handle_all_hw_msix_error(struct hclge_dev *hdev,
1871 					  unsigned long *reset_requests)
1872 {
1873 	struct hclge_mac_tnl_stats mac_tnl_stats;
1874 	struct device *dev = &hdev->pdev->dev;
1875 	u32 mpf_bd_num, pf_bd_num, bd_num;
1876 	struct hclge_desc *desc;
1877 	u32 status;
1878 	int ret;
1879 
1880 	/* query the number of bds for the MSIx int status */
1881 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1882 	if (ret)
1883 		goto out;
1884 
1885 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1886 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1887 	if (!desc) {
1888 		ret = -ENOMEM;
1889 		goto out;
1890 	}
1891 
1892 	ret = hclge_handle_mpf_msix_error(hdev, desc, mpf_bd_num,
1893 					  reset_requests);
1894 	if (ret)
1895 		goto msi_error;
1896 
1897 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
1898 	ret = hclge_handle_pf_msix_error(hdev, desc, pf_bd_num, reset_requests);
1899 	if (ret)
1900 		goto msi_error;
1901 
1902 	/* query and clear mac tnl interruptions */
1903 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_MAC_TNL_INT,
1904 				   true);
1905 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
1906 	if (ret) {
1907 		dev_err(dev, "query mac tnl int cmd failed (%d)\n", ret);
1908 		goto msi_error;
1909 	}
1910 
1911 	status = le32_to_cpu(desc->data[0]);
1912 	if (status) {
1913 		/* When mac tnl interrupt occurs, we record current time and
1914 		 * register status here in a fifo, then clear the status. So
1915 		 * that if link status changes suddenly at some time, we can
1916 		 * query them by debugfs.
1917 		 */
1918 		mac_tnl_stats.time = local_clock();
1919 		mac_tnl_stats.status = status;
1920 		kfifo_put(&hdev->mac_tnl_log, mac_tnl_stats);
1921 		ret = hclge_clear_mac_tnl_int(hdev);
1922 		if (ret)
1923 			dev_err(dev, "clear mac tnl int failed (%d)\n", ret);
1924 	}
1925 
1926 msi_error:
1927 	kfree(desc);
1928 out:
1929 	return ret;
1930 }
1931 
1932 int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
1933 			       unsigned long *reset_requests)
1934 {
1935 	struct device *dev = &hdev->pdev->dev;
1936 
1937 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
1938 		dev_err(dev,
1939 			"Can't handle - MSIx error reported during dev init\n");
1940 		return 0;
1941 	}
1942 
1943 	return hclge_handle_all_hw_msix_error(hdev, reset_requests);
1944 }
1945 
1946 void hclge_handle_all_hns_hw_errors(struct hnae3_ae_dev *ae_dev)
1947 {
1948 #define HCLGE_DESC_NO_DATA_LEN 8
1949 
1950 	struct hclge_dev *hdev = ae_dev->priv;
1951 	struct device *dev = &hdev->pdev->dev;
1952 	u32 mpf_bd_num, pf_bd_num, bd_num;
1953 	struct hclge_desc *desc;
1954 	u32 status;
1955 	int ret;
1956 
1957 	ae_dev->hw_err_reset_req = 0;
1958 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
1959 
1960 	/* query the number of bds for the MSIx int status */
1961 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
1962 	if (ret)
1963 		return;
1964 
1965 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
1966 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
1967 	if (!desc)
1968 		return;
1969 
1970 	/* Clear HNS hw errors reported through msix  */
1971 	memset(&desc[0].data[0], 0xFF, mpf_bd_num * sizeof(struct hclge_desc) -
1972 	       HCLGE_DESC_NO_DATA_LEN);
1973 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
1974 	if (ret) {
1975 		dev_err(dev, "fail(%d) to clear mpf msix int during init\n",
1976 			ret);
1977 		goto msi_error;
1978 	}
1979 
1980 	memset(&desc[0].data[0], 0xFF, pf_bd_num * sizeof(struct hclge_desc) -
1981 	       HCLGE_DESC_NO_DATA_LEN);
1982 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
1983 	if (ret) {
1984 		dev_err(dev, "fail(%d) to clear pf msix int during init\n",
1985 			ret);
1986 		goto msi_error;
1987 	}
1988 
1989 	/* Handle Non-fatal HNS RAS errors */
1990 	if (status & HCLGE_RAS_REG_NFE_MASK) {
1991 		dev_warn(dev, "HNS hw error(RAS) identified during init\n");
1992 		hclge_handle_all_ras_errors(hdev);
1993 	}
1994 
1995 msi_error:
1996 	kfree(desc);
1997 }
1998