xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/iommu.h>
15 #include <linux/module.h>
16 #include <linux/pci.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/gro.h>
21 #include <net/ip6_checksum.h>
22 #include <net/page_pool/helpers.h>
23 #include <net/pkt_cls.h>
24 #include <net/pkt_sched.h>
25 #include <net/tcp.h>
26 #include <net/vxlan.h>
27 #include <net/geneve.h>
28 
29 #include "hnae3.h"
30 #include "hns3_enet.h"
31 /* All hns3 tracepoints are defined by the include below, which
32  * must be included exactly once across the whole kernel with
33  * CREATE_TRACE_POINTS defined
34  */
35 #define CREATE_TRACE_POINTS
36 #include "hns3_trace.h"
37 
38 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
39 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
40 
41 #define hns3_rl_err(fmt, ...)						\
42 	do {								\
43 		if (net_ratelimit())					\
44 			netdev_err(fmt, ##__VA_ARGS__);			\
45 	} while (0)
46 
47 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
48 
49 static const char hns3_driver_name[] = "hns3";
50 static const char hns3_driver_string[] =
51 			"Hisilicon Ethernet Network Driver for Hip08 Family";
52 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
53 static struct hnae3_client client;
54 
55 static int debug = -1;
56 module_param(debug, int, 0);
57 MODULE_PARM_DESC(debug, " Network interface message level setting");
58 
59 static unsigned int tx_sgl = 1;
60 module_param(tx_sgl, uint, 0600);
61 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
62 
63 static bool page_pool_enabled = true;
64 module_param(page_pool_enabled, bool, 0400);
65 
66 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
67 				 sizeof(struct sg_table))
68 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
69 				      dma_get_cache_alignment())
70 
71 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
72 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
73 
74 #define HNS3_INNER_VLAN_TAG	1
75 #define HNS3_OUTER_VLAN_TAG	2
76 
77 #define HNS3_MIN_TX_LEN		33U
78 #define HNS3_MIN_TUN_PKT_LEN	65U
79 
80 /* hns3_pci_tbl - PCI Device ID Table
81  *
82  * Last entry must be all 0s
83  *
84  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
85  *   Class, Class Mask, private data (not used) }
86  */
87 static const struct pci_device_id hns3_pci_tbl[] = {
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
89 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
90 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
91 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
92 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
93 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
94 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
95 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
96 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
97 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
98 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
99 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
100 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
101 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
102 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
103 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
104 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
105 	/* required last entry */
106 	{0,}
107 };
108 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
109 
110 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
111 	{	ptype, \
112 		l, \
113 		CHECKSUM_##s, \
114 		HNS3_L3_TYPE_##t, \
115 		1, \
116 		h}
117 
118 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
119 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
120 		  PKT_HASH_TYPE_NONE }
121 
122 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
123 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
124 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
125 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
126 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
127 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
130 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
131 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
135 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
136 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
137 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
138 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
139 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
140 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
142 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
144 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
145 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
146 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
148 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
149 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
150 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
151 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
152 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
154 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
156 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
159 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
161 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
162 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
164 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
167 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
230 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
231 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
232 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
233 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
234 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
236 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
238 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
239 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
240 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
242 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
243 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
244 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
245 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
246 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
248 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
250 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
253 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
255 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
256 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
258 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
261 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
375 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
376 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
377 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
378 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
379 };
380 
381 #define HNS3_INVALID_PTYPE \
382 		ARRAY_SIZE(hns3_rx_ptype_tbl)
383 
384 static void hns3_dma_map_sync(struct device *dev, unsigned long iova)
385 {
386 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
387 	struct iommu_iotlb_gather iotlb_gather;
388 	size_t granule;
389 
390 	if (!domain || !iommu_is_dma_domain(domain))
391 		return;
392 
393 	granule = 1 << __ffs(domain->pgsize_bitmap);
394 	iova = ALIGN_DOWN(iova, granule);
395 	iotlb_gather.start = iova;
396 	iotlb_gather.end = iova + granule - 1;
397 	iotlb_gather.pgsize = granule;
398 
399 	iommu_iotlb_sync(domain, &iotlb_gather);
400 }
401 
402 static irqreturn_t hns3_irq_handle(int irq, void *vector)
403 {
404 	struct hns3_enet_tqp_vector *tqp_vector = vector;
405 
406 	napi_schedule_irqoff(&tqp_vector->napi);
407 	tqp_vector->event_cnt++;
408 
409 	return IRQ_HANDLED;
410 }
411 
412 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
413 {
414 	struct hns3_enet_tqp_vector *tqp_vectors;
415 	unsigned int i;
416 
417 	for (i = 0; i < priv->vector_num; i++) {
418 		tqp_vectors = &priv->tqp_vector[i];
419 
420 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
421 			continue;
422 
423 		/* clear the affinity mask */
424 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
425 
426 		/* release the irq resource */
427 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
428 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
429 	}
430 }
431 
432 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
433 {
434 	struct hns3_enet_tqp_vector *tqp_vectors;
435 	int txrx_int_idx = 0;
436 	int rx_int_idx = 0;
437 	int tx_int_idx = 0;
438 	unsigned int i;
439 	int ret;
440 
441 	for (i = 0; i < priv->vector_num; i++) {
442 		tqp_vectors = &priv->tqp_vector[i];
443 
444 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
445 			continue;
446 
447 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
448 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
449 				 "%s-%s-%s-%d", hns3_driver_name,
450 				 pci_name(priv->ae_handle->pdev),
451 				 "TxRx", txrx_int_idx++);
452 			txrx_int_idx++;
453 		} else if (tqp_vectors->rx_group.ring) {
454 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
455 				 "%s-%s-%s-%d", hns3_driver_name,
456 				 pci_name(priv->ae_handle->pdev),
457 				 "Rx", rx_int_idx++);
458 		} else if (tqp_vectors->tx_group.ring) {
459 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
460 				 "%s-%s-%s-%d", hns3_driver_name,
461 				 pci_name(priv->ae_handle->pdev),
462 				 "Tx", tx_int_idx++);
463 		} else {
464 			/* Skip this unused q_vector */
465 			continue;
466 		}
467 
468 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
469 
470 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
471 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
472 				  tqp_vectors->name, tqp_vectors);
473 		if (ret) {
474 			netdev_err(priv->netdev, "request irq(%d) fail\n",
475 				   tqp_vectors->vector_irq);
476 			hns3_nic_uninit_irq(priv);
477 			return ret;
478 		}
479 
480 		irq_set_affinity_hint(tqp_vectors->vector_irq,
481 				      &tqp_vectors->affinity_mask);
482 
483 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
484 	}
485 
486 	return 0;
487 }
488 
489 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
490 				 u32 mask_en)
491 {
492 	writel(mask_en, tqp_vector->mask_addr);
493 }
494 
495 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
496 {
497 	napi_enable(&tqp_vector->napi);
498 	enable_irq(tqp_vector->vector_irq);
499 
500 	/* enable vector */
501 	hns3_mask_vector_irq(tqp_vector, 1);
502 }
503 
504 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
505 {
506 	/* disable vector */
507 	hns3_mask_vector_irq(tqp_vector, 0);
508 
509 	disable_irq(tqp_vector->vector_irq);
510 	napi_disable(&tqp_vector->napi);
511 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
512 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
513 }
514 
515 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
516 				 u32 rl_value)
517 {
518 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
519 
520 	/* this defines the configuration for RL (Interrupt Rate Limiter).
521 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
522 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
523 	 */
524 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
525 	    !tqp_vector->rx_group.coal.adapt_enable)
526 		/* According to the hardware, the range of rl_reg is
527 		 * 0-59 and the unit is 4.
528 		 */
529 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
530 
531 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
532 }
533 
534 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
535 				    u32 gl_value)
536 {
537 	u32 new_val;
538 
539 	if (tqp_vector->rx_group.coal.unit_1us)
540 		new_val = gl_value | HNS3_INT_GL_1US;
541 	else
542 		new_val = hns3_gl_usec_to_reg(gl_value);
543 
544 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
545 }
546 
547 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
548 				    u32 gl_value)
549 {
550 	u32 new_val;
551 
552 	if (tqp_vector->tx_group.coal.unit_1us)
553 		new_val = gl_value | HNS3_INT_GL_1US;
554 	else
555 		new_val = hns3_gl_usec_to_reg(gl_value);
556 
557 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
558 }
559 
560 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
561 				    u32 ql_value)
562 {
563 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
564 }
565 
566 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
567 				    u32 ql_value)
568 {
569 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
570 }
571 
572 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
573 				      struct hns3_nic_priv *priv)
574 {
575 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
576 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
577 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
578 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
579 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
580 
581 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
582 	rx_coal->adapt_enable = prx_coal->adapt_enable;
583 
584 	tx_coal->int_gl = ptx_coal->int_gl;
585 	rx_coal->int_gl = prx_coal->int_gl;
586 
587 	rx_coal->flow_level = prx_coal->flow_level;
588 	tx_coal->flow_level = ptx_coal->flow_level;
589 
590 	/* device version above V3(include V3), GL can configure 1us
591 	 * unit, so uses 1us unit.
592 	 */
593 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
594 		tx_coal->unit_1us = 1;
595 		rx_coal->unit_1us = 1;
596 	}
597 
598 	if (ae_dev->dev_specs.int_ql_max) {
599 		tx_coal->ql_enable = 1;
600 		rx_coal->ql_enable = 1;
601 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
602 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
603 		tx_coal->int_ql = ptx_coal->int_ql;
604 		rx_coal->int_ql = prx_coal->int_ql;
605 	}
606 }
607 
608 static void
609 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
610 			     struct hns3_nic_priv *priv)
611 {
612 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
613 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
614 	struct hnae3_handle *h = priv->ae_handle;
615 
616 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
617 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
618 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
619 
620 	if (tx_coal->ql_enable)
621 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
622 
623 	if (rx_coal->ql_enable)
624 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
625 }
626 
627 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
628 {
629 	struct hnae3_handle *h = hns3_get_handle(netdev);
630 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
631 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
632 	unsigned int queue_size = kinfo->num_tqps;
633 	int i, ret;
634 
635 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
636 		netdev_reset_tc(netdev);
637 	} else {
638 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
639 		if (ret) {
640 			netdev_err(netdev,
641 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
642 			return ret;
643 		}
644 
645 		for (i = 0; i < tc_info->num_tc; i++)
646 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
647 					    tc_info->tqp_offset[i]);
648 	}
649 
650 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
651 	if (ret) {
652 		netdev_err(netdev,
653 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
654 		return ret;
655 	}
656 
657 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
658 	if (ret) {
659 		netdev_err(netdev,
660 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
661 		return ret;
662 	}
663 
664 	return 0;
665 }
666 
667 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
668 {
669 	u16 alloc_tqps, max_rss_size, rss_size;
670 
671 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
672 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
673 
674 	return min_t(u16, rss_size, max_rss_size);
675 }
676 
677 static void hns3_tqp_enable(struct hnae3_queue *tqp)
678 {
679 	u32 rcb_reg;
680 
681 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
682 	rcb_reg |= BIT(HNS3_RING_EN_B);
683 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
684 }
685 
686 static void hns3_tqp_disable(struct hnae3_queue *tqp)
687 {
688 	u32 rcb_reg;
689 
690 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
691 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
692 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
693 }
694 
695 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
696 {
697 #ifdef CONFIG_RFS_ACCEL
698 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
699 	netdev->rx_cpu_rmap = NULL;
700 #endif
701 }
702 
703 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
704 {
705 #ifdef CONFIG_RFS_ACCEL
706 	struct hns3_nic_priv *priv = netdev_priv(netdev);
707 	struct hns3_enet_tqp_vector *tqp_vector;
708 	int i, ret;
709 
710 	if (!netdev->rx_cpu_rmap) {
711 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
712 		if (!netdev->rx_cpu_rmap)
713 			return -ENOMEM;
714 	}
715 
716 	for (i = 0; i < priv->vector_num; i++) {
717 		tqp_vector = &priv->tqp_vector[i];
718 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
719 				       tqp_vector->vector_irq);
720 		if (ret) {
721 			hns3_free_rx_cpu_rmap(netdev);
722 			return ret;
723 		}
724 	}
725 #endif
726 	return 0;
727 }
728 
729 static int hns3_nic_net_up(struct net_device *netdev)
730 {
731 	struct hns3_nic_priv *priv = netdev_priv(netdev);
732 	struct hnae3_handle *h = priv->ae_handle;
733 	int i, j;
734 	int ret;
735 
736 	ret = hns3_nic_reset_all_ring(h);
737 	if (ret)
738 		return ret;
739 
740 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
741 
742 	/* enable the vectors */
743 	for (i = 0; i < priv->vector_num; i++)
744 		hns3_vector_enable(&priv->tqp_vector[i]);
745 
746 	/* enable rcb */
747 	for (j = 0; j < h->kinfo.num_tqps; j++)
748 		hns3_tqp_enable(h->kinfo.tqp[j]);
749 
750 	/* start the ae_dev */
751 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
752 	if (ret) {
753 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
754 		while (j--)
755 			hns3_tqp_disable(h->kinfo.tqp[j]);
756 
757 		for (j = i - 1; j >= 0; j--)
758 			hns3_vector_disable(&priv->tqp_vector[j]);
759 	}
760 
761 	return ret;
762 }
763 
764 static void hns3_config_xps(struct hns3_nic_priv *priv)
765 {
766 	int i;
767 
768 	for (i = 0; i < priv->vector_num; i++) {
769 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
770 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
771 
772 		while (ring) {
773 			int ret;
774 
775 			ret = netif_set_xps_queue(priv->netdev,
776 						  &tqp_vector->affinity_mask,
777 						  ring->tqp->tqp_index);
778 			if (ret)
779 				netdev_warn(priv->netdev,
780 					    "set xps queue failed: %d", ret);
781 
782 			ring = ring->next;
783 		}
784 	}
785 }
786 
787 static int hns3_nic_net_open(struct net_device *netdev)
788 {
789 	struct hns3_nic_priv *priv = netdev_priv(netdev);
790 	struct hnae3_handle *h = hns3_get_handle(netdev);
791 	struct hnae3_knic_private_info *kinfo;
792 	int i, ret;
793 
794 	if (hns3_nic_resetting(netdev))
795 		return -EBUSY;
796 
797 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
798 		netdev_warn(netdev, "net open repeatedly!\n");
799 		return 0;
800 	}
801 
802 	netif_carrier_off(netdev);
803 
804 	ret = hns3_nic_set_real_num_queue(netdev);
805 	if (ret)
806 		return ret;
807 
808 	ret = hns3_nic_net_up(netdev);
809 	if (ret) {
810 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
811 		return ret;
812 	}
813 
814 	kinfo = &h->kinfo;
815 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
816 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
817 
818 	if (h->ae_algo->ops->set_timer_task)
819 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
820 
821 	hns3_config_xps(priv);
822 
823 	netif_dbg(h, drv, netdev, "net open\n");
824 
825 	return 0;
826 }
827 
828 static void hns3_reset_tx_queue(struct hnae3_handle *h)
829 {
830 	struct net_device *ndev = h->kinfo.netdev;
831 	struct hns3_nic_priv *priv = netdev_priv(ndev);
832 	struct netdev_queue *dev_queue;
833 	u32 i;
834 
835 	for (i = 0; i < h->kinfo.num_tqps; i++) {
836 		dev_queue = netdev_get_tx_queue(ndev,
837 						priv->ring[i].queue_index);
838 		netdev_tx_reset_queue(dev_queue);
839 	}
840 }
841 
842 static void hns3_nic_net_down(struct net_device *netdev)
843 {
844 	struct hns3_nic_priv *priv = netdev_priv(netdev);
845 	struct hnae3_handle *h = hns3_get_handle(netdev);
846 	const struct hnae3_ae_ops *ops;
847 	int i;
848 
849 	/* disable vectors */
850 	for (i = 0; i < priv->vector_num; i++)
851 		hns3_vector_disable(&priv->tqp_vector[i]);
852 
853 	/* disable rcb */
854 	for (i = 0; i < h->kinfo.num_tqps; i++)
855 		hns3_tqp_disable(h->kinfo.tqp[i]);
856 
857 	/* stop ae_dev */
858 	ops = priv->ae_handle->ae_algo->ops;
859 	if (ops->stop)
860 		ops->stop(priv->ae_handle);
861 
862 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
863 	 * during reset process, because driver may not be able
864 	 * to disable the ring through firmware when downing the netdev.
865 	 */
866 	if (!hns3_nic_resetting(netdev))
867 		hns3_clear_all_ring(priv->ae_handle, false);
868 
869 	hns3_reset_tx_queue(priv->ae_handle);
870 }
871 
872 static int hns3_nic_net_stop(struct net_device *netdev)
873 {
874 	struct hns3_nic_priv *priv = netdev_priv(netdev);
875 	struct hnae3_handle *h = hns3_get_handle(netdev);
876 
877 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
878 		return 0;
879 
880 	netif_dbg(h, drv, netdev, "net stop\n");
881 
882 	if (h->ae_algo->ops->set_timer_task)
883 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
884 
885 	netif_carrier_off(netdev);
886 	netif_tx_disable(netdev);
887 
888 	hns3_nic_net_down(netdev);
889 
890 	return 0;
891 }
892 
893 static int hns3_nic_uc_sync(struct net_device *netdev,
894 			    const unsigned char *addr)
895 {
896 	struct hnae3_handle *h = hns3_get_handle(netdev);
897 
898 	if (h->ae_algo->ops->add_uc_addr)
899 		return h->ae_algo->ops->add_uc_addr(h, addr);
900 
901 	return 0;
902 }
903 
904 static int hns3_nic_uc_unsync(struct net_device *netdev,
905 			      const unsigned char *addr)
906 {
907 	struct hnae3_handle *h = hns3_get_handle(netdev);
908 
909 	/* need ignore the request of removing device address, because
910 	 * we store the device address and other addresses of uc list
911 	 * in the function's mac filter list.
912 	 */
913 	if (ether_addr_equal(addr, netdev->dev_addr))
914 		return 0;
915 
916 	if (h->ae_algo->ops->rm_uc_addr)
917 		return h->ae_algo->ops->rm_uc_addr(h, addr);
918 
919 	return 0;
920 }
921 
922 static int hns3_nic_mc_sync(struct net_device *netdev,
923 			    const unsigned char *addr)
924 {
925 	struct hnae3_handle *h = hns3_get_handle(netdev);
926 
927 	if (h->ae_algo->ops->add_mc_addr)
928 		return h->ae_algo->ops->add_mc_addr(h, addr);
929 
930 	return 0;
931 }
932 
933 static int hns3_nic_mc_unsync(struct net_device *netdev,
934 			      const unsigned char *addr)
935 {
936 	struct hnae3_handle *h = hns3_get_handle(netdev);
937 
938 	if (h->ae_algo->ops->rm_mc_addr)
939 		return h->ae_algo->ops->rm_mc_addr(h, addr);
940 
941 	return 0;
942 }
943 
944 static u8 hns3_get_netdev_flags(struct net_device *netdev)
945 {
946 	u8 flags = 0;
947 
948 	if (netdev->flags & IFF_PROMISC)
949 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
950 	else if (netdev->flags & IFF_ALLMULTI)
951 		flags = HNAE3_USER_MPE;
952 
953 	return flags;
954 }
955 
956 static void hns3_nic_set_rx_mode(struct net_device *netdev)
957 {
958 	struct hnae3_handle *h = hns3_get_handle(netdev);
959 	u8 new_flags;
960 
961 	new_flags = hns3_get_netdev_flags(netdev);
962 
963 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
964 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
965 
966 	/* User mode Promisc mode enable and vlan filtering is disabled to
967 	 * let all packets in.
968 	 */
969 	h->netdev_flags = new_flags;
970 	hns3_request_update_promisc_mode(h);
971 }
972 
973 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
974 {
975 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
976 
977 	if (ops->request_update_promisc_mode)
978 		ops->request_update_promisc_mode(handle);
979 }
980 
981 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
982 {
983 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
984 	u32 ntc, ntu;
985 
986 	/* This smp_load_acquire() pairs with smp_store_release() in
987 	 * hns3_tx_spare_update() called in tx desc cleaning process.
988 	 */
989 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
990 	ntu = tx_spare->next_to_use;
991 
992 	if (ntc > ntu)
993 		return ntc - ntu - 1;
994 
995 	/* The free tx buffer is divided into two part, so pick the
996 	 * larger one.
997 	 */
998 	return max(ntc, tx_spare->len - ntu) - 1;
999 }
1000 
1001 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
1002 {
1003 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1004 
1005 	if (!tx_spare ||
1006 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
1007 		return;
1008 
1009 	/* This smp_store_release() pairs with smp_load_acquire() in
1010 	 * hns3_tx_spare_space() called in xmit process.
1011 	 */
1012 	smp_store_release(&tx_spare->last_to_clean,
1013 			  tx_spare->next_to_clean);
1014 }
1015 
1016 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
1017 				   struct sk_buff *skb,
1018 				   u32 space)
1019 {
1020 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1021 				skb_headlen(skb);
1022 
1023 	if (len > ring->tx_copybreak)
1024 		return false;
1025 
1026 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1027 		hns3_ring_stats_update(ring, tx_spare_full);
1028 		return false;
1029 	}
1030 
1031 	return true;
1032 }
1033 
1034 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1035 				struct sk_buff *skb,
1036 				u32 space)
1037 {
1038 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1039 	    (!skb_has_frag_list(skb) &&
1040 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1041 		return false;
1042 
1043 	if (space < HNS3_MAX_SGL_SIZE) {
1044 		hns3_ring_stats_update(ring, tx_spare_full);
1045 		return false;
1046 	}
1047 
1048 	return true;
1049 }
1050 
1051 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1052 {
1053 	u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1054 	struct net_device *netdev = ring_to_netdev(ring);
1055 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1056 	struct hns3_tx_spare *tx_spare;
1057 	struct page *page;
1058 	dma_addr_t dma;
1059 	int order;
1060 
1061 	if (!alloc_size)
1062 		return;
1063 
1064 	order = get_order(alloc_size);
1065 	if (order > MAX_PAGE_ORDER) {
1066 		if (net_ratelimit())
1067 			dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1068 		return;
1069 	}
1070 
1071 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1072 				GFP_KERNEL);
1073 	if (!tx_spare) {
1074 		/* The driver still work without the tx spare buffer */
1075 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1076 		goto devm_kzalloc_error;
1077 	}
1078 
1079 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1080 				GFP_KERNEL, order);
1081 	if (!page) {
1082 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1083 		goto alloc_pages_error;
1084 	}
1085 
1086 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1087 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1088 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1089 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1090 		goto dma_mapping_error;
1091 	}
1092 
1093 	tx_spare->dma = dma;
1094 	tx_spare->buf = page_address(page);
1095 	tx_spare->len = PAGE_SIZE << order;
1096 	ring->tx_spare = tx_spare;
1097 	ring->tx_copybreak = priv->tx_copybreak;
1098 	return;
1099 
1100 dma_mapping_error:
1101 	put_page(page);
1102 alloc_pages_error:
1103 	devm_kfree(ring_to_dev(ring), tx_spare);
1104 devm_kzalloc_error:
1105 	ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1106 }
1107 
1108 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1109  * before calling below function to allocate tx buffer.
1110  */
1111 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1112 				 unsigned int size, dma_addr_t *dma,
1113 				 u32 *cb_len)
1114 {
1115 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1116 	u32 ntu = tx_spare->next_to_use;
1117 
1118 	size = ALIGN(size, dma_get_cache_alignment());
1119 	*cb_len = size;
1120 
1121 	/* Tx spare buffer wraps back here because the end of
1122 	 * freed tx buffer is not enough.
1123 	 */
1124 	if (ntu + size > tx_spare->len) {
1125 		*cb_len += (tx_spare->len - ntu);
1126 		ntu = 0;
1127 	}
1128 
1129 	tx_spare->next_to_use = ntu + size;
1130 	if (tx_spare->next_to_use == tx_spare->len)
1131 		tx_spare->next_to_use = 0;
1132 
1133 	*dma = tx_spare->dma + ntu;
1134 
1135 	return tx_spare->buf + ntu;
1136 }
1137 
1138 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1139 {
1140 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1141 
1142 	if (len > tx_spare->next_to_use) {
1143 		len -= tx_spare->next_to_use;
1144 		tx_spare->next_to_use = tx_spare->len - len;
1145 	} else {
1146 		tx_spare->next_to_use -= len;
1147 	}
1148 }
1149 
1150 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1151 				     struct hns3_desc_cb *cb)
1152 {
1153 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1154 	u32 ntc = tx_spare->next_to_clean;
1155 	u32 len = cb->length;
1156 
1157 	tx_spare->next_to_clean += len;
1158 
1159 	if (tx_spare->next_to_clean >= tx_spare->len) {
1160 		tx_spare->next_to_clean -= tx_spare->len;
1161 
1162 		if (tx_spare->next_to_clean) {
1163 			ntc = 0;
1164 			len = tx_spare->next_to_clean;
1165 		}
1166 	}
1167 
1168 	/* This tx spare buffer is only really reclaimed after calling
1169 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1170 	 * the tx buffer to do the dma sync or sg unmapping after
1171 	 * tx_spare->next_to_clean is moved forword.
1172 	 */
1173 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1174 		dma_addr_t dma = tx_spare->dma + ntc;
1175 
1176 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1177 					DMA_TO_DEVICE);
1178 	} else {
1179 		struct sg_table *sgt = tx_spare->buf + ntc;
1180 
1181 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1182 			     DMA_TO_DEVICE);
1183 	}
1184 }
1185 
1186 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1187 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1188 {
1189 	u32 l4_offset, hdr_len;
1190 	union l3_hdr_info l3;
1191 	union l4_hdr_info l4;
1192 	u32 l4_paylen;
1193 	int ret;
1194 
1195 	if (!skb_is_gso(skb))
1196 		return 0;
1197 
1198 	ret = skb_cow_head(skb, 0);
1199 	if (unlikely(ret < 0))
1200 		return ret;
1201 
1202 	l3.hdr = skb_network_header(skb);
1203 	l4.hdr = skb_transport_header(skb);
1204 
1205 	/* Software should clear the IPv4's checksum field when tso is
1206 	 * needed.
1207 	 */
1208 	if (l3.v4->version == 4)
1209 		l3.v4->check = 0;
1210 
1211 	/* tunnel packet */
1212 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1213 					 SKB_GSO_GRE_CSUM |
1214 					 SKB_GSO_UDP_TUNNEL |
1215 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1216 		/* reset l3&l4 pointers from outer to inner headers */
1217 		l3.hdr = skb_inner_network_header(skb);
1218 		l4.hdr = skb_inner_transport_header(skb);
1219 
1220 		/* Software should clear the IPv4's checksum field when
1221 		 * tso is needed.
1222 		 */
1223 		if (l3.v4->version == 4)
1224 			l3.v4->check = 0;
1225 	}
1226 
1227 	/* normal or tunnel packet */
1228 	l4_offset = l4.hdr - skb->data;
1229 
1230 	/* remove payload length from inner pseudo checksum when tso */
1231 	l4_paylen = skb->len - l4_offset;
1232 
1233 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1234 		hdr_len = sizeof(*l4.udp) + l4_offset;
1235 		csum_replace_by_diff(&l4.udp->check,
1236 				     (__force __wsum)htonl(l4_paylen));
1237 	} else {
1238 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1239 		csum_replace_by_diff(&l4.tcp->check,
1240 				     (__force __wsum)htonl(l4_paylen));
1241 	}
1242 
1243 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1244 
1245 	/* find the txbd field values */
1246 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1247 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1248 
1249 	/* offload outer UDP header checksum */
1250 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1251 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1252 
1253 	/* get MSS for TSO */
1254 	*mss = skb_shinfo(skb)->gso_size;
1255 
1256 	trace_hns3_tso(skb);
1257 
1258 	return 0;
1259 }
1260 
1261 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1262 				u8 *il4_proto)
1263 {
1264 	union l3_hdr_info l3;
1265 	unsigned char *l4_hdr;
1266 	unsigned char *exthdr;
1267 	u8 l4_proto_tmp;
1268 	__be16 frag_off;
1269 
1270 	/* find outer header point */
1271 	l3.hdr = skb_network_header(skb);
1272 	l4_hdr = skb_transport_header(skb);
1273 
1274 	if (skb->protocol == htons(ETH_P_IPV6)) {
1275 		exthdr = l3.hdr + sizeof(*l3.v6);
1276 		l4_proto_tmp = l3.v6->nexthdr;
1277 		if (l4_hdr != exthdr)
1278 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1279 					 &l4_proto_tmp, &frag_off);
1280 	} else if (skb->protocol == htons(ETH_P_IP)) {
1281 		l4_proto_tmp = l3.v4->protocol;
1282 	} else {
1283 		return -EINVAL;
1284 	}
1285 
1286 	*ol4_proto = l4_proto_tmp;
1287 
1288 	/* tunnel packet */
1289 	if (!skb->encapsulation) {
1290 		*il4_proto = 0;
1291 		return 0;
1292 	}
1293 
1294 	/* find inner header point */
1295 	l3.hdr = skb_inner_network_header(skb);
1296 	l4_hdr = skb_inner_transport_header(skb);
1297 
1298 	if (l3.v6->version == 6) {
1299 		exthdr = l3.hdr + sizeof(*l3.v6);
1300 		l4_proto_tmp = l3.v6->nexthdr;
1301 		if (l4_hdr != exthdr)
1302 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1303 					 &l4_proto_tmp, &frag_off);
1304 	} else if (l3.v4->version == 4) {
1305 		l4_proto_tmp = l3.v4->protocol;
1306 	}
1307 
1308 	*il4_proto = l4_proto_tmp;
1309 
1310 	return 0;
1311 }
1312 
1313 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1314  * and it is udp packet, which has a dest port as the IANA assigned.
1315  * the hardware is expected to do the checksum offload, but the
1316  * hardware will not do the checksum offload when udp dest port is
1317  * 4789, 4790 or 6081.
1318  */
1319 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1320 {
1321 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1322 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1323 	union l4_hdr_info l4;
1324 
1325 	/* device version above V3(include V3), the hardware can
1326 	 * do this checksum offload.
1327 	 */
1328 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1329 		return false;
1330 
1331 	l4.hdr = skb_transport_header(skb);
1332 
1333 	if (!(!skb->encapsulation &&
1334 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1335 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1336 	      l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1337 		return false;
1338 
1339 	return true;
1340 }
1341 
1342 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1343 				  u32 *ol_type_vlan_len_msec)
1344 {
1345 	u32 l2_len, l3_len, l4_len;
1346 	unsigned char *il2_hdr;
1347 	union l3_hdr_info l3;
1348 	union l4_hdr_info l4;
1349 
1350 	l3.hdr = skb_network_header(skb);
1351 	l4.hdr = skb_transport_header(skb);
1352 
1353 	/* compute OL2 header size, defined in 2 Bytes */
1354 	l2_len = l3.hdr - skb->data;
1355 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1356 
1357 	/* compute OL3 header size, defined in 4 Bytes */
1358 	l3_len = l4.hdr - l3.hdr;
1359 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1360 
1361 	il2_hdr = skb_inner_mac_header(skb);
1362 	/* compute OL4 header size, defined in 4 Bytes */
1363 	l4_len = il2_hdr - l4.hdr;
1364 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1365 
1366 	/* define outer network header type */
1367 	if (skb->protocol == htons(ETH_P_IP)) {
1368 		if (skb_is_gso(skb))
1369 			hns3_set_field(*ol_type_vlan_len_msec,
1370 				       HNS3_TXD_OL3T_S,
1371 				       HNS3_OL3T_IPV4_CSUM);
1372 		else
1373 			hns3_set_field(*ol_type_vlan_len_msec,
1374 				       HNS3_TXD_OL3T_S,
1375 				       HNS3_OL3T_IPV4_NO_CSUM);
1376 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1377 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1378 			       HNS3_OL3T_IPV6);
1379 	}
1380 
1381 	if (ol4_proto == IPPROTO_UDP)
1382 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1383 			       HNS3_TUN_MAC_IN_UDP);
1384 	else if (ol4_proto == IPPROTO_GRE)
1385 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1386 			       HNS3_TUN_NVGRE);
1387 }
1388 
1389 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1390 			     u32 *type_cs_vlan_tso)
1391 {
1392 	if (l3.v4->version == 4) {
1393 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1394 			       HNS3_L3T_IPV4);
1395 
1396 		/* the stack computes the IP header already, the only time we
1397 		 * need the hardware to recompute it is in the case of TSO.
1398 		 */
1399 		if (skb_is_gso(skb))
1400 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1401 	} else if (l3.v6->version == 6) {
1402 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1403 			       HNS3_L3T_IPV6);
1404 	}
1405 }
1406 
1407 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1408 				   u32 l4_proto, u32 *type_cs_vlan_tso)
1409 {
1410 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1411 	switch (l4_proto) {
1412 	case IPPROTO_TCP:
1413 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1414 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1415 			       HNS3_L4T_TCP);
1416 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1417 			       l4.tcp->doff);
1418 		break;
1419 	case IPPROTO_UDP:
1420 		if (hns3_tunnel_csum_bug(skb)) {
1421 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1422 
1423 			return ret ? ret : skb_checksum_help(skb);
1424 		}
1425 
1426 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1427 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1428 			       HNS3_L4T_UDP);
1429 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1430 			       (sizeof(struct udphdr) >> 2));
1431 		break;
1432 	case IPPROTO_SCTP:
1433 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1434 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1435 			       HNS3_L4T_SCTP);
1436 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1437 			       (sizeof(struct sctphdr) >> 2));
1438 		break;
1439 	default:
1440 		/* drop the skb tunnel packet if hardware don't support,
1441 		 * because hardware can't calculate csum when TSO.
1442 		 */
1443 		if (skb_is_gso(skb))
1444 			return -EDOM;
1445 
1446 		/* the stack computes the IP header already,
1447 		 * driver calculate l4 checksum when not TSO.
1448 		 */
1449 		return skb_checksum_help(skb);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1456 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1457 			   u32 *ol_type_vlan_len_msec)
1458 {
1459 	unsigned char *l2_hdr = skb->data;
1460 	u32 l4_proto = ol4_proto;
1461 	union l4_hdr_info l4;
1462 	union l3_hdr_info l3;
1463 	u32 l2_len, l3_len;
1464 
1465 	l4.hdr = skb_transport_header(skb);
1466 	l3.hdr = skb_network_header(skb);
1467 
1468 	/* handle encapsulation skb */
1469 	if (skb->encapsulation) {
1470 		/* If this is a not UDP/GRE encapsulation skb */
1471 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1472 			/* drop the skb tunnel packet if hardware don't support,
1473 			 * because hardware can't calculate csum when TSO.
1474 			 */
1475 			if (skb_is_gso(skb))
1476 				return -EDOM;
1477 
1478 			/* the stack computes the IP header already,
1479 			 * driver calculate l4 checksum when not TSO.
1480 			 */
1481 			return skb_checksum_help(skb);
1482 		}
1483 
1484 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1485 
1486 		/* switch to inner header */
1487 		l2_hdr = skb_inner_mac_header(skb);
1488 		l3.hdr = skb_inner_network_header(skb);
1489 		l4.hdr = skb_inner_transport_header(skb);
1490 		l4_proto = il4_proto;
1491 	}
1492 
1493 	hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1494 
1495 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1496 	l2_len = l3.hdr - l2_hdr;
1497 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1498 
1499 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1500 	l3_len = l4.hdr - l3.hdr;
1501 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1502 
1503 	return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1504 }
1505 
1506 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1507 			     struct sk_buff *skb)
1508 {
1509 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1510 	struct hnae3_ae_dev *ae_dev;
1511 	struct vlan_ethhdr *vhdr;
1512 	int rc;
1513 
1514 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1515 	      skb_vlan_tag_present(skb)))
1516 		return 0;
1517 
1518 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1519 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1520 	 * will cause RAS error.
1521 	 */
1522 	ae_dev = pci_get_drvdata(handle->pdev);
1523 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1524 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1525 		     handle->port_base_vlan_state ==
1526 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1527 		return -EINVAL;
1528 
1529 	if (skb->protocol == htons(ETH_P_8021Q) &&
1530 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1531 		/* When HW VLAN acceleration is turned off, and the stack
1532 		 * sets the protocol to 802.1q, the driver just need to
1533 		 * set the protocol to the encapsulated ethertype.
1534 		 */
1535 		skb->protocol = vlan_get_protocol(skb);
1536 		return 0;
1537 	}
1538 
1539 	if (skb_vlan_tag_present(skb)) {
1540 		/* Based on hw strategy, use out_vtag in two layer tag case,
1541 		 * and use inner_vtag in one tag case.
1542 		 */
1543 		if (skb->protocol == htons(ETH_P_8021Q) &&
1544 		    handle->port_base_vlan_state ==
1545 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1546 			rc = HNS3_OUTER_VLAN_TAG;
1547 		else
1548 			rc = HNS3_INNER_VLAN_TAG;
1549 
1550 		skb->protocol = vlan_get_protocol(skb);
1551 		return rc;
1552 	}
1553 
1554 	rc = skb_cow_head(skb, 0);
1555 	if (unlikely(rc < 0))
1556 		return rc;
1557 
1558 	vhdr = skb_vlan_eth_hdr(skb);
1559 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1560 					 & VLAN_PRIO_MASK);
1561 
1562 	skb->protocol = vlan_get_protocol(skb);
1563 	return 0;
1564 }
1565 
1566 /* check if the hardware is capable of checksum offloading */
1567 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1568 {
1569 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1570 
1571 	/* Kindly note, due to backward compatibility of the TX descriptor,
1572 	 * HW checksum of the non-IP packets and GSO packets is handled at
1573 	 * different place in the following code
1574 	 */
1575 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1576 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1577 		return false;
1578 
1579 	return true;
1580 }
1581 
1582 struct hns3_desc_param {
1583 	u32 paylen_ol4cs;
1584 	u32 ol_type_vlan_len_msec;
1585 	u32 type_cs_vlan_tso;
1586 	u16 mss_hw_csum;
1587 	u16 inner_vtag;
1588 	u16 out_vtag;
1589 };
1590 
1591 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1592 {
1593 	pa->paylen_ol4cs = skb->len;
1594 	pa->ol_type_vlan_len_msec = 0;
1595 	pa->type_cs_vlan_tso = 0;
1596 	pa->mss_hw_csum = 0;
1597 	pa->inner_vtag = 0;
1598 	pa->out_vtag = 0;
1599 }
1600 
1601 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1602 				 struct sk_buff *skb,
1603 				 struct hns3_desc_param *param)
1604 {
1605 	int ret;
1606 
1607 	ret = hns3_handle_vtags(ring, skb);
1608 	if (unlikely(ret < 0)) {
1609 		hns3_ring_stats_update(ring, tx_vlan_err);
1610 		return ret;
1611 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1612 		param->inner_vtag = skb_vlan_tag_get(skb);
1613 		param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1614 				VLAN_PRIO_MASK;
1615 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1616 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1617 		param->out_vtag = skb_vlan_tag_get(skb);
1618 		param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1619 				VLAN_PRIO_MASK;
1620 		hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1621 			       1);
1622 	}
1623 	return 0;
1624 }
1625 
1626 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1627 				    struct sk_buff *skb,
1628 				    struct hns3_desc_cb *desc_cb,
1629 				    struct hns3_desc_param *param)
1630 {
1631 	u8 ol4_proto, il4_proto;
1632 	int ret;
1633 
1634 	if (hns3_check_hw_tx_csum(skb)) {
1635 		/* set checksum start and offset, defined in 2 Bytes */
1636 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1637 			       skb_checksum_start_offset(skb) >> 1);
1638 		hns3_set_field(param->ol_type_vlan_len_msec,
1639 			       HNS3_TXD_CSUM_OFFSET_S,
1640 			       skb->csum_offset >> 1);
1641 		param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1642 		return 0;
1643 	}
1644 
1645 	skb_reset_mac_len(skb);
1646 
1647 	ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1648 	if (unlikely(ret < 0)) {
1649 		hns3_ring_stats_update(ring, tx_l4_proto_err);
1650 		return ret;
1651 	}
1652 
1653 	ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1654 			      &param->type_cs_vlan_tso,
1655 			      &param->ol_type_vlan_len_msec);
1656 	if (unlikely(ret < 0)) {
1657 		hns3_ring_stats_update(ring, tx_l2l3l4_err);
1658 		return ret;
1659 	}
1660 
1661 	ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1662 			   &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1663 	if (unlikely(ret < 0)) {
1664 		hns3_ring_stats_update(ring, tx_tso_err);
1665 		return ret;
1666 	}
1667 	return 0;
1668 }
1669 
1670 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1671 			      struct sk_buff *skb, struct hns3_desc *desc,
1672 			      struct hns3_desc_cb *desc_cb)
1673 {
1674 	struct hns3_desc_param param;
1675 	int ret;
1676 
1677 	hns3_init_desc_data(skb, &param);
1678 	ret = hns3_handle_vlan_info(ring, skb, &param);
1679 	if (unlikely(ret < 0))
1680 		return ret;
1681 
1682 	desc_cb->send_bytes = skb->len;
1683 
1684 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1685 		ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1686 		if (ret)
1687 			return ret;
1688 	}
1689 
1690 	/* Set txbd */
1691 	desc->tx.ol_type_vlan_len_msec =
1692 		cpu_to_le32(param.ol_type_vlan_len_msec);
1693 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1694 	desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1695 	desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1696 	desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1697 	desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1698 
1699 	return 0;
1700 }
1701 
1702 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1703 			  unsigned int size)
1704 {
1705 #define HNS3_LIKELY_BD_NUM	1
1706 
1707 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1708 	unsigned int frag_buf_num;
1709 	int k, sizeoflast;
1710 
1711 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1712 		desc->addr = cpu_to_le64(dma);
1713 		desc->tx.send_size = cpu_to_le16(size);
1714 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1715 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1716 
1717 		trace_hns3_tx_desc(ring, ring->next_to_use);
1718 		ring_ptr_move_fw(ring, next_to_use);
1719 		return HNS3_LIKELY_BD_NUM;
1720 	}
1721 
1722 	frag_buf_num = hns3_tx_bd_count(size);
1723 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1724 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1725 
1726 	/* When frag size is bigger than hardware limit, split this frag */
1727 	for (k = 0; k < frag_buf_num; k++) {
1728 		/* now, fill the descriptor */
1729 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1730 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1731 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1732 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1733 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1734 
1735 		trace_hns3_tx_desc(ring, ring->next_to_use);
1736 		/* move ring pointer to next */
1737 		ring_ptr_move_fw(ring, next_to_use);
1738 
1739 		desc = &ring->desc[ring->next_to_use];
1740 	}
1741 
1742 	return frag_buf_num;
1743 }
1744 
1745 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1746 				  unsigned int type)
1747 {
1748 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1749 	struct hnae3_handle *handle = ring->tqp->handle;
1750 	struct device *dev = ring_to_dev(ring);
1751 	struct hnae3_ae_dev *ae_dev;
1752 	unsigned int size;
1753 	dma_addr_t dma;
1754 
1755 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1756 		struct sk_buff *skb = (struct sk_buff *)priv;
1757 
1758 		size = skb_headlen(skb);
1759 		if (!size)
1760 			return 0;
1761 
1762 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1763 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1764 		/* Head data has been filled in hns3_handle_tx_bounce(),
1765 		 * just return 0 here.
1766 		 */
1767 		return 0;
1768 	} else {
1769 		skb_frag_t *frag = (skb_frag_t *)priv;
1770 
1771 		size = skb_frag_size(frag);
1772 		if (!size)
1773 			return 0;
1774 
1775 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1776 	}
1777 
1778 	if (unlikely(dma_mapping_error(dev, dma))) {
1779 		hns3_ring_stats_update(ring, sw_err_cnt);
1780 		return -ENOMEM;
1781 	}
1782 
1783 	/* Add a SYNC command to sync io-pgtale to avoid errors in pgtable
1784 	 * prefetch
1785 	 */
1786 	ae_dev = hns3_get_ae_dev(handle);
1787 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1788 		hns3_dma_map_sync(dev, dma);
1789 
1790 	desc_cb->priv = priv;
1791 	desc_cb->length = size;
1792 	desc_cb->dma = dma;
1793 	desc_cb->type = type;
1794 
1795 	return hns3_fill_desc(ring, dma, size);
1796 }
1797 
1798 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1799 				    unsigned int bd_num)
1800 {
1801 	unsigned int size;
1802 	int i;
1803 
1804 	size = skb_headlen(skb);
1805 	while (size > HNS3_MAX_BD_SIZE) {
1806 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1807 		size -= HNS3_MAX_BD_SIZE;
1808 
1809 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1810 			return bd_num;
1811 	}
1812 
1813 	if (size) {
1814 		bd_size[bd_num++] = size;
1815 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1816 			return bd_num;
1817 	}
1818 
1819 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1820 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1821 		size = skb_frag_size(frag);
1822 		if (!size)
1823 			continue;
1824 
1825 		while (size > HNS3_MAX_BD_SIZE) {
1826 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1827 			size -= HNS3_MAX_BD_SIZE;
1828 
1829 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1830 				return bd_num;
1831 		}
1832 
1833 		bd_size[bd_num++] = size;
1834 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1835 			return bd_num;
1836 	}
1837 
1838 	return bd_num;
1839 }
1840 
1841 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1842 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1843 				   unsigned int recursion_level)
1844 {
1845 #define HNS3_MAX_RECURSION_LEVEL	24
1846 
1847 	struct sk_buff *frag_skb;
1848 
1849 	/* If the total len is within the max bd limit */
1850 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1851 		   !skb_has_frag_list(skb) &&
1852 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1853 		return skb_shinfo(skb)->nr_frags + 1U;
1854 
1855 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1856 		return UINT_MAX;
1857 
1858 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1859 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1860 		return bd_num;
1861 
1862 	skb_walk_frags(skb, frag_skb) {
1863 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1864 					bd_num, recursion_level + 1);
1865 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1866 			return bd_num;
1867 	}
1868 
1869 	return bd_num;
1870 }
1871 
1872 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1873 {
1874 	if (!skb->encapsulation)
1875 		return skb_tcp_all_headers(skb);
1876 
1877 	return skb_inner_tcp_all_headers(skb);
1878 }
1879 
1880 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1881  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1882  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1883  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1884  * than MSS except the last max_non_tso_bd_num - 1 frags.
1885  */
1886 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1887 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1888 {
1889 	unsigned int tot_len = 0;
1890 	int i;
1891 
1892 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1893 		tot_len += bd_size[i];
1894 
1895 	/* ensure the first max_non_tso_bd_num frags is greater than
1896 	 * mss + header
1897 	 */
1898 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1899 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1900 		return true;
1901 
1902 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1903 	 * than mss except the last one.
1904 	 */
1905 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1906 		tot_len -= bd_size[i];
1907 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1908 
1909 		if (tot_len < skb_shinfo(skb)->gso_size)
1910 			return true;
1911 	}
1912 
1913 	return false;
1914 }
1915 
1916 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1917 {
1918 	int i;
1919 
1920 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1921 		size[i] = skb_frag_size(&shinfo->frags[i]);
1922 }
1923 
1924 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1925 			      struct sk_buff *skb,
1926 			      unsigned int bd_num)
1927 {
1928 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1929 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1930 	 */
1931 	if (bd_num == UINT_MAX) {
1932 		hns3_ring_stats_update(ring, over_max_recursion);
1933 		return -ENOMEM;
1934 	}
1935 
1936 	/* The skb->len has exceeded the hw limitation, linearization
1937 	 * will not help.
1938 	 */
1939 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1940 	    (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1941 		hns3_ring_stats_update(ring, hw_limitation);
1942 		return -ENOMEM;
1943 	}
1944 
1945 	if (__skb_linearize(skb)) {
1946 		hns3_ring_stats_update(ring, sw_err_cnt);
1947 		return -ENOMEM;
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1954 				  struct net_device *netdev,
1955 				  struct sk_buff *skb)
1956 {
1957 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1958 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1959 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1960 	unsigned int bd_num;
1961 
1962 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1963 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1964 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1965 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1966 					      max_non_tso_bd_num)) {
1967 			trace_hns3_over_max_bd(skb);
1968 			goto out;
1969 		}
1970 
1971 		if (hns3_skb_linearize(ring, skb, bd_num))
1972 			return -ENOMEM;
1973 
1974 		bd_num = hns3_tx_bd_count(skb->len);
1975 
1976 		hns3_ring_stats_update(ring, tx_copy);
1977 	}
1978 
1979 out:
1980 	if (likely(ring_space(ring) >= bd_num))
1981 		return bd_num;
1982 
1983 	netif_stop_subqueue(netdev, ring->queue_index);
1984 	smp_mb(); /* Memory barrier before checking ring_space */
1985 
1986 	/* Start queue in case hns3_clean_tx_ring has just made room
1987 	 * available and has not seen the queue stopped state performed
1988 	 * by netif_stop_subqueue above.
1989 	 */
1990 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1991 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1992 		netif_start_subqueue(netdev, ring->queue_index);
1993 		return bd_num;
1994 	}
1995 
1996 	hns3_ring_stats_update(ring, tx_busy);
1997 
1998 	return -EBUSY;
1999 }
2000 
2001 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
2002 {
2003 	struct device *dev = ring_to_dev(ring);
2004 	unsigned int i;
2005 
2006 	for (i = 0; i < ring->desc_num; i++) {
2007 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
2008 		struct hns3_desc_cb *desc_cb;
2009 
2010 		memset(desc, 0, sizeof(*desc));
2011 
2012 		/* check if this is where we started */
2013 		if (ring->next_to_use == next_to_use_orig)
2014 			break;
2015 
2016 		/* rollback one */
2017 		ring_ptr_move_bw(ring, next_to_use);
2018 
2019 		desc_cb = &ring->desc_cb[ring->next_to_use];
2020 
2021 		if (!desc_cb->dma)
2022 			continue;
2023 
2024 		/* unmap the descriptor dma address */
2025 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
2026 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
2027 					 DMA_TO_DEVICE);
2028 		else if (desc_cb->type &
2029 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
2030 			hns3_tx_spare_rollback(ring, desc_cb->length);
2031 		else if (desc_cb->length)
2032 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2033 				       DMA_TO_DEVICE);
2034 
2035 		desc_cb->length = 0;
2036 		desc_cb->dma = 0;
2037 		desc_cb->type = DESC_TYPE_UNKNOWN;
2038 	}
2039 }
2040 
2041 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2042 				 struct sk_buff *skb, unsigned int type)
2043 {
2044 	struct sk_buff *frag_skb;
2045 	int i, ret, bd_num = 0;
2046 
2047 	ret = hns3_map_and_fill_desc(ring, skb, type);
2048 	if (unlikely(ret < 0))
2049 		return ret;
2050 
2051 	bd_num += ret;
2052 
2053 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2054 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2055 
2056 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2057 		if (unlikely(ret < 0))
2058 			return ret;
2059 
2060 		bd_num += ret;
2061 	}
2062 
2063 	skb_walk_frags(skb, frag_skb) {
2064 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2065 					    DESC_TYPE_FRAGLIST_SKB);
2066 		if (unlikely(ret < 0))
2067 			return ret;
2068 
2069 		bd_num += ret;
2070 	}
2071 
2072 	return bd_num;
2073 }
2074 
2075 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2076 {
2077 #define HNS3_BYTES_PER_64BIT		8
2078 
2079 	struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2080 	int offset = 0;
2081 
2082 	/* make sure everything is visible to device before
2083 	 * excuting tx push or updating doorbell
2084 	 */
2085 	dma_wmb();
2086 
2087 	do {
2088 		int idx = (ring->next_to_use - num + ring->desc_num) %
2089 			  ring->desc_num;
2090 
2091 		u64_stats_update_begin(&ring->syncp);
2092 		ring->stats.tx_push++;
2093 		u64_stats_update_end(&ring->syncp);
2094 		memcpy(&desc[offset], &ring->desc[idx],
2095 		       sizeof(struct hns3_desc));
2096 		offset++;
2097 	} while (--num);
2098 
2099 	__iowrite64_copy(ring->tqp->mem_base, desc,
2100 			 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2101 			 HNS3_BYTES_PER_64BIT);
2102 }
2103 
2104 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2105 {
2106 #define HNS3_MEM_DOORBELL_OFFSET	64
2107 
2108 	__le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2109 
2110 	/* make sure everything is visible to device before
2111 	 * excuting tx push or updating doorbell
2112 	 */
2113 	dma_wmb();
2114 
2115 	__iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2116 			 &bd_num, 1);
2117 	u64_stats_update_begin(&ring->syncp);
2118 	ring->stats.tx_mem_doorbell += ring->pending_buf;
2119 	u64_stats_update_end(&ring->syncp);
2120 }
2121 
2122 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2123 			     bool doorbell)
2124 {
2125 	struct net_device *netdev = ring_to_netdev(ring);
2126 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2127 
2128 	/* when tx push is enabled, the packet whose number of BD below
2129 	 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2130 	 */
2131 	if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2132 	    !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2133 		/* This smp_store_release() pairs with smp_load_aquire() in
2134 		 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2135 		 * is updated.
2136 		 */
2137 		smp_store_release(&ring->last_to_use, ring->next_to_use);
2138 		hns3_tx_push_bd(ring, num);
2139 		return;
2140 	}
2141 
2142 	ring->pending_buf += num;
2143 
2144 	if (!doorbell) {
2145 		hns3_ring_stats_update(ring, tx_more);
2146 		return;
2147 	}
2148 
2149 	/* This smp_store_release() pairs with smp_load_aquire() in
2150 	 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2151 	 */
2152 	smp_store_release(&ring->last_to_use, ring->next_to_use);
2153 
2154 	if (ring->tqp->mem_base)
2155 		hns3_tx_mem_doorbell(ring);
2156 	else
2157 		writel(ring->pending_buf,
2158 		       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2159 
2160 	ring->pending_buf = 0;
2161 }
2162 
2163 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2164 		      struct hns3_desc *desc)
2165 {
2166 	struct hnae3_handle *h = hns3_get_handle(netdev);
2167 
2168 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2169 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2170 		return;
2171 
2172 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2173 }
2174 
2175 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2176 				 struct sk_buff *skb)
2177 {
2178 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2179 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2180 	unsigned int size = skb_headlen(skb);
2181 	dma_addr_t dma;
2182 	int bd_num = 0;
2183 	u32 cb_len;
2184 	void *buf;
2185 	int ret;
2186 
2187 	if (skb->len <= ring->tx_copybreak) {
2188 		size = skb->len;
2189 		type = DESC_TYPE_BOUNCE_ALL;
2190 	}
2191 
2192 	/* hns3_can_use_tx_bounce() is called to ensure the below
2193 	 * function can always return the tx buffer.
2194 	 */
2195 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2196 
2197 	ret = skb_copy_bits(skb, 0, buf, size);
2198 	if (unlikely(ret < 0)) {
2199 		hns3_tx_spare_rollback(ring, cb_len);
2200 		hns3_ring_stats_update(ring, copy_bits_err);
2201 		return ret;
2202 	}
2203 
2204 	desc_cb->priv = skb;
2205 	desc_cb->length = cb_len;
2206 	desc_cb->dma = dma;
2207 	desc_cb->type = type;
2208 
2209 	bd_num += hns3_fill_desc(ring, dma, size);
2210 
2211 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2212 		ret = hns3_fill_skb_to_desc(ring, skb,
2213 					    DESC_TYPE_BOUNCE_HEAD);
2214 		if (unlikely(ret < 0))
2215 			return ret;
2216 
2217 		bd_num += ret;
2218 	}
2219 
2220 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2221 				   DMA_TO_DEVICE);
2222 
2223 	hns3_ring_stats_update(ring, tx_bounce);
2224 
2225 	return bd_num;
2226 }
2227 
2228 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2229 			      struct sk_buff *skb)
2230 {
2231 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2232 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2233 	struct sg_table *sgt;
2234 	int i, bd_num = 0;
2235 	dma_addr_t dma;
2236 	u32 cb_len;
2237 	int nents;
2238 
2239 	if (skb_has_frag_list(skb))
2240 		nfrag = HNS3_MAX_TSO_BD_NUM;
2241 
2242 	/* hns3_can_use_tx_sgl() is called to ensure the below
2243 	 * function can always return the tx buffer.
2244 	 */
2245 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2246 				  &dma, &cb_len);
2247 
2248 	/* scatterlist follows by the sg table */
2249 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2250 	sg_init_table(sgt->sgl, nfrag);
2251 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2252 	if (unlikely(nents < 0)) {
2253 		hns3_tx_spare_rollback(ring, cb_len);
2254 		hns3_ring_stats_update(ring, skb2sgl_err);
2255 		return -ENOMEM;
2256 	}
2257 
2258 	sgt->orig_nents = nents;
2259 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2260 				DMA_TO_DEVICE);
2261 	if (unlikely(!sgt->nents)) {
2262 		hns3_tx_spare_rollback(ring, cb_len);
2263 		hns3_ring_stats_update(ring, map_sg_err);
2264 		return -ENOMEM;
2265 	}
2266 
2267 	desc_cb->priv = skb;
2268 	desc_cb->length = cb_len;
2269 	desc_cb->dma = dma;
2270 	desc_cb->type = DESC_TYPE_SGL_SKB;
2271 
2272 	for (i = 0; i < sgt->nents; i++)
2273 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2274 					 sg_dma_len(sgt->sgl + i));
2275 	hns3_ring_stats_update(ring, tx_sgl);
2276 
2277 	return bd_num;
2278 }
2279 
2280 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2281 				    struct sk_buff *skb)
2282 {
2283 	u32 space;
2284 
2285 	if (!ring->tx_spare)
2286 		goto out;
2287 
2288 	space = hns3_tx_spare_space(ring);
2289 
2290 	if (hns3_can_use_tx_sgl(ring, skb, space))
2291 		return hns3_handle_tx_sgl(ring, skb);
2292 
2293 	if (hns3_can_use_tx_bounce(ring, skb, space))
2294 		return hns3_handle_tx_bounce(ring, skb);
2295 
2296 out:
2297 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2298 }
2299 
2300 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2301 				struct sk_buff *skb,
2302 				struct hns3_desc_cb *desc_cb,
2303 				int next_to_use_head)
2304 {
2305 	int ret;
2306 
2307 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2308 				 desc_cb);
2309 	if (unlikely(ret < 0))
2310 		goto fill_err;
2311 
2312 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2313 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2314 	 * need to be notified to the hw.
2315 	 */
2316 	ret = hns3_handle_desc_filling(ring, skb);
2317 	if (likely(ret > 0))
2318 		return ret;
2319 
2320 fill_err:
2321 	hns3_clear_desc(ring, next_to_use_head);
2322 	return ret;
2323 }
2324 
2325 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2326 {
2327 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2328 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2329 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2330 	struct netdev_queue *dev_queue;
2331 	int pre_ntu, ret;
2332 	bool doorbell;
2333 
2334 	/* Hardware can only handle short frames above 32 bytes */
2335 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2336 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2337 
2338 		hns3_ring_stats_update(ring, sw_err_cnt);
2339 
2340 		return NETDEV_TX_OK;
2341 	}
2342 
2343 	/* Prefetch the data used later */
2344 	prefetch(skb->data);
2345 
2346 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2347 	if (unlikely(ret <= 0)) {
2348 		if (ret == -EBUSY) {
2349 			hns3_tx_doorbell(ring, 0, true);
2350 			return NETDEV_TX_BUSY;
2351 		}
2352 
2353 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2354 		goto out_err_tx_ok;
2355 	}
2356 
2357 	ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2358 	if (unlikely(ret <= 0))
2359 		goto out_err_tx_ok;
2360 
2361 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2362 					(ring->desc_num - 1);
2363 
2364 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2365 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2366 
2367 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2368 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2369 	trace_hns3_tx_desc(ring, pre_ntu);
2370 
2371 	skb_tx_timestamp(skb);
2372 
2373 	/* Complete translate all packets */
2374 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2375 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2376 					  netdev_xmit_more());
2377 	hns3_tx_doorbell(ring, ret, doorbell);
2378 
2379 	return NETDEV_TX_OK;
2380 
2381 out_err_tx_ok:
2382 	dev_kfree_skb_any(skb);
2383 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2384 	return NETDEV_TX_OK;
2385 }
2386 
2387 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2388 {
2389 	char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2390 	char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2391 	struct hnae3_handle *h = hns3_get_handle(netdev);
2392 	struct sockaddr *mac_addr = p;
2393 	int ret;
2394 
2395 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2396 		return -EADDRNOTAVAIL;
2397 
2398 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2399 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2400 		netdev_info(netdev, "already using mac address %s\n",
2401 			    format_mac_addr_sa);
2402 		return 0;
2403 	}
2404 
2405 	/* For VF device, if there is a perm_addr, then the user will not
2406 	 * be allowed to change the address.
2407 	 */
2408 	if (!hns3_is_phys_func(h->pdev) &&
2409 	    !is_zero_ether_addr(netdev->perm_addr)) {
2410 		hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2411 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2412 		netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2413 			   format_mac_addr_perm, format_mac_addr_sa);
2414 		return -EPERM;
2415 	}
2416 
2417 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2418 	if (ret) {
2419 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2420 		return ret;
2421 	}
2422 
2423 	eth_hw_addr_set(netdev, mac_addr->sa_data);
2424 
2425 	return 0;
2426 }
2427 
2428 static int hns3_nic_do_ioctl(struct net_device *netdev,
2429 			     struct ifreq *ifr, int cmd)
2430 {
2431 	struct hnae3_handle *h = hns3_get_handle(netdev);
2432 
2433 	if (!netif_running(netdev))
2434 		return -EINVAL;
2435 
2436 	if (!h->ae_algo->ops->do_ioctl)
2437 		return -EOPNOTSUPP;
2438 
2439 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2440 }
2441 
2442 static int hns3_nic_set_features(struct net_device *netdev,
2443 				 netdev_features_t features)
2444 {
2445 	netdev_features_t changed = netdev->features ^ features;
2446 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2447 	struct hnae3_handle *h = priv->ae_handle;
2448 	bool enable;
2449 	int ret;
2450 
2451 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2452 		enable = !!(features & NETIF_F_GRO_HW);
2453 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2454 		if (ret)
2455 			return ret;
2456 	}
2457 
2458 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2459 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2460 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2461 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2462 		if (ret)
2463 			return ret;
2464 	}
2465 
2466 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2467 		enable = !!(features & NETIF_F_NTUPLE);
2468 		h->ae_algo->ops->enable_fd(h, enable);
2469 	}
2470 
2471 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2472 	    h->ae_algo->ops->cls_flower_active(h)) {
2473 		netdev_err(netdev,
2474 			   "there are offloaded TC filters active, cannot disable HW TC offload");
2475 		return -EINVAL;
2476 	}
2477 
2478 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2479 	    h->ae_algo->ops->enable_vlan_filter) {
2480 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2481 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2482 		if (ret)
2483 			return ret;
2484 	}
2485 
2486 	return 0;
2487 }
2488 
2489 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2490 					     struct net_device *dev,
2491 					     netdev_features_t features)
2492 {
2493 #define HNS3_MAX_HDR_LEN	480U
2494 #define HNS3_MAX_L4_HDR_LEN	60U
2495 
2496 	size_t len;
2497 
2498 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2499 		return features;
2500 
2501 	if (skb->encapsulation)
2502 		len = skb_inner_transport_offset(skb);
2503 	else
2504 		len = skb_transport_offset(skb);
2505 
2506 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2507 	 * a flexible value, and it's max len is 60 bytes.
2508 	 */
2509 	len += HNS3_MAX_L4_HDR_LEN;
2510 
2511 	/* Hardware only supports checksum on the skb with a max header
2512 	 * len of 480 bytes.
2513 	 */
2514 	if (len > HNS3_MAX_HDR_LEN)
2515 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2516 
2517 	return features;
2518 }
2519 
2520 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2521 			     struct hns3_enet_ring *ring, bool is_tx)
2522 {
2523 	unsigned int start;
2524 
2525 	do {
2526 		start = u64_stats_fetch_begin(&ring->syncp);
2527 		if (is_tx) {
2528 			stats->tx_bytes += ring->stats.tx_bytes;
2529 			stats->tx_packets += ring->stats.tx_pkts;
2530 			stats->tx_dropped += ring->stats.sw_err_cnt;
2531 			stats->tx_dropped += ring->stats.tx_vlan_err;
2532 			stats->tx_dropped += ring->stats.tx_l4_proto_err;
2533 			stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2534 			stats->tx_dropped += ring->stats.tx_tso_err;
2535 			stats->tx_dropped += ring->stats.over_max_recursion;
2536 			stats->tx_dropped += ring->stats.hw_limitation;
2537 			stats->tx_dropped += ring->stats.copy_bits_err;
2538 			stats->tx_dropped += ring->stats.skb2sgl_err;
2539 			stats->tx_dropped += ring->stats.map_sg_err;
2540 			stats->tx_errors += ring->stats.sw_err_cnt;
2541 			stats->tx_errors += ring->stats.tx_vlan_err;
2542 			stats->tx_errors += ring->stats.tx_l4_proto_err;
2543 			stats->tx_errors += ring->stats.tx_l2l3l4_err;
2544 			stats->tx_errors += ring->stats.tx_tso_err;
2545 			stats->tx_errors += ring->stats.over_max_recursion;
2546 			stats->tx_errors += ring->stats.hw_limitation;
2547 			stats->tx_errors += ring->stats.copy_bits_err;
2548 			stats->tx_errors += ring->stats.skb2sgl_err;
2549 			stats->tx_errors += ring->stats.map_sg_err;
2550 		} else {
2551 			stats->rx_bytes += ring->stats.rx_bytes;
2552 			stats->rx_packets += ring->stats.rx_pkts;
2553 			stats->rx_dropped += ring->stats.l2_err;
2554 			stats->rx_errors += ring->stats.l2_err;
2555 			stats->rx_errors += ring->stats.l3l4_csum_err;
2556 			stats->rx_crc_errors += ring->stats.l2_err;
2557 			stats->multicast += ring->stats.rx_multicast;
2558 			stats->rx_length_errors += ring->stats.err_pkt_len;
2559 		}
2560 	} while (u64_stats_fetch_retry(&ring->syncp, start));
2561 }
2562 
2563 static void hns3_nic_get_stats64(struct net_device *netdev,
2564 				 struct rtnl_link_stats64 *stats)
2565 {
2566 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2567 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2568 	struct hnae3_handle *handle = priv->ae_handle;
2569 	struct rtnl_link_stats64 ring_total_stats;
2570 	struct hns3_enet_ring *ring;
2571 	unsigned int idx;
2572 
2573 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2574 		return;
2575 
2576 	handle->ae_algo->ops->update_stats(handle);
2577 
2578 	memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2579 	for (idx = 0; idx < queue_num; idx++) {
2580 		/* fetch the tx stats */
2581 		ring = &priv->ring[idx];
2582 		hns3_fetch_stats(&ring_total_stats, ring, true);
2583 
2584 		/* fetch the rx stats */
2585 		ring = &priv->ring[idx + queue_num];
2586 		hns3_fetch_stats(&ring_total_stats, ring, false);
2587 	}
2588 
2589 	stats->tx_bytes = ring_total_stats.tx_bytes;
2590 	stats->tx_packets = ring_total_stats.tx_packets;
2591 	stats->rx_bytes = ring_total_stats.rx_bytes;
2592 	stats->rx_packets = ring_total_stats.rx_packets;
2593 
2594 	stats->rx_errors = ring_total_stats.rx_errors;
2595 	stats->multicast = ring_total_stats.multicast;
2596 	stats->rx_length_errors = ring_total_stats.rx_length_errors;
2597 	stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2598 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2599 
2600 	stats->tx_errors = ring_total_stats.tx_errors;
2601 	stats->rx_dropped = ring_total_stats.rx_dropped;
2602 	stats->tx_dropped = ring_total_stats.tx_dropped;
2603 	stats->collisions = netdev->stats.collisions;
2604 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2605 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2606 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2607 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2608 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2609 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2610 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2611 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2612 	stats->rx_compressed = netdev->stats.rx_compressed;
2613 	stats->tx_compressed = netdev->stats.tx_compressed;
2614 }
2615 
2616 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2617 {
2618 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2619 	struct hnae3_knic_private_info *kinfo;
2620 	u8 tc = mqprio_qopt->qopt.num_tc;
2621 	u16 mode = mqprio_qopt->mode;
2622 	u8 hw = mqprio_qopt->qopt.hw;
2623 	struct hnae3_handle *h;
2624 
2625 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2626 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2627 		return -EOPNOTSUPP;
2628 
2629 	if (tc > HNAE3_MAX_TC)
2630 		return -EINVAL;
2631 
2632 	if (!netdev)
2633 		return -EINVAL;
2634 
2635 	h = hns3_get_handle(netdev);
2636 	kinfo = &h->kinfo;
2637 
2638 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2639 
2640 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2641 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2642 }
2643 
2644 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2645 				    struct flow_cls_offload *flow)
2646 {
2647 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2648 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2649 
2650 	switch (flow->command) {
2651 	case FLOW_CLS_REPLACE:
2652 		if (h->ae_algo->ops->add_cls_flower)
2653 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2654 		break;
2655 	case FLOW_CLS_DESTROY:
2656 		if (h->ae_algo->ops->del_cls_flower)
2657 			return h->ae_algo->ops->del_cls_flower(h, flow);
2658 		break;
2659 	default:
2660 		break;
2661 	}
2662 
2663 	return -EOPNOTSUPP;
2664 }
2665 
2666 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2667 				  void *cb_priv)
2668 {
2669 	struct hns3_nic_priv *priv = cb_priv;
2670 
2671 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2672 		return -EOPNOTSUPP;
2673 
2674 	switch (type) {
2675 	case TC_SETUP_CLSFLOWER:
2676 		return hns3_setup_tc_cls_flower(priv, type_data);
2677 	default:
2678 		return -EOPNOTSUPP;
2679 	}
2680 }
2681 
2682 static LIST_HEAD(hns3_block_cb_list);
2683 
2684 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2685 			     void *type_data)
2686 {
2687 	struct hns3_nic_priv *priv = netdev_priv(dev);
2688 	int ret;
2689 
2690 	switch (type) {
2691 	case TC_SETUP_QDISC_MQPRIO:
2692 		ret = hns3_setup_tc(dev, type_data);
2693 		break;
2694 	case TC_SETUP_BLOCK:
2695 		ret = flow_block_cb_setup_simple(type_data,
2696 						 &hns3_block_cb_list,
2697 						 hns3_setup_tc_block_cb,
2698 						 priv, priv, true);
2699 		break;
2700 	default:
2701 		return -EOPNOTSUPP;
2702 	}
2703 
2704 	return ret;
2705 }
2706 
2707 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2708 				__be16 proto, u16 vid)
2709 {
2710 	struct hnae3_handle *h = hns3_get_handle(netdev);
2711 	int ret = -EIO;
2712 
2713 	if (h->ae_algo->ops->set_vlan_filter)
2714 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2715 
2716 	return ret;
2717 }
2718 
2719 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2720 				 __be16 proto, u16 vid)
2721 {
2722 	struct hnae3_handle *h = hns3_get_handle(netdev);
2723 	int ret = -EIO;
2724 
2725 	if (h->ae_algo->ops->set_vlan_filter)
2726 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2727 
2728 	return ret;
2729 }
2730 
2731 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2732 				u8 qos, __be16 vlan_proto)
2733 {
2734 	struct hnae3_handle *h = hns3_get_handle(netdev);
2735 	int ret = -EIO;
2736 
2737 	netif_dbg(h, drv, netdev,
2738 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2739 		  vf, vlan, qos, ntohs(vlan_proto));
2740 
2741 	if (h->ae_algo->ops->set_vf_vlan_filter)
2742 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2743 							  qos, vlan_proto);
2744 
2745 	return ret;
2746 }
2747 
2748 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2749 {
2750 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2751 
2752 	if (hns3_nic_resetting(netdev))
2753 		return -EBUSY;
2754 
2755 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2756 		return -EOPNOTSUPP;
2757 
2758 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2759 }
2760 
2761 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2762 {
2763 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2764 
2765 	if (!handle->ae_algo->ops->set_vf_trust)
2766 		return -EOPNOTSUPP;
2767 
2768 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2769 }
2770 
2771 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2772 {
2773 	struct hnae3_handle *h = hns3_get_handle(netdev);
2774 	int ret;
2775 
2776 	if (hns3_nic_resetting(netdev))
2777 		return -EBUSY;
2778 
2779 	if (!h->ae_algo->ops->set_mtu)
2780 		return -EOPNOTSUPP;
2781 
2782 	netif_dbg(h, drv, netdev,
2783 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2784 
2785 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2786 	if (ret)
2787 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2788 			   ret);
2789 	else
2790 		WRITE_ONCE(netdev->mtu, new_mtu);
2791 
2792 	return ret;
2793 }
2794 
2795 static int hns3_get_timeout_queue(struct net_device *ndev)
2796 {
2797 	int i;
2798 
2799 	/* Find the stopped queue the same way the stack does */
2800 	for (i = 0; i < ndev->num_tx_queues; i++) {
2801 		struct netdev_queue *q;
2802 		unsigned long trans_start;
2803 
2804 		q = netdev_get_tx_queue(ndev, i);
2805 		trans_start = READ_ONCE(q->trans_start);
2806 		if (netif_xmit_stopped(q) &&
2807 		    time_after(jiffies,
2808 			       (trans_start + ndev->watchdog_timeo))) {
2809 #ifdef CONFIG_BQL
2810 			struct dql *dql = &q->dql;
2811 
2812 			netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2813 				    dql->last_obj_cnt, dql->num_queued,
2814 				    dql->adj_limit, dql->num_completed);
2815 #endif
2816 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2817 				    q->state,
2818 				    jiffies_to_msecs(jiffies - trans_start));
2819 			break;
2820 		}
2821 	}
2822 
2823 	return i;
2824 }
2825 
2826 static void hns3_dump_queue_stats(struct net_device *ndev,
2827 				  struct hns3_enet_ring *tx_ring,
2828 				  int timeout_queue)
2829 {
2830 	struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2831 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2832 
2833 	netdev_info(ndev,
2834 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2835 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2836 		    tx_ring->next_to_clean, napi->state);
2837 
2838 	netdev_info(ndev,
2839 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2840 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2841 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2842 
2843 	netdev_info(ndev,
2844 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2845 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2846 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2847 
2848 	netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2849 		    tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2850 }
2851 
2852 static void hns3_dump_queue_reg(struct net_device *ndev,
2853 				struct hns3_enet_ring *tx_ring)
2854 {
2855 	netdev_info(ndev,
2856 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2857 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2858 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2859 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2860 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2861 		    readl(tx_ring->tqp_vector->mask_addr));
2862 	netdev_info(ndev,
2863 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2864 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2865 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2866 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2867 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2868 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2869 		    hns3_tqp_read_reg(tx_ring,
2870 				      HNS3_RING_TX_RING_EBD_OFFSET_REG));
2871 }
2872 
2873 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2874 {
2875 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2876 	struct hnae3_handle *h = hns3_get_handle(ndev);
2877 	struct hns3_enet_ring *tx_ring;
2878 	int timeout_queue;
2879 
2880 	timeout_queue = hns3_get_timeout_queue(ndev);
2881 	if (timeout_queue >= ndev->num_tx_queues) {
2882 		netdev_info(ndev,
2883 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2884 			    priv->tx_timeout_count);
2885 		return false;
2886 	}
2887 
2888 	priv->tx_timeout_count++;
2889 
2890 	tx_ring = &priv->ring[timeout_queue];
2891 	hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2892 
2893 	/* When mac received many pause frames continuous, it's unable to send
2894 	 * packets, which may cause tx timeout
2895 	 */
2896 	if (h->ae_algo->ops->get_mac_stats) {
2897 		struct hns3_mac_stats mac_stats;
2898 
2899 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2900 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2901 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2902 	}
2903 
2904 	hns3_dump_queue_reg(ndev, tx_ring);
2905 
2906 	return true;
2907 }
2908 
2909 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2910 {
2911 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2912 	struct hnae3_handle *h = priv->ae_handle;
2913 
2914 	if (!hns3_get_tx_timeo_queue_info(ndev))
2915 		return;
2916 
2917 	/* request the reset, and let the hclge to determine
2918 	 * which reset level should be done
2919 	 */
2920 	if (h->ae_algo->ops->reset_event)
2921 		h->ae_algo->ops->reset_event(h->pdev, h);
2922 }
2923 
2924 #ifdef CONFIG_RFS_ACCEL
2925 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2926 			      u16 rxq_index, u32 flow_id)
2927 {
2928 	struct hnae3_handle *h = hns3_get_handle(dev);
2929 	struct flow_keys fkeys;
2930 
2931 	if (!h->ae_algo->ops->add_arfs_entry)
2932 		return -EOPNOTSUPP;
2933 
2934 	if (skb->encapsulation)
2935 		return -EPROTONOSUPPORT;
2936 
2937 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2938 		return -EPROTONOSUPPORT;
2939 
2940 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2941 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2942 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2943 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2944 		return -EPROTONOSUPPORT;
2945 
2946 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2947 }
2948 #endif
2949 
2950 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2951 				  struct ifla_vf_info *ivf)
2952 {
2953 	struct hnae3_handle *h = hns3_get_handle(ndev);
2954 
2955 	if (!h->ae_algo->ops->get_vf_config)
2956 		return -EOPNOTSUPP;
2957 
2958 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2959 }
2960 
2961 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2962 				      int link_state)
2963 {
2964 	struct hnae3_handle *h = hns3_get_handle(ndev);
2965 
2966 	if (!h->ae_algo->ops->set_vf_link_state)
2967 		return -EOPNOTSUPP;
2968 
2969 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2970 }
2971 
2972 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2973 				int min_tx_rate, int max_tx_rate)
2974 {
2975 	struct hnae3_handle *h = hns3_get_handle(ndev);
2976 
2977 	if (!h->ae_algo->ops->set_vf_rate)
2978 		return -EOPNOTSUPP;
2979 
2980 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2981 					    false);
2982 }
2983 
2984 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2985 {
2986 	struct hnae3_handle *h = hns3_get_handle(netdev);
2987 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2988 
2989 	if (!h->ae_algo->ops->set_vf_mac)
2990 		return -EOPNOTSUPP;
2991 
2992 	if (is_multicast_ether_addr(mac)) {
2993 		hnae3_format_mac_addr(format_mac_addr, mac);
2994 		netdev_err(netdev,
2995 			   "Invalid MAC:%s specified. Could not set MAC\n",
2996 			   format_mac_addr);
2997 		return -EINVAL;
2998 	}
2999 
3000 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
3001 }
3002 
3003 #define HNS3_INVALID_DSCP		0xff
3004 #define HNS3_DSCP_SHIFT			2
3005 
3006 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
3007 {
3008 	__be16 protocol = skb->protocol;
3009 	u8 dscp = HNS3_INVALID_DSCP;
3010 
3011 	if (protocol == htons(ETH_P_8021Q))
3012 		protocol = vlan_get_protocol(skb);
3013 
3014 	if (protocol == htons(ETH_P_IP))
3015 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
3016 	else if (protocol == htons(ETH_P_IPV6))
3017 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
3018 
3019 	return dscp;
3020 }
3021 
3022 static u16 hns3_nic_select_queue(struct net_device *netdev,
3023 				 struct sk_buff *skb,
3024 				 struct net_device *sb_dev)
3025 {
3026 	struct hnae3_handle *h = hns3_get_handle(netdev);
3027 	u8 dscp;
3028 
3029 	if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
3030 	    !h->ae_algo->ops->get_dscp_prio)
3031 		goto out;
3032 
3033 	dscp = hns3_get_skb_dscp(skb);
3034 	if (unlikely(dscp >= HNAE3_MAX_DSCP))
3035 		goto out;
3036 
3037 	skb->priority = h->kinfo.dscp_prio[dscp];
3038 	if (skb->priority == HNAE3_PRIO_ID_INVALID)
3039 		skb->priority = 0;
3040 
3041 out:
3042 	return netdev_pick_tx(netdev, skb, sb_dev);
3043 }
3044 
3045 static const struct net_device_ops hns3_nic_netdev_ops = {
3046 	.ndo_open		= hns3_nic_net_open,
3047 	.ndo_stop		= hns3_nic_net_stop,
3048 	.ndo_start_xmit		= hns3_nic_net_xmit,
3049 	.ndo_tx_timeout		= hns3_nic_net_timeout,
3050 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
3051 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
3052 	.ndo_change_mtu		= hns3_nic_change_mtu,
3053 	.ndo_set_features	= hns3_nic_set_features,
3054 	.ndo_features_check	= hns3_features_check,
3055 	.ndo_get_stats64	= hns3_nic_get_stats64,
3056 	.ndo_setup_tc		= hns3_nic_setup_tc,
3057 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
3058 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
3059 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
3060 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
3061 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
3062 	.ndo_set_vf_trust	= hns3_set_vf_trust,
3063 #ifdef CONFIG_RFS_ACCEL
3064 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
3065 #endif
3066 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
3067 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
3068 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
3069 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
3070 	.ndo_select_queue	= hns3_nic_select_queue,
3071 };
3072 
3073 bool hns3_is_phys_func(struct pci_dev *pdev)
3074 {
3075 	u32 dev_id = pdev->device;
3076 
3077 	switch (dev_id) {
3078 	case HNAE3_DEV_ID_GE:
3079 	case HNAE3_DEV_ID_25GE:
3080 	case HNAE3_DEV_ID_25GE_RDMA:
3081 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3082 	case HNAE3_DEV_ID_50GE_RDMA:
3083 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3084 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3085 	case HNAE3_DEV_ID_200G_RDMA:
3086 		return true;
3087 	case HNAE3_DEV_ID_VF:
3088 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3089 		return false;
3090 	default:
3091 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3092 			 dev_id);
3093 	}
3094 
3095 	return false;
3096 }
3097 
3098 static void hns3_disable_sriov(struct pci_dev *pdev)
3099 {
3100 	/* If our VFs are assigned we cannot shut down SR-IOV
3101 	 * without causing issues, so just leave the hardware
3102 	 * available but disabled
3103 	 */
3104 	if (pci_vfs_assigned(pdev)) {
3105 		dev_warn(&pdev->dev,
3106 			 "disabling driver while VFs are assigned\n");
3107 		return;
3108 	}
3109 
3110 	pci_disable_sriov(pdev);
3111 }
3112 
3113 /* hns3_probe - Device initialization routine
3114  * @pdev: PCI device information struct
3115  * @ent: entry in hns3_pci_tbl
3116  *
3117  * hns3_probe initializes a PF identified by a pci_dev structure.
3118  * The OS initialization, configuring of the PF private structure,
3119  * and a hardware reset occur.
3120  *
3121  * Returns 0 on success, negative on failure
3122  */
3123 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3124 {
3125 	struct hnae3_ae_dev *ae_dev;
3126 	int ret;
3127 
3128 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3129 	if (!ae_dev)
3130 		return -ENOMEM;
3131 
3132 	ae_dev->pdev = pdev;
3133 	ae_dev->flag = ent->driver_data;
3134 	pci_set_drvdata(pdev, ae_dev);
3135 
3136 	ret = hnae3_register_ae_dev(ae_dev);
3137 	if (ret)
3138 		pci_set_drvdata(pdev, NULL);
3139 
3140 	return ret;
3141 }
3142 
3143 /**
3144  * hns3_clean_vf_config
3145  * @pdev: pointer to a pci_dev structure
3146  * @num_vfs: number of VFs allocated
3147  *
3148  * Clean residual vf config after disable sriov
3149  **/
3150 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3151 {
3152 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3153 
3154 	if (ae_dev->ops->clean_vf_config)
3155 		ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3156 }
3157 
3158 /* hns3_remove - Device removal routine
3159  * @pdev: PCI device information struct
3160  */
3161 static void hns3_remove(struct pci_dev *pdev)
3162 {
3163 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3164 
3165 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3166 		hns3_disable_sriov(pdev);
3167 
3168 	hnae3_unregister_ae_dev(ae_dev);
3169 	pci_set_drvdata(pdev, NULL);
3170 }
3171 
3172 /**
3173  * hns3_pci_sriov_configure
3174  * @pdev: pointer to a pci_dev structure
3175  * @num_vfs: number of VFs to allocate
3176  *
3177  * Enable or change the number of VFs. Called when the user updates the number
3178  * of VFs in sysfs.
3179  **/
3180 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3181 {
3182 	int ret;
3183 
3184 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3185 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
3186 		return -EINVAL;
3187 	}
3188 
3189 	if (num_vfs) {
3190 		ret = pci_enable_sriov(pdev, num_vfs);
3191 		if (ret)
3192 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3193 		else
3194 			return num_vfs;
3195 	} else if (!pci_vfs_assigned(pdev)) {
3196 		int num_vfs_pre = pci_num_vf(pdev);
3197 
3198 		pci_disable_sriov(pdev);
3199 		hns3_clean_vf_config(pdev, num_vfs_pre);
3200 	} else {
3201 		dev_warn(&pdev->dev,
3202 			 "Unable to free VFs because some are assigned to VMs.\n");
3203 	}
3204 
3205 	return 0;
3206 }
3207 
3208 static void hns3_shutdown(struct pci_dev *pdev)
3209 {
3210 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3211 
3212 	hnae3_unregister_ae_dev(ae_dev);
3213 	pci_set_drvdata(pdev, NULL);
3214 
3215 	if (system_state == SYSTEM_POWER_OFF)
3216 		pci_set_power_state(pdev, PCI_D3hot);
3217 }
3218 
3219 static int __maybe_unused hns3_suspend(struct device *dev)
3220 {
3221 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3222 
3223 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3224 		dev_info(dev, "Begin to suspend.\n");
3225 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3226 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3227 	}
3228 
3229 	return 0;
3230 }
3231 
3232 static int __maybe_unused hns3_resume(struct device *dev)
3233 {
3234 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3235 
3236 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3237 		dev_info(dev, "Begin to resume.\n");
3238 		if (ae_dev->ops && ae_dev->ops->reset_done)
3239 			ae_dev->ops->reset_done(ae_dev);
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3246 					    pci_channel_state_t state)
3247 {
3248 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3249 	pci_ers_result_t ret;
3250 
3251 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3252 
3253 	if (state == pci_channel_io_perm_failure)
3254 		return PCI_ERS_RESULT_DISCONNECT;
3255 
3256 	if (!ae_dev || !ae_dev->ops) {
3257 		dev_err(&pdev->dev,
3258 			"Can't recover - error happened before device initialized\n");
3259 		return PCI_ERS_RESULT_NONE;
3260 	}
3261 
3262 	if (ae_dev->ops->handle_hw_ras_error)
3263 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3264 	else
3265 		return PCI_ERS_RESULT_NONE;
3266 
3267 	return ret;
3268 }
3269 
3270 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3271 {
3272 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3273 	const struct hnae3_ae_ops *ops;
3274 	enum hnae3_reset_type reset_type;
3275 	struct device *dev = &pdev->dev;
3276 
3277 	if (!ae_dev || !ae_dev->ops)
3278 		return PCI_ERS_RESULT_NONE;
3279 
3280 	ops = ae_dev->ops;
3281 	/* request the reset */
3282 	if (ops->reset_event && ops->get_reset_level &&
3283 	    ops->set_default_reset_request) {
3284 		if (ae_dev->hw_err_reset_req) {
3285 			reset_type = ops->get_reset_level(ae_dev,
3286 						&ae_dev->hw_err_reset_req);
3287 			ops->set_default_reset_request(ae_dev, reset_type);
3288 			dev_info(dev, "requesting reset due to PCI error\n");
3289 			ops->reset_event(pdev, NULL);
3290 		}
3291 
3292 		return PCI_ERS_RESULT_RECOVERED;
3293 	}
3294 
3295 	return PCI_ERS_RESULT_DISCONNECT;
3296 }
3297 
3298 static void hns3_reset_prepare(struct pci_dev *pdev)
3299 {
3300 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3301 
3302 	dev_info(&pdev->dev, "FLR prepare\n");
3303 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3304 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3305 }
3306 
3307 static void hns3_reset_done(struct pci_dev *pdev)
3308 {
3309 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3310 
3311 	dev_info(&pdev->dev, "FLR done\n");
3312 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3313 		ae_dev->ops->reset_done(ae_dev);
3314 }
3315 
3316 static const struct pci_error_handlers hns3_err_handler = {
3317 	.error_detected = hns3_error_detected,
3318 	.slot_reset     = hns3_slot_reset,
3319 	.reset_prepare	= hns3_reset_prepare,
3320 	.reset_done	= hns3_reset_done,
3321 };
3322 
3323 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3324 
3325 static struct pci_driver hns3_driver = {
3326 	.name     = hns3_driver_name,
3327 	.id_table = hns3_pci_tbl,
3328 	.probe    = hns3_probe,
3329 	.remove   = hns3_remove,
3330 	.shutdown = hns3_shutdown,
3331 	.driver.pm  = &hns3_pm_ops,
3332 	.sriov_configure = hns3_pci_sriov_configure,
3333 	.err_handler    = &hns3_err_handler,
3334 };
3335 
3336 /* set default feature to hns3 */
3337 static void hns3_set_default_feature(struct net_device *netdev)
3338 {
3339 	struct hnae3_handle *h = hns3_get_handle(netdev);
3340 	struct pci_dev *pdev = h->pdev;
3341 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3342 
3343 	netdev->priv_flags |= IFF_UNICAST_FLT;
3344 
3345 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3346 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3347 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3348 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3349 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3350 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3351 
3352 	if (hnae3_ae_dev_gro_supported(ae_dev))
3353 		netdev->features |= NETIF_F_GRO_HW;
3354 
3355 	if (hnae3_ae_dev_fd_supported(ae_dev))
3356 		netdev->features |= NETIF_F_NTUPLE;
3357 
3358 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3359 		netdev->features |= NETIF_F_GSO_UDP_L4;
3360 
3361 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3362 		netdev->features |= NETIF_F_HW_CSUM;
3363 	else
3364 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3365 
3366 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3367 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3368 
3369 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3370 		netdev->features |= NETIF_F_HW_TC;
3371 
3372 	netdev->hw_features |= netdev->features;
3373 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3374 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3375 
3376 	netdev->vlan_features |= netdev->features &
3377 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3378 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3379 		  NETIF_F_HW_TC);
3380 
3381 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3382 
3383 	/* The device_version V3 hardware can't offload the checksum for IP in
3384 	 * GRE packets, but can do it for NvGRE. So default to disable the
3385 	 * checksum and GSO offload for GRE.
3386 	 */
3387 	if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
3388 		netdev->features &= ~NETIF_F_GSO_GRE;
3389 		netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
3390 	}
3391 }
3392 
3393 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3394 			     struct hns3_desc_cb *cb)
3395 {
3396 	unsigned int order = hns3_page_order(ring);
3397 	struct page *p;
3398 
3399 	if (ring->page_pool) {
3400 		p = page_pool_dev_alloc_frag(ring->page_pool,
3401 					     &cb->page_offset,
3402 					     hns3_buf_size(ring));
3403 		if (unlikely(!p))
3404 			return -ENOMEM;
3405 
3406 		cb->priv = p;
3407 		cb->buf = page_address(p);
3408 		cb->dma = page_pool_get_dma_addr(p);
3409 		cb->type = DESC_TYPE_PP_FRAG;
3410 		cb->reuse_flag = 0;
3411 		return 0;
3412 	}
3413 
3414 	p = dev_alloc_pages(order);
3415 	if (!p)
3416 		return -ENOMEM;
3417 
3418 	cb->priv = p;
3419 	cb->page_offset = 0;
3420 	cb->reuse_flag = 0;
3421 	cb->buf  = page_address(p);
3422 	cb->length = hns3_page_size(ring);
3423 	cb->type = DESC_TYPE_PAGE;
3424 	page_ref_add(p, USHRT_MAX - 1);
3425 	cb->pagecnt_bias = USHRT_MAX;
3426 
3427 	return 0;
3428 }
3429 
3430 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3431 			     struct hns3_desc_cb *cb, int budget)
3432 {
3433 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3434 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3435 		napi_consume_skb(cb->priv, budget);
3436 	else if (!HNAE3_IS_TX_RING(ring)) {
3437 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3438 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3439 		else if (cb->type & DESC_TYPE_PP_FRAG)
3440 			page_pool_put_full_page(ring->page_pool, cb->priv,
3441 						false);
3442 	}
3443 	memset(cb, 0, sizeof(*cb));
3444 }
3445 
3446 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3447 {
3448 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3449 			       cb->length, ring_to_dma_dir(ring));
3450 
3451 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3452 		return -EIO;
3453 
3454 	return 0;
3455 }
3456 
3457 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3458 			      struct hns3_desc_cb *cb)
3459 {
3460 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3461 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3462 				 ring_to_dma_dir(ring));
3463 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3464 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3465 			       ring_to_dma_dir(ring));
3466 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3467 			     DESC_TYPE_SGL_SKB))
3468 		hns3_tx_spare_reclaim_cb(ring, cb);
3469 }
3470 
3471 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3472 {
3473 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3474 	ring->desc[i].addr = 0;
3475 	ring->desc_cb[i].refill = 0;
3476 }
3477 
3478 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3479 				    int budget)
3480 {
3481 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3482 
3483 	if (!ring->desc_cb[i].dma)
3484 		return;
3485 
3486 	hns3_buffer_detach(ring, i);
3487 	hns3_free_buffer(ring, cb, budget);
3488 }
3489 
3490 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3491 {
3492 	int i;
3493 
3494 	for (i = 0; i < ring->desc_num; i++)
3495 		hns3_free_buffer_detach(ring, i, 0);
3496 }
3497 
3498 /* free desc along with its attached buffer */
3499 static void hns3_free_desc(struct hns3_enet_ring *ring)
3500 {
3501 	int size = ring->desc_num * sizeof(ring->desc[0]);
3502 
3503 	hns3_free_buffers(ring);
3504 
3505 	if (ring->desc) {
3506 		dma_free_coherent(ring_to_dev(ring), size,
3507 				  ring->desc, ring->desc_dma_addr);
3508 		ring->desc = NULL;
3509 	}
3510 }
3511 
3512 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3513 {
3514 	int size = ring->desc_num * sizeof(ring->desc[0]);
3515 
3516 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3517 					&ring->desc_dma_addr, GFP_KERNEL);
3518 	if (!ring->desc)
3519 		return -ENOMEM;
3520 
3521 	return 0;
3522 }
3523 
3524 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3525 				   struct hns3_desc_cb *cb)
3526 {
3527 	int ret;
3528 
3529 	ret = hns3_alloc_buffer(ring, cb);
3530 	if (ret || ring->page_pool)
3531 		goto out;
3532 
3533 	ret = hns3_map_buffer(ring, cb);
3534 	if (ret)
3535 		goto out_with_buf;
3536 
3537 	return 0;
3538 
3539 out_with_buf:
3540 	hns3_free_buffer(ring, cb, 0);
3541 out:
3542 	return ret;
3543 }
3544 
3545 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3546 {
3547 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3548 
3549 	if (ret)
3550 		return ret;
3551 
3552 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3553 					 ring->desc_cb[i].page_offset);
3554 	ring->desc_cb[i].refill = 1;
3555 
3556 	return 0;
3557 }
3558 
3559 /* Allocate memory for raw pkg, and map with dma */
3560 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3561 {
3562 	int i, j, ret;
3563 
3564 	for (i = 0; i < ring->desc_num; i++) {
3565 		ret = hns3_alloc_and_attach_buffer(ring, i);
3566 		if (ret)
3567 			goto out_buffer_fail;
3568 
3569 		if (!(i % HNS3_RESCHED_BD_NUM))
3570 			cond_resched();
3571 	}
3572 
3573 	return 0;
3574 
3575 out_buffer_fail:
3576 	for (j = i - 1; j >= 0; j--)
3577 		hns3_free_buffer_detach(ring, j, 0);
3578 	return ret;
3579 }
3580 
3581 /* detach a in-used buffer and replace with a reserved one */
3582 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3583 				struct hns3_desc_cb *res_cb)
3584 {
3585 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3586 	ring->desc_cb[i] = *res_cb;
3587 	ring->desc_cb[i].refill = 1;
3588 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3589 					 ring->desc_cb[i].page_offset);
3590 	ring->desc[i].rx.bd_base_info = 0;
3591 }
3592 
3593 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3594 {
3595 	ring->desc_cb[i].reuse_flag = 0;
3596 	ring->desc_cb[i].refill = 1;
3597 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3598 					 ring->desc_cb[i].page_offset);
3599 	ring->desc[i].rx.bd_base_info = 0;
3600 
3601 	dma_sync_single_for_device(ring_to_dev(ring),
3602 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3603 			hns3_buf_size(ring),
3604 			DMA_FROM_DEVICE);
3605 }
3606 
3607 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3608 				  int *bytes, int *pkts, int budget)
3609 {
3610 	/* This smp_load_acquire() pairs with smp_store_release() in
3611 	 * hns3_tx_doorbell().
3612 	 */
3613 	int ltu = smp_load_acquire(&ring->last_to_use);
3614 	int ntc = ring->next_to_clean;
3615 	struct hns3_desc_cb *desc_cb;
3616 	bool reclaimed = false;
3617 	struct hns3_desc *desc;
3618 
3619 	while (ltu != ntc) {
3620 		desc = &ring->desc[ntc];
3621 
3622 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3623 				BIT(HNS3_TXD_VLD_B))
3624 			break;
3625 
3626 		desc_cb = &ring->desc_cb[ntc];
3627 
3628 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3629 				     DESC_TYPE_BOUNCE_HEAD |
3630 				     DESC_TYPE_SGL_SKB)) {
3631 			(*pkts)++;
3632 			(*bytes) += desc_cb->send_bytes;
3633 		}
3634 
3635 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3636 		hns3_free_buffer_detach(ring, ntc, budget);
3637 
3638 		if (++ntc == ring->desc_num)
3639 			ntc = 0;
3640 
3641 		/* Issue prefetch for next Tx descriptor */
3642 		prefetch(&ring->desc_cb[ntc]);
3643 		reclaimed = true;
3644 	}
3645 
3646 	if (unlikely(!reclaimed))
3647 		return false;
3648 
3649 	/* This smp_store_release() pairs with smp_load_acquire() in
3650 	 * ring_space called by hns3_nic_net_xmit.
3651 	 */
3652 	smp_store_release(&ring->next_to_clean, ntc);
3653 
3654 	hns3_tx_spare_update(ring);
3655 
3656 	return true;
3657 }
3658 
3659 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3660 {
3661 	struct net_device *netdev = ring_to_netdev(ring);
3662 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3663 	struct netdev_queue *dev_queue;
3664 	int bytes, pkts;
3665 
3666 	bytes = 0;
3667 	pkts = 0;
3668 
3669 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3670 		return;
3671 
3672 	ring->tqp_vector->tx_group.total_bytes += bytes;
3673 	ring->tqp_vector->tx_group.total_packets += pkts;
3674 
3675 	u64_stats_update_begin(&ring->syncp);
3676 	ring->stats.tx_bytes += bytes;
3677 	ring->stats.tx_pkts += pkts;
3678 	u64_stats_update_end(&ring->syncp);
3679 
3680 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3681 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3682 
3683 	if (unlikely(netif_carrier_ok(netdev) &&
3684 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3685 		/* Make sure that anybody stopping the queue after this
3686 		 * sees the new next_to_clean.
3687 		 */
3688 		smp_mb();
3689 		if (netif_tx_queue_stopped(dev_queue) &&
3690 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3691 			netif_tx_wake_queue(dev_queue);
3692 			ring->stats.restart_queue++;
3693 		}
3694 	}
3695 }
3696 
3697 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3698 {
3699 	int ntc = ring->next_to_clean;
3700 	int ntu = ring->next_to_use;
3701 
3702 	if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3703 		return ring->desc_num;
3704 
3705 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3706 }
3707 
3708 /* Return true if there is any allocation failure */
3709 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3710 				      int cleand_count)
3711 {
3712 	struct hns3_desc_cb *desc_cb;
3713 	struct hns3_desc_cb res_cbs;
3714 	int i, ret;
3715 
3716 	for (i = 0; i < cleand_count; i++) {
3717 		desc_cb = &ring->desc_cb[ring->next_to_use];
3718 		if (desc_cb->reuse_flag) {
3719 			hns3_ring_stats_update(ring, reuse_pg_cnt);
3720 
3721 			hns3_reuse_buffer(ring, ring->next_to_use);
3722 		} else {
3723 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3724 			if (ret) {
3725 				hns3_ring_stats_update(ring, sw_err_cnt);
3726 
3727 				hns3_rl_err(ring_to_netdev(ring),
3728 					    "alloc rx buffer failed: %d\n",
3729 					    ret);
3730 
3731 				writel(i, ring->tqp->io_base +
3732 				       HNS3_RING_RX_RING_HEAD_REG);
3733 				return true;
3734 			}
3735 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3736 
3737 			hns3_ring_stats_update(ring, non_reuse_pg);
3738 		}
3739 
3740 		ring_ptr_move_fw(ring, next_to_use);
3741 	}
3742 
3743 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3744 	return false;
3745 }
3746 
3747 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3748 {
3749 	return page_count(cb->priv) == cb->pagecnt_bias;
3750 }
3751 
3752 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3753 				    struct hns3_enet_ring *ring,
3754 				    int pull_len,
3755 				    struct hns3_desc_cb *desc_cb)
3756 {
3757 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3758 	u32 frag_offset = desc_cb->page_offset + pull_len;
3759 	int size = le16_to_cpu(desc->rx.size);
3760 	u32 frag_size = size - pull_len;
3761 	void *frag = napi_alloc_frag(frag_size);
3762 
3763 	if (unlikely(!frag)) {
3764 		hns3_ring_stats_update(ring, frag_alloc_err);
3765 
3766 		hns3_rl_err(ring_to_netdev(ring),
3767 			    "failed to allocate rx frag\n");
3768 		return -ENOMEM;
3769 	}
3770 
3771 	desc_cb->reuse_flag = 1;
3772 	memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3773 	skb_add_rx_frag(skb, i, virt_to_page(frag),
3774 			offset_in_page(frag), frag_size, frag_size);
3775 
3776 	hns3_ring_stats_update(ring, frag_alloc);
3777 	return 0;
3778 }
3779 
3780 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3781 				struct hns3_enet_ring *ring, int pull_len,
3782 				struct hns3_desc_cb *desc_cb)
3783 {
3784 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3785 	u32 frag_offset = desc_cb->page_offset + pull_len;
3786 	int size = le16_to_cpu(desc->rx.size);
3787 	u32 truesize = hns3_buf_size(ring);
3788 	u32 frag_size = size - pull_len;
3789 	int ret = 0;
3790 	bool reused;
3791 
3792 	if (ring->page_pool) {
3793 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3794 				frag_size, truesize);
3795 		return;
3796 	}
3797 
3798 	/* Avoid re-using remote or pfmem page */
3799 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3800 		goto out;
3801 
3802 	reused = hns3_can_reuse_page(desc_cb);
3803 
3804 	/* Rx page can be reused when:
3805 	 * 1. Rx page is only owned by the driver when page_offset
3806 	 *    is zero, which means 0 @ truesize will be used by
3807 	 *    stack after skb_add_rx_frag() is called, and the rest
3808 	 *    of rx page can be reused by driver.
3809 	 * Or
3810 	 * 2. Rx page is only owned by the driver when page_offset
3811 	 *    is non-zero, which means page_offset @ truesize will
3812 	 *    be used by stack after skb_add_rx_frag() is called,
3813 	 *    and 0 @ truesize can be reused by driver.
3814 	 */
3815 	if ((!desc_cb->page_offset && reused) ||
3816 	    ((desc_cb->page_offset + truesize + truesize) <=
3817 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3818 		desc_cb->page_offset += truesize;
3819 		desc_cb->reuse_flag = 1;
3820 	} else if (desc_cb->page_offset && reused) {
3821 		desc_cb->page_offset = 0;
3822 		desc_cb->reuse_flag = 1;
3823 	} else if (frag_size <= ring->rx_copybreak) {
3824 		ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3825 		if (!ret)
3826 			return;
3827 	}
3828 
3829 out:
3830 	desc_cb->pagecnt_bias--;
3831 
3832 	if (unlikely(!desc_cb->pagecnt_bias)) {
3833 		page_ref_add(desc_cb->priv, USHRT_MAX);
3834 		desc_cb->pagecnt_bias = USHRT_MAX;
3835 	}
3836 
3837 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3838 			frag_size, truesize);
3839 
3840 	if (unlikely(!desc_cb->reuse_flag))
3841 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3842 }
3843 
3844 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3845 {
3846 	__be16 type = skb->protocol;
3847 	struct tcphdr *th;
3848 	int depth = 0;
3849 
3850 	while (eth_type_vlan(type)) {
3851 		struct vlan_hdr *vh;
3852 
3853 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3854 			return -EFAULT;
3855 
3856 		vh = (struct vlan_hdr *)(skb->data + depth);
3857 		type = vh->h_vlan_encapsulated_proto;
3858 		depth += VLAN_HLEN;
3859 	}
3860 
3861 	skb_set_network_header(skb, depth);
3862 
3863 	if (type == htons(ETH_P_IP)) {
3864 		const struct iphdr *iph = ip_hdr(skb);
3865 
3866 		depth += sizeof(struct iphdr);
3867 		skb_set_transport_header(skb, depth);
3868 		th = tcp_hdr(skb);
3869 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3870 					  iph->daddr, 0);
3871 	} else if (type == htons(ETH_P_IPV6)) {
3872 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3873 
3874 		depth += sizeof(struct ipv6hdr);
3875 		skb_set_transport_header(skb, depth);
3876 		th = tcp_hdr(skb);
3877 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3878 					  &iph->daddr, 0);
3879 	} else {
3880 		hns3_rl_err(skb->dev,
3881 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3882 			    be16_to_cpu(type), depth);
3883 		return -EFAULT;
3884 	}
3885 
3886 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3887 	if (th->cwr)
3888 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3889 
3890 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3891 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3892 
3893 	skb->csum_start = (unsigned char *)th - skb->head;
3894 	skb->csum_offset = offsetof(struct tcphdr, check);
3895 	skb->ip_summed = CHECKSUM_PARTIAL;
3896 
3897 	trace_hns3_gro(skb);
3898 
3899 	return 0;
3900 }
3901 
3902 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3903 				   struct sk_buff *skb, u32 ptype, u16 csum)
3904 {
3905 	if (ptype == HNS3_INVALID_PTYPE ||
3906 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3907 		return;
3908 
3909 	hns3_ring_stats_update(ring, csum_complete);
3910 	skb->ip_summed = CHECKSUM_COMPLETE;
3911 	skb->csum = csum_unfold((__force __sum16)csum);
3912 }
3913 
3914 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3915 				u32 ol_info, u32 ptype)
3916 {
3917 	int l3_type, l4_type;
3918 	int ol4_type;
3919 
3920 	if (ptype != HNS3_INVALID_PTYPE) {
3921 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3922 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3923 
3924 		return;
3925 	}
3926 
3927 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3928 				   HNS3_RXD_OL4ID_S);
3929 	switch (ol4_type) {
3930 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3931 	case HNS3_OL4_TYPE_NVGRE:
3932 		skb->csum_level = 1;
3933 		fallthrough;
3934 	case HNS3_OL4_TYPE_NO_TUN:
3935 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3936 					  HNS3_RXD_L3ID_S);
3937 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3938 					  HNS3_RXD_L4ID_S);
3939 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3940 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3941 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3942 		    (l4_type == HNS3_L4_TYPE_UDP ||
3943 		     l4_type == HNS3_L4_TYPE_TCP ||
3944 		     l4_type == HNS3_L4_TYPE_SCTP))
3945 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3946 		break;
3947 	default:
3948 		break;
3949 	}
3950 }
3951 
3952 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3953 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3954 			     u16 csum)
3955 {
3956 	struct net_device *netdev = ring_to_netdev(ring);
3957 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3958 	u32 ptype = HNS3_INVALID_PTYPE;
3959 
3960 	skb->ip_summed = CHECKSUM_NONE;
3961 
3962 	skb_checksum_none_assert(skb);
3963 
3964 	if (!(netdev->features & NETIF_F_RXCSUM))
3965 		return;
3966 
3967 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3968 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3969 					HNS3_RXD_PTYPE_S);
3970 
3971 	hns3_checksum_complete(ring, skb, ptype, csum);
3972 
3973 	/* check if hardware has done checksum */
3974 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3975 		return;
3976 
3977 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3978 				 BIT(HNS3_RXD_OL3E_B) |
3979 				 BIT(HNS3_RXD_OL4E_B)))) {
3980 		skb->ip_summed = CHECKSUM_NONE;
3981 		hns3_ring_stats_update(ring, l3l4_csum_err);
3982 
3983 		return;
3984 	}
3985 
3986 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3987 }
3988 
3989 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3990 {
3991 	if (skb_has_frag_list(skb))
3992 		napi_gro_flush(&ring->tqp_vector->napi, false);
3993 
3994 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3995 }
3996 
3997 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3998 				struct hns3_desc *desc, u32 l234info,
3999 				u16 *vlan_tag)
4000 {
4001 	struct hnae3_handle *handle = ring->tqp->handle;
4002 	struct pci_dev *pdev = ring->tqp->handle->pdev;
4003 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4004 
4005 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
4006 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4007 		if (!(*vlan_tag & VLAN_VID_MASK))
4008 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4009 
4010 		return (*vlan_tag != 0);
4011 	}
4012 
4013 #define HNS3_STRP_OUTER_VLAN	0x1
4014 #define HNS3_STRP_INNER_VLAN	0x2
4015 #define HNS3_STRP_BOTH		0x3
4016 
4017 	/* Hardware always insert VLAN tag into RX descriptor when
4018 	 * remove the tag from packet, driver needs to determine
4019 	 * reporting which tag to stack.
4020 	 */
4021 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
4022 				HNS3_RXD_STRP_TAGP_S)) {
4023 	case HNS3_STRP_OUTER_VLAN:
4024 		if (handle->port_base_vlan_state !=
4025 				HNAE3_PORT_BASE_VLAN_DISABLE)
4026 			return false;
4027 
4028 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4029 		return true;
4030 	case HNS3_STRP_INNER_VLAN:
4031 		if (handle->port_base_vlan_state !=
4032 				HNAE3_PORT_BASE_VLAN_DISABLE)
4033 			return false;
4034 
4035 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4036 		return true;
4037 	case HNS3_STRP_BOTH:
4038 		if (handle->port_base_vlan_state ==
4039 				HNAE3_PORT_BASE_VLAN_DISABLE)
4040 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4041 		else
4042 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4043 
4044 		return true;
4045 	default:
4046 		return false;
4047 	}
4048 }
4049 
4050 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4051 {
4052 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
4053 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4054 	ring->desc_cb[ring->next_to_clean].refill = 0;
4055 	ring->next_to_clean += 1;
4056 
4057 	if (unlikely(ring->next_to_clean == ring->desc_num))
4058 		ring->next_to_clean = 0;
4059 }
4060 
4061 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4062 			  unsigned char *va)
4063 {
4064 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4065 	struct net_device *netdev = ring_to_netdev(ring);
4066 	struct sk_buff *skb;
4067 
4068 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4069 	skb = ring->skb;
4070 	if (unlikely(!skb)) {
4071 		hns3_rl_err(netdev, "alloc rx skb fail\n");
4072 		hns3_ring_stats_update(ring, sw_err_cnt);
4073 
4074 		return -ENOMEM;
4075 	}
4076 
4077 	trace_hns3_rx_desc(ring);
4078 	prefetchw(skb->data);
4079 
4080 	ring->pending_buf = 1;
4081 	ring->frag_num = 0;
4082 	ring->tail_skb = NULL;
4083 	if (length <= HNS3_RX_HEAD_SIZE) {
4084 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4085 
4086 		/* We can reuse buffer as-is, just make sure it is reusable */
4087 		if (dev_page_is_reusable(desc_cb->priv))
4088 			desc_cb->reuse_flag = 1;
4089 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4090 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4091 						false);
4092 		else /* This page cannot be reused so discard it */
4093 			__page_frag_cache_drain(desc_cb->priv,
4094 						desc_cb->pagecnt_bias);
4095 
4096 		hns3_rx_ring_move_fw(ring);
4097 		return 0;
4098 	}
4099 
4100 	if (ring->page_pool)
4101 		skb_mark_for_recycle(skb);
4102 
4103 	hns3_ring_stats_update(ring, seg_pkt_cnt);
4104 
4105 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4106 	__skb_put(skb, ring->pull_len);
4107 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4108 			    desc_cb);
4109 	hns3_rx_ring_move_fw(ring);
4110 
4111 	return 0;
4112 }
4113 
4114 static int hns3_add_frag(struct hns3_enet_ring *ring)
4115 {
4116 	struct sk_buff *skb = ring->skb;
4117 	struct sk_buff *head_skb = skb;
4118 	struct sk_buff *new_skb;
4119 	struct hns3_desc_cb *desc_cb;
4120 	struct hns3_desc *desc;
4121 	u32 bd_base_info;
4122 
4123 	do {
4124 		desc = &ring->desc[ring->next_to_clean];
4125 		desc_cb = &ring->desc_cb[ring->next_to_clean];
4126 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4127 		/* make sure HW write desc complete */
4128 		dma_rmb();
4129 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4130 			return -ENXIO;
4131 
4132 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4133 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4134 			if (unlikely(!new_skb)) {
4135 				hns3_rl_err(ring_to_netdev(ring),
4136 					    "alloc rx fraglist skb fail\n");
4137 				return -ENXIO;
4138 			}
4139 
4140 			if (ring->page_pool)
4141 				skb_mark_for_recycle(new_skb);
4142 
4143 			ring->frag_num = 0;
4144 
4145 			if (ring->tail_skb) {
4146 				ring->tail_skb->next = new_skb;
4147 				ring->tail_skb = new_skb;
4148 			} else {
4149 				skb_shinfo(skb)->frag_list = new_skb;
4150 				ring->tail_skb = new_skb;
4151 			}
4152 		}
4153 
4154 		if (ring->tail_skb) {
4155 			head_skb->truesize += hns3_buf_size(ring);
4156 			head_skb->data_len += le16_to_cpu(desc->rx.size);
4157 			head_skb->len += le16_to_cpu(desc->rx.size);
4158 			skb = ring->tail_skb;
4159 		}
4160 
4161 		dma_sync_single_for_cpu(ring_to_dev(ring),
4162 				desc_cb->dma + desc_cb->page_offset,
4163 				hns3_buf_size(ring),
4164 				DMA_FROM_DEVICE);
4165 
4166 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4167 		trace_hns3_rx_desc(ring);
4168 		hns3_rx_ring_move_fw(ring);
4169 		ring->pending_buf++;
4170 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4171 
4172 	return 0;
4173 }
4174 
4175 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4176 				     struct sk_buff *skb, u32 l234info,
4177 				     u32 bd_base_info, u32 ol_info, u16 csum)
4178 {
4179 	struct net_device *netdev = ring_to_netdev(ring);
4180 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4181 	u32 l3_type;
4182 
4183 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4184 						    HNS3_RXD_GRO_SIZE_M,
4185 						    HNS3_RXD_GRO_SIZE_S);
4186 	/* if there is no HW GRO, do not set gro params */
4187 	if (!skb_shinfo(skb)->gso_size) {
4188 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4189 				 csum);
4190 		return 0;
4191 	}
4192 
4193 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4194 						  HNS3_RXD_GRO_COUNT_M,
4195 						  HNS3_RXD_GRO_COUNT_S);
4196 
4197 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4198 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4199 					    HNS3_RXD_PTYPE_S);
4200 
4201 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4202 	} else {
4203 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4204 					  HNS3_RXD_L3ID_S);
4205 	}
4206 
4207 	if (l3_type == HNS3_L3_TYPE_IPV4)
4208 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4209 	else if (l3_type == HNS3_L3_TYPE_IPV6)
4210 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4211 	else
4212 		return -EFAULT;
4213 
4214 	return  hns3_gro_complete(skb, l234info);
4215 }
4216 
4217 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4218 				     struct sk_buff *skb, u32 rss_hash,
4219 				     u32 l234info, u32 ol_info)
4220 {
4221 	enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4222 	struct net_device *netdev = ring_to_netdev(ring);
4223 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4224 
4225 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4226 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4227 					    HNS3_RXD_PTYPE_S);
4228 
4229 		rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4230 	} else {
4231 		int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4232 					      HNS3_RXD_L3ID_S);
4233 		int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4234 					      HNS3_RXD_L4ID_S);
4235 
4236 		if (l3_type == HNS3_L3_TYPE_IPV4 ||
4237 		    l3_type == HNS3_L3_TYPE_IPV6) {
4238 			if (l4_type == HNS3_L4_TYPE_UDP ||
4239 			    l4_type == HNS3_L4_TYPE_TCP ||
4240 			    l4_type == HNS3_L4_TYPE_SCTP)
4241 				rss_type = PKT_HASH_TYPE_L4;
4242 			else if (l4_type == HNS3_L4_TYPE_IGMP ||
4243 				 l4_type == HNS3_L4_TYPE_ICMP)
4244 				rss_type = PKT_HASH_TYPE_L3;
4245 		}
4246 	}
4247 
4248 	skb_set_hash(skb, rss_hash, rss_type);
4249 }
4250 
4251 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4252 				   struct hns3_desc *desc, struct sk_buff *skb,
4253 				   u32 bd_base_info)
4254 {
4255 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4256 		struct hnae3_handle *h = hns3_get_handle(netdev);
4257 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4258 		u32 sec = le32_to_cpu(desc->ts_sec);
4259 
4260 		if (h->ae_algo->ops->get_rx_hwts)
4261 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4262 	}
4263 }
4264 
4265 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4266 				    struct hns3_desc *desc, struct sk_buff *skb,
4267 				    u32 l234info)
4268 {
4269 	struct net_device *netdev = ring_to_netdev(ring);
4270 
4271 	/* Based on hw strategy, the tag offloaded will be stored at
4272 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4273 	 * in one layer tag case.
4274 	 */
4275 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4276 		u16 vlan_tag;
4277 
4278 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4279 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4280 					       vlan_tag);
4281 	}
4282 }
4283 
4284 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4285 {
4286 	struct net_device *netdev = ring_to_netdev(ring);
4287 	enum hns3_pkt_l2t_type l2_frame_type;
4288 	u32 bd_base_info, l234info, ol_info;
4289 	struct hns3_desc *desc;
4290 	unsigned int len;
4291 	int pre_ntc, ret;
4292 	u16 csum;
4293 
4294 	/* bdinfo handled below is only valid on the last BD of the
4295 	 * current packet, and ring->next_to_clean indicates the first
4296 	 * descriptor of next packet, so need - 1 below.
4297 	 */
4298 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4299 					(ring->desc_num - 1);
4300 	desc = &ring->desc[pre_ntc];
4301 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4302 	l234info = le32_to_cpu(desc->rx.l234_info);
4303 	ol_info = le32_to_cpu(desc->rx.ol_info);
4304 	csum = le16_to_cpu(desc->csum);
4305 
4306 	hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4307 
4308 	hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4309 
4310 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4311 				  BIT(HNS3_RXD_L2E_B))))) {
4312 		u64_stats_update_begin(&ring->syncp);
4313 		if (l234info & BIT(HNS3_RXD_L2E_B))
4314 			ring->stats.l2_err++;
4315 		else
4316 			ring->stats.err_pkt_len++;
4317 		u64_stats_update_end(&ring->syncp);
4318 
4319 		return -EFAULT;
4320 	}
4321 
4322 	len = skb->len;
4323 
4324 	/* Do update ip stack process */
4325 	skb->protocol = eth_type_trans(skb, netdev);
4326 
4327 	/* This is needed in order to enable forwarding support */
4328 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4329 					bd_base_info, ol_info, csum);
4330 	if (unlikely(ret)) {
4331 		hns3_ring_stats_update(ring, rx_err_cnt);
4332 		return ret;
4333 	}
4334 
4335 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4336 					HNS3_RXD_DMAC_S);
4337 
4338 	u64_stats_update_begin(&ring->syncp);
4339 	ring->stats.rx_pkts++;
4340 	ring->stats.rx_bytes += len;
4341 
4342 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4343 		ring->stats.rx_multicast++;
4344 
4345 	u64_stats_update_end(&ring->syncp);
4346 
4347 	ring->tqp_vector->rx_group.total_bytes += len;
4348 
4349 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4350 				 l234info, ol_info);
4351 	return 0;
4352 }
4353 
4354 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4355 {
4356 	struct sk_buff *skb = ring->skb;
4357 	struct hns3_desc_cb *desc_cb;
4358 	struct hns3_desc *desc;
4359 	unsigned int length;
4360 	u32 bd_base_info;
4361 	int ret;
4362 
4363 	desc = &ring->desc[ring->next_to_clean];
4364 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4365 
4366 	prefetch(desc);
4367 
4368 	if (!skb) {
4369 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4370 		/* Check valid BD */
4371 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4372 			return -ENXIO;
4373 
4374 		dma_rmb();
4375 		length = le16_to_cpu(desc->rx.size);
4376 
4377 		ring->va = desc_cb->buf + desc_cb->page_offset;
4378 
4379 		dma_sync_single_for_cpu(ring_to_dev(ring),
4380 				desc_cb->dma + desc_cb->page_offset,
4381 				hns3_buf_size(ring),
4382 				DMA_FROM_DEVICE);
4383 
4384 		/* Prefetch first cache line of first page.
4385 		 * Idea is to cache few bytes of the header of the packet.
4386 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4387 		 * it 128B. But in actual we can have greater size of caches with
4388 		 * 128B Level 1 cache lines. In such a case, single fetch would
4389 		 * suffice to cache in the relevant part of the header.
4390 		 */
4391 		net_prefetch(ring->va);
4392 
4393 		ret = hns3_alloc_skb(ring, length, ring->va);
4394 		skb = ring->skb;
4395 
4396 		if (ret < 0) /* alloc buffer fail */
4397 			return ret;
4398 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4399 			ret = hns3_add_frag(ring);
4400 			if (ret)
4401 				return ret;
4402 		}
4403 	} else {
4404 		ret = hns3_add_frag(ring);
4405 		if (ret)
4406 			return ret;
4407 	}
4408 
4409 	/* As the head data may be changed when GRO enable, copy
4410 	 * the head data in after other data rx completed
4411 	 */
4412 	if (skb->len > HNS3_RX_HEAD_SIZE)
4413 		memcpy(skb->data, ring->va,
4414 		       ALIGN(ring->pull_len, sizeof(long)));
4415 
4416 	ret = hns3_handle_bdinfo(ring, skb);
4417 	if (unlikely(ret)) {
4418 		dev_kfree_skb_any(skb);
4419 		return ret;
4420 	}
4421 
4422 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4423 	return 0;
4424 }
4425 
4426 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4427 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4428 {
4429 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4430 	int unused_count = hns3_desc_unused(ring);
4431 	bool failure = false;
4432 	int recv_pkts = 0;
4433 	int err;
4434 
4435 	unused_count -= ring->pending_buf;
4436 
4437 	while (recv_pkts < budget) {
4438 		/* Reuse or realloc buffers */
4439 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4440 			failure = failure ||
4441 				hns3_nic_alloc_rx_buffers(ring, unused_count);
4442 			unused_count = 0;
4443 		}
4444 
4445 		/* Poll one pkt */
4446 		err = hns3_handle_rx_bd(ring);
4447 		/* Do not get FE for the packet or failed to alloc skb */
4448 		if (unlikely(!ring->skb || err == -ENXIO)) {
4449 			goto out;
4450 		} else if (likely(!err)) {
4451 			rx_fn(ring, ring->skb);
4452 			recv_pkts++;
4453 		}
4454 
4455 		unused_count += ring->pending_buf;
4456 		ring->skb = NULL;
4457 		ring->pending_buf = 0;
4458 	}
4459 
4460 out:
4461 	/* sync head pointer before exiting, since hardware will calculate
4462 	 * FBD number with head pointer
4463 	 */
4464 	if (unused_count > 0)
4465 		failure = failure ||
4466 			  hns3_nic_alloc_rx_buffers(ring, unused_count);
4467 
4468 	return failure ? budget : recv_pkts;
4469 }
4470 
4471 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4472 {
4473 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4474 	struct dim_sample sample = {};
4475 
4476 	if (!rx_group->coal.adapt_enable)
4477 		return;
4478 
4479 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4480 			  rx_group->total_bytes, &sample);
4481 	net_dim(&rx_group->dim, sample);
4482 }
4483 
4484 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4485 {
4486 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4487 	struct dim_sample sample = {};
4488 
4489 	if (!tx_group->coal.adapt_enable)
4490 		return;
4491 
4492 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4493 			  tx_group->total_bytes, &sample);
4494 	net_dim(&tx_group->dim, sample);
4495 }
4496 
4497 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4498 {
4499 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4500 	struct hns3_enet_ring *ring;
4501 	int rx_pkt_total = 0;
4502 
4503 	struct hns3_enet_tqp_vector *tqp_vector =
4504 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4505 	bool clean_complete = true;
4506 	int rx_budget = budget;
4507 
4508 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4509 		napi_complete(napi);
4510 		return 0;
4511 	}
4512 
4513 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4514 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4515 	 */
4516 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4517 		hns3_clean_tx_ring(ring, budget);
4518 
4519 	/* make sure rx ring budget not smaller than 1 */
4520 	if (tqp_vector->num_tqps > 1)
4521 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4522 
4523 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4524 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4525 						    hns3_rx_skb);
4526 		if (rx_cleaned >= rx_budget)
4527 			clean_complete = false;
4528 
4529 		rx_pkt_total += rx_cleaned;
4530 	}
4531 
4532 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4533 
4534 	if (!clean_complete)
4535 		return budget;
4536 
4537 	if (napi_complete(napi) &&
4538 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4539 		hns3_update_rx_int_coalesce(tqp_vector);
4540 		hns3_update_tx_int_coalesce(tqp_vector);
4541 
4542 		hns3_mask_vector_irq(tqp_vector, 1);
4543 	}
4544 
4545 	return rx_pkt_total;
4546 }
4547 
4548 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4549 				  struct hnae3_ring_chain_node **head,
4550 				  bool is_tx)
4551 {
4552 	u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4553 	u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4554 	struct hnae3_ring_chain_node *cur_chain = *head;
4555 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4556 	struct hnae3_ring_chain_node *chain;
4557 	struct hns3_enet_ring *ring;
4558 
4559 	ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4560 
4561 	if (cur_chain) {
4562 		while (cur_chain->next)
4563 			cur_chain = cur_chain->next;
4564 	}
4565 
4566 	while (ring) {
4567 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4568 		if (!chain)
4569 			return -ENOMEM;
4570 		if (cur_chain)
4571 			cur_chain->next = chain;
4572 		else
4573 			*head = chain;
4574 		chain->tqp_index = ring->tqp->tqp_index;
4575 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4576 				bit_value);
4577 		hnae3_set_field(chain->int_gl_idx,
4578 				HNAE3_RING_GL_IDX_M,
4579 				HNAE3_RING_GL_IDX_S, field_value);
4580 
4581 		cur_chain = chain;
4582 
4583 		ring = ring->next;
4584 	}
4585 
4586 	return 0;
4587 }
4588 
4589 static struct hnae3_ring_chain_node *
4590 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4591 {
4592 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4593 	struct hnae3_ring_chain_node *cur_chain = NULL;
4594 	struct hnae3_ring_chain_node *chain;
4595 
4596 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4597 		goto err_free_chain;
4598 
4599 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4600 		goto err_free_chain;
4601 
4602 	return cur_chain;
4603 
4604 err_free_chain:
4605 	while (cur_chain) {
4606 		chain = cur_chain->next;
4607 		devm_kfree(&pdev->dev, cur_chain);
4608 		cur_chain = chain;
4609 	}
4610 
4611 	return NULL;
4612 }
4613 
4614 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4615 					struct hnae3_ring_chain_node *head)
4616 {
4617 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4618 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4619 
4620 	chain = head;
4621 
4622 	while (chain) {
4623 		chain_tmp = chain->next;
4624 		devm_kfree(&pdev->dev, chain);
4625 		chain = chain_tmp;
4626 	}
4627 }
4628 
4629 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4630 				   struct hns3_enet_ring *ring)
4631 {
4632 	ring->next = group->ring;
4633 	group->ring = ring;
4634 
4635 	group->count++;
4636 }
4637 
4638 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4639 {
4640 	struct pci_dev *pdev = priv->ae_handle->pdev;
4641 	struct hns3_enet_tqp_vector *tqp_vector;
4642 	int num_vectors = priv->vector_num;
4643 	int numa_node;
4644 	int vector_i;
4645 
4646 	numa_node = dev_to_node(&pdev->dev);
4647 
4648 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4649 		tqp_vector = &priv->tqp_vector[vector_i];
4650 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4651 				&tqp_vector->affinity_mask);
4652 	}
4653 }
4654 
4655 static void hns3_rx_dim_work(struct work_struct *work)
4656 {
4657 	struct dim *dim = container_of(work, struct dim, work);
4658 	struct hns3_enet_ring_group *group = container_of(dim,
4659 		struct hns3_enet_ring_group, dim);
4660 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4661 	struct dim_cq_moder cur_moder =
4662 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4663 
4664 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4665 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4666 
4667 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4668 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4669 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4670 	}
4671 
4672 	dim->state = DIM_START_MEASURE;
4673 }
4674 
4675 static void hns3_tx_dim_work(struct work_struct *work)
4676 {
4677 	struct dim *dim = container_of(work, struct dim, work);
4678 	struct hns3_enet_ring_group *group = container_of(dim,
4679 		struct hns3_enet_ring_group, dim);
4680 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4681 	struct dim_cq_moder cur_moder =
4682 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4683 
4684 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4685 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4686 
4687 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4688 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4689 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4690 	}
4691 
4692 	dim->state = DIM_START_MEASURE;
4693 }
4694 
4695 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4696 {
4697 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4698 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4699 }
4700 
4701 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4702 {
4703 	struct hnae3_handle *h = priv->ae_handle;
4704 	struct hns3_enet_tqp_vector *tqp_vector;
4705 	int ret;
4706 	int i;
4707 
4708 	hns3_nic_set_cpumask(priv);
4709 
4710 	for (i = 0; i < priv->vector_num; i++) {
4711 		tqp_vector = &priv->tqp_vector[i];
4712 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4713 		tqp_vector->num_tqps = 0;
4714 		hns3_nic_init_dim(tqp_vector);
4715 	}
4716 
4717 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4718 		u16 vector_i = i % priv->vector_num;
4719 		u16 tqp_num = h->kinfo.num_tqps;
4720 
4721 		tqp_vector = &priv->tqp_vector[vector_i];
4722 
4723 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4724 				       &priv->ring[i]);
4725 
4726 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4727 				       &priv->ring[i + tqp_num]);
4728 
4729 		priv->ring[i].tqp_vector = tqp_vector;
4730 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4731 		tqp_vector->num_tqps++;
4732 	}
4733 
4734 	for (i = 0; i < priv->vector_num; i++) {
4735 		struct hnae3_ring_chain_node *vector_ring_chain;
4736 
4737 		tqp_vector = &priv->tqp_vector[i];
4738 
4739 		tqp_vector->rx_group.total_bytes = 0;
4740 		tqp_vector->rx_group.total_packets = 0;
4741 		tqp_vector->tx_group.total_bytes = 0;
4742 		tqp_vector->tx_group.total_packets = 0;
4743 		tqp_vector->handle = h;
4744 
4745 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4746 		if (!vector_ring_chain) {
4747 			ret = -ENOMEM;
4748 			goto map_ring_fail;
4749 		}
4750 
4751 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4752 			tqp_vector->vector_irq, vector_ring_chain);
4753 
4754 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4755 
4756 		if (ret)
4757 			goto map_ring_fail;
4758 
4759 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4760 			       hns3_nic_common_poll);
4761 	}
4762 
4763 	return 0;
4764 
4765 map_ring_fail:
4766 	while (i--)
4767 		netif_napi_del(&priv->tqp_vector[i].napi);
4768 
4769 	return ret;
4770 }
4771 
4772 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4773 {
4774 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4775 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4776 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4777 
4778 	/* initialize the configuration for interrupt coalescing.
4779 	 * 1. GL (Interrupt Gap Limiter)
4780 	 * 2. RL (Interrupt Rate Limiter)
4781 	 * 3. QL (Interrupt Quantity Limiter)
4782 	 *
4783 	 * Default: enable interrupt coalescing self-adaptive and GL
4784 	 */
4785 	tx_coal->adapt_enable = 1;
4786 	rx_coal->adapt_enable = 1;
4787 
4788 	tx_coal->int_gl = HNS3_INT_GL_50K;
4789 	rx_coal->int_gl = HNS3_INT_GL_50K;
4790 
4791 	rx_coal->flow_level = HNS3_FLOW_LOW;
4792 	tx_coal->flow_level = HNS3_FLOW_LOW;
4793 
4794 	if (ae_dev->dev_specs.int_ql_max) {
4795 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4796 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4797 	}
4798 }
4799 
4800 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4801 {
4802 	struct hnae3_handle *h = priv->ae_handle;
4803 	struct hns3_enet_tqp_vector *tqp_vector;
4804 	struct hnae3_vector_info *vector;
4805 	struct pci_dev *pdev = h->pdev;
4806 	u16 tqp_num = h->kinfo.num_tqps;
4807 	u16 vector_num;
4808 	int ret = 0;
4809 	u16 i;
4810 
4811 	/* RSS size, cpu online and vector_num should be the same */
4812 	/* Should consider 2p/4p later */
4813 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4814 
4815 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4816 			      GFP_KERNEL);
4817 	if (!vector)
4818 		return -ENOMEM;
4819 
4820 	/* save the actual available vector number */
4821 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4822 
4823 	priv->vector_num = vector_num;
4824 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4825 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4826 			     GFP_KERNEL);
4827 	if (!priv->tqp_vector) {
4828 		ret = -ENOMEM;
4829 		goto out;
4830 	}
4831 
4832 	for (i = 0; i < priv->vector_num; i++) {
4833 		tqp_vector = &priv->tqp_vector[i];
4834 		tqp_vector->idx = i;
4835 		tqp_vector->mask_addr = vector[i].io_addr;
4836 		tqp_vector->vector_irq = vector[i].vector;
4837 		hns3_vector_coalesce_init(tqp_vector, priv);
4838 	}
4839 
4840 out:
4841 	devm_kfree(&pdev->dev, vector);
4842 	return ret;
4843 }
4844 
4845 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4846 {
4847 	group->ring = NULL;
4848 	group->count = 0;
4849 }
4850 
4851 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4852 {
4853 	struct hnae3_ring_chain_node *vector_ring_chain;
4854 	struct hnae3_handle *h = priv->ae_handle;
4855 	struct hns3_enet_tqp_vector *tqp_vector;
4856 	int i;
4857 
4858 	for (i = 0; i < priv->vector_num; i++) {
4859 		tqp_vector = &priv->tqp_vector[i];
4860 
4861 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4862 			continue;
4863 
4864 		/* Since the mapping can be overwritten, when fail to get the
4865 		 * chain between vector and ring, we should go on to deal with
4866 		 * the remaining options.
4867 		 */
4868 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4869 		if (!vector_ring_chain)
4870 			dev_warn(priv->dev, "failed to get ring chain\n");
4871 
4872 		h->ae_algo->ops->unmap_ring_from_vector(h,
4873 			tqp_vector->vector_irq, vector_ring_chain);
4874 
4875 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4876 
4877 		hns3_clear_ring_group(&tqp_vector->rx_group);
4878 		hns3_clear_ring_group(&tqp_vector->tx_group);
4879 		netif_napi_del(&priv->tqp_vector[i].napi);
4880 	}
4881 }
4882 
4883 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4884 {
4885 	struct hnae3_handle *h = priv->ae_handle;
4886 	struct pci_dev *pdev = h->pdev;
4887 	int i, ret;
4888 
4889 	for (i = 0; i < priv->vector_num; i++) {
4890 		struct hns3_enet_tqp_vector *tqp_vector;
4891 
4892 		tqp_vector = &priv->tqp_vector[i];
4893 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4894 		if (ret)
4895 			return;
4896 	}
4897 
4898 	devm_kfree(&pdev->dev, priv->tqp_vector);
4899 }
4900 
4901 static void hns3_update_tx_spare_buf_config(struct hns3_nic_priv *priv)
4902 {
4903 #define HNS3_MIN_SPARE_BUF_SIZE (2 * 1024 * 1024)
4904 #define HNS3_MAX_PACKET_SIZE (64 * 1024)
4905 
4906 	struct iommu_domain *domain = iommu_get_domain_for_dev(priv->dev);
4907 	struct hnae3_ae_dev *ae_dev = hns3_get_ae_dev(priv->ae_handle);
4908 	struct hnae3_handle *handle = priv->ae_handle;
4909 
4910 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3)
4911 		return;
4912 
4913 	if (!(domain && iommu_is_dma_domain(domain)))
4914 		return;
4915 
4916 	priv->min_tx_copybreak = HNS3_MAX_PACKET_SIZE;
4917 	priv->min_tx_spare_buf_size = HNS3_MIN_SPARE_BUF_SIZE;
4918 
4919 	if (priv->tx_copybreak < priv->min_tx_copybreak)
4920 		priv->tx_copybreak = priv->min_tx_copybreak;
4921 	if (handle->kinfo.tx_spare_buf_size < priv->min_tx_spare_buf_size)
4922 		handle->kinfo.tx_spare_buf_size = priv->min_tx_spare_buf_size;
4923 }
4924 
4925 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4926 			      unsigned int ring_type)
4927 {
4928 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4929 	struct hns3_enet_ring *ring;
4930 	int desc_num;
4931 
4932 	if (ring_type == HNAE3_RING_TYPE_TX) {
4933 		ring = &priv->ring[q->tqp_index];
4934 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4935 		ring->queue_index = q->tqp_index;
4936 		ring->tx_copybreak = priv->tx_copybreak;
4937 		ring->last_to_use = 0;
4938 	} else {
4939 		ring = &priv->ring[q->tqp_index + queue_num];
4940 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4941 		ring->queue_index = q->tqp_index;
4942 		ring->rx_copybreak = priv->rx_copybreak;
4943 	}
4944 
4945 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4946 
4947 	ring->tqp = q;
4948 	ring->desc = NULL;
4949 	ring->desc_cb = NULL;
4950 	ring->dev = priv->dev;
4951 	ring->desc_dma_addr = 0;
4952 	ring->buf_size = q->buf_size;
4953 	ring->desc_num = desc_num;
4954 	ring->next_to_use = 0;
4955 	ring->next_to_clean = 0;
4956 }
4957 
4958 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4959 			       struct hns3_nic_priv *priv)
4960 {
4961 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4962 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4963 }
4964 
4965 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4966 {
4967 	struct hnae3_handle *h = priv->ae_handle;
4968 	struct pci_dev *pdev = h->pdev;
4969 	int i;
4970 
4971 	priv->ring = devm_kzalloc(&pdev->dev,
4972 				  array3_size(h->kinfo.num_tqps,
4973 					      sizeof(*priv->ring), 2),
4974 				  GFP_KERNEL);
4975 	if (!priv->ring)
4976 		return -ENOMEM;
4977 
4978 	for (i = 0; i < h->kinfo.num_tqps; i++)
4979 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4980 
4981 	return 0;
4982 }
4983 
4984 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4985 {
4986 	if (!priv->ring)
4987 		return;
4988 
4989 	devm_kfree(priv->dev, priv->ring);
4990 	priv->ring = NULL;
4991 }
4992 
4993 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4994 {
4995 	struct page_pool_params pp_params = {
4996 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
4997 		.order = hns3_page_order(ring),
4998 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4999 				(PAGE_SIZE << hns3_page_order(ring)),
5000 		.nid = dev_to_node(ring_to_dev(ring)),
5001 		.dev = ring_to_dev(ring),
5002 		.dma_dir = DMA_FROM_DEVICE,
5003 		.offset = 0,
5004 		.max_len = PAGE_SIZE << hns3_page_order(ring),
5005 	};
5006 
5007 	ring->page_pool = page_pool_create(&pp_params);
5008 	if (IS_ERR(ring->page_pool)) {
5009 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
5010 			 PTR_ERR(ring->page_pool));
5011 		ring->page_pool = NULL;
5012 	}
5013 }
5014 
5015 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
5016 {
5017 	int ret;
5018 
5019 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
5020 		return -EINVAL;
5021 
5022 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
5023 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
5024 	if (!ring->desc_cb) {
5025 		ret = -ENOMEM;
5026 		goto out;
5027 	}
5028 
5029 	ret = hns3_alloc_desc(ring);
5030 	if (ret)
5031 		goto out_with_desc_cb;
5032 
5033 	if (!HNAE3_IS_TX_RING(ring)) {
5034 		if (page_pool_enabled)
5035 			hns3_alloc_page_pool(ring);
5036 
5037 		ret = hns3_alloc_ring_buffers(ring);
5038 		if (ret)
5039 			goto out_with_desc;
5040 	} else {
5041 		hns3_init_tx_spare_buffer(ring);
5042 	}
5043 
5044 	return 0;
5045 
5046 out_with_desc:
5047 	hns3_free_desc(ring);
5048 out_with_desc_cb:
5049 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
5050 	ring->desc_cb = NULL;
5051 out:
5052 	return ret;
5053 }
5054 
5055 void hns3_fini_ring(struct hns3_enet_ring *ring)
5056 {
5057 	hns3_free_desc(ring);
5058 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
5059 	ring->desc_cb = NULL;
5060 	ring->next_to_clean = 0;
5061 	ring->next_to_use = 0;
5062 	ring->last_to_use = 0;
5063 	ring->pending_buf = 0;
5064 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5065 		dev_kfree_skb_any(ring->skb);
5066 		ring->skb = NULL;
5067 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5068 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
5069 
5070 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5071 			       DMA_TO_DEVICE);
5072 		free_pages((unsigned long)tx_spare->buf,
5073 			   get_order(tx_spare->len));
5074 		devm_kfree(ring_to_dev(ring), tx_spare);
5075 		ring->tx_spare = NULL;
5076 	}
5077 
5078 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5079 		page_pool_destroy(ring->page_pool);
5080 		ring->page_pool = NULL;
5081 	}
5082 }
5083 
5084 static int hns3_buf_size2type(u32 buf_size)
5085 {
5086 	int bd_size_type;
5087 
5088 	switch (buf_size) {
5089 	case 512:
5090 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
5091 		break;
5092 	case 1024:
5093 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5094 		break;
5095 	case 2048:
5096 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5097 		break;
5098 	case 4096:
5099 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5100 		break;
5101 	default:
5102 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5103 	}
5104 
5105 	return bd_size_type;
5106 }
5107 
5108 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5109 {
5110 	dma_addr_t dma = ring->desc_dma_addr;
5111 	struct hnae3_queue *q = ring->tqp;
5112 
5113 	if (!HNAE3_IS_TX_RING(ring)) {
5114 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5115 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5116 			       (u32)((dma >> 31) >> 1));
5117 
5118 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5119 			       hns3_buf_size2type(ring->buf_size));
5120 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5121 			       ring->desc_num / 8 - 1);
5122 	} else {
5123 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5124 			       (u32)dma);
5125 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5126 			       (u32)((dma >> 31) >> 1));
5127 
5128 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5129 			       ring->desc_num / 8 - 1);
5130 	}
5131 }
5132 
5133 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5134 {
5135 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5136 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5137 	int i;
5138 
5139 	for (i = 0; i < tc_info->num_tc; i++) {
5140 		int j;
5141 
5142 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
5143 			struct hnae3_queue *q;
5144 
5145 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5146 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5147 		}
5148 	}
5149 }
5150 
5151 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5152 {
5153 	struct hnae3_handle *h = priv->ae_handle;
5154 	int ring_num = h->kinfo.num_tqps * 2;
5155 	int i, j;
5156 	int ret;
5157 
5158 	hns3_update_tx_spare_buf_config(priv);
5159 	for (i = 0; i < ring_num; i++) {
5160 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
5161 		if (ret) {
5162 			dev_err(priv->dev,
5163 				"Alloc ring memory fail! ret=%d\n", ret);
5164 			goto out_when_alloc_ring_memory;
5165 		}
5166 
5167 		u64_stats_init(&priv->ring[i].syncp);
5168 		cond_resched();
5169 	}
5170 
5171 	return 0;
5172 
5173 out_when_alloc_ring_memory:
5174 	for (j = i - 1; j >= 0; j--)
5175 		hns3_fini_ring(&priv->ring[j]);
5176 
5177 	return -ENOMEM;
5178 }
5179 
5180 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5181 {
5182 	struct hnae3_handle *h = priv->ae_handle;
5183 	int i;
5184 
5185 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5186 		hns3_fini_ring(&priv->ring[i]);
5187 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5188 	}
5189 }
5190 
5191 /* Set mac addr if it is configured. or leave it to the AE driver */
5192 static int hns3_init_mac_addr(struct net_device *netdev)
5193 {
5194 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5195 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5196 	struct hnae3_handle *h = priv->ae_handle;
5197 	u8 mac_addr_temp[ETH_ALEN] = {0};
5198 	int ret = 0;
5199 
5200 	if (h->ae_algo->ops->get_mac_addr)
5201 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5202 
5203 	/* Check if the MAC address is valid, if not get a random one */
5204 	if (!is_valid_ether_addr(mac_addr_temp)) {
5205 		eth_hw_addr_random(netdev);
5206 		hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5207 		dev_warn(priv->dev, "using random MAC address %s\n",
5208 			 format_mac_addr);
5209 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5210 		eth_hw_addr_set(netdev, mac_addr_temp);
5211 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5212 	} else {
5213 		return 0;
5214 	}
5215 
5216 	if (h->ae_algo->ops->set_mac_addr)
5217 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5218 
5219 	return ret;
5220 }
5221 
5222 static int hns3_init_phy(struct net_device *netdev)
5223 {
5224 	struct hnae3_handle *h = hns3_get_handle(netdev);
5225 	int ret = 0;
5226 
5227 	if (h->ae_algo->ops->mac_connect_phy)
5228 		ret = h->ae_algo->ops->mac_connect_phy(h);
5229 
5230 	return ret;
5231 }
5232 
5233 static void hns3_uninit_phy(struct net_device *netdev)
5234 {
5235 	struct hnae3_handle *h = hns3_get_handle(netdev);
5236 
5237 	if (h->ae_algo->ops->mac_disconnect_phy)
5238 		h->ae_algo->ops->mac_disconnect_phy(h);
5239 }
5240 
5241 static int hns3_client_start(struct hnae3_handle *handle)
5242 {
5243 	if (!handle->ae_algo->ops->client_start)
5244 		return 0;
5245 
5246 	return handle->ae_algo->ops->client_start(handle);
5247 }
5248 
5249 static void hns3_client_stop(struct hnae3_handle *handle)
5250 {
5251 	if (!handle->ae_algo->ops->client_stop)
5252 		return;
5253 
5254 	handle->ae_algo->ops->client_stop(handle);
5255 }
5256 
5257 static void hns3_info_show(struct hns3_nic_priv *priv)
5258 {
5259 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5260 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5261 
5262 	hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5263 	dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5264 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5265 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5266 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5267 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5268 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5269 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5270 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5271 		 kinfo->tc_info.num_tc);
5272 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5273 }
5274 
5275 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5276 				    enum dim_cq_period_mode mode, bool is_tx)
5277 {
5278 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5279 	struct hnae3_handle *handle = priv->ae_handle;
5280 	int i;
5281 
5282 	if (is_tx) {
5283 		priv->tx_cqe_mode = mode;
5284 
5285 		for (i = 0; i < priv->vector_num; i++)
5286 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5287 	} else {
5288 		priv->rx_cqe_mode = mode;
5289 
5290 		for (i = 0; i < priv->vector_num; i++)
5291 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5292 	}
5293 
5294 	if (hnae3_ae_dev_cq_supported(ae_dev)) {
5295 		u32 new_mode;
5296 		u64 reg;
5297 
5298 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5299 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5300 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5301 
5302 		writel(new_mode, handle->kinfo.io_base + reg);
5303 	}
5304 }
5305 
5306 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5307 			      enum dim_cq_period_mode tx_mode,
5308 			      enum dim_cq_period_mode rx_mode)
5309 {
5310 	hns3_set_cq_period_mode(priv, tx_mode, true);
5311 	hns3_set_cq_period_mode(priv, rx_mode, false);
5312 }
5313 
5314 static void hns3_state_init(struct hnae3_handle *handle)
5315 {
5316 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5317 	struct net_device *netdev = handle->kinfo.netdev;
5318 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5319 
5320 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5321 
5322 	if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5323 		set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5324 
5325 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5326 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5327 
5328 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5329 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5330 
5331 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5332 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5333 }
5334 
5335 static void hns3_state_uninit(struct hnae3_handle *handle)
5336 {
5337 	struct hns3_nic_priv *priv  = handle->priv;
5338 
5339 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5340 }
5341 
5342 static int hns3_client_init(struct hnae3_handle *handle)
5343 {
5344 	struct pci_dev *pdev = handle->pdev;
5345 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5346 	u16 alloc_tqps, max_rss_size;
5347 	struct hns3_nic_priv *priv;
5348 	struct net_device *netdev;
5349 	int ret;
5350 
5351 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5352 						    &max_rss_size);
5353 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5354 	if (!netdev)
5355 		return -ENOMEM;
5356 
5357 	priv = netdev_priv(netdev);
5358 	priv->dev = &pdev->dev;
5359 	priv->netdev = netdev;
5360 	priv->ae_handle = handle;
5361 	priv->tx_timeout_count = 0;
5362 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5363 	priv->min_tx_copybreak = 0;
5364 	priv->min_tx_spare_buf_size = 0;
5365 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5366 
5367 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5368 
5369 	handle->kinfo.netdev = netdev;
5370 	handle->priv = (void *)priv;
5371 
5372 	hns3_init_mac_addr(netdev);
5373 
5374 	hns3_set_default_feature(netdev);
5375 
5376 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5377 	netdev->priv_flags |= IFF_UNICAST_FLT;
5378 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5379 	SET_NETDEV_DEV(netdev, &pdev->dev);
5380 	hns3_ethtool_set_ops(netdev);
5381 
5382 	/* Carrier off reporting is important to ethtool even BEFORE open */
5383 	netif_carrier_off(netdev);
5384 
5385 	ret = hns3_get_ring_config(priv);
5386 	if (ret) {
5387 		ret = -ENOMEM;
5388 		goto out_get_ring_cfg;
5389 	}
5390 
5391 	hns3_nic_init_coal_cfg(priv);
5392 
5393 	ret = hns3_nic_alloc_vector_data(priv);
5394 	if (ret) {
5395 		ret = -ENOMEM;
5396 		goto out_alloc_vector_data;
5397 	}
5398 
5399 	ret = hns3_nic_init_vector_data(priv);
5400 	if (ret) {
5401 		ret = -ENOMEM;
5402 		goto out_init_vector_data;
5403 	}
5404 
5405 	ret = hns3_init_all_ring(priv);
5406 	if (ret) {
5407 		ret = -ENOMEM;
5408 		goto out_init_ring;
5409 	}
5410 
5411 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5412 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5413 
5414 	ret = hns3_init_phy(netdev);
5415 	if (ret)
5416 		goto out_init_phy;
5417 
5418 	/* the device can work without cpu rmap, only aRFS needs it */
5419 	ret = hns3_set_rx_cpu_rmap(netdev);
5420 	if (ret)
5421 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5422 
5423 	ret = hns3_nic_init_irq(priv);
5424 	if (ret) {
5425 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5426 		hns3_free_rx_cpu_rmap(netdev);
5427 		goto out_init_irq_fail;
5428 	}
5429 
5430 	ret = hns3_client_start(handle);
5431 	if (ret) {
5432 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5433 		goto out_client_start;
5434 	}
5435 
5436 	hns3_dcbnl_setup(handle);
5437 
5438 	ret = hns3_dbg_init(handle);
5439 	if (ret) {
5440 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5441 			ret);
5442 		goto out_client_start;
5443 	}
5444 
5445 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5446 
5447 	hns3_state_init(handle);
5448 
5449 	ret = register_netdev(netdev);
5450 	if (ret) {
5451 		dev_err(priv->dev, "probe register netdev fail!\n");
5452 		goto out_reg_netdev_fail;
5453 	}
5454 
5455 	if (netif_msg_drv(handle))
5456 		hns3_info_show(priv);
5457 
5458 	return ret;
5459 
5460 out_reg_netdev_fail:
5461 	hns3_state_uninit(handle);
5462 	hns3_dbg_uninit(handle);
5463 	hns3_client_stop(handle);
5464 out_client_start:
5465 	hns3_free_rx_cpu_rmap(netdev);
5466 	hns3_nic_uninit_irq(priv);
5467 out_init_irq_fail:
5468 	hns3_uninit_phy(netdev);
5469 out_init_phy:
5470 	hns3_uninit_all_ring(priv);
5471 out_init_ring:
5472 	hns3_nic_uninit_vector_data(priv);
5473 out_init_vector_data:
5474 	hns3_nic_dealloc_vector_data(priv);
5475 out_alloc_vector_data:
5476 	priv->ring = NULL;
5477 out_get_ring_cfg:
5478 	priv->ae_handle = NULL;
5479 	free_netdev(netdev);
5480 	return ret;
5481 }
5482 
5483 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5484 {
5485 	struct net_device *netdev = handle->kinfo.netdev;
5486 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5487 
5488 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5489 		unregister_netdev(netdev);
5490 
5491 	hns3_client_stop(handle);
5492 
5493 	hns3_uninit_phy(netdev);
5494 
5495 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5496 		netdev_warn(netdev, "already uninitialized\n");
5497 		goto out_netdev_free;
5498 	}
5499 
5500 	hns3_free_rx_cpu_rmap(netdev);
5501 
5502 	hns3_nic_uninit_irq(priv);
5503 
5504 	hns3_clear_all_ring(handle, true);
5505 
5506 	hns3_nic_uninit_vector_data(priv);
5507 
5508 	hns3_nic_dealloc_vector_data(priv);
5509 
5510 	hns3_uninit_all_ring(priv);
5511 
5512 	hns3_put_ring_config(priv);
5513 
5514 out_netdev_free:
5515 	hns3_dbg_uninit(handle);
5516 	free_netdev(netdev);
5517 }
5518 
5519 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5520 {
5521 	struct net_device *netdev = handle->kinfo.netdev;
5522 
5523 	if (!netdev)
5524 		return;
5525 
5526 	if (linkup) {
5527 		netif_tx_wake_all_queues(netdev);
5528 		netif_carrier_on(netdev);
5529 		if (netif_msg_link(handle))
5530 			netdev_info(netdev, "link up\n");
5531 	} else {
5532 		netif_carrier_off(netdev);
5533 		netif_tx_stop_all_queues(netdev);
5534 		if (netif_msg_link(handle))
5535 			netdev_info(netdev, "link down\n");
5536 	}
5537 }
5538 
5539 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5540 {
5541 	while (ring->next_to_clean != ring->next_to_use) {
5542 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5543 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5544 		ring_ptr_move_fw(ring, next_to_clean);
5545 	}
5546 
5547 	ring->pending_buf = 0;
5548 }
5549 
5550 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5551 {
5552 	struct hns3_desc_cb res_cbs;
5553 	int ret;
5554 
5555 	while (ring->next_to_use != ring->next_to_clean) {
5556 		/* When a buffer is not reused, it's memory has been
5557 		 * freed in hns3_handle_rx_bd or will be freed by
5558 		 * stack, so we need to replace the buffer here.
5559 		 */
5560 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5561 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5562 			if (ret) {
5563 				hns3_ring_stats_update(ring, sw_err_cnt);
5564 				/* if alloc new buffer fail, exit directly
5565 				 * and reclear in up flow.
5566 				 */
5567 				netdev_warn(ring_to_netdev(ring),
5568 					    "reserve buffer map failed, ret = %d\n",
5569 					    ret);
5570 				return ret;
5571 			}
5572 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5573 		}
5574 		ring_ptr_move_fw(ring, next_to_use);
5575 	}
5576 
5577 	/* Free the pending skb in rx ring */
5578 	if (ring->skb) {
5579 		dev_kfree_skb_any(ring->skb);
5580 		ring->skb = NULL;
5581 		ring->pending_buf = 0;
5582 	}
5583 
5584 	return 0;
5585 }
5586 
5587 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5588 {
5589 	while (ring->next_to_use != ring->next_to_clean) {
5590 		/* When a buffer is not reused, it's memory has been
5591 		 * freed in hns3_handle_rx_bd or will be freed by
5592 		 * stack, so only need to unmap the buffer here.
5593 		 */
5594 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5595 			hns3_unmap_buffer(ring,
5596 					  &ring->desc_cb[ring->next_to_use]);
5597 			ring->desc_cb[ring->next_to_use].dma = 0;
5598 		}
5599 
5600 		ring_ptr_move_fw(ring, next_to_use);
5601 	}
5602 }
5603 
5604 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5605 {
5606 	struct net_device *ndev = h->kinfo.netdev;
5607 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5608 	u32 i;
5609 
5610 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5611 		struct hns3_enet_ring *ring;
5612 
5613 		ring = &priv->ring[i];
5614 		hns3_clear_tx_ring(ring);
5615 
5616 		ring = &priv->ring[i + h->kinfo.num_tqps];
5617 		/* Continue to clear other rings even if clearing some
5618 		 * rings failed.
5619 		 */
5620 		if (force)
5621 			hns3_force_clear_rx_ring(ring);
5622 		else
5623 			hns3_clear_rx_ring(ring);
5624 	}
5625 }
5626 
5627 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5628 {
5629 	struct net_device *ndev = h->kinfo.netdev;
5630 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5631 	struct hns3_enet_ring *rx_ring;
5632 	int i, j;
5633 	int ret;
5634 
5635 	ret = h->ae_algo->ops->reset_queue(h);
5636 	if (ret)
5637 		return ret;
5638 
5639 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5640 		hns3_init_ring_hw(&priv->ring[i]);
5641 
5642 		/* We need to clear tx ring here because self test will
5643 		 * use the ring and will not run down before up
5644 		 */
5645 		hns3_clear_tx_ring(&priv->ring[i]);
5646 		priv->ring[i].next_to_clean = 0;
5647 		priv->ring[i].next_to_use = 0;
5648 		priv->ring[i].last_to_use = 0;
5649 
5650 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5651 		hns3_init_ring_hw(rx_ring);
5652 		ret = hns3_clear_rx_ring(rx_ring);
5653 		if (ret)
5654 			return ret;
5655 
5656 		/* We can not know the hardware head and tail when this
5657 		 * function is called in reset flow, so we reuse all desc.
5658 		 */
5659 		for (j = 0; j < rx_ring->desc_num; j++)
5660 			hns3_reuse_buffer(rx_ring, j);
5661 
5662 		rx_ring->next_to_clean = 0;
5663 		rx_ring->next_to_use = 0;
5664 	}
5665 
5666 	hns3_init_tx_ring_tc(priv);
5667 
5668 	return 0;
5669 }
5670 
5671 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5672 {
5673 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5674 	struct net_device *ndev = kinfo->netdev;
5675 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5676 
5677 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5678 		return 0;
5679 
5680 	if (!netif_running(ndev))
5681 		return 0;
5682 
5683 	return hns3_nic_net_stop(ndev);
5684 }
5685 
5686 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5687 {
5688 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5689 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5690 	int ret = 0;
5691 
5692 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5693 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5694 		return -EFAULT;
5695 	}
5696 
5697 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5698 
5699 	if (netif_running(kinfo->netdev)) {
5700 		ret = hns3_nic_net_open(kinfo->netdev);
5701 		if (ret) {
5702 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5703 			netdev_err(kinfo->netdev,
5704 				   "net up fail, ret=%d!\n", ret);
5705 			return ret;
5706 		}
5707 	}
5708 
5709 	return ret;
5710 }
5711 
5712 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5713 {
5714 	struct net_device *netdev = handle->kinfo.netdev;
5715 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5716 	int ret;
5717 
5718 	/* Carrier off reporting is important to ethtool even BEFORE open */
5719 	netif_carrier_off(netdev);
5720 
5721 	ret = hns3_get_ring_config(priv);
5722 	if (ret)
5723 		return ret;
5724 
5725 	ret = hns3_nic_alloc_vector_data(priv);
5726 	if (ret)
5727 		goto err_put_ring;
5728 
5729 	ret = hns3_nic_init_vector_data(priv);
5730 	if (ret)
5731 		goto err_dealloc_vector;
5732 
5733 	ret = hns3_init_all_ring(priv);
5734 	if (ret)
5735 		goto err_uninit_vector;
5736 
5737 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5738 
5739 	/* the device can work without cpu rmap, only aRFS needs it */
5740 	ret = hns3_set_rx_cpu_rmap(netdev);
5741 	if (ret)
5742 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5743 
5744 	ret = hns3_nic_init_irq(priv);
5745 	if (ret) {
5746 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5747 		hns3_free_rx_cpu_rmap(netdev);
5748 		goto err_init_irq_fail;
5749 	}
5750 
5751 	if (!hns3_is_phys_func(handle->pdev))
5752 		hns3_init_mac_addr(netdev);
5753 
5754 	ret = hns3_client_start(handle);
5755 	if (ret) {
5756 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5757 		goto err_client_start_fail;
5758 	}
5759 
5760 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5761 
5762 	return ret;
5763 
5764 err_client_start_fail:
5765 	hns3_free_rx_cpu_rmap(netdev);
5766 	hns3_nic_uninit_irq(priv);
5767 err_init_irq_fail:
5768 	hns3_uninit_all_ring(priv);
5769 err_uninit_vector:
5770 	hns3_nic_uninit_vector_data(priv);
5771 err_dealloc_vector:
5772 	hns3_nic_dealloc_vector_data(priv);
5773 err_put_ring:
5774 	hns3_put_ring_config(priv);
5775 
5776 	return ret;
5777 }
5778 
5779 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5780 {
5781 	struct net_device *netdev = handle->kinfo.netdev;
5782 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5783 
5784 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5785 		hns3_nic_net_stop(netdev);
5786 
5787 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5788 		netdev_warn(netdev, "already uninitialized\n");
5789 		return 0;
5790 	}
5791 
5792 	hns3_free_rx_cpu_rmap(netdev);
5793 	hns3_nic_uninit_irq(priv);
5794 	hns3_clear_all_ring(handle, true);
5795 	hns3_reset_tx_queue(priv->ae_handle);
5796 
5797 	hns3_nic_uninit_vector_data(priv);
5798 
5799 	hns3_nic_dealloc_vector_data(priv);
5800 
5801 	hns3_uninit_all_ring(priv);
5802 
5803 	hns3_put_ring_config(priv);
5804 
5805 	return 0;
5806 }
5807 
5808 int hns3_reset_notify(struct hnae3_handle *handle,
5809 		      enum hnae3_reset_notify_type type)
5810 {
5811 	int ret = 0;
5812 
5813 	switch (type) {
5814 	case HNAE3_UP_CLIENT:
5815 		ret = hns3_reset_notify_up_enet(handle);
5816 		break;
5817 	case HNAE3_DOWN_CLIENT:
5818 		ret = hns3_reset_notify_down_enet(handle);
5819 		break;
5820 	case HNAE3_INIT_CLIENT:
5821 		ret = hns3_reset_notify_init_enet(handle);
5822 		break;
5823 	case HNAE3_UNINIT_CLIENT:
5824 		ret = hns3_reset_notify_uninit_enet(handle);
5825 		break;
5826 	default:
5827 		break;
5828 	}
5829 
5830 	return ret;
5831 }
5832 
5833 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5834 				bool rxfh_configured)
5835 {
5836 	int ret;
5837 
5838 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5839 						 rxfh_configured);
5840 	if (ret) {
5841 		dev_err(&handle->pdev->dev,
5842 			"Change tqp num(%u) fail.\n", new_tqp_num);
5843 		return ret;
5844 	}
5845 
5846 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5847 	if (ret)
5848 		return ret;
5849 
5850 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5851 	if (ret)
5852 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5853 
5854 	return ret;
5855 }
5856 
5857 int hns3_set_channels(struct net_device *netdev,
5858 		      struct ethtool_channels *ch)
5859 {
5860 	struct hnae3_handle *h = hns3_get_handle(netdev);
5861 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5862 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5863 	u32 new_tqp_num = ch->combined_count;
5864 	u16 org_tqp_num;
5865 	int ret;
5866 
5867 	if (hns3_nic_resetting(netdev))
5868 		return -EBUSY;
5869 
5870 	if (ch->rx_count || ch->tx_count)
5871 		return -EINVAL;
5872 
5873 	if (kinfo->tc_info.mqprio_active) {
5874 		dev_err(&netdev->dev,
5875 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5876 		return -EINVAL;
5877 	}
5878 
5879 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5880 	    new_tqp_num < 1) {
5881 		dev_err(&netdev->dev,
5882 			"Change tqps fail, the tqp range is from 1 to %u",
5883 			hns3_get_max_available_channels(h));
5884 		return -EINVAL;
5885 	}
5886 
5887 	if (kinfo->rss_size == new_tqp_num)
5888 		return 0;
5889 
5890 	netif_dbg(h, drv, netdev,
5891 		  "set channels: tqp_num=%u, rxfh=%d\n",
5892 		  new_tqp_num, rxfh_configured);
5893 
5894 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5895 	if (ret)
5896 		return ret;
5897 
5898 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5899 	if (ret)
5900 		return ret;
5901 
5902 	org_tqp_num = h->kinfo.num_tqps;
5903 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5904 	if (ret) {
5905 		int ret1;
5906 
5907 		netdev_warn(netdev,
5908 			    "Change channels fail, revert to old value\n");
5909 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5910 		if (ret1) {
5911 			netdev_err(netdev,
5912 				   "revert to old channel fail\n");
5913 			return ret1;
5914 		}
5915 
5916 		return ret;
5917 	}
5918 
5919 	return 0;
5920 }
5921 
5922 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5923 {
5924 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5925 	struct hnae3_handle *h = priv->ae_handle;
5926 	int i;
5927 
5928 	if (!if_running)
5929 		return;
5930 
5931 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5932 		return;
5933 
5934 	netif_carrier_off(ndev);
5935 	netif_tx_disable(ndev);
5936 
5937 	for (i = 0; i < priv->vector_num; i++)
5938 		hns3_vector_disable(&priv->tqp_vector[i]);
5939 
5940 	for (i = 0; i < h->kinfo.num_tqps; i++)
5941 		hns3_tqp_disable(h->kinfo.tqp[i]);
5942 
5943 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5944 	 * during reset process, because driver may not be able
5945 	 * to disable the ring through firmware when downing the netdev.
5946 	 */
5947 	if (!hns3_nic_resetting(ndev))
5948 		hns3_nic_reset_all_ring(priv->ae_handle);
5949 
5950 	hns3_reset_tx_queue(priv->ae_handle);
5951 }
5952 
5953 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5954 {
5955 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5956 	struct hnae3_handle *h = priv->ae_handle;
5957 	int i;
5958 
5959 	if (!if_running)
5960 		return;
5961 
5962 	if (hns3_nic_resetting(ndev))
5963 		return;
5964 
5965 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5966 		return;
5967 
5968 	if (hns3_nic_reset_all_ring(priv->ae_handle))
5969 		return;
5970 
5971 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5972 
5973 	for (i = 0; i < priv->vector_num; i++)
5974 		hns3_vector_enable(&priv->tqp_vector[i]);
5975 
5976 	for (i = 0; i < h->kinfo.num_tqps; i++)
5977 		hns3_tqp_enable(h->kinfo.tqp[i]);
5978 
5979 	netif_tx_wake_all_queues(ndev);
5980 
5981 	if (h->ae_algo->ops->get_status(h))
5982 		netif_carrier_on(ndev);
5983 }
5984 
5985 static const struct hns3_hw_error_info hns3_hw_err[] = {
5986 	{ .type = HNAE3_PPU_POISON_ERROR,
5987 	  .msg = "PPU poison" },
5988 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5989 	  .msg = "IMP CMDQ error" },
5990 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5991 	  .msg = "IMP RD poison" },
5992 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5993 	  .msg = "ROCEE AXI RESP error" },
5994 };
5995 
5996 static void hns3_process_hw_error(struct hnae3_handle *handle,
5997 				  enum hnae3_hw_error_type type)
5998 {
5999 	int i;
6000 
6001 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
6002 		if (hns3_hw_err[i].type == type) {
6003 			dev_err(&handle->pdev->dev, "Detected %s!\n",
6004 				hns3_hw_err[i].msg);
6005 			break;
6006 		}
6007 	}
6008 }
6009 
6010 static const struct hnae3_client_ops client_ops = {
6011 	.init_instance = hns3_client_init,
6012 	.uninit_instance = hns3_client_uninit,
6013 	.link_status_change = hns3_link_status_change,
6014 	.reset_notify = hns3_reset_notify,
6015 	.process_hw_error = hns3_process_hw_error,
6016 };
6017 
6018 /* hns3_init_module - Driver registration routine
6019  * hns3_init_module is the first routine called when the driver is
6020  * loaded. All it does is register with the PCI subsystem.
6021  */
6022 static int __init hns3_init_module(void)
6023 {
6024 	int ret;
6025 
6026 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
6027 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
6028 
6029 	client.type = HNAE3_CLIENT_KNIC;
6030 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
6031 		 hns3_driver_name);
6032 
6033 	client.ops = &client_ops;
6034 
6035 	INIT_LIST_HEAD(&client.node);
6036 
6037 	hns3_dbg_register_debugfs(hns3_driver_name);
6038 
6039 	ret = hnae3_register_client(&client);
6040 	if (ret)
6041 		goto err_reg_client;
6042 
6043 	ret = pci_register_driver(&hns3_driver);
6044 	if (ret)
6045 		goto err_reg_driver;
6046 
6047 	return ret;
6048 
6049 err_reg_driver:
6050 	hnae3_unregister_client(&client);
6051 err_reg_client:
6052 	hns3_dbg_unregister_debugfs();
6053 	return ret;
6054 }
6055 module_init(hns3_init_module);
6056 
6057 /* hns3_exit_module - Driver exit cleanup routine
6058  * hns3_exit_module is called just before the driver is removed
6059  * from memory.
6060  */
6061 static void __exit hns3_exit_module(void)
6062 {
6063 	pci_unregister_driver(&hns3_driver);
6064 	hnae3_unregister_client(&client);
6065 	hns3_dbg_unregister_debugfs();
6066 }
6067 module_exit(hns3_exit_module);
6068 
6069 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6070 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6071 MODULE_LICENSE("GPL");
6072 MODULE_ALIAS("pci:hns-nic");
6073