xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision c0ead5552c0fcc15d907651f6d6a8084d32689b3)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vector = vector;
97 
98 	napi_schedule_irqoff(&tqp_vector->napi);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105 	struct hns3_enet_tqp_vector *tqp_vectors;
106 	unsigned int i;
107 
108 	for (i = 0; i < priv->vector_num; i++) {
109 		tqp_vectors = &priv->tqp_vector[i];
110 
111 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112 			continue;
113 
114 		/* clear the affinity mask */
115 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116 
117 		/* release the irq resource */
118 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
119 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120 	}
121 }
122 
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125 	struct hns3_enet_tqp_vector *tqp_vectors;
126 	int txrx_int_idx = 0;
127 	int rx_int_idx = 0;
128 	int tx_int_idx = 0;
129 	unsigned int i;
130 	int ret;
131 
132 	for (i = 0; i < priv->vector_num; i++) {
133 		tqp_vectors = &priv->tqp_vector[i];
134 
135 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136 			continue;
137 
138 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140 				 "%s-%s-%s-%d", hns3_driver_name,
141 				 pci_name(priv->ae_handle->pdev),
142 				 "TxRx", txrx_int_idx++);
143 			txrx_int_idx++;
144 		} else if (tqp_vectors->rx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146 				 "%s-%s-%s-%d", hns3_driver_name,
147 				 pci_name(priv->ae_handle->pdev),
148 				 "Rx", rx_int_idx++);
149 		} else if (tqp_vectors->tx_group.ring) {
150 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151 				 "%s-%s-%s-%d", hns3_driver_name,
152 				 pci_name(priv->ae_handle->pdev),
153 				 "Tx", tx_int_idx++);
154 		} else {
155 			/* Skip this unused q_vector */
156 			continue;
157 		}
158 
159 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160 
161 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163 				  tqp_vectors->name, tqp_vectors);
164 		if (ret) {
165 			netdev_err(priv->netdev, "request irq(%d) fail\n",
166 				   tqp_vectors->vector_irq);
167 			hns3_nic_uninit_irq(priv);
168 			return ret;
169 		}
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 
214 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
215 	    !tqp_vector->rx_group.coal.adapt_enable)
216 		/* According to the hardware, the range of rl_reg is
217 		 * 0-59 and the unit is 4.
218 		 */
219 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220 
221 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223 
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225 				    u32 gl_value)
226 {
227 	u32 new_val;
228 
229 	if (tqp_vector->rx_group.coal.unit_1us)
230 		new_val = gl_value | HNS3_INT_GL_1US;
231 	else
232 		new_val = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 }
236 
237 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
238 				    u32 gl_value)
239 {
240 	u32 new_val;
241 
242 	if (tqp_vector->tx_group.coal.unit_1us)
243 		new_val = gl_value | HNS3_INT_GL_1US;
244 	else
245 		new_val = hns3_gl_usec_to_reg(gl_value);
246 
247 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 }
249 
250 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
251 				    u32 ql_value)
252 {
253 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
254 }
255 
256 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
257 				    u32 ql_value)
258 {
259 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
260 }
261 
262 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
263 				      struct hns3_nic_priv *priv)
264 {
265 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
266 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
267 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
268 
269 	/* initialize the configuration for interrupt coalescing.
270 	 * 1. GL (Interrupt Gap Limiter)
271 	 * 2. RL (Interrupt Rate Limiter)
272 	 * 3. QL (Interrupt Quantity Limiter)
273 	 *
274 	 * Default: enable interrupt coalescing self-adaptive and GL
275 	 */
276 	tx_coal->adapt_enable = 1;
277 	rx_coal->adapt_enable = 1;
278 
279 	tx_coal->int_gl = HNS3_INT_GL_50K;
280 	rx_coal->int_gl = HNS3_INT_GL_50K;
281 
282 	rx_coal->flow_level = HNS3_FLOW_LOW;
283 	tx_coal->flow_level = HNS3_FLOW_LOW;
284 
285 	/* device version above V3(include V3), GL can configure 1us
286 	 * unit, so uses 1us unit.
287 	 */
288 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
289 		tx_coal->unit_1us = 1;
290 		rx_coal->unit_1us = 1;
291 	}
292 
293 	if (ae_dev->dev_specs.int_ql_max) {
294 		tx_coal->ql_enable = 1;
295 		rx_coal->ql_enable = 1;
296 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
298 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
300 	}
301 }
302 
303 static void
304 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
305 			     struct hns3_nic_priv *priv)
306 {
307 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
308 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309 	struct hnae3_handle *h = priv->ae_handle;
310 
311 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
312 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314 
315 	if (tx_coal->ql_enable)
316 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
317 
318 	if (rx_coal->ql_enable)
319 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 }
321 
322 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
323 {
324 	struct hnae3_handle *h = hns3_get_handle(netdev);
325 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
326 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
327 	int i, ret;
328 
329 	if (kinfo->num_tc <= 1) {
330 		netdev_reset_tc(netdev);
331 	} else {
332 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
333 		if (ret) {
334 			netdev_err(netdev,
335 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
336 			return ret;
337 		}
338 
339 		for (i = 0; i < HNAE3_MAX_TC; i++) {
340 			if (!kinfo->tc_info[i].enable)
341 				continue;
342 
343 			netdev_set_tc_queue(netdev,
344 					    kinfo->tc_info[i].tc,
345 					    kinfo->tc_info[i].tqp_count,
346 					    kinfo->tc_info[i].tqp_offset);
347 		}
348 	}
349 
350 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
351 	if (ret) {
352 		netdev_err(netdev,
353 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
354 		return ret;
355 	}
356 
357 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
358 	if (ret) {
359 		netdev_err(netdev,
360 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
361 		return ret;
362 	}
363 
364 	return 0;
365 }
366 
367 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
368 {
369 	u16 alloc_tqps, max_rss_size, rss_size;
370 
371 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
372 	rss_size = alloc_tqps / h->kinfo.num_tc;
373 
374 	return min_t(u16, rss_size, max_rss_size);
375 }
376 
377 static void hns3_tqp_enable(struct hnae3_queue *tqp)
378 {
379 	u32 rcb_reg;
380 
381 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
382 	rcb_reg |= BIT(HNS3_RING_EN_B);
383 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
384 }
385 
386 static void hns3_tqp_disable(struct hnae3_queue *tqp)
387 {
388 	u32 rcb_reg;
389 
390 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
391 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
392 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
393 }
394 
395 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
396 {
397 #ifdef CONFIG_RFS_ACCEL
398 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
399 	netdev->rx_cpu_rmap = NULL;
400 #endif
401 }
402 
403 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
404 {
405 #ifdef CONFIG_RFS_ACCEL
406 	struct hns3_nic_priv *priv = netdev_priv(netdev);
407 	struct hns3_enet_tqp_vector *tqp_vector;
408 	int i, ret;
409 
410 	if (!netdev->rx_cpu_rmap) {
411 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
412 		if (!netdev->rx_cpu_rmap)
413 			return -ENOMEM;
414 	}
415 
416 	for (i = 0; i < priv->vector_num; i++) {
417 		tqp_vector = &priv->tqp_vector[i];
418 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
419 				       tqp_vector->vector_irq);
420 		if (ret) {
421 			hns3_free_rx_cpu_rmap(netdev);
422 			return ret;
423 		}
424 	}
425 #endif
426 	return 0;
427 }
428 
429 static int hns3_nic_net_up(struct net_device *netdev)
430 {
431 	struct hns3_nic_priv *priv = netdev_priv(netdev);
432 	struct hnae3_handle *h = priv->ae_handle;
433 	int i, j;
434 	int ret;
435 
436 	ret = hns3_nic_reset_all_ring(h);
437 	if (ret)
438 		return ret;
439 
440 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
441 
442 	/* enable the vectors */
443 	for (i = 0; i < priv->vector_num; i++)
444 		hns3_vector_enable(&priv->tqp_vector[i]);
445 
446 	/* enable rcb */
447 	for (j = 0; j < h->kinfo.num_tqps; j++)
448 		hns3_tqp_enable(h->kinfo.tqp[j]);
449 
450 	/* start the ae_dev */
451 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
452 	if (ret) {
453 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
454 		while (j--)
455 			hns3_tqp_disable(h->kinfo.tqp[j]);
456 
457 		for (j = i - 1; j >= 0; j--)
458 			hns3_vector_disable(&priv->tqp_vector[j]);
459 	}
460 
461 	return ret;
462 }
463 
464 static void hns3_config_xps(struct hns3_nic_priv *priv)
465 {
466 	int i;
467 
468 	for (i = 0; i < priv->vector_num; i++) {
469 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
470 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
471 
472 		while (ring) {
473 			int ret;
474 
475 			ret = netif_set_xps_queue(priv->netdev,
476 						  &tqp_vector->affinity_mask,
477 						  ring->tqp->tqp_index);
478 			if (ret)
479 				netdev_warn(priv->netdev,
480 					    "set xps queue failed: %d", ret);
481 
482 			ring = ring->next;
483 		}
484 	}
485 }
486 
487 static int hns3_nic_net_open(struct net_device *netdev)
488 {
489 	struct hns3_nic_priv *priv = netdev_priv(netdev);
490 	struct hnae3_handle *h = hns3_get_handle(netdev);
491 	struct hnae3_knic_private_info *kinfo;
492 	int i, ret;
493 
494 	if (hns3_nic_resetting(netdev))
495 		return -EBUSY;
496 
497 	netif_carrier_off(netdev);
498 
499 	ret = hns3_nic_set_real_num_queue(netdev);
500 	if (ret)
501 		return ret;
502 
503 	ret = hns3_nic_net_up(netdev);
504 	if (ret) {
505 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
506 		return ret;
507 	}
508 
509 	kinfo = &h->kinfo;
510 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
511 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
512 
513 	if (h->ae_algo->ops->set_timer_task)
514 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
515 
516 	hns3_config_xps(priv);
517 
518 	netif_dbg(h, drv, netdev, "net open\n");
519 
520 	return 0;
521 }
522 
523 static void hns3_reset_tx_queue(struct hnae3_handle *h)
524 {
525 	struct net_device *ndev = h->kinfo.netdev;
526 	struct hns3_nic_priv *priv = netdev_priv(ndev);
527 	struct netdev_queue *dev_queue;
528 	u32 i;
529 
530 	for (i = 0; i < h->kinfo.num_tqps; i++) {
531 		dev_queue = netdev_get_tx_queue(ndev,
532 						priv->ring[i].queue_index);
533 		netdev_tx_reset_queue(dev_queue);
534 	}
535 }
536 
537 static void hns3_nic_net_down(struct net_device *netdev)
538 {
539 	struct hns3_nic_priv *priv = netdev_priv(netdev);
540 	struct hnae3_handle *h = hns3_get_handle(netdev);
541 	const struct hnae3_ae_ops *ops;
542 	int i;
543 
544 	/* disable vectors */
545 	for (i = 0; i < priv->vector_num; i++)
546 		hns3_vector_disable(&priv->tqp_vector[i]);
547 
548 	/* disable rcb */
549 	for (i = 0; i < h->kinfo.num_tqps; i++)
550 		hns3_tqp_disable(h->kinfo.tqp[i]);
551 
552 	/* stop ae_dev */
553 	ops = priv->ae_handle->ae_algo->ops;
554 	if (ops->stop)
555 		ops->stop(priv->ae_handle);
556 
557 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
558 	 * during reset process, because driver may not be able
559 	 * to disable the ring through firmware when downing the netdev.
560 	 */
561 	if (!hns3_nic_resetting(netdev))
562 		hns3_clear_all_ring(priv->ae_handle, false);
563 
564 	hns3_reset_tx_queue(priv->ae_handle);
565 }
566 
567 static int hns3_nic_net_stop(struct net_device *netdev)
568 {
569 	struct hns3_nic_priv *priv = netdev_priv(netdev);
570 	struct hnae3_handle *h = hns3_get_handle(netdev);
571 
572 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
573 		return 0;
574 
575 	netif_dbg(h, drv, netdev, "net stop\n");
576 
577 	if (h->ae_algo->ops->set_timer_task)
578 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
579 
580 	netif_tx_stop_all_queues(netdev);
581 	netif_carrier_off(netdev);
582 
583 	hns3_nic_net_down(netdev);
584 
585 	return 0;
586 }
587 
588 static int hns3_nic_uc_sync(struct net_device *netdev,
589 			    const unsigned char *addr)
590 {
591 	struct hnae3_handle *h = hns3_get_handle(netdev);
592 
593 	if (h->ae_algo->ops->add_uc_addr)
594 		return h->ae_algo->ops->add_uc_addr(h, addr);
595 
596 	return 0;
597 }
598 
599 static int hns3_nic_uc_unsync(struct net_device *netdev,
600 			      const unsigned char *addr)
601 {
602 	struct hnae3_handle *h = hns3_get_handle(netdev);
603 
604 	/* need ignore the request of removing device address, because
605 	 * we store the device address and other addresses of uc list
606 	 * in the function's mac filter list.
607 	 */
608 	if (ether_addr_equal(addr, netdev->dev_addr))
609 		return 0;
610 
611 	if (h->ae_algo->ops->rm_uc_addr)
612 		return h->ae_algo->ops->rm_uc_addr(h, addr);
613 
614 	return 0;
615 }
616 
617 static int hns3_nic_mc_sync(struct net_device *netdev,
618 			    const unsigned char *addr)
619 {
620 	struct hnae3_handle *h = hns3_get_handle(netdev);
621 
622 	if (h->ae_algo->ops->add_mc_addr)
623 		return h->ae_algo->ops->add_mc_addr(h, addr);
624 
625 	return 0;
626 }
627 
628 static int hns3_nic_mc_unsync(struct net_device *netdev,
629 			      const unsigned char *addr)
630 {
631 	struct hnae3_handle *h = hns3_get_handle(netdev);
632 
633 	if (h->ae_algo->ops->rm_mc_addr)
634 		return h->ae_algo->ops->rm_mc_addr(h, addr);
635 
636 	return 0;
637 }
638 
639 static u8 hns3_get_netdev_flags(struct net_device *netdev)
640 {
641 	u8 flags = 0;
642 
643 	if (netdev->flags & IFF_PROMISC) {
644 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
645 	} else {
646 		flags |= HNAE3_VLAN_FLTR;
647 		if (netdev->flags & IFF_ALLMULTI)
648 			flags |= HNAE3_USER_MPE;
649 	}
650 
651 	return flags;
652 }
653 
654 static void hns3_nic_set_rx_mode(struct net_device *netdev)
655 {
656 	struct hnae3_handle *h = hns3_get_handle(netdev);
657 	u8 new_flags;
658 
659 	new_flags = hns3_get_netdev_flags(netdev);
660 
661 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
662 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
663 
664 	/* User mode Promisc mode enable and vlan filtering is disabled to
665 	 * let all packets in.
666 	 */
667 	h->netdev_flags = new_flags;
668 	hns3_request_update_promisc_mode(h);
669 }
670 
671 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
672 {
673 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
674 
675 	if (ops->request_update_promisc_mode)
676 		ops->request_update_promisc_mode(handle);
677 }
678 
679 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
680 {
681 	struct hns3_nic_priv *priv = netdev_priv(netdev);
682 	struct hnae3_handle *h = priv->ae_handle;
683 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
684 	bool last_state;
685 
686 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
687 	    h->ae_algo->ops->enable_vlan_filter) {
688 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
689 		if (enable != last_state) {
690 			netdev_info(netdev,
691 				    "%s vlan filter\n",
692 				    enable ? "enable" : "disable");
693 			h->ae_algo->ops->enable_vlan_filter(h, enable);
694 		}
695 	}
696 }
697 
698 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
699 			u16 *mss, u32 *type_cs_vlan_tso)
700 {
701 	u32 l4_offset, hdr_len;
702 	union l3_hdr_info l3;
703 	union l4_hdr_info l4;
704 	u32 l4_paylen;
705 	int ret;
706 
707 	if (!skb_is_gso(skb))
708 		return 0;
709 
710 	ret = skb_cow_head(skb, 0);
711 	if (unlikely(ret < 0))
712 		return ret;
713 
714 	l3.hdr = skb_network_header(skb);
715 	l4.hdr = skb_transport_header(skb);
716 
717 	/* Software should clear the IPv4's checksum field when tso is
718 	 * needed.
719 	 */
720 	if (l3.v4->version == 4)
721 		l3.v4->check = 0;
722 
723 	/* tunnel packet */
724 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
725 					 SKB_GSO_GRE_CSUM |
726 					 SKB_GSO_UDP_TUNNEL |
727 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
728 		/* reset l3&l4 pointers from outer to inner headers */
729 		l3.hdr = skb_inner_network_header(skb);
730 		l4.hdr = skb_inner_transport_header(skb);
731 
732 		/* Software should clear the IPv4's checksum field when
733 		 * tso is needed.
734 		 */
735 		if (l3.v4->version == 4)
736 			l3.v4->check = 0;
737 	}
738 
739 	/* normal or tunnel packet */
740 	l4_offset = l4.hdr - skb->data;
741 
742 	/* remove payload length from inner pseudo checksum when tso */
743 	l4_paylen = skb->len - l4_offset;
744 
745 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
746 		hdr_len = sizeof(*l4.udp) + l4_offset;
747 		csum_replace_by_diff(&l4.udp->check,
748 				     (__force __wsum)htonl(l4_paylen));
749 	} else {
750 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
751 		csum_replace_by_diff(&l4.tcp->check,
752 				     (__force __wsum)htonl(l4_paylen));
753 	}
754 
755 	/* find the txbd field values */
756 	*paylen_fdop_ol4cs = skb->len - hdr_len;
757 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
758 
759 	/* offload outer UDP header checksum */
760 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
761 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
762 
763 	/* get MSS for TSO */
764 	*mss = skb_shinfo(skb)->gso_size;
765 
766 	trace_hns3_tso(skb);
767 
768 	return 0;
769 }
770 
771 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
772 				u8 *il4_proto)
773 {
774 	union l3_hdr_info l3;
775 	unsigned char *l4_hdr;
776 	unsigned char *exthdr;
777 	u8 l4_proto_tmp;
778 	__be16 frag_off;
779 
780 	/* find outer header point */
781 	l3.hdr = skb_network_header(skb);
782 	l4_hdr = skb_transport_header(skb);
783 
784 	if (skb->protocol == htons(ETH_P_IPV6)) {
785 		exthdr = l3.hdr + sizeof(*l3.v6);
786 		l4_proto_tmp = l3.v6->nexthdr;
787 		if (l4_hdr != exthdr)
788 			ipv6_skip_exthdr(skb, exthdr - skb->data,
789 					 &l4_proto_tmp, &frag_off);
790 	} else if (skb->protocol == htons(ETH_P_IP)) {
791 		l4_proto_tmp = l3.v4->protocol;
792 	} else {
793 		return -EINVAL;
794 	}
795 
796 	*ol4_proto = l4_proto_tmp;
797 
798 	/* tunnel packet */
799 	if (!skb->encapsulation) {
800 		*il4_proto = 0;
801 		return 0;
802 	}
803 
804 	/* find inner header point */
805 	l3.hdr = skb_inner_network_header(skb);
806 	l4_hdr = skb_inner_transport_header(skb);
807 
808 	if (l3.v6->version == 6) {
809 		exthdr = l3.hdr + sizeof(*l3.v6);
810 		l4_proto_tmp = l3.v6->nexthdr;
811 		if (l4_hdr != exthdr)
812 			ipv6_skip_exthdr(skb, exthdr - skb->data,
813 					 &l4_proto_tmp, &frag_off);
814 	} else if (l3.v4->version == 4) {
815 		l4_proto_tmp = l3.v4->protocol;
816 	}
817 
818 	*il4_proto = l4_proto_tmp;
819 
820 	return 0;
821 }
822 
823 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
824  * and it is udp packet, which has a dest port as the IANA assigned.
825  * the hardware is expected to do the checksum offload, but the
826  * hardware will not do the checksum offload when udp dest port is
827  * 4789 or 6081.
828  */
829 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
830 {
831 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
832 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
833 	union l4_hdr_info l4;
834 
835 	/* device version above V3(include V3), the hardware can
836 	 * do this checksum offload.
837 	 */
838 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
839 		return false;
840 
841 	l4.hdr = skb_transport_header(skb);
842 
843 	if (!(!skb->encapsulation &&
844 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
845 	      l4.udp->dest == htons(GENEVE_UDP_PORT))))
846 		return false;
847 
848 	skb_checksum_help(skb);
849 
850 	return true;
851 }
852 
853 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
854 				  u32 *ol_type_vlan_len_msec)
855 {
856 	u32 l2_len, l3_len, l4_len;
857 	unsigned char *il2_hdr;
858 	union l3_hdr_info l3;
859 	union l4_hdr_info l4;
860 
861 	l3.hdr = skb_network_header(skb);
862 	l4.hdr = skb_transport_header(skb);
863 
864 	/* compute OL2 header size, defined in 2 Bytes */
865 	l2_len = l3.hdr - skb->data;
866 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
867 
868 	/* compute OL3 header size, defined in 4 Bytes */
869 	l3_len = l4.hdr - l3.hdr;
870 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
871 
872 	il2_hdr = skb_inner_mac_header(skb);
873 	/* compute OL4 header size, defined in 4 Bytes */
874 	l4_len = il2_hdr - l4.hdr;
875 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
876 
877 	/* define outer network header type */
878 	if (skb->protocol == htons(ETH_P_IP)) {
879 		if (skb_is_gso(skb))
880 			hns3_set_field(*ol_type_vlan_len_msec,
881 				       HNS3_TXD_OL3T_S,
882 				       HNS3_OL3T_IPV4_CSUM);
883 		else
884 			hns3_set_field(*ol_type_vlan_len_msec,
885 				       HNS3_TXD_OL3T_S,
886 				       HNS3_OL3T_IPV4_NO_CSUM);
887 
888 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
889 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
890 			       HNS3_OL3T_IPV6);
891 	}
892 
893 	if (ol4_proto == IPPROTO_UDP)
894 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
895 			       HNS3_TUN_MAC_IN_UDP);
896 	else if (ol4_proto == IPPROTO_GRE)
897 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
898 			       HNS3_TUN_NVGRE);
899 }
900 
901 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
902 			   u8 il4_proto, u32 *type_cs_vlan_tso,
903 			   u32 *ol_type_vlan_len_msec)
904 {
905 	unsigned char *l2_hdr = skb->data;
906 	u32 l4_proto = ol4_proto;
907 	union l4_hdr_info l4;
908 	union l3_hdr_info l3;
909 	u32 l2_len, l3_len;
910 
911 	l4.hdr = skb_transport_header(skb);
912 	l3.hdr = skb_network_header(skb);
913 
914 	/* handle encapsulation skb */
915 	if (skb->encapsulation) {
916 		/* If this is a not UDP/GRE encapsulation skb */
917 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
918 			/* drop the skb tunnel packet if hardware don't support,
919 			 * because hardware can't calculate csum when TSO.
920 			 */
921 			if (skb_is_gso(skb))
922 				return -EDOM;
923 
924 			/* the stack computes the IP header already,
925 			 * driver calculate l4 checksum when not TSO.
926 			 */
927 			skb_checksum_help(skb);
928 			return 0;
929 		}
930 
931 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
932 
933 		/* switch to inner header */
934 		l2_hdr = skb_inner_mac_header(skb);
935 		l3.hdr = skb_inner_network_header(skb);
936 		l4.hdr = skb_inner_transport_header(skb);
937 		l4_proto = il4_proto;
938 	}
939 
940 	if (l3.v4->version == 4) {
941 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
942 			       HNS3_L3T_IPV4);
943 
944 		/* the stack computes the IP header already, the only time we
945 		 * need the hardware to recompute it is in the case of TSO.
946 		 */
947 		if (skb_is_gso(skb))
948 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
949 	} else if (l3.v6->version == 6) {
950 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
951 			       HNS3_L3T_IPV6);
952 	}
953 
954 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
955 	l2_len = l3.hdr - l2_hdr;
956 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
957 
958 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
959 	l3_len = l4.hdr - l3.hdr;
960 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
961 
962 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
963 	switch (l4_proto) {
964 	case IPPROTO_TCP:
965 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
966 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
967 			       HNS3_L4T_TCP);
968 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
969 			       l4.tcp->doff);
970 		break;
971 	case IPPROTO_UDP:
972 		if (hns3_tunnel_csum_bug(skb))
973 			break;
974 
975 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
976 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
977 			       HNS3_L4T_UDP);
978 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
979 			       (sizeof(struct udphdr) >> 2));
980 		break;
981 	case IPPROTO_SCTP:
982 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
983 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
984 			       HNS3_L4T_SCTP);
985 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
986 			       (sizeof(struct sctphdr) >> 2));
987 		break;
988 	default:
989 		/* drop the skb tunnel packet if hardware don't support,
990 		 * because hardware can't calculate csum when TSO.
991 		 */
992 		if (skb_is_gso(skb))
993 			return -EDOM;
994 
995 		/* the stack computes the IP header already,
996 		 * driver calculate l4 checksum when not TSO.
997 		 */
998 		skb_checksum_help(skb);
999 		return 0;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1006 			     struct sk_buff *skb)
1007 {
1008 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1009 	struct hnae3_ae_dev *ae_dev;
1010 	struct vlan_ethhdr *vhdr;
1011 	int rc;
1012 
1013 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1014 	      skb_vlan_tag_present(skb)))
1015 		return 0;
1016 
1017 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1018 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1019 	 * will cause RAS error.
1020 	 */
1021 	ae_dev = pci_get_drvdata(handle->pdev);
1022 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1023 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1024 		     handle->port_base_vlan_state ==
1025 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1026 		return -EINVAL;
1027 
1028 	if (skb->protocol == htons(ETH_P_8021Q) &&
1029 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1030 		/* When HW VLAN acceleration is turned off, and the stack
1031 		 * sets the protocol to 802.1q, the driver just need to
1032 		 * set the protocol to the encapsulated ethertype.
1033 		 */
1034 		skb->protocol = vlan_get_protocol(skb);
1035 		return 0;
1036 	}
1037 
1038 	if (skb_vlan_tag_present(skb)) {
1039 		/* Based on hw strategy, use out_vtag in two layer tag case,
1040 		 * and use inner_vtag in one tag case.
1041 		 */
1042 		if (skb->protocol == htons(ETH_P_8021Q) &&
1043 		    handle->port_base_vlan_state ==
1044 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1045 			rc = HNS3_OUTER_VLAN_TAG;
1046 		else
1047 			rc = HNS3_INNER_VLAN_TAG;
1048 
1049 		skb->protocol = vlan_get_protocol(skb);
1050 		return rc;
1051 	}
1052 
1053 	rc = skb_cow_head(skb, 0);
1054 	if (unlikely(rc < 0))
1055 		return rc;
1056 
1057 	vhdr = (struct vlan_ethhdr *)skb->data;
1058 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1059 					 & VLAN_PRIO_MASK);
1060 
1061 	skb->protocol = vlan_get_protocol(skb);
1062 	return 0;
1063 }
1064 
1065 /* check if the hardware is capable of checksum offloading */
1066 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1067 {
1068 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1069 
1070 	/* Kindly note, due to backward compatibility of the TX descriptor,
1071 	 * HW checksum of the non-IP packets and GSO packets is handled at
1072 	 * different place in the following code
1073 	 */
1074 	if (skb->csum_not_inet || skb_is_gso(skb) ||
1075 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1076 		return false;
1077 
1078 	return true;
1079 }
1080 
1081 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1082 			      struct sk_buff *skb, struct hns3_desc *desc)
1083 {
1084 	u32 ol_type_vlan_len_msec = 0;
1085 	u32 paylen_ol4cs = skb->len;
1086 	u32 type_cs_vlan_tso = 0;
1087 	u16 mss_hw_csum = 0;
1088 	u16 inner_vtag = 0;
1089 	u16 out_vtag = 0;
1090 	int ret;
1091 
1092 	ret = hns3_handle_vtags(ring, skb);
1093 	if (unlikely(ret < 0)) {
1094 		u64_stats_update_begin(&ring->syncp);
1095 		ring->stats.tx_vlan_err++;
1096 		u64_stats_update_end(&ring->syncp);
1097 		return ret;
1098 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1099 		inner_vtag = skb_vlan_tag_get(skb);
1100 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1101 				VLAN_PRIO_MASK;
1102 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1103 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1104 		out_vtag = skb_vlan_tag_get(skb);
1105 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1106 				VLAN_PRIO_MASK;
1107 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1108 			       1);
1109 	}
1110 
1111 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1112 		u8 ol4_proto, il4_proto;
1113 
1114 		if (hns3_check_hw_tx_csum(skb)) {
1115 			/* set checksum start and offset, defined in 2 Bytes */
1116 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1117 				       skb_checksum_start_offset(skb) >> 1);
1118 			hns3_set_field(ol_type_vlan_len_msec,
1119 				       HNS3_TXD_CSUM_OFFSET_S,
1120 				       skb->csum_offset >> 1);
1121 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1122 			goto out_hw_tx_csum;
1123 		}
1124 
1125 		skb_reset_mac_len(skb);
1126 
1127 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1128 		if (unlikely(ret < 0)) {
1129 			u64_stats_update_begin(&ring->syncp);
1130 			ring->stats.tx_l4_proto_err++;
1131 			u64_stats_update_end(&ring->syncp);
1132 			return ret;
1133 		}
1134 
1135 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1136 				      &type_cs_vlan_tso,
1137 				      &ol_type_vlan_len_msec);
1138 		if (unlikely(ret < 0)) {
1139 			u64_stats_update_begin(&ring->syncp);
1140 			ring->stats.tx_l2l3l4_err++;
1141 			u64_stats_update_end(&ring->syncp);
1142 			return ret;
1143 		}
1144 
1145 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1146 				   &type_cs_vlan_tso);
1147 		if (unlikely(ret < 0)) {
1148 			u64_stats_update_begin(&ring->syncp);
1149 			ring->stats.tx_tso_err++;
1150 			u64_stats_update_end(&ring->syncp);
1151 			return ret;
1152 		}
1153 	}
1154 
1155 out_hw_tx_csum:
1156 	/* Set txbd */
1157 	desc->tx.ol_type_vlan_len_msec =
1158 		cpu_to_le32(ol_type_vlan_len_msec);
1159 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1160 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1161 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1162 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1163 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1164 
1165 	return 0;
1166 }
1167 
1168 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1169 			  unsigned int size, enum hns_desc_type type)
1170 {
1171 #define HNS3_LIKELY_BD_NUM	1
1172 
1173 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1174 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1175 	struct device *dev = ring_to_dev(ring);
1176 	skb_frag_t *frag;
1177 	unsigned int frag_buf_num;
1178 	int k, sizeoflast;
1179 	dma_addr_t dma;
1180 
1181 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1182 	    type == DESC_TYPE_SKB) {
1183 		struct sk_buff *skb = (struct sk_buff *)priv;
1184 
1185 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1186 	} else {
1187 		frag = (skb_frag_t *)priv;
1188 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1189 	}
1190 
1191 	if (unlikely(dma_mapping_error(dev, dma))) {
1192 		u64_stats_update_begin(&ring->syncp);
1193 		ring->stats.sw_err_cnt++;
1194 		u64_stats_update_end(&ring->syncp);
1195 		return -ENOMEM;
1196 	}
1197 
1198 	desc_cb->priv = priv;
1199 	desc_cb->length = size;
1200 	desc_cb->dma = dma;
1201 	desc_cb->type = type;
1202 
1203 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1204 		desc->addr = cpu_to_le64(dma);
1205 		desc->tx.send_size = cpu_to_le16(size);
1206 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1207 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1208 
1209 		trace_hns3_tx_desc(ring, ring->next_to_use);
1210 		ring_ptr_move_fw(ring, next_to_use);
1211 		return HNS3_LIKELY_BD_NUM;
1212 	}
1213 
1214 	frag_buf_num = hns3_tx_bd_count(size);
1215 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1216 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1217 
1218 	/* When frag size is bigger than hardware limit, split this frag */
1219 	for (k = 0; k < frag_buf_num; k++) {
1220 		/* now, fill the descriptor */
1221 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1222 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1223 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1224 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1225 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1226 
1227 		trace_hns3_tx_desc(ring, ring->next_to_use);
1228 		/* move ring pointer to next */
1229 		ring_ptr_move_fw(ring, next_to_use);
1230 
1231 		desc = &ring->desc[ring->next_to_use];
1232 	}
1233 
1234 	return frag_buf_num;
1235 }
1236 
1237 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1238 				    unsigned int bd_num)
1239 {
1240 	unsigned int size;
1241 	int i;
1242 
1243 	size = skb_headlen(skb);
1244 	while (size > HNS3_MAX_BD_SIZE) {
1245 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1246 		size -= HNS3_MAX_BD_SIZE;
1247 
1248 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1249 			return bd_num;
1250 	}
1251 
1252 	if (size) {
1253 		bd_size[bd_num++] = size;
1254 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1255 			return bd_num;
1256 	}
1257 
1258 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1259 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1260 		size = skb_frag_size(frag);
1261 		if (!size)
1262 			continue;
1263 
1264 		while (size > HNS3_MAX_BD_SIZE) {
1265 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1266 			size -= HNS3_MAX_BD_SIZE;
1267 
1268 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1269 				return bd_num;
1270 		}
1271 
1272 		bd_size[bd_num++] = size;
1273 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1274 			return bd_num;
1275 	}
1276 
1277 	return bd_num;
1278 }
1279 
1280 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1281 				   u8 max_non_tso_bd_num)
1282 {
1283 	struct sk_buff *frag_skb;
1284 	unsigned int bd_num = 0;
1285 
1286 	/* If the total len is within the max bd limit */
1287 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1288 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1289 		return skb_shinfo(skb)->nr_frags + 1U;
1290 
1291 	/* The below case will always be linearized, return
1292 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1293 	 */
1294 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1295 		     (!skb_is_gso(skb) && skb->len >
1296 		      HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))))
1297 		return HNS3_MAX_TSO_BD_NUM + 1U;
1298 
1299 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1300 
1301 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1302 		return bd_num;
1303 
1304 	skb_walk_frags(skb, frag_skb) {
1305 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1306 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1307 			return bd_num;
1308 	}
1309 
1310 	return bd_num;
1311 }
1312 
1313 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1314 {
1315 	if (!skb->encapsulation)
1316 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1317 
1318 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1319 }
1320 
1321 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1322  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1323  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1324  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1325  * than MSS except the last max_non_tso_bd_num - 1 frags.
1326  */
1327 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1328 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1329 {
1330 	unsigned int tot_len = 0;
1331 	int i;
1332 
1333 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1334 		tot_len += bd_size[i];
1335 
1336 	/* ensure the first max_non_tso_bd_num frags is greater than
1337 	 * mss + header
1338 	 */
1339 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1340 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1341 		return true;
1342 
1343 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1344 	 * than mss except the last one.
1345 	 */
1346 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1347 		tot_len -= bd_size[i];
1348 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1349 
1350 		if (tot_len < skb_shinfo(skb)->gso_size)
1351 			return true;
1352 	}
1353 
1354 	return false;
1355 }
1356 
1357 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1358 {
1359 	int i;
1360 
1361 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1362 		size[i] = skb_frag_size(&shinfo->frags[i]);
1363 }
1364 
1365 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1366 				  struct net_device *netdev,
1367 				  struct sk_buff *skb)
1368 {
1369 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1370 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1371 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1372 	unsigned int bd_num;
1373 
1374 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num);
1375 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1376 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1377 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1378 					      max_non_tso_bd_num)) {
1379 			trace_hns3_over_max_bd(skb);
1380 			goto out;
1381 		}
1382 
1383 		if (__skb_linearize(skb))
1384 			return -ENOMEM;
1385 
1386 		bd_num = hns3_tx_bd_count(skb->len);
1387 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1388 		    (!skb_is_gso(skb) &&
1389 		     bd_num > max_non_tso_bd_num)) {
1390 			trace_hns3_over_max_bd(skb);
1391 			return -ENOMEM;
1392 		}
1393 
1394 		u64_stats_update_begin(&ring->syncp);
1395 		ring->stats.tx_copy++;
1396 		u64_stats_update_end(&ring->syncp);
1397 	}
1398 
1399 out:
1400 	if (likely(ring_space(ring) >= bd_num))
1401 		return bd_num;
1402 
1403 	netif_stop_subqueue(netdev, ring->queue_index);
1404 	smp_mb(); /* Memory barrier before checking ring_space */
1405 
1406 	/* Start queue in case hns3_clean_tx_ring has just made room
1407 	 * available and has not seen the queue stopped state performed
1408 	 * by netif_stop_subqueue above.
1409 	 */
1410 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1411 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1412 		netif_start_subqueue(netdev, ring->queue_index);
1413 		return bd_num;
1414 	}
1415 
1416 	return -EBUSY;
1417 }
1418 
1419 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1420 {
1421 	struct device *dev = ring_to_dev(ring);
1422 	unsigned int i;
1423 
1424 	for (i = 0; i < ring->desc_num; i++) {
1425 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1426 
1427 		memset(desc, 0, sizeof(*desc));
1428 
1429 		/* check if this is where we started */
1430 		if (ring->next_to_use == next_to_use_orig)
1431 			break;
1432 
1433 		/* rollback one */
1434 		ring_ptr_move_bw(ring, next_to_use);
1435 
1436 		if (!ring->desc_cb[ring->next_to_use].dma)
1437 			continue;
1438 
1439 		/* unmap the descriptor dma address */
1440 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1441 		    ring->desc_cb[ring->next_to_use].type ==
1442 		    DESC_TYPE_FRAGLIST_SKB)
1443 			dma_unmap_single(dev,
1444 					 ring->desc_cb[ring->next_to_use].dma,
1445 					ring->desc_cb[ring->next_to_use].length,
1446 					DMA_TO_DEVICE);
1447 		else if (ring->desc_cb[ring->next_to_use].length)
1448 			dma_unmap_page(dev,
1449 				       ring->desc_cb[ring->next_to_use].dma,
1450 				       ring->desc_cb[ring->next_to_use].length,
1451 				       DMA_TO_DEVICE);
1452 
1453 		ring->desc_cb[ring->next_to_use].length = 0;
1454 		ring->desc_cb[ring->next_to_use].dma = 0;
1455 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1456 	}
1457 }
1458 
1459 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1460 				 struct sk_buff *skb, enum hns_desc_type type)
1461 {
1462 	unsigned int size = skb_headlen(skb);
1463 	int i, ret, bd_num = 0;
1464 
1465 	if (size) {
1466 		ret = hns3_fill_desc(ring, skb, size, type);
1467 		if (unlikely(ret < 0))
1468 			return ret;
1469 
1470 		bd_num += ret;
1471 	}
1472 
1473 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1474 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1475 
1476 		size = skb_frag_size(frag);
1477 		if (!size)
1478 			continue;
1479 
1480 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1481 		if (unlikely(ret < 0))
1482 			return ret;
1483 
1484 		bd_num += ret;
1485 	}
1486 
1487 	return bd_num;
1488 }
1489 
1490 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1491 			     bool doorbell)
1492 {
1493 	ring->pending_buf += num;
1494 
1495 	if (!doorbell) {
1496 		u64_stats_update_begin(&ring->syncp);
1497 		ring->stats.tx_more++;
1498 		u64_stats_update_end(&ring->syncp);
1499 		return;
1500 	}
1501 
1502 	if (!ring->pending_buf)
1503 		return;
1504 
1505 	writel(ring->pending_buf,
1506 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1507 	ring->pending_buf = 0;
1508 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1509 }
1510 
1511 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1512 {
1513 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1514 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1515 	struct netdev_queue *dev_queue;
1516 	int pre_ntu, next_to_use_head;
1517 	struct sk_buff *frag_skb;
1518 	int bd_num = 0;
1519 	bool doorbell;
1520 	int ret;
1521 
1522 	/* Hardware can only handle short frames above 32 bytes */
1523 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1524 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1525 		return NETDEV_TX_OK;
1526 	}
1527 
1528 	/* Prefetch the data used later */
1529 	prefetch(skb->data);
1530 
1531 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1532 	if (unlikely(ret <= 0)) {
1533 		if (ret == -EBUSY) {
1534 			u64_stats_update_begin(&ring->syncp);
1535 			ring->stats.tx_busy++;
1536 			u64_stats_update_end(&ring->syncp);
1537 			hns3_tx_doorbell(ring, 0, true);
1538 			return NETDEV_TX_BUSY;
1539 		} else if (ret == -ENOMEM) {
1540 			u64_stats_update_begin(&ring->syncp);
1541 			ring->stats.sw_err_cnt++;
1542 			u64_stats_update_end(&ring->syncp);
1543 		}
1544 
1545 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1546 		goto out_err_tx_ok;
1547 	}
1548 
1549 	next_to_use_head = ring->next_to_use;
1550 
1551 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1552 	if (unlikely(ret < 0))
1553 		goto fill_err;
1554 
1555 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1556 	if (unlikely(ret < 0))
1557 		goto fill_err;
1558 
1559 	bd_num += ret;
1560 
1561 	skb_walk_frags(skb, frag_skb) {
1562 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1563 					    DESC_TYPE_FRAGLIST_SKB);
1564 		if (unlikely(ret < 0))
1565 			goto fill_err;
1566 
1567 		bd_num += ret;
1568 	}
1569 
1570 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1571 					(ring->desc_num - 1);
1572 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1573 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1574 	trace_hns3_tx_desc(ring, pre_ntu);
1575 
1576 	/* Complete translate all packets */
1577 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1578 	doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1579 					  netdev_xmit_more());
1580 	hns3_tx_doorbell(ring, bd_num, doorbell);
1581 
1582 	return NETDEV_TX_OK;
1583 
1584 fill_err:
1585 	hns3_clear_desc(ring, next_to_use_head);
1586 
1587 out_err_tx_ok:
1588 	dev_kfree_skb_any(skb);
1589 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1590 	return NETDEV_TX_OK;
1591 }
1592 
1593 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1594 {
1595 	struct hnae3_handle *h = hns3_get_handle(netdev);
1596 	struct sockaddr *mac_addr = p;
1597 	int ret;
1598 
1599 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1600 		return -EADDRNOTAVAIL;
1601 
1602 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1603 		netdev_info(netdev, "already using mac address %pM\n",
1604 			    mac_addr->sa_data);
1605 		return 0;
1606 	}
1607 
1608 	/* For VF device, if there is a perm_addr, then the user will not
1609 	 * be allowed to change the address.
1610 	 */
1611 	if (!hns3_is_phys_func(h->pdev) &&
1612 	    !is_zero_ether_addr(netdev->perm_addr)) {
1613 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1614 			   netdev->perm_addr, mac_addr->sa_data);
1615 		return -EPERM;
1616 	}
1617 
1618 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1619 	if (ret) {
1620 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1621 		return ret;
1622 	}
1623 
1624 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1625 
1626 	return 0;
1627 }
1628 
1629 static int hns3_nic_do_ioctl(struct net_device *netdev,
1630 			     struct ifreq *ifr, int cmd)
1631 {
1632 	struct hnae3_handle *h = hns3_get_handle(netdev);
1633 
1634 	if (!netif_running(netdev))
1635 		return -EINVAL;
1636 
1637 	if (!h->ae_algo->ops->do_ioctl)
1638 		return -EOPNOTSUPP;
1639 
1640 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1641 }
1642 
1643 static int hns3_nic_set_features(struct net_device *netdev,
1644 				 netdev_features_t features)
1645 {
1646 	netdev_features_t changed = netdev->features ^ features;
1647 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1648 	struct hnae3_handle *h = priv->ae_handle;
1649 	bool enable;
1650 	int ret;
1651 
1652 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1653 		enable = !!(features & NETIF_F_GRO_HW);
1654 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1655 		if (ret)
1656 			return ret;
1657 	}
1658 
1659 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1660 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1661 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1662 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1663 		if (ret)
1664 			return ret;
1665 	}
1666 
1667 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1668 		enable = !!(features & NETIF_F_NTUPLE);
1669 		h->ae_algo->ops->enable_fd(h, enable);
1670 	}
1671 
1672 	netdev->features = features;
1673 	return 0;
1674 }
1675 
1676 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1677 					     struct net_device *dev,
1678 					     netdev_features_t features)
1679 {
1680 #define HNS3_MAX_HDR_LEN	480U
1681 #define HNS3_MAX_L4_HDR_LEN	60U
1682 
1683 	size_t len;
1684 
1685 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1686 		return features;
1687 
1688 	if (skb->encapsulation)
1689 		len = skb_inner_transport_header(skb) - skb->data;
1690 	else
1691 		len = skb_transport_header(skb) - skb->data;
1692 
1693 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1694 	 * a flexible value, and it's max len is 60 bytes.
1695 	 */
1696 	len += HNS3_MAX_L4_HDR_LEN;
1697 
1698 	/* Hardware only supports checksum on the skb with a max header
1699 	 * len of 480 bytes.
1700 	 */
1701 	if (len > HNS3_MAX_HDR_LEN)
1702 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1703 
1704 	return features;
1705 }
1706 
1707 static void hns3_nic_get_stats64(struct net_device *netdev,
1708 				 struct rtnl_link_stats64 *stats)
1709 {
1710 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1711 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1712 	struct hnae3_handle *handle = priv->ae_handle;
1713 	struct hns3_enet_ring *ring;
1714 	u64 rx_length_errors = 0;
1715 	u64 rx_crc_errors = 0;
1716 	u64 rx_multicast = 0;
1717 	unsigned int start;
1718 	u64 tx_errors = 0;
1719 	u64 rx_errors = 0;
1720 	unsigned int idx;
1721 	u64 tx_bytes = 0;
1722 	u64 rx_bytes = 0;
1723 	u64 tx_pkts = 0;
1724 	u64 rx_pkts = 0;
1725 	u64 tx_drop = 0;
1726 	u64 rx_drop = 0;
1727 
1728 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1729 		return;
1730 
1731 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1732 
1733 	for (idx = 0; idx < queue_num; idx++) {
1734 		/* fetch the tx stats */
1735 		ring = &priv->ring[idx];
1736 		do {
1737 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1738 			tx_bytes += ring->stats.tx_bytes;
1739 			tx_pkts += ring->stats.tx_pkts;
1740 			tx_drop += ring->stats.sw_err_cnt;
1741 			tx_drop += ring->stats.tx_vlan_err;
1742 			tx_drop += ring->stats.tx_l4_proto_err;
1743 			tx_drop += ring->stats.tx_l2l3l4_err;
1744 			tx_drop += ring->stats.tx_tso_err;
1745 			tx_errors += ring->stats.sw_err_cnt;
1746 			tx_errors += ring->stats.tx_vlan_err;
1747 			tx_errors += ring->stats.tx_l4_proto_err;
1748 			tx_errors += ring->stats.tx_l2l3l4_err;
1749 			tx_errors += ring->stats.tx_tso_err;
1750 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1751 
1752 		/* fetch the rx stats */
1753 		ring = &priv->ring[idx + queue_num];
1754 		do {
1755 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1756 			rx_bytes += ring->stats.rx_bytes;
1757 			rx_pkts += ring->stats.rx_pkts;
1758 			rx_drop += ring->stats.l2_err;
1759 			rx_errors += ring->stats.l2_err;
1760 			rx_errors += ring->stats.l3l4_csum_err;
1761 			rx_crc_errors += ring->stats.l2_err;
1762 			rx_multicast += ring->stats.rx_multicast;
1763 			rx_length_errors += ring->stats.err_pkt_len;
1764 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1765 	}
1766 
1767 	stats->tx_bytes = tx_bytes;
1768 	stats->tx_packets = tx_pkts;
1769 	stats->rx_bytes = rx_bytes;
1770 	stats->rx_packets = rx_pkts;
1771 
1772 	stats->rx_errors = rx_errors;
1773 	stats->multicast = rx_multicast;
1774 	stats->rx_length_errors = rx_length_errors;
1775 	stats->rx_crc_errors = rx_crc_errors;
1776 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1777 
1778 	stats->tx_errors = tx_errors;
1779 	stats->rx_dropped = rx_drop;
1780 	stats->tx_dropped = tx_drop;
1781 	stats->collisions = netdev->stats.collisions;
1782 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1783 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1784 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1785 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1786 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1787 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1788 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1789 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1790 	stats->rx_compressed = netdev->stats.rx_compressed;
1791 	stats->tx_compressed = netdev->stats.tx_compressed;
1792 }
1793 
1794 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1795 {
1796 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1797 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1798 	struct hnae3_knic_private_info *kinfo;
1799 	u8 tc = mqprio_qopt->qopt.num_tc;
1800 	u16 mode = mqprio_qopt->mode;
1801 	u8 hw = mqprio_qopt->qopt.hw;
1802 	struct hnae3_handle *h;
1803 
1804 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1805 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1806 		return -EOPNOTSUPP;
1807 
1808 	if (tc > HNAE3_MAX_TC)
1809 		return -EINVAL;
1810 
1811 	if (!netdev)
1812 		return -EINVAL;
1813 
1814 	h = hns3_get_handle(netdev);
1815 	kinfo = &h->kinfo;
1816 
1817 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1818 
1819 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1820 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1821 }
1822 
1823 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1824 			     void *type_data)
1825 {
1826 	if (type != TC_SETUP_QDISC_MQPRIO)
1827 		return -EOPNOTSUPP;
1828 
1829 	return hns3_setup_tc(dev, type_data);
1830 }
1831 
1832 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1833 				__be16 proto, u16 vid)
1834 {
1835 	struct hnae3_handle *h = hns3_get_handle(netdev);
1836 	int ret = -EIO;
1837 
1838 	if (h->ae_algo->ops->set_vlan_filter)
1839 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1840 
1841 	return ret;
1842 }
1843 
1844 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1845 				 __be16 proto, u16 vid)
1846 {
1847 	struct hnae3_handle *h = hns3_get_handle(netdev);
1848 	int ret = -EIO;
1849 
1850 	if (h->ae_algo->ops->set_vlan_filter)
1851 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1852 
1853 	return ret;
1854 }
1855 
1856 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1857 				u8 qos, __be16 vlan_proto)
1858 {
1859 	struct hnae3_handle *h = hns3_get_handle(netdev);
1860 	int ret = -EIO;
1861 
1862 	netif_dbg(h, drv, netdev,
1863 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1864 		  vf, vlan, qos, ntohs(vlan_proto));
1865 
1866 	if (h->ae_algo->ops->set_vf_vlan_filter)
1867 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1868 							  qos, vlan_proto);
1869 
1870 	return ret;
1871 }
1872 
1873 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1874 {
1875 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1876 
1877 	if (hns3_nic_resetting(netdev))
1878 		return -EBUSY;
1879 
1880 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1881 		return -EOPNOTSUPP;
1882 
1883 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1884 }
1885 
1886 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1887 {
1888 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1889 
1890 	if (!handle->ae_algo->ops->set_vf_trust)
1891 		return -EOPNOTSUPP;
1892 
1893 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1894 }
1895 
1896 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1897 {
1898 	struct hnae3_handle *h = hns3_get_handle(netdev);
1899 	int ret;
1900 
1901 	if (hns3_nic_resetting(netdev))
1902 		return -EBUSY;
1903 
1904 	if (!h->ae_algo->ops->set_mtu)
1905 		return -EOPNOTSUPP;
1906 
1907 	netif_dbg(h, drv, netdev,
1908 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1909 
1910 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1911 	if (ret)
1912 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1913 			   ret);
1914 	else
1915 		netdev->mtu = new_mtu;
1916 
1917 	return ret;
1918 }
1919 
1920 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1921 {
1922 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1923 	struct hnae3_handle *h = hns3_get_handle(ndev);
1924 	struct hns3_enet_ring *tx_ring;
1925 	struct napi_struct *napi;
1926 	int timeout_queue = 0;
1927 	int hw_head, hw_tail;
1928 	int fbd_num, fbd_oft;
1929 	int ebd_num, ebd_oft;
1930 	int bd_num, bd_err;
1931 	int ring_en, tc;
1932 	int i;
1933 
1934 	/* Find the stopped queue the same way the stack does */
1935 	for (i = 0; i < ndev->num_tx_queues; i++) {
1936 		struct netdev_queue *q;
1937 		unsigned long trans_start;
1938 
1939 		q = netdev_get_tx_queue(ndev, i);
1940 		trans_start = q->trans_start;
1941 		if (netif_xmit_stopped(q) &&
1942 		    time_after(jiffies,
1943 			       (trans_start + ndev->watchdog_timeo))) {
1944 			timeout_queue = i;
1945 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1946 				    q->state,
1947 				    jiffies_to_msecs(jiffies - trans_start));
1948 			break;
1949 		}
1950 	}
1951 
1952 	if (i == ndev->num_tx_queues) {
1953 		netdev_info(ndev,
1954 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1955 			    priv->tx_timeout_count);
1956 		return false;
1957 	}
1958 
1959 	priv->tx_timeout_count++;
1960 
1961 	tx_ring = &priv->ring[timeout_queue];
1962 	napi = &tx_ring->tqp_vector->napi;
1963 
1964 	netdev_info(ndev,
1965 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1966 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1967 		    tx_ring->next_to_clean, napi->state);
1968 
1969 	netdev_info(ndev,
1970 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
1971 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1972 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
1973 
1974 	netdev_info(ndev,
1975 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
1976 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
1977 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1978 
1979 	/* When mac received many pause frames continuous, it's unable to send
1980 	 * packets, which may cause tx timeout
1981 	 */
1982 	if (h->ae_algo->ops->get_mac_stats) {
1983 		struct hns3_mac_stats mac_stats;
1984 
1985 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1986 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1987 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1988 	}
1989 
1990 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1991 				HNS3_RING_TX_RING_HEAD_REG);
1992 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1993 				HNS3_RING_TX_RING_TAIL_REG);
1994 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1995 				HNS3_RING_TX_RING_FBDNUM_REG);
1996 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1997 				HNS3_RING_TX_RING_OFFSET_REG);
1998 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1999 				HNS3_RING_TX_RING_EBDNUM_REG);
2000 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2001 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2002 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2003 			       HNS3_RING_TX_RING_BD_NUM_REG);
2004 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2005 			       HNS3_RING_TX_RING_BD_ERR_REG);
2006 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2007 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2008 
2009 	netdev_info(ndev,
2010 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2011 		    bd_num, hw_head, hw_tail, bd_err,
2012 		    readl(tx_ring->tqp_vector->mask_addr));
2013 	netdev_info(ndev,
2014 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2015 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2016 
2017 	return true;
2018 }
2019 
2020 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2021 {
2022 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2023 	struct hnae3_handle *h = priv->ae_handle;
2024 
2025 	if (!hns3_get_tx_timeo_queue_info(ndev))
2026 		return;
2027 
2028 	/* request the reset, and let the hclge to determine
2029 	 * which reset level should be done
2030 	 */
2031 	if (h->ae_algo->ops->reset_event)
2032 		h->ae_algo->ops->reset_event(h->pdev, h);
2033 }
2034 
2035 #ifdef CONFIG_RFS_ACCEL
2036 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2037 			      u16 rxq_index, u32 flow_id)
2038 {
2039 	struct hnae3_handle *h = hns3_get_handle(dev);
2040 	struct flow_keys fkeys;
2041 
2042 	if (!h->ae_algo->ops->add_arfs_entry)
2043 		return -EOPNOTSUPP;
2044 
2045 	if (skb->encapsulation)
2046 		return -EPROTONOSUPPORT;
2047 
2048 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2049 		return -EPROTONOSUPPORT;
2050 
2051 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2052 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2053 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2054 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2055 		return -EPROTONOSUPPORT;
2056 
2057 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2058 }
2059 #endif
2060 
2061 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2062 				  struct ifla_vf_info *ivf)
2063 {
2064 	struct hnae3_handle *h = hns3_get_handle(ndev);
2065 
2066 	if (!h->ae_algo->ops->get_vf_config)
2067 		return -EOPNOTSUPP;
2068 
2069 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2070 }
2071 
2072 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2073 				      int link_state)
2074 {
2075 	struct hnae3_handle *h = hns3_get_handle(ndev);
2076 
2077 	if (!h->ae_algo->ops->set_vf_link_state)
2078 		return -EOPNOTSUPP;
2079 
2080 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2081 }
2082 
2083 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2084 				int min_tx_rate, int max_tx_rate)
2085 {
2086 	struct hnae3_handle *h = hns3_get_handle(ndev);
2087 
2088 	if (!h->ae_algo->ops->set_vf_rate)
2089 		return -EOPNOTSUPP;
2090 
2091 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2092 					    false);
2093 }
2094 
2095 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2096 {
2097 	struct hnae3_handle *h = hns3_get_handle(netdev);
2098 
2099 	if (!h->ae_algo->ops->set_vf_mac)
2100 		return -EOPNOTSUPP;
2101 
2102 	if (is_multicast_ether_addr(mac)) {
2103 		netdev_err(netdev,
2104 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2105 			   mac);
2106 		return -EINVAL;
2107 	}
2108 
2109 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2110 }
2111 
2112 static const struct net_device_ops hns3_nic_netdev_ops = {
2113 	.ndo_open		= hns3_nic_net_open,
2114 	.ndo_stop		= hns3_nic_net_stop,
2115 	.ndo_start_xmit		= hns3_nic_net_xmit,
2116 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2117 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2118 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2119 	.ndo_change_mtu		= hns3_nic_change_mtu,
2120 	.ndo_set_features	= hns3_nic_set_features,
2121 	.ndo_features_check	= hns3_features_check,
2122 	.ndo_get_stats64	= hns3_nic_get_stats64,
2123 	.ndo_setup_tc		= hns3_nic_setup_tc,
2124 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2125 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2126 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2127 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2128 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2129 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2130 #ifdef CONFIG_RFS_ACCEL
2131 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2132 #endif
2133 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2134 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2135 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2136 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2137 };
2138 
2139 bool hns3_is_phys_func(struct pci_dev *pdev)
2140 {
2141 	u32 dev_id = pdev->device;
2142 
2143 	switch (dev_id) {
2144 	case HNAE3_DEV_ID_GE:
2145 	case HNAE3_DEV_ID_25GE:
2146 	case HNAE3_DEV_ID_25GE_RDMA:
2147 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2148 	case HNAE3_DEV_ID_50GE_RDMA:
2149 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2150 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2151 	case HNAE3_DEV_ID_200G_RDMA:
2152 		return true;
2153 	case HNAE3_DEV_ID_VF:
2154 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2155 		return false;
2156 	default:
2157 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2158 			 dev_id);
2159 	}
2160 
2161 	return false;
2162 }
2163 
2164 static void hns3_disable_sriov(struct pci_dev *pdev)
2165 {
2166 	/* If our VFs are assigned we cannot shut down SR-IOV
2167 	 * without causing issues, so just leave the hardware
2168 	 * available but disabled
2169 	 */
2170 	if (pci_vfs_assigned(pdev)) {
2171 		dev_warn(&pdev->dev,
2172 			 "disabling driver while VFs are assigned\n");
2173 		return;
2174 	}
2175 
2176 	pci_disable_sriov(pdev);
2177 }
2178 
2179 /* hns3_probe - Device initialization routine
2180  * @pdev: PCI device information struct
2181  * @ent: entry in hns3_pci_tbl
2182  *
2183  * hns3_probe initializes a PF identified by a pci_dev structure.
2184  * The OS initialization, configuring of the PF private structure,
2185  * and a hardware reset occur.
2186  *
2187  * Returns 0 on success, negative on failure
2188  */
2189 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2190 {
2191 	struct hnae3_ae_dev *ae_dev;
2192 	int ret;
2193 
2194 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2195 	if (!ae_dev)
2196 		return -ENOMEM;
2197 
2198 	ae_dev->pdev = pdev;
2199 	ae_dev->flag = ent->driver_data;
2200 	pci_set_drvdata(pdev, ae_dev);
2201 
2202 	ret = hnae3_register_ae_dev(ae_dev);
2203 	if (ret)
2204 		pci_set_drvdata(pdev, NULL);
2205 
2206 	return ret;
2207 }
2208 
2209 /* hns3_remove - Device removal routine
2210  * @pdev: PCI device information struct
2211  */
2212 static void hns3_remove(struct pci_dev *pdev)
2213 {
2214 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2215 
2216 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2217 		hns3_disable_sriov(pdev);
2218 
2219 	hnae3_unregister_ae_dev(ae_dev);
2220 	pci_set_drvdata(pdev, NULL);
2221 }
2222 
2223 /**
2224  * hns3_pci_sriov_configure
2225  * @pdev: pointer to a pci_dev structure
2226  * @num_vfs: number of VFs to allocate
2227  *
2228  * Enable or change the number of VFs. Called when the user updates the number
2229  * of VFs in sysfs.
2230  **/
2231 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2232 {
2233 	int ret;
2234 
2235 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2236 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2237 		return -EINVAL;
2238 	}
2239 
2240 	if (num_vfs) {
2241 		ret = pci_enable_sriov(pdev, num_vfs);
2242 		if (ret)
2243 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2244 		else
2245 			return num_vfs;
2246 	} else if (!pci_vfs_assigned(pdev)) {
2247 		pci_disable_sriov(pdev);
2248 	} else {
2249 		dev_warn(&pdev->dev,
2250 			 "Unable to free VFs because some are assigned to VMs.\n");
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 static void hns3_shutdown(struct pci_dev *pdev)
2257 {
2258 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2259 
2260 	hnae3_unregister_ae_dev(ae_dev);
2261 	pci_set_drvdata(pdev, NULL);
2262 
2263 	if (system_state == SYSTEM_POWER_OFF)
2264 		pci_set_power_state(pdev, PCI_D3hot);
2265 }
2266 
2267 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2268 					    pci_channel_state_t state)
2269 {
2270 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2271 	pci_ers_result_t ret;
2272 
2273 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2274 
2275 	if (state == pci_channel_io_perm_failure)
2276 		return PCI_ERS_RESULT_DISCONNECT;
2277 
2278 	if (!ae_dev || !ae_dev->ops) {
2279 		dev_err(&pdev->dev,
2280 			"Can't recover - error happened before device initialized\n");
2281 		return PCI_ERS_RESULT_NONE;
2282 	}
2283 
2284 	if (ae_dev->ops->handle_hw_ras_error)
2285 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2286 	else
2287 		return PCI_ERS_RESULT_NONE;
2288 
2289 	return ret;
2290 }
2291 
2292 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2293 {
2294 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2295 	const struct hnae3_ae_ops *ops;
2296 	enum hnae3_reset_type reset_type;
2297 	struct device *dev = &pdev->dev;
2298 
2299 	if (!ae_dev || !ae_dev->ops)
2300 		return PCI_ERS_RESULT_NONE;
2301 
2302 	ops = ae_dev->ops;
2303 	/* request the reset */
2304 	if (ops->reset_event && ops->get_reset_level &&
2305 	    ops->set_default_reset_request) {
2306 		if (ae_dev->hw_err_reset_req) {
2307 			reset_type = ops->get_reset_level(ae_dev,
2308 						&ae_dev->hw_err_reset_req);
2309 			ops->set_default_reset_request(ae_dev, reset_type);
2310 			dev_info(dev, "requesting reset due to PCI error\n");
2311 			ops->reset_event(pdev, NULL);
2312 		}
2313 
2314 		return PCI_ERS_RESULT_RECOVERED;
2315 	}
2316 
2317 	return PCI_ERS_RESULT_DISCONNECT;
2318 }
2319 
2320 static void hns3_reset_prepare(struct pci_dev *pdev)
2321 {
2322 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2323 
2324 	dev_info(&pdev->dev, "FLR prepare\n");
2325 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2326 		ae_dev->ops->flr_prepare(ae_dev);
2327 }
2328 
2329 static void hns3_reset_done(struct pci_dev *pdev)
2330 {
2331 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2332 
2333 	dev_info(&pdev->dev, "FLR done\n");
2334 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2335 		ae_dev->ops->flr_done(ae_dev);
2336 }
2337 
2338 static const struct pci_error_handlers hns3_err_handler = {
2339 	.error_detected = hns3_error_detected,
2340 	.slot_reset     = hns3_slot_reset,
2341 	.reset_prepare	= hns3_reset_prepare,
2342 	.reset_done	= hns3_reset_done,
2343 };
2344 
2345 static struct pci_driver hns3_driver = {
2346 	.name     = hns3_driver_name,
2347 	.id_table = hns3_pci_tbl,
2348 	.probe    = hns3_probe,
2349 	.remove   = hns3_remove,
2350 	.shutdown = hns3_shutdown,
2351 	.sriov_configure = hns3_pci_sriov_configure,
2352 	.err_handler    = &hns3_err_handler,
2353 };
2354 
2355 /* set default feature to hns3 */
2356 static void hns3_set_default_feature(struct net_device *netdev)
2357 {
2358 	struct hnae3_handle *h = hns3_get_handle(netdev);
2359 	struct pci_dev *pdev = h->pdev;
2360 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2361 
2362 	netdev->priv_flags |= IFF_UNICAST_FLT;
2363 
2364 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2365 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2366 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2367 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2368 
2369 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2370 
2371 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2372 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2373 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2374 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2375 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2376 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2377 
2378 	netdev->vlan_features |= NETIF_F_RXCSUM |
2379 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2380 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2381 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2382 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2383 
2384 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2385 		NETIF_F_HW_VLAN_CTAG_RX |
2386 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2387 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2388 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2389 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2390 
2391 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2392 		netdev->hw_features |= NETIF_F_GRO_HW;
2393 		netdev->features |= NETIF_F_GRO_HW;
2394 
2395 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2396 			netdev->hw_features |= NETIF_F_NTUPLE;
2397 			netdev->features |= NETIF_F_NTUPLE;
2398 		}
2399 	}
2400 
2401 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2402 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2403 		netdev->features |= NETIF_F_GSO_UDP_L4;
2404 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2405 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2406 	}
2407 
2408 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2409 		netdev->hw_features |= NETIF_F_HW_CSUM;
2410 		netdev->features |= NETIF_F_HW_CSUM;
2411 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2412 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2413 	} else {
2414 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2415 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2416 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2417 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2418 	}
2419 
2420 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2421 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2422 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2423 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2424 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2425 	}
2426 }
2427 
2428 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2429 			     struct hns3_desc_cb *cb)
2430 {
2431 	unsigned int order = hns3_page_order(ring);
2432 	struct page *p;
2433 
2434 	p = dev_alloc_pages(order);
2435 	if (!p)
2436 		return -ENOMEM;
2437 
2438 	cb->priv = p;
2439 	cb->page_offset = 0;
2440 	cb->reuse_flag = 0;
2441 	cb->buf  = page_address(p);
2442 	cb->length = hns3_page_size(ring);
2443 	cb->type = DESC_TYPE_PAGE;
2444 	page_ref_add(p, USHRT_MAX - 1);
2445 	cb->pagecnt_bias = USHRT_MAX;
2446 
2447 	return 0;
2448 }
2449 
2450 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2451 			     struct hns3_desc_cb *cb, int budget)
2452 {
2453 	if (cb->type == DESC_TYPE_SKB)
2454 		napi_consume_skb(cb->priv, budget);
2455 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2456 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2457 	memset(cb, 0, sizeof(*cb));
2458 }
2459 
2460 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2461 {
2462 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2463 			       cb->length, ring_to_dma_dir(ring));
2464 
2465 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2466 		return -EIO;
2467 
2468 	return 0;
2469 }
2470 
2471 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2472 			      struct hns3_desc_cb *cb)
2473 {
2474 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2475 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2476 				 ring_to_dma_dir(ring));
2477 	else if (cb->length)
2478 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2479 			       ring_to_dma_dir(ring));
2480 }
2481 
2482 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2483 {
2484 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2485 	ring->desc[i].addr = 0;
2486 }
2487 
2488 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2489 				    int budget)
2490 {
2491 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2492 
2493 	if (!ring->desc_cb[i].dma)
2494 		return;
2495 
2496 	hns3_buffer_detach(ring, i);
2497 	hns3_free_buffer(ring, cb, budget);
2498 }
2499 
2500 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2501 {
2502 	int i;
2503 
2504 	for (i = 0; i < ring->desc_num; i++)
2505 		hns3_free_buffer_detach(ring, i, 0);
2506 }
2507 
2508 /* free desc along with its attached buffer */
2509 static void hns3_free_desc(struct hns3_enet_ring *ring)
2510 {
2511 	int size = ring->desc_num * sizeof(ring->desc[0]);
2512 
2513 	hns3_free_buffers(ring);
2514 
2515 	if (ring->desc) {
2516 		dma_free_coherent(ring_to_dev(ring), size,
2517 				  ring->desc, ring->desc_dma_addr);
2518 		ring->desc = NULL;
2519 	}
2520 }
2521 
2522 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2523 {
2524 	int size = ring->desc_num * sizeof(ring->desc[0]);
2525 
2526 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2527 					&ring->desc_dma_addr, GFP_KERNEL);
2528 	if (!ring->desc)
2529 		return -ENOMEM;
2530 
2531 	return 0;
2532 }
2533 
2534 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2535 				   struct hns3_desc_cb *cb)
2536 {
2537 	int ret;
2538 
2539 	ret = hns3_alloc_buffer(ring, cb);
2540 	if (ret)
2541 		goto out;
2542 
2543 	ret = hns3_map_buffer(ring, cb);
2544 	if (ret)
2545 		goto out_with_buf;
2546 
2547 	return 0;
2548 
2549 out_with_buf:
2550 	hns3_free_buffer(ring, cb, 0);
2551 out:
2552 	return ret;
2553 }
2554 
2555 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2556 {
2557 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2558 
2559 	if (ret)
2560 		return ret;
2561 
2562 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2563 
2564 	return 0;
2565 }
2566 
2567 /* Allocate memory for raw pkg, and map with dma */
2568 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2569 {
2570 	int i, j, ret;
2571 
2572 	for (i = 0; i < ring->desc_num; i++) {
2573 		ret = hns3_alloc_and_attach_buffer(ring, i);
2574 		if (ret)
2575 			goto out_buffer_fail;
2576 	}
2577 
2578 	return 0;
2579 
2580 out_buffer_fail:
2581 	for (j = i - 1; j >= 0; j--)
2582 		hns3_free_buffer_detach(ring, j, 0);
2583 	return ret;
2584 }
2585 
2586 /* detach a in-used buffer and replace with a reserved one */
2587 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2588 				struct hns3_desc_cb *res_cb)
2589 {
2590 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2591 	ring->desc_cb[i] = *res_cb;
2592 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2593 	ring->desc[i].rx.bd_base_info = 0;
2594 }
2595 
2596 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2597 {
2598 	ring->desc_cb[i].reuse_flag = 0;
2599 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2600 					 ring->desc_cb[i].page_offset);
2601 	ring->desc[i].rx.bd_base_info = 0;
2602 
2603 	dma_sync_single_for_device(ring_to_dev(ring),
2604 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2605 			hns3_buf_size(ring),
2606 			DMA_FROM_DEVICE);
2607 }
2608 
2609 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2610 				  int *bytes, int *pkts, int budget)
2611 {
2612 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2613 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2614 	 * the doorbell operation already have the needed barrier operation.
2615 	 */
2616 	int ltu = smp_load_acquire(&ring->last_to_use);
2617 	int ntc = ring->next_to_clean;
2618 	struct hns3_desc_cb *desc_cb;
2619 	bool reclaimed = false;
2620 	struct hns3_desc *desc;
2621 
2622 	while (ltu != ntc) {
2623 		desc = &ring->desc[ntc];
2624 
2625 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2626 				BIT(HNS3_TXD_VLD_B))
2627 			break;
2628 
2629 		desc_cb = &ring->desc_cb[ntc];
2630 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2631 		(*bytes) += desc_cb->length;
2632 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2633 		hns3_free_buffer_detach(ring, ntc, budget);
2634 
2635 		if (++ntc == ring->desc_num)
2636 			ntc = 0;
2637 
2638 		/* Issue prefetch for next Tx descriptor */
2639 		prefetch(&ring->desc_cb[ntc]);
2640 		reclaimed = true;
2641 	}
2642 
2643 	if (unlikely(!reclaimed))
2644 		return false;
2645 
2646 	/* This smp_store_release() pairs with smp_load_acquire() in
2647 	 * ring_space called by hns3_nic_net_xmit.
2648 	 */
2649 	smp_store_release(&ring->next_to_clean, ntc);
2650 	return true;
2651 }
2652 
2653 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2654 {
2655 	struct net_device *netdev = ring_to_netdev(ring);
2656 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2657 	struct netdev_queue *dev_queue;
2658 	int bytes, pkts;
2659 
2660 	bytes = 0;
2661 	pkts = 0;
2662 
2663 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2664 		return;
2665 
2666 	ring->tqp_vector->tx_group.total_bytes += bytes;
2667 	ring->tqp_vector->tx_group.total_packets += pkts;
2668 
2669 	u64_stats_update_begin(&ring->syncp);
2670 	ring->stats.tx_bytes += bytes;
2671 	ring->stats.tx_pkts += pkts;
2672 	u64_stats_update_end(&ring->syncp);
2673 
2674 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2675 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2676 
2677 	if (unlikely(netif_carrier_ok(netdev) &&
2678 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2679 		/* Make sure that anybody stopping the queue after this
2680 		 * sees the new next_to_clean.
2681 		 */
2682 		smp_mb();
2683 		if (netif_tx_queue_stopped(dev_queue) &&
2684 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2685 			netif_tx_wake_queue(dev_queue);
2686 			ring->stats.restart_queue++;
2687 		}
2688 	}
2689 }
2690 
2691 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2692 {
2693 	int ntc = ring->next_to_clean;
2694 	int ntu = ring->next_to_use;
2695 
2696 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2697 }
2698 
2699 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2700 				      int cleand_count)
2701 {
2702 	struct hns3_desc_cb *desc_cb;
2703 	struct hns3_desc_cb res_cbs;
2704 	int i, ret;
2705 
2706 	for (i = 0; i < cleand_count; i++) {
2707 		desc_cb = &ring->desc_cb[ring->next_to_use];
2708 		if (desc_cb->reuse_flag) {
2709 			u64_stats_update_begin(&ring->syncp);
2710 			ring->stats.reuse_pg_cnt++;
2711 			u64_stats_update_end(&ring->syncp);
2712 
2713 			hns3_reuse_buffer(ring, ring->next_to_use);
2714 		} else {
2715 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2716 			if (ret) {
2717 				u64_stats_update_begin(&ring->syncp);
2718 				ring->stats.sw_err_cnt++;
2719 				u64_stats_update_end(&ring->syncp);
2720 
2721 				hns3_rl_err(ring_to_netdev(ring),
2722 					    "alloc rx buffer failed: %d\n",
2723 					    ret);
2724 				break;
2725 			}
2726 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2727 
2728 			u64_stats_update_begin(&ring->syncp);
2729 			ring->stats.non_reuse_pg++;
2730 			u64_stats_update_end(&ring->syncp);
2731 		}
2732 
2733 		ring_ptr_move_fw(ring, next_to_use);
2734 	}
2735 
2736 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2737 }
2738 
2739 static bool hns3_page_is_reusable(struct page *page)
2740 {
2741 	return page_to_nid(page) == numa_mem_id() &&
2742 		!page_is_pfmemalloc(page);
2743 }
2744 
2745 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2746 {
2747 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2748 }
2749 
2750 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2751 				struct hns3_enet_ring *ring, int pull_len,
2752 				struct hns3_desc_cb *desc_cb)
2753 {
2754 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2755 	int size = le16_to_cpu(desc->rx.size);
2756 	u32 truesize = hns3_buf_size(ring);
2757 
2758 	desc_cb->pagecnt_bias--;
2759 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2760 			size - pull_len, truesize);
2761 
2762 	/* Avoid re-using remote pages, or the stack is still using the page
2763 	 * when page_offset rollback to zero, flag default unreuse
2764 	 */
2765 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2766 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2767 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2768 		return;
2769 	}
2770 
2771 	/* Move offset up to the next cache line */
2772 	desc_cb->page_offset += truesize;
2773 
2774 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2775 		desc_cb->reuse_flag = 1;
2776 	} else if (hns3_can_reuse_page(desc_cb)) {
2777 		desc_cb->reuse_flag = 1;
2778 		desc_cb->page_offset = 0;
2779 	} else if (desc_cb->pagecnt_bias) {
2780 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2781 		return;
2782 	}
2783 
2784 	if (unlikely(!desc_cb->pagecnt_bias)) {
2785 		page_ref_add(desc_cb->priv, USHRT_MAX);
2786 		desc_cb->pagecnt_bias = USHRT_MAX;
2787 	}
2788 }
2789 
2790 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2791 {
2792 	__be16 type = skb->protocol;
2793 	struct tcphdr *th;
2794 	int depth = 0;
2795 
2796 	while (eth_type_vlan(type)) {
2797 		struct vlan_hdr *vh;
2798 
2799 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2800 			return -EFAULT;
2801 
2802 		vh = (struct vlan_hdr *)(skb->data + depth);
2803 		type = vh->h_vlan_encapsulated_proto;
2804 		depth += VLAN_HLEN;
2805 	}
2806 
2807 	skb_set_network_header(skb, depth);
2808 
2809 	if (type == htons(ETH_P_IP)) {
2810 		const struct iphdr *iph = ip_hdr(skb);
2811 
2812 		depth += sizeof(struct iphdr);
2813 		skb_set_transport_header(skb, depth);
2814 		th = tcp_hdr(skb);
2815 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2816 					  iph->daddr, 0);
2817 	} else if (type == htons(ETH_P_IPV6)) {
2818 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2819 
2820 		depth += sizeof(struct ipv6hdr);
2821 		skb_set_transport_header(skb, depth);
2822 		th = tcp_hdr(skb);
2823 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2824 					  &iph->daddr, 0);
2825 	} else {
2826 		hns3_rl_err(skb->dev,
2827 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2828 			    be16_to_cpu(type), depth);
2829 		return -EFAULT;
2830 	}
2831 
2832 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2833 	if (th->cwr)
2834 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2835 
2836 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2837 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2838 
2839 	skb->csum_start = (unsigned char *)th - skb->head;
2840 	skb->csum_offset = offsetof(struct tcphdr, check);
2841 	skb->ip_summed = CHECKSUM_PARTIAL;
2842 
2843 	trace_hns3_gro(skb);
2844 
2845 	return 0;
2846 }
2847 
2848 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2849 				   struct sk_buff *skb, u32 l234info)
2850 {
2851 	u32 lo, hi;
2852 
2853 	u64_stats_update_begin(&ring->syncp);
2854 	ring->stats.csum_complete++;
2855 	u64_stats_update_end(&ring->syncp);
2856 	skb->ip_summed = CHECKSUM_COMPLETE;
2857 	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2858 			     HNS3_RXD_L2_CSUM_L_S);
2859 	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2860 			     HNS3_RXD_L2_CSUM_H_S);
2861 	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2862 }
2863 
2864 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2865 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2866 {
2867 	struct net_device *netdev = ring_to_netdev(ring);
2868 	int l3_type, l4_type;
2869 	int ol4_type;
2870 
2871 	skb->ip_summed = CHECKSUM_NONE;
2872 
2873 	skb_checksum_none_assert(skb);
2874 
2875 	if (!(netdev->features & NETIF_F_RXCSUM))
2876 		return;
2877 
2878 	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
2879 		hns3_checksum_complete(ring, skb, l234info);
2880 		return;
2881 	}
2882 
2883 	/* check if hardware has done checksum */
2884 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2885 		return;
2886 
2887 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2888 				 BIT(HNS3_RXD_OL3E_B) |
2889 				 BIT(HNS3_RXD_OL4E_B)))) {
2890 		u64_stats_update_begin(&ring->syncp);
2891 		ring->stats.l3l4_csum_err++;
2892 		u64_stats_update_end(&ring->syncp);
2893 
2894 		return;
2895 	}
2896 
2897 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2898 				   HNS3_RXD_OL4ID_S);
2899 	switch (ol4_type) {
2900 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2901 	case HNS3_OL4_TYPE_NVGRE:
2902 		skb->csum_level = 1;
2903 		fallthrough;
2904 	case HNS3_OL4_TYPE_NO_TUN:
2905 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2906 					  HNS3_RXD_L3ID_S);
2907 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2908 					  HNS3_RXD_L4ID_S);
2909 
2910 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2911 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2912 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2913 		    (l4_type == HNS3_L4_TYPE_UDP ||
2914 		     l4_type == HNS3_L4_TYPE_TCP ||
2915 		     l4_type == HNS3_L4_TYPE_SCTP))
2916 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2917 		break;
2918 	default:
2919 		break;
2920 	}
2921 }
2922 
2923 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2924 {
2925 	if (skb_has_frag_list(skb))
2926 		napi_gro_flush(&ring->tqp_vector->napi, false);
2927 
2928 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2929 }
2930 
2931 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2932 				struct hns3_desc *desc, u32 l234info,
2933 				u16 *vlan_tag)
2934 {
2935 	struct hnae3_handle *handle = ring->tqp->handle;
2936 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2937 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2938 
2939 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2940 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2941 		if (!(*vlan_tag & VLAN_VID_MASK))
2942 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2943 
2944 		return (*vlan_tag != 0);
2945 	}
2946 
2947 #define HNS3_STRP_OUTER_VLAN	0x1
2948 #define HNS3_STRP_INNER_VLAN	0x2
2949 #define HNS3_STRP_BOTH		0x3
2950 
2951 	/* Hardware always insert VLAN tag into RX descriptor when
2952 	 * remove the tag from packet, driver needs to determine
2953 	 * reporting which tag to stack.
2954 	 */
2955 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2956 				HNS3_RXD_STRP_TAGP_S)) {
2957 	case HNS3_STRP_OUTER_VLAN:
2958 		if (handle->port_base_vlan_state !=
2959 				HNAE3_PORT_BASE_VLAN_DISABLE)
2960 			return false;
2961 
2962 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2963 		return true;
2964 	case HNS3_STRP_INNER_VLAN:
2965 		if (handle->port_base_vlan_state !=
2966 				HNAE3_PORT_BASE_VLAN_DISABLE)
2967 			return false;
2968 
2969 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2970 		return true;
2971 	case HNS3_STRP_BOTH:
2972 		if (handle->port_base_vlan_state ==
2973 				HNAE3_PORT_BASE_VLAN_DISABLE)
2974 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2975 		else
2976 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2977 
2978 		return true;
2979 	default:
2980 		return false;
2981 	}
2982 }
2983 
2984 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
2985 {
2986 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
2987 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
2988 	ring->next_to_clean += 1;
2989 
2990 	if (unlikely(ring->next_to_clean == ring->desc_num))
2991 		ring->next_to_clean = 0;
2992 }
2993 
2994 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2995 			  unsigned char *va)
2996 {
2997 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2998 	struct net_device *netdev = ring_to_netdev(ring);
2999 	struct sk_buff *skb;
3000 
3001 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3002 	skb = ring->skb;
3003 	if (unlikely(!skb)) {
3004 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3005 
3006 		u64_stats_update_begin(&ring->syncp);
3007 		ring->stats.sw_err_cnt++;
3008 		u64_stats_update_end(&ring->syncp);
3009 
3010 		return -ENOMEM;
3011 	}
3012 
3013 	trace_hns3_rx_desc(ring);
3014 	prefetchw(skb->data);
3015 
3016 	ring->pending_buf = 1;
3017 	ring->frag_num = 0;
3018 	ring->tail_skb = NULL;
3019 	if (length <= HNS3_RX_HEAD_SIZE) {
3020 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3021 
3022 		/* We can reuse buffer as-is, just make sure it is local */
3023 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
3024 			desc_cb->reuse_flag = 1;
3025 		else /* This page cannot be reused so discard it */
3026 			__page_frag_cache_drain(desc_cb->priv,
3027 						desc_cb->pagecnt_bias);
3028 
3029 		hns3_rx_ring_move_fw(ring);
3030 		return 0;
3031 	}
3032 	u64_stats_update_begin(&ring->syncp);
3033 	ring->stats.seg_pkt_cnt++;
3034 	u64_stats_update_end(&ring->syncp);
3035 
3036 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3037 	__skb_put(skb, ring->pull_len);
3038 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3039 			    desc_cb);
3040 	hns3_rx_ring_move_fw(ring);
3041 
3042 	return 0;
3043 }
3044 
3045 static int hns3_add_frag(struct hns3_enet_ring *ring)
3046 {
3047 	struct sk_buff *skb = ring->skb;
3048 	struct sk_buff *head_skb = skb;
3049 	struct sk_buff *new_skb;
3050 	struct hns3_desc_cb *desc_cb;
3051 	struct hns3_desc *desc;
3052 	u32 bd_base_info;
3053 
3054 	do {
3055 		desc = &ring->desc[ring->next_to_clean];
3056 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3057 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3058 		/* make sure HW write desc complete */
3059 		dma_rmb();
3060 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3061 			return -ENXIO;
3062 
3063 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3064 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3065 			if (unlikely(!new_skb)) {
3066 				hns3_rl_err(ring_to_netdev(ring),
3067 					    "alloc rx fraglist skb fail\n");
3068 				return -ENXIO;
3069 			}
3070 			ring->frag_num = 0;
3071 
3072 			if (ring->tail_skb) {
3073 				ring->tail_skb->next = new_skb;
3074 				ring->tail_skb = new_skb;
3075 			} else {
3076 				skb_shinfo(skb)->frag_list = new_skb;
3077 				ring->tail_skb = new_skb;
3078 			}
3079 		}
3080 
3081 		if (ring->tail_skb) {
3082 			head_skb->truesize += hns3_buf_size(ring);
3083 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3084 			head_skb->len += le16_to_cpu(desc->rx.size);
3085 			skb = ring->tail_skb;
3086 		}
3087 
3088 		dma_sync_single_for_cpu(ring_to_dev(ring),
3089 				desc_cb->dma + desc_cb->page_offset,
3090 				hns3_buf_size(ring),
3091 				DMA_FROM_DEVICE);
3092 
3093 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3094 		trace_hns3_rx_desc(ring);
3095 		hns3_rx_ring_move_fw(ring);
3096 		ring->pending_buf++;
3097 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3098 
3099 	return 0;
3100 }
3101 
3102 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3103 				     struct sk_buff *skb, u32 l234info,
3104 				     u32 bd_base_info, u32 ol_info)
3105 {
3106 	u32 l3_type;
3107 
3108 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3109 						    HNS3_RXD_GRO_SIZE_M,
3110 						    HNS3_RXD_GRO_SIZE_S);
3111 	/* if there is no HW GRO, do not set gro params */
3112 	if (!skb_shinfo(skb)->gso_size) {
3113 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3114 		return 0;
3115 	}
3116 
3117 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3118 						  HNS3_RXD_GRO_COUNT_M,
3119 						  HNS3_RXD_GRO_COUNT_S);
3120 
3121 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3122 	if (l3_type == HNS3_L3_TYPE_IPV4)
3123 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3124 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3125 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3126 	else
3127 		return -EFAULT;
3128 
3129 	return  hns3_gro_complete(skb, l234info);
3130 }
3131 
3132 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3133 				     struct sk_buff *skb, u32 rss_hash)
3134 {
3135 	struct hnae3_handle *handle = ring->tqp->handle;
3136 	enum pkt_hash_types rss_type;
3137 
3138 	if (rss_hash)
3139 		rss_type = handle->kinfo.rss_type;
3140 	else
3141 		rss_type = PKT_HASH_TYPE_NONE;
3142 
3143 	skb_set_hash(skb, rss_hash, rss_type);
3144 }
3145 
3146 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3147 {
3148 	struct net_device *netdev = ring_to_netdev(ring);
3149 	enum hns3_pkt_l2t_type l2_frame_type;
3150 	u32 bd_base_info, l234info, ol_info;
3151 	struct hns3_desc *desc;
3152 	unsigned int len;
3153 	int pre_ntc, ret;
3154 
3155 	/* bdinfo handled below is only valid on the last BD of the
3156 	 * current packet, and ring->next_to_clean indicates the first
3157 	 * descriptor of next packet, so need - 1 below.
3158 	 */
3159 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3160 					(ring->desc_num - 1);
3161 	desc = &ring->desc[pre_ntc];
3162 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3163 	l234info = le32_to_cpu(desc->rx.l234_info);
3164 	ol_info = le32_to_cpu(desc->rx.ol_info);
3165 
3166 	/* Based on hw strategy, the tag offloaded will be stored at
3167 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3168 	 * in one layer tag case.
3169 	 */
3170 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3171 		u16 vlan_tag;
3172 
3173 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3174 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3175 					       vlan_tag);
3176 	}
3177 
3178 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3179 				  BIT(HNS3_RXD_L2E_B))))) {
3180 		u64_stats_update_begin(&ring->syncp);
3181 		if (l234info & BIT(HNS3_RXD_L2E_B))
3182 			ring->stats.l2_err++;
3183 		else
3184 			ring->stats.err_pkt_len++;
3185 		u64_stats_update_end(&ring->syncp);
3186 
3187 		return -EFAULT;
3188 	}
3189 
3190 	len = skb->len;
3191 
3192 	/* Do update ip stack process */
3193 	skb->protocol = eth_type_trans(skb, netdev);
3194 
3195 	/* This is needed in order to enable forwarding support */
3196 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3197 					bd_base_info, ol_info);
3198 	if (unlikely(ret)) {
3199 		u64_stats_update_begin(&ring->syncp);
3200 		ring->stats.rx_err_cnt++;
3201 		u64_stats_update_end(&ring->syncp);
3202 		return ret;
3203 	}
3204 
3205 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3206 					HNS3_RXD_DMAC_S);
3207 
3208 	u64_stats_update_begin(&ring->syncp);
3209 	ring->stats.rx_pkts++;
3210 	ring->stats.rx_bytes += len;
3211 
3212 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3213 		ring->stats.rx_multicast++;
3214 
3215 	u64_stats_update_end(&ring->syncp);
3216 
3217 	ring->tqp_vector->rx_group.total_bytes += len;
3218 
3219 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3220 	return 0;
3221 }
3222 
3223 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3224 {
3225 	struct sk_buff *skb = ring->skb;
3226 	struct hns3_desc_cb *desc_cb;
3227 	struct hns3_desc *desc;
3228 	unsigned int length;
3229 	u32 bd_base_info;
3230 	int ret;
3231 
3232 	desc = &ring->desc[ring->next_to_clean];
3233 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3234 
3235 	prefetch(desc);
3236 
3237 	if (!skb) {
3238 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3239 
3240 		/* Check valid BD */
3241 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3242 			return -ENXIO;
3243 
3244 		dma_rmb();
3245 		length = le16_to_cpu(desc->rx.size);
3246 
3247 		ring->va = desc_cb->buf + desc_cb->page_offset;
3248 
3249 		dma_sync_single_for_cpu(ring_to_dev(ring),
3250 				desc_cb->dma + desc_cb->page_offset,
3251 				hns3_buf_size(ring),
3252 				DMA_FROM_DEVICE);
3253 
3254 		/* Prefetch first cache line of first page.
3255 		 * Idea is to cache few bytes of the header of the packet.
3256 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3257 		 * it 128B. But in actual we can have greater size of caches with
3258 		 * 128B Level 1 cache lines. In such a case, single fetch would
3259 		 * suffice to cache in the relevant part of the header.
3260 		 */
3261 		net_prefetch(ring->va);
3262 
3263 		ret = hns3_alloc_skb(ring, length, ring->va);
3264 		skb = ring->skb;
3265 
3266 		if (ret < 0) /* alloc buffer fail */
3267 			return ret;
3268 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3269 			ret = hns3_add_frag(ring);
3270 			if (ret)
3271 				return ret;
3272 		}
3273 	} else {
3274 		ret = hns3_add_frag(ring);
3275 		if (ret)
3276 			return ret;
3277 	}
3278 
3279 	/* As the head data may be changed when GRO enable, copy
3280 	 * the head data in after other data rx completed
3281 	 */
3282 	if (skb->len > HNS3_RX_HEAD_SIZE)
3283 		memcpy(skb->data, ring->va,
3284 		       ALIGN(ring->pull_len, sizeof(long)));
3285 
3286 	ret = hns3_handle_bdinfo(ring, skb);
3287 	if (unlikely(ret)) {
3288 		dev_kfree_skb_any(skb);
3289 		return ret;
3290 	}
3291 
3292 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3293 	return 0;
3294 }
3295 
3296 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3297 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3298 {
3299 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3300 	int unused_count = hns3_desc_unused(ring);
3301 	int recv_pkts = 0;
3302 	int err;
3303 
3304 	unused_count -= ring->pending_buf;
3305 
3306 	while (recv_pkts < budget) {
3307 		/* Reuse or realloc buffers */
3308 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3309 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3310 			unused_count = hns3_desc_unused(ring) -
3311 					ring->pending_buf;
3312 		}
3313 
3314 		/* Poll one pkt */
3315 		err = hns3_handle_rx_bd(ring);
3316 		/* Do not get FE for the packet or failed to alloc skb */
3317 		if (unlikely(!ring->skb || err == -ENXIO)) {
3318 			goto out;
3319 		} else if (likely(!err)) {
3320 			rx_fn(ring, ring->skb);
3321 			recv_pkts++;
3322 		}
3323 
3324 		unused_count += ring->pending_buf;
3325 		ring->skb = NULL;
3326 		ring->pending_buf = 0;
3327 	}
3328 
3329 out:
3330 	/* Make all data has been write before submit */
3331 	if (unused_count > 0)
3332 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3333 
3334 	return recv_pkts;
3335 }
3336 
3337 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3338 {
3339 #define HNS3_RX_LOW_BYTE_RATE 10000
3340 #define HNS3_RX_MID_BYTE_RATE 20000
3341 #define HNS3_RX_ULTRA_PACKET_RATE 40
3342 
3343 	enum hns3_flow_level_range new_flow_level;
3344 	struct hns3_enet_tqp_vector *tqp_vector;
3345 	int packets_per_msecs, bytes_per_msecs;
3346 	u32 time_passed_ms;
3347 
3348 	tqp_vector = ring_group->ring->tqp_vector;
3349 	time_passed_ms =
3350 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3351 	if (!time_passed_ms)
3352 		return false;
3353 
3354 	do_div(ring_group->total_packets, time_passed_ms);
3355 	packets_per_msecs = ring_group->total_packets;
3356 
3357 	do_div(ring_group->total_bytes, time_passed_ms);
3358 	bytes_per_msecs = ring_group->total_bytes;
3359 
3360 	new_flow_level = ring_group->coal.flow_level;
3361 
3362 	/* Simple throttlerate management
3363 	 * 0-10MB/s   lower     (50000 ints/s)
3364 	 * 10-20MB/s   middle    (20000 ints/s)
3365 	 * 20-1249MB/s high      (18000 ints/s)
3366 	 * > 40000pps  ultra     (8000 ints/s)
3367 	 */
3368 	switch (new_flow_level) {
3369 	case HNS3_FLOW_LOW:
3370 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3371 			new_flow_level = HNS3_FLOW_MID;
3372 		break;
3373 	case HNS3_FLOW_MID:
3374 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3375 			new_flow_level = HNS3_FLOW_HIGH;
3376 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3377 			new_flow_level = HNS3_FLOW_LOW;
3378 		break;
3379 	case HNS3_FLOW_HIGH:
3380 	case HNS3_FLOW_ULTRA:
3381 	default:
3382 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3383 			new_flow_level = HNS3_FLOW_MID;
3384 		break;
3385 	}
3386 
3387 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3388 	    &tqp_vector->rx_group == ring_group)
3389 		new_flow_level = HNS3_FLOW_ULTRA;
3390 
3391 	ring_group->total_bytes = 0;
3392 	ring_group->total_packets = 0;
3393 	ring_group->coal.flow_level = new_flow_level;
3394 
3395 	return true;
3396 }
3397 
3398 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3399 {
3400 	struct hns3_enet_tqp_vector *tqp_vector;
3401 	u16 new_int_gl;
3402 
3403 	if (!ring_group->ring)
3404 		return false;
3405 
3406 	tqp_vector = ring_group->ring->tqp_vector;
3407 	if (!tqp_vector->last_jiffies)
3408 		return false;
3409 
3410 	if (ring_group->total_packets == 0) {
3411 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3412 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3413 		return true;
3414 	}
3415 
3416 	if (!hns3_get_new_flow_lvl(ring_group))
3417 		return false;
3418 
3419 	new_int_gl = ring_group->coal.int_gl;
3420 	switch (ring_group->coal.flow_level) {
3421 	case HNS3_FLOW_LOW:
3422 		new_int_gl = HNS3_INT_GL_50K;
3423 		break;
3424 	case HNS3_FLOW_MID:
3425 		new_int_gl = HNS3_INT_GL_20K;
3426 		break;
3427 	case HNS3_FLOW_HIGH:
3428 		new_int_gl = HNS3_INT_GL_18K;
3429 		break;
3430 	case HNS3_FLOW_ULTRA:
3431 		new_int_gl = HNS3_INT_GL_8K;
3432 		break;
3433 	default:
3434 		break;
3435 	}
3436 
3437 	if (new_int_gl != ring_group->coal.int_gl) {
3438 		ring_group->coal.int_gl = new_int_gl;
3439 		return true;
3440 	}
3441 	return false;
3442 }
3443 
3444 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3445 {
3446 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3447 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3448 	bool rx_update, tx_update;
3449 
3450 	/* update param every 1000ms */
3451 	if (time_before(jiffies,
3452 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3453 		return;
3454 
3455 	if (rx_group->coal.adapt_enable) {
3456 		rx_update = hns3_get_new_int_gl(rx_group);
3457 		if (rx_update)
3458 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3459 						       rx_group->coal.int_gl);
3460 	}
3461 
3462 	if (tx_group->coal.adapt_enable) {
3463 		tx_update = hns3_get_new_int_gl(tx_group);
3464 		if (tx_update)
3465 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3466 						       tx_group->coal.int_gl);
3467 	}
3468 
3469 	tqp_vector->last_jiffies = jiffies;
3470 }
3471 
3472 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3473 {
3474 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3475 	struct hns3_enet_ring *ring;
3476 	int rx_pkt_total = 0;
3477 
3478 	struct hns3_enet_tqp_vector *tqp_vector =
3479 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3480 	bool clean_complete = true;
3481 	int rx_budget = budget;
3482 
3483 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3484 		napi_complete(napi);
3485 		return 0;
3486 	}
3487 
3488 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3489 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3490 	 */
3491 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3492 		hns3_clean_tx_ring(ring, budget);
3493 
3494 	/* make sure rx ring budget not smaller than 1 */
3495 	if (tqp_vector->num_tqps > 1)
3496 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3497 
3498 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3499 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3500 						    hns3_rx_skb);
3501 
3502 		if (rx_cleaned >= rx_budget)
3503 			clean_complete = false;
3504 
3505 		rx_pkt_total += rx_cleaned;
3506 	}
3507 
3508 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3509 
3510 	if (!clean_complete)
3511 		return budget;
3512 
3513 	if (napi_complete(napi) &&
3514 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3515 		hns3_update_new_int_gl(tqp_vector);
3516 		hns3_mask_vector_irq(tqp_vector, 1);
3517 	}
3518 
3519 	return rx_pkt_total;
3520 }
3521 
3522 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3523 				      struct hnae3_ring_chain_node *head)
3524 {
3525 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3526 	struct hnae3_ring_chain_node *cur_chain = head;
3527 	struct hnae3_ring_chain_node *chain;
3528 	struct hns3_enet_ring *tx_ring;
3529 	struct hns3_enet_ring *rx_ring;
3530 
3531 	tx_ring = tqp_vector->tx_group.ring;
3532 	if (tx_ring) {
3533 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3534 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3535 			      HNAE3_RING_TYPE_TX);
3536 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3537 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3538 
3539 		cur_chain->next = NULL;
3540 
3541 		while (tx_ring->next) {
3542 			tx_ring = tx_ring->next;
3543 
3544 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3545 					     GFP_KERNEL);
3546 			if (!chain)
3547 				goto err_free_chain;
3548 
3549 			cur_chain->next = chain;
3550 			chain->tqp_index = tx_ring->tqp->tqp_index;
3551 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3552 				      HNAE3_RING_TYPE_TX);
3553 			hnae3_set_field(chain->int_gl_idx,
3554 					HNAE3_RING_GL_IDX_M,
3555 					HNAE3_RING_GL_IDX_S,
3556 					HNAE3_RING_GL_TX);
3557 
3558 			cur_chain = chain;
3559 		}
3560 	}
3561 
3562 	rx_ring = tqp_vector->rx_group.ring;
3563 	if (!tx_ring && rx_ring) {
3564 		cur_chain->next = NULL;
3565 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3566 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3567 			      HNAE3_RING_TYPE_RX);
3568 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3569 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3570 
3571 		rx_ring = rx_ring->next;
3572 	}
3573 
3574 	while (rx_ring) {
3575 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3576 		if (!chain)
3577 			goto err_free_chain;
3578 
3579 		cur_chain->next = chain;
3580 		chain->tqp_index = rx_ring->tqp->tqp_index;
3581 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3582 			      HNAE3_RING_TYPE_RX);
3583 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3584 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3585 
3586 		cur_chain = chain;
3587 
3588 		rx_ring = rx_ring->next;
3589 	}
3590 
3591 	return 0;
3592 
3593 err_free_chain:
3594 	cur_chain = head->next;
3595 	while (cur_chain) {
3596 		chain = cur_chain->next;
3597 		devm_kfree(&pdev->dev, cur_chain);
3598 		cur_chain = chain;
3599 	}
3600 	head->next = NULL;
3601 
3602 	return -ENOMEM;
3603 }
3604 
3605 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3606 					struct hnae3_ring_chain_node *head)
3607 {
3608 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3609 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3610 
3611 	chain = head->next;
3612 
3613 	while (chain) {
3614 		chain_tmp = chain->next;
3615 		devm_kfree(&pdev->dev, chain);
3616 		chain = chain_tmp;
3617 	}
3618 }
3619 
3620 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3621 				   struct hns3_enet_ring *ring)
3622 {
3623 	ring->next = group->ring;
3624 	group->ring = ring;
3625 
3626 	group->count++;
3627 }
3628 
3629 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3630 {
3631 	struct pci_dev *pdev = priv->ae_handle->pdev;
3632 	struct hns3_enet_tqp_vector *tqp_vector;
3633 	int num_vectors = priv->vector_num;
3634 	int numa_node;
3635 	int vector_i;
3636 
3637 	numa_node = dev_to_node(&pdev->dev);
3638 
3639 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3640 		tqp_vector = &priv->tqp_vector[vector_i];
3641 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3642 				&tqp_vector->affinity_mask);
3643 	}
3644 }
3645 
3646 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3647 {
3648 	struct hnae3_ring_chain_node vector_ring_chain;
3649 	struct hnae3_handle *h = priv->ae_handle;
3650 	struct hns3_enet_tqp_vector *tqp_vector;
3651 	int ret;
3652 	int i;
3653 
3654 	hns3_nic_set_cpumask(priv);
3655 
3656 	for (i = 0; i < priv->vector_num; i++) {
3657 		tqp_vector = &priv->tqp_vector[i];
3658 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3659 		tqp_vector->num_tqps = 0;
3660 	}
3661 
3662 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3663 		u16 vector_i = i % priv->vector_num;
3664 		u16 tqp_num = h->kinfo.num_tqps;
3665 
3666 		tqp_vector = &priv->tqp_vector[vector_i];
3667 
3668 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3669 				       &priv->ring[i]);
3670 
3671 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3672 				       &priv->ring[i + tqp_num]);
3673 
3674 		priv->ring[i].tqp_vector = tqp_vector;
3675 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3676 		tqp_vector->num_tqps++;
3677 	}
3678 
3679 	for (i = 0; i < priv->vector_num; i++) {
3680 		tqp_vector = &priv->tqp_vector[i];
3681 
3682 		tqp_vector->rx_group.total_bytes = 0;
3683 		tqp_vector->rx_group.total_packets = 0;
3684 		tqp_vector->tx_group.total_bytes = 0;
3685 		tqp_vector->tx_group.total_packets = 0;
3686 		tqp_vector->handle = h;
3687 
3688 		ret = hns3_get_vector_ring_chain(tqp_vector,
3689 						 &vector_ring_chain);
3690 		if (ret)
3691 			goto map_ring_fail;
3692 
3693 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3694 			tqp_vector->vector_irq, &vector_ring_chain);
3695 
3696 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3697 
3698 		if (ret)
3699 			goto map_ring_fail;
3700 
3701 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3702 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3703 	}
3704 
3705 	return 0;
3706 
3707 map_ring_fail:
3708 	while (i--)
3709 		netif_napi_del(&priv->tqp_vector[i].napi);
3710 
3711 	return ret;
3712 }
3713 
3714 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3715 {
3716 	struct hnae3_handle *h = priv->ae_handle;
3717 	struct hns3_enet_tqp_vector *tqp_vector;
3718 	struct hnae3_vector_info *vector;
3719 	struct pci_dev *pdev = h->pdev;
3720 	u16 tqp_num = h->kinfo.num_tqps;
3721 	u16 vector_num;
3722 	int ret = 0;
3723 	u16 i;
3724 
3725 	/* RSS size, cpu online and vector_num should be the same */
3726 	/* Should consider 2p/4p later */
3727 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3728 
3729 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3730 			      GFP_KERNEL);
3731 	if (!vector)
3732 		return -ENOMEM;
3733 
3734 	/* save the actual available vector number */
3735 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3736 
3737 	priv->vector_num = vector_num;
3738 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3739 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3740 			     GFP_KERNEL);
3741 	if (!priv->tqp_vector) {
3742 		ret = -ENOMEM;
3743 		goto out;
3744 	}
3745 
3746 	for (i = 0; i < priv->vector_num; i++) {
3747 		tqp_vector = &priv->tqp_vector[i];
3748 		tqp_vector->idx = i;
3749 		tqp_vector->mask_addr = vector[i].io_addr;
3750 		tqp_vector->vector_irq = vector[i].vector;
3751 		hns3_vector_coalesce_init(tqp_vector, priv);
3752 	}
3753 
3754 out:
3755 	devm_kfree(&pdev->dev, vector);
3756 	return ret;
3757 }
3758 
3759 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3760 {
3761 	group->ring = NULL;
3762 	group->count = 0;
3763 }
3764 
3765 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3766 {
3767 	struct hnae3_ring_chain_node vector_ring_chain;
3768 	struct hnae3_handle *h = priv->ae_handle;
3769 	struct hns3_enet_tqp_vector *tqp_vector;
3770 	int i;
3771 
3772 	for (i = 0; i < priv->vector_num; i++) {
3773 		tqp_vector = &priv->tqp_vector[i];
3774 
3775 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3776 			continue;
3777 
3778 		/* Since the mapping can be overwritten, when fail to get the
3779 		 * chain between vector and ring, we should go on to deal with
3780 		 * the remaining options.
3781 		 */
3782 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3783 			dev_warn(priv->dev, "failed to get ring chain\n");
3784 
3785 		h->ae_algo->ops->unmap_ring_from_vector(h,
3786 			tqp_vector->vector_irq, &vector_ring_chain);
3787 
3788 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3789 
3790 		hns3_clear_ring_group(&tqp_vector->rx_group);
3791 		hns3_clear_ring_group(&tqp_vector->tx_group);
3792 		netif_napi_del(&priv->tqp_vector[i].napi);
3793 	}
3794 }
3795 
3796 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3797 {
3798 	struct hnae3_handle *h = priv->ae_handle;
3799 	struct pci_dev *pdev = h->pdev;
3800 	int i, ret;
3801 
3802 	for (i = 0; i < priv->vector_num; i++) {
3803 		struct hns3_enet_tqp_vector *tqp_vector;
3804 
3805 		tqp_vector = &priv->tqp_vector[i];
3806 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3807 		if (ret)
3808 			return;
3809 	}
3810 
3811 	devm_kfree(&pdev->dev, priv->tqp_vector);
3812 }
3813 
3814 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3815 			      unsigned int ring_type)
3816 {
3817 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3818 	struct hns3_enet_ring *ring;
3819 	int desc_num;
3820 
3821 	if (ring_type == HNAE3_RING_TYPE_TX) {
3822 		ring = &priv->ring[q->tqp_index];
3823 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3824 		ring->queue_index = q->tqp_index;
3825 	} else {
3826 		ring = &priv->ring[q->tqp_index + queue_num];
3827 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3828 		ring->queue_index = q->tqp_index;
3829 	}
3830 
3831 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3832 
3833 	ring->tqp = q;
3834 	ring->desc = NULL;
3835 	ring->desc_cb = NULL;
3836 	ring->dev = priv->dev;
3837 	ring->desc_dma_addr = 0;
3838 	ring->buf_size = q->buf_size;
3839 	ring->desc_num = desc_num;
3840 	ring->next_to_use = 0;
3841 	ring->next_to_clean = 0;
3842 	ring->last_to_use = 0;
3843 }
3844 
3845 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3846 			       struct hns3_nic_priv *priv)
3847 {
3848 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3849 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3850 }
3851 
3852 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3853 {
3854 	struct hnae3_handle *h = priv->ae_handle;
3855 	struct pci_dev *pdev = h->pdev;
3856 	int i;
3857 
3858 	priv->ring = devm_kzalloc(&pdev->dev,
3859 				  array3_size(h->kinfo.num_tqps,
3860 					      sizeof(*priv->ring), 2),
3861 				  GFP_KERNEL);
3862 	if (!priv->ring)
3863 		return -ENOMEM;
3864 
3865 	for (i = 0; i < h->kinfo.num_tqps; i++)
3866 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3867 
3868 	return 0;
3869 }
3870 
3871 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3872 {
3873 	if (!priv->ring)
3874 		return;
3875 
3876 	devm_kfree(priv->dev, priv->ring);
3877 	priv->ring = NULL;
3878 }
3879 
3880 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3881 {
3882 	int ret;
3883 
3884 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3885 		return -EINVAL;
3886 
3887 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3888 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3889 	if (!ring->desc_cb) {
3890 		ret = -ENOMEM;
3891 		goto out;
3892 	}
3893 
3894 	ret = hns3_alloc_desc(ring);
3895 	if (ret)
3896 		goto out_with_desc_cb;
3897 
3898 	if (!HNAE3_IS_TX_RING(ring)) {
3899 		ret = hns3_alloc_ring_buffers(ring);
3900 		if (ret)
3901 			goto out_with_desc;
3902 	}
3903 
3904 	return 0;
3905 
3906 out_with_desc:
3907 	hns3_free_desc(ring);
3908 out_with_desc_cb:
3909 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3910 	ring->desc_cb = NULL;
3911 out:
3912 	return ret;
3913 }
3914 
3915 void hns3_fini_ring(struct hns3_enet_ring *ring)
3916 {
3917 	hns3_free_desc(ring);
3918 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3919 	ring->desc_cb = NULL;
3920 	ring->next_to_clean = 0;
3921 	ring->next_to_use = 0;
3922 	ring->last_to_use = 0;
3923 	ring->pending_buf = 0;
3924 	if (ring->skb) {
3925 		dev_kfree_skb_any(ring->skb);
3926 		ring->skb = NULL;
3927 	}
3928 }
3929 
3930 static int hns3_buf_size2type(u32 buf_size)
3931 {
3932 	int bd_size_type;
3933 
3934 	switch (buf_size) {
3935 	case 512:
3936 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3937 		break;
3938 	case 1024:
3939 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3940 		break;
3941 	case 2048:
3942 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3943 		break;
3944 	case 4096:
3945 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3946 		break;
3947 	default:
3948 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3949 	}
3950 
3951 	return bd_size_type;
3952 }
3953 
3954 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3955 {
3956 	dma_addr_t dma = ring->desc_dma_addr;
3957 	struct hnae3_queue *q = ring->tqp;
3958 
3959 	if (!HNAE3_IS_TX_RING(ring)) {
3960 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3961 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3962 			       (u32)((dma >> 31) >> 1));
3963 
3964 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3965 			       hns3_buf_size2type(ring->buf_size));
3966 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3967 			       ring->desc_num / 8 - 1);
3968 
3969 	} else {
3970 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3971 			       (u32)dma);
3972 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3973 			       (u32)((dma >> 31) >> 1));
3974 
3975 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3976 			       ring->desc_num / 8 - 1);
3977 	}
3978 }
3979 
3980 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3981 {
3982 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3983 	int i;
3984 
3985 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3986 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3987 		int j;
3988 
3989 		if (!tc_info->enable)
3990 			continue;
3991 
3992 		for (j = 0; j < tc_info->tqp_count; j++) {
3993 			struct hnae3_queue *q;
3994 
3995 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3996 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3997 				       tc_info->tc);
3998 		}
3999 	}
4000 }
4001 
4002 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4003 {
4004 	struct hnae3_handle *h = priv->ae_handle;
4005 	int ring_num = h->kinfo.num_tqps * 2;
4006 	int i, j;
4007 	int ret;
4008 
4009 	for (i = 0; i < ring_num; i++) {
4010 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4011 		if (ret) {
4012 			dev_err(priv->dev,
4013 				"Alloc ring memory fail! ret=%d\n", ret);
4014 			goto out_when_alloc_ring_memory;
4015 		}
4016 
4017 		u64_stats_init(&priv->ring[i].syncp);
4018 	}
4019 
4020 	return 0;
4021 
4022 out_when_alloc_ring_memory:
4023 	for (j = i - 1; j >= 0; j--)
4024 		hns3_fini_ring(&priv->ring[j]);
4025 
4026 	return -ENOMEM;
4027 }
4028 
4029 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4030 {
4031 	struct hnae3_handle *h = priv->ae_handle;
4032 	int i;
4033 
4034 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4035 		hns3_fini_ring(&priv->ring[i]);
4036 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4037 	}
4038 	return 0;
4039 }
4040 
4041 /* Set mac addr if it is configured. or leave it to the AE driver */
4042 static int hns3_init_mac_addr(struct net_device *netdev)
4043 {
4044 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4045 	struct hnae3_handle *h = priv->ae_handle;
4046 	u8 mac_addr_temp[ETH_ALEN];
4047 	int ret = 0;
4048 
4049 	if (h->ae_algo->ops->get_mac_addr)
4050 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4051 
4052 	/* Check if the MAC address is valid, if not get a random one */
4053 	if (!is_valid_ether_addr(mac_addr_temp)) {
4054 		eth_hw_addr_random(netdev);
4055 		dev_warn(priv->dev, "using random MAC address %pM\n",
4056 			 netdev->dev_addr);
4057 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4058 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4059 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4060 	} else {
4061 		return 0;
4062 	}
4063 
4064 	if (h->ae_algo->ops->set_mac_addr)
4065 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4066 
4067 	return ret;
4068 }
4069 
4070 static int hns3_init_phy(struct net_device *netdev)
4071 {
4072 	struct hnae3_handle *h = hns3_get_handle(netdev);
4073 	int ret = 0;
4074 
4075 	if (h->ae_algo->ops->mac_connect_phy)
4076 		ret = h->ae_algo->ops->mac_connect_phy(h);
4077 
4078 	return ret;
4079 }
4080 
4081 static void hns3_uninit_phy(struct net_device *netdev)
4082 {
4083 	struct hnae3_handle *h = hns3_get_handle(netdev);
4084 
4085 	if (h->ae_algo->ops->mac_disconnect_phy)
4086 		h->ae_algo->ops->mac_disconnect_phy(h);
4087 }
4088 
4089 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4090 {
4091 	struct hnae3_handle *h = hns3_get_handle(netdev);
4092 
4093 	if (h->ae_algo->ops->del_all_fd_entries)
4094 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4095 }
4096 
4097 static int hns3_client_start(struct hnae3_handle *handle)
4098 {
4099 	if (!handle->ae_algo->ops->client_start)
4100 		return 0;
4101 
4102 	return handle->ae_algo->ops->client_start(handle);
4103 }
4104 
4105 static void hns3_client_stop(struct hnae3_handle *handle)
4106 {
4107 	if (!handle->ae_algo->ops->client_stop)
4108 		return;
4109 
4110 	handle->ae_algo->ops->client_stop(handle);
4111 }
4112 
4113 static void hns3_info_show(struct hns3_nic_priv *priv)
4114 {
4115 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4116 
4117 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4118 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4119 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4120 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4121 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4122 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4123 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4124 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
4125 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4126 }
4127 
4128 static int hns3_client_init(struct hnae3_handle *handle)
4129 {
4130 	struct pci_dev *pdev = handle->pdev;
4131 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4132 	u16 alloc_tqps, max_rss_size;
4133 	struct hns3_nic_priv *priv;
4134 	struct net_device *netdev;
4135 	int ret;
4136 
4137 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4138 						    &max_rss_size);
4139 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4140 	if (!netdev)
4141 		return -ENOMEM;
4142 
4143 	priv = netdev_priv(netdev);
4144 	priv->dev = &pdev->dev;
4145 	priv->netdev = netdev;
4146 	priv->ae_handle = handle;
4147 	priv->tx_timeout_count = 0;
4148 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4149 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4150 
4151 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4152 
4153 	handle->kinfo.netdev = netdev;
4154 	handle->priv = (void *)priv;
4155 
4156 	hns3_init_mac_addr(netdev);
4157 
4158 	hns3_set_default_feature(netdev);
4159 
4160 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4161 	netdev->priv_flags |= IFF_UNICAST_FLT;
4162 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4163 	SET_NETDEV_DEV(netdev, &pdev->dev);
4164 	hns3_ethtool_set_ops(netdev);
4165 
4166 	/* Carrier off reporting is important to ethtool even BEFORE open */
4167 	netif_carrier_off(netdev);
4168 
4169 	ret = hns3_get_ring_config(priv);
4170 	if (ret) {
4171 		ret = -ENOMEM;
4172 		goto out_get_ring_cfg;
4173 	}
4174 
4175 	ret = hns3_nic_alloc_vector_data(priv);
4176 	if (ret) {
4177 		ret = -ENOMEM;
4178 		goto out_alloc_vector_data;
4179 	}
4180 
4181 	ret = hns3_nic_init_vector_data(priv);
4182 	if (ret) {
4183 		ret = -ENOMEM;
4184 		goto out_init_vector_data;
4185 	}
4186 
4187 	ret = hns3_init_all_ring(priv);
4188 	if (ret) {
4189 		ret = -ENOMEM;
4190 		goto out_init_ring;
4191 	}
4192 
4193 	ret = hns3_init_phy(netdev);
4194 	if (ret)
4195 		goto out_init_phy;
4196 
4197 	ret = register_netdev(netdev);
4198 	if (ret) {
4199 		dev_err(priv->dev, "probe register netdev fail!\n");
4200 		goto out_reg_netdev_fail;
4201 	}
4202 
4203 	/* the device can work without cpu rmap, only aRFS needs it */
4204 	ret = hns3_set_rx_cpu_rmap(netdev);
4205 	if (ret)
4206 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4207 
4208 	ret = hns3_nic_init_irq(priv);
4209 	if (ret) {
4210 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4211 		hns3_free_rx_cpu_rmap(netdev);
4212 		goto out_init_irq_fail;
4213 	}
4214 
4215 	ret = hns3_client_start(handle);
4216 	if (ret) {
4217 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4218 		goto out_client_start;
4219 	}
4220 
4221 	hns3_dcbnl_setup(handle);
4222 
4223 	hns3_dbg_init(handle);
4224 
4225 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4226 	netdev->max_mtu = HNS3_MAX_MTU;
4227 
4228 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4229 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4230 
4231 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4232 
4233 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4234 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4235 
4236 	if (netif_msg_drv(handle))
4237 		hns3_info_show(priv);
4238 
4239 	return ret;
4240 
4241 out_client_start:
4242 	hns3_free_rx_cpu_rmap(netdev);
4243 	hns3_nic_uninit_irq(priv);
4244 out_init_irq_fail:
4245 	unregister_netdev(netdev);
4246 out_reg_netdev_fail:
4247 	hns3_uninit_phy(netdev);
4248 out_init_phy:
4249 	hns3_uninit_all_ring(priv);
4250 out_init_ring:
4251 	hns3_nic_uninit_vector_data(priv);
4252 out_init_vector_data:
4253 	hns3_nic_dealloc_vector_data(priv);
4254 out_alloc_vector_data:
4255 	priv->ring = NULL;
4256 out_get_ring_cfg:
4257 	priv->ae_handle = NULL;
4258 	free_netdev(netdev);
4259 	return ret;
4260 }
4261 
4262 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4263 {
4264 	struct net_device *netdev = handle->kinfo.netdev;
4265 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4266 	int ret;
4267 
4268 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4269 		unregister_netdev(netdev);
4270 
4271 	hns3_client_stop(handle);
4272 
4273 	hns3_uninit_phy(netdev);
4274 
4275 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4276 		netdev_warn(netdev, "already uninitialized\n");
4277 		goto out_netdev_free;
4278 	}
4279 
4280 	hns3_free_rx_cpu_rmap(netdev);
4281 
4282 	hns3_nic_uninit_irq(priv);
4283 
4284 	hns3_del_all_fd_rules(netdev, true);
4285 
4286 	hns3_clear_all_ring(handle, true);
4287 
4288 	hns3_nic_uninit_vector_data(priv);
4289 
4290 	hns3_nic_dealloc_vector_data(priv);
4291 
4292 	ret = hns3_uninit_all_ring(priv);
4293 	if (ret)
4294 		netdev_err(netdev, "uninit ring error\n");
4295 
4296 	hns3_put_ring_config(priv);
4297 
4298 out_netdev_free:
4299 	hns3_dbg_uninit(handle);
4300 	free_netdev(netdev);
4301 }
4302 
4303 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4304 {
4305 	struct net_device *netdev = handle->kinfo.netdev;
4306 
4307 	if (!netdev)
4308 		return;
4309 
4310 	if (linkup) {
4311 		netif_tx_wake_all_queues(netdev);
4312 		netif_carrier_on(netdev);
4313 		if (netif_msg_link(handle))
4314 			netdev_info(netdev, "link up\n");
4315 	} else {
4316 		netif_carrier_off(netdev);
4317 		netif_tx_stop_all_queues(netdev);
4318 		if (netif_msg_link(handle))
4319 			netdev_info(netdev, "link down\n");
4320 	}
4321 }
4322 
4323 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4324 {
4325 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4326 	struct net_device *ndev = kinfo->netdev;
4327 
4328 	if (tc > HNAE3_MAX_TC)
4329 		return -EINVAL;
4330 
4331 	if (!ndev)
4332 		return -ENODEV;
4333 
4334 	return hns3_nic_set_real_num_queue(ndev);
4335 }
4336 
4337 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4338 {
4339 	while (ring->next_to_clean != ring->next_to_use) {
4340 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4341 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4342 		ring_ptr_move_fw(ring, next_to_clean);
4343 	}
4344 
4345 	ring->pending_buf = 0;
4346 }
4347 
4348 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4349 {
4350 	struct hns3_desc_cb res_cbs;
4351 	int ret;
4352 
4353 	while (ring->next_to_use != ring->next_to_clean) {
4354 		/* When a buffer is not reused, it's memory has been
4355 		 * freed in hns3_handle_rx_bd or will be freed by
4356 		 * stack, so we need to replace the buffer here.
4357 		 */
4358 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4359 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4360 			if (ret) {
4361 				u64_stats_update_begin(&ring->syncp);
4362 				ring->stats.sw_err_cnt++;
4363 				u64_stats_update_end(&ring->syncp);
4364 				/* if alloc new buffer fail, exit directly
4365 				 * and reclear in up flow.
4366 				 */
4367 				netdev_warn(ring_to_netdev(ring),
4368 					    "reserve buffer map failed, ret = %d\n",
4369 					    ret);
4370 				return ret;
4371 			}
4372 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4373 		}
4374 		ring_ptr_move_fw(ring, next_to_use);
4375 	}
4376 
4377 	/* Free the pending skb in rx ring */
4378 	if (ring->skb) {
4379 		dev_kfree_skb_any(ring->skb);
4380 		ring->skb = NULL;
4381 		ring->pending_buf = 0;
4382 	}
4383 
4384 	return 0;
4385 }
4386 
4387 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4388 {
4389 	while (ring->next_to_use != ring->next_to_clean) {
4390 		/* When a buffer is not reused, it's memory has been
4391 		 * freed in hns3_handle_rx_bd or will be freed by
4392 		 * stack, so only need to unmap the buffer here.
4393 		 */
4394 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4395 			hns3_unmap_buffer(ring,
4396 					  &ring->desc_cb[ring->next_to_use]);
4397 			ring->desc_cb[ring->next_to_use].dma = 0;
4398 		}
4399 
4400 		ring_ptr_move_fw(ring, next_to_use);
4401 	}
4402 }
4403 
4404 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4405 {
4406 	struct net_device *ndev = h->kinfo.netdev;
4407 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4408 	u32 i;
4409 
4410 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4411 		struct hns3_enet_ring *ring;
4412 
4413 		ring = &priv->ring[i];
4414 		hns3_clear_tx_ring(ring);
4415 
4416 		ring = &priv->ring[i + h->kinfo.num_tqps];
4417 		/* Continue to clear other rings even if clearing some
4418 		 * rings failed.
4419 		 */
4420 		if (force)
4421 			hns3_force_clear_rx_ring(ring);
4422 		else
4423 			hns3_clear_rx_ring(ring);
4424 	}
4425 }
4426 
4427 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4428 {
4429 	struct net_device *ndev = h->kinfo.netdev;
4430 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4431 	struct hns3_enet_ring *rx_ring;
4432 	int i, j;
4433 	int ret;
4434 
4435 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4436 		ret = h->ae_algo->ops->reset_queue(h, i);
4437 		if (ret)
4438 			return ret;
4439 
4440 		hns3_init_ring_hw(&priv->ring[i]);
4441 
4442 		/* We need to clear tx ring here because self test will
4443 		 * use the ring and will not run down before up
4444 		 */
4445 		hns3_clear_tx_ring(&priv->ring[i]);
4446 		priv->ring[i].next_to_clean = 0;
4447 		priv->ring[i].next_to_use = 0;
4448 		priv->ring[i].last_to_use = 0;
4449 
4450 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4451 		hns3_init_ring_hw(rx_ring);
4452 		ret = hns3_clear_rx_ring(rx_ring);
4453 		if (ret)
4454 			return ret;
4455 
4456 		/* We can not know the hardware head and tail when this
4457 		 * function is called in reset flow, so we reuse all desc.
4458 		 */
4459 		for (j = 0; j < rx_ring->desc_num; j++)
4460 			hns3_reuse_buffer(rx_ring, j);
4461 
4462 		rx_ring->next_to_clean = 0;
4463 		rx_ring->next_to_use = 0;
4464 	}
4465 
4466 	hns3_init_tx_ring_tc(priv);
4467 
4468 	return 0;
4469 }
4470 
4471 static void hns3_store_coal(struct hns3_nic_priv *priv)
4472 {
4473 	/* ethtool only support setting and querying one coal
4474 	 * configuration for now, so save the vector 0' coal
4475 	 * configuration here in order to restore it.
4476 	 */
4477 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4478 	       sizeof(struct hns3_enet_coalesce));
4479 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4480 	       sizeof(struct hns3_enet_coalesce));
4481 }
4482 
4483 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4484 {
4485 	u16 vector_num = priv->vector_num;
4486 	int i;
4487 
4488 	for (i = 0; i < vector_num; i++) {
4489 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4490 		       sizeof(struct hns3_enet_coalesce));
4491 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4492 		       sizeof(struct hns3_enet_coalesce));
4493 	}
4494 }
4495 
4496 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4497 {
4498 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4499 	struct net_device *ndev = kinfo->netdev;
4500 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4501 
4502 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4503 		return 0;
4504 
4505 	if (!netif_running(ndev))
4506 		return 0;
4507 
4508 	return hns3_nic_net_stop(ndev);
4509 }
4510 
4511 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4512 {
4513 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4514 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4515 	int ret = 0;
4516 
4517 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4518 
4519 	if (netif_running(kinfo->netdev)) {
4520 		ret = hns3_nic_net_open(kinfo->netdev);
4521 		if (ret) {
4522 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4523 			netdev_err(kinfo->netdev,
4524 				   "net up fail, ret=%d!\n", ret);
4525 			return ret;
4526 		}
4527 	}
4528 
4529 	return ret;
4530 }
4531 
4532 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4533 {
4534 	struct net_device *netdev = handle->kinfo.netdev;
4535 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4536 	int ret;
4537 
4538 	/* Carrier off reporting is important to ethtool even BEFORE open */
4539 	netif_carrier_off(netdev);
4540 
4541 	ret = hns3_get_ring_config(priv);
4542 	if (ret)
4543 		return ret;
4544 
4545 	ret = hns3_nic_alloc_vector_data(priv);
4546 	if (ret)
4547 		goto err_put_ring;
4548 
4549 	hns3_restore_coal(priv);
4550 
4551 	ret = hns3_nic_init_vector_data(priv);
4552 	if (ret)
4553 		goto err_dealloc_vector;
4554 
4555 	ret = hns3_init_all_ring(priv);
4556 	if (ret)
4557 		goto err_uninit_vector;
4558 
4559 	/* the device can work without cpu rmap, only aRFS needs it */
4560 	ret = hns3_set_rx_cpu_rmap(netdev);
4561 	if (ret)
4562 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4563 
4564 	ret = hns3_nic_init_irq(priv);
4565 	if (ret) {
4566 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4567 		hns3_free_rx_cpu_rmap(netdev);
4568 		goto err_init_irq_fail;
4569 	}
4570 
4571 	if (!hns3_is_phys_func(handle->pdev))
4572 		hns3_init_mac_addr(netdev);
4573 
4574 	ret = hns3_client_start(handle);
4575 	if (ret) {
4576 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4577 		goto err_client_start_fail;
4578 	}
4579 
4580 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4581 
4582 	return ret;
4583 
4584 err_client_start_fail:
4585 	hns3_free_rx_cpu_rmap(netdev);
4586 	hns3_nic_uninit_irq(priv);
4587 err_init_irq_fail:
4588 	hns3_uninit_all_ring(priv);
4589 err_uninit_vector:
4590 	hns3_nic_uninit_vector_data(priv);
4591 err_dealloc_vector:
4592 	hns3_nic_dealloc_vector_data(priv);
4593 err_put_ring:
4594 	hns3_put_ring_config(priv);
4595 
4596 	return ret;
4597 }
4598 
4599 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4600 {
4601 	struct net_device *netdev = handle->kinfo.netdev;
4602 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4603 	int ret;
4604 
4605 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4606 		netdev_warn(netdev, "already uninitialized\n");
4607 		return 0;
4608 	}
4609 
4610 	hns3_free_rx_cpu_rmap(netdev);
4611 	hns3_nic_uninit_irq(priv);
4612 	hns3_clear_all_ring(handle, true);
4613 	hns3_reset_tx_queue(priv->ae_handle);
4614 
4615 	hns3_nic_uninit_vector_data(priv);
4616 
4617 	hns3_store_coal(priv);
4618 
4619 	hns3_nic_dealloc_vector_data(priv);
4620 
4621 	ret = hns3_uninit_all_ring(priv);
4622 	if (ret)
4623 		netdev_err(netdev, "uninit ring error\n");
4624 
4625 	hns3_put_ring_config(priv);
4626 
4627 	return ret;
4628 }
4629 
4630 static int hns3_reset_notify(struct hnae3_handle *handle,
4631 			     enum hnae3_reset_notify_type type)
4632 {
4633 	int ret = 0;
4634 
4635 	switch (type) {
4636 	case HNAE3_UP_CLIENT:
4637 		ret = hns3_reset_notify_up_enet(handle);
4638 		break;
4639 	case HNAE3_DOWN_CLIENT:
4640 		ret = hns3_reset_notify_down_enet(handle);
4641 		break;
4642 	case HNAE3_INIT_CLIENT:
4643 		ret = hns3_reset_notify_init_enet(handle);
4644 		break;
4645 	case HNAE3_UNINIT_CLIENT:
4646 		ret = hns3_reset_notify_uninit_enet(handle);
4647 		break;
4648 	default:
4649 		break;
4650 	}
4651 
4652 	return ret;
4653 }
4654 
4655 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4656 				bool rxfh_configured)
4657 {
4658 	int ret;
4659 
4660 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4661 						 rxfh_configured);
4662 	if (ret) {
4663 		dev_err(&handle->pdev->dev,
4664 			"Change tqp num(%u) fail.\n", new_tqp_num);
4665 		return ret;
4666 	}
4667 
4668 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4669 	if (ret)
4670 		return ret;
4671 
4672 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4673 	if (ret)
4674 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4675 
4676 	return ret;
4677 }
4678 
4679 int hns3_set_channels(struct net_device *netdev,
4680 		      struct ethtool_channels *ch)
4681 {
4682 	struct hnae3_handle *h = hns3_get_handle(netdev);
4683 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4684 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4685 	u32 new_tqp_num = ch->combined_count;
4686 	u16 org_tqp_num;
4687 	int ret;
4688 
4689 	if (hns3_nic_resetting(netdev))
4690 		return -EBUSY;
4691 
4692 	if (ch->rx_count || ch->tx_count)
4693 		return -EINVAL;
4694 
4695 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4696 	    new_tqp_num < 1) {
4697 		dev_err(&netdev->dev,
4698 			"Change tqps fail, the tqp range is from 1 to %u",
4699 			hns3_get_max_available_channels(h));
4700 		return -EINVAL;
4701 	}
4702 
4703 	if (kinfo->rss_size == new_tqp_num)
4704 		return 0;
4705 
4706 	netif_dbg(h, drv, netdev,
4707 		  "set channels: tqp_num=%u, rxfh=%d\n",
4708 		  new_tqp_num, rxfh_configured);
4709 
4710 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4711 	if (ret)
4712 		return ret;
4713 
4714 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4715 	if (ret)
4716 		return ret;
4717 
4718 	org_tqp_num = h->kinfo.num_tqps;
4719 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4720 	if (ret) {
4721 		int ret1;
4722 
4723 		netdev_warn(netdev,
4724 			    "Change channels fail, revert to old value\n");
4725 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4726 		if (ret1) {
4727 			netdev_err(netdev,
4728 				   "revert to old channel fail\n");
4729 			return ret1;
4730 		}
4731 
4732 		return ret;
4733 	}
4734 
4735 	return 0;
4736 }
4737 
4738 static const struct hns3_hw_error_info hns3_hw_err[] = {
4739 	{ .type = HNAE3_PPU_POISON_ERROR,
4740 	  .msg = "PPU poison" },
4741 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4742 	  .msg = "IMP CMDQ error" },
4743 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4744 	  .msg = "IMP RD poison" },
4745 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4746 	  .msg = "ROCEE AXI RESP error" },
4747 };
4748 
4749 static void hns3_process_hw_error(struct hnae3_handle *handle,
4750 				  enum hnae3_hw_error_type type)
4751 {
4752 	int i;
4753 
4754 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4755 		if (hns3_hw_err[i].type == type) {
4756 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4757 				hns3_hw_err[i].msg);
4758 			break;
4759 		}
4760 	}
4761 }
4762 
4763 static const struct hnae3_client_ops client_ops = {
4764 	.init_instance = hns3_client_init,
4765 	.uninit_instance = hns3_client_uninit,
4766 	.link_status_change = hns3_link_status_change,
4767 	.setup_tc = hns3_client_setup_tc,
4768 	.reset_notify = hns3_reset_notify,
4769 	.process_hw_error = hns3_process_hw_error,
4770 };
4771 
4772 /* hns3_init_module - Driver registration routine
4773  * hns3_init_module is the first routine called when the driver is
4774  * loaded. All it does is register with the PCI subsystem.
4775  */
4776 static int __init hns3_init_module(void)
4777 {
4778 	int ret;
4779 
4780 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4781 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4782 
4783 	client.type = HNAE3_CLIENT_KNIC;
4784 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4785 		 hns3_driver_name);
4786 
4787 	client.ops = &client_ops;
4788 
4789 	INIT_LIST_HEAD(&client.node);
4790 
4791 	hns3_dbg_register_debugfs(hns3_driver_name);
4792 
4793 	ret = hnae3_register_client(&client);
4794 	if (ret)
4795 		goto err_reg_client;
4796 
4797 	ret = pci_register_driver(&hns3_driver);
4798 	if (ret)
4799 		goto err_reg_driver;
4800 
4801 	return ret;
4802 
4803 err_reg_driver:
4804 	hnae3_unregister_client(&client);
4805 err_reg_client:
4806 	hns3_dbg_unregister_debugfs();
4807 	return ret;
4808 }
4809 module_init(hns3_init_module);
4810 
4811 /* hns3_exit_module - Driver exit cleanup routine
4812  * hns3_exit_module is called just before the driver is removed
4813  * from memory.
4814  */
4815 static void __exit hns3_exit_module(void)
4816 {
4817 	pci_unregister_driver(&hns3_driver);
4818 	hnae3_unregister_client(&client);
4819 	hns3_dbg_unregister_debugfs();
4820 }
4821 module_exit(hns3_exit_module);
4822 
4823 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4824 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4825 MODULE_LICENSE("GPL");
4826 MODULE_ALIAS("pci:hns-nic");
4827