xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision b04df400c30235fa347313c9e2a0695549bd2c8e)
1 /*
2  * Copyright (c) 2016~2017 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/interrupt.h>
13 #include <linux/if_vlan.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/skbuff.h>
19 #include <linux/sctp.h>
20 #include <linux/vermagic.h>
21 #include <net/gre.h>
22 #include <net/pkt_cls.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 			"Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34 
35 /* hns3_pci_tbl - PCI Device ID Table
36  *
37  * Last entry must be all 0s
38  *
39  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40  *   Class, Class Mask, private data (not used) }
41  */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
57 	/* required last entry */
58 	{0, }
59 };
60 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
61 
62 static irqreturn_t hns3_irq_handle(int irq, void *dev)
63 {
64 	struct hns3_enet_tqp_vector *tqp_vector = dev;
65 
66 	napi_schedule(&tqp_vector->napi);
67 
68 	return IRQ_HANDLED;
69 }
70 
71 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
72 {
73 	struct hns3_enet_tqp_vector *tqp_vectors;
74 	unsigned int i;
75 
76 	for (i = 0; i < priv->vector_num; i++) {
77 		tqp_vectors = &priv->tqp_vector[i];
78 
79 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
80 			continue;
81 
82 		/* release the irq resource */
83 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
84 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
85 	}
86 }
87 
88 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
89 {
90 	struct hns3_enet_tqp_vector *tqp_vectors;
91 	int txrx_int_idx = 0;
92 	int rx_int_idx = 0;
93 	int tx_int_idx = 0;
94 	unsigned int i;
95 	int ret;
96 
97 	for (i = 0; i < priv->vector_num; i++) {
98 		tqp_vectors = &priv->tqp_vector[i];
99 
100 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
101 			continue;
102 
103 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
104 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
105 				 "%s-%s-%d", priv->netdev->name, "TxRx",
106 				 txrx_int_idx++);
107 			txrx_int_idx++;
108 		} else if (tqp_vectors->rx_group.ring) {
109 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
110 				 "%s-%s-%d", priv->netdev->name, "Rx",
111 				 rx_int_idx++);
112 		} else if (tqp_vectors->tx_group.ring) {
113 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
114 				 "%s-%s-%d", priv->netdev->name, "Tx",
115 				 tx_int_idx++);
116 		} else {
117 			/* Skip this unused q_vector */
118 			continue;
119 		}
120 
121 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
122 
123 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
124 				  tqp_vectors->name,
125 				       tqp_vectors);
126 		if (ret) {
127 			netdev_err(priv->netdev, "request irq(%d) fail\n",
128 				   tqp_vectors->vector_irq);
129 			return ret;
130 		}
131 
132 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
133 	}
134 
135 	return 0;
136 }
137 
138 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
139 				 u32 mask_en)
140 {
141 	writel(mask_en, tqp_vector->mask_addr);
142 }
143 
144 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
145 {
146 	napi_enable(&tqp_vector->napi);
147 
148 	/* enable vector */
149 	hns3_mask_vector_irq(tqp_vector, 1);
150 }
151 
152 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
153 {
154 	/* disable vector */
155 	hns3_mask_vector_irq(tqp_vector, 0);
156 
157 	disable_irq(tqp_vector->vector_irq);
158 	napi_disable(&tqp_vector->napi);
159 }
160 
161 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
162 				 u32 rl_value)
163 {
164 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
165 
166 	/* this defines the configuration for RL (Interrupt Rate Limiter).
167 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
168 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
169 	 */
170 
171 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
172 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
173 		/* According to the hardware, the range of rl_reg is
174 		 * 0-59 and the unit is 4.
175 		 */
176 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
177 
178 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
179 }
180 
181 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
182 				    u32 gl_value)
183 {
184 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
185 
186 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
187 }
188 
189 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
190 				    u32 gl_value)
191 {
192 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
193 
194 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
195 }
196 
197 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
198 				   struct hns3_nic_priv *priv)
199 {
200 	struct hnae3_handle *h = priv->ae_handle;
201 
202 	/* initialize the configuration for interrupt coalescing.
203 	 * 1. GL (Interrupt Gap Limiter)
204 	 * 2. RL (Interrupt Rate Limiter)
205 	 */
206 
207 	/* Default: enable interrupt coalescing self-adaptive and GL */
208 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
209 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
210 
211 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
212 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
213 
214 	/* Default: disable RL */
215 	h->kinfo.int_rl_setting = 0;
216 
217 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
218 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
219 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
220 }
221 
222 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
223 				      struct hns3_nic_priv *priv)
224 {
225 	struct hnae3_handle *h = priv->ae_handle;
226 
227 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
228 				       tqp_vector->tx_group.coal.int_gl);
229 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
230 				       tqp_vector->rx_group.coal.int_gl);
231 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
232 }
233 
234 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
235 {
236 	struct hnae3_handle *h = hns3_get_handle(netdev);
237 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
238 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
239 	int ret;
240 
241 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
242 	if (ret) {
243 		netdev_err(netdev,
244 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
245 			   ret);
246 		return ret;
247 	}
248 
249 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
250 	if (ret) {
251 		netdev_err(netdev,
252 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
253 		return ret;
254 	}
255 
256 	return 0;
257 }
258 
259 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
260 {
261 	u16 free_tqps, max_rss_size, max_tqps;
262 
263 	h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
264 	max_tqps = h->kinfo.num_tc * max_rss_size;
265 
266 	return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
267 }
268 
269 static int hns3_nic_net_up(struct net_device *netdev)
270 {
271 	struct hns3_nic_priv *priv = netdev_priv(netdev);
272 	struct hnae3_handle *h = priv->ae_handle;
273 	int i, j;
274 	int ret;
275 
276 	/* get irq resource for all vectors */
277 	ret = hns3_nic_init_irq(priv);
278 	if (ret) {
279 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
280 		return ret;
281 	}
282 
283 	/* enable the vectors */
284 	for (i = 0; i < priv->vector_num; i++)
285 		hns3_vector_enable(&priv->tqp_vector[i]);
286 
287 	/* start the ae_dev */
288 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
289 	if (ret)
290 		goto out_start_err;
291 
292 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
293 
294 	return 0;
295 
296 out_start_err:
297 	for (j = i - 1; j >= 0; j--)
298 		hns3_vector_disable(&priv->tqp_vector[j]);
299 
300 	hns3_nic_uninit_irq(priv);
301 
302 	return ret;
303 }
304 
305 static int hns3_nic_net_open(struct net_device *netdev)
306 {
307 	struct hns3_nic_priv *priv = netdev_priv(netdev);
308 	int ret;
309 
310 	netif_carrier_off(netdev);
311 
312 	ret = hns3_nic_set_real_num_queue(netdev);
313 	if (ret)
314 		return ret;
315 
316 	ret = hns3_nic_net_up(netdev);
317 	if (ret) {
318 		netdev_err(netdev,
319 			   "hns net up fail, ret=%d!\n", ret);
320 		return ret;
321 	}
322 
323 	priv->ae_handle->last_reset_time = jiffies;
324 	return 0;
325 }
326 
327 static void hns3_nic_net_down(struct net_device *netdev)
328 {
329 	struct hns3_nic_priv *priv = netdev_priv(netdev);
330 	const struct hnae3_ae_ops *ops;
331 	int i;
332 
333 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
334 		return;
335 
336 	/* stop ae_dev */
337 	ops = priv->ae_handle->ae_algo->ops;
338 	if (ops->stop)
339 		ops->stop(priv->ae_handle);
340 
341 	/* disable vectors */
342 	for (i = 0; i < priv->vector_num; i++)
343 		hns3_vector_disable(&priv->tqp_vector[i]);
344 
345 	/* free irq resources */
346 	hns3_nic_uninit_irq(priv);
347 }
348 
349 static int hns3_nic_net_stop(struct net_device *netdev)
350 {
351 	netif_tx_stop_all_queues(netdev);
352 	netif_carrier_off(netdev);
353 
354 	hns3_nic_net_down(netdev);
355 
356 	return 0;
357 }
358 
359 static int hns3_nic_uc_sync(struct net_device *netdev,
360 			    const unsigned char *addr)
361 {
362 	struct hnae3_handle *h = hns3_get_handle(netdev);
363 
364 	if (h->ae_algo->ops->add_uc_addr)
365 		return h->ae_algo->ops->add_uc_addr(h, addr);
366 
367 	return 0;
368 }
369 
370 static int hns3_nic_uc_unsync(struct net_device *netdev,
371 			      const unsigned char *addr)
372 {
373 	struct hnae3_handle *h = hns3_get_handle(netdev);
374 
375 	if (h->ae_algo->ops->rm_uc_addr)
376 		return h->ae_algo->ops->rm_uc_addr(h, addr);
377 
378 	return 0;
379 }
380 
381 static int hns3_nic_mc_sync(struct net_device *netdev,
382 			    const unsigned char *addr)
383 {
384 	struct hnae3_handle *h = hns3_get_handle(netdev);
385 
386 	if (h->ae_algo->ops->add_mc_addr)
387 		return h->ae_algo->ops->add_mc_addr(h, addr);
388 
389 	return 0;
390 }
391 
392 static int hns3_nic_mc_unsync(struct net_device *netdev,
393 			      const unsigned char *addr)
394 {
395 	struct hnae3_handle *h = hns3_get_handle(netdev);
396 
397 	if (h->ae_algo->ops->rm_mc_addr)
398 		return h->ae_algo->ops->rm_mc_addr(h, addr);
399 
400 	return 0;
401 }
402 
403 static void hns3_nic_set_rx_mode(struct net_device *netdev)
404 {
405 	struct hnae3_handle *h = hns3_get_handle(netdev);
406 
407 	if (h->ae_algo->ops->set_promisc_mode) {
408 		if (netdev->flags & IFF_PROMISC)
409 			h->ae_algo->ops->set_promisc_mode(h, 1);
410 		else
411 			h->ae_algo->ops->set_promisc_mode(h, 0);
412 	}
413 	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
414 		netdev_err(netdev, "sync uc address fail\n");
415 	if (netdev->flags & IFF_MULTICAST)
416 		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
417 			netdev_err(netdev, "sync mc address fail\n");
418 }
419 
420 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
421 			u16 *mss, u32 *type_cs_vlan_tso)
422 {
423 	u32 l4_offset, hdr_len;
424 	union l3_hdr_info l3;
425 	union l4_hdr_info l4;
426 	u32 l4_paylen;
427 	int ret;
428 
429 	if (!skb_is_gso(skb))
430 		return 0;
431 
432 	ret = skb_cow_head(skb, 0);
433 	if (ret)
434 		return ret;
435 
436 	l3.hdr = skb_network_header(skb);
437 	l4.hdr = skb_transport_header(skb);
438 
439 	/* Software should clear the IPv4's checksum field when tso is
440 	 * needed.
441 	 */
442 	if (l3.v4->version == 4)
443 		l3.v4->check = 0;
444 
445 	/* tunnel packet.*/
446 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
447 					 SKB_GSO_GRE_CSUM |
448 					 SKB_GSO_UDP_TUNNEL |
449 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
450 		if ((!(skb_shinfo(skb)->gso_type &
451 		    SKB_GSO_PARTIAL)) &&
452 		    (skb_shinfo(skb)->gso_type &
453 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
454 			/* Software should clear the udp's checksum
455 			 * field when tso is needed.
456 			 */
457 			l4.udp->check = 0;
458 		}
459 		/* reset l3&l4 pointers from outer to inner headers */
460 		l3.hdr = skb_inner_network_header(skb);
461 		l4.hdr = skb_inner_transport_header(skb);
462 
463 		/* Software should clear the IPv4's checksum field when
464 		 * tso is needed.
465 		 */
466 		if (l3.v4->version == 4)
467 			l3.v4->check = 0;
468 	}
469 
470 	/* normal or tunnel packet*/
471 	l4_offset = l4.hdr - skb->data;
472 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
473 
474 	/* remove payload length from inner pseudo checksum when tso*/
475 	l4_paylen = skb->len - l4_offset;
476 	csum_replace_by_diff(&l4.tcp->check,
477 			     (__force __wsum)htonl(l4_paylen));
478 
479 	/* find the txbd field values */
480 	*paylen = skb->len - hdr_len;
481 	hnae_set_bit(*type_cs_vlan_tso,
482 		     HNS3_TXD_TSO_B, 1);
483 
484 	/* get MSS for TSO */
485 	*mss = skb_shinfo(skb)->gso_size;
486 
487 	return 0;
488 }
489 
490 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
491 				u8 *il4_proto)
492 {
493 	union {
494 		struct iphdr *v4;
495 		struct ipv6hdr *v6;
496 		unsigned char *hdr;
497 	} l3;
498 	unsigned char *l4_hdr;
499 	unsigned char *exthdr;
500 	u8 l4_proto_tmp;
501 	__be16 frag_off;
502 
503 	/* find outer header point */
504 	l3.hdr = skb_network_header(skb);
505 	l4_hdr = skb_transport_header(skb);
506 
507 	if (skb->protocol == htons(ETH_P_IPV6)) {
508 		exthdr = l3.hdr + sizeof(*l3.v6);
509 		l4_proto_tmp = l3.v6->nexthdr;
510 		if (l4_hdr != exthdr)
511 			ipv6_skip_exthdr(skb, exthdr - skb->data,
512 					 &l4_proto_tmp, &frag_off);
513 	} else if (skb->protocol == htons(ETH_P_IP)) {
514 		l4_proto_tmp = l3.v4->protocol;
515 	} else {
516 		return -EINVAL;
517 	}
518 
519 	*ol4_proto = l4_proto_tmp;
520 
521 	/* tunnel packet */
522 	if (!skb->encapsulation) {
523 		*il4_proto = 0;
524 		return 0;
525 	}
526 
527 	/* find inner header point */
528 	l3.hdr = skb_inner_network_header(skb);
529 	l4_hdr = skb_inner_transport_header(skb);
530 
531 	if (l3.v6->version == 6) {
532 		exthdr = l3.hdr + sizeof(*l3.v6);
533 		l4_proto_tmp = l3.v6->nexthdr;
534 		if (l4_hdr != exthdr)
535 			ipv6_skip_exthdr(skb, exthdr - skb->data,
536 					 &l4_proto_tmp, &frag_off);
537 	} else if (l3.v4->version == 4) {
538 		l4_proto_tmp = l3.v4->protocol;
539 	}
540 
541 	*il4_proto = l4_proto_tmp;
542 
543 	return 0;
544 }
545 
546 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
547 				u8 il4_proto, u32 *type_cs_vlan_tso,
548 				u32 *ol_type_vlan_len_msec)
549 {
550 	union {
551 		struct iphdr *v4;
552 		struct ipv6hdr *v6;
553 		unsigned char *hdr;
554 	} l3;
555 	union {
556 		struct tcphdr *tcp;
557 		struct udphdr *udp;
558 		struct gre_base_hdr *gre;
559 		unsigned char *hdr;
560 	} l4;
561 	unsigned char *l2_hdr;
562 	u8 l4_proto = ol4_proto;
563 	u32 ol2_len;
564 	u32 ol3_len;
565 	u32 ol4_len;
566 	u32 l2_len;
567 	u32 l3_len;
568 
569 	l3.hdr = skb_network_header(skb);
570 	l4.hdr = skb_transport_header(skb);
571 
572 	/* compute L2 header size for normal packet, defined in 2 Bytes */
573 	l2_len = l3.hdr - skb->data;
574 	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
575 		       HNS3_TXD_L2LEN_S, l2_len >> 1);
576 
577 	/* tunnel packet*/
578 	if (skb->encapsulation) {
579 		/* compute OL2 header size, defined in 2 Bytes */
580 		ol2_len = l2_len;
581 		hnae_set_field(*ol_type_vlan_len_msec,
582 			       HNS3_TXD_L2LEN_M,
583 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
584 
585 		/* compute OL3 header size, defined in 4 Bytes */
586 		ol3_len = l4.hdr - l3.hdr;
587 		hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
588 			       HNS3_TXD_L3LEN_S, ol3_len >> 2);
589 
590 		/* MAC in UDP, MAC in GRE (0x6558)*/
591 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
592 			/* switch MAC header ptr from outer to inner header.*/
593 			l2_hdr = skb_inner_mac_header(skb);
594 
595 			/* compute OL4 header size, defined in 4 Bytes. */
596 			ol4_len = l2_hdr - l4.hdr;
597 			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_M,
598 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
599 
600 			/* switch IP header ptr from outer to inner header */
601 			l3.hdr = skb_inner_network_header(skb);
602 
603 			/* compute inner l2 header size, defined in 2 Bytes. */
604 			l2_len = l3.hdr - l2_hdr;
605 			hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
606 				       HNS3_TXD_L2LEN_S, l2_len >> 1);
607 		} else {
608 			/* skb packet types not supported by hardware,
609 			 * txbd len fild doesn't be filled.
610 			 */
611 			return;
612 		}
613 
614 		/* switch L4 header pointer from outer to inner */
615 		l4.hdr = skb_inner_transport_header(skb);
616 
617 		l4_proto = il4_proto;
618 	}
619 
620 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
621 	l3_len = l4.hdr - l3.hdr;
622 	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
623 		       HNS3_TXD_L3LEN_S, l3_len >> 2);
624 
625 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
626 	switch (l4_proto) {
627 	case IPPROTO_TCP:
628 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
629 			       HNS3_TXD_L4LEN_S, l4.tcp->doff);
630 		break;
631 	case IPPROTO_SCTP:
632 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
633 			       HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2));
634 		break;
635 	case IPPROTO_UDP:
636 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
637 			       HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2));
638 		break;
639 	default:
640 		/* skb packet types not supported by hardware,
641 		 * txbd len fild doesn't be filled.
642 		 */
643 		return;
644 	}
645 }
646 
647 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
648 				   u8 il4_proto, u32 *type_cs_vlan_tso,
649 				   u32 *ol_type_vlan_len_msec)
650 {
651 	union {
652 		struct iphdr *v4;
653 		struct ipv6hdr *v6;
654 		unsigned char *hdr;
655 	} l3;
656 	u32 l4_proto = ol4_proto;
657 
658 	l3.hdr = skb_network_header(skb);
659 
660 	/* define OL3 type and tunnel type(OL4).*/
661 	if (skb->encapsulation) {
662 		/* define outer network header type.*/
663 		if (skb->protocol == htons(ETH_P_IP)) {
664 			if (skb_is_gso(skb))
665 				hnae_set_field(*ol_type_vlan_len_msec,
666 					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
667 					       HNS3_OL3T_IPV4_CSUM);
668 			else
669 				hnae_set_field(*ol_type_vlan_len_msec,
670 					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
671 					       HNS3_OL3T_IPV4_NO_CSUM);
672 
673 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
674 			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
675 				       HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
676 		}
677 
678 		/* define tunnel type(OL4).*/
679 		switch (l4_proto) {
680 		case IPPROTO_UDP:
681 			hnae_set_field(*ol_type_vlan_len_msec,
682 				       HNS3_TXD_TUNTYPE_M,
683 				       HNS3_TXD_TUNTYPE_S,
684 				       HNS3_TUN_MAC_IN_UDP);
685 			break;
686 		case IPPROTO_GRE:
687 			hnae_set_field(*ol_type_vlan_len_msec,
688 				       HNS3_TXD_TUNTYPE_M,
689 				       HNS3_TXD_TUNTYPE_S,
690 				       HNS3_TUN_NVGRE);
691 			break;
692 		default:
693 			/* drop the skb tunnel packet if hardware don't support,
694 			 * because hardware can't calculate csum when TSO.
695 			 */
696 			if (skb_is_gso(skb))
697 				return -EDOM;
698 
699 			/* the stack computes the IP header already,
700 			 * driver calculate l4 checksum when not TSO.
701 			 */
702 			skb_checksum_help(skb);
703 			return 0;
704 		}
705 
706 		l3.hdr = skb_inner_network_header(skb);
707 		l4_proto = il4_proto;
708 	}
709 
710 	if (l3.v4->version == 4) {
711 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
712 			       HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
713 
714 		/* the stack computes the IP header already, the only time we
715 		 * need the hardware to recompute it is in the case of TSO.
716 		 */
717 		if (skb_is_gso(skb))
718 			hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
719 
720 		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
721 	} else if (l3.v6->version == 6) {
722 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
723 			       HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
724 		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
725 	}
726 
727 	switch (l4_proto) {
728 	case IPPROTO_TCP:
729 		hnae_set_field(*type_cs_vlan_tso,
730 			       HNS3_TXD_L4T_M,
731 			       HNS3_TXD_L4T_S,
732 			       HNS3_L4T_TCP);
733 		break;
734 	case IPPROTO_UDP:
735 		hnae_set_field(*type_cs_vlan_tso,
736 			       HNS3_TXD_L4T_M,
737 			       HNS3_TXD_L4T_S,
738 			       HNS3_L4T_UDP);
739 		break;
740 	case IPPROTO_SCTP:
741 		hnae_set_field(*type_cs_vlan_tso,
742 			       HNS3_TXD_L4T_M,
743 			       HNS3_TXD_L4T_S,
744 			       HNS3_L4T_SCTP);
745 		break;
746 	default:
747 		/* drop the skb tunnel packet if hardware don't support,
748 		 * because hardware can't calculate csum when TSO.
749 		 */
750 		if (skb_is_gso(skb))
751 			return -EDOM;
752 
753 		/* the stack computes the IP header already,
754 		 * driver calculate l4 checksum when not TSO.
755 		 */
756 		skb_checksum_help(skb);
757 		return 0;
758 	}
759 
760 	return 0;
761 }
762 
763 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
764 {
765 	/* Config bd buffer end */
766 	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
767 		       HNS3_TXD_BDTYPE_S, 0);
768 	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
769 	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
770 	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
771 }
772 
773 static int hns3_fill_desc_vtags(struct sk_buff *skb,
774 				struct hns3_enet_ring *tx_ring,
775 				u32 *inner_vlan_flag,
776 				u32 *out_vlan_flag,
777 				u16 *inner_vtag,
778 				u16 *out_vtag)
779 {
780 #define HNS3_TX_VLAN_PRIO_SHIFT 13
781 
782 	if (skb->protocol == htons(ETH_P_8021Q) &&
783 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
784 	    NETIF_F_HW_VLAN_CTAG_TX)) {
785 		/* When HW VLAN acceleration is turned off, and the stack
786 		 * sets the protocol to 802.1q, the driver just need to
787 		 * set the protocol to the encapsulated ethertype.
788 		 */
789 		skb->protocol = vlan_get_protocol(skb);
790 		return 0;
791 	}
792 
793 	if (skb_vlan_tag_present(skb)) {
794 		u16 vlan_tag;
795 
796 		vlan_tag = skb_vlan_tag_get(skb);
797 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
798 
799 		/* Based on hw strategy, use out_vtag in two layer tag case,
800 		 * and use inner_vtag in one tag case.
801 		 */
802 		if (skb->protocol == htons(ETH_P_8021Q)) {
803 			hnae_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
804 			*out_vtag = vlan_tag;
805 		} else {
806 			hnae_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
807 			*inner_vtag = vlan_tag;
808 		}
809 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
810 		struct vlan_ethhdr *vhdr;
811 		int rc;
812 
813 		rc = skb_cow_head(skb, 0);
814 		if (rc < 0)
815 			return rc;
816 		vhdr = (struct vlan_ethhdr *)skb->data;
817 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
818 					<< HNS3_TX_VLAN_PRIO_SHIFT);
819 	}
820 
821 	skb->protocol = vlan_get_protocol(skb);
822 	return 0;
823 }
824 
825 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
826 			  int size, dma_addr_t dma, int frag_end,
827 			  enum hns_desc_type type)
828 {
829 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
830 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
831 	u32 ol_type_vlan_len_msec = 0;
832 	u16 bdtp_fe_sc_vld_ra_ri = 0;
833 	u32 type_cs_vlan_tso = 0;
834 	struct sk_buff *skb;
835 	u16 inner_vtag = 0;
836 	u16 out_vtag = 0;
837 	u32 paylen = 0;
838 	u16 mss = 0;
839 	__be16 protocol;
840 	u8 ol4_proto;
841 	u8 il4_proto;
842 	int ret;
843 
844 	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
845 	desc_cb->priv = priv;
846 	desc_cb->length = size;
847 	desc_cb->dma = dma;
848 	desc_cb->type = type;
849 
850 	/* now, fill the descriptor */
851 	desc->addr = cpu_to_le64(dma);
852 	desc->tx.send_size = cpu_to_le16((u16)size);
853 	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
854 	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
855 
856 	if (type == DESC_TYPE_SKB) {
857 		skb = (struct sk_buff *)priv;
858 		paylen = skb->len;
859 
860 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
861 					   &ol_type_vlan_len_msec,
862 					   &inner_vtag, &out_vtag);
863 		if (unlikely(ret))
864 			return ret;
865 
866 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
867 			skb_reset_mac_len(skb);
868 			protocol = skb->protocol;
869 
870 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
871 			if (ret)
872 				return ret;
873 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
874 					    &type_cs_vlan_tso,
875 					    &ol_type_vlan_len_msec);
876 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
877 						      &type_cs_vlan_tso,
878 						      &ol_type_vlan_len_msec);
879 			if (ret)
880 				return ret;
881 
882 			ret = hns3_set_tso(skb, &paylen, &mss,
883 					   &type_cs_vlan_tso);
884 			if (ret)
885 				return ret;
886 		}
887 
888 		/* Set txbd */
889 		desc->tx.ol_type_vlan_len_msec =
890 			cpu_to_le32(ol_type_vlan_len_msec);
891 		desc->tx.type_cs_vlan_tso_len =
892 			cpu_to_le32(type_cs_vlan_tso);
893 		desc->tx.paylen = cpu_to_le32(paylen);
894 		desc->tx.mss = cpu_to_le16(mss);
895 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
896 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
897 	}
898 
899 	/* move ring pointer to next.*/
900 	ring_ptr_move_fw(ring, next_to_use);
901 
902 	return 0;
903 }
904 
905 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
906 			      int size, dma_addr_t dma, int frag_end,
907 			      enum hns_desc_type type)
908 {
909 	unsigned int frag_buf_num;
910 	unsigned int k;
911 	int sizeoflast;
912 	int ret;
913 
914 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
915 	sizeoflast = size % HNS3_MAX_BD_SIZE;
916 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
917 
918 	/* When the frag size is bigger than hardware, split this frag */
919 	for (k = 0; k < frag_buf_num; k++) {
920 		ret = hns3_fill_desc(ring, priv,
921 				     (k == frag_buf_num - 1) ?
922 				sizeoflast : HNS3_MAX_BD_SIZE,
923 				dma + HNS3_MAX_BD_SIZE * k,
924 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
925 				(type == DESC_TYPE_SKB && !k) ?
926 					DESC_TYPE_SKB : DESC_TYPE_PAGE);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	return 0;
932 }
933 
934 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
935 				   struct hns3_enet_ring *ring)
936 {
937 	struct sk_buff *skb = *out_skb;
938 	struct skb_frag_struct *frag;
939 	int bdnum_for_frag;
940 	int frag_num;
941 	int buf_num;
942 	int size;
943 	int i;
944 
945 	size = skb_headlen(skb);
946 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
947 
948 	frag_num = skb_shinfo(skb)->nr_frags;
949 	for (i = 0; i < frag_num; i++) {
950 		frag = &skb_shinfo(skb)->frags[i];
951 		size = skb_frag_size(frag);
952 		bdnum_for_frag =
953 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
954 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
955 			return -ENOMEM;
956 
957 		buf_num += bdnum_for_frag;
958 	}
959 
960 	if (buf_num > ring_space(ring))
961 		return -EBUSY;
962 
963 	*bnum = buf_num;
964 	return 0;
965 }
966 
967 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
968 				  struct hns3_enet_ring *ring)
969 {
970 	struct sk_buff *skb = *out_skb;
971 	int buf_num;
972 
973 	/* No. of segments (plus a header) */
974 	buf_num = skb_shinfo(skb)->nr_frags + 1;
975 
976 	if (buf_num > ring_space(ring))
977 		return -EBUSY;
978 
979 	*bnum = buf_num;
980 
981 	return 0;
982 }
983 
984 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
985 {
986 	struct device *dev = ring_to_dev(ring);
987 	unsigned int i;
988 
989 	for (i = 0; i < ring->desc_num; i++) {
990 		/* check if this is where we started */
991 		if (ring->next_to_use == next_to_use_orig)
992 			break;
993 
994 		/* unmap the descriptor dma address */
995 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
996 			dma_unmap_single(dev,
997 					 ring->desc_cb[ring->next_to_use].dma,
998 					ring->desc_cb[ring->next_to_use].length,
999 					DMA_TO_DEVICE);
1000 		else
1001 			dma_unmap_page(dev,
1002 				       ring->desc_cb[ring->next_to_use].dma,
1003 				       ring->desc_cb[ring->next_to_use].length,
1004 				       DMA_TO_DEVICE);
1005 
1006 		/* rollback one */
1007 		ring_ptr_move_bw(ring, next_to_use);
1008 	}
1009 }
1010 
1011 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1012 {
1013 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1014 	struct hns3_nic_ring_data *ring_data =
1015 		&tx_ring_data(priv, skb->queue_mapping);
1016 	struct hns3_enet_ring *ring = ring_data->ring;
1017 	struct device *dev = priv->dev;
1018 	struct netdev_queue *dev_queue;
1019 	struct skb_frag_struct *frag;
1020 	int next_to_use_head;
1021 	int next_to_use_frag;
1022 	dma_addr_t dma;
1023 	int buf_num;
1024 	int seg_num;
1025 	int size;
1026 	int ret;
1027 	int i;
1028 
1029 	/* Prefetch the data used later */
1030 	prefetch(skb->data);
1031 
1032 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1033 	case -EBUSY:
1034 		u64_stats_update_begin(&ring->syncp);
1035 		ring->stats.tx_busy++;
1036 		u64_stats_update_end(&ring->syncp);
1037 
1038 		goto out_net_tx_busy;
1039 	case -ENOMEM:
1040 		u64_stats_update_begin(&ring->syncp);
1041 		ring->stats.sw_err_cnt++;
1042 		u64_stats_update_end(&ring->syncp);
1043 		netdev_err(netdev, "no memory to xmit!\n");
1044 
1045 		goto out_err_tx_ok;
1046 	default:
1047 		break;
1048 	}
1049 
1050 	/* No. of segments (plus a header) */
1051 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1052 	/* Fill the first part */
1053 	size = skb_headlen(skb);
1054 
1055 	next_to_use_head = ring->next_to_use;
1056 
1057 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1058 	if (dma_mapping_error(dev, dma)) {
1059 		netdev_err(netdev, "TX head DMA map failed\n");
1060 		ring->stats.sw_err_cnt++;
1061 		goto out_err_tx_ok;
1062 	}
1063 
1064 	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1065 			   DESC_TYPE_SKB);
1066 	if (ret)
1067 		goto head_dma_map_err;
1068 
1069 	next_to_use_frag = ring->next_to_use;
1070 	/* Fill the fragments */
1071 	for (i = 1; i < seg_num; i++) {
1072 		frag = &skb_shinfo(skb)->frags[i - 1];
1073 		size = skb_frag_size(frag);
1074 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1075 		if (dma_mapping_error(dev, dma)) {
1076 			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1077 			ring->stats.sw_err_cnt++;
1078 			goto frag_dma_map_err;
1079 		}
1080 		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1081 				    seg_num - 1 == i ? 1 : 0,
1082 				    DESC_TYPE_PAGE);
1083 
1084 		if (ret)
1085 			goto frag_dma_map_err;
1086 	}
1087 
1088 	/* Complete translate all packets */
1089 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1090 	netdev_tx_sent_queue(dev_queue, skb->len);
1091 
1092 	wmb(); /* Commit all data before submit */
1093 
1094 	hnae_queue_xmit(ring->tqp, buf_num);
1095 
1096 	return NETDEV_TX_OK;
1097 
1098 frag_dma_map_err:
1099 	hns_nic_dma_unmap(ring, next_to_use_frag);
1100 
1101 head_dma_map_err:
1102 	hns_nic_dma_unmap(ring, next_to_use_head);
1103 
1104 out_err_tx_ok:
1105 	dev_kfree_skb_any(skb);
1106 	return NETDEV_TX_OK;
1107 
1108 out_net_tx_busy:
1109 	netif_stop_subqueue(netdev, ring_data->queue_index);
1110 	smp_mb(); /* Commit all data before submit */
1111 
1112 	return NETDEV_TX_BUSY;
1113 }
1114 
1115 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1116 {
1117 	struct hnae3_handle *h = hns3_get_handle(netdev);
1118 	struct sockaddr *mac_addr = p;
1119 	int ret;
1120 
1121 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1122 		return -EADDRNOTAVAIL;
1123 
1124 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1125 	if (ret) {
1126 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1127 		return ret;
1128 	}
1129 
1130 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1131 
1132 	return 0;
1133 }
1134 
1135 static int hns3_nic_set_features(struct net_device *netdev,
1136 				 netdev_features_t features)
1137 {
1138 	netdev_features_t changed = netdev->features ^ features;
1139 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1140 	struct hnae3_handle *h = priv->ae_handle;
1141 	int ret;
1142 
1143 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1144 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1145 			priv->ops.fill_desc = hns3_fill_desc_tso;
1146 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1147 		} else {
1148 			priv->ops.fill_desc = hns3_fill_desc;
1149 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1150 		}
1151 	}
1152 
1153 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1154 	    h->ae_algo->ops->enable_vlan_filter) {
1155 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1156 			h->ae_algo->ops->enable_vlan_filter(h, true);
1157 		else
1158 			h->ae_algo->ops->enable_vlan_filter(h, false);
1159 	}
1160 
1161 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1162 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1163 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1164 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1165 		else
1166 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1167 
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	netdev->features = features;
1173 	return 0;
1174 }
1175 
1176 static void hns3_nic_get_stats64(struct net_device *netdev,
1177 				 struct rtnl_link_stats64 *stats)
1178 {
1179 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1180 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1181 	struct hnae3_handle *handle = priv->ae_handle;
1182 	struct hns3_enet_ring *ring;
1183 	unsigned int start;
1184 	unsigned int idx;
1185 	u64 tx_bytes = 0;
1186 	u64 rx_bytes = 0;
1187 	u64 tx_pkts = 0;
1188 	u64 rx_pkts = 0;
1189 	u64 tx_drop = 0;
1190 	u64 rx_drop = 0;
1191 
1192 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1193 		return;
1194 
1195 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1196 
1197 	for (idx = 0; idx < queue_num; idx++) {
1198 		/* fetch the tx stats */
1199 		ring = priv->ring_data[idx].ring;
1200 		do {
1201 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1202 			tx_bytes += ring->stats.tx_bytes;
1203 			tx_pkts += ring->stats.tx_pkts;
1204 			tx_drop += ring->stats.tx_busy;
1205 			tx_drop += ring->stats.sw_err_cnt;
1206 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1207 
1208 		/* fetch the rx stats */
1209 		ring = priv->ring_data[idx + queue_num].ring;
1210 		do {
1211 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1212 			rx_bytes += ring->stats.rx_bytes;
1213 			rx_pkts += ring->stats.rx_pkts;
1214 			rx_drop += ring->stats.non_vld_descs;
1215 			rx_drop += ring->stats.err_pkt_len;
1216 			rx_drop += ring->stats.l2_err;
1217 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1218 	}
1219 
1220 	stats->tx_bytes = tx_bytes;
1221 	stats->tx_packets = tx_pkts;
1222 	stats->rx_bytes = rx_bytes;
1223 	stats->rx_packets = rx_pkts;
1224 
1225 	stats->rx_errors = netdev->stats.rx_errors;
1226 	stats->multicast = netdev->stats.multicast;
1227 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1228 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1229 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1230 
1231 	stats->tx_errors = netdev->stats.tx_errors;
1232 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1233 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1234 	stats->collisions = netdev->stats.collisions;
1235 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1236 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1237 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1238 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1239 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1240 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1241 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1242 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1243 	stats->rx_compressed = netdev->stats.rx_compressed;
1244 	stats->tx_compressed = netdev->stats.tx_compressed;
1245 }
1246 
1247 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1248 {
1249 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1250 	struct hnae3_handle *h = hns3_get_handle(netdev);
1251 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1252 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1253 	u8 tc = mqprio_qopt->qopt.num_tc;
1254 	u16 mode = mqprio_qopt->mode;
1255 	u8 hw = mqprio_qopt->qopt.hw;
1256 	bool if_running;
1257 	unsigned int i;
1258 	int ret;
1259 
1260 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1261 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1262 		return -EOPNOTSUPP;
1263 
1264 	if (tc > HNAE3_MAX_TC)
1265 		return -EINVAL;
1266 
1267 	if (!netdev)
1268 		return -EINVAL;
1269 
1270 	if_running = netif_running(netdev);
1271 	if (if_running) {
1272 		hns3_nic_net_stop(netdev);
1273 		msleep(100);
1274 	}
1275 
1276 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1277 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1278 	if (ret)
1279 		goto out;
1280 
1281 	if (tc <= 1) {
1282 		netdev_reset_tc(netdev);
1283 	} else {
1284 		ret = netdev_set_num_tc(netdev, tc);
1285 		if (ret)
1286 			goto out;
1287 
1288 		for (i = 0; i < HNAE3_MAX_TC; i++) {
1289 			if (!kinfo->tc_info[i].enable)
1290 				continue;
1291 
1292 			netdev_set_tc_queue(netdev,
1293 					    kinfo->tc_info[i].tc,
1294 					    kinfo->tc_info[i].tqp_count,
1295 					    kinfo->tc_info[i].tqp_offset);
1296 		}
1297 	}
1298 
1299 	ret = hns3_nic_set_real_num_queue(netdev);
1300 
1301 out:
1302 	if (if_running)
1303 		hns3_nic_net_open(netdev);
1304 
1305 	return ret;
1306 }
1307 
1308 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1309 			     void *type_data)
1310 {
1311 	if (type != TC_SETUP_QDISC_MQPRIO)
1312 		return -EOPNOTSUPP;
1313 
1314 	return hns3_setup_tc(dev, type_data);
1315 }
1316 
1317 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1318 				__be16 proto, u16 vid)
1319 {
1320 	struct hnae3_handle *h = hns3_get_handle(netdev);
1321 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1322 	int ret = -EIO;
1323 
1324 	if (h->ae_algo->ops->set_vlan_filter)
1325 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1326 
1327 	if (!ret)
1328 		set_bit(vid, priv->active_vlans);
1329 
1330 	return ret;
1331 }
1332 
1333 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1334 				 __be16 proto, u16 vid)
1335 {
1336 	struct hnae3_handle *h = hns3_get_handle(netdev);
1337 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1338 	int ret = -EIO;
1339 
1340 	if (h->ae_algo->ops->set_vlan_filter)
1341 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1342 
1343 	if (!ret)
1344 		clear_bit(vid, priv->active_vlans);
1345 
1346 	return ret;
1347 }
1348 
1349 static void hns3_restore_vlan(struct net_device *netdev)
1350 {
1351 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1352 	u16 vid;
1353 	int ret;
1354 
1355 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1356 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1357 		if (ret)
1358 			netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1359 				    vid, ret);
1360 	}
1361 }
1362 
1363 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1364 				u8 qos, __be16 vlan_proto)
1365 {
1366 	struct hnae3_handle *h = hns3_get_handle(netdev);
1367 	int ret = -EIO;
1368 
1369 	if (h->ae_algo->ops->set_vf_vlan_filter)
1370 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1371 						   qos, vlan_proto);
1372 
1373 	return ret;
1374 }
1375 
1376 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1377 {
1378 	struct hnae3_handle *h = hns3_get_handle(netdev);
1379 	bool if_running = netif_running(netdev);
1380 	int ret;
1381 
1382 	if (!h->ae_algo->ops->set_mtu)
1383 		return -EOPNOTSUPP;
1384 
1385 	/* if this was called with netdev up then bring netdevice down */
1386 	if (if_running) {
1387 		(void)hns3_nic_net_stop(netdev);
1388 		msleep(100);
1389 	}
1390 
1391 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1392 	if (ret) {
1393 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1394 			   ret);
1395 		return ret;
1396 	}
1397 
1398 	netdev->mtu = new_mtu;
1399 
1400 	/* if the netdev was running earlier, bring it up again */
1401 	if (if_running && hns3_nic_net_open(netdev))
1402 		ret = -EINVAL;
1403 
1404 	return ret;
1405 }
1406 
1407 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1408 {
1409 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1410 	struct hns3_enet_ring *tx_ring = NULL;
1411 	int timeout_queue = 0;
1412 	int hw_head, hw_tail;
1413 	int i;
1414 
1415 	/* Find the stopped queue the same way the stack does */
1416 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1417 		struct netdev_queue *q;
1418 		unsigned long trans_start;
1419 
1420 		q = netdev_get_tx_queue(ndev, i);
1421 		trans_start = q->trans_start;
1422 		if (netif_xmit_stopped(q) &&
1423 		    time_after(jiffies,
1424 			       (trans_start + ndev->watchdog_timeo))) {
1425 			timeout_queue = i;
1426 			break;
1427 		}
1428 	}
1429 
1430 	if (i == ndev->num_tx_queues) {
1431 		netdev_info(ndev,
1432 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1433 			    priv->tx_timeout_count);
1434 		return false;
1435 	}
1436 
1437 	tx_ring = priv->ring_data[timeout_queue].ring;
1438 
1439 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1440 				HNS3_RING_TX_RING_HEAD_REG);
1441 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1442 				HNS3_RING_TX_RING_TAIL_REG);
1443 	netdev_info(ndev,
1444 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1445 		    priv->tx_timeout_count,
1446 		    timeout_queue,
1447 		    tx_ring->next_to_use,
1448 		    tx_ring->next_to_clean,
1449 		    hw_head,
1450 		    hw_tail,
1451 		    readl(tx_ring->tqp_vector->mask_addr));
1452 
1453 	return true;
1454 }
1455 
1456 static void hns3_nic_net_timeout(struct net_device *ndev)
1457 {
1458 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1459 	struct hnae3_handle *h = priv->ae_handle;
1460 
1461 	if (!hns3_get_tx_timeo_queue_info(ndev))
1462 		return;
1463 
1464 	priv->tx_timeout_count++;
1465 
1466 	if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1467 		return;
1468 
1469 	/* request the reset */
1470 	if (h->ae_algo->ops->reset_event)
1471 		h->ae_algo->ops->reset_event(h);
1472 }
1473 
1474 static const struct net_device_ops hns3_nic_netdev_ops = {
1475 	.ndo_open		= hns3_nic_net_open,
1476 	.ndo_stop		= hns3_nic_net_stop,
1477 	.ndo_start_xmit		= hns3_nic_net_xmit,
1478 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1479 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1480 	.ndo_change_mtu		= hns3_nic_change_mtu,
1481 	.ndo_set_features	= hns3_nic_set_features,
1482 	.ndo_get_stats64	= hns3_nic_get_stats64,
1483 	.ndo_setup_tc		= hns3_nic_setup_tc,
1484 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1485 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1486 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1487 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1488 };
1489 
1490 static bool hns3_is_phys_func(struct pci_dev *pdev)
1491 {
1492 	u32 dev_id = pdev->device;
1493 
1494 	switch (dev_id) {
1495 	case HNAE3_DEV_ID_GE:
1496 	case HNAE3_DEV_ID_25GE:
1497 	case HNAE3_DEV_ID_25GE_RDMA:
1498 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1499 	case HNAE3_DEV_ID_50GE_RDMA:
1500 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1501 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1502 		return true;
1503 	case HNAE3_DEV_ID_100G_VF:
1504 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1505 		return false;
1506 	default:
1507 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1508 			 dev_id);
1509 	}
1510 
1511 	return false;
1512 }
1513 
1514 static void hns3_disable_sriov(struct pci_dev *pdev)
1515 {
1516 	/* If our VFs are assigned we cannot shut down SR-IOV
1517 	 * without causing issues, so just leave the hardware
1518 	 * available but disabled
1519 	 */
1520 	if (pci_vfs_assigned(pdev)) {
1521 		dev_warn(&pdev->dev,
1522 			 "disabling driver while VFs are assigned\n");
1523 		return;
1524 	}
1525 
1526 	pci_disable_sriov(pdev);
1527 }
1528 
1529 /* hns3_probe - Device initialization routine
1530  * @pdev: PCI device information struct
1531  * @ent: entry in hns3_pci_tbl
1532  *
1533  * hns3_probe initializes a PF identified by a pci_dev structure.
1534  * The OS initialization, configuring of the PF private structure,
1535  * and a hardware reset occur.
1536  *
1537  * Returns 0 on success, negative on failure
1538  */
1539 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1540 {
1541 	struct hnae3_ae_dev *ae_dev;
1542 	int ret;
1543 
1544 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1545 			      GFP_KERNEL);
1546 	if (!ae_dev) {
1547 		ret = -ENOMEM;
1548 		return ret;
1549 	}
1550 
1551 	ae_dev->pdev = pdev;
1552 	ae_dev->flag = ent->driver_data;
1553 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1554 	pci_set_drvdata(pdev, ae_dev);
1555 
1556 	hnae3_register_ae_dev(ae_dev);
1557 
1558 	return 0;
1559 }
1560 
1561 /* hns3_remove - Device removal routine
1562  * @pdev: PCI device information struct
1563  */
1564 static void hns3_remove(struct pci_dev *pdev)
1565 {
1566 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1567 
1568 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1569 		hns3_disable_sriov(pdev);
1570 
1571 	hnae3_unregister_ae_dev(ae_dev);
1572 }
1573 
1574 /**
1575  * hns3_pci_sriov_configure
1576  * @pdev: pointer to a pci_dev structure
1577  * @num_vfs: number of VFs to allocate
1578  *
1579  * Enable or change the number of VFs. Called when the user updates the number
1580  * of VFs in sysfs.
1581  **/
1582 int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1583 {
1584 	int ret;
1585 
1586 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1587 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1588 		return -EINVAL;
1589 	}
1590 
1591 	if (num_vfs) {
1592 		ret = pci_enable_sriov(pdev, num_vfs);
1593 		if (ret)
1594 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1595 	} else if (!pci_vfs_assigned(pdev)) {
1596 		pci_disable_sriov(pdev);
1597 	} else {
1598 		dev_warn(&pdev->dev,
1599 			 "Unable to free VFs because some are assigned to VMs.\n");
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static struct pci_driver hns3_driver = {
1606 	.name     = hns3_driver_name,
1607 	.id_table = hns3_pci_tbl,
1608 	.probe    = hns3_probe,
1609 	.remove   = hns3_remove,
1610 	.sriov_configure = hns3_pci_sriov_configure,
1611 };
1612 
1613 /* set default feature to hns3 */
1614 static void hns3_set_default_feature(struct net_device *netdev)
1615 {
1616 	netdev->priv_flags |= IFF_UNICAST_FLT;
1617 
1618 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1619 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1620 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1621 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1622 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1623 
1624 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1625 
1626 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1627 
1628 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1629 		NETIF_F_HW_VLAN_CTAG_FILTER |
1630 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1631 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1632 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1633 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1634 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1635 
1636 	netdev->vlan_features |=
1637 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1638 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1639 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1640 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1641 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1642 
1643 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1644 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1645 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1646 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1647 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1648 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1649 }
1650 
1651 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1652 			     struct hns3_desc_cb *cb)
1653 {
1654 	unsigned int order = hnae_page_order(ring);
1655 	struct page *p;
1656 
1657 	p = dev_alloc_pages(order);
1658 	if (!p)
1659 		return -ENOMEM;
1660 
1661 	cb->priv = p;
1662 	cb->page_offset = 0;
1663 	cb->reuse_flag = 0;
1664 	cb->buf  = page_address(p);
1665 	cb->length = hnae_page_size(ring);
1666 	cb->type = DESC_TYPE_PAGE;
1667 
1668 	return 0;
1669 }
1670 
1671 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1672 			     struct hns3_desc_cb *cb)
1673 {
1674 	if (cb->type == DESC_TYPE_SKB)
1675 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1676 	else if (!HNAE3_IS_TX_RING(ring))
1677 		put_page((struct page *)cb->priv);
1678 	memset(cb, 0, sizeof(*cb));
1679 }
1680 
1681 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1682 {
1683 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1684 			       cb->length, ring_to_dma_dir(ring));
1685 
1686 	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1687 		return -EIO;
1688 
1689 	return 0;
1690 }
1691 
1692 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1693 			      struct hns3_desc_cb *cb)
1694 {
1695 	if (cb->type == DESC_TYPE_SKB)
1696 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1697 				 ring_to_dma_dir(ring));
1698 	else
1699 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1700 			       ring_to_dma_dir(ring));
1701 }
1702 
1703 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1704 {
1705 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1706 	ring->desc[i].addr = 0;
1707 }
1708 
1709 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1710 {
1711 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
1712 
1713 	if (!ring->desc_cb[i].dma)
1714 		return;
1715 
1716 	hns3_buffer_detach(ring, i);
1717 	hns3_free_buffer(ring, cb);
1718 }
1719 
1720 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1721 {
1722 	int i;
1723 
1724 	for (i = 0; i < ring->desc_num; i++)
1725 		hns3_free_buffer_detach(ring, i);
1726 }
1727 
1728 /* free desc along with its attached buffer */
1729 static void hns3_free_desc(struct hns3_enet_ring *ring)
1730 {
1731 	hns3_free_buffers(ring);
1732 
1733 	dma_unmap_single(ring_to_dev(ring), ring->desc_dma_addr,
1734 			 ring->desc_num * sizeof(ring->desc[0]),
1735 			 DMA_BIDIRECTIONAL);
1736 	ring->desc_dma_addr = 0;
1737 	kfree(ring->desc);
1738 	ring->desc = NULL;
1739 }
1740 
1741 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1742 {
1743 	int size = ring->desc_num * sizeof(ring->desc[0]);
1744 
1745 	ring->desc = kzalloc(size, GFP_KERNEL);
1746 	if (!ring->desc)
1747 		return -ENOMEM;
1748 
1749 	ring->desc_dma_addr = dma_map_single(ring_to_dev(ring), ring->desc,
1750 					     size, DMA_BIDIRECTIONAL);
1751 	if (dma_mapping_error(ring_to_dev(ring), ring->desc_dma_addr)) {
1752 		ring->desc_dma_addr = 0;
1753 		kfree(ring->desc);
1754 		ring->desc = NULL;
1755 		return -ENOMEM;
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1762 				   struct hns3_desc_cb *cb)
1763 {
1764 	int ret;
1765 
1766 	ret = hns3_alloc_buffer(ring, cb);
1767 	if (ret)
1768 		goto out;
1769 
1770 	ret = hns3_map_buffer(ring, cb);
1771 	if (ret)
1772 		goto out_with_buf;
1773 
1774 	return 0;
1775 
1776 out_with_buf:
1777 	hns3_free_buffer(ring, cb);
1778 out:
1779 	return ret;
1780 }
1781 
1782 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1783 {
1784 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1785 
1786 	if (ret)
1787 		return ret;
1788 
1789 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1790 
1791 	return 0;
1792 }
1793 
1794 /* Allocate memory for raw pkg, and map with dma */
1795 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1796 {
1797 	int i, j, ret;
1798 
1799 	for (i = 0; i < ring->desc_num; i++) {
1800 		ret = hns3_alloc_buffer_attach(ring, i);
1801 		if (ret)
1802 			goto out_buffer_fail;
1803 	}
1804 
1805 	return 0;
1806 
1807 out_buffer_fail:
1808 	for (j = i - 1; j >= 0; j--)
1809 		hns3_free_buffer_detach(ring, j);
1810 	return ret;
1811 }
1812 
1813 /* detach a in-used buffer and replace with a reserved one  */
1814 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1815 				struct hns3_desc_cb *res_cb)
1816 {
1817 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1818 	ring->desc_cb[i] = *res_cb;
1819 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1820 }
1821 
1822 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1823 {
1824 	ring->desc_cb[i].reuse_flag = 0;
1825 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1826 		+ ring->desc_cb[i].page_offset);
1827 }
1828 
1829 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1830 				      int *pkts)
1831 {
1832 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1833 
1834 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1835 	(*bytes) += desc_cb->length;
1836 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1837 	hns3_free_buffer_detach(ring, ring->next_to_clean);
1838 
1839 	ring_ptr_move_fw(ring, next_to_clean);
1840 }
1841 
1842 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1843 {
1844 	int u = ring->next_to_use;
1845 	int c = ring->next_to_clean;
1846 
1847 	if (unlikely(h > ring->desc_num))
1848 		return 0;
1849 
1850 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1851 }
1852 
1853 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1854 {
1855 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1856 	struct netdev_queue *dev_queue;
1857 	int bytes, pkts;
1858 	int head;
1859 
1860 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1861 	rmb(); /* Make sure head is ready before touch any data */
1862 
1863 	if (is_ring_empty(ring) || head == ring->next_to_clean)
1864 		return true; /* no data to poll */
1865 
1866 	if (!is_valid_clean_head(ring, head)) {
1867 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1868 			   ring->next_to_use, ring->next_to_clean);
1869 
1870 		u64_stats_update_begin(&ring->syncp);
1871 		ring->stats.io_err_cnt++;
1872 		u64_stats_update_end(&ring->syncp);
1873 		return true;
1874 	}
1875 
1876 	bytes = 0;
1877 	pkts = 0;
1878 	while (head != ring->next_to_clean && budget) {
1879 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1880 		/* Issue prefetch for next Tx descriptor */
1881 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1882 		budget--;
1883 	}
1884 
1885 	ring->tqp_vector->tx_group.total_bytes += bytes;
1886 	ring->tqp_vector->tx_group.total_packets += pkts;
1887 
1888 	u64_stats_update_begin(&ring->syncp);
1889 	ring->stats.tx_bytes += bytes;
1890 	ring->stats.tx_pkts += pkts;
1891 	u64_stats_update_end(&ring->syncp);
1892 
1893 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1894 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1895 
1896 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
1897 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1898 		/* Make sure that anybody stopping the queue after this
1899 		 * sees the new next_to_clean.
1900 		 */
1901 		smp_mb();
1902 		if (netif_tx_queue_stopped(dev_queue)) {
1903 			netif_tx_wake_queue(dev_queue);
1904 			ring->stats.restart_queue++;
1905 		}
1906 	}
1907 
1908 	return !!budget;
1909 }
1910 
1911 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1912 {
1913 	int ntc = ring->next_to_clean;
1914 	int ntu = ring->next_to_use;
1915 
1916 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1917 }
1918 
1919 static void
1920 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1921 {
1922 	struct hns3_desc_cb *desc_cb;
1923 	struct hns3_desc_cb res_cbs;
1924 	int i, ret;
1925 
1926 	for (i = 0; i < cleand_count; i++) {
1927 		desc_cb = &ring->desc_cb[ring->next_to_use];
1928 		if (desc_cb->reuse_flag) {
1929 			u64_stats_update_begin(&ring->syncp);
1930 			ring->stats.reuse_pg_cnt++;
1931 			u64_stats_update_end(&ring->syncp);
1932 
1933 			hns3_reuse_buffer(ring, ring->next_to_use);
1934 		} else {
1935 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
1936 			if (ret) {
1937 				u64_stats_update_begin(&ring->syncp);
1938 				ring->stats.sw_err_cnt++;
1939 				u64_stats_update_end(&ring->syncp);
1940 
1941 				netdev_err(ring->tqp->handle->kinfo.netdev,
1942 					   "hnae reserve buffer map failed.\n");
1943 				break;
1944 			}
1945 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
1946 		}
1947 
1948 		ring_ptr_move_fw(ring, next_to_use);
1949 	}
1950 
1951 	wmb(); /* Make all data has been write before submit */
1952 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
1953 }
1954 
1955 /* hns3_nic_get_headlen - determine size of header for LRO/GRO
1956  * @data: pointer to the start of the headers
1957  * @max: total length of section to find headers in
1958  *
1959  * This function is meant to determine the length of headers that will
1960  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
1961  * motivation of doing this is to only perform one pull for IPv4 TCP
1962  * packets so that we can do basic things like calculating the gso_size
1963  * based on the average data per packet.
1964  */
1965 static unsigned int hns3_nic_get_headlen(unsigned char *data, u32 flag,
1966 					 unsigned int max_size)
1967 {
1968 	unsigned char *network;
1969 	u8 hlen;
1970 
1971 	/* This should never happen, but better safe than sorry */
1972 	if (max_size < ETH_HLEN)
1973 		return max_size;
1974 
1975 	/* Initialize network frame pointer */
1976 	network = data;
1977 
1978 	/* Set first protocol and move network header forward */
1979 	network += ETH_HLEN;
1980 
1981 	/* Handle any vlan tag if present */
1982 	if (hnae_get_field(flag, HNS3_RXD_VLAN_M, HNS3_RXD_VLAN_S)
1983 		== HNS3_RX_FLAG_VLAN_PRESENT) {
1984 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
1985 			return max_size;
1986 
1987 		network += VLAN_HLEN;
1988 	}
1989 
1990 	/* Handle L3 protocols */
1991 	if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
1992 		== HNS3_RX_FLAG_L3ID_IPV4) {
1993 		if ((typeof(max_size))(network - data) >
1994 		    (max_size - sizeof(struct iphdr)))
1995 			return max_size;
1996 
1997 		/* Access ihl as a u8 to avoid unaligned access on ia64 */
1998 		hlen = (network[0] & 0x0F) << 2;
1999 
2000 		/* Verify hlen meets minimum size requirements */
2001 		if (hlen < sizeof(struct iphdr))
2002 			return network - data;
2003 
2004 		/* Record next protocol if header is present */
2005 	} else if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
2006 		== HNS3_RX_FLAG_L3ID_IPV6) {
2007 		if ((typeof(max_size))(network - data) >
2008 		    (max_size - sizeof(struct ipv6hdr)))
2009 			return max_size;
2010 
2011 		/* Record next protocol */
2012 		hlen = sizeof(struct ipv6hdr);
2013 	} else {
2014 		return network - data;
2015 	}
2016 
2017 	/* Relocate pointer to start of L4 header */
2018 	network += hlen;
2019 
2020 	/* Finally sort out TCP/UDP */
2021 	if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
2022 		== HNS3_RX_FLAG_L4ID_TCP) {
2023 		if ((typeof(max_size))(network - data) >
2024 		    (max_size - sizeof(struct tcphdr)))
2025 			return max_size;
2026 
2027 		/* Access doff as a u8 to avoid unaligned access on ia64 */
2028 		hlen = (network[12] & 0xF0) >> 2;
2029 
2030 		/* Verify hlen meets minimum size requirements */
2031 		if (hlen < sizeof(struct tcphdr))
2032 			return network - data;
2033 
2034 		network += hlen;
2035 	} else if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
2036 		== HNS3_RX_FLAG_L4ID_UDP) {
2037 		if ((typeof(max_size))(network - data) >
2038 		    (max_size - sizeof(struct udphdr)))
2039 			return max_size;
2040 
2041 		network += sizeof(struct udphdr);
2042 	}
2043 
2044 	/* If everything has gone correctly network should be the
2045 	 * data section of the packet and will be the end of the header.
2046 	 * If not then it probably represents the end of the last recognized
2047 	 * header.
2048 	 */
2049 	if ((typeof(max_size))(network - data) < max_size)
2050 		return network - data;
2051 	else
2052 		return max_size;
2053 }
2054 
2055 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2056 				struct hns3_enet_ring *ring, int pull_len,
2057 				struct hns3_desc_cb *desc_cb)
2058 {
2059 	struct hns3_desc *desc;
2060 	int truesize, size;
2061 	int last_offset;
2062 	bool twobufs;
2063 
2064 	twobufs = ((PAGE_SIZE < 8192) &&
2065 		hnae_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2066 
2067 	desc = &ring->desc[ring->next_to_clean];
2068 	size = le16_to_cpu(desc->rx.size);
2069 
2070 	truesize = hnae_buf_size(ring);
2071 
2072 	if (!twobufs)
2073 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
2074 
2075 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2076 			size - pull_len, truesize);
2077 
2078 	 /* Avoid re-using remote pages,flag default unreuse */
2079 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2080 		return;
2081 
2082 	if (twobufs) {
2083 		/* If we are only owner of page we can reuse it */
2084 		if (likely(page_count(desc_cb->priv) == 1)) {
2085 			/* Flip page offset to other buffer */
2086 			desc_cb->page_offset ^= truesize;
2087 
2088 			desc_cb->reuse_flag = 1;
2089 			/* bump ref count on page before it is given*/
2090 			get_page(desc_cb->priv);
2091 		}
2092 		return;
2093 	}
2094 
2095 	/* Move offset up to the next cache line */
2096 	desc_cb->page_offset += truesize;
2097 
2098 	if (desc_cb->page_offset <= last_offset) {
2099 		desc_cb->reuse_flag = 1;
2100 		/* Bump ref count on page before it is given*/
2101 		get_page(desc_cb->priv);
2102 	}
2103 }
2104 
2105 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2106 			     struct hns3_desc *desc)
2107 {
2108 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2109 	int l3_type, l4_type;
2110 	u32 bd_base_info;
2111 	int ol4_type;
2112 	u32 l234info;
2113 
2114 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2115 	l234info = le32_to_cpu(desc->rx.l234_info);
2116 
2117 	skb->ip_summed = CHECKSUM_NONE;
2118 
2119 	skb_checksum_none_assert(skb);
2120 
2121 	if (!(netdev->features & NETIF_F_RXCSUM))
2122 		return;
2123 
2124 	/* check if hardware has done checksum */
2125 	if (!hnae_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2126 		return;
2127 
2128 	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L3E_B) ||
2129 		     hnae_get_bit(l234info, HNS3_RXD_L4E_B) ||
2130 		     hnae_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2131 		     hnae_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2132 		netdev_err(netdev, "L3/L4 error pkt\n");
2133 		u64_stats_update_begin(&ring->syncp);
2134 		ring->stats.l3l4_csum_err++;
2135 		u64_stats_update_end(&ring->syncp);
2136 
2137 		return;
2138 	}
2139 
2140 	l3_type = hnae_get_field(l234info, HNS3_RXD_L3ID_M,
2141 				 HNS3_RXD_L3ID_S);
2142 	l4_type = hnae_get_field(l234info, HNS3_RXD_L4ID_M,
2143 				 HNS3_RXD_L4ID_S);
2144 
2145 	ol4_type = hnae_get_field(l234info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
2146 	switch (ol4_type) {
2147 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2148 	case HNS3_OL4_TYPE_NVGRE:
2149 		skb->csum_level = 1;
2150 	case HNS3_OL4_TYPE_NO_TUN:
2151 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2152 		if (l3_type == HNS3_L3_TYPE_IPV4 ||
2153 		    (l3_type == HNS3_L3_TYPE_IPV6 &&
2154 		     (l4_type == HNS3_L4_TYPE_UDP ||
2155 		      l4_type == HNS3_L4_TYPE_TCP ||
2156 		      l4_type == HNS3_L4_TYPE_SCTP)))
2157 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2158 		break;
2159 	}
2160 }
2161 
2162 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2163 {
2164 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2165 }
2166 
2167 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2168 			     struct sk_buff **out_skb, int *out_bnum)
2169 {
2170 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2171 	struct hns3_desc_cb *desc_cb;
2172 	struct hns3_desc *desc;
2173 	struct sk_buff *skb;
2174 	unsigned char *va;
2175 	u32 bd_base_info;
2176 	int pull_len;
2177 	u32 l234info;
2178 	int length;
2179 	int bnum;
2180 
2181 	desc = &ring->desc[ring->next_to_clean];
2182 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2183 
2184 	prefetch(desc);
2185 
2186 	length = le16_to_cpu(desc->rx.pkt_len);
2187 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2188 	l234info = le32_to_cpu(desc->rx.l234_info);
2189 
2190 	/* Check valid BD */
2191 	if (!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2192 		return -EFAULT;
2193 
2194 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2195 
2196 	/* Prefetch first cache line of first page
2197 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2198 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2199 	 * actual we can have greater size of caches with 128B Level 1 cache
2200 	 * lines. In such a case, single fetch would suffice to cache in the
2201 	 * relevant part of the header.
2202 	 */
2203 	prefetch(va);
2204 #if L1_CACHE_BYTES < 128
2205 	prefetch(va + L1_CACHE_BYTES);
2206 #endif
2207 
2208 	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2209 					HNS3_RX_HEAD_SIZE);
2210 	if (unlikely(!skb)) {
2211 		netdev_err(netdev, "alloc rx skb fail\n");
2212 
2213 		u64_stats_update_begin(&ring->syncp);
2214 		ring->stats.sw_err_cnt++;
2215 		u64_stats_update_end(&ring->syncp);
2216 
2217 		return -ENOMEM;
2218 	}
2219 
2220 	prefetchw(skb->data);
2221 
2222 	/* Based on hw strategy, the tag offloaded will be stored at
2223 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2224 	 * in one layer tag case.
2225 	 */
2226 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2227 		u16 vlan_tag;
2228 
2229 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2230 		if (!(vlan_tag & VLAN_VID_MASK))
2231 			vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2232 		if (vlan_tag & VLAN_VID_MASK)
2233 			__vlan_hwaccel_put_tag(skb,
2234 					       htons(ETH_P_8021Q),
2235 					       vlan_tag);
2236 	}
2237 
2238 	bnum = 1;
2239 	if (length <= HNS3_RX_HEAD_SIZE) {
2240 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2241 
2242 		/* We can reuse buffer as-is, just make sure it is local */
2243 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2244 			desc_cb->reuse_flag = 1;
2245 		else /* This page cannot be reused so discard it */
2246 			put_page(desc_cb->priv);
2247 
2248 		ring_ptr_move_fw(ring, next_to_clean);
2249 	} else {
2250 		u64_stats_update_begin(&ring->syncp);
2251 		ring->stats.seg_pkt_cnt++;
2252 		u64_stats_update_end(&ring->syncp);
2253 
2254 		pull_len = hns3_nic_get_headlen(va, l234info,
2255 						HNS3_RX_HEAD_SIZE);
2256 		memcpy(__skb_put(skb, pull_len), va,
2257 		       ALIGN(pull_len, sizeof(long)));
2258 
2259 		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2260 		ring_ptr_move_fw(ring, next_to_clean);
2261 
2262 		while (!hnae_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2263 			desc = &ring->desc[ring->next_to_clean];
2264 			desc_cb = &ring->desc_cb[ring->next_to_clean];
2265 			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2266 			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2267 			ring_ptr_move_fw(ring, next_to_clean);
2268 			bnum++;
2269 		}
2270 	}
2271 
2272 	*out_bnum = bnum;
2273 
2274 	if (unlikely(!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2275 		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2276 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
2277 		u64_stats_update_begin(&ring->syncp);
2278 		ring->stats.non_vld_descs++;
2279 		u64_stats_update_end(&ring->syncp);
2280 
2281 		dev_kfree_skb_any(skb);
2282 		return -EINVAL;
2283 	}
2284 
2285 	if (unlikely((!desc->rx.pkt_len) ||
2286 		     hnae_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2287 		netdev_err(netdev, "truncated pkt\n");
2288 		u64_stats_update_begin(&ring->syncp);
2289 		ring->stats.err_pkt_len++;
2290 		u64_stats_update_end(&ring->syncp);
2291 
2292 		dev_kfree_skb_any(skb);
2293 		return -EFAULT;
2294 	}
2295 
2296 	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L2E_B))) {
2297 		netdev_err(netdev, "L2 error pkt\n");
2298 		u64_stats_update_begin(&ring->syncp);
2299 		ring->stats.l2_err++;
2300 		u64_stats_update_end(&ring->syncp);
2301 
2302 		dev_kfree_skb_any(skb);
2303 		return -EFAULT;
2304 	}
2305 
2306 	u64_stats_update_begin(&ring->syncp);
2307 	ring->stats.rx_pkts++;
2308 	ring->stats.rx_bytes += skb->len;
2309 	u64_stats_update_end(&ring->syncp);
2310 
2311 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2312 
2313 	hns3_rx_checksum(ring, skb, desc);
2314 	return 0;
2315 }
2316 
2317 int hns3_clean_rx_ring(
2318 		struct hns3_enet_ring *ring, int budget,
2319 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2320 {
2321 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2322 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2323 	int recv_pkts, recv_bds, clean_count, err;
2324 	int unused_count = hns3_desc_unused(ring);
2325 	struct sk_buff *skb = NULL;
2326 	int num, bnum = 0;
2327 
2328 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2329 	rmb(); /* Make sure num taken effect before the other data is touched */
2330 
2331 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2332 	num -= unused_count;
2333 
2334 	while (recv_pkts < budget && recv_bds < num) {
2335 		/* Reuse or realloc buffers */
2336 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2337 			hns3_nic_alloc_rx_buffers(ring,
2338 						  clean_count + unused_count);
2339 			clean_count = 0;
2340 			unused_count = hns3_desc_unused(ring);
2341 		}
2342 
2343 		/* Poll one pkt */
2344 		err = hns3_handle_rx_bd(ring, &skb, &bnum);
2345 		if (unlikely(!skb)) /* This fault cannot be repaired */
2346 			goto out;
2347 
2348 		recv_bds += bnum;
2349 		clean_count += bnum;
2350 		if (unlikely(err)) {  /* Do jump the err */
2351 			recv_pkts++;
2352 			continue;
2353 		}
2354 
2355 		/* Do update ip stack process */
2356 		skb->protocol = eth_type_trans(skb, netdev);
2357 		rx_fn(ring, skb);
2358 
2359 		recv_pkts++;
2360 	}
2361 
2362 out:
2363 	/* Make all data has been write before submit */
2364 	if (clean_count + unused_count > 0)
2365 		hns3_nic_alloc_rx_buffers(ring,
2366 					  clean_count + unused_count);
2367 
2368 	return recv_pkts;
2369 }
2370 
2371 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2372 {
2373 	struct hns3_enet_tqp_vector *tqp_vector =
2374 					ring_group->ring->tqp_vector;
2375 	enum hns3_flow_level_range new_flow_level;
2376 	int packets_per_msecs;
2377 	int bytes_per_msecs;
2378 	u32 time_passed_ms;
2379 	u16 new_int_gl;
2380 
2381 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2382 		return false;
2383 
2384 	if (ring_group->total_packets == 0) {
2385 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2386 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2387 		return true;
2388 	}
2389 
2390 	/* Simple throttlerate management
2391 	 * 0-10MB/s   lower     (50000 ints/s)
2392 	 * 10-20MB/s   middle    (20000 ints/s)
2393 	 * 20-1249MB/s high      (18000 ints/s)
2394 	 * > 40000pps  ultra     (8000 ints/s)
2395 	 */
2396 	new_flow_level = ring_group->coal.flow_level;
2397 	new_int_gl = ring_group->coal.int_gl;
2398 	time_passed_ms =
2399 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2400 
2401 	if (!time_passed_ms)
2402 		return false;
2403 
2404 	do_div(ring_group->total_packets, time_passed_ms);
2405 	packets_per_msecs = ring_group->total_packets;
2406 
2407 	do_div(ring_group->total_bytes, time_passed_ms);
2408 	bytes_per_msecs = ring_group->total_bytes;
2409 
2410 #define HNS3_RX_LOW_BYTE_RATE 10000
2411 #define HNS3_RX_MID_BYTE_RATE 20000
2412 
2413 	switch (new_flow_level) {
2414 	case HNS3_FLOW_LOW:
2415 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2416 			new_flow_level = HNS3_FLOW_MID;
2417 		break;
2418 	case HNS3_FLOW_MID:
2419 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2420 			new_flow_level = HNS3_FLOW_HIGH;
2421 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2422 			new_flow_level = HNS3_FLOW_LOW;
2423 		break;
2424 	case HNS3_FLOW_HIGH:
2425 	case HNS3_FLOW_ULTRA:
2426 	default:
2427 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2428 			new_flow_level = HNS3_FLOW_MID;
2429 		break;
2430 	}
2431 
2432 #define HNS3_RX_ULTRA_PACKET_RATE 40
2433 
2434 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2435 	    &tqp_vector->rx_group == ring_group)
2436 		new_flow_level = HNS3_FLOW_ULTRA;
2437 
2438 	switch (new_flow_level) {
2439 	case HNS3_FLOW_LOW:
2440 		new_int_gl = HNS3_INT_GL_50K;
2441 		break;
2442 	case HNS3_FLOW_MID:
2443 		new_int_gl = HNS3_INT_GL_20K;
2444 		break;
2445 	case HNS3_FLOW_HIGH:
2446 		new_int_gl = HNS3_INT_GL_18K;
2447 		break;
2448 	case HNS3_FLOW_ULTRA:
2449 		new_int_gl = HNS3_INT_GL_8K;
2450 		break;
2451 	default:
2452 		break;
2453 	}
2454 
2455 	ring_group->total_bytes = 0;
2456 	ring_group->total_packets = 0;
2457 	ring_group->coal.flow_level = new_flow_level;
2458 	if (new_int_gl != ring_group->coal.int_gl) {
2459 		ring_group->coal.int_gl = new_int_gl;
2460 		return true;
2461 	}
2462 	return false;
2463 }
2464 
2465 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2466 {
2467 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2468 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2469 	bool rx_update, tx_update;
2470 
2471 	if (tqp_vector->int_adapt_down > 0) {
2472 		tqp_vector->int_adapt_down--;
2473 		return;
2474 	}
2475 
2476 	if (rx_group->coal.gl_adapt_enable) {
2477 		rx_update = hns3_get_new_int_gl(rx_group);
2478 		if (rx_update)
2479 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2480 						       rx_group->coal.int_gl);
2481 	}
2482 
2483 	if (tx_group->coal.gl_adapt_enable) {
2484 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2485 		if (tx_update)
2486 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2487 						       tx_group->coal.int_gl);
2488 	}
2489 
2490 	tqp_vector->last_jiffies = jiffies;
2491 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2492 }
2493 
2494 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2495 {
2496 	struct hns3_enet_ring *ring;
2497 	int rx_pkt_total = 0;
2498 
2499 	struct hns3_enet_tqp_vector *tqp_vector =
2500 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2501 	bool clean_complete = true;
2502 	int rx_budget;
2503 
2504 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2505 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2506 	 */
2507 	hns3_for_each_ring(ring, tqp_vector->tx_group) {
2508 		if (!hns3_clean_tx_ring(ring, budget))
2509 			clean_complete = false;
2510 	}
2511 
2512 	/* make sure rx ring budget not smaller than 1 */
2513 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2514 
2515 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2516 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2517 						    hns3_rx_skb);
2518 
2519 		if (rx_cleaned >= rx_budget)
2520 			clean_complete = false;
2521 
2522 		rx_pkt_total += rx_cleaned;
2523 	}
2524 
2525 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2526 
2527 	if (!clean_complete)
2528 		return budget;
2529 
2530 	napi_complete(napi);
2531 	hns3_update_new_int_gl(tqp_vector);
2532 	hns3_mask_vector_irq(tqp_vector, 1);
2533 
2534 	return rx_pkt_total;
2535 }
2536 
2537 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2538 				      struct hnae3_ring_chain_node *head)
2539 {
2540 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2541 	struct hnae3_ring_chain_node *cur_chain = head;
2542 	struct hnae3_ring_chain_node *chain;
2543 	struct hns3_enet_ring *tx_ring;
2544 	struct hns3_enet_ring *rx_ring;
2545 
2546 	tx_ring = tqp_vector->tx_group.ring;
2547 	if (tx_ring) {
2548 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2549 		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2550 			     HNAE3_RING_TYPE_TX);
2551 		hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2552 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2553 
2554 		cur_chain->next = NULL;
2555 
2556 		while (tx_ring->next) {
2557 			tx_ring = tx_ring->next;
2558 
2559 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2560 					     GFP_KERNEL);
2561 			if (!chain)
2562 				return -ENOMEM;
2563 
2564 			cur_chain->next = chain;
2565 			chain->tqp_index = tx_ring->tqp->tqp_index;
2566 			hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2567 				     HNAE3_RING_TYPE_TX);
2568 			hnae_set_field(chain->int_gl_idx,
2569 				       HNAE3_RING_GL_IDX_M,
2570 				       HNAE3_RING_GL_IDX_S,
2571 				       HNAE3_RING_GL_TX);
2572 
2573 			cur_chain = chain;
2574 		}
2575 	}
2576 
2577 	rx_ring = tqp_vector->rx_group.ring;
2578 	if (!tx_ring && rx_ring) {
2579 		cur_chain->next = NULL;
2580 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2581 		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2582 			     HNAE3_RING_TYPE_RX);
2583 		hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2584 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2585 
2586 		rx_ring = rx_ring->next;
2587 	}
2588 
2589 	while (rx_ring) {
2590 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2591 		if (!chain)
2592 			return -ENOMEM;
2593 
2594 		cur_chain->next = chain;
2595 		chain->tqp_index = rx_ring->tqp->tqp_index;
2596 		hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2597 			     HNAE3_RING_TYPE_RX);
2598 		hnae_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2599 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2600 
2601 		cur_chain = chain;
2602 
2603 		rx_ring = rx_ring->next;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2610 					struct hnae3_ring_chain_node *head)
2611 {
2612 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2613 	struct hnae3_ring_chain_node *chain_tmp, *chain;
2614 
2615 	chain = head->next;
2616 
2617 	while (chain) {
2618 		chain_tmp = chain->next;
2619 		devm_kfree(&pdev->dev, chain);
2620 		chain = chain_tmp;
2621 	}
2622 }
2623 
2624 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2625 				   struct hns3_enet_ring *ring)
2626 {
2627 	ring->next = group->ring;
2628 	group->ring = ring;
2629 
2630 	group->count++;
2631 }
2632 
2633 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2634 {
2635 	struct hnae3_ring_chain_node vector_ring_chain;
2636 	struct hnae3_handle *h = priv->ae_handle;
2637 	struct hns3_enet_tqp_vector *tqp_vector;
2638 	int ret = 0;
2639 	u16 i;
2640 
2641 	for (i = 0; i < priv->vector_num; i++) {
2642 		tqp_vector = &priv->tqp_vector[i];
2643 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2644 		tqp_vector->num_tqps = 0;
2645 	}
2646 
2647 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2648 		u16 vector_i = i % priv->vector_num;
2649 		u16 tqp_num = h->kinfo.num_tqps;
2650 
2651 		tqp_vector = &priv->tqp_vector[vector_i];
2652 
2653 		hns3_add_ring_to_group(&tqp_vector->tx_group,
2654 				       priv->ring_data[i].ring);
2655 
2656 		hns3_add_ring_to_group(&tqp_vector->rx_group,
2657 				       priv->ring_data[i + tqp_num].ring);
2658 
2659 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
2660 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2661 		tqp_vector->num_tqps++;
2662 	}
2663 
2664 	for (i = 0; i < priv->vector_num; i++) {
2665 		tqp_vector = &priv->tqp_vector[i];
2666 
2667 		tqp_vector->rx_group.total_bytes = 0;
2668 		tqp_vector->rx_group.total_packets = 0;
2669 		tqp_vector->tx_group.total_bytes = 0;
2670 		tqp_vector->tx_group.total_packets = 0;
2671 		tqp_vector->handle = h;
2672 
2673 		ret = hns3_get_vector_ring_chain(tqp_vector,
2674 						 &vector_ring_chain);
2675 		if (ret)
2676 			return ret;
2677 
2678 		ret = h->ae_algo->ops->map_ring_to_vector(h,
2679 			tqp_vector->vector_irq, &vector_ring_chain);
2680 
2681 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2682 
2683 		if (ret)
2684 			return ret;
2685 
2686 		netif_napi_add(priv->netdev, &tqp_vector->napi,
2687 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2688 	}
2689 
2690 	return 0;
2691 }
2692 
2693 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2694 {
2695 	struct hnae3_handle *h = priv->ae_handle;
2696 	struct hns3_enet_tqp_vector *tqp_vector;
2697 	struct hnae3_vector_info *vector;
2698 	struct pci_dev *pdev = h->pdev;
2699 	u16 tqp_num = h->kinfo.num_tqps;
2700 	u16 vector_num;
2701 	int ret = 0;
2702 	u16 i;
2703 
2704 	/* RSS size, cpu online and vector_num should be the same */
2705 	/* Should consider 2p/4p later */
2706 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
2707 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2708 			      GFP_KERNEL);
2709 	if (!vector)
2710 		return -ENOMEM;
2711 
2712 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2713 
2714 	priv->vector_num = vector_num;
2715 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2716 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2717 			     GFP_KERNEL);
2718 	if (!priv->tqp_vector) {
2719 		ret = -ENOMEM;
2720 		goto out;
2721 	}
2722 
2723 	for (i = 0; i < priv->vector_num; i++) {
2724 		tqp_vector = &priv->tqp_vector[i];
2725 		tqp_vector->idx = i;
2726 		tqp_vector->mask_addr = vector[i].io_addr;
2727 		tqp_vector->vector_irq = vector[i].vector;
2728 		hns3_vector_gl_rl_init(tqp_vector, priv);
2729 	}
2730 
2731 out:
2732 	devm_kfree(&pdev->dev, vector);
2733 	return ret;
2734 }
2735 
2736 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2737 {
2738 	group->ring = NULL;
2739 	group->count = 0;
2740 }
2741 
2742 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2743 {
2744 	struct hnae3_ring_chain_node vector_ring_chain;
2745 	struct hnae3_handle *h = priv->ae_handle;
2746 	struct hns3_enet_tqp_vector *tqp_vector;
2747 	int i, ret;
2748 
2749 	for (i = 0; i < priv->vector_num; i++) {
2750 		tqp_vector = &priv->tqp_vector[i];
2751 
2752 		ret = hns3_get_vector_ring_chain(tqp_vector,
2753 						 &vector_ring_chain);
2754 		if (ret)
2755 			return ret;
2756 
2757 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2758 			tqp_vector->vector_irq, &vector_ring_chain);
2759 		if (ret)
2760 			return ret;
2761 
2762 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2763 		if (ret)
2764 			return ret;
2765 
2766 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2767 
2768 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2769 			(void)irq_set_affinity_hint(
2770 				priv->tqp_vector[i].vector_irq,
2771 						    NULL);
2772 			free_irq(priv->tqp_vector[i].vector_irq,
2773 				 &priv->tqp_vector[i]);
2774 		}
2775 
2776 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2777 		hns3_clear_ring_group(&tqp_vector->rx_group);
2778 		hns3_clear_ring_group(&tqp_vector->tx_group);
2779 		netif_napi_del(&priv->tqp_vector[i].napi);
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2786 {
2787 	struct hnae3_handle *h = priv->ae_handle;
2788 	struct pci_dev *pdev = h->pdev;
2789 	int i, ret;
2790 
2791 	for (i = 0; i < priv->vector_num; i++) {
2792 		struct hns3_enet_tqp_vector *tqp_vector;
2793 
2794 		tqp_vector = &priv->tqp_vector[i];
2795 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2796 		if (ret)
2797 			return ret;
2798 	}
2799 
2800 	devm_kfree(&pdev->dev, priv->tqp_vector);
2801 	return 0;
2802 }
2803 
2804 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2805 			     int ring_type)
2806 {
2807 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
2808 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2809 	struct pci_dev *pdev = priv->ae_handle->pdev;
2810 	struct hns3_enet_ring *ring;
2811 
2812 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2813 	if (!ring)
2814 		return -ENOMEM;
2815 
2816 	if (ring_type == HNAE3_RING_TYPE_TX) {
2817 		ring_data[q->tqp_index].ring = ring;
2818 		ring_data[q->tqp_index].queue_index = q->tqp_index;
2819 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2820 	} else {
2821 		ring_data[q->tqp_index + queue_num].ring = ring;
2822 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2823 		ring->io_base = q->io_base;
2824 	}
2825 
2826 	hnae_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2827 
2828 	ring->tqp = q;
2829 	ring->desc = NULL;
2830 	ring->desc_cb = NULL;
2831 	ring->dev = priv->dev;
2832 	ring->desc_dma_addr = 0;
2833 	ring->buf_size = q->buf_size;
2834 	ring->desc_num = q->desc_num;
2835 	ring->next_to_use = 0;
2836 	ring->next_to_clean = 0;
2837 
2838 	return 0;
2839 }
2840 
2841 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2842 			      struct hns3_nic_priv *priv)
2843 {
2844 	int ret;
2845 
2846 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2847 	if (ret)
2848 		return ret;
2849 
2850 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2851 	if (ret)
2852 		return ret;
2853 
2854 	return 0;
2855 }
2856 
2857 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2858 {
2859 	struct hnae3_handle *h = priv->ae_handle;
2860 	struct pci_dev *pdev = h->pdev;
2861 	int i, ret;
2862 
2863 	priv->ring_data =  devm_kzalloc(&pdev->dev, h->kinfo.num_tqps *
2864 					sizeof(*priv->ring_data) * 2,
2865 					GFP_KERNEL);
2866 	if (!priv->ring_data)
2867 		return -ENOMEM;
2868 
2869 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2870 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2871 		if (ret)
2872 			goto err;
2873 	}
2874 
2875 	return 0;
2876 err:
2877 	devm_kfree(&pdev->dev, priv->ring_data);
2878 	return ret;
2879 }
2880 
2881 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2882 {
2883 	struct hnae3_handle *h = priv->ae_handle;
2884 	int i;
2885 
2886 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2887 		devm_kfree(priv->dev, priv->ring_data[i].ring);
2888 		devm_kfree(priv->dev,
2889 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
2890 	}
2891 	devm_kfree(priv->dev, priv->ring_data);
2892 }
2893 
2894 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2895 {
2896 	int ret;
2897 
2898 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
2899 		return -EINVAL;
2900 
2901 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2902 				GFP_KERNEL);
2903 	if (!ring->desc_cb) {
2904 		ret = -ENOMEM;
2905 		goto out;
2906 	}
2907 
2908 	ret = hns3_alloc_desc(ring);
2909 	if (ret)
2910 		goto out_with_desc_cb;
2911 
2912 	if (!HNAE3_IS_TX_RING(ring)) {
2913 		ret = hns3_alloc_ring_buffers(ring);
2914 		if (ret)
2915 			goto out_with_desc;
2916 	}
2917 
2918 	return 0;
2919 
2920 out_with_desc:
2921 	hns3_free_desc(ring);
2922 out_with_desc_cb:
2923 	kfree(ring->desc_cb);
2924 	ring->desc_cb = NULL;
2925 out:
2926 	return ret;
2927 }
2928 
2929 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2930 {
2931 	hns3_free_desc(ring);
2932 	kfree(ring->desc_cb);
2933 	ring->desc_cb = NULL;
2934 	ring->next_to_clean = 0;
2935 	ring->next_to_use = 0;
2936 }
2937 
2938 static int hns3_buf_size2type(u32 buf_size)
2939 {
2940 	int bd_size_type;
2941 
2942 	switch (buf_size) {
2943 	case 512:
2944 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
2945 		break;
2946 	case 1024:
2947 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2948 		break;
2949 	case 2048:
2950 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2951 		break;
2952 	case 4096:
2953 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2954 		break;
2955 	default:
2956 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2957 	}
2958 
2959 	return bd_size_type;
2960 }
2961 
2962 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2963 {
2964 	dma_addr_t dma = ring->desc_dma_addr;
2965 	struct hnae3_queue *q = ring->tqp;
2966 
2967 	if (!HNAE3_IS_TX_RING(ring)) {
2968 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2969 			       (u32)dma);
2970 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2971 			       (u32)((dma >> 31) >> 1));
2972 
2973 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2974 			       hns3_buf_size2type(ring->buf_size));
2975 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2976 			       ring->desc_num / 8 - 1);
2977 
2978 	} else {
2979 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2980 			       (u32)dma);
2981 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2982 			       (u32)((dma >> 31) >> 1));
2983 
2984 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
2985 			       hns3_buf_size2type(ring->buf_size));
2986 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2987 			       ring->desc_num / 8 - 1);
2988 	}
2989 }
2990 
2991 int hns3_init_all_ring(struct hns3_nic_priv *priv)
2992 {
2993 	struct hnae3_handle *h = priv->ae_handle;
2994 	int ring_num = h->kinfo.num_tqps * 2;
2995 	int i, j;
2996 	int ret;
2997 
2998 	for (i = 0; i < ring_num; i++) {
2999 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3000 		if (ret) {
3001 			dev_err(priv->dev,
3002 				"Alloc ring memory fail! ret=%d\n", ret);
3003 			goto out_when_alloc_ring_memory;
3004 		}
3005 
3006 		hns3_init_ring_hw(priv->ring_data[i].ring);
3007 
3008 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3009 	}
3010 
3011 	return 0;
3012 
3013 out_when_alloc_ring_memory:
3014 	for (j = i - 1; j >= 0; j--)
3015 		hns3_fini_ring(priv->ring_data[j].ring);
3016 
3017 	return -ENOMEM;
3018 }
3019 
3020 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3021 {
3022 	struct hnae3_handle *h = priv->ae_handle;
3023 	int i;
3024 
3025 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3026 		if (h->ae_algo->ops->reset_queue)
3027 			h->ae_algo->ops->reset_queue(h, i);
3028 
3029 		hns3_fini_ring(priv->ring_data[i].ring);
3030 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3031 	}
3032 	return 0;
3033 }
3034 
3035 /* Set mac addr if it is configured. or leave it to the AE driver */
3036 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
3037 {
3038 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3039 	struct hnae3_handle *h = priv->ae_handle;
3040 	u8 mac_addr_temp[ETH_ALEN];
3041 
3042 	if (h->ae_algo->ops->get_mac_addr && init) {
3043 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3044 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3045 	}
3046 
3047 	/* Check if the MAC address is valid, if not get a random one */
3048 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3049 		eth_hw_addr_random(netdev);
3050 		dev_warn(priv->dev, "using random MAC address %pM\n",
3051 			 netdev->dev_addr);
3052 	}
3053 
3054 	if (h->ae_algo->ops->set_mac_addr)
3055 		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3056 
3057 }
3058 
3059 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3060 {
3061 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3062 
3063 	if ((netdev->features & NETIF_F_TSO) ||
3064 	    (netdev->features & NETIF_F_TSO6)) {
3065 		priv->ops.fill_desc = hns3_fill_desc_tso;
3066 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3067 	} else {
3068 		priv->ops.fill_desc = hns3_fill_desc;
3069 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3070 	}
3071 }
3072 
3073 static int hns3_client_init(struct hnae3_handle *handle)
3074 {
3075 	struct pci_dev *pdev = handle->pdev;
3076 	struct hns3_nic_priv *priv;
3077 	struct net_device *netdev;
3078 	int ret;
3079 
3080 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3081 				   hns3_get_max_available_channels(handle));
3082 	if (!netdev)
3083 		return -ENOMEM;
3084 
3085 	priv = netdev_priv(netdev);
3086 	priv->dev = &pdev->dev;
3087 	priv->netdev = netdev;
3088 	priv->ae_handle = handle;
3089 	priv->ae_handle->reset_level = HNAE3_NONE_RESET;
3090 	priv->ae_handle->last_reset_time = jiffies;
3091 	priv->tx_timeout_count = 0;
3092 
3093 	handle->kinfo.netdev = netdev;
3094 	handle->priv = (void *)priv;
3095 
3096 	hns3_init_mac_addr(netdev, true);
3097 
3098 	hns3_set_default_feature(netdev);
3099 
3100 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3101 	netdev->priv_flags |= IFF_UNICAST_FLT;
3102 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3103 	SET_NETDEV_DEV(netdev, &pdev->dev);
3104 	hns3_ethtool_set_ops(netdev);
3105 	hns3_nic_set_priv_ops(netdev);
3106 
3107 	/* Carrier off reporting is important to ethtool even BEFORE open */
3108 	netif_carrier_off(netdev);
3109 
3110 	ret = hns3_get_ring_config(priv);
3111 	if (ret) {
3112 		ret = -ENOMEM;
3113 		goto out_get_ring_cfg;
3114 	}
3115 
3116 	ret = hns3_nic_alloc_vector_data(priv);
3117 	if (ret) {
3118 		ret = -ENOMEM;
3119 		goto out_alloc_vector_data;
3120 	}
3121 
3122 	ret = hns3_nic_init_vector_data(priv);
3123 	if (ret) {
3124 		ret = -ENOMEM;
3125 		goto out_init_vector_data;
3126 	}
3127 
3128 	ret = hns3_init_all_ring(priv);
3129 	if (ret) {
3130 		ret = -ENOMEM;
3131 		goto out_init_ring_data;
3132 	}
3133 
3134 	ret = register_netdev(netdev);
3135 	if (ret) {
3136 		dev_err(priv->dev, "probe register netdev fail!\n");
3137 		goto out_reg_netdev_fail;
3138 	}
3139 
3140 	hns3_dcbnl_setup(handle);
3141 
3142 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3143 	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3144 
3145 	return ret;
3146 
3147 out_reg_netdev_fail:
3148 out_init_ring_data:
3149 	(void)hns3_nic_uninit_vector_data(priv);
3150 out_init_vector_data:
3151 	hns3_nic_dealloc_vector_data(priv);
3152 out_alloc_vector_data:
3153 	priv->ring_data = NULL;
3154 out_get_ring_cfg:
3155 	priv->ae_handle = NULL;
3156 	free_netdev(netdev);
3157 	return ret;
3158 }
3159 
3160 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3161 {
3162 	struct net_device *netdev = handle->kinfo.netdev;
3163 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3164 	int ret;
3165 
3166 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3167 		unregister_netdev(netdev);
3168 
3169 	ret = hns3_nic_uninit_vector_data(priv);
3170 	if (ret)
3171 		netdev_err(netdev, "uninit vector error\n");
3172 
3173 	ret = hns3_nic_dealloc_vector_data(priv);
3174 	if (ret)
3175 		netdev_err(netdev, "dealloc vector error\n");
3176 
3177 	ret = hns3_uninit_all_ring(priv);
3178 	if (ret)
3179 		netdev_err(netdev, "uninit ring error\n");
3180 
3181 	hns3_put_ring_config(priv);
3182 
3183 	priv->ring_data = NULL;
3184 
3185 	free_netdev(netdev);
3186 }
3187 
3188 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3189 {
3190 	struct net_device *netdev = handle->kinfo.netdev;
3191 
3192 	if (!netdev)
3193 		return;
3194 
3195 	if (linkup) {
3196 		netif_carrier_on(netdev);
3197 		netif_tx_wake_all_queues(netdev);
3198 		netdev_info(netdev, "link up\n");
3199 	} else {
3200 		netif_carrier_off(netdev);
3201 		netif_tx_stop_all_queues(netdev);
3202 		netdev_info(netdev, "link down\n");
3203 	}
3204 }
3205 
3206 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3207 {
3208 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3209 	struct net_device *ndev = kinfo->netdev;
3210 	bool if_running;
3211 	int ret;
3212 	u8 i;
3213 
3214 	if (tc > HNAE3_MAX_TC)
3215 		return -EINVAL;
3216 
3217 	if (!ndev)
3218 		return -ENODEV;
3219 
3220 	if_running = netif_running(ndev);
3221 
3222 	ret = netdev_set_num_tc(ndev, tc);
3223 	if (ret)
3224 		return ret;
3225 
3226 	if (if_running) {
3227 		(void)hns3_nic_net_stop(ndev);
3228 		msleep(100);
3229 	}
3230 
3231 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3232 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3233 	if (ret)
3234 		goto err_out;
3235 
3236 	if (tc <= 1) {
3237 		netdev_reset_tc(ndev);
3238 		goto out;
3239 	}
3240 
3241 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3242 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3243 
3244 		if (tc_info->enable)
3245 			netdev_set_tc_queue(ndev,
3246 					    tc_info->tc,
3247 					    tc_info->tqp_count,
3248 					    tc_info->tqp_offset);
3249 	}
3250 
3251 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
3252 		netdev_set_prio_tc_map(ndev, i,
3253 				       kinfo->prio_tc[i]);
3254 	}
3255 
3256 out:
3257 	ret = hns3_nic_set_real_num_queue(ndev);
3258 
3259 err_out:
3260 	if (if_running)
3261 		(void)hns3_nic_net_open(ndev);
3262 
3263 	return ret;
3264 }
3265 
3266 static void hns3_recover_hw_addr(struct net_device *ndev)
3267 {
3268 	struct netdev_hw_addr_list *list;
3269 	struct netdev_hw_addr *ha, *tmp;
3270 
3271 	/* go through and sync uc_addr entries to the device */
3272 	list = &ndev->uc;
3273 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3274 		hns3_nic_uc_sync(ndev, ha->addr);
3275 
3276 	/* go through and sync mc_addr entries to the device */
3277 	list = &ndev->mc;
3278 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3279 		hns3_nic_mc_sync(ndev, ha->addr);
3280 }
3281 
3282 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3283 {
3284 	if (!HNAE3_IS_TX_RING(ring))
3285 		return;
3286 
3287 	while (ring->next_to_clean != ring->next_to_use) {
3288 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3289 		ring_ptr_move_fw(ring, next_to_clean);
3290 	}
3291 }
3292 
3293 static void hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3294 {
3295 	if (HNAE3_IS_TX_RING(ring))
3296 		return;
3297 
3298 	while (ring->next_to_use != ring->next_to_clean) {
3299 		/* When a buffer is not reused, it's memory has been
3300 		 * freed in hns3_handle_rx_bd or will be freed by
3301 		 * stack, so only need to unmap the buffer here.
3302 		 */
3303 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3304 			hns3_unmap_buffer(ring,
3305 					  &ring->desc_cb[ring->next_to_use]);
3306 			ring->desc_cb[ring->next_to_use].dma = 0;
3307 		}
3308 
3309 		ring_ptr_move_fw(ring, next_to_use);
3310 	}
3311 }
3312 
3313 static void hns3_clear_all_ring(struct hnae3_handle *h)
3314 {
3315 	struct net_device *ndev = h->kinfo.netdev;
3316 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3317 	u32 i;
3318 
3319 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3320 		struct netdev_queue *dev_queue;
3321 		struct hns3_enet_ring *ring;
3322 
3323 		ring = priv->ring_data[i].ring;
3324 		hns3_clear_tx_ring(ring);
3325 		dev_queue = netdev_get_tx_queue(ndev,
3326 						priv->ring_data[i].queue_index);
3327 		netdev_tx_reset_queue(dev_queue);
3328 
3329 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3330 		hns3_clear_rx_ring(ring);
3331 	}
3332 }
3333 
3334 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3335 {
3336 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3337 	struct net_device *ndev = kinfo->netdev;
3338 
3339 	if (!netif_running(ndev))
3340 		return -EIO;
3341 
3342 	return hns3_nic_net_stop(ndev);
3343 }
3344 
3345 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3346 {
3347 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3348 	int ret = 0;
3349 
3350 	if (netif_running(kinfo->netdev)) {
3351 		ret = hns3_nic_net_up(kinfo->netdev);
3352 		if (ret) {
3353 			netdev_err(kinfo->netdev,
3354 				   "hns net up fail, ret=%d!\n", ret);
3355 			return ret;
3356 		}
3357 		handle->last_reset_time = jiffies;
3358 	}
3359 
3360 	return ret;
3361 }
3362 
3363 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3364 {
3365 	struct net_device *netdev = handle->kinfo.netdev;
3366 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3367 	int ret;
3368 
3369 	hns3_init_mac_addr(netdev, false);
3370 	hns3_nic_set_rx_mode(netdev);
3371 	hns3_recover_hw_addr(netdev);
3372 
3373 	/* Hardware table is only clear when pf resets */
3374 	if (!(handle->flags & HNAE3_SUPPORT_VF))
3375 		hns3_restore_vlan(netdev);
3376 
3377 	/* Carrier off reporting is important to ethtool even BEFORE open */
3378 	netif_carrier_off(netdev);
3379 
3380 	ret = hns3_get_ring_config(priv);
3381 	if (ret)
3382 		return ret;
3383 
3384 	ret = hns3_nic_init_vector_data(priv);
3385 	if (ret)
3386 		return ret;
3387 
3388 	ret = hns3_init_all_ring(priv);
3389 	if (ret) {
3390 		hns3_nic_uninit_vector_data(priv);
3391 		priv->ring_data = NULL;
3392 	}
3393 
3394 	return ret;
3395 }
3396 
3397 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3398 {
3399 	struct net_device *netdev = handle->kinfo.netdev;
3400 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3401 	int ret;
3402 
3403 	hns3_clear_all_ring(handle);
3404 
3405 	ret = hns3_nic_uninit_vector_data(priv);
3406 	if (ret) {
3407 		netdev_err(netdev, "uninit vector error\n");
3408 		return ret;
3409 	}
3410 
3411 	ret = hns3_uninit_all_ring(priv);
3412 	if (ret)
3413 		netdev_err(netdev, "uninit ring error\n");
3414 
3415 	hns3_put_ring_config(priv);
3416 
3417 	priv->ring_data = NULL;
3418 
3419 	return ret;
3420 }
3421 
3422 static int hns3_reset_notify(struct hnae3_handle *handle,
3423 			     enum hnae3_reset_notify_type type)
3424 {
3425 	int ret = 0;
3426 
3427 	switch (type) {
3428 	case HNAE3_UP_CLIENT:
3429 		ret = hns3_reset_notify_up_enet(handle);
3430 		break;
3431 	case HNAE3_DOWN_CLIENT:
3432 		ret = hns3_reset_notify_down_enet(handle);
3433 		break;
3434 	case HNAE3_INIT_CLIENT:
3435 		ret = hns3_reset_notify_init_enet(handle);
3436 		break;
3437 	case HNAE3_UNINIT_CLIENT:
3438 		ret = hns3_reset_notify_uninit_enet(handle);
3439 		break;
3440 	default:
3441 		break;
3442 	}
3443 
3444 	return ret;
3445 }
3446 
3447 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3448 			      struct hns3_enet_coalesce *tx,
3449 			      struct hns3_enet_coalesce *rx)
3450 {
3451 	u16 vector_num = priv->vector_num;
3452 	int i;
3453 
3454 	for (i = 0; i < vector_num; i++) {
3455 		memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3456 		       sizeof(struct hns3_enet_coalesce));
3457 		memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3458 		       sizeof(struct hns3_enet_coalesce));
3459 	}
3460 }
3461 
3462 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3463 			       struct hns3_enet_coalesce *tx,
3464 			       struct hns3_enet_coalesce *rx)
3465 {
3466 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3467 	struct hnae3_handle *h = hns3_get_handle(netdev);
3468 	int ret;
3469 
3470 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3471 	if (ret)
3472 		return ret;
3473 
3474 	ret = hns3_get_ring_config(priv);
3475 	if (ret)
3476 		return ret;
3477 
3478 	ret = hns3_nic_alloc_vector_data(priv);
3479 	if (ret)
3480 		goto err_alloc_vector;
3481 
3482 	hns3_restore_coal(priv, tx, rx);
3483 
3484 	ret = hns3_nic_init_vector_data(priv);
3485 	if (ret)
3486 		goto err_uninit_vector;
3487 
3488 	ret = hns3_init_all_ring(priv);
3489 	if (ret)
3490 		goto err_put_ring;
3491 
3492 	return 0;
3493 
3494 err_put_ring:
3495 	hns3_put_ring_config(priv);
3496 err_uninit_vector:
3497 	hns3_nic_uninit_vector_data(priv);
3498 err_alloc_vector:
3499 	hns3_nic_dealloc_vector_data(priv);
3500 	return ret;
3501 }
3502 
3503 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3504 {
3505 	return (new_tqp_num / num_tc) * num_tc;
3506 }
3507 
3508 int hns3_set_channels(struct net_device *netdev,
3509 		      struct ethtool_channels *ch)
3510 {
3511 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3512 	struct hnae3_handle *h = hns3_get_handle(netdev);
3513 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
3514 	struct hns3_enet_coalesce tx_coal, rx_coal;
3515 	bool if_running = netif_running(netdev);
3516 	u32 new_tqp_num = ch->combined_count;
3517 	u16 org_tqp_num;
3518 	int ret;
3519 
3520 	if (ch->rx_count || ch->tx_count)
3521 		return -EINVAL;
3522 
3523 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
3524 	    new_tqp_num < kinfo->num_tc) {
3525 		dev_err(&netdev->dev,
3526 			"Change tqps fail, the tqp range is from %d to %d",
3527 			kinfo->num_tc,
3528 			hns3_get_max_available_channels(h));
3529 		return -EINVAL;
3530 	}
3531 
3532 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3533 	if (kinfo->num_tqps == new_tqp_num)
3534 		return 0;
3535 
3536 	if (if_running)
3537 		hns3_nic_net_stop(netdev);
3538 
3539 	hns3_clear_all_ring(h);
3540 
3541 	ret = hns3_nic_uninit_vector_data(priv);
3542 	if (ret) {
3543 		dev_err(&netdev->dev,
3544 			"Unbind vector with tqp fail, nothing is changed");
3545 		goto open_netdev;
3546 	}
3547 
3548 	/* Changing the tqp num may also change the vector num,
3549 	 * ethtool only support setting and querying one coal
3550 	 * configuation for now, so save the vector 0' coal
3551 	 * configuation here in order to restore it.
3552 	 */
3553 	memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3554 	       sizeof(struct hns3_enet_coalesce));
3555 	memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3556 	       sizeof(struct hns3_enet_coalesce));
3557 
3558 	hns3_nic_dealloc_vector_data(priv);
3559 
3560 	hns3_uninit_all_ring(priv);
3561 	hns3_put_ring_config(priv);
3562 
3563 	org_tqp_num = h->kinfo.num_tqps;
3564 	ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3565 	if (ret) {
3566 		ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3567 					  &tx_coal, &rx_coal);
3568 		if (ret) {
3569 			/* If revert to old tqp failed, fatal error occurred */
3570 			dev_err(&netdev->dev,
3571 				"Revert to old tqp num fail, ret=%d", ret);
3572 			return ret;
3573 		}
3574 		dev_info(&netdev->dev,
3575 			 "Change tqp num fail, Revert to old tqp num");
3576 	}
3577 
3578 open_netdev:
3579 	if (if_running)
3580 		hns3_nic_net_open(netdev);
3581 
3582 	return ret;
3583 }
3584 
3585 static const struct hnae3_client_ops client_ops = {
3586 	.init_instance = hns3_client_init,
3587 	.uninit_instance = hns3_client_uninit,
3588 	.link_status_change = hns3_link_status_change,
3589 	.setup_tc = hns3_client_setup_tc,
3590 	.reset_notify = hns3_reset_notify,
3591 };
3592 
3593 /* hns3_init_module - Driver registration routine
3594  * hns3_init_module is the first routine called when the driver is
3595  * loaded. All it does is register with the PCI subsystem.
3596  */
3597 static int __init hns3_init_module(void)
3598 {
3599 	int ret;
3600 
3601 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3602 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3603 
3604 	client.type = HNAE3_CLIENT_KNIC;
3605 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3606 		 hns3_driver_name);
3607 
3608 	client.ops = &client_ops;
3609 
3610 	ret = hnae3_register_client(&client);
3611 	if (ret)
3612 		return ret;
3613 
3614 	ret = pci_register_driver(&hns3_driver);
3615 	if (ret)
3616 		hnae3_unregister_client(&client);
3617 
3618 	return ret;
3619 }
3620 module_init(hns3_init_module);
3621 
3622 /* hns3_exit_module - Driver exit cleanup routine
3623  * hns3_exit_module is called just before the driver is removed
3624  * from memory.
3625  */
3626 static void __exit hns3_exit_module(void)
3627 {
3628 	pci_unregister_driver(&hns3_driver);
3629 	hnae3_unregister_client(&client);
3630 }
3631 module_exit(hns3_exit_module);
3632 
3633 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3634 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3635 MODULE_LICENSE("GPL");
3636 MODULE_ALIAS("pci:hns-nic");
3637