xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision a5d9265e017f081f0dc133c0e2f45103d027b874)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 static void hns3_clear_all_ring(struct hnae3_handle *h);
25 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
26 static void hns3_remove_hw_addr(struct net_device *netdev);
27 
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 			"Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34 
35 /* hns3_pci_tbl - PCI Device ID Table
36  *
37  * Last entry must be all 0s
38  *
39  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40  *   Class, Class Mask, private data (not used) }
41  */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	/* required last entry */
59 	{0, }
60 };
61 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
62 
63 static irqreturn_t hns3_irq_handle(int irq, void *vector)
64 {
65 	struct hns3_enet_tqp_vector *tqp_vector = vector;
66 
67 	napi_schedule(&tqp_vector->napi);
68 
69 	return IRQ_HANDLED;
70 }
71 
72 /* This callback function is used to set affinity changes to the irq affinity
73  * masks when the irq_set_affinity_notifier function is used.
74  */
75 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
76 					 const cpumask_t *mask)
77 {
78 	struct hns3_enet_tqp_vector *tqp_vectors =
79 		container_of(notify, struct hns3_enet_tqp_vector,
80 			     affinity_notify);
81 
82 	tqp_vectors->affinity_mask = *mask;
83 }
84 
85 static void hns3_nic_irq_affinity_release(struct kref *ref)
86 {
87 }
88 
89 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
90 {
91 	struct hns3_enet_tqp_vector *tqp_vectors;
92 	unsigned int i;
93 
94 	for (i = 0; i < priv->vector_num; i++) {
95 		tqp_vectors = &priv->tqp_vector[i];
96 
97 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
98 			continue;
99 
100 		/* clear the affinity notifier and affinity mask */
101 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
102 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
103 
104 		/* release the irq resource */
105 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
106 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
107 	}
108 }
109 
110 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
111 {
112 	struct hns3_enet_tqp_vector *tqp_vectors;
113 	int txrx_int_idx = 0;
114 	int rx_int_idx = 0;
115 	int tx_int_idx = 0;
116 	unsigned int i;
117 	int ret;
118 
119 	for (i = 0; i < priv->vector_num; i++) {
120 		tqp_vectors = &priv->tqp_vector[i];
121 
122 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
123 			continue;
124 
125 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
126 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
127 				 "%s-%s-%d", priv->netdev->name, "TxRx",
128 				 txrx_int_idx++);
129 			txrx_int_idx++;
130 		} else if (tqp_vectors->rx_group.ring) {
131 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
132 				 "%s-%s-%d", priv->netdev->name, "Rx",
133 				 rx_int_idx++);
134 		} else if (tqp_vectors->tx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
136 				 "%s-%s-%d", priv->netdev->name, "Tx",
137 				 tx_int_idx++);
138 		} else {
139 			/* Skip this unused q_vector */
140 			continue;
141 		}
142 
143 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
144 
145 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
146 				  tqp_vectors->name,
147 				       tqp_vectors);
148 		if (ret) {
149 			netdev_err(priv->netdev, "request irq(%d) fail\n",
150 				   tqp_vectors->vector_irq);
151 			return ret;
152 		}
153 
154 		tqp_vectors->affinity_notify.notify =
155 					hns3_nic_irq_affinity_notify;
156 		tqp_vectors->affinity_notify.release =
157 					hns3_nic_irq_affinity_release;
158 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
159 					  &tqp_vectors->affinity_notify);
160 		irq_set_affinity_hint(tqp_vectors->vector_irq,
161 				      &tqp_vectors->affinity_mask);
162 
163 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
164 	}
165 
166 	return 0;
167 }
168 
169 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
170 				 u32 mask_en)
171 {
172 	writel(mask_en, tqp_vector->mask_addr);
173 }
174 
175 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
176 {
177 	napi_enable(&tqp_vector->napi);
178 
179 	/* enable vector */
180 	hns3_mask_vector_irq(tqp_vector, 1);
181 }
182 
183 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	/* disable vector */
186 	hns3_mask_vector_irq(tqp_vector, 0);
187 
188 	disable_irq(tqp_vector->vector_irq);
189 	napi_disable(&tqp_vector->napi);
190 }
191 
192 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
193 				 u32 rl_value)
194 {
195 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
196 
197 	/* this defines the configuration for RL (Interrupt Rate Limiter).
198 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
199 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
200 	 */
201 
202 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
203 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
204 		/* According to the hardware, the range of rl_reg is
205 		 * 0-59 and the unit is 4.
206 		 */
207 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
208 
209 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
210 }
211 
212 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
213 				    u32 gl_value)
214 {
215 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
216 
217 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
218 }
219 
220 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
221 				    u32 gl_value)
222 {
223 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
224 
225 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
226 }
227 
228 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
229 				   struct hns3_nic_priv *priv)
230 {
231 	/* initialize the configuration for interrupt coalescing.
232 	 * 1. GL (Interrupt Gap Limiter)
233 	 * 2. RL (Interrupt Rate Limiter)
234 	 */
235 
236 	/* Default: enable interrupt coalescing self-adaptive and GL */
237 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
238 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
239 
240 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
241 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
242 
243 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
244 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
245 }
246 
247 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
248 				      struct hns3_nic_priv *priv)
249 {
250 	struct hnae3_handle *h = priv->ae_handle;
251 
252 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
253 				       tqp_vector->tx_group.coal.int_gl);
254 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
255 				       tqp_vector->rx_group.coal.int_gl);
256 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
257 }
258 
259 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
260 {
261 	struct hnae3_handle *h = hns3_get_handle(netdev);
262 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
263 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
264 	int i, ret;
265 
266 	if (kinfo->num_tc <= 1) {
267 		netdev_reset_tc(netdev);
268 	} else {
269 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
270 		if (ret) {
271 			netdev_err(netdev,
272 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
273 			return ret;
274 		}
275 
276 		for (i = 0; i < HNAE3_MAX_TC; i++) {
277 			if (!kinfo->tc_info[i].enable)
278 				continue;
279 
280 			netdev_set_tc_queue(netdev,
281 					    kinfo->tc_info[i].tc,
282 					    kinfo->tc_info[i].tqp_count,
283 					    kinfo->tc_info[i].tqp_offset);
284 		}
285 	}
286 
287 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
288 	if (ret) {
289 		netdev_err(netdev,
290 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
291 			   ret);
292 		return ret;
293 	}
294 
295 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
296 	if (ret) {
297 		netdev_err(netdev,
298 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
299 		return ret;
300 	}
301 
302 	return 0;
303 }
304 
305 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
306 {
307 	u16 alloc_tqps, max_rss_size, rss_size;
308 
309 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
310 	rss_size = alloc_tqps / h->kinfo.num_tc;
311 
312 	return min_t(u16, rss_size, max_rss_size);
313 }
314 
315 static void hns3_tqp_enable(struct hnae3_queue *tqp)
316 {
317 	u32 rcb_reg;
318 
319 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
320 	rcb_reg |= BIT(HNS3_RING_EN_B);
321 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
322 }
323 
324 static void hns3_tqp_disable(struct hnae3_queue *tqp)
325 {
326 	u32 rcb_reg;
327 
328 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
329 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
330 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
331 }
332 
333 static int hns3_nic_net_up(struct net_device *netdev)
334 {
335 	struct hns3_nic_priv *priv = netdev_priv(netdev);
336 	struct hnae3_handle *h = priv->ae_handle;
337 	int i, j;
338 	int ret;
339 
340 	ret = hns3_nic_reset_all_ring(h);
341 	if (ret)
342 		return ret;
343 
344 	/* get irq resource for all vectors */
345 	ret = hns3_nic_init_irq(priv);
346 	if (ret) {
347 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
348 		return ret;
349 	}
350 
351 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
352 
353 	/* enable the vectors */
354 	for (i = 0; i < priv->vector_num; i++)
355 		hns3_vector_enable(&priv->tqp_vector[i]);
356 
357 	/* enable rcb */
358 	for (j = 0; j < h->kinfo.num_tqps; j++)
359 		hns3_tqp_enable(h->kinfo.tqp[j]);
360 
361 	/* start the ae_dev */
362 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
363 	if (ret)
364 		goto out_start_err;
365 
366 	return 0;
367 
368 out_start_err:
369 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
370 	while (j--)
371 		hns3_tqp_disable(h->kinfo.tqp[j]);
372 
373 	for (j = i - 1; j >= 0; j--)
374 		hns3_vector_disable(&priv->tqp_vector[j]);
375 
376 	hns3_nic_uninit_irq(priv);
377 
378 	return ret;
379 }
380 
381 static int hns3_nic_net_open(struct net_device *netdev)
382 {
383 	struct hns3_nic_priv *priv = netdev_priv(netdev);
384 	struct hnae3_handle *h = hns3_get_handle(netdev);
385 	struct hnae3_knic_private_info *kinfo;
386 	int i, ret;
387 
388 	if (hns3_nic_resetting(netdev))
389 		return -EBUSY;
390 
391 	netif_carrier_off(netdev);
392 
393 	ret = hns3_nic_set_real_num_queue(netdev);
394 	if (ret)
395 		return ret;
396 
397 	ret = hns3_nic_net_up(netdev);
398 	if (ret) {
399 		netdev_err(netdev,
400 			   "hns net up fail, ret=%d!\n", ret);
401 		return ret;
402 	}
403 
404 	kinfo = &h->kinfo;
405 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
406 		netdev_set_prio_tc_map(netdev, i,
407 				       kinfo->prio_tc[i]);
408 	}
409 
410 	if (h->ae_algo->ops->set_timer_task)
411 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
412 
413 	return 0;
414 }
415 
416 static void hns3_nic_net_down(struct net_device *netdev)
417 {
418 	struct hns3_nic_priv *priv = netdev_priv(netdev);
419 	struct hnae3_handle *h = hns3_get_handle(netdev);
420 	const struct hnae3_ae_ops *ops;
421 	int i;
422 
423 	/* disable vectors */
424 	for (i = 0; i < priv->vector_num; i++)
425 		hns3_vector_disable(&priv->tqp_vector[i]);
426 
427 	/* disable rcb */
428 	for (i = 0; i < h->kinfo.num_tqps; i++)
429 		hns3_tqp_disable(h->kinfo.tqp[i]);
430 
431 	/* stop ae_dev */
432 	ops = priv->ae_handle->ae_algo->ops;
433 	if (ops->stop)
434 		ops->stop(priv->ae_handle);
435 
436 	/* free irq resources */
437 	hns3_nic_uninit_irq(priv);
438 
439 	hns3_clear_all_ring(priv->ae_handle);
440 }
441 
442 static int hns3_nic_net_stop(struct net_device *netdev)
443 {
444 	struct hns3_nic_priv *priv = netdev_priv(netdev);
445 	struct hnae3_handle *h = hns3_get_handle(netdev);
446 
447 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
448 		return 0;
449 
450 	if (h->ae_algo->ops->set_timer_task)
451 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
452 
453 	netif_tx_stop_all_queues(netdev);
454 	netif_carrier_off(netdev);
455 
456 	hns3_nic_net_down(netdev);
457 
458 	return 0;
459 }
460 
461 static int hns3_nic_uc_sync(struct net_device *netdev,
462 			    const unsigned char *addr)
463 {
464 	struct hnae3_handle *h = hns3_get_handle(netdev);
465 
466 	if (h->ae_algo->ops->add_uc_addr)
467 		return h->ae_algo->ops->add_uc_addr(h, addr);
468 
469 	return 0;
470 }
471 
472 static int hns3_nic_uc_unsync(struct net_device *netdev,
473 			      const unsigned char *addr)
474 {
475 	struct hnae3_handle *h = hns3_get_handle(netdev);
476 
477 	if (h->ae_algo->ops->rm_uc_addr)
478 		return h->ae_algo->ops->rm_uc_addr(h, addr);
479 
480 	return 0;
481 }
482 
483 static int hns3_nic_mc_sync(struct net_device *netdev,
484 			    const unsigned char *addr)
485 {
486 	struct hnae3_handle *h = hns3_get_handle(netdev);
487 
488 	if (h->ae_algo->ops->add_mc_addr)
489 		return h->ae_algo->ops->add_mc_addr(h, addr);
490 
491 	return 0;
492 }
493 
494 static int hns3_nic_mc_unsync(struct net_device *netdev,
495 			      const unsigned char *addr)
496 {
497 	struct hnae3_handle *h = hns3_get_handle(netdev);
498 
499 	if (h->ae_algo->ops->rm_mc_addr)
500 		return h->ae_algo->ops->rm_mc_addr(h, addr);
501 
502 	return 0;
503 }
504 
505 static u8 hns3_get_netdev_flags(struct net_device *netdev)
506 {
507 	u8 flags = 0;
508 
509 	if (netdev->flags & IFF_PROMISC) {
510 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
511 	} else {
512 		flags |= HNAE3_VLAN_FLTR;
513 		if (netdev->flags & IFF_ALLMULTI)
514 			flags |= HNAE3_USER_MPE;
515 	}
516 
517 	return flags;
518 }
519 
520 static void hns3_nic_set_rx_mode(struct net_device *netdev)
521 {
522 	struct hnae3_handle *h = hns3_get_handle(netdev);
523 	u8 new_flags;
524 	int ret;
525 
526 	new_flags = hns3_get_netdev_flags(netdev);
527 
528 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
529 	if (ret) {
530 		netdev_err(netdev, "sync uc address fail\n");
531 		if (ret == -ENOSPC)
532 			new_flags |= HNAE3_OVERFLOW_UPE;
533 	}
534 
535 	if (netdev->flags & IFF_MULTICAST) {
536 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
537 				    hns3_nic_mc_unsync);
538 		if (ret) {
539 			netdev_err(netdev, "sync mc address fail\n");
540 			if (ret == -ENOSPC)
541 				new_flags |= HNAE3_OVERFLOW_MPE;
542 		}
543 	}
544 
545 	/* User mode Promisc mode enable and vlan filtering is disabled to
546 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
547 	 * vlan fitering is enabled
548 	 */
549 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
550 	h->netdev_flags = new_flags;
551 	hns3_update_promisc_mode(netdev, new_flags);
552 }
553 
554 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
555 {
556 	struct hns3_nic_priv *priv = netdev_priv(netdev);
557 	struct hnae3_handle *h = priv->ae_handle;
558 
559 	if (h->ae_algo->ops->set_promisc_mode) {
560 		return h->ae_algo->ops->set_promisc_mode(h,
561 						promisc_flags & HNAE3_UPE,
562 						promisc_flags & HNAE3_MPE);
563 	}
564 
565 	return 0;
566 }
567 
568 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
569 {
570 	struct hns3_nic_priv *priv = netdev_priv(netdev);
571 	struct hnae3_handle *h = priv->ae_handle;
572 	bool last_state;
573 
574 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
575 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
576 		if (enable != last_state) {
577 			netdev_info(netdev,
578 				    "%s vlan filter\n",
579 				    enable ? "enable" : "disable");
580 			h->ae_algo->ops->enable_vlan_filter(h, enable);
581 		}
582 	}
583 }
584 
585 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
586 			u16 *mss, u32 *type_cs_vlan_tso)
587 {
588 	u32 l4_offset, hdr_len;
589 	union l3_hdr_info l3;
590 	union l4_hdr_info l4;
591 	u32 l4_paylen;
592 	int ret;
593 
594 	if (!skb_is_gso(skb))
595 		return 0;
596 
597 	ret = skb_cow_head(skb, 0);
598 	if (ret)
599 		return ret;
600 
601 	l3.hdr = skb_network_header(skb);
602 	l4.hdr = skb_transport_header(skb);
603 
604 	/* Software should clear the IPv4's checksum field when tso is
605 	 * needed.
606 	 */
607 	if (l3.v4->version == 4)
608 		l3.v4->check = 0;
609 
610 	/* tunnel packet.*/
611 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
612 					 SKB_GSO_GRE_CSUM |
613 					 SKB_GSO_UDP_TUNNEL |
614 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
615 		if ((!(skb_shinfo(skb)->gso_type &
616 		    SKB_GSO_PARTIAL)) &&
617 		    (skb_shinfo(skb)->gso_type &
618 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
619 			/* Software should clear the udp's checksum
620 			 * field when tso is needed.
621 			 */
622 			l4.udp->check = 0;
623 		}
624 		/* reset l3&l4 pointers from outer to inner headers */
625 		l3.hdr = skb_inner_network_header(skb);
626 		l4.hdr = skb_inner_transport_header(skb);
627 
628 		/* Software should clear the IPv4's checksum field when
629 		 * tso is needed.
630 		 */
631 		if (l3.v4->version == 4)
632 			l3.v4->check = 0;
633 	}
634 
635 	/* normal or tunnel packet*/
636 	l4_offset = l4.hdr - skb->data;
637 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
638 
639 	/* remove payload length from inner pseudo checksum when tso*/
640 	l4_paylen = skb->len - l4_offset;
641 	csum_replace_by_diff(&l4.tcp->check,
642 			     (__force __wsum)htonl(l4_paylen));
643 
644 	/* find the txbd field values */
645 	*paylen = skb->len - hdr_len;
646 	hnae3_set_bit(*type_cs_vlan_tso,
647 		      HNS3_TXD_TSO_B, 1);
648 
649 	/* get MSS for TSO */
650 	*mss = skb_shinfo(skb)->gso_size;
651 
652 	return 0;
653 }
654 
655 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
656 				u8 *il4_proto)
657 {
658 	union l3_hdr_info l3;
659 	unsigned char *l4_hdr;
660 	unsigned char *exthdr;
661 	u8 l4_proto_tmp;
662 	__be16 frag_off;
663 
664 	/* find outer header point */
665 	l3.hdr = skb_network_header(skb);
666 	l4_hdr = skb_transport_header(skb);
667 
668 	if (skb->protocol == htons(ETH_P_IPV6)) {
669 		exthdr = l3.hdr + sizeof(*l3.v6);
670 		l4_proto_tmp = l3.v6->nexthdr;
671 		if (l4_hdr != exthdr)
672 			ipv6_skip_exthdr(skb, exthdr - skb->data,
673 					 &l4_proto_tmp, &frag_off);
674 	} else if (skb->protocol == htons(ETH_P_IP)) {
675 		l4_proto_tmp = l3.v4->protocol;
676 	} else {
677 		return -EINVAL;
678 	}
679 
680 	*ol4_proto = l4_proto_tmp;
681 
682 	/* tunnel packet */
683 	if (!skb->encapsulation) {
684 		*il4_proto = 0;
685 		return 0;
686 	}
687 
688 	/* find inner header point */
689 	l3.hdr = skb_inner_network_header(skb);
690 	l4_hdr = skb_inner_transport_header(skb);
691 
692 	if (l3.v6->version == 6) {
693 		exthdr = l3.hdr + sizeof(*l3.v6);
694 		l4_proto_tmp = l3.v6->nexthdr;
695 		if (l4_hdr != exthdr)
696 			ipv6_skip_exthdr(skb, exthdr - skb->data,
697 					 &l4_proto_tmp, &frag_off);
698 	} else if (l3.v4->version == 4) {
699 		l4_proto_tmp = l3.v4->protocol;
700 	}
701 
702 	*il4_proto = l4_proto_tmp;
703 
704 	return 0;
705 }
706 
707 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
708 				u8 il4_proto, u32 *type_cs_vlan_tso,
709 				u32 *ol_type_vlan_len_msec)
710 {
711 	union l3_hdr_info l3;
712 	union l4_hdr_info l4;
713 	unsigned char *l2_hdr;
714 	u8 l4_proto = ol4_proto;
715 	u32 ol2_len;
716 	u32 ol3_len;
717 	u32 ol4_len;
718 	u32 l2_len;
719 	u32 l3_len;
720 
721 	l3.hdr = skb_network_header(skb);
722 	l4.hdr = skb_transport_header(skb);
723 
724 	/* compute L2 header size for normal packet, defined in 2 Bytes */
725 	l2_len = l3.hdr - skb->data;
726 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
727 			HNS3_TXD_L2LEN_S, l2_len >> 1);
728 
729 	/* tunnel packet*/
730 	if (skb->encapsulation) {
731 		/* compute OL2 header size, defined in 2 Bytes */
732 		ol2_len = l2_len;
733 		hnae3_set_field(*ol_type_vlan_len_msec,
734 				HNS3_TXD_L2LEN_M,
735 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
736 
737 		/* compute OL3 header size, defined in 4 Bytes */
738 		ol3_len = l4.hdr - l3.hdr;
739 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
740 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
741 
742 		/* MAC in UDP, MAC in GRE (0x6558)*/
743 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
744 			/* switch MAC header ptr from outer to inner header.*/
745 			l2_hdr = skb_inner_mac_header(skb);
746 
747 			/* compute OL4 header size, defined in 4 Bytes. */
748 			ol4_len = l2_hdr - l4.hdr;
749 			hnae3_set_field(*ol_type_vlan_len_msec,
750 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
751 					ol4_len >> 2);
752 
753 			/* switch IP header ptr from outer to inner header */
754 			l3.hdr = skb_inner_network_header(skb);
755 
756 			/* compute inner l2 header size, defined in 2 Bytes. */
757 			l2_len = l3.hdr - l2_hdr;
758 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
759 					HNS3_TXD_L2LEN_S, l2_len >> 1);
760 		} else {
761 			/* skb packet types not supported by hardware,
762 			 * txbd len fild doesn't be filled.
763 			 */
764 			return;
765 		}
766 
767 		/* switch L4 header pointer from outer to inner */
768 		l4.hdr = skb_inner_transport_header(skb);
769 
770 		l4_proto = il4_proto;
771 	}
772 
773 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
774 	l3_len = l4.hdr - l3.hdr;
775 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
776 			HNS3_TXD_L3LEN_S, l3_len >> 2);
777 
778 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
779 	switch (l4_proto) {
780 	case IPPROTO_TCP:
781 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
782 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
783 		break;
784 	case IPPROTO_SCTP:
785 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
786 				HNS3_TXD_L4LEN_S,
787 				(sizeof(struct sctphdr) >> 2));
788 		break;
789 	case IPPROTO_UDP:
790 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
791 				HNS3_TXD_L4LEN_S,
792 				(sizeof(struct udphdr) >> 2));
793 		break;
794 	default:
795 		/* skb packet types not supported by hardware,
796 		 * txbd len fild doesn't be filled.
797 		 */
798 		return;
799 	}
800 }
801 
802 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
803  * and it is udp packet, which has a dest port as the IANA assigned.
804  * the hardware is expected to do the checksum offload, but the
805  * hardware will not do the checksum offload when udp dest port is
806  * 4789.
807  */
808 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
809 {
810 #define IANA_VXLAN_PORT	4789
811 	union l4_hdr_info l4;
812 
813 	l4.hdr = skb_transport_header(skb);
814 
815 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
816 		return false;
817 
818 	skb_checksum_help(skb);
819 
820 	return true;
821 }
822 
823 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
824 				   u8 il4_proto, u32 *type_cs_vlan_tso,
825 				   u32 *ol_type_vlan_len_msec)
826 {
827 	union l3_hdr_info l3;
828 	u32 l4_proto = ol4_proto;
829 
830 	l3.hdr = skb_network_header(skb);
831 
832 	/* define OL3 type and tunnel type(OL4).*/
833 	if (skb->encapsulation) {
834 		/* define outer network header type.*/
835 		if (skb->protocol == htons(ETH_P_IP)) {
836 			if (skb_is_gso(skb))
837 				hnae3_set_field(*ol_type_vlan_len_msec,
838 						HNS3_TXD_OL3T_M,
839 						HNS3_TXD_OL3T_S,
840 						HNS3_OL3T_IPV4_CSUM);
841 			else
842 				hnae3_set_field(*ol_type_vlan_len_msec,
843 						HNS3_TXD_OL3T_M,
844 						HNS3_TXD_OL3T_S,
845 						HNS3_OL3T_IPV4_NO_CSUM);
846 
847 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
848 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
849 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
850 		}
851 
852 		/* define tunnel type(OL4).*/
853 		switch (l4_proto) {
854 		case IPPROTO_UDP:
855 			hnae3_set_field(*ol_type_vlan_len_msec,
856 					HNS3_TXD_TUNTYPE_M,
857 					HNS3_TXD_TUNTYPE_S,
858 					HNS3_TUN_MAC_IN_UDP);
859 			break;
860 		case IPPROTO_GRE:
861 			hnae3_set_field(*ol_type_vlan_len_msec,
862 					HNS3_TXD_TUNTYPE_M,
863 					HNS3_TXD_TUNTYPE_S,
864 					HNS3_TUN_NVGRE);
865 			break;
866 		default:
867 			/* drop the skb tunnel packet if hardware don't support,
868 			 * because hardware can't calculate csum when TSO.
869 			 */
870 			if (skb_is_gso(skb))
871 				return -EDOM;
872 
873 			/* the stack computes the IP header already,
874 			 * driver calculate l4 checksum when not TSO.
875 			 */
876 			skb_checksum_help(skb);
877 			return 0;
878 		}
879 
880 		l3.hdr = skb_inner_network_header(skb);
881 		l4_proto = il4_proto;
882 	}
883 
884 	if (l3.v4->version == 4) {
885 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
886 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
887 
888 		/* the stack computes the IP header already, the only time we
889 		 * need the hardware to recompute it is in the case of TSO.
890 		 */
891 		if (skb_is_gso(skb))
892 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
893 	} else if (l3.v6->version == 6) {
894 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
895 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
896 	}
897 
898 	switch (l4_proto) {
899 	case IPPROTO_TCP:
900 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
901 		hnae3_set_field(*type_cs_vlan_tso,
902 				HNS3_TXD_L4T_M,
903 				HNS3_TXD_L4T_S,
904 				HNS3_L4T_TCP);
905 		break;
906 	case IPPROTO_UDP:
907 		if (hns3_tunnel_csum_bug(skb))
908 			break;
909 
910 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
911 		hnae3_set_field(*type_cs_vlan_tso,
912 				HNS3_TXD_L4T_M,
913 				HNS3_TXD_L4T_S,
914 				HNS3_L4T_UDP);
915 		break;
916 	case IPPROTO_SCTP:
917 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
918 		hnae3_set_field(*type_cs_vlan_tso,
919 				HNS3_TXD_L4T_M,
920 				HNS3_TXD_L4T_S,
921 				HNS3_L4T_SCTP);
922 		break;
923 	default:
924 		/* drop the skb tunnel packet if hardware don't support,
925 		 * because hardware can't calculate csum when TSO.
926 		 */
927 		if (skb_is_gso(skb))
928 			return -EDOM;
929 
930 		/* the stack computes the IP header already,
931 		 * driver calculate l4 checksum when not TSO.
932 		 */
933 		skb_checksum_help(skb);
934 		return 0;
935 	}
936 
937 	return 0;
938 }
939 
940 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
941 {
942 	/* Config bd buffer end */
943 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
944 			HNS3_TXD_BDTYPE_S, 0);
945 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
946 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
947 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
948 }
949 
950 static int hns3_fill_desc_vtags(struct sk_buff *skb,
951 				struct hns3_enet_ring *tx_ring,
952 				u32 *inner_vlan_flag,
953 				u32 *out_vlan_flag,
954 				u16 *inner_vtag,
955 				u16 *out_vtag)
956 {
957 #define HNS3_TX_VLAN_PRIO_SHIFT 13
958 
959 	if (skb->protocol == htons(ETH_P_8021Q) &&
960 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
961 	    NETIF_F_HW_VLAN_CTAG_TX)) {
962 		/* When HW VLAN acceleration is turned off, and the stack
963 		 * sets the protocol to 802.1q, the driver just need to
964 		 * set the protocol to the encapsulated ethertype.
965 		 */
966 		skb->protocol = vlan_get_protocol(skb);
967 		return 0;
968 	}
969 
970 	if (skb_vlan_tag_present(skb)) {
971 		u16 vlan_tag;
972 
973 		vlan_tag = skb_vlan_tag_get(skb);
974 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
975 
976 		/* Based on hw strategy, use out_vtag in two layer tag case,
977 		 * and use inner_vtag in one tag case.
978 		 */
979 		if (skb->protocol == htons(ETH_P_8021Q)) {
980 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
981 			*out_vtag = vlan_tag;
982 		} else {
983 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
984 			*inner_vtag = vlan_tag;
985 		}
986 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
987 		struct vlan_ethhdr *vhdr;
988 		int rc;
989 
990 		rc = skb_cow_head(skb, 0);
991 		if (rc < 0)
992 			return rc;
993 		vhdr = (struct vlan_ethhdr *)skb->data;
994 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
995 					<< HNS3_TX_VLAN_PRIO_SHIFT);
996 	}
997 
998 	skb->protocol = vlan_get_protocol(skb);
999 	return 0;
1000 }
1001 
1002 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1003 			  int size, int frag_end, enum hns_desc_type type)
1004 {
1005 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1006 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1007 	struct device *dev = ring_to_dev(ring);
1008 	u32 ol_type_vlan_len_msec = 0;
1009 	u16 bdtp_fe_sc_vld_ra_ri = 0;
1010 	struct skb_frag_struct *frag;
1011 	unsigned int frag_buf_num;
1012 	u32 type_cs_vlan_tso = 0;
1013 	struct sk_buff *skb;
1014 	u16 inner_vtag = 0;
1015 	u16 out_vtag = 0;
1016 	unsigned int k;
1017 	int sizeoflast;
1018 	u32 paylen = 0;
1019 	dma_addr_t dma;
1020 	u16 mss = 0;
1021 	u8 ol4_proto;
1022 	u8 il4_proto;
1023 	int ret;
1024 
1025 	if (type == DESC_TYPE_SKB) {
1026 		skb = (struct sk_buff *)priv;
1027 		paylen = skb->len;
1028 
1029 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1030 					   &ol_type_vlan_len_msec,
1031 					   &inner_vtag, &out_vtag);
1032 		if (unlikely(ret))
1033 			return ret;
1034 
1035 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1036 			skb_reset_mac_len(skb);
1037 
1038 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1039 			if (ret)
1040 				return ret;
1041 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1042 					    &type_cs_vlan_tso,
1043 					    &ol_type_vlan_len_msec);
1044 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1045 						      &type_cs_vlan_tso,
1046 						      &ol_type_vlan_len_msec);
1047 			if (ret)
1048 				return ret;
1049 
1050 			ret = hns3_set_tso(skb, &paylen, &mss,
1051 					   &type_cs_vlan_tso);
1052 			if (ret)
1053 				return ret;
1054 		}
1055 
1056 		/* Set txbd */
1057 		desc->tx.ol_type_vlan_len_msec =
1058 			cpu_to_le32(ol_type_vlan_len_msec);
1059 		desc->tx.type_cs_vlan_tso_len =
1060 			cpu_to_le32(type_cs_vlan_tso);
1061 		desc->tx.paylen = cpu_to_le32(paylen);
1062 		desc->tx.mss = cpu_to_le16(mss);
1063 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1064 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1065 
1066 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1067 	} else {
1068 		frag = (struct skb_frag_struct *)priv;
1069 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1070 	}
1071 
1072 	if (dma_mapping_error(ring->dev, dma)) {
1073 		ring->stats.sw_err_cnt++;
1074 		return -ENOMEM;
1075 	}
1076 
1077 	desc_cb->length = size;
1078 
1079 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1080 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1081 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1082 
1083 	/* When frag size is bigger than hardware limit, split this frag */
1084 	for (k = 0; k < frag_buf_num; k++) {
1085 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1086 		desc_cb->priv = priv;
1087 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1088 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1089 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1090 
1091 		/* now, fill the descriptor */
1092 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1093 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1094 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1095 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1096 				       frag_end && (k == frag_buf_num - 1) ?
1097 						1 : 0);
1098 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1099 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1100 
1101 		/* move ring pointer to next.*/
1102 		ring_ptr_move_fw(ring, next_to_use);
1103 
1104 		desc_cb = &ring->desc_cb[ring->next_to_use];
1105 		desc = &ring->desc[ring->next_to_use];
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1112 				   struct hns3_enet_ring *ring)
1113 {
1114 	struct sk_buff *skb = *out_skb;
1115 	struct sk_buff *new_skb = NULL;
1116 	struct skb_frag_struct *frag;
1117 	int bdnum_for_frag;
1118 	int frag_num;
1119 	int buf_num;
1120 	int size;
1121 	int i;
1122 
1123 	size = skb_headlen(skb);
1124 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1125 
1126 	frag_num = skb_shinfo(skb)->nr_frags;
1127 	for (i = 0; i < frag_num; i++) {
1128 		frag = &skb_shinfo(skb)->frags[i];
1129 		size = skb_frag_size(frag);
1130 		bdnum_for_frag =
1131 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1132 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1133 			return -ENOMEM;
1134 
1135 		buf_num += bdnum_for_frag;
1136 	}
1137 
1138 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1139 		buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1140 		if (ring_space(ring) < buf_num)
1141 			return -EBUSY;
1142 		/* manual split the send packet */
1143 		new_skb = skb_copy(skb, GFP_ATOMIC);
1144 		if (!new_skb)
1145 			return -ENOMEM;
1146 		dev_kfree_skb_any(skb);
1147 		*out_skb = new_skb;
1148 	}
1149 
1150 	if (unlikely(ring_space(ring) < buf_num))
1151 		return -EBUSY;
1152 
1153 	*bnum = buf_num;
1154 	return 0;
1155 }
1156 
1157 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1158 				  struct hns3_enet_ring *ring)
1159 {
1160 	struct sk_buff *skb = *out_skb;
1161 	struct sk_buff *new_skb = NULL;
1162 	int buf_num;
1163 
1164 	/* No. of segments (plus a header) */
1165 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1166 
1167 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1168 		buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1169 		if (ring_space(ring) < buf_num)
1170 			return -EBUSY;
1171 		/* manual split the send packet */
1172 		new_skb = skb_copy(skb, GFP_ATOMIC);
1173 		if (!new_skb)
1174 			return -ENOMEM;
1175 		dev_kfree_skb_any(skb);
1176 		*out_skb = new_skb;
1177 	}
1178 
1179 	if (unlikely(ring_space(ring) < buf_num))
1180 		return -EBUSY;
1181 
1182 	*bnum = buf_num;
1183 
1184 	return 0;
1185 }
1186 
1187 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1188 {
1189 	struct device *dev = ring_to_dev(ring);
1190 	unsigned int i;
1191 
1192 	for (i = 0; i < ring->desc_num; i++) {
1193 		/* check if this is where we started */
1194 		if (ring->next_to_use == next_to_use_orig)
1195 			break;
1196 
1197 		/* unmap the descriptor dma address */
1198 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1199 			dma_unmap_single(dev,
1200 					 ring->desc_cb[ring->next_to_use].dma,
1201 					ring->desc_cb[ring->next_to_use].length,
1202 					DMA_TO_DEVICE);
1203 		else if (ring->desc_cb[ring->next_to_use].length)
1204 			dma_unmap_page(dev,
1205 				       ring->desc_cb[ring->next_to_use].dma,
1206 				       ring->desc_cb[ring->next_to_use].length,
1207 				       DMA_TO_DEVICE);
1208 
1209 		ring->desc_cb[ring->next_to_use].length = 0;
1210 
1211 		/* rollback one */
1212 		ring_ptr_move_bw(ring, next_to_use);
1213 	}
1214 }
1215 
1216 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1217 {
1218 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1219 	struct hns3_nic_ring_data *ring_data =
1220 		&tx_ring_data(priv, skb->queue_mapping);
1221 	struct hns3_enet_ring *ring = ring_data->ring;
1222 	struct netdev_queue *dev_queue;
1223 	struct skb_frag_struct *frag;
1224 	int next_to_use_head;
1225 	int next_to_use_frag;
1226 	int buf_num;
1227 	int seg_num;
1228 	int size;
1229 	int ret;
1230 	int i;
1231 
1232 	/* Prefetch the data used later */
1233 	prefetch(skb->data);
1234 
1235 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1236 	case -EBUSY:
1237 		u64_stats_update_begin(&ring->syncp);
1238 		ring->stats.tx_busy++;
1239 		u64_stats_update_end(&ring->syncp);
1240 
1241 		goto out_net_tx_busy;
1242 	case -ENOMEM:
1243 		u64_stats_update_begin(&ring->syncp);
1244 		ring->stats.sw_err_cnt++;
1245 		u64_stats_update_end(&ring->syncp);
1246 		netdev_err(netdev, "no memory to xmit!\n");
1247 
1248 		goto out_err_tx_ok;
1249 	default:
1250 		break;
1251 	}
1252 
1253 	/* No. of segments (plus a header) */
1254 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1255 	/* Fill the first part */
1256 	size = skb_headlen(skb);
1257 
1258 	next_to_use_head = ring->next_to_use;
1259 
1260 	ret = priv->ops.fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1261 				  DESC_TYPE_SKB);
1262 	if (ret)
1263 		goto head_fill_err;
1264 
1265 	next_to_use_frag = ring->next_to_use;
1266 	/* Fill the fragments */
1267 	for (i = 1; i < seg_num; i++) {
1268 		frag = &skb_shinfo(skb)->frags[i - 1];
1269 		size = skb_frag_size(frag);
1270 
1271 		ret = priv->ops.fill_desc(ring, frag, size,
1272 					  seg_num - 1 == i ? 1 : 0,
1273 					  DESC_TYPE_PAGE);
1274 
1275 		if (ret)
1276 			goto frag_fill_err;
1277 	}
1278 
1279 	/* Complete translate all packets */
1280 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1281 	netdev_tx_sent_queue(dev_queue, skb->len);
1282 
1283 	wmb(); /* Commit all data before submit */
1284 
1285 	hnae3_queue_xmit(ring->tqp, buf_num);
1286 
1287 	return NETDEV_TX_OK;
1288 
1289 frag_fill_err:
1290 	hns3_clear_desc(ring, next_to_use_frag);
1291 
1292 head_fill_err:
1293 	hns3_clear_desc(ring, next_to_use_head);
1294 
1295 out_err_tx_ok:
1296 	dev_kfree_skb_any(skb);
1297 	return NETDEV_TX_OK;
1298 
1299 out_net_tx_busy:
1300 	netif_stop_subqueue(netdev, ring_data->queue_index);
1301 	smp_mb(); /* Commit all data before submit */
1302 
1303 	return NETDEV_TX_BUSY;
1304 }
1305 
1306 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1307 {
1308 	struct hnae3_handle *h = hns3_get_handle(netdev);
1309 	struct sockaddr *mac_addr = p;
1310 	int ret;
1311 
1312 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1313 		return -EADDRNOTAVAIL;
1314 
1315 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1316 		netdev_info(netdev, "already using mac address %pM\n",
1317 			    mac_addr->sa_data);
1318 		return 0;
1319 	}
1320 
1321 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1322 	if (ret) {
1323 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1324 		return ret;
1325 	}
1326 
1327 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1328 
1329 	return 0;
1330 }
1331 
1332 static int hns3_nic_do_ioctl(struct net_device *netdev,
1333 			     struct ifreq *ifr, int cmd)
1334 {
1335 	struct hnae3_handle *h = hns3_get_handle(netdev);
1336 
1337 	if (!netif_running(netdev))
1338 		return -EINVAL;
1339 
1340 	if (!h->ae_algo->ops->do_ioctl)
1341 		return -EOPNOTSUPP;
1342 
1343 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1344 }
1345 
1346 static int hns3_nic_set_features(struct net_device *netdev,
1347 				 netdev_features_t features)
1348 {
1349 	netdev_features_t changed = netdev->features ^ features;
1350 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1351 	struct hnae3_handle *h = priv->ae_handle;
1352 	bool enable;
1353 	int ret;
1354 
1355 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1356 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1357 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1358 		else
1359 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1360 	}
1361 
1362 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1363 		enable = !!(features & NETIF_F_GRO_HW);
1364 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1365 		if (ret)
1366 			return ret;
1367 	}
1368 
1369 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1370 	    h->ae_algo->ops->enable_vlan_filter) {
1371 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1372 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1373 	}
1374 
1375 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1376 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1377 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1378 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1379 		if (ret)
1380 			return ret;
1381 	}
1382 
1383 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1384 		enable = !!(features & NETIF_F_NTUPLE);
1385 		h->ae_algo->ops->enable_fd(h, enable);
1386 	}
1387 
1388 	netdev->features = features;
1389 	return 0;
1390 }
1391 
1392 static void hns3_nic_get_stats64(struct net_device *netdev,
1393 				 struct rtnl_link_stats64 *stats)
1394 {
1395 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1396 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1397 	struct hnae3_handle *handle = priv->ae_handle;
1398 	struct hns3_enet_ring *ring;
1399 	u64 rx_length_errors = 0;
1400 	u64 rx_crc_errors = 0;
1401 	u64 rx_multicast = 0;
1402 	unsigned int start;
1403 	u64 tx_errors = 0;
1404 	u64 rx_errors = 0;
1405 	unsigned int idx;
1406 	u64 tx_bytes = 0;
1407 	u64 rx_bytes = 0;
1408 	u64 tx_pkts = 0;
1409 	u64 rx_pkts = 0;
1410 	u64 tx_drop = 0;
1411 	u64 rx_drop = 0;
1412 
1413 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1414 		return;
1415 
1416 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1417 
1418 	for (idx = 0; idx < queue_num; idx++) {
1419 		/* fetch the tx stats */
1420 		ring = priv->ring_data[idx].ring;
1421 		do {
1422 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1423 			tx_bytes += ring->stats.tx_bytes;
1424 			tx_pkts += ring->stats.tx_pkts;
1425 			tx_drop += ring->stats.sw_err_cnt;
1426 			tx_errors += ring->stats.sw_err_cnt;
1427 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1428 
1429 		/* fetch the rx stats */
1430 		ring = priv->ring_data[idx + queue_num].ring;
1431 		do {
1432 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1433 			rx_bytes += ring->stats.rx_bytes;
1434 			rx_pkts += ring->stats.rx_pkts;
1435 			rx_drop += ring->stats.non_vld_descs;
1436 			rx_drop += ring->stats.l2_err;
1437 			rx_errors += ring->stats.non_vld_descs;
1438 			rx_errors += ring->stats.l2_err;
1439 			rx_crc_errors += ring->stats.l2_err;
1440 			rx_crc_errors += ring->stats.l3l4_csum_err;
1441 			rx_multicast += ring->stats.rx_multicast;
1442 			rx_length_errors += ring->stats.err_pkt_len;
1443 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1444 	}
1445 
1446 	stats->tx_bytes = tx_bytes;
1447 	stats->tx_packets = tx_pkts;
1448 	stats->rx_bytes = rx_bytes;
1449 	stats->rx_packets = rx_pkts;
1450 
1451 	stats->rx_errors = rx_errors;
1452 	stats->multicast = rx_multicast;
1453 	stats->rx_length_errors = rx_length_errors;
1454 	stats->rx_crc_errors = rx_crc_errors;
1455 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1456 
1457 	stats->tx_errors = tx_errors;
1458 	stats->rx_dropped = rx_drop;
1459 	stats->tx_dropped = tx_drop;
1460 	stats->collisions = netdev->stats.collisions;
1461 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1462 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1463 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1464 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1465 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1466 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1467 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1468 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1469 	stats->rx_compressed = netdev->stats.rx_compressed;
1470 	stats->tx_compressed = netdev->stats.tx_compressed;
1471 }
1472 
1473 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1474 {
1475 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1476 	struct hnae3_handle *h = hns3_get_handle(netdev);
1477 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1478 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1479 	u8 tc = mqprio_qopt->qopt.num_tc;
1480 	u16 mode = mqprio_qopt->mode;
1481 	u8 hw = mqprio_qopt->qopt.hw;
1482 
1483 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1484 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1485 		return -EOPNOTSUPP;
1486 
1487 	if (tc > HNAE3_MAX_TC)
1488 		return -EINVAL;
1489 
1490 	if (!netdev)
1491 		return -EINVAL;
1492 
1493 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1494 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1495 }
1496 
1497 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1498 			     void *type_data)
1499 {
1500 	if (type != TC_SETUP_QDISC_MQPRIO)
1501 		return -EOPNOTSUPP;
1502 
1503 	return hns3_setup_tc(dev, type_data);
1504 }
1505 
1506 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1507 				__be16 proto, u16 vid)
1508 {
1509 	struct hnae3_handle *h = hns3_get_handle(netdev);
1510 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1511 	int ret = -EIO;
1512 
1513 	if (h->ae_algo->ops->set_vlan_filter)
1514 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1515 
1516 	if (!ret)
1517 		set_bit(vid, priv->active_vlans);
1518 
1519 	return ret;
1520 }
1521 
1522 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1523 				 __be16 proto, u16 vid)
1524 {
1525 	struct hnae3_handle *h = hns3_get_handle(netdev);
1526 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1527 	int ret = -EIO;
1528 
1529 	if (h->ae_algo->ops->set_vlan_filter)
1530 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1531 
1532 	if (!ret)
1533 		clear_bit(vid, priv->active_vlans);
1534 
1535 	return ret;
1536 }
1537 
1538 static int hns3_restore_vlan(struct net_device *netdev)
1539 {
1540 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1541 	int ret = 0;
1542 	u16 vid;
1543 
1544 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1545 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1546 		if (ret) {
1547 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1548 				   vid, ret);
1549 			return ret;
1550 		}
1551 	}
1552 
1553 	return ret;
1554 }
1555 
1556 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1557 				u8 qos, __be16 vlan_proto)
1558 {
1559 	struct hnae3_handle *h = hns3_get_handle(netdev);
1560 	int ret = -EIO;
1561 
1562 	if (h->ae_algo->ops->set_vf_vlan_filter)
1563 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1564 						   qos, vlan_proto);
1565 
1566 	return ret;
1567 }
1568 
1569 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1570 {
1571 	struct hnae3_handle *h = hns3_get_handle(netdev);
1572 	int ret;
1573 
1574 	if (!h->ae_algo->ops->set_mtu)
1575 		return -EOPNOTSUPP;
1576 
1577 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1578 	if (ret)
1579 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1580 			   ret);
1581 	else
1582 		netdev->mtu = new_mtu;
1583 
1584 	return ret;
1585 }
1586 
1587 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1588 {
1589 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1590 	struct hns3_enet_ring *tx_ring = NULL;
1591 	int timeout_queue = 0;
1592 	int hw_head, hw_tail;
1593 	int i;
1594 
1595 	/* Find the stopped queue the same way the stack does */
1596 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1597 		struct netdev_queue *q;
1598 		unsigned long trans_start;
1599 
1600 		q = netdev_get_tx_queue(ndev, i);
1601 		trans_start = q->trans_start;
1602 		if (netif_xmit_stopped(q) &&
1603 		    time_after(jiffies,
1604 			       (trans_start + ndev->watchdog_timeo))) {
1605 			timeout_queue = i;
1606 			break;
1607 		}
1608 	}
1609 
1610 	if (i == ndev->num_tx_queues) {
1611 		netdev_info(ndev,
1612 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1613 			    priv->tx_timeout_count);
1614 		return false;
1615 	}
1616 
1617 	tx_ring = priv->ring_data[timeout_queue].ring;
1618 
1619 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1620 				HNS3_RING_TX_RING_HEAD_REG);
1621 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1622 				HNS3_RING_TX_RING_TAIL_REG);
1623 	netdev_info(ndev,
1624 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1625 		    priv->tx_timeout_count,
1626 		    timeout_queue,
1627 		    tx_ring->next_to_use,
1628 		    tx_ring->next_to_clean,
1629 		    hw_head,
1630 		    hw_tail,
1631 		    readl(tx_ring->tqp_vector->mask_addr));
1632 
1633 	return true;
1634 }
1635 
1636 static void hns3_nic_net_timeout(struct net_device *ndev)
1637 {
1638 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1639 	struct hnae3_handle *h = priv->ae_handle;
1640 
1641 	if (!hns3_get_tx_timeo_queue_info(ndev))
1642 		return;
1643 
1644 	priv->tx_timeout_count++;
1645 
1646 	/* request the reset, and let the hclge to determine
1647 	 * which reset level should be done
1648 	 */
1649 	if (h->ae_algo->ops->reset_event)
1650 		h->ae_algo->ops->reset_event(h->pdev, h);
1651 }
1652 
1653 static const struct net_device_ops hns3_nic_netdev_ops = {
1654 	.ndo_open		= hns3_nic_net_open,
1655 	.ndo_stop		= hns3_nic_net_stop,
1656 	.ndo_start_xmit		= hns3_nic_net_xmit,
1657 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1658 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1659 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1660 	.ndo_change_mtu		= hns3_nic_change_mtu,
1661 	.ndo_set_features	= hns3_nic_set_features,
1662 	.ndo_get_stats64	= hns3_nic_get_stats64,
1663 	.ndo_setup_tc		= hns3_nic_setup_tc,
1664 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1665 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1666 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1667 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1668 };
1669 
1670 static bool hns3_is_phys_func(struct pci_dev *pdev)
1671 {
1672 	u32 dev_id = pdev->device;
1673 
1674 	switch (dev_id) {
1675 	case HNAE3_DEV_ID_GE:
1676 	case HNAE3_DEV_ID_25GE:
1677 	case HNAE3_DEV_ID_25GE_RDMA:
1678 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1679 	case HNAE3_DEV_ID_50GE_RDMA:
1680 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1681 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1682 		return true;
1683 	case HNAE3_DEV_ID_100G_VF:
1684 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1685 		return false;
1686 	default:
1687 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1688 			 dev_id);
1689 	}
1690 
1691 	return false;
1692 }
1693 
1694 static void hns3_disable_sriov(struct pci_dev *pdev)
1695 {
1696 	/* If our VFs are assigned we cannot shut down SR-IOV
1697 	 * without causing issues, so just leave the hardware
1698 	 * available but disabled
1699 	 */
1700 	if (pci_vfs_assigned(pdev)) {
1701 		dev_warn(&pdev->dev,
1702 			 "disabling driver while VFs are assigned\n");
1703 		return;
1704 	}
1705 
1706 	pci_disable_sriov(pdev);
1707 }
1708 
1709 static void hns3_get_dev_capability(struct pci_dev *pdev,
1710 				    struct hnae3_ae_dev *ae_dev)
1711 {
1712 	if (pdev->revision >= 0x21) {
1713 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1714 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1715 	}
1716 }
1717 
1718 /* hns3_probe - Device initialization routine
1719  * @pdev: PCI device information struct
1720  * @ent: entry in hns3_pci_tbl
1721  *
1722  * hns3_probe initializes a PF identified by a pci_dev structure.
1723  * The OS initialization, configuring of the PF private structure,
1724  * and a hardware reset occur.
1725  *
1726  * Returns 0 on success, negative on failure
1727  */
1728 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1729 {
1730 	struct hnae3_ae_dev *ae_dev;
1731 	int ret;
1732 
1733 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1734 			      GFP_KERNEL);
1735 	if (!ae_dev) {
1736 		ret = -ENOMEM;
1737 		return ret;
1738 	}
1739 
1740 	ae_dev->pdev = pdev;
1741 	ae_dev->flag = ent->driver_data;
1742 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1743 	ae_dev->reset_type = HNAE3_NONE_RESET;
1744 	hns3_get_dev_capability(pdev, ae_dev);
1745 	pci_set_drvdata(pdev, ae_dev);
1746 
1747 	ret = hnae3_register_ae_dev(ae_dev);
1748 	if (ret) {
1749 		devm_kfree(&pdev->dev, ae_dev);
1750 		pci_set_drvdata(pdev, NULL);
1751 	}
1752 
1753 	return ret;
1754 }
1755 
1756 /* hns3_remove - Device removal routine
1757  * @pdev: PCI device information struct
1758  */
1759 static void hns3_remove(struct pci_dev *pdev)
1760 {
1761 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1762 
1763 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1764 		hns3_disable_sriov(pdev);
1765 
1766 	hnae3_unregister_ae_dev(ae_dev);
1767 	pci_set_drvdata(pdev, NULL);
1768 }
1769 
1770 /**
1771  * hns3_pci_sriov_configure
1772  * @pdev: pointer to a pci_dev structure
1773  * @num_vfs: number of VFs to allocate
1774  *
1775  * Enable or change the number of VFs. Called when the user updates the number
1776  * of VFs in sysfs.
1777  **/
1778 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1779 {
1780 	int ret;
1781 
1782 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1783 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1784 		return -EINVAL;
1785 	}
1786 
1787 	if (num_vfs) {
1788 		ret = pci_enable_sriov(pdev, num_vfs);
1789 		if (ret)
1790 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1791 		else
1792 			return num_vfs;
1793 	} else if (!pci_vfs_assigned(pdev)) {
1794 		pci_disable_sriov(pdev);
1795 	} else {
1796 		dev_warn(&pdev->dev,
1797 			 "Unable to free VFs because some are assigned to VMs.\n");
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 static void hns3_shutdown(struct pci_dev *pdev)
1804 {
1805 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1806 
1807 	hnae3_unregister_ae_dev(ae_dev);
1808 	devm_kfree(&pdev->dev, ae_dev);
1809 	pci_set_drvdata(pdev, NULL);
1810 
1811 	if (system_state == SYSTEM_POWER_OFF)
1812 		pci_set_power_state(pdev, PCI_D3hot);
1813 }
1814 
1815 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1816 					    pci_channel_state_t state)
1817 {
1818 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1819 	pci_ers_result_t ret;
1820 
1821 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1822 
1823 	if (state == pci_channel_io_perm_failure)
1824 		return PCI_ERS_RESULT_DISCONNECT;
1825 
1826 	if (!ae_dev) {
1827 		dev_err(&pdev->dev,
1828 			"Can't recover - error happened during device init\n");
1829 		return PCI_ERS_RESULT_NONE;
1830 	}
1831 
1832 	if (ae_dev->ops->handle_hw_ras_error)
1833 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1834 	else
1835 		return PCI_ERS_RESULT_NONE;
1836 
1837 	return ret;
1838 }
1839 
1840 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1841 {
1842 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1843 	struct device *dev = &pdev->dev;
1844 
1845 	dev_info(dev, "requesting reset due to PCI error\n");
1846 
1847 	/* request the reset */
1848 	if (ae_dev->ops->reset_event) {
1849 		ae_dev->ops->reset_event(pdev, NULL);
1850 		return PCI_ERS_RESULT_RECOVERED;
1851 	}
1852 
1853 	return PCI_ERS_RESULT_DISCONNECT;
1854 }
1855 
1856 static void hns3_reset_prepare(struct pci_dev *pdev)
1857 {
1858 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1859 
1860 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1861 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1862 		ae_dev->ops->flr_prepare(ae_dev);
1863 }
1864 
1865 static void hns3_reset_done(struct pci_dev *pdev)
1866 {
1867 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1868 
1869 	dev_info(&pdev->dev, "hns3 flr done\n");
1870 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1871 		ae_dev->ops->flr_done(ae_dev);
1872 }
1873 
1874 static const struct pci_error_handlers hns3_err_handler = {
1875 	.error_detected = hns3_error_detected,
1876 	.slot_reset     = hns3_slot_reset,
1877 	.reset_prepare	= hns3_reset_prepare,
1878 	.reset_done	= hns3_reset_done,
1879 };
1880 
1881 static struct pci_driver hns3_driver = {
1882 	.name     = hns3_driver_name,
1883 	.id_table = hns3_pci_tbl,
1884 	.probe    = hns3_probe,
1885 	.remove   = hns3_remove,
1886 	.shutdown = hns3_shutdown,
1887 	.sriov_configure = hns3_pci_sriov_configure,
1888 	.err_handler    = &hns3_err_handler,
1889 };
1890 
1891 /* set default feature to hns3 */
1892 static void hns3_set_default_feature(struct net_device *netdev)
1893 {
1894 	struct hnae3_handle *h = hns3_get_handle(netdev);
1895 	struct pci_dev *pdev = h->pdev;
1896 
1897 	netdev->priv_flags |= IFF_UNICAST_FLT;
1898 
1899 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1900 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1901 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1902 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1903 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1904 
1905 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1906 
1907 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1908 
1909 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1910 		NETIF_F_HW_VLAN_CTAG_FILTER |
1911 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1912 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1913 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1914 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1915 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1916 
1917 	netdev->vlan_features |=
1918 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1919 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1920 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1921 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1922 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1923 
1924 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1925 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1926 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1927 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1928 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1929 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1930 
1931 	if (pdev->revision >= 0x21) {
1932 		netdev->hw_features |= NETIF_F_GRO_HW;
1933 		netdev->features |= NETIF_F_GRO_HW;
1934 
1935 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1936 			netdev->hw_features |= NETIF_F_NTUPLE;
1937 			netdev->features |= NETIF_F_NTUPLE;
1938 		}
1939 	}
1940 }
1941 
1942 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1943 			     struct hns3_desc_cb *cb)
1944 {
1945 	unsigned int order = hnae3_page_order(ring);
1946 	struct page *p;
1947 
1948 	p = dev_alloc_pages(order);
1949 	if (!p)
1950 		return -ENOMEM;
1951 
1952 	cb->priv = p;
1953 	cb->page_offset = 0;
1954 	cb->reuse_flag = 0;
1955 	cb->buf  = page_address(p);
1956 	cb->length = hnae3_page_size(ring);
1957 	cb->type = DESC_TYPE_PAGE;
1958 
1959 	return 0;
1960 }
1961 
1962 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1963 			     struct hns3_desc_cb *cb)
1964 {
1965 	if (cb->type == DESC_TYPE_SKB)
1966 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1967 	else if (!HNAE3_IS_TX_RING(ring))
1968 		put_page((struct page *)cb->priv);
1969 	memset(cb, 0, sizeof(*cb));
1970 }
1971 
1972 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1973 {
1974 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1975 			       cb->length, ring_to_dma_dir(ring));
1976 
1977 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1978 		return -EIO;
1979 
1980 	return 0;
1981 }
1982 
1983 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1984 			      struct hns3_desc_cb *cb)
1985 {
1986 	if (cb->type == DESC_TYPE_SKB)
1987 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1988 				 ring_to_dma_dir(ring));
1989 	else if (cb->length)
1990 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1991 			       ring_to_dma_dir(ring));
1992 }
1993 
1994 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1995 {
1996 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1997 	ring->desc[i].addr = 0;
1998 }
1999 
2000 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2001 {
2002 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2003 
2004 	if (!ring->desc_cb[i].dma)
2005 		return;
2006 
2007 	hns3_buffer_detach(ring, i);
2008 	hns3_free_buffer(ring, cb);
2009 }
2010 
2011 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < ring->desc_num; i++)
2016 		hns3_free_buffer_detach(ring, i);
2017 }
2018 
2019 /* free desc along with its attached buffer */
2020 static void hns3_free_desc(struct hns3_enet_ring *ring)
2021 {
2022 	int size = ring->desc_num * sizeof(ring->desc[0]);
2023 
2024 	hns3_free_buffers(ring);
2025 
2026 	if (ring->desc) {
2027 		dma_free_coherent(ring_to_dev(ring), size,
2028 				  ring->desc, ring->desc_dma_addr);
2029 		ring->desc = NULL;
2030 	}
2031 }
2032 
2033 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2034 {
2035 	int size = ring->desc_num * sizeof(ring->desc[0]);
2036 
2037 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2038 					&ring->desc_dma_addr, GFP_KERNEL);
2039 	if (!ring->desc)
2040 		return -ENOMEM;
2041 
2042 	return 0;
2043 }
2044 
2045 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2046 				   struct hns3_desc_cb *cb)
2047 {
2048 	int ret;
2049 
2050 	ret = hns3_alloc_buffer(ring, cb);
2051 	if (ret)
2052 		goto out;
2053 
2054 	ret = hns3_map_buffer(ring, cb);
2055 	if (ret)
2056 		goto out_with_buf;
2057 
2058 	return 0;
2059 
2060 out_with_buf:
2061 	hns3_free_buffer(ring, cb);
2062 out:
2063 	return ret;
2064 }
2065 
2066 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2067 {
2068 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2069 
2070 	if (ret)
2071 		return ret;
2072 
2073 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2074 
2075 	return 0;
2076 }
2077 
2078 /* Allocate memory for raw pkg, and map with dma */
2079 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2080 {
2081 	int i, j, ret;
2082 
2083 	for (i = 0; i < ring->desc_num; i++) {
2084 		ret = hns3_alloc_buffer_attach(ring, i);
2085 		if (ret)
2086 			goto out_buffer_fail;
2087 	}
2088 
2089 	return 0;
2090 
2091 out_buffer_fail:
2092 	for (j = i - 1; j >= 0; j--)
2093 		hns3_free_buffer_detach(ring, j);
2094 	return ret;
2095 }
2096 
2097 /* detach a in-used buffer and replace with a reserved one  */
2098 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2099 				struct hns3_desc_cb *res_cb)
2100 {
2101 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2102 	ring->desc_cb[i] = *res_cb;
2103 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2104 	ring->desc[i].rx.bd_base_info = 0;
2105 }
2106 
2107 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2108 {
2109 	ring->desc_cb[i].reuse_flag = 0;
2110 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2111 		+ ring->desc_cb[i].page_offset);
2112 	ring->desc[i].rx.bd_base_info = 0;
2113 }
2114 
2115 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2116 				      int *pkts)
2117 {
2118 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2119 
2120 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2121 	(*bytes) += desc_cb->length;
2122 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2123 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2124 
2125 	ring_ptr_move_fw(ring, next_to_clean);
2126 }
2127 
2128 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2129 {
2130 	int u = ring->next_to_use;
2131 	int c = ring->next_to_clean;
2132 
2133 	if (unlikely(h > ring->desc_num))
2134 		return 0;
2135 
2136 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2137 }
2138 
2139 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2140 {
2141 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2142 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2143 	struct netdev_queue *dev_queue;
2144 	int bytes, pkts;
2145 	int head;
2146 
2147 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2148 	rmb(); /* Make sure head is ready before touch any data */
2149 
2150 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2151 		return; /* no data to poll */
2152 
2153 	if (unlikely(!is_valid_clean_head(ring, head))) {
2154 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2155 			   ring->next_to_use, ring->next_to_clean);
2156 
2157 		u64_stats_update_begin(&ring->syncp);
2158 		ring->stats.io_err_cnt++;
2159 		u64_stats_update_end(&ring->syncp);
2160 		return;
2161 	}
2162 
2163 	bytes = 0;
2164 	pkts = 0;
2165 	while (head != ring->next_to_clean) {
2166 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2167 		/* Issue prefetch for next Tx descriptor */
2168 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2169 	}
2170 
2171 	ring->tqp_vector->tx_group.total_bytes += bytes;
2172 	ring->tqp_vector->tx_group.total_packets += pkts;
2173 
2174 	u64_stats_update_begin(&ring->syncp);
2175 	ring->stats.tx_bytes += bytes;
2176 	ring->stats.tx_pkts += pkts;
2177 	u64_stats_update_end(&ring->syncp);
2178 
2179 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2180 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2181 
2182 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2183 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2184 		/* Make sure that anybody stopping the queue after this
2185 		 * sees the new next_to_clean.
2186 		 */
2187 		smp_mb();
2188 		if (netif_tx_queue_stopped(dev_queue) &&
2189 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2190 			netif_tx_wake_queue(dev_queue);
2191 			ring->stats.restart_queue++;
2192 		}
2193 	}
2194 }
2195 
2196 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2197 {
2198 	int ntc = ring->next_to_clean;
2199 	int ntu = ring->next_to_use;
2200 
2201 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2202 }
2203 
2204 static void
2205 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2206 {
2207 	struct hns3_desc_cb *desc_cb;
2208 	struct hns3_desc_cb res_cbs;
2209 	int i, ret;
2210 
2211 	for (i = 0; i < cleand_count; i++) {
2212 		desc_cb = &ring->desc_cb[ring->next_to_use];
2213 		if (desc_cb->reuse_flag) {
2214 			u64_stats_update_begin(&ring->syncp);
2215 			ring->stats.reuse_pg_cnt++;
2216 			u64_stats_update_end(&ring->syncp);
2217 
2218 			hns3_reuse_buffer(ring, ring->next_to_use);
2219 		} else {
2220 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2221 			if (ret) {
2222 				u64_stats_update_begin(&ring->syncp);
2223 				ring->stats.sw_err_cnt++;
2224 				u64_stats_update_end(&ring->syncp);
2225 
2226 				netdev_err(ring->tqp->handle->kinfo.netdev,
2227 					   "hnae reserve buffer map failed.\n");
2228 				break;
2229 			}
2230 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2231 		}
2232 
2233 		ring_ptr_move_fw(ring, next_to_use);
2234 	}
2235 
2236 	wmb(); /* Make all data has been write before submit */
2237 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2238 }
2239 
2240 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2241 				struct hns3_enet_ring *ring, int pull_len,
2242 				struct hns3_desc_cb *desc_cb)
2243 {
2244 	struct hns3_desc *desc;
2245 	u32 truesize;
2246 	int size;
2247 	int last_offset;
2248 	bool twobufs;
2249 
2250 	twobufs = ((PAGE_SIZE < 8192) &&
2251 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2252 
2253 	desc = &ring->desc[ring->next_to_clean];
2254 	size = le16_to_cpu(desc->rx.size);
2255 
2256 	truesize = hnae3_buf_size(ring);
2257 
2258 	if (!twobufs)
2259 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2260 
2261 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2262 			size - pull_len, truesize);
2263 
2264 	 /* Avoid re-using remote pages,flag default unreuse */
2265 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2266 		return;
2267 
2268 	if (twobufs) {
2269 		/* If we are only owner of page we can reuse it */
2270 		if (likely(page_count(desc_cb->priv) == 1)) {
2271 			/* Flip page offset to other buffer */
2272 			desc_cb->page_offset ^= truesize;
2273 
2274 			desc_cb->reuse_flag = 1;
2275 			/* bump ref count on page before it is given*/
2276 			get_page(desc_cb->priv);
2277 		}
2278 		return;
2279 	}
2280 
2281 	/* Move offset up to the next cache line */
2282 	desc_cb->page_offset += truesize;
2283 
2284 	if (desc_cb->page_offset <= last_offset) {
2285 		desc_cb->reuse_flag = 1;
2286 		/* Bump ref count on page before it is given*/
2287 		get_page(desc_cb->priv);
2288 	}
2289 }
2290 
2291 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2292 			     struct hns3_desc *desc)
2293 {
2294 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2295 	int l3_type, l4_type;
2296 	u32 bd_base_info;
2297 	int ol4_type;
2298 	u32 l234info;
2299 
2300 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2301 	l234info = le32_to_cpu(desc->rx.l234_info);
2302 
2303 	skb->ip_summed = CHECKSUM_NONE;
2304 
2305 	skb_checksum_none_assert(skb);
2306 
2307 	if (!(netdev->features & NETIF_F_RXCSUM))
2308 		return;
2309 
2310 	/* We MUST enable hardware checksum before enabling hardware GRO */
2311 	if (skb_shinfo(skb)->gso_size) {
2312 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2313 		return;
2314 	}
2315 
2316 	/* check if hardware has done checksum */
2317 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2318 		return;
2319 
2320 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2321 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2322 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2323 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2324 		u64_stats_update_begin(&ring->syncp);
2325 		ring->stats.l3l4_csum_err++;
2326 		u64_stats_update_end(&ring->syncp);
2327 
2328 		return;
2329 	}
2330 
2331 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2332 				  HNS3_RXD_L3ID_S);
2333 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2334 				  HNS3_RXD_L4ID_S);
2335 
2336 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2337 				   HNS3_RXD_OL4ID_S);
2338 	switch (ol4_type) {
2339 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2340 	case HNS3_OL4_TYPE_NVGRE:
2341 		skb->csum_level = 1;
2342 		/* fall through */
2343 	case HNS3_OL4_TYPE_NO_TUN:
2344 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2345 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2346 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2347 		    (l4_type == HNS3_L4_TYPE_UDP ||
2348 		     l4_type == HNS3_L4_TYPE_TCP ||
2349 		     l4_type == HNS3_L4_TYPE_SCTP))
2350 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2351 		break;
2352 	default:
2353 		break;
2354 	}
2355 }
2356 
2357 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2358 {
2359 	if (skb_has_frag_list(skb))
2360 		napi_gro_flush(&ring->tqp_vector->napi, false);
2361 
2362 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2363 }
2364 
2365 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2366 				struct hns3_desc *desc, u32 l234info,
2367 				u16 *vlan_tag)
2368 {
2369 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2370 
2371 	if (pdev->revision == 0x20) {
2372 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2373 		if (!(*vlan_tag & VLAN_VID_MASK))
2374 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2375 
2376 		return (*vlan_tag != 0);
2377 	}
2378 
2379 #define HNS3_STRP_OUTER_VLAN	0x1
2380 #define HNS3_STRP_INNER_VLAN	0x2
2381 
2382 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2383 				HNS3_RXD_STRP_TAGP_S)) {
2384 	case HNS3_STRP_OUTER_VLAN:
2385 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2386 		return true;
2387 	case HNS3_STRP_INNER_VLAN:
2388 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2389 		return true;
2390 	default:
2391 		return false;
2392 	}
2393 }
2394 
2395 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2396 			  unsigned char *va)
2397 {
2398 #define HNS3_NEED_ADD_FRAG	1
2399 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2400 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2401 	struct sk_buff *skb;
2402 
2403 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2404 	skb = ring->skb;
2405 	if (unlikely(!skb)) {
2406 		netdev_err(netdev, "alloc rx skb fail\n");
2407 
2408 		u64_stats_update_begin(&ring->syncp);
2409 		ring->stats.sw_err_cnt++;
2410 		u64_stats_update_end(&ring->syncp);
2411 
2412 		return -ENOMEM;
2413 	}
2414 
2415 	prefetchw(skb->data);
2416 
2417 	ring->pending_buf = 1;
2418 	ring->frag_num = 0;
2419 	ring->tail_skb = NULL;
2420 	if (length <= HNS3_RX_HEAD_SIZE) {
2421 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2422 
2423 		/* We can reuse buffer as-is, just make sure it is local */
2424 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2425 			desc_cb->reuse_flag = 1;
2426 		else /* This page cannot be reused so discard it */
2427 			put_page(desc_cb->priv);
2428 
2429 		ring_ptr_move_fw(ring, next_to_clean);
2430 		return 0;
2431 	}
2432 	u64_stats_update_begin(&ring->syncp);
2433 	ring->stats.seg_pkt_cnt++;
2434 	u64_stats_update_end(&ring->syncp);
2435 
2436 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2437 	__skb_put(skb, ring->pull_len);
2438 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2439 			    desc_cb);
2440 	ring_ptr_move_fw(ring, next_to_clean);
2441 
2442 	return HNS3_NEED_ADD_FRAG;
2443 }
2444 
2445 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2446 			 struct sk_buff **out_skb, bool pending)
2447 {
2448 	struct sk_buff *skb = *out_skb;
2449 	struct sk_buff *head_skb = *out_skb;
2450 	struct sk_buff *new_skb;
2451 	struct hns3_desc_cb *desc_cb;
2452 	struct hns3_desc *pre_desc;
2453 	u32 bd_base_info;
2454 	int pre_bd;
2455 
2456 	/* if there is pending bd, the SW param next_to_clean has moved
2457 	 * to next and the next is NULL
2458 	 */
2459 	if (pending) {
2460 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2461 			ring->desc_num;
2462 		pre_desc = &ring->desc[pre_bd];
2463 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2464 	} else {
2465 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2466 	}
2467 
2468 	while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2469 		desc = &ring->desc[ring->next_to_clean];
2470 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2471 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2472 		if (!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2473 			return -ENXIO;
2474 
2475 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2476 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2477 						 HNS3_RX_HEAD_SIZE);
2478 			if (unlikely(!new_skb)) {
2479 				netdev_err(ring->tqp->handle->kinfo.netdev,
2480 					   "alloc rx skb frag fail\n");
2481 				return -ENXIO;
2482 			}
2483 			ring->frag_num = 0;
2484 
2485 			if (ring->tail_skb) {
2486 				ring->tail_skb->next = new_skb;
2487 				ring->tail_skb = new_skb;
2488 			} else {
2489 				skb_shinfo(skb)->frag_list = new_skb;
2490 				ring->tail_skb = new_skb;
2491 			}
2492 		}
2493 
2494 		if (ring->tail_skb) {
2495 			head_skb->truesize += hnae3_buf_size(ring);
2496 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2497 			head_skb->len += le16_to_cpu(desc->rx.size);
2498 			skb = ring->tail_skb;
2499 		}
2500 
2501 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2502 		ring_ptr_move_fw(ring, next_to_clean);
2503 		ring->pending_buf++;
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2510 			       u32 bd_base_info)
2511 {
2512 	u16 gro_count;
2513 	u32 l3_type;
2514 
2515 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2516 				    HNS3_RXD_GRO_COUNT_S);
2517 	/* if there is no HW GRO, do not set gro params */
2518 	if (!gro_count)
2519 		return;
2520 
2521 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2522 	 * to skb_shinfo(skb)->gso_segs
2523 	 */
2524 	NAPI_GRO_CB(skb)->count = gro_count;
2525 
2526 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2527 				  HNS3_RXD_L3ID_S);
2528 	if (l3_type == HNS3_L3_TYPE_IPV4)
2529 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2530 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2531 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2532 	else
2533 		return;
2534 
2535 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2536 						    HNS3_RXD_GRO_SIZE_M,
2537 						    HNS3_RXD_GRO_SIZE_S);
2538 	if (skb_shinfo(skb)->gso_size)
2539 		tcp_gro_complete(skb);
2540 }
2541 
2542 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2543 				     struct sk_buff *skb)
2544 {
2545 	struct hnae3_handle *handle = ring->tqp->handle;
2546 	enum pkt_hash_types rss_type;
2547 	struct hns3_desc *desc;
2548 	int last_bd;
2549 
2550 	/* When driver handle the rss type, ring->next_to_clean indicates the
2551 	 * first descriptor of next packet, need -1 here.
2552 	 */
2553 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2554 	desc = &ring->desc[last_bd];
2555 
2556 	if (le32_to_cpu(desc->rx.rss_hash))
2557 		rss_type = handle->kinfo.rss_type;
2558 	else
2559 		rss_type = PKT_HASH_TYPE_NONE;
2560 
2561 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2562 }
2563 
2564 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2565 			     struct sk_buff **out_skb)
2566 {
2567 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2568 	enum hns3_pkt_l2t_type l2_frame_type;
2569 	struct sk_buff *skb = ring->skb;
2570 	struct hns3_desc_cb *desc_cb;
2571 	struct hns3_desc *desc;
2572 	u32 bd_base_info;
2573 	u32 l234info;
2574 	int length;
2575 	int ret;
2576 
2577 	desc = &ring->desc[ring->next_to_clean];
2578 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2579 
2580 	prefetch(desc);
2581 
2582 	length = le16_to_cpu(desc->rx.size);
2583 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2584 
2585 	/* Check valid BD */
2586 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2587 		return -ENXIO;
2588 
2589 	if (!skb)
2590 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2591 
2592 	/* Prefetch first cache line of first page
2593 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2594 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2595 	 * actual we can have greater size of caches with 128B Level 1 cache
2596 	 * lines. In such a case, single fetch would suffice to cache in the
2597 	 * relevant part of the header.
2598 	 */
2599 	prefetch(ring->va);
2600 #if L1_CACHE_BYTES < 128
2601 	prefetch(ring->va + L1_CACHE_BYTES);
2602 #endif
2603 
2604 	if (!skb) {
2605 		ret = hns3_alloc_skb(ring, length, ring->va);
2606 		*out_skb = skb = ring->skb;
2607 
2608 		if (ret < 0) /* alloc buffer fail */
2609 			return ret;
2610 		if (ret > 0) { /* need add frag */
2611 			ret = hns3_add_frag(ring, desc, &skb, false);
2612 			if (ret)
2613 				return ret;
2614 
2615 			/* As the head data may be changed when GRO enable, copy
2616 			 * the head data in after other data rx completed
2617 			 */
2618 			memcpy(skb->data, ring->va,
2619 			       ALIGN(ring->pull_len, sizeof(long)));
2620 		}
2621 	} else {
2622 		ret = hns3_add_frag(ring, desc, &skb, true);
2623 		if (ret)
2624 			return ret;
2625 
2626 		/* As the head data may be changed when GRO enable, copy
2627 		 * the head data in after other data rx completed
2628 		 */
2629 		memcpy(skb->data, ring->va,
2630 		       ALIGN(ring->pull_len, sizeof(long)));
2631 	}
2632 
2633 	l234info = le32_to_cpu(desc->rx.l234_info);
2634 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2635 
2636 	/* Based on hw strategy, the tag offloaded will be stored at
2637 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2638 	 * in one layer tag case.
2639 	 */
2640 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2641 		u16 vlan_tag;
2642 
2643 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2644 			__vlan_hwaccel_put_tag(skb,
2645 					       htons(ETH_P_8021Q),
2646 					       vlan_tag);
2647 	}
2648 
2649 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2650 		u64_stats_update_begin(&ring->syncp);
2651 		ring->stats.non_vld_descs++;
2652 		u64_stats_update_end(&ring->syncp);
2653 
2654 		dev_kfree_skb_any(skb);
2655 		return -EINVAL;
2656 	}
2657 
2658 	if (unlikely((!desc->rx.pkt_len) ||
2659 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2660 		u64_stats_update_begin(&ring->syncp);
2661 		ring->stats.err_pkt_len++;
2662 		u64_stats_update_end(&ring->syncp);
2663 
2664 		dev_kfree_skb_any(skb);
2665 		return -EFAULT;
2666 	}
2667 
2668 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2669 		u64_stats_update_begin(&ring->syncp);
2670 		ring->stats.l2_err++;
2671 		u64_stats_update_end(&ring->syncp);
2672 
2673 		dev_kfree_skb_any(skb);
2674 		return -EFAULT;
2675 	}
2676 
2677 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2678 					HNS3_RXD_DMAC_S);
2679 	u64_stats_update_begin(&ring->syncp);
2680 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2681 		ring->stats.rx_multicast++;
2682 
2683 	ring->stats.rx_pkts++;
2684 	ring->stats.rx_bytes += skb->len;
2685 	u64_stats_update_end(&ring->syncp);
2686 
2687 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2688 
2689 	/* This is needed in order to enable forwarding support */
2690 	hns3_set_gro_param(skb, l234info, bd_base_info);
2691 
2692 	hns3_rx_checksum(ring, skb, desc);
2693 	*out_skb = skb;
2694 	hns3_set_rx_skb_rss_type(ring, skb);
2695 
2696 	return 0;
2697 }
2698 
2699 int hns3_clean_rx_ring(
2700 		struct hns3_enet_ring *ring, int budget,
2701 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2702 {
2703 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2704 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2705 	int recv_pkts, recv_bds, clean_count, err;
2706 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2707 	struct sk_buff *skb = ring->skb;
2708 	int num;
2709 
2710 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2711 	rmb(); /* Make sure num taken effect before the other data is touched */
2712 
2713 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2714 	num -= unused_count;
2715 
2716 	while (recv_pkts < budget && recv_bds < num) {
2717 		/* Reuse or realloc buffers */
2718 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2719 			hns3_nic_alloc_rx_buffers(ring,
2720 						  clean_count + unused_count);
2721 			clean_count = 0;
2722 			unused_count = hns3_desc_unused(ring) -
2723 					ring->pending_buf;
2724 		}
2725 
2726 		/* Poll one pkt */
2727 		err = hns3_handle_rx_bd(ring, &skb);
2728 		if (unlikely(!skb)) /* This fault cannot be repaired */
2729 			goto out;
2730 
2731 		if (err == -ENXIO) { /* Do not get FE for the packet */
2732 			goto out;
2733 		} else if (unlikely(err)) {  /* Do jump the err */
2734 			recv_bds += ring->pending_buf;
2735 			clean_count += ring->pending_buf;
2736 			ring->skb = NULL;
2737 			ring->pending_buf = 0;
2738 			continue;
2739 		}
2740 
2741 		/* Do update ip stack process */
2742 		skb->protocol = eth_type_trans(skb, netdev);
2743 		rx_fn(ring, skb);
2744 		recv_bds += ring->pending_buf;
2745 		clean_count += ring->pending_buf;
2746 		ring->skb = NULL;
2747 		ring->pending_buf = 0;
2748 
2749 		recv_pkts++;
2750 	}
2751 
2752 out:
2753 	/* Make all data has been write before submit */
2754 	if (clean_count + unused_count > 0)
2755 		hns3_nic_alloc_rx_buffers(ring,
2756 					  clean_count + unused_count);
2757 
2758 	return recv_pkts;
2759 }
2760 
2761 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2762 {
2763 	struct hns3_enet_tqp_vector *tqp_vector =
2764 					ring_group->ring->tqp_vector;
2765 	enum hns3_flow_level_range new_flow_level;
2766 	int packets_per_msecs;
2767 	int bytes_per_msecs;
2768 	u32 time_passed_ms;
2769 	u16 new_int_gl;
2770 
2771 	if (!tqp_vector->last_jiffies)
2772 		return false;
2773 
2774 	if (ring_group->total_packets == 0) {
2775 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2776 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2777 		return true;
2778 	}
2779 
2780 	/* Simple throttlerate management
2781 	 * 0-10MB/s   lower     (50000 ints/s)
2782 	 * 10-20MB/s   middle    (20000 ints/s)
2783 	 * 20-1249MB/s high      (18000 ints/s)
2784 	 * > 40000pps  ultra     (8000 ints/s)
2785 	 */
2786 	new_flow_level = ring_group->coal.flow_level;
2787 	new_int_gl = ring_group->coal.int_gl;
2788 	time_passed_ms =
2789 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2790 
2791 	if (!time_passed_ms)
2792 		return false;
2793 
2794 	do_div(ring_group->total_packets, time_passed_ms);
2795 	packets_per_msecs = ring_group->total_packets;
2796 
2797 	do_div(ring_group->total_bytes, time_passed_ms);
2798 	bytes_per_msecs = ring_group->total_bytes;
2799 
2800 #define HNS3_RX_LOW_BYTE_RATE 10000
2801 #define HNS3_RX_MID_BYTE_RATE 20000
2802 
2803 	switch (new_flow_level) {
2804 	case HNS3_FLOW_LOW:
2805 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2806 			new_flow_level = HNS3_FLOW_MID;
2807 		break;
2808 	case HNS3_FLOW_MID:
2809 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2810 			new_flow_level = HNS3_FLOW_HIGH;
2811 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2812 			new_flow_level = HNS3_FLOW_LOW;
2813 		break;
2814 	case HNS3_FLOW_HIGH:
2815 	case HNS3_FLOW_ULTRA:
2816 	default:
2817 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2818 			new_flow_level = HNS3_FLOW_MID;
2819 		break;
2820 	}
2821 
2822 #define HNS3_RX_ULTRA_PACKET_RATE 40
2823 
2824 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2825 	    &tqp_vector->rx_group == ring_group)
2826 		new_flow_level = HNS3_FLOW_ULTRA;
2827 
2828 	switch (new_flow_level) {
2829 	case HNS3_FLOW_LOW:
2830 		new_int_gl = HNS3_INT_GL_50K;
2831 		break;
2832 	case HNS3_FLOW_MID:
2833 		new_int_gl = HNS3_INT_GL_20K;
2834 		break;
2835 	case HNS3_FLOW_HIGH:
2836 		new_int_gl = HNS3_INT_GL_18K;
2837 		break;
2838 	case HNS3_FLOW_ULTRA:
2839 		new_int_gl = HNS3_INT_GL_8K;
2840 		break;
2841 	default:
2842 		break;
2843 	}
2844 
2845 	ring_group->total_bytes = 0;
2846 	ring_group->total_packets = 0;
2847 	ring_group->coal.flow_level = new_flow_level;
2848 	if (new_int_gl != ring_group->coal.int_gl) {
2849 		ring_group->coal.int_gl = new_int_gl;
2850 		return true;
2851 	}
2852 	return false;
2853 }
2854 
2855 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2856 {
2857 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2858 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2859 	bool rx_update, tx_update;
2860 
2861 	/* update param every 1000ms */
2862 	if (time_before(jiffies,
2863 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2864 		return;
2865 
2866 	if (rx_group->coal.gl_adapt_enable) {
2867 		rx_update = hns3_get_new_int_gl(rx_group);
2868 		if (rx_update)
2869 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2870 						       rx_group->coal.int_gl);
2871 	}
2872 
2873 	if (tx_group->coal.gl_adapt_enable) {
2874 		tx_update = hns3_get_new_int_gl(tx_group);
2875 		if (tx_update)
2876 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2877 						       tx_group->coal.int_gl);
2878 	}
2879 
2880 	tqp_vector->last_jiffies = jiffies;
2881 }
2882 
2883 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2884 {
2885 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2886 	struct hns3_enet_ring *ring;
2887 	int rx_pkt_total = 0;
2888 
2889 	struct hns3_enet_tqp_vector *tqp_vector =
2890 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2891 	bool clean_complete = true;
2892 	int rx_budget;
2893 
2894 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2895 		napi_complete(napi);
2896 		return 0;
2897 	}
2898 
2899 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2900 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2901 	 */
2902 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2903 		hns3_clean_tx_ring(ring);
2904 
2905 	/* make sure rx ring budget not smaller than 1 */
2906 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2907 
2908 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2909 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2910 						    hns3_rx_skb);
2911 
2912 		if (rx_cleaned >= rx_budget)
2913 			clean_complete = false;
2914 
2915 		rx_pkt_total += rx_cleaned;
2916 	}
2917 
2918 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2919 
2920 	if (!clean_complete)
2921 		return budget;
2922 
2923 	if (napi_complete(napi) &&
2924 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2925 		hns3_update_new_int_gl(tqp_vector);
2926 		hns3_mask_vector_irq(tqp_vector, 1);
2927 	}
2928 
2929 	return rx_pkt_total;
2930 }
2931 
2932 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2933 				      struct hnae3_ring_chain_node *head)
2934 {
2935 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2936 	struct hnae3_ring_chain_node *cur_chain = head;
2937 	struct hnae3_ring_chain_node *chain;
2938 	struct hns3_enet_ring *tx_ring;
2939 	struct hns3_enet_ring *rx_ring;
2940 
2941 	tx_ring = tqp_vector->tx_group.ring;
2942 	if (tx_ring) {
2943 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2944 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2945 			      HNAE3_RING_TYPE_TX);
2946 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2947 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2948 
2949 		cur_chain->next = NULL;
2950 
2951 		while (tx_ring->next) {
2952 			tx_ring = tx_ring->next;
2953 
2954 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2955 					     GFP_KERNEL);
2956 			if (!chain)
2957 				goto err_free_chain;
2958 
2959 			cur_chain->next = chain;
2960 			chain->tqp_index = tx_ring->tqp->tqp_index;
2961 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2962 				      HNAE3_RING_TYPE_TX);
2963 			hnae3_set_field(chain->int_gl_idx,
2964 					HNAE3_RING_GL_IDX_M,
2965 					HNAE3_RING_GL_IDX_S,
2966 					HNAE3_RING_GL_TX);
2967 
2968 			cur_chain = chain;
2969 		}
2970 	}
2971 
2972 	rx_ring = tqp_vector->rx_group.ring;
2973 	if (!tx_ring && rx_ring) {
2974 		cur_chain->next = NULL;
2975 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2976 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2977 			      HNAE3_RING_TYPE_RX);
2978 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2979 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2980 
2981 		rx_ring = rx_ring->next;
2982 	}
2983 
2984 	while (rx_ring) {
2985 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2986 		if (!chain)
2987 			goto err_free_chain;
2988 
2989 		cur_chain->next = chain;
2990 		chain->tqp_index = rx_ring->tqp->tqp_index;
2991 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2992 			      HNAE3_RING_TYPE_RX);
2993 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2994 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2995 
2996 		cur_chain = chain;
2997 
2998 		rx_ring = rx_ring->next;
2999 	}
3000 
3001 	return 0;
3002 
3003 err_free_chain:
3004 	cur_chain = head->next;
3005 	while (cur_chain) {
3006 		chain = cur_chain->next;
3007 		devm_kfree(&pdev->dev, cur_chain);
3008 		cur_chain = chain;
3009 	}
3010 	head->next = NULL;
3011 
3012 	return -ENOMEM;
3013 }
3014 
3015 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3016 					struct hnae3_ring_chain_node *head)
3017 {
3018 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3019 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3020 
3021 	chain = head->next;
3022 
3023 	while (chain) {
3024 		chain_tmp = chain->next;
3025 		devm_kfree(&pdev->dev, chain);
3026 		chain = chain_tmp;
3027 	}
3028 }
3029 
3030 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3031 				   struct hns3_enet_ring *ring)
3032 {
3033 	ring->next = group->ring;
3034 	group->ring = ring;
3035 
3036 	group->count++;
3037 }
3038 
3039 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3040 {
3041 	struct pci_dev *pdev = priv->ae_handle->pdev;
3042 	struct hns3_enet_tqp_vector *tqp_vector;
3043 	int num_vectors = priv->vector_num;
3044 	int numa_node;
3045 	int vector_i;
3046 
3047 	numa_node = dev_to_node(&pdev->dev);
3048 
3049 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3050 		tqp_vector = &priv->tqp_vector[vector_i];
3051 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3052 				&tqp_vector->affinity_mask);
3053 	}
3054 }
3055 
3056 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3057 {
3058 	struct hnae3_ring_chain_node vector_ring_chain;
3059 	struct hnae3_handle *h = priv->ae_handle;
3060 	struct hns3_enet_tqp_vector *tqp_vector;
3061 	int ret = 0;
3062 	int i;
3063 
3064 	hns3_nic_set_cpumask(priv);
3065 
3066 	for (i = 0; i < priv->vector_num; i++) {
3067 		tqp_vector = &priv->tqp_vector[i];
3068 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3069 		tqp_vector->num_tqps = 0;
3070 	}
3071 
3072 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3073 		u16 vector_i = i % priv->vector_num;
3074 		u16 tqp_num = h->kinfo.num_tqps;
3075 
3076 		tqp_vector = &priv->tqp_vector[vector_i];
3077 
3078 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3079 				       priv->ring_data[i].ring);
3080 
3081 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3082 				       priv->ring_data[i + tqp_num].ring);
3083 
3084 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3085 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3086 		tqp_vector->num_tqps++;
3087 	}
3088 
3089 	for (i = 0; i < priv->vector_num; i++) {
3090 		tqp_vector = &priv->tqp_vector[i];
3091 
3092 		tqp_vector->rx_group.total_bytes = 0;
3093 		tqp_vector->rx_group.total_packets = 0;
3094 		tqp_vector->tx_group.total_bytes = 0;
3095 		tqp_vector->tx_group.total_packets = 0;
3096 		tqp_vector->handle = h;
3097 
3098 		ret = hns3_get_vector_ring_chain(tqp_vector,
3099 						 &vector_ring_chain);
3100 		if (ret)
3101 			goto map_ring_fail;
3102 
3103 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3104 			tqp_vector->vector_irq, &vector_ring_chain);
3105 
3106 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3107 
3108 		if (ret)
3109 			goto map_ring_fail;
3110 
3111 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3112 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3113 	}
3114 
3115 	return 0;
3116 
3117 map_ring_fail:
3118 	while (i--)
3119 		netif_napi_del(&priv->tqp_vector[i].napi);
3120 
3121 	return ret;
3122 }
3123 
3124 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3125 {
3126 #define HNS3_VECTOR_PF_MAX_NUM		64
3127 
3128 	struct hnae3_handle *h = priv->ae_handle;
3129 	struct hns3_enet_tqp_vector *tqp_vector;
3130 	struct hnae3_vector_info *vector;
3131 	struct pci_dev *pdev = h->pdev;
3132 	u16 tqp_num = h->kinfo.num_tqps;
3133 	u16 vector_num;
3134 	int ret = 0;
3135 	u16 i;
3136 
3137 	/* RSS size, cpu online and vector_num should be the same */
3138 	/* Should consider 2p/4p later */
3139 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3140 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3141 
3142 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3143 			      GFP_KERNEL);
3144 	if (!vector)
3145 		return -ENOMEM;
3146 
3147 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3148 
3149 	priv->vector_num = vector_num;
3150 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3151 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3152 			     GFP_KERNEL);
3153 	if (!priv->tqp_vector) {
3154 		ret = -ENOMEM;
3155 		goto out;
3156 	}
3157 
3158 	for (i = 0; i < priv->vector_num; i++) {
3159 		tqp_vector = &priv->tqp_vector[i];
3160 		tqp_vector->idx = i;
3161 		tqp_vector->mask_addr = vector[i].io_addr;
3162 		tqp_vector->vector_irq = vector[i].vector;
3163 		hns3_vector_gl_rl_init(tqp_vector, priv);
3164 	}
3165 
3166 out:
3167 	devm_kfree(&pdev->dev, vector);
3168 	return ret;
3169 }
3170 
3171 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3172 {
3173 	group->ring = NULL;
3174 	group->count = 0;
3175 }
3176 
3177 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3178 {
3179 	struct hnae3_ring_chain_node vector_ring_chain;
3180 	struct hnae3_handle *h = priv->ae_handle;
3181 	struct hns3_enet_tqp_vector *tqp_vector;
3182 	int i;
3183 
3184 	for (i = 0; i < priv->vector_num; i++) {
3185 		tqp_vector = &priv->tqp_vector[i];
3186 
3187 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3188 			continue;
3189 
3190 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3191 
3192 		h->ae_algo->ops->unmap_ring_from_vector(h,
3193 			tqp_vector->vector_irq, &vector_ring_chain);
3194 
3195 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3196 
3197 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3198 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3199 						  NULL);
3200 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3201 			free_irq(tqp_vector->vector_irq, tqp_vector);
3202 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3203 		}
3204 
3205 		hns3_clear_ring_group(&tqp_vector->rx_group);
3206 		hns3_clear_ring_group(&tqp_vector->tx_group);
3207 		netif_napi_del(&priv->tqp_vector[i].napi);
3208 	}
3209 }
3210 
3211 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3212 {
3213 	struct hnae3_handle *h = priv->ae_handle;
3214 	struct pci_dev *pdev = h->pdev;
3215 	int i, ret;
3216 
3217 	for (i = 0; i < priv->vector_num; i++) {
3218 		struct hns3_enet_tqp_vector *tqp_vector;
3219 
3220 		tqp_vector = &priv->tqp_vector[i];
3221 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3222 		if (ret)
3223 			return ret;
3224 	}
3225 
3226 	devm_kfree(&pdev->dev, priv->tqp_vector);
3227 	return 0;
3228 }
3229 
3230 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3231 			     int ring_type)
3232 {
3233 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3234 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3235 	int desc_num = priv->ae_handle->kinfo.num_desc;
3236 	struct pci_dev *pdev = priv->ae_handle->pdev;
3237 	struct hns3_enet_ring *ring;
3238 
3239 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3240 	if (!ring)
3241 		return -ENOMEM;
3242 
3243 	if (ring_type == HNAE3_RING_TYPE_TX) {
3244 		ring_data[q->tqp_index].ring = ring;
3245 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3246 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3247 	} else {
3248 		ring_data[q->tqp_index + queue_num].ring = ring;
3249 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3250 		ring->io_base = q->io_base;
3251 	}
3252 
3253 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3254 
3255 	ring->tqp = q;
3256 	ring->desc = NULL;
3257 	ring->desc_cb = NULL;
3258 	ring->dev = priv->dev;
3259 	ring->desc_dma_addr = 0;
3260 	ring->buf_size = q->buf_size;
3261 	ring->desc_num = desc_num;
3262 	ring->next_to_use = 0;
3263 	ring->next_to_clean = 0;
3264 
3265 	return 0;
3266 }
3267 
3268 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3269 			      struct hns3_nic_priv *priv)
3270 {
3271 	int ret;
3272 
3273 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3274 	if (ret)
3275 		return ret;
3276 
3277 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3278 	if (ret) {
3279 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3280 		return ret;
3281 	}
3282 
3283 	return 0;
3284 }
3285 
3286 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3287 {
3288 	struct hnae3_handle *h = priv->ae_handle;
3289 	struct pci_dev *pdev = h->pdev;
3290 	int i, ret;
3291 
3292 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3293 					array3_size(h->kinfo.num_tqps,
3294 						    sizeof(*priv->ring_data),
3295 						    2),
3296 					GFP_KERNEL);
3297 	if (!priv->ring_data)
3298 		return -ENOMEM;
3299 
3300 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3301 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3302 		if (ret)
3303 			goto err;
3304 	}
3305 
3306 	return 0;
3307 err:
3308 	while (i--) {
3309 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3310 		devm_kfree(priv->dev,
3311 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3312 	}
3313 
3314 	devm_kfree(&pdev->dev, priv->ring_data);
3315 	return ret;
3316 }
3317 
3318 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3319 {
3320 	struct hnae3_handle *h = priv->ae_handle;
3321 	int i;
3322 
3323 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3324 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3325 		devm_kfree(priv->dev,
3326 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3327 	}
3328 	devm_kfree(priv->dev, priv->ring_data);
3329 }
3330 
3331 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3332 {
3333 	int ret;
3334 
3335 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3336 		return -EINVAL;
3337 
3338 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3339 				GFP_KERNEL);
3340 	if (!ring->desc_cb) {
3341 		ret = -ENOMEM;
3342 		goto out;
3343 	}
3344 
3345 	ret = hns3_alloc_desc(ring);
3346 	if (ret)
3347 		goto out_with_desc_cb;
3348 
3349 	if (!HNAE3_IS_TX_RING(ring)) {
3350 		ret = hns3_alloc_ring_buffers(ring);
3351 		if (ret)
3352 			goto out_with_desc;
3353 	}
3354 
3355 	return 0;
3356 
3357 out_with_desc:
3358 	hns3_free_desc(ring);
3359 out_with_desc_cb:
3360 	kfree(ring->desc_cb);
3361 	ring->desc_cb = NULL;
3362 out:
3363 	return ret;
3364 }
3365 
3366 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3367 {
3368 	hns3_free_desc(ring);
3369 	kfree(ring->desc_cb);
3370 	ring->desc_cb = NULL;
3371 	ring->next_to_clean = 0;
3372 	ring->next_to_use = 0;
3373 	ring->pending_buf = 0;
3374 	if (ring->skb) {
3375 		dev_kfree_skb_any(ring->skb);
3376 		ring->skb = NULL;
3377 	}
3378 }
3379 
3380 static int hns3_buf_size2type(u32 buf_size)
3381 {
3382 	int bd_size_type;
3383 
3384 	switch (buf_size) {
3385 	case 512:
3386 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3387 		break;
3388 	case 1024:
3389 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3390 		break;
3391 	case 2048:
3392 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3393 		break;
3394 	case 4096:
3395 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3396 		break;
3397 	default:
3398 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3399 	}
3400 
3401 	return bd_size_type;
3402 }
3403 
3404 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3405 {
3406 	dma_addr_t dma = ring->desc_dma_addr;
3407 	struct hnae3_queue *q = ring->tqp;
3408 
3409 	if (!HNAE3_IS_TX_RING(ring)) {
3410 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3411 			       (u32)dma);
3412 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3413 			       (u32)((dma >> 31) >> 1));
3414 
3415 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3416 			       hns3_buf_size2type(ring->buf_size));
3417 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3418 			       ring->desc_num / 8 - 1);
3419 
3420 	} else {
3421 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3422 			       (u32)dma);
3423 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3424 			       (u32)((dma >> 31) >> 1));
3425 
3426 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3427 			       ring->desc_num / 8 - 1);
3428 	}
3429 }
3430 
3431 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3432 {
3433 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3434 	int i;
3435 
3436 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3437 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3438 		int j;
3439 
3440 		if (!tc_info->enable)
3441 			continue;
3442 
3443 		for (j = 0; j < tc_info->tqp_count; j++) {
3444 			struct hnae3_queue *q;
3445 
3446 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3447 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3448 				       tc_info->tc);
3449 		}
3450 	}
3451 }
3452 
3453 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3454 {
3455 	struct hnae3_handle *h = priv->ae_handle;
3456 	int ring_num = h->kinfo.num_tqps * 2;
3457 	int i, j;
3458 	int ret;
3459 
3460 	for (i = 0; i < ring_num; i++) {
3461 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3462 		if (ret) {
3463 			dev_err(priv->dev,
3464 				"Alloc ring memory fail! ret=%d\n", ret);
3465 			goto out_when_alloc_ring_memory;
3466 		}
3467 
3468 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3469 	}
3470 
3471 	return 0;
3472 
3473 out_when_alloc_ring_memory:
3474 	for (j = i - 1; j >= 0; j--)
3475 		hns3_fini_ring(priv->ring_data[j].ring);
3476 
3477 	return -ENOMEM;
3478 }
3479 
3480 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3481 {
3482 	struct hnae3_handle *h = priv->ae_handle;
3483 	int i;
3484 
3485 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3486 		hns3_fini_ring(priv->ring_data[i].ring);
3487 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3488 	}
3489 	return 0;
3490 }
3491 
3492 /* Set mac addr if it is configured. or leave it to the AE driver */
3493 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3494 {
3495 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3496 	struct hnae3_handle *h = priv->ae_handle;
3497 	u8 mac_addr_temp[ETH_ALEN];
3498 	int ret = 0;
3499 
3500 	if (h->ae_algo->ops->get_mac_addr && init) {
3501 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3502 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3503 	}
3504 
3505 	/* Check if the MAC address is valid, if not get a random one */
3506 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3507 		eth_hw_addr_random(netdev);
3508 		dev_warn(priv->dev, "using random MAC address %pM\n",
3509 			 netdev->dev_addr);
3510 	}
3511 
3512 	if (h->ae_algo->ops->set_mac_addr)
3513 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3514 
3515 	return ret;
3516 }
3517 
3518 static int hns3_init_phy(struct net_device *netdev)
3519 {
3520 	struct hnae3_handle *h = hns3_get_handle(netdev);
3521 	int ret = 0;
3522 
3523 	if (h->ae_algo->ops->mac_connect_phy)
3524 		ret = h->ae_algo->ops->mac_connect_phy(h);
3525 
3526 	return ret;
3527 }
3528 
3529 static void hns3_uninit_phy(struct net_device *netdev)
3530 {
3531 	struct hnae3_handle *h = hns3_get_handle(netdev);
3532 
3533 	if (h->ae_algo->ops->mac_disconnect_phy)
3534 		h->ae_algo->ops->mac_disconnect_phy(h);
3535 }
3536 
3537 static int hns3_restore_fd_rules(struct net_device *netdev)
3538 {
3539 	struct hnae3_handle *h = hns3_get_handle(netdev);
3540 	int ret = 0;
3541 
3542 	if (h->ae_algo->ops->restore_fd_rules)
3543 		ret = h->ae_algo->ops->restore_fd_rules(h);
3544 
3545 	return ret;
3546 }
3547 
3548 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3549 {
3550 	struct hnae3_handle *h = hns3_get_handle(netdev);
3551 
3552 	if (h->ae_algo->ops->del_all_fd_entries)
3553 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3554 }
3555 
3556 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3557 {
3558 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3559 
3560 	priv->ops.fill_desc = hns3_fill_desc;
3561 	if ((netdev->features & NETIF_F_TSO) ||
3562 	    (netdev->features & NETIF_F_TSO6))
3563 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3564 	else
3565 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3566 }
3567 
3568 static int hns3_client_start(struct hnae3_handle *handle)
3569 {
3570 	if (!handle->ae_algo->ops->client_start)
3571 		return 0;
3572 
3573 	return handle->ae_algo->ops->client_start(handle);
3574 }
3575 
3576 static void hns3_client_stop(struct hnae3_handle *handle)
3577 {
3578 	if (!handle->ae_algo->ops->client_stop)
3579 		return;
3580 
3581 	handle->ae_algo->ops->client_stop(handle);
3582 }
3583 
3584 static int hns3_client_init(struct hnae3_handle *handle)
3585 {
3586 	struct pci_dev *pdev = handle->pdev;
3587 	u16 alloc_tqps, max_rss_size;
3588 	struct hns3_nic_priv *priv;
3589 	struct net_device *netdev;
3590 	int ret;
3591 
3592 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3593 						    &max_rss_size);
3594 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3595 	if (!netdev)
3596 		return -ENOMEM;
3597 
3598 	priv = netdev_priv(netdev);
3599 	priv->dev = &pdev->dev;
3600 	priv->netdev = netdev;
3601 	priv->ae_handle = handle;
3602 	priv->tx_timeout_count = 0;
3603 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3604 
3605 	handle->kinfo.netdev = netdev;
3606 	handle->priv = (void *)priv;
3607 
3608 	hns3_init_mac_addr(netdev, true);
3609 
3610 	hns3_set_default_feature(netdev);
3611 
3612 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3613 	netdev->priv_flags |= IFF_UNICAST_FLT;
3614 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3615 	SET_NETDEV_DEV(netdev, &pdev->dev);
3616 	hns3_ethtool_set_ops(netdev);
3617 	hns3_nic_set_priv_ops(netdev);
3618 
3619 	/* Carrier off reporting is important to ethtool even BEFORE open */
3620 	netif_carrier_off(netdev);
3621 
3622 	ret = hns3_get_ring_config(priv);
3623 	if (ret) {
3624 		ret = -ENOMEM;
3625 		goto out_get_ring_cfg;
3626 	}
3627 
3628 	ret = hns3_nic_alloc_vector_data(priv);
3629 	if (ret) {
3630 		ret = -ENOMEM;
3631 		goto out_alloc_vector_data;
3632 	}
3633 
3634 	ret = hns3_nic_init_vector_data(priv);
3635 	if (ret) {
3636 		ret = -ENOMEM;
3637 		goto out_init_vector_data;
3638 	}
3639 
3640 	ret = hns3_init_all_ring(priv);
3641 	if (ret) {
3642 		ret = -ENOMEM;
3643 		goto out_init_ring_data;
3644 	}
3645 
3646 	ret = hns3_init_phy(netdev);
3647 	if (ret)
3648 		goto out_init_phy;
3649 
3650 	ret = register_netdev(netdev);
3651 	if (ret) {
3652 		dev_err(priv->dev, "probe register netdev fail!\n");
3653 		goto out_reg_netdev_fail;
3654 	}
3655 
3656 	ret = hns3_client_start(handle);
3657 	if (ret) {
3658 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3659 			goto out_reg_netdev_fail;
3660 	}
3661 
3662 	hns3_dcbnl_setup(handle);
3663 
3664 	hns3_dbg_init(handle);
3665 
3666 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3667 	netdev->max_mtu = HNS3_MAX_MTU;
3668 
3669 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3670 
3671 	return ret;
3672 
3673 out_reg_netdev_fail:
3674 	hns3_uninit_phy(netdev);
3675 out_init_phy:
3676 	hns3_uninit_all_ring(priv);
3677 out_init_ring_data:
3678 	hns3_nic_uninit_vector_data(priv);
3679 out_init_vector_data:
3680 	hns3_nic_dealloc_vector_data(priv);
3681 out_alloc_vector_data:
3682 	priv->ring_data = NULL;
3683 out_get_ring_cfg:
3684 	priv->ae_handle = NULL;
3685 	free_netdev(netdev);
3686 	return ret;
3687 }
3688 
3689 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3690 {
3691 	struct net_device *netdev = handle->kinfo.netdev;
3692 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3693 	int ret;
3694 
3695 	hns3_client_stop(handle);
3696 
3697 	hns3_remove_hw_addr(netdev);
3698 
3699 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3700 		unregister_netdev(netdev);
3701 
3702 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3703 		netdev_warn(netdev, "already uninitialized\n");
3704 		goto out_netdev_free;
3705 	}
3706 
3707 	hns3_del_all_fd_rules(netdev, true);
3708 
3709 	hns3_force_clear_all_rx_ring(handle);
3710 
3711 	hns3_uninit_phy(netdev);
3712 
3713 	hns3_nic_uninit_vector_data(priv);
3714 
3715 	ret = hns3_nic_dealloc_vector_data(priv);
3716 	if (ret)
3717 		netdev_err(netdev, "dealloc vector error\n");
3718 
3719 	ret = hns3_uninit_all_ring(priv);
3720 	if (ret)
3721 		netdev_err(netdev, "uninit ring error\n");
3722 
3723 	hns3_put_ring_config(priv);
3724 
3725 	hns3_dbg_uninit(handle);
3726 
3727 	priv->ring_data = NULL;
3728 
3729 out_netdev_free:
3730 	free_netdev(netdev);
3731 }
3732 
3733 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3734 {
3735 	struct net_device *netdev = handle->kinfo.netdev;
3736 
3737 	if (!netdev)
3738 		return;
3739 
3740 	if (linkup) {
3741 		netif_carrier_on(netdev);
3742 		netif_tx_wake_all_queues(netdev);
3743 		netdev_info(netdev, "link up\n");
3744 	} else {
3745 		netif_carrier_off(netdev);
3746 		netif_tx_stop_all_queues(netdev);
3747 		netdev_info(netdev, "link down\n");
3748 	}
3749 }
3750 
3751 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3752 {
3753 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3754 	struct net_device *ndev = kinfo->netdev;
3755 
3756 	if (tc > HNAE3_MAX_TC)
3757 		return -EINVAL;
3758 
3759 	if (!ndev)
3760 		return -ENODEV;
3761 
3762 	return hns3_nic_set_real_num_queue(ndev);
3763 }
3764 
3765 static int hns3_recover_hw_addr(struct net_device *ndev)
3766 {
3767 	struct netdev_hw_addr_list *list;
3768 	struct netdev_hw_addr *ha, *tmp;
3769 	int ret = 0;
3770 
3771 	/* go through and sync uc_addr entries to the device */
3772 	list = &ndev->uc;
3773 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3774 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3775 		if (ret)
3776 			return ret;
3777 	}
3778 
3779 	/* go through and sync mc_addr entries to the device */
3780 	list = &ndev->mc;
3781 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3782 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3783 		if (ret)
3784 			return ret;
3785 	}
3786 
3787 	return ret;
3788 }
3789 
3790 static void hns3_remove_hw_addr(struct net_device *netdev)
3791 {
3792 	struct netdev_hw_addr_list *list;
3793 	struct netdev_hw_addr *ha, *tmp;
3794 
3795 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3796 
3797 	/* go through and unsync uc_addr entries to the device */
3798 	list = &netdev->uc;
3799 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3800 		hns3_nic_uc_unsync(netdev, ha->addr);
3801 
3802 	/* go through and unsync mc_addr entries to the device */
3803 	list = &netdev->mc;
3804 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3805 		if (ha->refcount > 1)
3806 			hns3_nic_mc_unsync(netdev, ha->addr);
3807 }
3808 
3809 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3810 {
3811 	while (ring->next_to_clean != ring->next_to_use) {
3812 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3813 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3814 		ring_ptr_move_fw(ring, next_to_clean);
3815 	}
3816 }
3817 
3818 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3819 {
3820 	struct hns3_desc_cb res_cbs;
3821 	int ret;
3822 
3823 	while (ring->next_to_use != ring->next_to_clean) {
3824 		/* When a buffer is not reused, it's memory has been
3825 		 * freed in hns3_handle_rx_bd or will be freed by
3826 		 * stack, so we need to replace the buffer here.
3827 		 */
3828 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3829 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3830 			if (ret) {
3831 				u64_stats_update_begin(&ring->syncp);
3832 				ring->stats.sw_err_cnt++;
3833 				u64_stats_update_end(&ring->syncp);
3834 				/* if alloc new buffer fail, exit directly
3835 				 * and reclear in up flow.
3836 				 */
3837 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3838 					    "reserve buffer map failed, ret = %d\n",
3839 					    ret);
3840 				return ret;
3841 			}
3842 			hns3_replace_buffer(ring, ring->next_to_use,
3843 					    &res_cbs);
3844 		}
3845 		ring_ptr_move_fw(ring, next_to_use);
3846 	}
3847 
3848 	return 0;
3849 }
3850 
3851 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3852 {
3853 	while (ring->next_to_use != ring->next_to_clean) {
3854 		/* When a buffer is not reused, it's memory has been
3855 		 * freed in hns3_handle_rx_bd or will be freed by
3856 		 * stack, so only need to unmap the buffer here.
3857 		 */
3858 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3859 			hns3_unmap_buffer(ring,
3860 					  &ring->desc_cb[ring->next_to_use]);
3861 			ring->desc_cb[ring->next_to_use].dma = 0;
3862 		}
3863 
3864 		ring_ptr_move_fw(ring, next_to_use);
3865 	}
3866 }
3867 
3868 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3869 {
3870 	struct net_device *ndev = h->kinfo.netdev;
3871 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3872 	struct hns3_enet_ring *ring;
3873 	u32 i;
3874 
3875 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3876 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3877 		hns3_force_clear_rx_ring(ring);
3878 	}
3879 }
3880 
3881 static void hns3_clear_all_ring(struct hnae3_handle *h)
3882 {
3883 	struct net_device *ndev = h->kinfo.netdev;
3884 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3885 	u32 i;
3886 
3887 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3888 		struct netdev_queue *dev_queue;
3889 		struct hns3_enet_ring *ring;
3890 
3891 		ring = priv->ring_data[i].ring;
3892 		hns3_clear_tx_ring(ring);
3893 		dev_queue = netdev_get_tx_queue(ndev,
3894 						priv->ring_data[i].queue_index);
3895 		netdev_tx_reset_queue(dev_queue);
3896 
3897 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3898 		/* Continue to clear other rings even if clearing some
3899 		 * rings failed.
3900 		 */
3901 		hns3_clear_rx_ring(ring);
3902 	}
3903 }
3904 
3905 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3906 {
3907 	struct net_device *ndev = h->kinfo.netdev;
3908 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3909 	struct hns3_enet_ring *rx_ring;
3910 	int i, j;
3911 	int ret;
3912 
3913 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3914 		ret = h->ae_algo->ops->reset_queue(h, i);
3915 		if (ret)
3916 			return ret;
3917 
3918 		hns3_init_ring_hw(priv->ring_data[i].ring);
3919 
3920 		/* We need to clear tx ring here because self test will
3921 		 * use the ring and will not run down before up
3922 		 */
3923 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3924 		priv->ring_data[i].ring->next_to_clean = 0;
3925 		priv->ring_data[i].ring->next_to_use = 0;
3926 
3927 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3928 		hns3_init_ring_hw(rx_ring);
3929 		ret = hns3_clear_rx_ring(rx_ring);
3930 		if (ret)
3931 			return ret;
3932 
3933 		/* We can not know the hardware head and tail when this
3934 		 * function is called in reset flow, so we reuse all desc.
3935 		 */
3936 		for (j = 0; j < rx_ring->desc_num; j++)
3937 			hns3_reuse_buffer(rx_ring, j);
3938 
3939 		rx_ring->next_to_clean = 0;
3940 		rx_ring->next_to_use = 0;
3941 	}
3942 
3943 	hns3_init_tx_ring_tc(priv);
3944 
3945 	return 0;
3946 }
3947 
3948 static void hns3_store_coal(struct hns3_nic_priv *priv)
3949 {
3950 	/* ethtool only support setting and querying one coal
3951 	 * configuation for now, so save the vector 0' coal
3952 	 * configuation here in order to restore it.
3953 	 */
3954 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3955 	       sizeof(struct hns3_enet_coalesce));
3956 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3957 	       sizeof(struct hns3_enet_coalesce));
3958 }
3959 
3960 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3961 {
3962 	u16 vector_num = priv->vector_num;
3963 	int i;
3964 
3965 	for (i = 0; i < vector_num; i++) {
3966 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3967 		       sizeof(struct hns3_enet_coalesce));
3968 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3969 		       sizeof(struct hns3_enet_coalesce));
3970 	}
3971 }
3972 
3973 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3974 {
3975 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3976 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3977 	struct net_device *ndev = kinfo->netdev;
3978 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3979 
3980 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3981 		return 0;
3982 
3983 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
3984 	 * from table space. Hence, for function reset software intervention is
3985 	 * required to delete the entries
3986 	 */
3987 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
3988 		hns3_remove_hw_addr(ndev);
3989 		hns3_del_all_fd_rules(ndev, false);
3990 	}
3991 
3992 	if (!netif_running(ndev))
3993 		return 0;
3994 
3995 	return hns3_nic_net_stop(ndev);
3996 }
3997 
3998 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3999 {
4000 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4001 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4002 	int ret = 0;
4003 
4004 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4005 
4006 	if (netif_running(kinfo->netdev)) {
4007 		ret = hns3_nic_net_open(kinfo->netdev);
4008 		if (ret) {
4009 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4010 			netdev_err(kinfo->netdev,
4011 				   "hns net up fail, ret=%d!\n", ret);
4012 			return ret;
4013 		}
4014 	}
4015 
4016 	return ret;
4017 }
4018 
4019 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4020 {
4021 	struct net_device *netdev = handle->kinfo.netdev;
4022 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4023 	int ret;
4024 
4025 	/* Carrier off reporting is important to ethtool even BEFORE open */
4026 	netif_carrier_off(netdev);
4027 
4028 	ret = hns3_get_ring_config(priv);
4029 	if (ret)
4030 		return ret;
4031 
4032 	ret = hns3_nic_alloc_vector_data(priv);
4033 	if (ret)
4034 		goto err_put_ring;
4035 
4036 	hns3_restore_coal(priv);
4037 
4038 	ret = hns3_nic_init_vector_data(priv);
4039 	if (ret)
4040 		goto err_dealloc_vector;
4041 
4042 	ret = hns3_init_all_ring(priv);
4043 	if (ret)
4044 		goto err_uninit_vector;
4045 
4046 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4047 
4048 	return ret;
4049 
4050 err_uninit_vector:
4051 	hns3_nic_uninit_vector_data(priv);
4052 	priv->ring_data = NULL;
4053 err_dealloc_vector:
4054 	hns3_nic_dealloc_vector_data(priv);
4055 err_put_ring:
4056 	hns3_put_ring_config(priv);
4057 	priv->ring_data = NULL;
4058 
4059 	return ret;
4060 }
4061 
4062 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4063 {
4064 	struct net_device *netdev = handle->kinfo.netdev;
4065 	bool vlan_filter_enable;
4066 	int ret;
4067 
4068 	ret = hns3_init_mac_addr(netdev, false);
4069 	if (ret)
4070 		return ret;
4071 
4072 	ret = hns3_recover_hw_addr(netdev);
4073 	if (ret)
4074 		return ret;
4075 
4076 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4077 	if (ret)
4078 		return ret;
4079 
4080 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4081 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4082 
4083 	/* Hardware table is only clear when pf resets */
4084 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4085 		ret = hns3_restore_vlan(netdev);
4086 		if (ret)
4087 			return ret;
4088 	}
4089 
4090 	return hns3_restore_fd_rules(netdev);
4091 }
4092 
4093 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4094 {
4095 	struct net_device *netdev = handle->kinfo.netdev;
4096 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4097 	int ret;
4098 
4099 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4100 		netdev_warn(netdev, "already uninitialized\n");
4101 		return 0;
4102 	}
4103 
4104 	hns3_force_clear_all_rx_ring(handle);
4105 
4106 	hns3_nic_uninit_vector_data(priv);
4107 
4108 	hns3_store_coal(priv);
4109 
4110 	ret = hns3_nic_dealloc_vector_data(priv);
4111 	if (ret)
4112 		netdev_err(netdev, "dealloc vector error\n");
4113 
4114 	ret = hns3_uninit_all_ring(priv);
4115 	if (ret)
4116 		netdev_err(netdev, "uninit ring error\n");
4117 
4118 	hns3_put_ring_config(priv);
4119 	priv->ring_data = NULL;
4120 
4121 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4122 
4123 	return ret;
4124 }
4125 
4126 static int hns3_reset_notify(struct hnae3_handle *handle,
4127 			     enum hnae3_reset_notify_type type)
4128 {
4129 	int ret = 0;
4130 
4131 	switch (type) {
4132 	case HNAE3_UP_CLIENT:
4133 		ret = hns3_reset_notify_up_enet(handle);
4134 		break;
4135 	case HNAE3_DOWN_CLIENT:
4136 		ret = hns3_reset_notify_down_enet(handle);
4137 		break;
4138 	case HNAE3_INIT_CLIENT:
4139 		ret = hns3_reset_notify_init_enet(handle);
4140 		break;
4141 	case HNAE3_UNINIT_CLIENT:
4142 		ret = hns3_reset_notify_uninit_enet(handle);
4143 		break;
4144 	case HNAE3_RESTORE_CLIENT:
4145 		ret = hns3_reset_notify_restore_enet(handle);
4146 		break;
4147 	default:
4148 		break;
4149 	}
4150 
4151 	return ret;
4152 }
4153 
4154 int hns3_set_channels(struct net_device *netdev,
4155 		      struct ethtool_channels *ch)
4156 {
4157 	struct hnae3_handle *h = hns3_get_handle(netdev);
4158 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4159 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4160 	u32 new_tqp_num = ch->combined_count;
4161 	u16 org_tqp_num;
4162 	int ret;
4163 
4164 	if (ch->rx_count || ch->tx_count)
4165 		return -EINVAL;
4166 
4167 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4168 	    new_tqp_num < 1) {
4169 		dev_err(&netdev->dev,
4170 			"Change tqps fail, the tqp range is from 1 to %d",
4171 			hns3_get_max_available_channels(h));
4172 		return -EINVAL;
4173 	}
4174 
4175 	if (kinfo->rss_size == new_tqp_num)
4176 		return 0;
4177 
4178 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4179 	if (ret)
4180 		return ret;
4181 
4182 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4183 	if (ret)
4184 		return ret;
4185 
4186 	org_tqp_num = h->kinfo.num_tqps;
4187 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4188 	if (ret) {
4189 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4190 						    rxfh_configured);
4191 		if (ret) {
4192 			/* If revert to old tqp failed, fatal error occurred */
4193 			dev_err(&netdev->dev,
4194 				"Revert to old tqp num fail, ret=%d", ret);
4195 			return ret;
4196 		}
4197 		dev_info(&netdev->dev,
4198 			 "Change tqp num fail, Revert to old tqp num");
4199 	}
4200 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4201 	if (ret)
4202 		return ret;
4203 
4204 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4205 }
4206 
4207 static const struct hnae3_client_ops client_ops = {
4208 	.init_instance = hns3_client_init,
4209 	.uninit_instance = hns3_client_uninit,
4210 	.link_status_change = hns3_link_status_change,
4211 	.setup_tc = hns3_client_setup_tc,
4212 	.reset_notify = hns3_reset_notify,
4213 };
4214 
4215 /* hns3_init_module - Driver registration routine
4216  * hns3_init_module is the first routine called when the driver is
4217  * loaded. All it does is register with the PCI subsystem.
4218  */
4219 static int __init hns3_init_module(void)
4220 {
4221 	int ret;
4222 
4223 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4224 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4225 
4226 	client.type = HNAE3_CLIENT_KNIC;
4227 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4228 		 hns3_driver_name);
4229 
4230 	client.ops = &client_ops;
4231 
4232 	INIT_LIST_HEAD(&client.node);
4233 
4234 	hns3_dbg_register_debugfs(hns3_driver_name);
4235 
4236 	ret = hnae3_register_client(&client);
4237 	if (ret)
4238 		goto err_reg_client;
4239 
4240 	ret = pci_register_driver(&hns3_driver);
4241 	if (ret)
4242 		goto err_reg_driver;
4243 
4244 	return ret;
4245 
4246 err_reg_driver:
4247 	hnae3_unregister_client(&client);
4248 err_reg_client:
4249 	hns3_dbg_unregister_debugfs();
4250 	return ret;
4251 }
4252 module_init(hns3_init_module);
4253 
4254 /* hns3_exit_module - Driver exit cleanup routine
4255  * hns3_exit_module is called just before the driver is removed
4256  * from memory.
4257  */
4258 static void __exit hns3_exit_module(void)
4259 {
4260 	pci_unregister_driver(&hns3_driver);
4261 	hnae3_unregister_client(&client);
4262 	hns3_dbg_unregister_debugfs();
4263 }
4264 module_exit(hns3_exit_module);
4265 
4266 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4267 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4268 MODULE_LICENSE("GPL");
4269 MODULE_ALIAS("pci:hns-nic");
4270 MODULE_VERSION(HNS3_MOD_VERSION);
4271