xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vector = vector;
97 
98 	napi_schedule_irqoff(&tqp_vector->napi);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105 	struct hns3_enet_tqp_vector *tqp_vectors;
106 	unsigned int i;
107 
108 	for (i = 0; i < priv->vector_num; i++) {
109 		tqp_vectors = &priv->tqp_vector[i];
110 
111 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112 			continue;
113 
114 		/* clear the affinity mask */
115 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116 
117 		/* release the irq resource */
118 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
119 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120 	}
121 }
122 
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125 	struct hns3_enet_tqp_vector *tqp_vectors;
126 	int txrx_int_idx = 0;
127 	int rx_int_idx = 0;
128 	int tx_int_idx = 0;
129 	unsigned int i;
130 	int ret;
131 
132 	for (i = 0; i < priv->vector_num; i++) {
133 		tqp_vectors = &priv->tqp_vector[i];
134 
135 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136 			continue;
137 
138 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140 				 "%s-%s-%s-%d", hns3_driver_name,
141 				 pci_name(priv->ae_handle->pdev),
142 				 "TxRx", txrx_int_idx++);
143 			txrx_int_idx++;
144 		} else if (tqp_vectors->rx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146 				 "%s-%s-%s-%d", hns3_driver_name,
147 				 pci_name(priv->ae_handle->pdev),
148 				 "Rx", rx_int_idx++);
149 		} else if (tqp_vectors->tx_group.ring) {
150 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151 				 "%s-%s-%s-%d", hns3_driver_name,
152 				 pci_name(priv->ae_handle->pdev),
153 				 "Tx", tx_int_idx++);
154 		} else {
155 			/* Skip this unused q_vector */
156 			continue;
157 		}
158 
159 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160 
161 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163 				  tqp_vectors->name, tqp_vectors);
164 		if (ret) {
165 			netdev_err(priv->netdev, "request irq(%d) fail\n",
166 				   tqp_vectors->vector_irq);
167 			hns3_nic_uninit_irq(priv);
168 			return ret;
169 		}
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 
214 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
215 	    !tqp_vector->rx_group.coal.adapt_enable)
216 		/* According to the hardware, the range of rl_reg is
217 		 * 0-59 and the unit is 4.
218 		 */
219 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220 
221 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223 
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225 				    u32 gl_value)
226 {
227 	u32 new_val;
228 
229 	if (tqp_vector->rx_group.coal.unit_1us)
230 		new_val = gl_value | HNS3_INT_GL_1US;
231 	else
232 		new_val = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 }
236 
237 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
238 				    u32 gl_value)
239 {
240 	u32 new_val;
241 
242 	if (tqp_vector->tx_group.coal.unit_1us)
243 		new_val = gl_value | HNS3_INT_GL_1US;
244 	else
245 		new_val = hns3_gl_usec_to_reg(gl_value);
246 
247 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 }
249 
250 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
251 				    u32 ql_value)
252 {
253 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
254 }
255 
256 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
257 				    u32 ql_value)
258 {
259 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
260 }
261 
262 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
263 				      struct hns3_nic_priv *priv)
264 {
265 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
266 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
267 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
268 
269 	/* initialize the configuration for interrupt coalescing.
270 	 * 1. GL (Interrupt Gap Limiter)
271 	 * 2. RL (Interrupt Rate Limiter)
272 	 * 3. QL (Interrupt Quantity Limiter)
273 	 *
274 	 * Default: enable interrupt coalescing self-adaptive and GL
275 	 */
276 	tx_coal->adapt_enable = 1;
277 	rx_coal->adapt_enable = 1;
278 
279 	tx_coal->int_gl = HNS3_INT_GL_50K;
280 	rx_coal->int_gl = HNS3_INT_GL_50K;
281 
282 	rx_coal->flow_level = HNS3_FLOW_LOW;
283 	tx_coal->flow_level = HNS3_FLOW_LOW;
284 
285 	/* device version above V3(include V3), GL can configure 1us
286 	 * unit, so uses 1us unit.
287 	 */
288 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
289 		tx_coal->unit_1us = 1;
290 		rx_coal->unit_1us = 1;
291 	}
292 
293 	if (ae_dev->dev_specs.int_ql_max) {
294 		tx_coal->ql_enable = 1;
295 		rx_coal->ql_enable = 1;
296 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
298 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
300 	}
301 }
302 
303 static void
304 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
305 			     struct hns3_nic_priv *priv)
306 {
307 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
308 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309 	struct hnae3_handle *h = priv->ae_handle;
310 
311 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
312 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314 
315 	if (tx_coal->ql_enable)
316 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
317 
318 	if (rx_coal->ql_enable)
319 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 }
321 
322 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
323 {
324 	struct hnae3_handle *h = hns3_get_handle(netdev);
325 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
326 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
327 	unsigned int queue_size = kinfo->num_tqps;
328 	int i, ret;
329 
330 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
331 		netdev_reset_tc(netdev);
332 	} else {
333 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
334 		if (ret) {
335 			netdev_err(netdev,
336 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
337 			return ret;
338 		}
339 
340 		for (i = 0; i < HNAE3_MAX_TC; i++) {
341 			if (!test_bit(i, &tc_info->tc_en))
342 				continue;
343 
344 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
345 					    tc_info->tqp_offset[i]);
346 		}
347 	}
348 
349 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
350 	if (ret) {
351 		netdev_err(netdev,
352 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
353 		return ret;
354 	}
355 
356 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
357 	if (ret) {
358 		netdev_err(netdev,
359 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
360 		return ret;
361 	}
362 
363 	return 0;
364 }
365 
366 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
367 {
368 	u16 alloc_tqps, max_rss_size, rss_size;
369 
370 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
371 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
372 
373 	return min_t(u16, rss_size, max_rss_size);
374 }
375 
376 static void hns3_tqp_enable(struct hnae3_queue *tqp)
377 {
378 	u32 rcb_reg;
379 
380 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
381 	rcb_reg |= BIT(HNS3_RING_EN_B);
382 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
383 }
384 
385 static void hns3_tqp_disable(struct hnae3_queue *tqp)
386 {
387 	u32 rcb_reg;
388 
389 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
390 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
391 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
392 }
393 
394 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
395 {
396 #ifdef CONFIG_RFS_ACCEL
397 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
398 	netdev->rx_cpu_rmap = NULL;
399 #endif
400 }
401 
402 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
403 {
404 #ifdef CONFIG_RFS_ACCEL
405 	struct hns3_nic_priv *priv = netdev_priv(netdev);
406 	struct hns3_enet_tqp_vector *tqp_vector;
407 	int i, ret;
408 
409 	if (!netdev->rx_cpu_rmap) {
410 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
411 		if (!netdev->rx_cpu_rmap)
412 			return -ENOMEM;
413 	}
414 
415 	for (i = 0; i < priv->vector_num; i++) {
416 		tqp_vector = &priv->tqp_vector[i];
417 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
418 				       tqp_vector->vector_irq);
419 		if (ret) {
420 			hns3_free_rx_cpu_rmap(netdev);
421 			return ret;
422 		}
423 	}
424 #endif
425 	return 0;
426 }
427 
428 static int hns3_nic_net_up(struct net_device *netdev)
429 {
430 	struct hns3_nic_priv *priv = netdev_priv(netdev);
431 	struct hnae3_handle *h = priv->ae_handle;
432 	int i, j;
433 	int ret;
434 
435 	ret = hns3_nic_reset_all_ring(h);
436 	if (ret)
437 		return ret;
438 
439 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
440 
441 	/* enable the vectors */
442 	for (i = 0; i < priv->vector_num; i++)
443 		hns3_vector_enable(&priv->tqp_vector[i]);
444 
445 	/* enable rcb */
446 	for (j = 0; j < h->kinfo.num_tqps; j++)
447 		hns3_tqp_enable(h->kinfo.tqp[j]);
448 
449 	/* start the ae_dev */
450 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
451 	if (ret) {
452 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
453 		while (j--)
454 			hns3_tqp_disable(h->kinfo.tqp[j]);
455 
456 		for (j = i - 1; j >= 0; j--)
457 			hns3_vector_disable(&priv->tqp_vector[j]);
458 	}
459 
460 	return ret;
461 }
462 
463 static void hns3_config_xps(struct hns3_nic_priv *priv)
464 {
465 	int i;
466 
467 	for (i = 0; i < priv->vector_num; i++) {
468 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
469 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
470 
471 		while (ring) {
472 			int ret;
473 
474 			ret = netif_set_xps_queue(priv->netdev,
475 						  &tqp_vector->affinity_mask,
476 						  ring->tqp->tqp_index);
477 			if (ret)
478 				netdev_warn(priv->netdev,
479 					    "set xps queue failed: %d", ret);
480 
481 			ring = ring->next;
482 		}
483 	}
484 }
485 
486 static int hns3_nic_net_open(struct net_device *netdev)
487 {
488 	struct hns3_nic_priv *priv = netdev_priv(netdev);
489 	struct hnae3_handle *h = hns3_get_handle(netdev);
490 	struct hnae3_knic_private_info *kinfo;
491 	int i, ret;
492 
493 	if (hns3_nic_resetting(netdev))
494 		return -EBUSY;
495 
496 	netif_carrier_off(netdev);
497 
498 	ret = hns3_nic_set_real_num_queue(netdev);
499 	if (ret)
500 		return ret;
501 
502 	ret = hns3_nic_net_up(netdev);
503 	if (ret) {
504 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
505 		return ret;
506 	}
507 
508 	kinfo = &h->kinfo;
509 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
510 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
511 
512 	if (h->ae_algo->ops->set_timer_task)
513 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
514 
515 	hns3_config_xps(priv);
516 
517 	netif_dbg(h, drv, netdev, "net open\n");
518 
519 	return 0;
520 }
521 
522 static void hns3_reset_tx_queue(struct hnae3_handle *h)
523 {
524 	struct net_device *ndev = h->kinfo.netdev;
525 	struct hns3_nic_priv *priv = netdev_priv(ndev);
526 	struct netdev_queue *dev_queue;
527 	u32 i;
528 
529 	for (i = 0; i < h->kinfo.num_tqps; i++) {
530 		dev_queue = netdev_get_tx_queue(ndev,
531 						priv->ring[i].queue_index);
532 		netdev_tx_reset_queue(dev_queue);
533 	}
534 }
535 
536 static void hns3_nic_net_down(struct net_device *netdev)
537 {
538 	struct hns3_nic_priv *priv = netdev_priv(netdev);
539 	struct hnae3_handle *h = hns3_get_handle(netdev);
540 	const struct hnae3_ae_ops *ops;
541 	int i;
542 
543 	/* disable vectors */
544 	for (i = 0; i < priv->vector_num; i++)
545 		hns3_vector_disable(&priv->tqp_vector[i]);
546 
547 	/* disable rcb */
548 	for (i = 0; i < h->kinfo.num_tqps; i++)
549 		hns3_tqp_disable(h->kinfo.tqp[i]);
550 
551 	/* stop ae_dev */
552 	ops = priv->ae_handle->ae_algo->ops;
553 	if (ops->stop)
554 		ops->stop(priv->ae_handle);
555 
556 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
557 	 * during reset process, because driver may not be able
558 	 * to disable the ring through firmware when downing the netdev.
559 	 */
560 	if (!hns3_nic_resetting(netdev))
561 		hns3_clear_all_ring(priv->ae_handle, false);
562 
563 	hns3_reset_tx_queue(priv->ae_handle);
564 }
565 
566 static int hns3_nic_net_stop(struct net_device *netdev)
567 {
568 	struct hns3_nic_priv *priv = netdev_priv(netdev);
569 	struct hnae3_handle *h = hns3_get_handle(netdev);
570 
571 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
572 		return 0;
573 
574 	netif_dbg(h, drv, netdev, "net stop\n");
575 
576 	if (h->ae_algo->ops->set_timer_task)
577 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
578 
579 	netif_tx_stop_all_queues(netdev);
580 	netif_carrier_off(netdev);
581 
582 	hns3_nic_net_down(netdev);
583 
584 	return 0;
585 }
586 
587 static int hns3_nic_uc_sync(struct net_device *netdev,
588 			    const unsigned char *addr)
589 {
590 	struct hnae3_handle *h = hns3_get_handle(netdev);
591 
592 	if (h->ae_algo->ops->add_uc_addr)
593 		return h->ae_algo->ops->add_uc_addr(h, addr);
594 
595 	return 0;
596 }
597 
598 static int hns3_nic_uc_unsync(struct net_device *netdev,
599 			      const unsigned char *addr)
600 {
601 	struct hnae3_handle *h = hns3_get_handle(netdev);
602 
603 	/* need ignore the request of removing device address, because
604 	 * we store the device address and other addresses of uc list
605 	 * in the function's mac filter list.
606 	 */
607 	if (ether_addr_equal(addr, netdev->dev_addr))
608 		return 0;
609 
610 	if (h->ae_algo->ops->rm_uc_addr)
611 		return h->ae_algo->ops->rm_uc_addr(h, addr);
612 
613 	return 0;
614 }
615 
616 static int hns3_nic_mc_sync(struct net_device *netdev,
617 			    const unsigned char *addr)
618 {
619 	struct hnae3_handle *h = hns3_get_handle(netdev);
620 
621 	if (h->ae_algo->ops->add_mc_addr)
622 		return h->ae_algo->ops->add_mc_addr(h, addr);
623 
624 	return 0;
625 }
626 
627 static int hns3_nic_mc_unsync(struct net_device *netdev,
628 			      const unsigned char *addr)
629 {
630 	struct hnae3_handle *h = hns3_get_handle(netdev);
631 
632 	if (h->ae_algo->ops->rm_mc_addr)
633 		return h->ae_algo->ops->rm_mc_addr(h, addr);
634 
635 	return 0;
636 }
637 
638 static u8 hns3_get_netdev_flags(struct net_device *netdev)
639 {
640 	u8 flags = 0;
641 
642 	if (netdev->flags & IFF_PROMISC) {
643 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
644 	} else {
645 		flags |= HNAE3_VLAN_FLTR;
646 		if (netdev->flags & IFF_ALLMULTI)
647 			flags |= HNAE3_USER_MPE;
648 	}
649 
650 	return flags;
651 }
652 
653 static void hns3_nic_set_rx_mode(struct net_device *netdev)
654 {
655 	struct hnae3_handle *h = hns3_get_handle(netdev);
656 	u8 new_flags;
657 
658 	new_flags = hns3_get_netdev_flags(netdev);
659 
660 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
661 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
662 
663 	/* User mode Promisc mode enable and vlan filtering is disabled to
664 	 * let all packets in.
665 	 */
666 	h->netdev_flags = new_flags;
667 	hns3_request_update_promisc_mode(h);
668 }
669 
670 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
671 {
672 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
673 
674 	if (ops->request_update_promisc_mode)
675 		ops->request_update_promisc_mode(handle);
676 }
677 
678 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
679 {
680 	struct hns3_nic_priv *priv = netdev_priv(netdev);
681 	struct hnae3_handle *h = priv->ae_handle;
682 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
683 	bool last_state;
684 
685 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
686 	    h->ae_algo->ops->enable_vlan_filter) {
687 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
688 		if (enable != last_state) {
689 			netdev_info(netdev,
690 				    "%s vlan filter\n",
691 				    enable ? "enable" : "disable");
692 			h->ae_algo->ops->enable_vlan_filter(h, enable);
693 		}
694 	}
695 }
696 
697 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
698 			u16 *mss, u32 *type_cs_vlan_tso)
699 {
700 	u32 l4_offset, hdr_len;
701 	union l3_hdr_info l3;
702 	union l4_hdr_info l4;
703 	u32 l4_paylen;
704 	int ret;
705 
706 	if (!skb_is_gso(skb))
707 		return 0;
708 
709 	ret = skb_cow_head(skb, 0);
710 	if (unlikely(ret < 0))
711 		return ret;
712 
713 	l3.hdr = skb_network_header(skb);
714 	l4.hdr = skb_transport_header(skb);
715 
716 	/* Software should clear the IPv4's checksum field when tso is
717 	 * needed.
718 	 */
719 	if (l3.v4->version == 4)
720 		l3.v4->check = 0;
721 
722 	/* tunnel packet */
723 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
724 					 SKB_GSO_GRE_CSUM |
725 					 SKB_GSO_UDP_TUNNEL |
726 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
727 		/* reset l3&l4 pointers from outer to inner headers */
728 		l3.hdr = skb_inner_network_header(skb);
729 		l4.hdr = skb_inner_transport_header(skb);
730 
731 		/* Software should clear the IPv4's checksum field when
732 		 * tso is needed.
733 		 */
734 		if (l3.v4->version == 4)
735 			l3.v4->check = 0;
736 	}
737 
738 	/* normal or tunnel packet */
739 	l4_offset = l4.hdr - skb->data;
740 
741 	/* remove payload length from inner pseudo checksum when tso */
742 	l4_paylen = skb->len - l4_offset;
743 
744 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
745 		hdr_len = sizeof(*l4.udp) + l4_offset;
746 		csum_replace_by_diff(&l4.udp->check,
747 				     (__force __wsum)htonl(l4_paylen));
748 	} else {
749 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
750 		csum_replace_by_diff(&l4.tcp->check,
751 				     (__force __wsum)htonl(l4_paylen));
752 	}
753 
754 	/* find the txbd field values */
755 	*paylen_fdop_ol4cs = skb->len - hdr_len;
756 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
757 
758 	/* offload outer UDP header checksum */
759 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
760 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
761 
762 	/* get MSS for TSO */
763 	*mss = skb_shinfo(skb)->gso_size;
764 
765 	trace_hns3_tso(skb);
766 
767 	return 0;
768 }
769 
770 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
771 				u8 *il4_proto)
772 {
773 	union l3_hdr_info l3;
774 	unsigned char *l4_hdr;
775 	unsigned char *exthdr;
776 	u8 l4_proto_tmp;
777 	__be16 frag_off;
778 
779 	/* find outer header point */
780 	l3.hdr = skb_network_header(skb);
781 	l4_hdr = skb_transport_header(skb);
782 
783 	if (skb->protocol == htons(ETH_P_IPV6)) {
784 		exthdr = l3.hdr + sizeof(*l3.v6);
785 		l4_proto_tmp = l3.v6->nexthdr;
786 		if (l4_hdr != exthdr)
787 			ipv6_skip_exthdr(skb, exthdr - skb->data,
788 					 &l4_proto_tmp, &frag_off);
789 	} else if (skb->protocol == htons(ETH_P_IP)) {
790 		l4_proto_tmp = l3.v4->protocol;
791 	} else {
792 		return -EINVAL;
793 	}
794 
795 	*ol4_proto = l4_proto_tmp;
796 
797 	/* tunnel packet */
798 	if (!skb->encapsulation) {
799 		*il4_proto = 0;
800 		return 0;
801 	}
802 
803 	/* find inner header point */
804 	l3.hdr = skb_inner_network_header(skb);
805 	l4_hdr = skb_inner_transport_header(skb);
806 
807 	if (l3.v6->version == 6) {
808 		exthdr = l3.hdr + sizeof(*l3.v6);
809 		l4_proto_tmp = l3.v6->nexthdr;
810 		if (l4_hdr != exthdr)
811 			ipv6_skip_exthdr(skb, exthdr - skb->data,
812 					 &l4_proto_tmp, &frag_off);
813 	} else if (l3.v4->version == 4) {
814 		l4_proto_tmp = l3.v4->protocol;
815 	}
816 
817 	*il4_proto = l4_proto_tmp;
818 
819 	return 0;
820 }
821 
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789 or 6081.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
831 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
832 	union l4_hdr_info l4;
833 
834 	/* device version above V3(include V3), the hardware can
835 	 * do this checksum offload.
836 	 */
837 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
838 		return false;
839 
840 	l4.hdr = skb_transport_header(skb);
841 
842 	if (!(!skb->encapsulation &&
843 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
844 	      l4.udp->dest == htons(GENEVE_UDP_PORT))))
845 		return false;
846 
847 	skb_checksum_help(skb);
848 
849 	return true;
850 }
851 
852 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
853 				  u32 *ol_type_vlan_len_msec)
854 {
855 	u32 l2_len, l3_len, l4_len;
856 	unsigned char *il2_hdr;
857 	union l3_hdr_info l3;
858 	union l4_hdr_info l4;
859 
860 	l3.hdr = skb_network_header(skb);
861 	l4.hdr = skb_transport_header(skb);
862 
863 	/* compute OL2 header size, defined in 2 Bytes */
864 	l2_len = l3.hdr - skb->data;
865 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
866 
867 	/* compute OL3 header size, defined in 4 Bytes */
868 	l3_len = l4.hdr - l3.hdr;
869 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
870 
871 	il2_hdr = skb_inner_mac_header(skb);
872 	/* compute OL4 header size, defined in 4 Bytes */
873 	l4_len = il2_hdr - l4.hdr;
874 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
875 
876 	/* define outer network header type */
877 	if (skb->protocol == htons(ETH_P_IP)) {
878 		if (skb_is_gso(skb))
879 			hns3_set_field(*ol_type_vlan_len_msec,
880 				       HNS3_TXD_OL3T_S,
881 				       HNS3_OL3T_IPV4_CSUM);
882 		else
883 			hns3_set_field(*ol_type_vlan_len_msec,
884 				       HNS3_TXD_OL3T_S,
885 				       HNS3_OL3T_IPV4_NO_CSUM);
886 
887 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
888 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
889 			       HNS3_OL3T_IPV6);
890 	}
891 
892 	if (ol4_proto == IPPROTO_UDP)
893 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
894 			       HNS3_TUN_MAC_IN_UDP);
895 	else if (ol4_proto == IPPROTO_GRE)
896 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
897 			       HNS3_TUN_NVGRE);
898 }
899 
900 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
901 			   u8 il4_proto, u32 *type_cs_vlan_tso,
902 			   u32 *ol_type_vlan_len_msec)
903 {
904 	unsigned char *l2_hdr = skb->data;
905 	u32 l4_proto = ol4_proto;
906 	union l4_hdr_info l4;
907 	union l3_hdr_info l3;
908 	u32 l2_len, l3_len;
909 
910 	l4.hdr = skb_transport_header(skb);
911 	l3.hdr = skb_network_header(skb);
912 
913 	/* handle encapsulation skb */
914 	if (skb->encapsulation) {
915 		/* If this is a not UDP/GRE encapsulation skb */
916 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
917 			/* drop the skb tunnel packet if hardware don't support,
918 			 * because hardware can't calculate csum when TSO.
919 			 */
920 			if (skb_is_gso(skb))
921 				return -EDOM;
922 
923 			/* the stack computes the IP header already,
924 			 * driver calculate l4 checksum when not TSO.
925 			 */
926 			skb_checksum_help(skb);
927 			return 0;
928 		}
929 
930 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
931 
932 		/* switch to inner header */
933 		l2_hdr = skb_inner_mac_header(skb);
934 		l3.hdr = skb_inner_network_header(skb);
935 		l4.hdr = skb_inner_transport_header(skb);
936 		l4_proto = il4_proto;
937 	}
938 
939 	if (l3.v4->version == 4) {
940 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
941 			       HNS3_L3T_IPV4);
942 
943 		/* the stack computes the IP header already, the only time we
944 		 * need the hardware to recompute it is in the case of TSO.
945 		 */
946 		if (skb_is_gso(skb))
947 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
948 	} else if (l3.v6->version == 6) {
949 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
950 			       HNS3_L3T_IPV6);
951 	}
952 
953 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
954 	l2_len = l3.hdr - l2_hdr;
955 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
956 
957 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
958 	l3_len = l4.hdr - l3.hdr;
959 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
960 
961 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
962 	switch (l4_proto) {
963 	case IPPROTO_TCP:
964 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
965 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
966 			       HNS3_L4T_TCP);
967 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
968 			       l4.tcp->doff);
969 		break;
970 	case IPPROTO_UDP:
971 		if (hns3_tunnel_csum_bug(skb))
972 			break;
973 
974 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
975 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
976 			       HNS3_L4T_UDP);
977 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
978 			       (sizeof(struct udphdr) >> 2));
979 		break;
980 	case IPPROTO_SCTP:
981 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
982 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
983 			       HNS3_L4T_SCTP);
984 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
985 			       (sizeof(struct sctphdr) >> 2));
986 		break;
987 	default:
988 		/* drop the skb tunnel packet if hardware don't support,
989 		 * because hardware can't calculate csum when TSO.
990 		 */
991 		if (skb_is_gso(skb))
992 			return -EDOM;
993 
994 		/* the stack computes the IP header already,
995 		 * driver calculate l4 checksum when not TSO.
996 		 */
997 		skb_checksum_help(skb);
998 		return 0;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1005 			     struct sk_buff *skb)
1006 {
1007 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1008 	struct hnae3_ae_dev *ae_dev;
1009 	struct vlan_ethhdr *vhdr;
1010 	int rc;
1011 
1012 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1013 	      skb_vlan_tag_present(skb)))
1014 		return 0;
1015 
1016 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1017 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1018 	 * will cause RAS error.
1019 	 */
1020 	ae_dev = pci_get_drvdata(handle->pdev);
1021 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1022 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1023 		     handle->port_base_vlan_state ==
1024 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1025 		return -EINVAL;
1026 
1027 	if (skb->protocol == htons(ETH_P_8021Q) &&
1028 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1029 		/* When HW VLAN acceleration is turned off, and the stack
1030 		 * sets the protocol to 802.1q, the driver just need to
1031 		 * set the protocol to the encapsulated ethertype.
1032 		 */
1033 		skb->protocol = vlan_get_protocol(skb);
1034 		return 0;
1035 	}
1036 
1037 	if (skb_vlan_tag_present(skb)) {
1038 		/* Based on hw strategy, use out_vtag in two layer tag case,
1039 		 * and use inner_vtag in one tag case.
1040 		 */
1041 		if (skb->protocol == htons(ETH_P_8021Q) &&
1042 		    handle->port_base_vlan_state ==
1043 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1044 			rc = HNS3_OUTER_VLAN_TAG;
1045 		else
1046 			rc = HNS3_INNER_VLAN_TAG;
1047 
1048 		skb->protocol = vlan_get_protocol(skb);
1049 		return rc;
1050 	}
1051 
1052 	rc = skb_cow_head(skb, 0);
1053 	if (unlikely(rc < 0))
1054 		return rc;
1055 
1056 	vhdr = (struct vlan_ethhdr *)skb->data;
1057 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1058 					 & VLAN_PRIO_MASK);
1059 
1060 	skb->protocol = vlan_get_protocol(skb);
1061 	return 0;
1062 }
1063 
1064 /* check if the hardware is capable of checksum offloading */
1065 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1066 {
1067 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1068 
1069 	/* Kindly note, due to backward compatibility of the TX descriptor,
1070 	 * HW checksum of the non-IP packets and GSO packets is handled at
1071 	 * different place in the following code
1072 	 */
1073 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1074 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1081 			      struct sk_buff *skb, struct hns3_desc *desc)
1082 {
1083 	u32 ol_type_vlan_len_msec = 0;
1084 	u32 paylen_ol4cs = skb->len;
1085 	u32 type_cs_vlan_tso = 0;
1086 	u16 mss_hw_csum = 0;
1087 	u16 inner_vtag = 0;
1088 	u16 out_vtag = 0;
1089 	int ret;
1090 
1091 	ret = hns3_handle_vtags(ring, skb);
1092 	if (unlikely(ret < 0)) {
1093 		u64_stats_update_begin(&ring->syncp);
1094 		ring->stats.tx_vlan_err++;
1095 		u64_stats_update_end(&ring->syncp);
1096 		return ret;
1097 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1098 		inner_vtag = skb_vlan_tag_get(skb);
1099 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1100 				VLAN_PRIO_MASK;
1101 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1102 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1103 		out_vtag = skb_vlan_tag_get(skb);
1104 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1105 				VLAN_PRIO_MASK;
1106 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1107 			       1);
1108 	}
1109 
1110 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1111 		u8 ol4_proto, il4_proto;
1112 
1113 		if (hns3_check_hw_tx_csum(skb)) {
1114 			/* set checksum start and offset, defined in 2 Bytes */
1115 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1116 				       skb_checksum_start_offset(skb) >> 1);
1117 			hns3_set_field(ol_type_vlan_len_msec,
1118 				       HNS3_TXD_CSUM_OFFSET_S,
1119 				       skb->csum_offset >> 1);
1120 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1121 			goto out_hw_tx_csum;
1122 		}
1123 
1124 		skb_reset_mac_len(skb);
1125 
1126 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1127 		if (unlikely(ret < 0)) {
1128 			u64_stats_update_begin(&ring->syncp);
1129 			ring->stats.tx_l4_proto_err++;
1130 			u64_stats_update_end(&ring->syncp);
1131 			return ret;
1132 		}
1133 
1134 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1135 				      &type_cs_vlan_tso,
1136 				      &ol_type_vlan_len_msec);
1137 		if (unlikely(ret < 0)) {
1138 			u64_stats_update_begin(&ring->syncp);
1139 			ring->stats.tx_l2l3l4_err++;
1140 			u64_stats_update_end(&ring->syncp);
1141 			return ret;
1142 		}
1143 
1144 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1145 				   &type_cs_vlan_tso);
1146 		if (unlikely(ret < 0)) {
1147 			u64_stats_update_begin(&ring->syncp);
1148 			ring->stats.tx_tso_err++;
1149 			u64_stats_update_end(&ring->syncp);
1150 			return ret;
1151 		}
1152 	}
1153 
1154 out_hw_tx_csum:
1155 	/* Set txbd */
1156 	desc->tx.ol_type_vlan_len_msec =
1157 		cpu_to_le32(ol_type_vlan_len_msec);
1158 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1159 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1160 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1161 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1162 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1163 
1164 	return 0;
1165 }
1166 
1167 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1168 			  unsigned int size, enum hns_desc_type type)
1169 {
1170 #define HNS3_LIKELY_BD_NUM	1
1171 
1172 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1173 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1174 	struct device *dev = ring_to_dev(ring);
1175 	skb_frag_t *frag;
1176 	unsigned int frag_buf_num;
1177 	int k, sizeoflast;
1178 	dma_addr_t dma;
1179 
1180 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1181 	    type == DESC_TYPE_SKB) {
1182 		struct sk_buff *skb = (struct sk_buff *)priv;
1183 
1184 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1185 	} else {
1186 		frag = (skb_frag_t *)priv;
1187 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1188 	}
1189 
1190 	if (unlikely(dma_mapping_error(dev, dma))) {
1191 		u64_stats_update_begin(&ring->syncp);
1192 		ring->stats.sw_err_cnt++;
1193 		u64_stats_update_end(&ring->syncp);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	desc_cb->priv = priv;
1198 	desc_cb->length = size;
1199 	desc_cb->dma = dma;
1200 	desc_cb->type = type;
1201 
1202 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1203 		desc->addr = cpu_to_le64(dma);
1204 		desc->tx.send_size = cpu_to_le16(size);
1205 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1206 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1207 
1208 		trace_hns3_tx_desc(ring, ring->next_to_use);
1209 		ring_ptr_move_fw(ring, next_to_use);
1210 		return HNS3_LIKELY_BD_NUM;
1211 	}
1212 
1213 	frag_buf_num = hns3_tx_bd_count(size);
1214 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1215 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1216 
1217 	/* When frag size is bigger than hardware limit, split this frag */
1218 	for (k = 0; k < frag_buf_num; k++) {
1219 		/* now, fill the descriptor */
1220 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1221 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1222 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1223 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1224 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1225 
1226 		trace_hns3_tx_desc(ring, ring->next_to_use);
1227 		/* move ring pointer to next */
1228 		ring_ptr_move_fw(ring, next_to_use);
1229 
1230 		desc = &ring->desc[ring->next_to_use];
1231 	}
1232 
1233 	return frag_buf_num;
1234 }
1235 
1236 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1237 				    unsigned int bd_num)
1238 {
1239 	unsigned int size;
1240 	int i;
1241 
1242 	size = skb_headlen(skb);
1243 	while (size > HNS3_MAX_BD_SIZE) {
1244 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1245 		size -= HNS3_MAX_BD_SIZE;
1246 
1247 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1248 			return bd_num;
1249 	}
1250 
1251 	if (size) {
1252 		bd_size[bd_num++] = size;
1253 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1254 			return bd_num;
1255 	}
1256 
1257 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1258 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259 		size = skb_frag_size(frag);
1260 		if (!size)
1261 			continue;
1262 
1263 		while (size > HNS3_MAX_BD_SIZE) {
1264 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1265 			size -= HNS3_MAX_BD_SIZE;
1266 
1267 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1268 				return bd_num;
1269 		}
1270 
1271 		bd_size[bd_num++] = size;
1272 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1273 			return bd_num;
1274 	}
1275 
1276 	return bd_num;
1277 }
1278 
1279 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1280 				   u8 max_non_tso_bd_num)
1281 {
1282 	struct sk_buff *frag_skb;
1283 	unsigned int bd_num = 0;
1284 
1285 	/* If the total len is within the max bd limit */
1286 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1287 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1288 		return skb_shinfo(skb)->nr_frags + 1U;
1289 
1290 	/* The below case will always be linearized, return
1291 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1292 	 */
1293 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1294 		     (!skb_is_gso(skb) && skb->len >
1295 		      HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))))
1296 		return HNS3_MAX_TSO_BD_NUM + 1U;
1297 
1298 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1299 
1300 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1301 		return bd_num;
1302 
1303 	skb_walk_frags(skb, frag_skb) {
1304 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1305 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1306 			return bd_num;
1307 	}
1308 
1309 	return bd_num;
1310 }
1311 
1312 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1313 {
1314 	if (!skb->encapsulation)
1315 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1316 
1317 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1318 }
1319 
1320 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1321  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1322  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1323  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1324  * than MSS except the last max_non_tso_bd_num - 1 frags.
1325  */
1326 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1327 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1328 {
1329 	unsigned int tot_len = 0;
1330 	int i;
1331 
1332 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1333 		tot_len += bd_size[i];
1334 
1335 	/* ensure the first max_non_tso_bd_num frags is greater than
1336 	 * mss + header
1337 	 */
1338 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1339 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1340 		return true;
1341 
1342 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1343 	 * than mss except the last one.
1344 	 */
1345 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1346 		tot_len -= bd_size[i];
1347 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1348 
1349 		if (tot_len < skb_shinfo(skb)->gso_size)
1350 			return true;
1351 	}
1352 
1353 	return false;
1354 }
1355 
1356 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1361 		size[i] = skb_frag_size(&shinfo->frags[i]);
1362 }
1363 
1364 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1365 				  struct net_device *netdev,
1366 				  struct sk_buff *skb)
1367 {
1368 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1369 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1370 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1371 	unsigned int bd_num;
1372 
1373 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num);
1374 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1375 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1376 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1377 					      max_non_tso_bd_num)) {
1378 			trace_hns3_over_max_bd(skb);
1379 			goto out;
1380 		}
1381 
1382 		if (__skb_linearize(skb))
1383 			return -ENOMEM;
1384 
1385 		bd_num = hns3_tx_bd_count(skb->len);
1386 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1387 		    (!skb_is_gso(skb) &&
1388 		     bd_num > max_non_tso_bd_num)) {
1389 			trace_hns3_over_max_bd(skb);
1390 			return -ENOMEM;
1391 		}
1392 
1393 		u64_stats_update_begin(&ring->syncp);
1394 		ring->stats.tx_copy++;
1395 		u64_stats_update_end(&ring->syncp);
1396 	}
1397 
1398 out:
1399 	if (likely(ring_space(ring) >= bd_num))
1400 		return bd_num;
1401 
1402 	netif_stop_subqueue(netdev, ring->queue_index);
1403 	smp_mb(); /* Memory barrier before checking ring_space */
1404 
1405 	/* Start queue in case hns3_clean_tx_ring has just made room
1406 	 * available and has not seen the queue stopped state performed
1407 	 * by netif_stop_subqueue above.
1408 	 */
1409 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1410 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1411 		netif_start_subqueue(netdev, ring->queue_index);
1412 		return bd_num;
1413 	}
1414 
1415 	return -EBUSY;
1416 }
1417 
1418 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1419 {
1420 	struct device *dev = ring_to_dev(ring);
1421 	unsigned int i;
1422 
1423 	for (i = 0; i < ring->desc_num; i++) {
1424 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1425 
1426 		memset(desc, 0, sizeof(*desc));
1427 
1428 		/* check if this is where we started */
1429 		if (ring->next_to_use == next_to_use_orig)
1430 			break;
1431 
1432 		/* rollback one */
1433 		ring_ptr_move_bw(ring, next_to_use);
1434 
1435 		if (!ring->desc_cb[ring->next_to_use].dma)
1436 			continue;
1437 
1438 		/* unmap the descriptor dma address */
1439 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1440 		    ring->desc_cb[ring->next_to_use].type ==
1441 		    DESC_TYPE_FRAGLIST_SKB)
1442 			dma_unmap_single(dev,
1443 					 ring->desc_cb[ring->next_to_use].dma,
1444 					ring->desc_cb[ring->next_to_use].length,
1445 					DMA_TO_DEVICE);
1446 		else if (ring->desc_cb[ring->next_to_use].length)
1447 			dma_unmap_page(dev,
1448 				       ring->desc_cb[ring->next_to_use].dma,
1449 				       ring->desc_cb[ring->next_to_use].length,
1450 				       DMA_TO_DEVICE);
1451 
1452 		ring->desc_cb[ring->next_to_use].length = 0;
1453 		ring->desc_cb[ring->next_to_use].dma = 0;
1454 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1455 	}
1456 }
1457 
1458 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1459 				 struct sk_buff *skb, enum hns_desc_type type)
1460 {
1461 	unsigned int size = skb_headlen(skb);
1462 	int i, ret, bd_num = 0;
1463 
1464 	if (size) {
1465 		ret = hns3_fill_desc(ring, skb, size, type);
1466 		if (unlikely(ret < 0))
1467 			return ret;
1468 
1469 		bd_num += ret;
1470 	}
1471 
1472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1473 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1474 
1475 		size = skb_frag_size(frag);
1476 		if (!size)
1477 			continue;
1478 
1479 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1480 		if (unlikely(ret < 0))
1481 			return ret;
1482 
1483 		bd_num += ret;
1484 	}
1485 
1486 	return bd_num;
1487 }
1488 
1489 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1490 			     bool doorbell)
1491 {
1492 	ring->pending_buf += num;
1493 
1494 	if (!doorbell) {
1495 		u64_stats_update_begin(&ring->syncp);
1496 		ring->stats.tx_more++;
1497 		u64_stats_update_end(&ring->syncp);
1498 		return;
1499 	}
1500 
1501 	if (!ring->pending_buf)
1502 		return;
1503 
1504 	writel(ring->pending_buf,
1505 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1506 	ring->pending_buf = 0;
1507 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1508 }
1509 
1510 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1511 {
1512 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1513 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1514 	struct netdev_queue *dev_queue;
1515 	int pre_ntu, next_to_use_head;
1516 	struct sk_buff *frag_skb;
1517 	int bd_num = 0;
1518 	bool doorbell;
1519 	int ret;
1520 
1521 	/* Hardware can only handle short frames above 32 bytes */
1522 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1523 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1524 		return NETDEV_TX_OK;
1525 	}
1526 
1527 	/* Prefetch the data used later */
1528 	prefetch(skb->data);
1529 
1530 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1531 	if (unlikely(ret <= 0)) {
1532 		if (ret == -EBUSY) {
1533 			u64_stats_update_begin(&ring->syncp);
1534 			ring->stats.tx_busy++;
1535 			u64_stats_update_end(&ring->syncp);
1536 			hns3_tx_doorbell(ring, 0, true);
1537 			return NETDEV_TX_BUSY;
1538 		} else if (ret == -ENOMEM) {
1539 			u64_stats_update_begin(&ring->syncp);
1540 			ring->stats.sw_err_cnt++;
1541 			u64_stats_update_end(&ring->syncp);
1542 		}
1543 
1544 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1545 		goto out_err_tx_ok;
1546 	}
1547 
1548 	next_to_use_head = ring->next_to_use;
1549 
1550 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1551 	if (unlikely(ret < 0))
1552 		goto fill_err;
1553 
1554 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1555 	if (unlikely(ret < 0))
1556 		goto fill_err;
1557 
1558 	bd_num += ret;
1559 
1560 	skb_walk_frags(skb, frag_skb) {
1561 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1562 					    DESC_TYPE_FRAGLIST_SKB);
1563 		if (unlikely(ret < 0))
1564 			goto fill_err;
1565 
1566 		bd_num += ret;
1567 	}
1568 
1569 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1570 					(ring->desc_num - 1);
1571 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1572 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1573 	trace_hns3_tx_desc(ring, pre_ntu);
1574 
1575 	/* Complete translate all packets */
1576 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1577 	doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1578 					  netdev_xmit_more());
1579 	hns3_tx_doorbell(ring, bd_num, doorbell);
1580 
1581 	return NETDEV_TX_OK;
1582 
1583 fill_err:
1584 	hns3_clear_desc(ring, next_to_use_head);
1585 
1586 out_err_tx_ok:
1587 	dev_kfree_skb_any(skb);
1588 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1589 	return NETDEV_TX_OK;
1590 }
1591 
1592 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1593 {
1594 	struct hnae3_handle *h = hns3_get_handle(netdev);
1595 	struct sockaddr *mac_addr = p;
1596 	int ret;
1597 
1598 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1599 		return -EADDRNOTAVAIL;
1600 
1601 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1602 		netdev_info(netdev, "already using mac address %pM\n",
1603 			    mac_addr->sa_data);
1604 		return 0;
1605 	}
1606 
1607 	/* For VF device, if there is a perm_addr, then the user will not
1608 	 * be allowed to change the address.
1609 	 */
1610 	if (!hns3_is_phys_func(h->pdev) &&
1611 	    !is_zero_ether_addr(netdev->perm_addr)) {
1612 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1613 			   netdev->perm_addr, mac_addr->sa_data);
1614 		return -EPERM;
1615 	}
1616 
1617 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1618 	if (ret) {
1619 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1620 		return ret;
1621 	}
1622 
1623 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1624 
1625 	return 0;
1626 }
1627 
1628 static int hns3_nic_do_ioctl(struct net_device *netdev,
1629 			     struct ifreq *ifr, int cmd)
1630 {
1631 	struct hnae3_handle *h = hns3_get_handle(netdev);
1632 
1633 	if (!netif_running(netdev))
1634 		return -EINVAL;
1635 
1636 	if (!h->ae_algo->ops->do_ioctl)
1637 		return -EOPNOTSUPP;
1638 
1639 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1640 }
1641 
1642 static int hns3_nic_set_features(struct net_device *netdev,
1643 				 netdev_features_t features)
1644 {
1645 	netdev_features_t changed = netdev->features ^ features;
1646 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1647 	struct hnae3_handle *h = priv->ae_handle;
1648 	bool enable;
1649 	int ret;
1650 
1651 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1652 		enable = !!(features & NETIF_F_GRO_HW);
1653 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1654 		if (ret)
1655 			return ret;
1656 	}
1657 
1658 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1659 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1660 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1661 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1662 		if (ret)
1663 			return ret;
1664 	}
1665 
1666 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1667 		enable = !!(features & NETIF_F_NTUPLE);
1668 		h->ae_algo->ops->enable_fd(h, enable);
1669 	}
1670 
1671 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1672 	    h->ae_algo->ops->cls_flower_active(h)) {
1673 		netdev_err(netdev,
1674 			   "there are offloaded TC filters active, cannot disable HW TC offload");
1675 		return -EINVAL;
1676 	}
1677 
1678 	netdev->features = features;
1679 	return 0;
1680 }
1681 
1682 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1683 					     struct net_device *dev,
1684 					     netdev_features_t features)
1685 {
1686 #define HNS3_MAX_HDR_LEN	480U
1687 #define HNS3_MAX_L4_HDR_LEN	60U
1688 
1689 	size_t len;
1690 
1691 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1692 		return features;
1693 
1694 	if (skb->encapsulation)
1695 		len = skb_inner_transport_header(skb) - skb->data;
1696 	else
1697 		len = skb_transport_header(skb) - skb->data;
1698 
1699 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1700 	 * a flexible value, and it's max len is 60 bytes.
1701 	 */
1702 	len += HNS3_MAX_L4_HDR_LEN;
1703 
1704 	/* Hardware only supports checksum on the skb with a max header
1705 	 * len of 480 bytes.
1706 	 */
1707 	if (len > HNS3_MAX_HDR_LEN)
1708 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1709 
1710 	return features;
1711 }
1712 
1713 static void hns3_nic_get_stats64(struct net_device *netdev,
1714 				 struct rtnl_link_stats64 *stats)
1715 {
1716 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1717 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1718 	struct hnae3_handle *handle = priv->ae_handle;
1719 	struct hns3_enet_ring *ring;
1720 	u64 rx_length_errors = 0;
1721 	u64 rx_crc_errors = 0;
1722 	u64 rx_multicast = 0;
1723 	unsigned int start;
1724 	u64 tx_errors = 0;
1725 	u64 rx_errors = 0;
1726 	unsigned int idx;
1727 	u64 tx_bytes = 0;
1728 	u64 rx_bytes = 0;
1729 	u64 tx_pkts = 0;
1730 	u64 rx_pkts = 0;
1731 	u64 tx_drop = 0;
1732 	u64 rx_drop = 0;
1733 
1734 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1735 		return;
1736 
1737 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1738 
1739 	for (idx = 0; idx < queue_num; idx++) {
1740 		/* fetch the tx stats */
1741 		ring = &priv->ring[idx];
1742 		do {
1743 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1744 			tx_bytes += ring->stats.tx_bytes;
1745 			tx_pkts += ring->stats.tx_pkts;
1746 			tx_drop += ring->stats.sw_err_cnt;
1747 			tx_drop += ring->stats.tx_vlan_err;
1748 			tx_drop += ring->stats.tx_l4_proto_err;
1749 			tx_drop += ring->stats.tx_l2l3l4_err;
1750 			tx_drop += ring->stats.tx_tso_err;
1751 			tx_errors += ring->stats.sw_err_cnt;
1752 			tx_errors += ring->stats.tx_vlan_err;
1753 			tx_errors += ring->stats.tx_l4_proto_err;
1754 			tx_errors += ring->stats.tx_l2l3l4_err;
1755 			tx_errors += ring->stats.tx_tso_err;
1756 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1757 
1758 		/* fetch the rx stats */
1759 		ring = &priv->ring[idx + queue_num];
1760 		do {
1761 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1762 			rx_bytes += ring->stats.rx_bytes;
1763 			rx_pkts += ring->stats.rx_pkts;
1764 			rx_drop += ring->stats.l2_err;
1765 			rx_errors += ring->stats.l2_err;
1766 			rx_errors += ring->stats.l3l4_csum_err;
1767 			rx_crc_errors += ring->stats.l2_err;
1768 			rx_multicast += ring->stats.rx_multicast;
1769 			rx_length_errors += ring->stats.err_pkt_len;
1770 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1771 	}
1772 
1773 	stats->tx_bytes = tx_bytes;
1774 	stats->tx_packets = tx_pkts;
1775 	stats->rx_bytes = rx_bytes;
1776 	stats->rx_packets = rx_pkts;
1777 
1778 	stats->rx_errors = rx_errors;
1779 	stats->multicast = rx_multicast;
1780 	stats->rx_length_errors = rx_length_errors;
1781 	stats->rx_crc_errors = rx_crc_errors;
1782 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1783 
1784 	stats->tx_errors = tx_errors;
1785 	stats->rx_dropped = rx_drop;
1786 	stats->tx_dropped = tx_drop;
1787 	stats->collisions = netdev->stats.collisions;
1788 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1789 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1790 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1791 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1792 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1793 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1794 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1795 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1796 	stats->rx_compressed = netdev->stats.rx_compressed;
1797 	stats->tx_compressed = netdev->stats.tx_compressed;
1798 }
1799 
1800 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1801 {
1802 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1803 	struct hnae3_knic_private_info *kinfo;
1804 	u8 tc = mqprio_qopt->qopt.num_tc;
1805 	u16 mode = mqprio_qopt->mode;
1806 	u8 hw = mqprio_qopt->qopt.hw;
1807 	struct hnae3_handle *h;
1808 
1809 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1810 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1811 		return -EOPNOTSUPP;
1812 
1813 	if (tc > HNAE3_MAX_TC)
1814 		return -EINVAL;
1815 
1816 	if (!netdev)
1817 		return -EINVAL;
1818 
1819 	h = hns3_get_handle(netdev);
1820 	kinfo = &h->kinfo;
1821 
1822 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1823 
1824 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1825 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1826 }
1827 
1828 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1829 				    struct flow_cls_offload *flow)
1830 {
1831 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1832 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1833 
1834 	switch (flow->command) {
1835 	case FLOW_CLS_REPLACE:
1836 		if (h->ae_algo->ops->add_cls_flower)
1837 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1838 		break;
1839 	case FLOW_CLS_DESTROY:
1840 		if (h->ae_algo->ops->del_cls_flower)
1841 			return h->ae_algo->ops->del_cls_flower(h, flow);
1842 		break;
1843 	default:
1844 		break;
1845 	}
1846 
1847 	return -EOPNOTSUPP;
1848 }
1849 
1850 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1851 				  void *cb_priv)
1852 {
1853 	struct hns3_nic_priv *priv = cb_priv;
1854 
1855 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1856 		return -EOPNOTSUPP;
1857 
1858 	switch (type) {
1859 	case TC_SETUP_CLSFLOWER:
1860 		return hns3_setup_tc_cls_flower(priv, type_data);
1861 	default:
1862 		return -EOPNOTSUPP;
1863 	}
1864 }
1865 
1866 static LIST_HEAD(hns3_block_cb_list);
1867 
1868 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1869 			     void *type_data)
1870 {
1871 	struct hns3_nic_priv *priv = netdev_priv(dev);
1872 	int ret;
1873 
1874 	switch (type) {
1875 	case TC_SETUP_QDISC_MQPRIO:
1876 		ret = hns3_setup_tc(dev, type_data);
1877 		break;
1878 	case TC_SETUP_BLOCK:
1879 		ret = flow_block_cb_setup_simple(type_data,
1880 						 &hns3_block_cb_list,
1881 						 hns3_setup_tc_block_cb,
1882 						 priv, priv, true);
1883 		break;
1884 	default:
1885 		return -EOPNOTSUPP;
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1892 				__be16 proto, u16 vid)
1893 {
1894 	struct hnae3_handle *h = hns3_get_handle(netdev);
1895 	int ret = -EIO;
1896 
1897 	if (h->ae_algo->ops->set_vlan_filter)
1898 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1899 
1900 	return ret;
1901 }
1902 
1903 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1904 				 __be16 proto, u16 vid)
1905 {
1906 	struct hnae3_handle *h = hns3_get_handle(netdev);
1907 	int ret = -EIO;
1908 
1909 	if (h->ae_algo->ops->set_vlan_filter)
1910 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1911 
1912 	return ret;
1913 }
1914 
1915 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1916 				u8 qos, __be16 vlan_proto)
1917 {
1918 	struct hnae3_handle *h = hns3_get_handle(netdev);
1919 	int ret = -EIO;
1920 
1921 	netif_dbg(h, drv, netdev,
1922 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1923 		  vf, vlan, qos, ntohs(vlan_proto));
1924 
1925 	if (h->ae_algo->ops->set_vf_vlan_filter)
1926 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1927 							  qos, vlan_proto);
1928 
1929 	return ret;
1930 }
1931 
1932 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1933 {
1934 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1935 
1936 	if (hns3_nic_resetting(netdev))
1937 		return -EBUSY;
1938 
1939 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1940 		return -EOPNOTSUPP;
1941 
1942 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1943 }
1944 
1945 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1946 {
1947 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1948 
1949 	if (!handle->ae_algo->ops->set_vf_trust)
1950 		return -EOPNOTSUPP;
1951 
1952 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1953 }
1954 
1955 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1956 {
1957 	struct hnae3_handle *h = hns3_get_handle(netdev);
1958 	int ret;
1959 
1960 	if (hns3_nic_resetting(netdev))
1961 		return -EBUSY;
1962 
1963 	if (!h->ae_algo->ops->set_mtu)
1964 		return -EOPNOTSUPP;
1965 
1966 	netif_dbg(h, drv, netdev,
1967 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1968 
1969 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1970 	if (ret)
1971 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1972 			   ret);
1973 	else
1974 		netdev->mtu = new_mtu;
1975 
1976 	return ret;
1977 }
1978 
1979 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1980 {
1981 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1982 	struct hnae3_handle *h = hns3_get_handle(ndev);
1983 	struct hns3_enet_ring *tx_ring;
1984 	struct napi_struct *napi;
1985 	int timeout_queue = 0;
1986 	int hw_head, hw_tail;
1987 	int fbd_num, fbd_oft;
1988 	int ebd_num, ebd_oft;
1989 	int bd_num, bd_err;
1990 	int ring_en, tc;
1991 	int i;
1992 
1993 	/* Find the stopped queue the same way the stack does */
1994 	for (i = 0; i < ndev->num_tx_queues; i++) {
1995 		struct netdev_queue *q;
1996 		unsigned long trans_start;
1997 
1998 		q = netdev_get_tx_queue(ndev, i);
1999 		trans_start = q->trans_start;
2000 		if (netif_xmit_stopped(q) &&
2001 		    time_after(jiffies,
2002 			       (trans_start + ndev->watchdog_timeo))) {
2003 			timeout_queue = i;
2004 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2005 				    q->state,
2006 				    jiffies_to_msecs(jiffies - trans_start));
2007 			break;
2008 		}
2009 	}
2010 
2011 	if (i == ndev->num_tx_queues) {
2012 		netdev_info(ndev,
2013 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2014 			    priv->tx_timeout_count);
2015 		return false;
2016 	}
2017 
2018 	priv->tx_timeout_count++;
2019 
2020 	tx_ring = &priv->ring[timeout_queue];
2021 	napi = &tx_ring->tqp_vector->napi;
2022 
2023 	netdev_info(ndev,
2024 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2025 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2026 		    tx_ring->next_to_clean, napi->state);
2027 
2028 	netdev_info(ndev,
2029 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2030 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2031 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2032 
2033 	netdev_info(ndev,
2034 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2035 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2036 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2037 
2038 	/* When mac received many pause frames continuous, it's unable to send
2039 	 * packets, which may cause tx timeout
2040 	 */
2041 	if (h->ae_algo->ops->get_mac_stats) {
2042 		struct hns3_mac_stats mac_stats;
2043 
2044 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2045 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2046 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2047 	}
2048 
2049 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2050 				HNS3_RING_TX_RING_HEAD_REG);
2051 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2052 				HNS3_RING_TX_RING_TAIL_REG);
2053 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2054 				HNS3_RING_TX_RING_FBDNUM_REG);
2055 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2056 				HNS3_RING_TX_RING_OFFSET_REG);
2057 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2058 				HNS3_RING_TX_RING_EBDNUM_REG);
2059 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2060 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2061 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2062 			       HNS3_RING_TX_RING_BD_NUM_REG);
2063 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2064 			       HNS3_RING_TX_RING_BD_ERR_REG);
2065 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2066 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2067 
2068 	netdev_info(ndev,
2069 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2070 		    bd_num, hw_head, hw_tail, bd_err,
2071 		    readl(tx_ring->tqp_vector->mask_addr));
2072 	netdev_info(ndev,
2073 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2074 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2075 
2076 	return true;
2077 }
2078 
2079 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2080 {
2081 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2082 	struct hnae3_handle *h = priv->ae_handle;
2083 
2084 	if (!hns3_get_tx_timeo_queue_info(ndev))
2085 		return;
2086 
2087 	/* request the reset, and let the hclge to determine
2088 	 * which reset level should be done
2089 	 */
2090 	if (h->ae_algo->ops->reset_event)
2091 		h->ae_algo->ops->reset_event(h->pdev, h);
2092 }
2093 
2094 #ifdef CONFIG_RFS_ACCEL
2095 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2096 			      u16 rxq_index, u32 flow_id)
2097 {
2098 	struct hnae3_handle *h = hns3_get_handle(dev);
2099 	struct flow_keys fkeys;
2100 
2101 	if (!h->ae_algo->ops->add_arfs_entry)
2102 		return -EOPNOTSUPP;
2103 
2104 	if (skb->encapsulation)
2105 		return -EPROTONOSUPPORT;
2106 
2107 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2108 		return -EPROTONOSUPPORT;
2109 
2110 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2111 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2112 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2113 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2114 		return -EPROTONOSUPPORT;
2115 
2116 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2117 }
2118 #endif
2119 
2120 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2121 				  struct ifla_vf_info *ivf)
2122 {
2123 	struct hnae3_handle *h = hns3_get_handle(ndev);
2124 
2125 	if (!h->ae_algo->ops->get_vf_config)
2126 		return -EOPNOTSUPP;
2127 
2128 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2129 }
2130 
2131 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2132 				      int link_state)
2133 {
2134 	struct hnae3_handle *h = hns3_get_handle(ndev);
2135 
2136 	if (!h->ae_algo->ops->set_vf_link_state)
2137 		return -EOPNOTSUPP;
2138 
2139 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2140 }
2141 
2142 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2143 				int min_tx_rate, int max_tx_rate)
2144 {
2145 	struct hnae3_handle *h = hns3_get_handle(ndev);
2146 
2147 	if (!h->ae_algo->ops->set_vf_rate)
2148 		return -EOPNOTSUPP;
2149 
2150 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2151 					    false);
2152 }
2153 
2154 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2155 {
2156 	struct hnae3_handle *h = hns3_get_handle(netdev);
2157 
2158 	if (!h->ae_algo->ops->set_vf_mac)
2159 		return -EOPNOTSUPP;
2160 
2161 	if (is_multicast_ether_addr(mac)) {
2162 		netdev_err(netdev,
2163 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2164 			   mac);
2165 		return -EINVAL;
2166 	}
2167 
2168 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2169 }
2170 
2171 static const struct net_device_ops hns3_nic_netdev_ops = {
2172 	.ndo_open		= hns3_nic_net_open,
2173 	.ndo_stop		= hns3_nic_net_stop,
2174 	.ndo_start_xmit		= hns3_nic_net_xmit,
2175 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2176 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2177 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2178 	.ndo_change_mtu		= hns3_nic_change_mtu,
2179 	.ndo_set_features	= hns3_nic_set_features,
2180 	.ndo_features_check	= hns3_features_check,
2181 	.ndo_get_stats64	= hns3_nic_get_stats64,
2182 	.ndo_setup_tc		= hns3_nic_setup_tc,
2183 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2184 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2185 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2186 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2187 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2188 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2189 #ifdef CONFIG_RFS_ACCEL
2190 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2191 #endif
2192 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2193 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2194 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2195 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2196 };
2197 
2198 bool hns3_is_phys_func(struct pci_dev *pdev)
2199 {
2200 	u32 dev_id = pdev->device;
2201 
2202 	switch (dev_id) {
2203 	case HNAE3_DEV_ID_GE:
2204 	case HNAE3_DEV_ID_25GE:
2205 	case HNAE3_DEV_ID_25GE_RDMA:
2206 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2207 	case HNAE3_DEV_ID_50GE_RDMA:
2208 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2209 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2210 	case HNAE3_DEV_ID_200G_RDMA:
2211 		return true;
2212 	case HNAE3_DEV_ID_VF:
2213 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2214 		return false;
2215 	default:
2216 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2217 			 dev_id);
2218 	}
2219 
2220 	return false;
2221 }
2222 
2223 static void hns3_disable_sriov(struct pci_dev *pdev)
2224 {
2225 	/* If our VFs are assigned we cannot shut down SR-IOV
2226 	 * without causing issues, so just leave the hardware
2227 	 * available but disabled
2228 	 */
2229 	if (pci_vfs_assigned(pdev)) {
2230 		dev_warn(&pdev->dev,
2231 			 "disabling driver while VFs are assigned\n");
2232 		return;
2233 	}
2234 
2235 	pci_disable_sriov(pdev);
2236 }
2237 
2238 /* hns3_probe - Device initialization routine
2239  * @pdev: PCI device information struct
2240  * @ent: entry in hns3_pci_tbl
2241  *
2242  * hns3_probe initializes a PF identified by a pci_dev structure.
2243  * The OS initialization, configuring of the PF private structure,
2244  * and a hardware reset occur.
2245  *
2246  * Returns 0 on success, negative on failure
2247  */
2248 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2249 {
2250 	struct hnae3_ae_dev *ae_dev;
2251 	int ret;
2252 
2253 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2254 	if (!ae_dev)
2255 		return -ENOMEM;
2256 
2257 	ae_dev->pdev = pdev;
2258 	ae_dev->flag = ent->driver_data;
2259 	pci_set_drvdata(pdev, ae_dev);
2260 
2261 	ret = hnae3_register_ae_dev(ae_dev);
2262 	if (ret)
2263 		pci_set_drvdata(pdev, NULL);
2264 
2265 	return ret;
2266 }
2267 
2268 /* hns3_remove - Device removal routine
2269  * @pdev: PCI device information struct
2270  */
2271 static void hns3_remove(struct pci_dev *pdev)
2272 {
2273 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2274 
2275 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2276 		hns3_disable_sriov(pdev);
2277 
2278 	hnae3_unregister_ae_dev(ae_dev);
2279 	pci_set_drvdata(pdev, NULL);
2280 }
2281 
2282 /**
2283  * hns3_pci_sriov_configure
2284  * @pdev: pointer to a pci_dev structure
2285  * @num_vfs: number of VFs to allocate
2286  *
2287  * Enable or change the number of VFs. Called when the user updates the number
2288  * of VFs in sysfs.
2289  **/
2290 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2291 {
2292 	int ret;
2293 
2294 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2295 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2296 		return -EINVAL;
2297 	}
2298 
2299 	if (num_vfs) {
2300 		ret = pci_enable_sriov(pdev, num_vfs);
2301 		if (ret)
2302 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2303 		else
2304 			return num_vfs;
2305 	} else if (!pci_vfs_assigned(pdev)) {
2306 		pci_disable_sriov(pdev);
2307 	} else {
2308 		dev_warn(&pdev->dev,
2309 			 "Unable to free VFs because some are assigned to VMs.\n");
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 static void hns3_shutdown(struct pci_dev *pdev)
2316 {
2317 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2318 
2319 	hnae3_unregister_ae_dev(ae_dev);
2320 	pci_set_drvdata(pdev, NULL);
2321 
2322 	if (system_state == SYSTEM_POWER_OFF)
2323 		pci_set_power_state(pdev, PCI_D3hot);
2324 }
2325 
2326 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2327 					    pci_channel_state_t state)
2328 {
2329 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2330 	pci_ers_result_t ret;
2331 
2332 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2333 
2334 	if (state == pci_channel_io_perm_failure)
2335 		return PCI_ERS_RESULT_DISCONNECT;
2336 
2337 	if (!ae_dev || !ae_dev->ops) {
2338 		dev_err(&pdev->dev,
2339 			"Can't recover - error happened before device initialized\n");
2340 		return PCI_ERS_RESULT_NONE;
2341 	}
2342 
2343 	if (ae_dev->ops->handle_hw_ras_error)
2344 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2345 	else
2346 		return PCI_ERS_RESULT_NONE;
2347 
2348 	return ret;
2349 }
2350 
2351 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2352 {
2353 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2354 	const struct hnae3_ae_ops *ops;
2355 	enum hnae3_reset_type reset_type;
2356 	struct device *dev = &pdev->dev;
2357 
2358 	if (!ae_dev || !ae_dev->ops)
2359 		return PCI_ERS_RESULT_NONE;
2360 
2361 	ops = ae_dev->ops;
2362 	/* request the reset */
2363 	if (ops->reset_event && ops->get_reset_level &&
2364 	    ops->set_default_reset_request) {
2365 		if (ae_dev->hw_err_reset_req) {
2366 			reset_type = ops->get_reset_level(ae_dev,
2367 						&ae_dev->hw_err_reset_req);
2368 			ops->set_default_reset_request(ae_dev, reset_type);
2369 			dev_info(dev, "requesting reset due to PCI error\n");
2370 			ops->reset_event(pdev, NULL);
2371 		}
2372 
2373 		return PCI_ERS_RESULT_RECOVERED;
2374 	}
2375 
2376 	return PCI_ERS_RESULT_DISCONNECT;
2377 }
2378 
2379 static void hns3_reset_prepare(struct pci_dev *pdev)
2380 {
2381 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2382 
2383 	dev_info(&pdev->dev, "FLR prepare\n");
2384 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2385 		ae_dev->ops->flr_prepare(ae_dev);
2386 }
2387 
2388 static void hns3_reset_done(struct pci_dev *pdev)
2389 {
2390 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2391 
2392 	dev_info(&pdev->dev, "FLR done\n");
2393 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2394 		ae_dev->ops->flr_done(ae_dev);
2395 }
2396 
2397 static const struct pci_error_handlers hns3_err_handler = {
2398 	.error_detected = hns3_error_detected,
2399 	.slot_reset     = hns3_slot_reset,
2400 	.reset_prepare	= hns3_reset_prepare,
2401 	.reset_done	= hns3_reset_done,
2402 };
2403 
2404 static struct pci_driver hns3_driver = {
2405 	.name     = hns3_driver_name,
2406 	.id_table = hns3_pci_tbl,
2407 	.probe    = hns3_probe,
2408 	.remove   = hns3_remove,
2409 	.shutdown = hns3_shutdown,
2410 	.sriov_configure = hns3_pci_sriov_configure,
2411 	.err_handler    = &hns3_err_handler,
2412 };
2413 
2414 /* set default feature to hns3 */
2415 static void hns3_set_default_feature(struct net_device *netdev)
2416 {
2417 	struct hnae3_handle *h = hns3_get_handle(netdev);
2418 	struct pci_dev *pdev = h->pdev;
2419 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2420 
2421 	netdev->priv_flags |= IFF_UNICAST_FLT;
2422 
2423 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2424 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2425 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2426 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2427 
2428 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2429 
2430 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2431 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2432 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2433 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2434 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2435 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2436 
2437 	netdev->vlan_features |= NETIF_F_RXCSUM |
2438 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2439 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2440 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2441 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2442 
2443 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2444 		NETIF_F_HW_VLAN_CTAG_RX |
2445 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2446 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2447 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2448 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2449 
2450 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2451 		netdev->hw_features |= NETIF_F_GRO_HW;
2452 		netdev->features |= NETIF_F_GRO_HW;
2453 
2454 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2455 			netdev->hw_features |= NETIF_F_NTUPLE;
2456 			netdev->features |= NETIF_F_NTUPLE;
2457 		}
2458 	}
2459 
2460 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2461 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2462 		netdev->features |= NETIF_F_GSO_UDP_L4;
2463 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2464 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2465 	}
2466 
2467 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2468 		netdev->hw_features |= NETIF_F_HW_CSUM;
2469 		netdev->features |= NETIF_F_HW_CSUM;
2470 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2471 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2472 	} else {
2473 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2474 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2475 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2476 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2477 	}
2478 
2479 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2480 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2481 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2482 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2483 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2484 	}
2485 
2486 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2487 		netdev->hw_features |= NETIF_F_HW_TC;
2488 		netdev->features |= NETIF_F_HW_TC;
2489 	}
2490 }
2491 
2492 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2493 			     struct hns3_desc_cb *cb)
2494 {
2495 	unsigned int order = hns3_page_order(ring);
2496 	struct page *p;
2497 
2498 	p = dev_alloc_pages(order);
2499 	if (!p)
2500 		return -ENOMEM;
2501 
2502 	cb->priv = p;
2503 	cb->page_offset = 0;
2504 	cb->reuse_flag = 0;
2505 	cb->buf  = page_address(p);
2506 	cb->length = hns3_page_size(ring);
2507 	cb->type = DESC_TYPE_PAGE;
2508 	page_ref_add(p, USHRT_MAX - 1);
2509 	cb->pagecnt_bias = USHRT_MAX;
2510 
2511 	return 0;
2512 }
2513 
2514 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2515 			     struct hns3_desc_cb *cb, int budget)
2516 {
2517 	if (cb->type == DESC_TYPE_SKB)
2518 		napi_consume_skb(cb->priv, budget);
2519 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2520 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2521 	memset(cb, 0, sizeof(*cb));
2522 }
2523 
2524 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2525 {
2526 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2527 			       cb->length, ring_to_dma_dir(ring));
2528 
2529 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2530 		return -EIO;
2531 
2532 	return 0;
2533 }
2534 
2535 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2536 			      struct hns3_desc_cb *cb)
2537 {
2538 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2539 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2540 				 ring_to_dma_dir(ring));
2541 	else if (cb->length)
2542 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2543 			       ring_to_dma_dir(ring));
2544 }
2545 
2546 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2547 {
2548 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2549 	ring->desc[i].addr = 0;
2550 }
2551 
2552 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2553 				    int budget)
2554 {
2555 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2556 
2557 	if (!ring->desc_cb[i].dma)
2558 		return;
2559 
2560 	hns3_buffer_detach(ring, i);
2561 	hns3_free_buffer(ring, cb, budget);
2562 }
2563 
2564 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2565 {
2566 	int i;
2567 
2568 	for (i = 0; i < ring->desc_num; i++)
2569 		hns3_free_buffer_detach(ring, i, 0);
2570 }
2571 
2572 /* free desc along with its attached buffer */
2573 static void hns3_free_desc(struct hns3_enet_ring *ring)
2574 {
2575 	int size = ring->desc_num * sizeof(ring->desc[0]);
2576 
2577 	hns3_free_buffers(ring);
2578 
2579 	if (ring->desc) {
2580 		dma_free_coherent(ring_to_dev(ring), size,
2581 				  ring->desc, ring->desc_dma_addr);
2582 		ring->desc = NULL;
2583 	}
2584 }
2585 
2586 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2587 {
2588 	int size = ring->desc_num * sizeof(ring->desc[0]);
2589 
2590 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2591 					&ring->desc_dma_addr, GFP_KERNEL);
2592 	if (!ring->desc)
2593 		return -ENOMEM;
2594 
2595 	return 0;
2596 }
2597 
2598 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2599 				   struct hns3_desc_cb *cb)
2600 {
2601 	int ret;
2602 
2603 	ret = hns3_alloc_buffer(ring, cb);
2604 	if (ret)
2605 		goto out;
2606 
2607 	ret = hns3_map_buffer(ring, cb);
2608 	if (ret)
2609 		goto out_with_buf;
2610 
2611 	return 0;
2612 
2613 out_with_buf:
2614 	hns3_free_buffer(ring, cb, 0);
2615 out:
2616 	return ret;
2617 }
2618 
2619 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2620 {
2621 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2622 
2623 	if (ret)
2624 		return ret;
2625 
2626 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2627 
2628 	return 0;
2629 }
2630 
2631 /* Allocate memory for raw pkg, and map with dma */
2632 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2633 {
2634 	int i, j, ret;
2635 
2636 	for (i = 0; i < ring->desc_num; i++) {
2637 		ret = hns3_alloc_and_attach_buffer(ring, i);
2638 		if (ret)
2639 			goto out_buffer_fail;
2640 	}
2641 
2642 	return 0;
2643 
2644 out_buffer_fail:
2645 	for (j = i - 1; j >= 0; j--)
2646 		hns3_free_buffer_detach(ring, j, 0);
2647 	return ret;
2648 }
2649 
2650 /* detach a in-used buffer and replace with a reserved one */
2651 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2652 				struct hns3_desc_cb *res_cb)
2653 {
2654 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2655 	ring->desc_cb[i] = *res_cb;
2656 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2657 	ring->desc[i].rx.bd_base_info = 0;
2658 }
2659 
2660 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2661 {
2662 	ring->desc_cb[i].reuse_flag = 0;
2663 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2664 					 ring->desc_cb[i].page_offset);
2665 	ring->desc[i].rx.bd_base_info = 0;
2666 
2667 	dma_sync_single_for_device(ring_to_dev(ring),
2668 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2669 			hns3_buf_size(ring),
2670 			DMA_FROM_DEVICE);
2671 }
2672 
2673 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2674 				  int *bytes, int *pkts, int budget)
2675 {
2676 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2677 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2678 	 * the doorbell operation already have the needed barrier operation.
2679 	 */
2680 	int ltu = smp_load_acquire(&ring->last_to_use);
2681 	int ntc = ring->next_to_clean;
2682 	struct hns3_desc_cb *desc_cb;
2683 	bool reclaimed = false;
2684 	struct hns3_desc *desc;
2685 
2686 	while (ltu != ntc) {
2687 		desc = &ring->desc[ntc];
2688 
2689 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2690 				BIT(HNS3_TXD_VLD_B))
2691 			break;
2692 
2693 		desc_cb = &ring->desc_cb[ntc];
2694 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2695 		(*bytes) += desc_cb->length;
2696 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2697 		hns3_free_buffer_detach(ring, ntc, budget);
2698 
2699 		if (++ntc == ring->desc_num)
2700 			ntc = 0;
2701 
2702 		/* Issue prefetch for next Tx descriptor */
2703 		prefetch(&ring->desc_cb[ntc]);
2704 		reclaimed = true;
2705 	}
2706 
2707 	if (unlikely(!reclaimed))
2708 		return false;
2709 
2710 	/* This smp_store_release() pairs with smp_load_acquire() in
2711 	 * ring_space called by hns3_nic_net_xmit.
2712 	 */
2713 	smp_store_release(&ring->next_to_clean, ntc);
2714 	return true;
2715 }
2716 
2717 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2718 {
2719 	struct net_device *netdev = ring_to_netdev(ring);
2720 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2721 	struct netdev_queue *dev_queue;
2722 	int bytes, pkts;
2723 
2724 	bytes = 0;
2725 	pkts = 0;
2726 
2727 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2728 		return;
2729 
2730 	ring->tqp_vector->tx_group.total_bytes += bytes;
2731 	ring->tqp_vector->tx_group.total_packets += pkts;
2732 
2733 	u64_stats_update_begin(&ring->syncp);
2734 	ring->stats.tx_bytes += bytes;
2735 	ring->stats.tx_pkts += pkts;
2736 	u64_stats_update_end(&ring->syncp);
2737 
2738 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2739 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2740 
2741 	if (unlikely(netif_carrier_ok(netdev) &&
2742 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2743 		/* Make sure that anybody stopping the queue after this
2744 		 * sees the new next_to_clean.
2745 		 */
2746 		smp_mb();
2747 		if (netif_tx_queue_stopped(dev_queue) &&
2748 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2749 			netif_tx_wake_queue(dev_queue);
2750 			ring->stats.restart_queue++;
2751 		}
2752 	}
2753 }
2754 
2755 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2756 {
2757 	int ntc = ring->next_to_clean;
2758 	int ntu = ring->next_to_use;
2759 
2760 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2761 }
2762 
2763 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2764 				      int cleand_count)
2765 {
2766 	struct hns3_desc_cb *desc_cb;
2767 	struct hns3_desc_cb res_cbs;
2768 	int i, ret;
2769 
2770 	for (i = 0; i < cleand_count; i++) {
2771 		desc_cb = &ring->desc_cb[ring->next_to_use];
2772 		if (desc_cb->reuse_flag) {
2773 			u64_stats_update_begin(&ring->syncp);
2774 			ring->stats.reuse_pg_cnt++;
2775 			u64_stats_update_end(&ring->syncp);
2776 
2777 			hns3_reuse_buffer(ring, ring->next_to_use);
2778 		} else {
2779 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2780 			if (ret) {
2781 				u64_stats_update_begin(&ring->syncp);
2782 				ring->stats.sw_err_cnt++;
2783 				u64_stats_update_end(&ring->syncp);
2784 
2785 				hns3_rl_err(ring_to_netdev(ring),
2786 					    "alloc rx buffer failed: %d\n",
2787 					    ret);
2788 				break;
2789 			}
2790 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2791 
2792 			u64_stats_update_begin(&ring->syncp);
2793 			ring->stats.non_reuse_pg++;
2794 			u64_stats_update_end(&ring->syncp);
2795 		}
2796 
2797 		ring_ptr_move_fw(ring, next_to_use);
2798 	}
2799 
2800 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2801 }
2802 
2803 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2804 {
2805 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2806 }
2807 
2808 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2809 				struct hns3_enet_ring *ring, int pull_len,
2810 				struct hns3_desc_cb *desc_cb)
2811 {
2812 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2813 	int size = le16_to_cpu(desc->rx.size);
2814 	u32 truesize = hns3_buf_size(ring);
2815 
2816 	desc_cb->pagecnt_bias--;
2817 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2818 			size - pull_len, truesize);
2819 
2820 	/* Avoid re-using remote and pfmemalloc pages, or the stack is still
2821 	 * using the page when page_offset rollback to zero, flag default
2822 	 * unreuse
2823 	 */
2824 	if (!dev_page_is_reusable(desc_cb->priv) ||
2825 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2826 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2827 		return;
2828 	}
2829 
2830 	/* Move offset up to the next cache line */
2831 	desc_cb->page_offset += truesize;
2832 
2833 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2834 		desc_cb->reuse_flag = 1;
2835 	} else if (hns3_can_reuse_page(desc_cb)) {
2836 		desc_cb->reuse_flag = 1;
2837 		desc_cb->page_offset = 0;
2838 	} else if (desc_cb->pagecnt_bias) {
2839 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2840 		return;
2841 	}
2842 
2843 	if (unlikely(!desc_cb->pagecnt_bias)) {
2844 		page_ref_add(desc_cb->priv, USHRT_MAX);
2845 		desc_cb->pagecnt_bias = USHRT_MAX;
2846 	}
2847 }
2848 
2849 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2850 {
2851 	__be16 type = skb->protocol;
2852 	struct tcphdr *th;
2853 	int depth = 0;
2854 
2855 	while (eth_type_vlan(type)) {
2856 		struct vlan_hdr *vh;
2857 
2858 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2859 			return -EFAULT;
2860 
2861 		vh = (struct vlan_hdr *)(skb->data + depth);
2862 		type = vh->h_vlan_encapsulated_proto;
2863 		depth += VLAN_HLEN;
2864 	}
2865 
2866 	skb_set_network_header(skb, depth);
2867 
2868 	if (type == htons(ETH_P_IP)) {
2869 		const struct iphdr *iph = ip_hdr(skb);
2870 
2871 		depth += sizeof(struct iphdr);
2872 		skb_set_transport_header(skb, depth);
2873 		th = tcp_hdr(skb);
2874 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2875 					  iph->daddr, 0);
2876 	} else if (type == htons(ETH_P_IPV6)) {
2877 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2878 
2879 		depth += sizeof(struct ipv6hdr);
2880 		skb_set_transport_header(skb, depth);
2881 		th = tcp_hdr(skb);
2882 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2883 					  &iph->daddr, 0);
2884 	} else {
2885 		hns3_rl_err(skb->dev,
2886 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2887 			    be16_to_cpu(type), depth);
2888 		return -EFAULT;
2889 	}
2890 
2891 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2892 	if (th->cwr)
2893 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2894 
2895 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2896 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2897 
2898 	skb->csum_start = (unsigned char *)th - skb->head;
2899 	skb->csum_offset = offsetof(struct tcphdr, check);
2900 	skb->ip_summed = CHECKSUM_PARTIAL;
2901 
2902 	trace_hns3_gro(skb);
2903 
2904 	return 0;
2905 }
2906 
2907 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2908 				   struct sk_buff *skb, u32 l234info)
2909 {
2910 	u32 lo, hi;
2911 
2912 	u64_stats_update_begin(&ring->syncp);
2913 	ring->stats.csum_complete++;
2914 	u64_stats_update_end(&ring->syncp);
2915 	skb->ip_summed = CHECKSUM_COMPLETE;
2916 	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2917 			     HNS3_RXD_L2_CSUM_L_S);
2918 	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2919 			     HNS3_RXD_L2_CSUM_H_S);
2920 	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2921 }
2922 
2923 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2924 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2925 {
2926 	struct net_device *netdev = ring_to_netdev(ring);
2927 	int l3_type, l4_type;
2928 	int ol4_type;
2929 
2930 	skb->ip_summed = CHECKSUM_NONE;
2931 
2932 	skb_checksum_none_assert(skb);
2933 
2934 	if (!(netdev->features & NETIF_F_RXCSUM))
2935 		return;
2936 
2937 	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
2938 		hns3_checksum_complete(ring, skb, l234info);
2939 		return;
2940 	}
2941 
2942 	/* check if hardware has done checksum */
2943 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2944 		return;
2945 
2946 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2947 				 BIT(HNS3_RXD_OL3E_B) |
2948 				 BIT(HNS3_RXD_OL4E_B)))) {
2949 		u64_stats_update_begin(&ring->syncp);
2950 		ring->stats.l3l4_csum_err++;
2951 		u64_stats_update_end(&ring->syncp);
2952 
2953 		return;
2954 	}
2955 
2956 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2957 				   HNS3_RXD_OL4ID_S);
2958 	switch (ol4_type) {
2959 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2960 	case HNS3_OL4_TYPE_NVGRE:
2961 		skb->csum_level = 1;
2962 		fallthrough;
2963 	case HNS3_OL4_TYPE_NO_TUN:
2964 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2965 					  HNS3_RXD_L3ID_S);
2966 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2967 					  HNS3_RXD_L4ID_S);
2968 
2969 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2970 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2971 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2972 		    (l4_type == HNS3_L4_TYPE_UDP ||
2973 		     l4_type == HNS3_L4_TYPE_TCP ||
2974 		     l4_type == HNS3_L4_TYPE_SCTP))
2975 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2976 		break;
2977 	default:
2978 		break;
2979 	}
2980 }
2981 
2982 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2983 {
2984 	if (skb_has_frag_list(skb))
2985 		napi_gro_flush(&ring->tqp_vector->napi, false);
2986 
2987 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2988 }
2989 
2990 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2991 				struct hns3_desc *desc, u32 l234info,
2992 				u16 *vlan_tag)
2993 {
2994 	struct hnae3_handle *handle = ring->tqp->handle;
2995 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2996 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2997 
2998 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
2999 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3000 		if (!(*vlan_tag & VLAN_VID_MASK))
3001 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3002 
3003 		return (*vlan_tag != 0);
3004 	}
3005 
3006 #define HNS3_STRP_OUTER_VLAN	0x1
3007 #define HNS3_STRP_INNER_VLAN	0x2
3008 #define HNS3_STRP_BOTH		0x3
3009 
3010 	/* Hardware always insert VLAN tag into RX descriptor when
3011 	 * remove the tag from packet, driver needs to determine
3012 	 * reporting which tag to stack.
3013 	 */
3014 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3015 				HNS3_RXD_STRP_TAGP_S)) {
3016 	case HNS3_STRP_OUTER_VLAN:
3017 		if (handle->port_base_vlan_state !=
3018 				HNAE3_PORT_BASE_VLAN_DISABLE)
3019 			return false;
3020 
3021 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3022 		return true;
3023 	case HNS3_STRP_INNER_VLAN:
3024 		if (handle->port_base_vlan_state !=
3025 				HNAE3_PORT_BASE_VLAN_DISABLE)
3026 			return false;
3027 
3028 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3029 		return true;
3030 	case HNS3_STRP_BOTH:
3031 		if (handle->port_base_vlan_state ==
3032 				HNAE3_PORT_BASE_VLAN_DISABLE)
3033 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3034 		else
3035 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3036 
3037 		return true;
3038 	default:
3039 		return false;
3040 	}
3041 }
3042 
3043 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3044 {
3045 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3046 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3047 	ring->next_to_clean += 1;
3048 
3049 	if (unlikely(ring->next_to_clean == ring->desc_num))
3050 		ring->next_to_clean = 0;
3051 }
3052 
3053 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3054 			  unsigned char *va)
3055 {
3056 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3057 	struct net_device *netdev = ring_to_netdev(ring);
3058 	struct sk_buff *skb;
3059 
3060 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3061 	skb = ring->skb;
3062 	if (unlikely(!skb)) {
3063 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3064 
3065 		u64_stats_update_begin(&ring->syncp);
3066 		ring->stats.sw_err_cnt++;
3067 		u64_stats_update_end(&ring->syncp);
3068 
3069 		return -ENOMEM;
3070 	}
3071 
3072 	trace_hns3_rx_desc(ring);
3073 	prefetchw(skb->data);
3074 
3075 	ring->pending_buf = 1;
3076 	ring->frag_num = 0;
3077 	ring->tail_skb = NULL;
3078 	if (length <= HNS3_RX_HEAD_SIZE) {
3079 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3080 
3081 		/* We can reuse buffer as-is, just make sure it is reusable */
3082 		if (dev_page_is_reusable(desc_cb->priv))
3083 			desc_cb->reuse_flag = 1;
3084 		else /* This page cannot be reused so discard it */
3085 			__page_frag_cache_drain(desc_cb->priv,
3086 						desc_cb->pagecnt_bias);
3087 
3088 		hns3_rx_ring_move_fw(ring);
3089 		return 0;
3090 	}
3091 	u64_stats_update_begin(&ring->syncp);
3092 	ring->stats.seg_pkt_cnt++;
3093 	u64_stats_update_end(&ring->syncp);
3094 
3095 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3096 	__skb_put(skb, ring->pull_len);
3097 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3098 			    desc_cb);
3099 	hns3_rx_ring_move_fw(ring);
3100 
3101 	return 0;
3102 }
3103 
3104 static int hns3_add_frag(struct hns3_enet_ring *ring)
3105 {
3106 	struct sk_buff *skb = ring->skb;
3107 	struct sk_buff *head_skb = skb;
3108 	struct sk_buff *new_skb;
3109 	struct hns3_desc_cb *desc_cb;
3110 	struct hns3_desc *desc;
3111 	u32 bd_base_info;
3112 
3113 	do {
3114 		desc = &ring->desc[ring->next_to_clean];
3115 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3116 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3117 		/* make sure HW write desc complete */
3118 		dma_rmb();
3119 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3120 			return -ENXIO;
3121 
3122 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3123 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3124 			if (unlikely(!new_skb)) {
3125 				hns3_rl_err(ring_to_netdev(ring),
3126 					    "alloc rx fraglist skb fail\n");
3127 				return -ENXIO;
3128 			}
3129 			ring->frag_num = 0;
3130 
3131 			if (ring->tail_skb) {
3132 				ring->tail_skb->next = new_skb;
3133 				ring->tail_skb = new_skb;
3134 			} else {
3135 				skb_shinfo(skb)->frag_list = new_skb;
3136 				ring->tail_skb = new_skb;
3137 			}
3138 		}
3139 
3140 		if (ring->tail_skb) {
3141 			head_skb->truesize += hns3_buf_size(ring);
3142 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3143 			head_skb->len += le16_to_cpu(desc->rx.size);
3144 			skb = ring->tail_skb;
3145 		}
3146 
3147 		dma_sync_single_for_cpu(ring_to_dev(ring),
3148 				desc_cb->dma + desc_cb->page_offset,
3149 				hns3_buf_size(ring),
3150 				DMA_FROM_DEVICE);
3151 
3152 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3153 		trace_hns3_rx_desc(ring);
3154 		hns3_rx_ring_move_fw(ring);
3155 		ring->pending_buf++;
3156 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3157 
3158 	return 0;
3159 }
3160 
3161 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3162 				     struct sk_buff *skb, u32 l234info,
3163 				     u32 bd_base_info, u32 ol_info)
3164 {
3165 	u32 l3_type;
3166 
3167 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3168 						    HNS3_RXD_GRO_SIZE_M,
3169 						    HNS3_RXD_GRO_SIZE_S);
3170 	/* if there is no HW GRO, do not set gro params */
3171 	if (!skb_shinfo(skb)->gso_size) {
3172 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3173 		return 0;
3174 	}
3175 
3176 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3177 						  HNS3_RXD_GRO_COUNT_M,
3178 						  HNS3_RXD_GRO_COUNT_S);
3179 
3180 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3181 	if (l3_type == HNS3_L3_TYPE_IPV4)
3182 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3183 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3184 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3185 	else
3186 		return -EFAULT;
3187 
3188 	return  hns3_gro_complete(skb, l234info);
3189 }
3190 
3191 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3192 				     struct sk_buff *skb, u32 rss_hash)
3193 {
3194 	struct hnae3_handle *handle = ring->tqp->handle;
3195 	enum pkt_hash_types rss_type;
3196 
3197 	if (rss_hash)
3198 		rss_type = handle->kinfo.rss_type;
3199 	else
3200 		rss_type = PKT_HASH_TYPE_NONE;
3201 
3202 	skb_set_hash(skb, rss_hash, rss_type);
3203 }
3204 
3205 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3206 {
3207 	struct net_device *netdev = ring_to_netdev(ring);
3208 	enum hns3_pkt_l2t_type l2_frame_type;
3209 	u32 bd_base_info, l234info, ol_info;
3210 	struct hns3_desc *desc;
3211 	unsigned int len;
3212 	int pre_ntc, ret;
3213 
3214 	/* bdinfo handled below is only valid on the last BD of the
3215 	 * current packet, and ring->next_to_clean indicates the first
3216 	 * descriptor of next packet, so need - 1 below.
3217 	 */
3218 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3219 					(ring->desc_num - 1);
3220 	desc = &ring->desc[pre_ntc];
3221 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3222 	l234info = le32_to_cpu(desc->rx.l234_info);
3223 	ol_info = le32_to_cpu(desc->rx.ol_info);
3224 
3225 	/* Based on hw strategy, the tag offloaded will be stored at
3226 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3227 	 * in one layer tag case.
3228 	 */
3229 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3230 		u16 vlan_tag;
3231 
3232 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3233 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3234 					       vlan_tag);
3235 	}
3236 
3237 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3238 				  BIT(HNS3_RXD_L2E_B))))) {
3239 		u64_stats_update_begin(&ring->syncp);
3240 		if (l234info & BIT(HNS3_RXD_L2E_B))
3241 			ring->stats.l2_err++;
3242 		else
3243 			ring->stats.err_pkt_len++;
3244 		u64_stats_update_end(&ring->syncp);
3245 
3246 		return -EFAULT;
3247 	}
3248 
3249 	len = skb->len;
3250 
3251 	/* Do update ip stack process */
3252 	skb->protocol = eth_type_trans(skb, netdev);
3253 
3254 	/* This is needed in order to enable forwarding support */
3255 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3256 					bd_base_info, ol_info);
3257 	if (unlikely(ret)) {
3258 		u64_stats_update_begin(&ring->syncp);
3259 		ring->stats.rx_err_cnt++;
3260 		u64_stats_update_end(&ring->syncp);
3261 		return ret;
3262 	}
3263 
3264 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3265 					HNS3_RXD_DMAC_S);
3266 
3267 	u64_stats_update_begin(&ring->syncp);
3268 	ring->stats.rx_pkts++;
3269 	ring->stats.rx_bytes += len;
3270 
3271 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3272 		ring->stats.rx_multicast++;
3273 
3274 	u64_stats_update_end(&ring->syncp);
3275 
3276 	ring->tqp_vector->rx_group.total_bytes += len;
3277 
3278 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3279 	return 0;
3280 }
3281 
3282 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3283 {
3284 	struct sk_buff *skb = ring->skb;
3285 	struct hns3_desc_cb *desc_cb;
3286 	struct hns3_desc *desc;
3287 	unsigned int length;
3288 	u32 bd_base_info;
3289 	int ret;
3290 
3291 	desc = &ring->desc[ring->next_to_clean];
3292 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3293 
3294 	prefetch(desc);
3295 
3296 	if (!skb) {
3297 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3298 
3299 		/* Check valid BD */
3300 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3301 			return -ENXIO;
3302 
3303 		dma_rmb();
3304 		length = le16_to_cpu(desc->rx.size);
3305 
3306 		ring->va = desc_cb->buf + desc_cb->page_offset;
3307 
3308 		dma_sync_single_for_cpu(ring_to_dev(ring),
3309 				desc_cb->dma + desc_cb->page_offset,
3310 				hns3_buf_size(ring),
3311 				DMA_FROM_DEVICE);
3312 
3313 		/* Prefetch first cache line of first page.
3314 		 * Idea is to cache few bytes of the header of the packet.
3315 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3316 		 * it 128B. But in actual we can have greater size of caches with
3317 		 * 128B Level 1 cache lines. In such a case, single fetch would
3318 		 * suffice to cache in the relevant part of the header.
3319 		 */
3320 		net_prefetch(ring->va);
3321 
3322 		ret = hns3_alloc_skb(ring, length, ring->va);
3323 		skb = ring->skb;
3324 
3325 		if (ret < 0) /* alloc buffer fail */
3326 			return ret;
3327 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3328 			ret = hns3_add_frag(ring);
3329 			if (ret)
3330 				return ret;
3331 		}
3332 	} else {
3333 		ret = hns3_add_frag(ring);
3334 		if (ret)
3335 			return ret;
3336 	}
3337 
3338 	/* As the head data may be changed when GRO enable, copy
3339 	 * the head data in after other data rx completed
3340 	 */
3341 	if (skb->len > HNS3_RX_HEAD_SIZE)
3342 		memcpy(skb->data, ring->va,
3343 		       ALIGN(ring->pull_len, sizeof(long)));
3344 
3345 	ret = hns3_handle_bdinfo(ring, skb);
3346 	if (unlikely(ret)) {
3347 		dev_kfree_skb_any(skb);
3348 		return ret;
3349 	}
3350 
3351 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3352 	return 0;
3353 }
3354 
3355 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3356 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3357 {
3358 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3359 	int unused_count = hns3_desc_unused(ring);
3360 	int recv_pkts = 0;
3361 	int err;
3362 
3363 	unused_count -= ring->pending_buf;
3364 
3365 	while (recv_pkts < budget) {
3366 		/* Reuse or realloc buffers */
3367 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3368 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3369 			unused_count = hns3_desc_unused(ring) -
3370 					ring->pending_buf;
3371 		}
3372 
3373 		/* Poll one pkt */
3374 		err = hns3_handle_rx_bd(ring);
3375 		/* Do not get FE for the packet or failed to alloc skb */
3376 		if (unlikely(!ring->skb || err == -ENXIO)) {
3377 			goto out;
3378 		} else if (likely(!err)) {
3379 			rx_fn(ring, ring->skb);
3380 			recv_pkts++;
3381 		}
3382 
3383 		unused_count += ring->pending_buf;
3384 		ring->skb = NULL;
3385 		ring->pending_buf = 0;
3386 	}
3387 
3388 out:
3389 	/* Make all data has been write before submit */
3390 	if (unused_count > 0)
3391 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3392 
3393 	return recv_pkts;
3394 }
3395 
3396 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3397 {
3398 #define HNS3_RX_LOW_BYTE_RATE 10000
3399 #define HNS3_RX_MID_BYTE_RATE 20000
3400 #define HNS3_RX_ULTRA_PACKET_RATE 40
3401 
3402 	enum hns3_flow_level_range new_flow_level;
3403 	struct hns3_enet_tqp_vector *tqp_vector;
3404 	int packets_per_msecs, bytes_per_msecs;
3405 	u32 time_passed_ms;
3406 
3407 	tqp_vector = ring_group->ring->tqp_vector;
3408 	time_passed_ms =
3409 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3410 	if (!time_passed_ms)
3411 		return false;
3412 
3413 	do_div(ring_group->total_packets, time_passed_ms);
3414 	packets_per_msecs = ring_group->total_packets;
3415 
3416 	do_div(ring_group->total_bytes, time_passed_ms);
3417 	bytes_per_msecs = ring_group->total_bytes;
3418 
3419 	new_flow_level = ring_group->coal.flow_level;
3420 
3421 	/* Simple throttlerate management
3422 	 * 0-10MB/s   lower     (50000 ints/s)
3423 	 * 10-20MB/s   middle    (20000 ints/s)
3424 	 * 20-1249MB/s high      (18000 ints/s)
3425 	 * > 40000pps  ultra     (8000 ints/s)
3426 	 */
3427 	switch (new_flow_level) {
3428 	case HNS3_FLOW_LOW:
3429 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3430 			new_flow_level = HNS3_FLOW_MID;
3431 		break;
3432 	case HNS3_FLOW_MID:
3433 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3434 			new_flow_level = HNS3_FLOW_HIGH;
3435 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3436 			new_flow_level = HNS3_FLOW_LOW;
3437 		break;
3438 	case HNS3_FLOW_HIGH:
3439 	case HNS3_FLOW_ULTRA:
3440 	default:
3441 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3442 			new_flow_level = HNS3_FLOW_MID;
3443 		break;
3444 	}
3445 
3446 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3447 	    &tqp_vector->rx_group == ring_group)
3448 		new_flow_level = HNS3_FLOW_ULTRA;
3449 
3450 	ring_group->total_bytes = 0;
3451 	ring_group->total_packets = 0;
3452 	ring_group->coal.flow_level = new_flow_level;
3453 
3454 	return true;
3455 }
3456 
3457 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3458 {
3459 	struct hns3_enet_tqp_vector *tqp_vector;
3460 	u16 new_int_gl;
3461 
3462 	if (!ring_group->ring)
3463 		return false;
3464 
3465 	tqp_vector = ring_group->ring->tqp_vector;
3466 	if (!tqp_vector->last_jiffies)
3467 		return false;
3468 
3469 	if (ring_group->total_packets == 0) {
3470 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3471 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3472 		return true;
3473 	}
3474 
3475 	if (!hns3_get_new_flow_lvl(ring_group))
3476 		return false;
3477 
3478 	new_int_gl = ring_group->coal.int_gl;
3479 	switch (ring_group->coal.flow_level) {
3480 	case HNS3_FLOW_LOW:
3481 		new_int_gl = HNS3_INT_GL_50K;
3482 		break;
3483 	case HNS3_FLOW_MID:
3484 		new_int_gl = HNS3_INT_GL_20K;
3485 		break;
3486 	case HNS3_FLOW_HIGH:
3487 		new_int_gl = HNS3_INT_GL_18K;
3488 		break;
3489 	case HNS3_FLOW_ULTRA:
3490 		new_int_gl = HNS3_INT_GL_8K;
3491 		break;
3492 	default:
3493 		break;
3494 	}
3495 
3496 	if (new_int_gl != ring_group->coal.int_gl) {
3497 		ring_group->coal.int_gl = new_int_gl;
3498 		return true;
3499 	}
3500 	return false;
3501 }
3502 
3503 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3504 {
3505 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3506 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3507 	bool rx_update, tx_update;
3508 
3509 	/* update param every 1000ms */
3510 	if (time_before(jiffies,
3511 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3512 		return;
3513 
3514 	if (rx_group->coal.adapt_enable) {
3515 		rx_update = hns3_get_new_int_gl(rx_group);
3516 		if (rx_update)
3517 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3518 						       rx_group->coal.int_gl);
3519 	}
3520 
3521 	if (tx_group->coal.adapt_enable) {
3522 		tx_update = hns3_get_new_int_gl(tx_group);
3523 		if (tx_update)
3524 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3525 						       tx_group->coal.int_gl);
3526 	}
3527 
3528 	tqp_vector->last_jiffies = jiffies;
3529 }
3530 
3531 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3532 {
3533 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3534 	struct hns3_enet_ring *ring;
3535 	int rx_pkt_total = 0;
3536 
3537 	struct hns3_enet_tqp_vector *tqp_vector =
3538 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3539 	bool clean_complete = true;
3540 	int rx_budget = budget;
3541 
3542 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3543 		napi_complete(napi);
3544 		return 0;
3545 	}
3546 
3547 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3548 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3549 	 */
3550 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3551 		hns3_clean_tx_ring(ring, budget);
3552 
3553 	/* make sure rx ring budget not smaller than 1 */
3554 	if (tqp_vector->num_tqps > 1)
3555 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3556 
3557 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3558 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3559 						    hns3_rx_skb);
3560 
3561 		if (rx_cleaned >= rx_budget)
3562 			clean_complete = false;
3563 
3564 		rx_pkt_total += rx_cleaned;
3565 	}
3566 
3567 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3568 
3569 	if (!clean_complete)
3570 		return budget;
3571 
3572 	if (napi_complete(napi) &&
3573 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3574 		hns3_update_new_int_gl(tqp_vector);
3575 		hns3_mask_vector_irq(tqp_vector, 1);
3576 	}
3577 
3578 	return rx_pkt_total;
3579 }
3580 
3581 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3582 				      struct hnae3_ring_chain_node *head)
3583 {
3584 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3585 	struct hnae3_ring_chain_node *cur_chain = head;
3586 	struct hnae3_ring_chain_node *chain;
3587 	struct hns3_enet_ring *tx_ring;
3588 	struct hns3_enet_ring *rx_ring;
3589 
3590 	tx_ring = tqp_vector->tx_group.ring;
3591 	if (tx_ring) {
3592 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3593 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3594 			      HNAE3_RING_TYPE_TX);
3595 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3596 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3597 
3598 		cur_chain->next = NULL;
3599 
3600 		while (tx_ring->next) {
3601 			tx_ring = tx_ring->next;
3602 
3603 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3604 					     GFP_KERNEL);
3605 			if (!chain)
3606 				goto err_free_chain;
3607 
3608 			cur_chain->next = chain;
3609 			chain->tqp_index = tx_ring->tqp->tqp_index;
3610 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3611 				      HNAE3_RING_TYPE_TX);
3612 			hnae3_set_field(chain->int_gl_idx,
3613 					HNAE3_RING_GL_IDX_M,
3614 					HNAE3_RING_GL_IDX_S,
3615 					HNAE3_RING_GL_TX);
3616 
3617 			cur_chain = chain;
3618 		}
3619 	}
3620 
3621 	rx_ring = tqp_vector->rx_group.ring;
3622 	if (!tx_ring && rx_ring) {
3623 		cur_chain->next = NULL;
3624 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3625 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3626 			      HNAE3_RING_TYPE_RX);
3627 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3628 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3629 
3630 		rx_ring = rx_ring->next;
3631 	}
3632 
3633 	while (rx_ring) {
3634 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3635 		if (!chain)
3636 			goto err_free_chain;
3637 
3638 		cur_chain->next = chain;
3639 		chain->tqp_index = rx_ring->tqp->tqp_index;
3640 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3641 			      HNAE3_RING_TYPE_RX);
3642 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3643 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3644 
3645 		cur_chain = chain;
3646 
3647 		rx_ring = rx_ring->next;
3648 	}
3649 
3650 	return 0;
3651 
3652 err_free_chain:
3653 	cur_chain = head->next;
3654 	while (cur_chain) {
3655 		chain = cur_chain->next;
3656 		devm_kfree(&pdev->dev, cur_chain);
3657 		cur_chain = chain;
3658 	}
3659 	head->next = NULL;
3660 
3661 	return -ENOMEM;
3662 }
3663 
3664 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3665 					struct hnae3_ring_chain_node *head)
3666 {
3667 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3668 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3669 
3670 	chain = head->next;
3671 
3672 	while (chain) {
3673 		chain_tmp = chain->next;
3674 		devm_kfree(&pdev->dev, chain);
3675 		chain = chain_tmp;
3676 	}
3677 }
3678 
3679 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3680 				   struct hns3_enet_ring *ring)
3681 {
3682 	ring->next = group->ring;
3683 	group->ring = ring;
3684 
3685 	group->count++;
3686 }
3687 
3688 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3689 {
3690 	struct pci_dev *pdev = priv->ae_handle->pdev;
3691 	struct hns3_enet_tqp_vector *tqp_vector;
3692 	int num_vectors = priv->vector_num;
3693 	int numa_node;
3694 	int vector_i;
3695 
3696 	numa_node = dev_to_node(&pdev->dev);
3697 
3698 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3699 		tqp_vector = &priv->tqp_vector[vector_i];
3700 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3701 				&tqp_vector->affinity_mask);
3702 	}
3703 }
3704 
3705 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3706 {
3707 	struct hnae3_ring_chain_node vector_ring_chain;
3708 	struct hnae3_handle *h = priv->ae_handle;
3709 	struct hns3_enet_tqp_vector *tqp_vector;
3710 	int ret;
3711 	int i;
3712 
3713 	hns3_nic_set_cpumask(priv);
3714 
3715 	for (i = 0; i < priv->vector_num; i++) {
3716 		tqp_vector = &priv->tqp_vector[i];
3717 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3718 		tqp_vector->num_tqps = 0;
3719 	}
3720 
3721 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3722 		u16 vector_i = i % priv->vector_num;
3723 		u16 tqp_num = h->kinfo.num_tqps;
3724 
3725 		tqp_vector = &priv->tqp_vector[vector_i];
3726 
3727 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3728 				       &priv->ring[i]);
3729 
3730 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3731 				       &priv->ring[i + tqp_num]);
3732 
3733 		priv->ring[i].tqp_vector = tqp_vector;
3734 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3735 		tqp_vector->num_tqps++;
3736 	}
3737 
3738 	for (i = 0; i < priv->vector_num; i++) {
3739 		tqp_vector = &priv->tqp_vector[i];
3740 
3741 		tqp_vector->rx_group.total_bytes = 0;
3742 		tqp_vector->rx_group.total_packets = 0;
3743 		tqp_vector->tx_group.total_bytes = 0;
3744 		tqp_vector->tx_group.total_packets = 0;
3745 		tqp_vector->handle = h;
3746 
3747 		ret = hns3_get_vector_ring_chain(tqp_vector,
3748 						 &vector_ring_chain);
3749 		if (ret)
3750 			goto map_ring_fail;
3751 
3752 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3753 			tqp_vector->vector_irq, &vector_ring_chain);
3754 
3755 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3756 
3757 		if (ret)
3758 			goto map_ring_fail;
3759 
3760 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3761 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3762 	}
3763 
3764 	return 0;
3765 
3766 map_ring_fail:
3767 	while (i--)
3768 		netif_napi_del(&priv->tqp_vector[i].napi);
3769 
3770 	return ret;
3771 }
3772 
3773 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3774 {
3775 	struct hnae3_handle *h = priv->ae_handle;
3776 	struct hns3_enet_tqp_vector *tqp_vector;
3777 	struct hnae3_vector_info *vector;
3778 	struct pci_dev *pdev = h->pdev;
3779 	u16 tqp_num = h->kinfo.num_tqps;
3780 	u16 vector_num;
3781 	int ret = 0;
3782 	u16 i;
3783 
3784 	/* RSS size, cpu online and vector_num should be the same */
3785 	/* Should consider 2p/4p later */
3786 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3787 
3788 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3789 			      GFP_KERNEL);
3790 	if (!vector)
3791 		return -ENOMEM;
3792 
3793 	/* save the actual available vector number */
3794 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3795 
3796 	priv->vector_num = vector_num;
3797 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3798 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3799 			     GFP_KERNEL);
3800 	if (!priv->tqp_vector) {
3801 		ret = -ENOMEM;
3802 		goto out;
3803 	}
3804 
3805 	for (i = 0; i < priv->vector_num; i++) {
3806 		tqp_vector = &priv->tqp_vector[i];
3807 		tqp_vector->idx = i;
3808 		tqp_vector->mask_addr = vector[i].io_addr;
3809 		tqp_vector->vector_irq = vector[i].vector;
3810 		hns3_vector_coalesce_init(tqp_vector, priv);
3811 	}
3812 
3813 out:
3814 	devm_kfree(&pdev->dev, vector);
3815 	return ret;
3816 }
3817 
3818 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3819 {
3820 	group->ring = NULL;
3821 	group->count = 0;
3822 }
3823 
3824 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3825 {
3826 	struct hnae3_ring_chain_node vector_ring_chain;
3827 	struct hnae3_handle *h = priv->ae_handle;
3828 	struct hns3_enet_tqp_vector *tqp_vector;
3829 	int i;
3830 
3831 	for (i = 0; i < priv->vector_num; i++) {
3832 		tqp_vector = &priv->tqp_vector[i];
3833 
3834 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3835 			continue;
3836 
3837 		/* Since the mapping can be overwritten, when fail to get the
3838 		 * chain between vector and ring, we should go on to deal with
3839 		 * the remaining options.
3840 		 */
3841 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3842 			dev_warn(priv->dev, "failed to get ring chain\n");
3843 
3844 		h->ae_algo->ops->unmap_ring_from_vector(h,
3845 			tqp_vector->vector_irq, &vector_ring_chain);
3846 
3847 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3848 
3849 		hns3_clear_ring_group(&tqp_vector->rx_group);
3850 		hns3_clear_ring_group(&tqp_vector->tx_group);
3851 		netif_napi_del(&priv->tqp_vector[i].napi);
3852 	}
3853 }
3854 
3855 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3856 {
3857 	struct hnae3_handle *h = priv->ae_handle;
3858 	struct pci_dev *pdev = h->pdev;
3859 	int i, ret;
3860 
3861 	for (i = 0; i < priv->vector_num; i++) {
3862 		struct hns3_enet_tqp_vector *tqp_vector;
3863 
3864 		tqp_vector = &priv->tqp_vector[i];
3865 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3866 		if (ret)
3867 			return;
3868 	}
3869 
3870 	devm_kfree(&pdev->dev, priv->tqp_vector);
3871 }
3872 
3873 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3874 			      unsigned int ring_type)
3875 {
3876 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3877 	struct hns3_enet_ring *ring;
3878 	int desc_num;
3879 
3880 	if (ring_type == HNAE3_RING_TYPE_TX) {
3881 		ring = &priv->ring[q->tqp_index];
3882 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3883 		ring->queue_index = q->tqp_index;
3884 	} else {
3885 		ring = &priv->ring[q->tqp_index + queue_num];
3886 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3887 		ring->queue_index = q->tqp_index;
3888 	}
3889 
3890 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3891 
3892 	ring->tqp = q;
3893 	ring->desc = NULL;
3894 	ring->desc_cb = NULL;
3895 	ring->dev = priv->dev;
3896 	ring->desc_dma_addr = 0;
3897 	ring->buf_size = q->buf_size;
3898 	ring->desc_num = desc_num;
3899 	ring->next_to_use = 0;
3900 	ring->next_to_clean = 0;
3901 	ring->last_to_use = 0;
3902 }
3903 
3904 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3905 			       struct hns3_nic_priv *priv)
3906 {
3907 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3908 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3909 }
3910 
3911 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3912 {
3913 	struct hnae3_handle *h = priv->ae_handle;
3914 	struct pci_dev *pdev = h->pdev;
3915 	int i;
3916 
3917 	priv->ring = devm_kzalloc(&pdev->dev,
3918 				  array3_size(h->kinfo.num_tqps,
3919 					      sizeof(*priv->ring), 2),
3920 				  GFP_KERNEL);
3921 	if (!priv->ring)
3922 		return -ENOMEM;
3923 
3924 	for (i = 0; i < h->kinfo.num_tqps; i++)
3925 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3926 
3927 	return 0;
3928 }
3929 
3930 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3931 {
3932 	if (!priv->ring)
3933 		return;
3934 
3935 	devm_kfree(priv->dev, priv->ring);
3936 	priv->ring = NULL;
3937 }
3938 
3939 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3940 {
3941 	int ret;
3942 
3943 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3944 		return -EINVAL;
3945 
3946 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3947 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3948 	if (!ring->desc_cb) {
3949 		ret = -ENOMEM;
3950 		goto out;
3951 	}
3952 
3953 	ret = hns3_alloc_desc(ring);
3954 	if (ret)
3955 		goto out_with_desc_cb;
3956 
3957 	if (!HNAE3_IS_TX_RING(ring)) {
3958 		ret = hns3_alloc_ring_buffers(ring);
3959 		if (ret)
3960 			goto out_with_desc;
3961 	}
3962 
3963 	return 0;
3964 
3965 out_with_desc:
3966 	hns3_free_desc(ring);
3967 out_with_desc_cb:
3968 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3969 	ring->desc_cb = NULL;
3970 out:
3971 	return ret;
3972 }
3973 
3974 void hns3_fini_ring(struct hns3_enet_ring *ring)
3975 {
3976 	hns3_free_desc(ring);
3977 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3978 	ring->desc_cb = NULL;
3979 	ring->next_to_clean = 0;
3980 	ring->next_to_use = 0;
3981 	ring->last_to_use = 0;
3982 	ring->pending_buf = 0;
3983 	if (ring->skb) {
3984 		dev_kfree_skb_any(ring->skb);
3985 		ring->skb = NULL;
3986 	}
3987 }
3988 
3989 static int hns3_buf_size2type(u32 buf_size)
3990 {
3991 	int bd_size_type;
3992 
3993 	switch (buf_size) {
3994 	case 512:
3995 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3996 		break;
3997 	case 1024:
3998 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3999 		break;
4000 	case 2048:
4001 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4002 		break;
4003 	case 4096:
4004 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4005 		break;
4006 	default:
4007 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4008 	}
4009 
4010 	return bd_size_type;
4011 }
4012 
4013 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4014 {
4015 	dma_addr_t dma = ring->desc_dma_addr;
4016 	struct hnae3_queue *q = ring->tqp;
4017 
4018 	if (!HNAE3_IS_TX_RING(ring)) {
4019 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4020 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4021 			       (u32)((dma >> 31) >> 1));
4022 
4023 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4024 			       hns3_buf_size2type(ring->buf_size));
4025 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4026 			       ring->desc_num / 8 - 1);
4027 
4028 	} else {
4029 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4030 			       (u32)dma);
4031 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4032 			       (u32)((dma >> 31) >> 1));
4033 
4034 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4035 			       ring->desc_num / 8 - 1);
4036 	}
4037 }
4038 
4039 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4040 {
4041 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4042 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4043 	int i;
4044 
4045 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4046 		int j;
4047 
4048 		if (!test_bit(i, &tc_info->tc_en))
4049 			continue;
4050 
4051 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4052 			struct hnae3_queue *q;
4053 
4054 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4055 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4056 		}
4057 	}
4058 }
4059 
4060 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4061 {
4062 	struct hnae3_handle *h = priv->ae_handle;
4063 	int ring_num = h->kinfo.num_tqps * 2;
4064 	int i, j;
4065 	int ret;
4066 
4067 	for (i = 0; i < ring_num; i++) {
4068 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4069 		if (ret) {
4070 			dev_err(priv->dev,
4071 				"Alloc ring memory fail! ret=%d\n", ret);
4072 			goto out_when_alloc_ring_memory;
4073 		}
4074 
4075 		u64_stats_init(&priv->ring[i].syncp);
4076 	}
4077 
4078 	return 0;
4079 
4080 out_when_alloc_ring_memory:
4081 	for (j = i - 1; j >= 0; j--)
4082 		hns3_fini_ring(&priv->ring[j]);
4083 
4084 	return -ENOMEM;
4085 }
4086 
4087 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4088 {
4089 	struct hnae3_handle *h = priv->ae_handle;
4090 	int i;
4091 
4092 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4093 		hns3_fini_ring(&priv->ring[i]);
4094 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4095 	}
4096 }
4097 
4098 /* Set mac addr if it is configured. or leave it to the AE driver */
4099 static int hns3_init_mac_addr(struct net_device *netdev)
4100 {
4101 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4102 	struct hnae3_handle *h = priv->ae_handle;
4103 	u8 mac_addr_temp[ETH_ALEN];
4104 	int ret = 0;
4105 
4106 	if (h->ae_algo->ops->get_mac_addr)
4107 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4108 
4109 	/* Check if the MAC address is valid, if not get a random one */
4110 	if (!is_valid_ether_addr(mac_addr_temp)) {
4111 		eth_hw_addr_random(netdev);
4112 		dev_warn(priv->dev, "using random MAC address %pM\n",
4113 			 netdev->dev_addr);
4114 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4115 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4116 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4117 	} else {
4118 		return 0;
4119 	}
4120 
4121 	if (h->ae_algo->ops->set_mac_addr)
4122 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4123 
4124 	return ret;
4125 }
4126 
4127 static int hns3_init_phy(struct net_device *netdev)
4128 {
4129 	struct hnae3_handle *h = hns3_get_handle(netdev);
4130 	int ret = 0;
4131 
4132 	if (h->ae_algo->ops->mac_connect_phy)
4133 		ret = h->ae_algo->ops->mac_connect_phy(h);
4134 
4135 	return ret;
4136 }
4137 
4138 static void hns3_uninit_phy(struct net_device *netdev)
4139 {
4140 	struct hnae3_handle *h = hns3_get_handle(netdev);
4141 
4142 	if (h->ae_algo->ops->mac_disconnect_phy)
4143 		h->ae_algo->ops->mac_disconnect_phy(h);
4144 }
4145 
4146 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4147 {
4148 	struct hnae3_handle *h = hns3_get_handle(netdev);
4149 
4150 	if (h->ae_algo->ops->del_all_fd_entries)
4151 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4152 }
4153 
4154 static int hns3_client_start(struct hnae3_handle *handle)
4155 {
4156 	if (!handle->ae_algo->ops->client_start)
4157 		return 0;
4158 
4159 	return handle->ae_algo->ops->client_start(handle);
4160 }
4161 
4162 static void hns3_client_stop(struct hnae3_handle *handle)
4163 {
4164 	if (!handle->ae_algo->ops->client_stop)
4165 		return;
4166 
4167 	handle->ae_algo->ops->client_stop(handle);
4168 }
4169 
4170 static void hns3_info_show(struct hns3_nic_priv *priv)
4171 {
4172 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4173 
4174 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4175 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4176 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4177 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4178 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4179 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4180 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4181 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4182 		 kinfo->tc_info.num_tc);
4183 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4184 }
4185 
4186 static int hns3_client_init(struct hnae3_handle *handle)
4187 {
4188 	struct pci_dev *pdev = handle->pdev;
4189 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4190 	u16 alloc_tqps, max_rss_size;
4191 	struct hns3_nic_priv *priv;
4192 	struct net_device *netdev;
4193 	int ret;
4194 
4195 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4196 						    &max_rss_size);
4197 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4198 	if (!netdev)
4199 		return -ENOMEM;
4200 
4201 	priv = netdev_priv(netdev);
4202 	priv->dev = &pdev->dev;
4203 	priv->netdev = netdev;
4204 	priv->ae_handle = handle;
4205 	priv->tx_timeout_count = 0;
4206 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4207 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4208 
4209 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4210 
4211 	handle->kinfo.netdev = netdev;
4212 	handle->priv = (void *)priv;
4213 
4214 	hns3_init_mac_addr(netdev);
4215 
4216 	hns3_set_default_feature(netdev);
4217 
4218 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4219 	netdev->priv_flags |= IFF_UNICAST_FLT;
4220 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4221 	SET_NETDEV_DEV(netdev, &pdev->dev);
4222 	hns3_ethtool_set_ops(netdev);
4223 
4224 	/* Carrier off reporting is important to ethtool even BEFORE open */
4225 	netif_carrier_off(netdev);
4226 
4227 	ret = hns3_get_ring_config(priv);
4228 	if (ret) {
4229 		ret = -ENOMEM;
4230 		goto out_get_ring_cfg;
4231 	}
4232 
4233 	ret = hns3_nic_alloc_vector_data(priv);
4234 	if (ret) {
4235 		ret = -ENOMEM;
4236 		goto out_alloc_vector_data;
4237 	}
4238 
4239 	ret = hns3_nic_init_vector_data(priv);
4240 	if (ret) {
4241 		ret = -ENOMEM;
4242 		goto out_init_vector_data;
4243 	}
4244 
4245 	ret = hns3_init_all_ring(priv);
4246 	if (ret) {
4247 		ret = -ENOMEM;
4248 		goto out_init_ring;
4249 	}
4250 
4251 	ret = hns3_init_phy(netdev);
4252 	if (ret)
4253 		goto out_init_phy;
4254 
4255 	ret = register_netdev(netdev);
4256 	if (ret) {
4257 		dev_err(priv->dev, "probe register netdev fail!\n");
4258 		goto out_reg_netdev_fail;
4259 	}
4260 
4261 	/* the device can work without cpu rmap, only aRFS needs it */
4262 	ret = hns3_set_rx_cpu_rmap(netdev);
4263 	if (ret)
4264 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4265 
4266 	ret = hns3_nic_init_irq(priv);
4267 	if (ret) {
4268 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4269 		hns3_free_rx_cpu_rmap(netdev);
4270 		goto out_init_irq_fail;
4271 	}
4272 
4273 	ret = hns3_client_start(handle);
4274 	if (ret) {
4275 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4276 		goto out_client_start;
4277 	}
4278 
4279 	hns3_dcbnl_setup(handle);
4280 
4281 	hns3_dbg_init(handle);
4282 
4283 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4284 
4285 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4286 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4287 
4288 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4289 
4290 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4291 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4292 
4293 	if (netif_msg_drv(handle))
4294 		hns3_info_show(priv);
4295 
4296 	return ret;
4297 
4298 out_client_start:
4299 	hns3_free_rx_cpu_rmap(netdev);
4300 	hns3_nic_uninit_irq(priv);
4301 out_init_irq_fail:
4302 	unregister_netdev(netdev);
4303 out_reg_netdev_fail:
4304 	hns3_uninit_phy(netdev);
4305 out_init_phy:
4306 	hns3_uninit_all_ring(priv);
4307 out_init_ring:
4308 	hns3_nic_uninit_vector_data(priv);
4309 out_init_vector_data:
4310 	hns3_nic_dealloc_vector_data(priv);
4311 out_alloc_vector_data:
4312 	priv->ring = NULL;
4313 out_get_ring_cfg:
4314 	priv->ae_handle = NULL;
4315 	free_netdev(netdev);
4316 	return ret;
4317 }
4318 
4319 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4320 {
4321 	struct net_device *netdev = handle->kinfo.netdev;
4322 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4323 
4324 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4325 		unregister_netdev(netdev);
4326 
4327 	hns3_client_stop(handle);
4328 
4329 	hns3_uninit_phy(netdev);
4330 
4331 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4332 		netdev_warn(netdev, "already uninitialized\n");
4333 		goto out_netdev_free;
4334 	}
4335 
4336 	hns3_free_rx_cpu_rmap(netdev);
4337 
4338 	hns3_nic_uninit_irq(priv);
4339 
4340 	hns3_del_all_fd_rules(netdev, true);
4341 
4342 	hns3_clear_all_ring(handle, true);
4343 
4344 	hns3_nic_uninit_vector_data(priv);
4345 
4346 	hns3_nic_dealloc_vector_data(priv);
4347 
4348 	hns3_uninit_all_ring(priv);
4349 
4350 	hns3_put_ring_config(priv);
4351 
4352 out_netdev_free:
4353 	hns3_dbg_uninit(handle);
4354 	free_netdev(netdev);
4355 }
4356 
4357 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4358 {
4359 	struct net_device *netdev = handle->kinfo.netdev;
4360 
4361 	if (!netdev)
4362 		return;
4363 
4364 	if (linkup) {
4365 		netif_tx_wake_all_queues(netdev);
4366 		netif_carrier_on(netdev);
4367 		if (netif_msg_link(handle))
4368 			netdev_info(netdev, "link up\n");
4369 	} else {
4370 		netif_carrier_off(netdev);
4371 		netif_tx_stop_all_queues(netdev);
4372 		if (netif_msg_link(handle))
4373 			netdev_info(netdev, "link down\n");
4374 	}
4375 }
4376 
4377 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4378 {
4379 	while (ring->next_to_clean != ring->next_to_use) {
4380 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4381 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4382 		ring_ptr_move_fw(ring, next_to_clean);
4383 	}
4384 
4385 	ring->pending_buf = 0;
4386 }
4387 
4388 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4389 {
4390 	struct hns3_desc_cb res_cbs;
4391 	int ret;
4392 
4393 	while (ring->next_to_use != ring->next_to_clean) {
4394 		/* When a buffer is not reused, it's memory has been
4395 		 * freed in hns3_handle_rx_bd or will be freed by
4396 		 * stack, so we need to replace the buffer here.
4397 		 */
4398 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4399 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4400 			if (ret) {
4401 				u64_stats_update_begin(&ring->syncp);
4402 				ring->stats.sw_err_cnt++;
4403 				u64_stats_update_end(&ring->syncp);
4404 				/* if alloc new buffer fail, exit directly
4405 				 * and reclear in up flow.
4406 				 */
4407 				netdev_warn(ring_to_netdev(ring),
4408 					    "reserve buffer map failed, ret = %d\n",
4409 					    ret);
4410 				return ret;
4411 			}
4412 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4413 		}
4414 		ring_ptr_move_fw(ring, next_to_use);
4415 	}
4416 
4417 	/* Free the pending skb in rx ring */
4418 	if (ring->skb) {
4419 		dev_kfree_skb_any(ring->skb);
4420 		ring->skb = NULL;
4421 		ring->pending_buf = 0;
4422 	}
4423 
4424 	return 0;
4425 }
4426 
4427 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4428 {
4429 	while (ring->next_to_use != ring->next_to_clean) {
4430 		/* When a buffer is not reused, it's memory has been
4431 		 * freed in hns3_handle_rx_bd or will be freed by
4432 		 * stack, so only need to unmap the buffer here.
4433 		 */
4434 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4435 			hns3_unmap_buffer(ring,
4436 					  &ring->desc_cb[ring->next_to_use]);
4437 			ring->desc_cb[ring->next_to_use].dma = 0;
4438 		}
4439 
4440 		ring_ptr_move_fw(ring, next_to_use);
4441 	}
4442 }
4443 
4444 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4445 {
4446 	struct net_device *ndev = h->kinfo.netdev;
4447 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4448 	u32 i;
4449 
4450 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4451 		struct hns3_enet_ring *ring;
4452 
4453 		ring = &priv->ring[i];
4454 		hns3_clear_tx_ring(ring);
4455 
4456 		ring = &priv->ring[i + h->kinfo.num_tqps];
4457 		/* Continue to clear other rings even if clearing some
4458 		 * rings failed.
4459 		 */
4460 		if (force)
4461 			hns3_force_clear_rx_ring(ring);
4462 		else
4463 			hns3_clear_rx_ring(ring);
4464 	}
4465 }
4466 
4467 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4468 {
4469 	struct net_device *ndev = h->kinfo.netdev;
4470 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4471 	struct hns3_enet_ring *rx_ring;
4472 	int i, j;
4473 	int ret;
4474 
4475 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4476 		ret = h->ae_algo->ops->reset_queue(h, i);
4477 		if (ret)
4478 			return ret;
4479 
4480 		hns3_init_ring_hw(&priv->ring[i]);
4481 
4482 		/* We need to clear tx ring here because self test will
4483 		 * use the ring and will not run down before up
4484 		 */
4485 		hns3_clear_tx_ring(&priv->ring[i]);
4486 		priv->ring[i].next_to_clean = 0;
4487 		priv->ring[i].next_to_use = 0;
4488 		priv->ring[i].last_to_use = 0;
4489 
4490 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4491 		hns3_init_ring_hw(rx_ring);
4492 		ret = hns3_clear_rx_ring(rx_ring);
4493 		if (ret)
4494 			return ret;
4495 
4496 		/* We can not know the hardware head and tail when this
4497 		 * function is called in reset flow, so we reuse all desc.
4498 		 */
4499 		for (j = 0; j < rx_ring->desc_num; j++)
4500 			hns3_reuse_buffer(rx_ring, j);
4501 
4502 		rx_ring->next_to_clean = 0;
4503 		rx_ring->next_to_use = 0;
4504 	}
4505 
4506 	hns3_init_tx_ring_tc(priv);
4507 
4508 	return 0;
4509 }
4510 
4511 static void hns3_store_coal(struct hns3_nic_priv *priv)
4512 {
4513 	/* ethtool only support setting and querying one coal
4514 	 * configuration for now, so save the vector 0' coal
4515 	 * configuration here in order to restore it.
4516 	 */
4517 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4518 	       sizeof(struct hns3_enet_coalesce));
4519 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4520 	       sizeof(struct hns3_enet_coalesce));
4521 }
4522 
4523 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4524 {
4525 	u16 vector_num = priv->vector_num;
4526 	int i;
4527 
4528 	for (i = 0; i < vector_num; i++) {
4529 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4530 		       sizeof(struct hns3_enet_coalesce));
4531 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4532 		       sizeof(struct hns3_enet_coalesce));
4533 	}
4534 }
4535 
4536 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4537 {
4538 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4539 	struct net_device *ndev = kinfo->netdev;
4540 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4541 
4542 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4543 		return 0;
4544 
4545 	if (!netif_running(ndev))
4546 		return 0;
4547 
4548 	return hns3_nic_net_stop(ndev);
4549 }
4550 
4551 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4552 {
4553 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4554 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4555 	int ret = 0;
4556 
4557 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4558 
4559 	if (netif_running(kinfo->netdev)) {
4560 		ret = hns3_nic_net_open(kinfo->netdev);
4561 		if (ret) {
4562 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4563 			netdev_err(kinfo->netdev,
4564 				   "net up fail, ret=%d!\n", ret);
4565 			return ret;
4566 		}
4567 	}
4568 
4569 	return ret;
4570 }
4571 
4572 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4573 {
4574 	struct net_device *netdev = handle->kinfo.netdev;
4575 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4576 	int ret;
4577 
4578 	/* Carrier off reporting is important to ethtool even BEFORE open */
4579 	netif_carrier_off(netdev);
4580 
4581 	ret = hns3_get_ring_config(priv);
4582 	if (ret)
4583 		return ret;
4584 
4585 	ret = hns3_nic_alloc_vector_data(priv);
4586 	if (ret)
4587 		goto err_put_ring;
4588 
4589 	hns3_restore_coal(priv);
4590 
4591 	ret = hns3_nic_init_vector_data(priv);
4592 	if (ret)
4593 		goto err_dealloc_vector;
4594 
4595 	ret = hns3_init_all_ring(priv);
4596 	if (ret)
4597 		goto err_uninit_vector;
4598 
4599 	/* the device can work without cpu rmap, only aRFS needs it */
4600 	ret = hns3_set_rx_cpu_rmap(netdev);
4601 	if (ret)
4602 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4603 
4604 	ret = hns3_nic_init_irq(priv);
4605 	if (ret) {
4606 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4607 		hns3_free_rx_cpu_rmap(netdev);
4608 		goto err_init_irq_fail;
4609 	}
4610 
4611 	if (!hns3_is_phys_func(handle->pdev))
4612 		hns3_init_mac_addr(netdev);
4613 
4614 	ret = hns3_client_start(handle);
4615 	if (ret) {
4616 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4617 		goto err_client_start_fail;
4618 	}
4619 
4620 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4621 
4622 	return ret;
4623 
4624 err_client_start_fail:
4625 	hns3_free_rx_cpu_rmap(netdev);
4626 	hns3_nic_uninit_irq(priv);
4627 err_init_irq_fail:
4628 	hns3_uninit_all_ring(priv);
4629 err_uninit_vector:
4630 	hns3_nic_uninit_vector_data(priv);
4631 err_dealloc_vector:
4632 	hns3_nic_dealloc_vector_data(priv);
4633 err_put_ring:
4634 	hns3_put_ring_config(priv);
4635 
4636 	return ret;
4637 }
4638 
4639 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4640 {
4641 	struct net_device *netdev = handle->kinfo.netdev;
4642 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4643 
4644 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4645 		netdev_warn(netdev, "already uninitialized\n");
4646 		return 0;
4647 	}
4648 
4649 	hns3_free_rx_cpu_rmap(netdev);
4650 	hns3_nic_uninit_irq(priv);
4651 	hns3_clear_all_ring(handle, true);
4652 	hns3_reset_tx_queue(priv->ae_handle);
4653 
4654 	hns3_nic_uninit_vector_data(priv);
4655 
4656 	hns3_store_coal(priv);
4657 
4658 	hns3_nic_dealloc_vector_data(priv);
4659 
4660 	hns3_uninit_all_ring(priv);
4661 
4662 	hns3_put_ring_config(priv);
4663 
4664 	return 0;
4665 }
4666 
4667 static int hns3_reset_notify(struct hnae3_handle *handle,
4668 			     enum hnae3_reset_notify_type type)
4669 {
4670 	int ret = 0;
4671 
4672 	switch (type) {
4673 	case HNAE3_UP_CLIENT:
4674 		ret = hns3_reset_notify_up_enet(handle);
4675 		break;
4676 	case HNAE3_DOWN_CLIENT:
4677 		ret = hns3_reset_notify_down_enet(handle);
4678 		break;
4679 	case HNAE3_INIT_CLIENT:
4680 		ret = hns3_reset_notify_init_enet(handle);
4681 		break;
4682 	case HNAE3_UNINIT_CLIENT:
4683 		ret = hns3_reset_notify_uninit_enet(handle);
4684 		break;
4685 	default:
4686 		break;
4687 	}
4688 
4689 	return ret;
4690 }
4691 
4692 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4693 				bool rxfh_configured)
4694 {
4695 	int ret;
4696 
4697 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4698 						 rxfh_configured);
4699 	if (ret) {
4700 		dev_err(&handle->pdev->dev,
4701 			"Change tqp num(%u) fail.\n", new_tqp_num);
4702 		return ret;
4703 	}
4704 
4705 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4706 	if (ret)
4707 		return ret;
4708 
4709 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4710 	if (ret)
4711 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4712 
4713 	return ret;
4714 }
4715 
4716 int hns3_set_channels(struct net_device *netdev,
4717 		      struct ethtool_channels *ch)
4718 {
4719 	struct hnae3_handle *h = hns3_get_handle(netdev);
4720 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4721 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4722 	u32 new_tqp_num = ch->combined_count;
4723 	u16 org_tqp_num;
4724 	int ret;
4725 
4726 	if (hns3_nic_resetting(netdev))
4727 		return -EBUSY;
4728 
4729 	if (ch->rx_count || ch->tx_count)
4730 		return -EINVAL;
4731 
4732 	if (kinfo->tc_info.mqprio_active) {
4733 		dev_err(&netdev->dev,
4734 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4735 		return -EINVAL;
4736 	}
4737 
4738 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4739 	    new_tqp_num < 1) {
4740 		dev_err(&netdev->dev,
4741 			"Change tqps fail, the tqp range is from 1 to %u",
4742 			hns3_get_max_available_channels(h));
4743 		return -EINVAL;
4744 	}
4745 
4746 	if (kinfo->rss_size == new_tqp_num)
4747 		return 0;
4748 
4749 	netif_dbg(h, drv, netdev,
4750 		  "set channels: tqp_num=%u, rxfh=%d\n",
4751 		  new_tqp_num, rxfh_configured);
4752 
4753 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4754 	if (ret)
4755 		return ret;
4756 
4757 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4758 	if (ret)
4759 		return ret;
4760 
4761 	org_tqp_num = h->kinfo.num_tqps;
4762 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4763 	if (ret) {
4764 		int ret1;
4765 
4766 		netdev_warn(netdev,
4767 			    "Change channels fail, revert to old value\n");
4768 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4769 		if (ret1) {
4770 			netdev_err(netdev,
4771 				   "revert to old channel fail\n");
4772 			return ret1;
4773 		}
4774 
4775 		return ret;
4776 	}
4777 
4778 	return 0;
4779 }
4780 
4781 static const struct hns3_hw_error_info hns3_hw_err[] = {
4782 	{ .type = HNAE3_PPU_POISON_ERROR,
4783 	  .msg = "PPU poison" },
4784 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4785 	  .msg = "IMP CMDQ error" },
4786 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4787 	  .msg = "IMP RD poison" },
4788 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4789 	  .msg = "ROCEE AXI RESP error" },
4790 };
4791 
4792 static void hns3_process_hw_error(struct hnae3_handle *handle,
4793 				  enum hnae3_hw_error_type type)
4794 {
4795 	int i;
4796 
4797 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4798 		if (hns3_hw_err[i].type == type) {
4799 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4800 				hns3_hw_err[i].msg);
4801 			break;
4802 		}
4803 	}
4804 }
4805 
4806 static const struct hnae3_client_ops client_ops = {
4807 	.init_instance = hns3_client_init,
4808 	.uninit_instance = hns3_client_uninit,
4809 	.link_status_change = hns3_link_status_change,
4810 	.reset_notify = hns3_reset_notify,
4811 	.process_hw_error = hns3_process_hw_error,
4812 };
4813 
4814 /* hns3_init_module - Driver registration routine
4815  * hns3_init_module is the first routine called when the driver is
4816  * loaded. All it does is register with the PCI subsystem.
4817  */
4818 static int __init hns3_init_module(void)
4819 {
4820 	int ret;
4821 
4822 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4823 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4824 
4825 	client.type = HNAE3_CLIENT_KNIC;
4826 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4827 		 hns3_driver_name);
4828 
4829 	client.ops = &client_ops;
4830 
4831 	INIT_LIST_HEAD(&client.node);
4832 
4833 	hns3_dbg_register_debugfs(hns3_driver_name);
4834 
4835 	ret = hnae3_register_client(&client);
4836 	if (ret)
4837 		goto err_reg_client;
4838 
4839 	ret = pci_register_driver(&hns3_driver);
4840 	if (ret)
4841 		goto err_reg_driver;
4842 
4843 	return ret;
4844 
4845 err_reg_driver:
4846 	hnae3_unregister_client(&client);
4847 err_reg_client:
4848 	hns3_dbg_unregister_debugfs();
4849 	return ret;
4850 }
4851 module_init(hns3_init_module);
4852 
4853 /* hns3_exit_module - Driver exit cleanup routine
4854  * hns3_exit_module is called just before the driver is removed
4855  * from memory.
4856  */
4857 static void __exit hns3_exit_module(void)
4858 {
4859 	pci_unregister_driver(&hns3_driver);
4860 	hnae3_unregister_client(&client);
4861 	hns3_dbg_unregister_debugfs();
4862 }
4863 module_exit(hns3_exit_module);
4864 
4865 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4866 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4867 MODULE_LICENSE("GPL");
4868 MODULE_ALIAS("pci:hns-nic");
4869