1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/dma-mapping.h> 5 #include <linux/etherdevice.h> 6 #include <linux/interrupt.h> 7 #ifdef CONFIG_RFS_ACCEL 8 #include <linux/cpu_rmap.h> 9 #endif 10 #include <linux/if_vlan.h> 11 #include <linux/irq.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/pci.h> 16 #include <linux/skbuff.h> 17 #include <linux/sctp.h> 18 #include <net/gre.h> 19 #include <net/gro.h> 20 #include <net/ip6_checksum.h> 21 #include <net/page_pool/helpers.h> 22 #include <net/pkt_cls.h> 23 #include <net/pkt_sched.h> 24 #include <net/tcp.h> 25 #include <net/vxlan.h> 26 #include <net/geneve.h> 27 28 #include "hnae3.h" 29 #include "hns3_enet.h" 30 /* All hns3 tracepoints are defined by the include below, which 31 * must be included exactly once across the whole kernel with 32 * CREATE_TRACE_POINTS defined 33 */ 34 #define CREATE_TRACE_POINTS 35 #include "hns3_trace.h" 36 37 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) 38 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) 39 40 #define hns3_rl_err(fmt, ...) \ 41 do { \ 42 if (net_ratelimit()) \ 43 netdev_err(fmt, ##__VA_ARGS__); \ 44 } while (0) 45 46 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); 47 48 static const char hns3_driver_name[] = "hns3"; 49 static const char hns3_driver_string[] = 50 "Hisilicon Ethernet Network Driver for Hip08 Family"; 51 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; 52 static struct hnae3_client client; 53 54 static int debug = -1; 55 module_param(debug, int, 0); 56 MODULE_PARM_DESC(debug, " Network interface message level setting"); 57 58 static unsigned int tx_sgl = 1; 59 module_param(tx_sgl, uint, 0600); 60 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); 61 62 static bool page_pool_enabled = true; 63 module_param(page_pool_enabled, bool, 0400); 64 65 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ 66 sizeof(struct sg_table)) 67 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ 68 dma_get_cache_alignment()) 69 70 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 71 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) 72 73 #define HNS3_INNER_VLAN_TAG 1 74 #define HNS3_OUTER_VLAN_TAG 2 75 76 #define HNS3_MIN_TX_LEN 33U 77 #define HNS3_MIN_TUN_PKT_LEN 65U 78 79 /* hns3_pci_tbl - PCI Device ID Table 80 * 81 * Last entry must be all 0s 82 * 83 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 84 * Class, Class Mask, private data (not used) } 85 */ 86 static const struct pci_device_id hns3_pci_tbl[] = { 87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 89 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 90 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 91 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 92 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 93 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 94 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 95 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 96 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 97 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 98 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 99 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 100 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 102 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 103 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 104 /* required last entry */ 105 {0,} 106 }; 107 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); 108 109 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \ 110 { ptype, \ 111 l, \ 112 CHECKSUM_##s, \ 113 HNS3_L3_TYPE_##t, \ 114 1, \ 115 h} 116 117 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ 118 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \ 119 PKT_HASH_TYPE_NONE } 120 121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { 122 HNS3_RX_PTYPE_UNUSED_ENTRY(0), 123 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE), 124 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE), 125 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE), 126 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 127 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 128 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 129 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE), 130 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 131 HNS3_RX_PTYPE_UNUSED_ENTRY(9), 132 HNS3_RX_PTYPE_UNUSED_ENTRY(10), 133 HNS3_RX_PTYPE_UNUSED_ENTRY(11), 134 HNS3_RX_PTYPE_UNUSED_ENTRY(12), 135 HNS3_RX_PTYPE_UNUSED_ENTRY(13), 136 HNS3_RX_PTYPE_UNUSED_ENTRY(14), 137 HNS3_RX_PTYPE_UNUSED_ENTRY(15), 138 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 139 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), 140 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), 141 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 142 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 143 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE), 144 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 145 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3), 146 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3), 147 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 148 HNS3_RX_PTYPE_UNUSED_ENTRY(26), 149 HNS3_RX_PTYPE_UNUSED_ENTRY(27), 150 HNS3_RX_PTYPE_UNUSED_ENTRY(28), 151 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 152 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 153 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 154 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 155 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 156 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 157 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 158 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 159 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 160 HNS3_RX_PTYPE_UNUSED_ENTRY(38), 161 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 162 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 163 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 164 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 165 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 166 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 167 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 168 HNS3_RX_PTYPE_UNUSED_ENTRY(46), 169 HNS3_RX_PTYPE_UNUSED_ENTRY(47), 170 HNS3_RX_PTYPE_UNUSED_ENTRY(48), 171 HNS3_RX_PTYPE_UNUSED_ENTRY(49), 172 HNS3_RX_PTYPE_UNUSED_ENTRY(50), 173 HNS3_RX_PTYPE_UNUSED_ENTRY(51), 174 HNS3_RX_PTYPE_UNUSED_ENTRY(52), 175 HNS3_RX_PTYPE_UNUSED_ENTRY(53), 176 HNS3_RX_PTYPE_UNUSED_ENTRY(54), 177 HNS3_RX_PTYPE_UNUSED_ENTRY(55), 178 HNS3_RX_PTYPE_UNUSED_ENTRY(56), 179 HNS3_RX_PTYPE_UNUSED_ENTRY(57), 180 HNS3_RX_PTYPE_UNUSED_ENTRY(58), 181 HNS3_RX_PTYPE_UNUSED_ENTRY(59), 182 HNS3_RX_PTYPE_UNUSED_ENTRY(60), 183 HNS3_RX_PTYPE_UNUSED_ENTRY(61), 184 HNS3_RX_PTYPE_UNUSED_ENTRY(62), 185 HNS3_RX_PTYPE_UNUSED_ENTRY(63), 186 HNS3_RX_PTYPE_UNUSED_ENTRY(64), 187 HNS3_RX_PTYPE_UNUSED_ENTRY(65), 188 HNS3_RX_PTYPE_UNUSED_ENTRY(66), 189 HNS3_RX_PTYPE_UNUSED_ENTRY(67), 190 HNS3_RX_PTYPE_UNUSED_ENTRY(68), 191 HNS3_RX_PTYPE_UNUSED_ENTRY(69), 192 HNS3_RX_PTYPE_UNUSED_ENTRY(70), 193 HNS3_RX_PTYPE_UNUSED_ENTRY(71), 194 HNS3_RX_PTYPE_UNUSED_ENTRY(72), 195 HNS3_RX_PTYPE_UNUSED_ENTRY(73), 196 HNS3_RX_PTYPE_UNUSED_ENTRY(74), 197 HNS3_RX_PTYPE_UNUSED_ENTRY(75), 198 HNS3_RX_PTYPE_UNUSED_ENTRY(76), 199 HNS3_RX_PTYPE_UNUSED_ENTRY(77), 200 HNS3_RX_PTYPE_UNUSED_ENTRY(78), 201 HNS3_RX_PTYPE_UNUSED_ENTRY(79), 202 HNS3_RX_PTYPE_UNUSED_ENTRY(80), 203 HNS3_RX_PTYPE_UNUSED_ENTRY(81), 204 HNS3_RX_PTYPE_UNUSED_ENTRY(82), 205 HNS3_RX_PTYPE_UNUSED_ENTRY(83), 206 HNS3_RX_PTYPE_UNUSED_ENTRY(84), 207 HNS3_RX_PTYPE_UNUSED_ENTRY(85), 208 HNS3_RX_PTYPE_UNUSED_ENTRY(86), 209 HNS3_RX_PTYPE_UNUSED_ENTRY(87), 210 HNS3_RX_PTYPE_UNUSED_ENTRY(88), 211 HNS3_RX_PTYPE_UNUSED_ENTRY(89), 212 HNS3_RX_PTYPE_UNUSED_ENTRY(90), 213 HNS3_RX_PTYPE_UNUSED_ENTRY(91), 214 HNS3_RX_PTYPE_UNUSED_ENTRY(92), 215 HNS3_RX_PTYPE_UNUSED_ENTRY(93), 216 HNS3_RX_PTYPE_UNUSED_ENTRY(94), 217 HNS3_RX_PTYPE_UNUSED_ENTRY(95), 218 HNS3_RX_PTYPE_UNUSED_ENTRY(96), 219 HNS3_RX_PTYPE_UNUSED_ENTRY(97), 220 HNS3_RX_PTYPE_UNUSED_ENTRY(98), 221 HNS3_RX_PTYPE_UNUSED_ENTRY(99), 222 HNS3_RX_PTYPE_UNUSED_ENTRY(100), 223 HNS3_RX_PTYPE_UNUSED_ENTRY(101), 224 HNS3_RX_PTYPE_UNUSED_ENTRY(102), 225 HNS3_RX_PTYPE_UNUSED_ENTRY(103), 226 HNS3_RX_PTYPE_UNUSED_ENTRY(104), 227 HNS3_RX_PTYPE_UNUSED_ENTRY(105), 228 HNS3_RX_PTYPE_UNUSED_ENTRY(106), 229 HNS3_RX_PTYPE_UNUSED_ENTRY(107), 230 HNS3_RX_PTYPE_UNUSED_ENTRY(108), 231 HNS3_RX_PTYPE_UNUSED_ENTRY(109), 232 HNS3_RX_PTYPE_UNUSED_ENTRY(110), 233 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 234 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 235 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 236 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 237 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 238 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 239 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 240 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 241 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 242 HNS3_RX_PTYPE_UNUSED_ENTRY(120), 243 HNS3_RX_PTYPE_UNUSED_ENTRY(121), 244 HNS3_RX_PTYPE_UNUSED_ENTRY(122), 245 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 246 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 247 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 248 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 249 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 250 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 251 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 252 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 253 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 254 HNS3_RX_PTYPE_UNUSED_ENTRY(132), 255 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 256 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 257 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 258 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 259 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 260 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 261 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 262 HNS3_RX_PTYPE_UNUSED_ENTRY(140), 263 HNS3_RX_PTYPE_UNUSED_ENTRY(141), 264 HNS3_RX_PTYPE_UNUSED_ENTRY(142), 265 HNS3_RX_PTYPE_UNUSED_ENTRY(143), 266 HNS3_RX_PTYPE_UNUSED_ENTRY(144), 267 HNS3_RX_PTYPE_UNUSED_ENTRY(145), 268 HNS3_RX_PTYPE_UNUSED_ENTRY(146), 269 HNS3_RX_PTYPE_UNUSED_ENTRY(147), 270 HNS3_RX_PTYPE_UNUSED_ENTRY(148), 271 HNS3_RX_PTYPE_UNUSED_ENTRY(149), 272 HNS3_RX_PTYPE_UNUSED_ENTRY(150), 273 HNS3_RX_PTYPE_UNUSED_ENTRY(151), 274 HNS3_RX_PTYPE_UNUSED_ENTRY(152), 275 HNS3_RX_PTYPE_UNUSED_ENTRY(153), 276 HNS3_RX_PTYPE_UNUSED_ENTRY(154), 277 HNS3_RX_PTYPE_UNUSED_ENTRY(155), 278 HNS3_RX_PTYPE_UNUSED_ENTRY(156), 279 HNS3_RX_PTYPE_UNUSED_ENTRY(157), 280 HNS3_RX_PTYPE_UNUSED_ENTRY(158), 281 HNS3_RX_PTYPE_UNUSED_ENTRY(159), 282 HNS3_RX_PTYPE_UNUSED_ENTRY(160), 283 HNS3_RX_PTYPE_UNUSED_ENTRY(161), 284 HNS3_RX_PTYPE_UNUSED_ENTRY(162), 285 HNS3_RX_PTYPE_UNUSED_ENTRY(163), 286 HNS3_RX_PTYPE_UNUSED_ENTRY(164), 287 HNS3_RX_PTYPE_UNUSED_ENTRY(165), 288 HNS3_RX_PTYPE_UNUSED_ENTRY(166), 289 HNS3_RX_PTYPE_UNUSED_ENTRY(167), 290 HNS3_RX_PTYPE_UNUSED_ENTRY(168), 291 HNS3_RX_PTYPE_UNUSED_ENTRY(169), 292 HNS3_RX_PTYPE_UNUSED_ENTRY(170), 293 HNS3_RX_PTYPE_UNUSED_ENTRY(171), 294 HNS3_RX_PTYPE_UNUSED_ENTRY(172), 295 HNS3_RX_PTYPE_UNUSED_ENTRY(173), 296 HNS3_RX_PTYPE_UNUSED_ENTRY(174), 297 HNS3_RX_PTYPE_UNUSED_ENTRY(175), 298 HNS3_RX_PTYPE_UNUSED_ENTRY(176), 299 HNS3_RX_PTYPE_UNUSED_ENTRY(177), 300 HNS3_RX_PTYPE_UNUSED_ENTRY(178), 301 HNS3_RX_PTYPE_UNUSED_ENTRY(179), 302 HNS3_RX_PTYPE_UNUSED_ENTRY(180), 303 HNS3_RX_PTYPE_UNUSED_ENTRY(181), 304 HNS3_RX_PTYPE_UNUSED_ENTRY(182), 305 HNS3_RX_PTYPE_UNUSED_ENTRY(183), 306 HNS3_RX_PTYPE_UNUSED_ENTRY(184), 307 HNS3_RX_PTYPE_UNUSED_ENTRY(185), 308 HNS3_RX_PTYPE_UNUSED_ENTRY(186), 309 HNS3_RX_PTYPE_UNUSED_ENTRY(187), 310 HNS3_RX_PTYPE_UNUSED_ENTRY(188), 311 HNS3_RX_PTYPE_UNUSED_ENTRY(189), 312 HNS3_RX_PTYPE_UNUSED_ENTRY(190), 313 HNS3_RX_PTYPE_UNUSED_ENTRY(191), 314 HNS3_RX_PTYPE_UNUSED_ENTRY(192), 315 HNS3_RX_PTYPE_UNUSED_ENTRY(193), 316 HNS3_RX_PTYPE_UNUSED_ENTRY(194), 317 HNS3_RX_PTYPE_UNUSED_ENTRY(195), 318 HNS3_RX_PTYPE_UNUSED_ENTRY(196), 319 HNS3_RX_PTYPE_UNUSED_ENTRY(197), 320 HNS3_RX_PTYPE_UNUSED_ENTRY(198), 321 HNS3_RX_PTYPE_UNUSED_ENTRY(199), 322 HNS3_RX_PTYPE_UNUSED_ENTRY(200), 323 HNS3_RX_PTYPE_UNUSED_ENTRY(201), 324 HNS3_RX_PTYPE_UNUSED_ENTRY(202), 325 HNS3_RX_PTYPE_UNUSED_ENTRY(203), 326 HNS3_RX_PTYPE_UNUSED_ENTRY(204), 327 HNS3_RX_PTYPE_UNUSED_ENTRY(205), 328 HNS3_RX_PTYPE_UNUSED_ENTRY(206), 329 HNS3_RX_PTYPE_UNUSED_ENTRY(207), 330 HNS3_RX_PTYPE_UNUSED_ENTRY(208), 331 HNS3_RX_PTYPE_UNUSED_ENTRY(209), 332 HNS3_RX_PTYPE_UNUSED_ENTRY(210), 333 HNS3_RX_PTYPE_UNUSED_ENTRY(211), 334 HNS3_RX_PTYPE_UNUSED_ENTRY(212), 335 HNS3_RX_PTYPE_UNUSED_ENTRY(213), 336 HNS3_RX_PTYPE_UNUSED_ENTRY(214), 337 HNS3_RX_PTYPE_UNUSED_ENTRY(215), 338 HNS3_RX_PTYPE_UNUSED_ENTRY(216), 339 HNS3_RX_PTYPE_UNUSED_ENTRY(217), 340 HNS3_RX_PTYPE_UNUSED_ENTRY(218), 341 HNS3_RX_PTYPE_UNUSED_ENTRY(219), 342 HNS3_RX_PTYPE_UNUSED_ENTRY(220), 343 HNS3_RX_PTYPE_UNUSED_ENTRY(221), 344 HNS3_RX_PTYPE_UNUSED_ENTRY(222), 345 HNS3_RX_PTYPE_UNUSED_ENTRY(223), 346 HNS3_RX_PTYPE_UNUSED_ENTRY(224), 347 HNS3_RX_PTYPE_UNUSED_ENTRY(225), 348 HNS3_RX_PTYPE_UNUSED_ENTRY(226), 349 HNS3_RX_PTYPE_UNUSED_ENTRY(227), 350 HNS3_RX_PTYPE_UNUSED_ENTRY(228), 351 HNS3_RX_PTYPE_UNUSED_ENTRY(229), 352 HNS3_RX_PTYPE_UNUSED_ENTRY(230), 353 HNS3_RX_PTYPE_UNUSED_ENTRY(231), 354 HNS3_RX_PTYPE_UNUSED_ENTRY(232), 355 HNS3_RX_PTYPE_UNUSED_ENTRY(233), 356 HNS3_RX_PTYPE_UNUSED_ENTRY(234), 357 HNS3_RX_PTYPE_UNUSED_ENTRY(235), 358 HNS3_RX_PTYPE_UNUSED_ENTRY(236), 359 HNS3_RX_PTYPE_UNUSED_ENTRY(237), 360 HNS3_RX_PTYPE_UNUSED_ENTRY(238), 361 HNS3_RX_PTYPE_UNUSED_ENTRY(239), 362 HNS3_RX_PTYPE_UNUSED_ENTRY(240), 363 HNS3_RX_PTYPE_UNUSED_ENTRY(241), 364 HNS3_RX_PTYPE_UNUSED_ENTRY(242), 365 HNS3_RX_PTYPE_UNUSED_ENTRY(243), 366 HNS3_RX_PTYPE_UNUSED_ENTRY(244), 367 HNS3_RX_PTYPE_UNUSED_ENTRY(245), 368 HNS3_RX_PTYPE_UNUSED_ENTRY(246), 369 HNS3_RX_PTYPE_UNUSED_ENTRY(247), 370 HNS3_RX_PTYPE_UNUSED_ENTRY(248), 371 HNS3_RX_PTYPE_UNUSED_ENTRY(249), 372 HNS3_RX_PTYPE_UNUSED_ENTRY(250), 373 HNS3_RX_PTYPE_UNUSED_ENTRY(251), 374 HNS3_RX_PTYPE_UNUSED_ENTRY(252), 375 HNS3_RX_PTYPE_UNUSED_ENTRY(253), 376 HNS3_RX_PTYPE_UNUSED_ENTRY(254), 377 HNS3_RX_PTYPE_UNUSED_ENTRY(255), 378 }; 379 380 #define HNS3_INVALID_PTYPE \ 381 ARRAY_SIZE(hns3_rx_ptype_tbl) 382 383 static irqreturn_t hns3_irq_handle(int irq, void *vector) 384 { 385 struct hns3_enet_tqp_vector *tqp_vector = vector; 386 387 napi_schedule_irqoff(&tqp_vector->napi); 388 tqp_vector->event_cnt++; 389 390 return IRQ_HANDLED; 391 } 392 393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) 394 { 395 struct hns3_enet_tqp_vector *tqp_vectors; 396 unsigned int i; 397 398 for (i = 0; i < priv->vector_num; i++) { 399 tqp_vectors = &priv->tqp_vector[i]; 400 401 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) 402 continue; 403 404 /* clear the affinity mask */ 405 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); 406 407 /* release the irq resource */ 408 free_irq(tqp_vectors->vector_irq, tqp_vectors); 409 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; 410 } 411 } 412 413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv) 414 { 415 struct hns3_enet_tqp_vector *tqp_vectors; 416 int txrx_int_idx = 0; 417 int rx_int_idx = 0; 418 int tx_int_idx = 0; 419 unsigned int i; 420 int ret; 421 422 for (i = 0; i < priv->vector_num; i++) { 423 tqp_vectors = &priv->tqp_vector[i]; 424 425 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) 426 continue; 427 428 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { 429 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 430 "%s-%s-%s-%d", hns3_driver_name, 431 pci_name(priv->ae_handle->pdev), 432 "TxRx", txrx_int_idx++); 433 txrx_int_idx++; 434 } else if (tqp_vectors->rx_group.ring) { 435 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 436 "%s-%s-%s-%d", hns3_driver_name, 437 pci_name(priv->ae_handle->pdev), 438 "Rx", rx_int_idx++); 439 } else if (tqp_vectors->tx_group.ring) { 440 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 441 "%s-%s-%s-%d", hns3_driver_name, 442 pci_name(priv->ae_handle->pdev), 443 "Tx", tx_int_idx++); 444 } else { 445 /* Skip this unused q_vector */ 446 continue; 447 } 448 449 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; 450 451 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); 452 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, 453 tqp_vectors->name, tqp_vectors); 454 if (ret) { 455 netdev_err(priv->netdev, "request irq(%d) fail\n", 456 tqp_vectors->vector_irq); 457 hns3_nic_uninit_irq(priv); 458 return ret; 459 } 460 461 irq_set_affinity_hint(tqp_vectors->vector_irq, 462 &tqp_vectors->affinity_mask); 463 464 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; 465 } 466 467 return 0; 468 } 469 470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, 471 u32 mask_en) 472 { 473 writel(mask_en, tqp_vector->mask_addr); 474 } 475 476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) 477 { 478 napi_enable(&tqp_vector->napi); 479 enable_irq(tqp_vector->vector_irq); 480 481 /* enable vector */ 482 hns3_mask_vector_irq(tqp_vector, 1); 483 } 484 485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) 486 { 487 /* disable vector */ 488 hns3_mask_vector_irq(tqp_vector, 0); 489 490 disable_irq(tqp_vector->vector_irq); 491 napi_disable(&tqp_vector->napi); 492 cancel_work_sync(&tqp_vector->rx_group.dim.work); 493 cancel_work_sync(&tqp_vector->tx_group.dim.work); 494 } 495 496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, 497 u32 rl_value) 498 { 499 u32 rl_reg = hns3_rl_usec_to_reg(rl_value); 500 501 /* this defines the configuration for RL (Interrupt Rate Limiter). 502 * Rl defines rate of interrupts i.e. number of interrupts-per-second 503 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing 504 */ 505 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && 506 !tqp_vector->rx_group.coal.adapt_enable) 507 /* According to the hardware, the range of rl_reg is 508 * 0-59 and the unit is 4. 509 */ 510 rl_reg |= HNS3_INT_RL_ENABLE_MASK; 511 512 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); 513 } 514 515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, 516 u32 gl_value) 517 { 518 u32 new_val; 519 520 if (tqp_vector->rx_group.coal.unit_1us) 521 new_val = gl_value | HNS3_INT_GL_1US; 522 else 523 new_val = hns3_gl_usec_to_reg(gl_value); 524 525 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); 526 } 527 528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, 529 u32 gl_value) 530 { 531 u32 new_val; 532 533 if (tqp_vector->tx_group.coal.unit_1us) 534 new_val = gl_value | HNS3_INT_GL_1US; 535 else 536 new_val = hns3_gl_usec_to_reg(gl_value); 537 538 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); 539 } 540 541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, 542 u32 ql_value) 543 { 544 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); 545 } 546 547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, 548 u32 ql_value) 549 { 550 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); 551 } 552 553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, 554 struct hns3_nic_priv *priv) 555 { 556 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 557 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 558 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 559 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; 560 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; 561 562 tx_coal->adapt_enable = ptx_coal->adapt_enable; 563 rx_coal->adapt_enable = prx_coal->adapt_enable; 564 565 tx_coal->int_gl = ptx_coal->int_gl; 566 rx_coal->int_gl = prx_coal->int_gl; 567 568 rx_coal->flow_level = prx_coal->flow_level; 569 tx_coal->flow_level = ptx_coal->flow_level; 570 571 /* device version above V3(include V3), GL can configure 1us 572 * unit, so uses 1us unit. 573 */ 574 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { 575 tx_coal->unit_1us = 1; 576 rx_coal->unit_1us = 1; 577 } 578 579 if (ae_dev->dev_specs.int_ql_max) { 580 tx_coal->ql_enable = 1; 581 rx_coal->ql_enable = 1; 582 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 583 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 584 tx_coal->int_ql = ptx_coal->int_ql; 585 rx_coal->int_ql = prx_coal->int_ql; 586 } 587 } 588 589 static void 590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, 591 struct hns3_nic_priv *priv) 592 { 593 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 594 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 595 struct hnae3_handle *h = priv->ae_handle; 596 597 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); 598 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); 599 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); 600 601 if (tx_coal->ql_enable) 602 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); 603 604 if (rx_coal->ql_enable) 605 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); 606 } 607 608 static int hns3_nic_set_real_num_queue(struct net_device *netdev) 609 { 610 struct hnae3_handle *h = hns3_get_handle(netdev); 611 struct hnae3_knic_private_info *kinfo = &h->kinfo; 612 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 613 unsigned int queue_size = kinfo->num_tqps; 614 int i, ret; 615 616 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { 617 netdev_reset_tc(netdev); 618 } else { 619 ret = netdev_set_num_tc(netdev, tc_info->num_tc); 620 if (ret) { 621 netdev_err(netdev, 622 "netdev_set_num_tc fail, ret=%d!\n", ret); 623 return ret; 624 } 625 626 for (i = 0; i < tc_info->num_tc; i++) 627 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], 628 tc_info->tqp_offset[i]); 629 } 630 631 ret = netif_set_real_num_tx_queues(netdev, queue_size); 632 if (ret) { 633 netdev_err(netdev, 634 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); 635 return ret; 636 } 637 638 ret = netif_set_real_num_rx_queues(netdev, queue_size); 639 if (ret) { 640 netdev_err(netdev, 641 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 642 return ret; 643 } 644 645 return 0; 646 } 647 648 u16 hns3_get_max_available_channels(struct hnae3_handle *h) 649 { 650 u16 alloc_tqps, max_rss_size, rss_size; 651 652 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); 653 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; 654 655 return min_t(u16, rss_size, max_rss_size); 656 } 657 658 static void hns3_tqp_enable(struct hnae3_queue *tqp) 659 { 660 u32 rcb_reg; 661 662 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 663 rcb_reg |= BIT(HNS3_RING_EN_B); 664 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 665 } 666 667 static void hns3_tqp_disable(struct hnae3_queue *tqp) 668 { 669 u32 rcb_reg; 670 671 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 672 rcb_reg &= ~BIT(HNS3_RING_EN_B); 673 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 674 } 675 676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev) 677 { 678 #ifdef CONFIG_RFS_ACCEL 679 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 680 netdev->rx_cpu_rmap = NULL; 681 #endif 682 } 683 684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev) 685 { 686 #ifdef CONFIG_RFS_ACCEL 687 struct hns3_nic_priv *priv = netdev_priv(netdev); 688 struct hns3_enet_tqp_vector *tqp_vector; 689 int i, ret; 690 691 if (!netdev->rx_cpu_rmap) { 692 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); 693 if (!netdev->rx_cpu_rmap) 694 return -ENOMEM; 695 } 696 697 for (i = 0; i < priv->vector_num; i++) { 698 tqp_vector = &priv->tqp_vector[i]; 699 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, 700 tqp_vector->vector_irq); 701 if (ret) { 702 hns3_free_rx_cpu_rmap(netdev); 703 return ret; 704 } 705 } 706 #endif 707 return 0; 708 } 709 710 static int hns3_nic_net_up(struct net_device *netdev) 711 { 712 struct hns3_nic_priv *priv = netdev_priv(netdev); 713 struct hnae3_handle *h = priv->ae_handle; 714 int i, j; 715 int ret; 716 717 ret = hns3_nic_reset_all_ring(h); 718 if (ret) 719 return ret; 720 721 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); 722 723 /* enable the vectors */ 724 for (i = 0; i < priv->vector_num; i++) 725 hns3_vector_enable(&priv->tqp_vector[i]); 726 727 /* enable rcb */ 728 for (j = 0; j < h->kinfo.num_tqps; j++) 729 hns3_tqp_enable(h->kinfo.tqp[j]); 730 731 /* start the ae_dev */ 732 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; 733 if (ret) { 734 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 735 while (j--) 736 hns3_tqp_disable(h->kinfo.tqp[j]); 737 738 for (j = i - 1; j >= 0; j--) 739 hns3_vector_disable(&priv->tqp_vector[j]); 740 } 741 742 return ret; 743 } 744 745 static void hns3_config_xps(struct hns3_nic_priv *priv) 746 { 747 int i; 748 749 for (i = 0; i < priv->vector_num; i++) { 750 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; 751 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; 752 753 while (ring) { 754 int ret; 755 756 ret = netif_set_xps_queue(priv->netdev, 757 &tqp_vector->affinity_mask, 758 ring->tqp->tqp_index); 759 if (ret) 760 netdev_warn(priv->netdev, 761 "set xps queue failed: %d", ret); 762 763 ring = ring->next; 764 } 765 } 766 } 767 768 static int hns3_nic_net_open(struct net_device *netdev) 769 { 770 struct hns3_nic_priv *priv = netdev_priv(netdev); 771 struct hnae3_handle *h = hns3_get_handle(netdev); 772 struct hnae3_knic_private_info *kinfo; 773 int i, ret; 774 775 if (hns3_nic_resetting(netdev)) 776 return -EBUSY; 777 778 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 779 netdev_warn(netdev, "net open repeatedly!\n"); 780 return 0; 781 } 782 783 netif_carrier_off(netdev); 784 785 ret = hns3_nic_set_real_num_queue(netdev); 786 if (ret) 787 return ret; 788 789 ret = hns3_nic_net_up(netdev); 790 if (ret) { 791 netdev_err(netdev, "net up fail, ret=%d!\n", ret); 792 return ret; 793 } 794 795 kinfo = &h->kinfo; 796 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) 797 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); 798 799 if (h->ae_algo->ops->set_timer_task) 800 h->ae_algo->ops->set_timer_task(priv->ae_handle, true); 801 802 hns3_config_xps(priv); 803 804 netif_dbg(h, drv, netdev, "net open\n"); 805 806 return 0; 807 } 808 809 static void hns3_reset_tx_queue(struct hnae3_handle *h) 810 { 811 struct net_device *ndev = h->kinfo.netdev; 812 struct hns3_nic_priv *priv = netdev_priv(ndev); 813 struct netdev_queue *dev_queue; 814 u32 i; 815 816 for (i = 0; i < h->kinfo.num_tqps; i++) { 817 dev_queue = netdev_get_tx_queue(ndev, 818 priv->ring[i].queue_index); 819 netdev_tx_reset_queue(dev_queue); 820 } 821 } 822 823 static void hns3_nic_net_down(struct net_device *netdev) 824 { 825 struct hns3_nic_priv *priv = netdev_priv(netdev); 826 struct hnae3_handle *h = hns3_get_handle(netdev); 827 const struct hnae3_ae_ops *ops; 828 int i; 829 830 /* disable vectors */ 831 for (i = 0; i < priv->vector_num; i++) 832 hns3_vector_disable(&priv->tqp_vector[i]); 833 834 /* disable rcb */ 835 for (i = 0; i < h->kinfo.num_tqps; i++) 836 hns3_tqp_disable(h->kinfo.tqp[i]); 837 838 /* stop ae_dev */ 839 ops = priv->ae_handle->ae_algo->ops; 840 if (ops->stop) 841 ops->stop(priv->ae_handle); 842 843 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet 844 * during reset process, because driver may not be able 845 * to disable the ring through firmware when downing the netdev. 846 */ 847 if (!hns3_nic_resetting(netdev)) 848 hns3_clear_all_ring(priv->ae_handle, false); 849 850 hns3_reset_tx_queue(priv->ae_handle); 851 } 852 853 static int hns3_nic_net_stop(struct net_device *netdev) 854 { 855 struct hns3_nic_priv *priv = netdev_priv(netdev); 856 struct hnae3_handle *h = hns3_get_handle(netdev); 857 858 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 859 return 0; 860 861 netif_dbg(h, drv, netdev, "net stop\n"); 862 863 if (h->ae_algo->ops->set_timer_task) 864 h->ae_algo->ops->set_timer_task(priv->ae_handle, false); 865 866 netif_carrier_off(netdev); 867 netif_tx_disable(netdev); 868 869 hns3_nic_net_down(netdev); 870 871 return 0; 872 } 873 874 static int hns3_nic_uc_sync(struct net_device *netdev, 875 const unsigned char *addr) 876 { 877 struct hnae3_handle *h = hns3_get_handle(netdev); 878 879 if (h->ae_algo->ops->add_uc_addr) 880 return h->ae_algo->ops->add_uc_addr(h, addr); 881 882 return 0; 883 } 884 885 static int hns3_nic_uc_unsync(struct net_device *netdev, 886 const unsigned char *addr) 887 { 888 struct hnae3_handle *h = hns3_get_handle(netdev); 889 890 /* need ignore the request of removing device address, because 891 * we store the device address and other addresses of uc list 892 * in the function's mac filter list. 893 */ 894 if (ether_addr_equal(addr, netdev->dev_addr)) 895 return 0; 896 897 if (h->ae_algo->ops->rm_uc_addr) 898 return h->ae_algo->ops->rm_uc_addr(h, addr); 899 900 return 0; 901 } 902 903 static int hns3_nic_mc_sync(struct net_device *netdev, 904 const unsigned char *addr) 905 { 906 struct hnae3_handle *h = hns3_get_handle(netdev); 907 908 if (h->ae_algo->ops->add_mc_addr) 909 return h->ae_algo->ops->add_mc_addr(h, addr); 910 911 return 0; 912 } 913 914 static int hns3_nic_mc_unsync(struct net_device *netdev, 915 const unsigned char *addr) 916 { 917 struct hnae3_handle *h = hns3_get_handle(netdev); 918 919 if (h->ae_algo->ops->rm_mc_addr) 920 return h->ae_algo->ops->rm_mc_addr(h, addr); 921 922 return 0; 923 } 924 925 static u8 hns3_get_netdev_flags(struct net_device *netdev) 926 { 927 u8 flags = 0; 928 929 if (netdev->flags & IFF_PROMISC) 930 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; 931 else if (netdev->flags & IFF_ALLMULTI) 932 flags = HNAE3_USER_MPE; 933 934 return flags; 935 } 936 937 static void hns3_nic_set_rx_mode(struct net_device *netdev) 938 { 939 struct hnae3_handle *h = hns3_get_handle(netdev); 940 u8 new_flags; 941 942 new_flags = hns3_get_netdev_flags(netdev); 943 944 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); 945 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); 946 947 /* User mode Promisc mode enable and vlan filtering is disabled to 948 * let all packets in. 949 */ 950 h->netdev_flags = new_flags; 951 hns3_request_update_promisc_mode(h); 952 } 953 954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle) 955 { 956 const struct hnae3_ae_ops *ops = handle->ae_algo->ops; 957 958 if (ops->request_update_promisc_mode) 959 ops->request_update_promisc_mode(handle); 960 } 961 962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) 963 { 964 struct hns3_tx_spare *tx_spare = ring->tx_spare; 965 u32 ntc, ntu; 966 967 /* This smp_load_acquire() pairs with smp_store_release() in 968 * hns3_tx_spare_update() called in tx desc cleaning process. 969 */ 970 ntc = smp_load_acquire(&tx_spare->last_to_clean); 971 ntu = tx_spare->next_to_use; 972 973 if (ntc > ntu) 974 return ntc - ntu - 1; 975 976 /* The free tx buffer is divided into two part, so pick the 977 * larger one. 978 */ 979 return max(ntc, tx_spare->len - ntu) - 1; 980 } 981 982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring) 983 { 984 struct hns3_tx_spare *tx_spare = ring->tx_spare; 985 986 if (!tx_spare || 987 tx_spare->last_to_clean == tx_spare->next_to_clean) 988 return; 989 990 /* This smp_store_release() pairs with smp_load_acquire() in 991 * hns3_tx_spare_space() called in xmit process. 992 */ 993 smp_store_release(&tx_spare->last_to_clean, 994 tx_spare->next_to_clean); 995 } 996 997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, 998 struct sk_buff *skb, 999 u32 space) 1000 { 1001 u32 len = skb->len <= ring->tx_copybreak ? skb->len : 1002 skb_headlen(skb); 1003 1004 if (len > ring->tx_copybreak) 1005 return false; 1006 1007 if (ALIGN(len, dma_get_cache_alignment()) > space) { 1008 hns3_ring_stats_update(ring, tx_spare_full); 1009 return false; 1010 } 1011 1012 return true; 1013 } 1014 1015 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, 1016 struct sk_buff *skb, 1017 u32 space) 1018 { 1019 if (skb->len <= ring->tx_copybreak || !tx_sgl || 1020 (!skb_has_frag_list(skb) && 1021 skb_shinfo(skb)->nr_frags < tx_sgl)) 1022 return false; 1023 1024 if (space < HNS3_MAX_SGL_SIZE) { 1025 hns3_ring_stats_update(ring, tx_spare_full); 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) 1033 { 1034 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size; 1035 struct hns3_tx_spare *tx_spare; 1036 struct page *page; 1037 dma_addr_t dma; 1038 int order; 1039 1040 if (!alloc_size) 1041 return; 1042 1043 order = get_order(alloc_size); 1044 if (order > MAX_PAGE_ORDER) { 1045 if (net_ratelimit()) 1046 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n"); 1047 return; 1048 } 1049 1050 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), 1051 GFP_KERNEL); 1052 if (!tx_spare) { 1053 /* The driver still work without the tx spare buffer */ 1054 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); 1055 goto devm_kzalloc_error; 1056 } 1057 1058 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), 1059 GFP_KERNEL, order); 1060 if (!page) { 1061 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); 1062 goto alloc_pages_error; 1063 } 1064 1065 dma = dma_map_page(ring_to_dev(ring), page, 0, 1066 PAGE_SIZE << order, DMA_TO_DEVICE); 1067 if (dma_mapping_error(ring_to_dev(ring), dma)) { 1068 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); 1069 goto dma_mapping_error; 1070 } 1071 1072 tx_spare->dma = dma; 1073 tx_spare->buf = page_address(page); 1074 tx_spare->len = PAGE_SIZE << order; 1075 ring->tx_spare = tx_spare; 1076 return; 1077 1078 dma_mapping_error: 1079 put_page(page); 1080 alloc_pages_error: 1081 devm_kfree(ring_to_dev(ring), tx_spare); 1082 devm_kzalloc_error: 1083 ring->tqp->handle->kinfo.tx_spare_buf_size = 0; 1084 } 1085 1086 /* Use hns3_tx_spare_space() to make sure there is enough buffer 1087 * before calling below function to allocate tx buffer. 1088 */ 1089 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, 1090 unsigned int size, dma_addr_t *dma, 1091 u32 *cb_len) 1092 { 1093 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1094 u32 ntu = tx_spare->next_to_use; 1095 1096 size = ALIGN(size, dma_get_cache_alignment()); 1097 *cb_len = size; 1098 1099 /* Tx spare buffer wraps back here because the end of 1100 * freed tx buffer is not enough. 1101 */ 1102 if (ntu + size > tx_spare->len) { 1103 *cb_len += (tx_spare->len - ntu); 1104 ntu = 0; 1105 } 1106 1107 tx_spare->next_to_use = ntu + size; 1108 if (tx_spare->next_to_use == tx_spare->len) 1109 tx_spare->next_to_use = 0; 1110 1111 *dma = tx_spare->dma + ntu; 1112 1113 return tx_spare->buf + ntu; 1114 } 1115 1116 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) 1117 { 1118 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1119 1120 if (len > tx_spare->next_to_use) { 1121 len -= tx_spare->next_to_use; 1122 tx_spare->next_to_use = tx_spare->len - len; 1123 } else { 1124 tx_spare->next_to_use -= len; 1125 } 1126 } 1127 1128 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, 1129 struct hns3_desc_cb *cb) 1130 { 1131 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1132 u32 ntc = tx_spare->next_to_clean; 1133 u32 len = cb->length; 1134 1135 tx_spare->next_to_clean += len; 1136 1137 if (tx_spare->next_to_clean >= tx_spare->len) { 1138 tx_spare->next_to_clean -= tx_spare->len; 1139 1140 if (tx_spare->next_to_clean) { 1141 ntc = 0; 1142 len = tx_spare->next_to_clean; 1143 } 1144 } 1145 1146 /* This tx spare buffer is only really reclaimed after calling 1147 * hns3_tx_spare_update(), so it is still safe to use the info in 1148 * the tx buffer to do the dma sync or sg unmapping after 1149 * tx_spare->next_to_clean is moved forword. 1150 */ 1151 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { 1152 dma_addr_t dma = tx_spare->dma + ntc; 1153 1154 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, 1155 DMA_TO_DEVICE); 1156 } else { 1157 struct sg_table *sgt = tx_spare->buf + ntc; 1158 1159 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 1160 DMA_TO_DEVICE); 1161 } 1162 } 1163 1164 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, 1165 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) 1166 { 1167 u32 l4_offset, hdr_len; 1168 union l3_hdr_info l3; 1169 union l4_hdr_info l4; 1170 u32 l4_paylen; 1171 int ret; 1172 1173 if (!skb_is_gso(skb)) 1174 return 0; 1175 1176 ret = skb_cow_head(skb, 0); 1177 if (unlikely(ret < 0)) 1178 return ret; 1179 1180 l3.hdr = skb_network_header(skb); 1181 l4.hdr = skb_transport_header(skb); 1182 1183 /* Software should clear the IPv4's checksum field when tso is 1184 * needed. 1185 */ 1186 if (l3.v4->version == 4) 1187 l3.v4->check = 0; 1188 1189 /* tunnel packet */ 1190 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1191 SKB_GSO_GRE_CSUM | 1192 SKB_GSO_UDP_TUNNEL | 1193 SKB_GSO_UDP_TUNNEL_CSUM)) { 1194 /* reset l3&l4 pointers from outer to inner headers */ 1195 l3.hdr = skb_inner_network_header(skb); 1196 l4.hdr = skb_inner_transport_header(skb); 1197 1198 /* Software should clear the IPv4's checksum field when 1199 * tso is needed. 1200 */ 1201 if (l3.v4->version == 4) 1202 l3.v4->check = 0; 1203 } 1204 1205 /* normal or tunnel packet */ 1206 l4_offset = l4.hdr - skb->data; 1207 1208 /* remove payload length from inner pseudo checksum when tso */ 1209 l4_paylen = skb->len - l4_offset; 1210 1211 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1212 hdr_len = sizeof(*l4.udp) + l4_offset; 1213 csum_replace_by_diff(&l4.udp->check, 1214 (__force __wsum)htonl(l4_paylen)); 1215 } else { 1216 hdr_len = (l4.tcp->doff << 2) + l4_offset; 1217 csum_replace_by_diff(&l4.tcp->check, 1218 (__force __wsum)htonl(l4_paylen)); 1219 } 1220 1221 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; 1222 1223 /* find the txbd field values */ 1224 *paylen_fdop_ol4cs = skb->len - hdr_len; 1225 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); 1226 1227 /* offload outer UDP header checksum */ 1228 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) 1229 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); 1230 1231 /* get MSS for TSO */ 1232 *mss = skb_shinfo(skb)->gso_size; 1233 1234 trace_hns3_tso(skb); 1235 1236 return 0; 1237 } 1238 1239 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, 1240 u8 *il4_proto) 1241 { 1242 union l3_hdr_info l3; 1243 unsigned char *l4_hdr; 1244 unsigned char *exthdr; 1245 u8 l4_proto_tmp; 1246 __be16 frag_off; 1247 1248 /* find outer header point */ 1249 l3.hdr = skb_network_header(skb); 1250 l4_hdr = skb_transport_header(skb); 1251 1252 if (skb->protocol == htons(ETH_P_IPV6)) { 1253 exthdr = l3.hdr + sizeof(*l3.v6); 1254 l4_proto_tmp = l3.v6->nexthdr; 1255 if (l4_hdr != exthdr) 1256 ipv6_skip_exthdr(skb, exthdr - skb->data, 1257 &l4_proto_tmp, &frag_off); 1258 } else if (skb->protocol == htons(ETH_P_IP)) { 1259 l4_proto_tmp = l3.v4->protocol; 1260 } else { 1261 return -EINVAL; 1262 } 1263 1264 *ol4_proto = l4_proto_tmp; 1265 1266 /* tunnel packet */ 1267 if (!skb->encapsulation) { 1268 *il4_proto = 0; 1269 return 0; 1270 } 1271 1272 /* find inner header point */ 1273 l3.hdr = skb_inner_network_header(skb); 1274 l4_hdr = skb_inner_transport_header(skb); 1275 1276 if (l3.v6->version == 6) { 1277 exthdr = l3.hdr + sizeof(*l3.v6); 1278 l4_proto_tmp = l3.v6->nexthdr; 1279 if (l4_hdr != exthdr) 1280 ipv6_skip_exthdr(skb, exthdr - skb->data, 1281 &l4_proto_tmp, &frag_off); 1282 } else if (l3.v4->version == 4) { 1283 l4_proto_tmp = l3.v4->protocol; 1284 } 1285 1286 *il4_proto = l4_proto_tmp; 1287 1288 return 0; 1289 } 1290 1291 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL 1292 * and it is udp packet, which has a dest port as the IANA assigned. 1293 * the hardware is expected to do the checksum offload, but the 1294 * hardware will not do the checksum offload when udp dest port is 1295 * 4789, 4790 or 6081. 1296 */ 1297 static bool hns3_tunnel_csum_bug(struct sk_buff *skb) 1298 { 1299 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1300 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 1301 union l4_hdr_info l4; 1302 1303 /* device version above V3(include V3), the hardware can 1304 * do this checksum offload. 1305 */ 1306 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 1307 return false; 1308 1309 l4.hdr = skb_transport_header(skb); 1310 1311 if (!(!skb->encapsulation && 1312 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || 1313 l4.udp->dest == htons(GENEVE_UDP_PORT) || 1314 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT)))) 1315 return false; 1316 1317 return true; 1318 } 1319 1320 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1321 u32 *ol_type_vlan_len_msec) 1322 { 1323 u32 l2_len, l3_len, l4_len; 1324 unsigned char *il2_hdr; 1325 union l3_hdr_info l3; 1326 union l4_hdr_info l4; 1327 1328 l3.hdr = skb_network_header(skb); 1329 l4.hdr = skb_transport_header(skb); 1330 1331 /* compute OL2 header size, defined in 2 Bytes */ 1332 l2_len = l3.hdr - skb->data; 1333 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); 1334 1335 /* compute OL3 header size, defined in 4 Bytes */ 1336 l3_len = l4.hdr - l3.hdr; 1337 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); 1338 1339 il2_hdr = skb_inner_mac_header(skb); 1340 /* compute OL4 header size, defined in 4 Bytes */ 1341 l4_len = il2_hdr - l4.hdr; 1342 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); 1343 1344 /* define outer network header type */ 1345 if (skb->protocol == htons(ETH_P_IP)) { 1346 if (skb_is_gso(skb)) 1347 hns3_set_field(*ol_type_vlan_len_msec, 1348 HNS3_TXD_OL3T_S, 1349 HNS3_OL3T_IPV4_CSUM); 1350 else 1351 hns3_set_field(*ol_type_vlan_len_msec, 1352 HNS3_TXD_OL3T_S, 1353 HNS3_OL3T_IPV4_NO_CSUM); 1354 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1355 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, 1356 HNS3_OL3T_IPV6); 1357 } 1358 1359 if (ol4_proto == IPPROTO_UDP) 1360 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1361 HNS3_TUN_MAC_IN_UDP); 1362 else if (ol4_proto == IPPROTO_GRE) 1363 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1364 HNS3_TUN_NVGRE); 1365 } 1366 1367 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3, 1368 u32 *type_cs_vlan_tso) 1369 { 1370 if (l3.v4->version == 4) { 1371 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1372 HNS3_L3T_IPV4); 1373 1374 /* the stack computes the IP header already, the only time we 1375 * need the hardware to recompute it is in the case of TSO. 1376 */ 1377 if (skb_is_gso(skb)) 1378 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); 1379 } else if (l3.v6->version == 6) { 1380 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1381 HNS3_L3T_IPV6); 1382 } 1383 } 1384 1385 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4, 1386 u32 l4_proto, u32 *type_cs_vlan_tso) 1387 { 1388 /* compute inner(/normal) L4 header size, defined in 4 Bytes */ 1389 switch (l4_proto) { 1390 case IPPROTO_TCP: 1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1392 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1393 HNS3_L4T_TCP); 1394 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1395 l4.tcp->doff); 1396 break; 1397 case IPPROTO_UDP: 1398 if (hns3_tunnel_csum_bug(skb)) { 1399 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); 1400 1401 return ret ? ret : skb_checksum_help(skb); 1402 } 1403 1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1405 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1406 HNS3_L4T_UDP); 1407 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1408 (sizeof(struct udphdr) >> 2)); 1409 break; 1410 case IPPROTO_SCTP: 1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1412 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1413 HNS3_L4T_SCTP); 1414 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1415 (sizeof(struct sctphdr) >> 2)); 1416 break; 1417 default: 1418 /* drop the skb tunnel packet if hardware don't support, 1419 * because hardware can't calculate csum when TSO. 1420 */ 1421 if (skb_is_gso(skb)) 1422 return -EDOM; 1423 1424 /* the stack computes the IP header already, 1425 * driver calculate l4 checksum when not TSO. 1426 */ 1427 return skb_checksum_help(skb); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1434 u8 il4_proto, u32 *type_cs_vlan_tso, 1435 u32 *ol_type_vlan_len_msec) 1436 { 1437 unsigned char *l2_hdr = skb->data; 1438 u32 l4_proto = ol4_proto; 1439 union l4_hdr_info l4; 1440 union l3_hdr_info l3; 1441 u32 l2_len, l3_len; 1442 1443 l4.hdr = skb_transport_header(skb); 1444 l3.hdr = skb_network_header(skb); 1445 1446 /* handle encapsulation skb */ 1447 if (skb->encapsulation) { 1448 /* If this is a not UDP/GRE encapsulation skb */ 1449 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { 1450 /* drop the skb tunnel packet if hardware don't support, 1451 * because hardware can't calculate csum when TSO. 1452 */ 1453 if (skb_is_gso(skb)) 1454 return -EDOM; 1455 1456 /* the stack computes the IP header already, 1457 * driver calculate l4 checksum when not TSO. 1458 */ 1459 return skb_checksum_help(skb); 1460 } 1461 1462 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); 1463 1464 /* switch to inner header */ 1465 l2_hdr = skb_inner_mac_header(skb); 1466 l3.hdr = skb_inner_network_header(skb); 1467 l4.hdr = skb_inner_transport_header(skb); 1468 l4_proto = il4_proto; 1469 } 1470 1471 hns3_set_l3_type(skb, l3, type_cs_vlan_tso); 1472 1473 /* compute inner(/normal) L2 header size, defined in 2 Bytes */ 1474 l2_len = l3.hdr - l2_hdr; 1475 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); 1476 1477 /* compute inner(/normal) L3 header size, defined in 4 Bytes */ 1478 l3_len = l4.hdr - l3.hdr; 1479 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); 1480 1481 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso); 1482 } 1483 1484 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, 1485 struct sk_buff *skb) 1486 { 1487 struct hnae3_handle *handle = tx_ring->tqp->handle; 1488 struct hnae3_ae_dev *ae_dev; 1489 struct vlan_ethhdr *vhdr; 1490 int rc; 1491 1492 if (!(skb->protocol == htons(ETH_P_8021Q) || 1493 skb_vlan_tag_present(skb))) 1494 return 0; 1495 1496 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert 1497 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it 1498 * will cause RAS error. 1499 */ 1500 ae_dev = pci_get_drvdata(handle->pdev); 1501 if (unlikely(skb_vlan_tagged_multi(skb) && 1502 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && 1503 handle->port_base_vlan_state == 1504 HNAE3_PORT_BASE_VLAN_ENABLE)) 1505 return -EINVAL; 1506 1507 if (skb->protocol == htons(ETH_P_8021Q) && 1508 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1509 /* When HW VLAN acceleration is turned off, and the stack 1510 * sets the protocol to 802.1q, the driver just need to 1511 * set the protocol to the encapsulated ethertype. 1512 */ 1513 skb->protocol = vlan_get_protocol(skb); 1514 return 0; 1515 } 1516 1517 if (skb_vlan_tag_present(skb)) { 1518 /* Based on hw strategy, use out_vtag in two layer tag case, 1519 * and use inner_vtag in one tag case. 1520 */ 1521 if (skb->protocol == htons(ETH_P_8021Q) && 1522 handle->port_base_vlan_state == 1523 HNAE3_PORT_BASE_VLAN_DISABLE) 1524 rc = HNS3_OUTER_VLAN_TAG; 1525 else 1526 rc = HNS3_INNER_VLAN_TAG; 1527 1528 skb->protocol = vlan_get_protocol(skb); 1529 return rc; 1530 } 1531 1532 rc = skb_cow_head(skb, 0); 1533 if (unlikely(rc < 0)) 1534 return rc; 1535 1536 vhdr = skb_vlan_eth_hdr(skb); 1537 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) 1538 & VLAN_PRIO_MASK); 1539 1540 skb->protocol = vlan_get_protocol(skb); 1541 return 0; 1542 } 1543 1544 /* check if the hardware is capable of checksum offloading */ 1545 static bool hns3_check_hw_tx_csum(struct sk_buff *skb) 1546 { 1547 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1548 1549 /* Kindly note, due to backward compatibility of the TX descriptor, 1550 * HW checksum of the non-IP packets and GSO packets is handled at 1551 * different place in the following code 1552 */ 1553 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || 1554 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) 1555 return false; 1556 1557 return true; 1558 } 1559 1560 struct hns3_desc_param { 1561 u32 paylen_ol4cs; 1562 u32 ol_type_vlan_len_msec; 1563 u32 type_cs_vlan_tso; 1564 u16 mss_hw_csum; 1565 u16 inner_vtag; 1566 u16 out_vtag; 1567 }; 1568 1569 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa) 1570 { 1571 pa->paylen_ol4cs = skb->len; 1572 pa->ol_type_vlan_len_msec = 0; 1573 pa->type_cs_vlan_tso = 0; 1574 pa->mss_hw_csum = 0; 1575 pa->inner_vtag = 0; 1576 pa->out_vtag = 0; 1577 } 1578 1579 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring, 1580 struct sk_buff *skb, 1581 struct hns3_desc_param *param) 1582 { 1583 int ret; 1584 1585 ret = hns3_handle_vtags(ring, skb); 1586 if (unlikely(ret < 0)) { 1587 hns3_ring_stats_update(ring, tx_vlan_err); 1588 return ret; 1589 } else if (ret == HNS3_INNER_VLAN_TAG) { 1590 param->inner_vtag = skb_vlan_tag_get(skb); 1591 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1592 VLAN_PRIO_MASK; 1593 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); 1594 } else if (ret == HNS3_OUTER_VLAN_TAG) { 1595 param->out_vtag = skb_vlan_tag_get(skb); 1596 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1597 VLAN_PRIO_MASK; 1598 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, 1599 1); 1600 } 1601 return 0; 1602 } 1603 1604 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring, 1605 struct sk_buff *skb, 1606 struct hns3_desc_cb *desc_cb, 1607 struct hns3_desc_param *param) 1608 { 1609 u8 ol4_proto, il4_proto; 1610 int ret; 1611 1612 if (hns3_check_hw_tx_csum(skb)) { 1613 /* set checksum start and offset, defined in 2 Bytes */ 1614 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, 1615 skb_checksum_start_offset(skb) >> 1); 1616 hns3_set_field(param->ol_type_vlan_len_msec, 1617 HNS3_TXD_CSUM_OFFSET_S, 1618 skb->csum_offset >> 1); 1619 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); 1620 return 0; 1621 } 1622 1623 skb_reset_mac_len(skb); 1624 1625 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); 1626 if (unlikely(ret < 0)) { 1627 hns3_ring_stats_update(ring, tx_l4_proto_err); 1628 return ret; 1629 } 1630 1631 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, 1632 ¶m->type_cs_vlan_tso, 1633 ¶m->ol_type_vlan_len_msec); 1634 if (unlikely(ret < 0)) { 1635 hns3_ring_stats_update(ring, tx_l2l3l4_err); 1636 return ret; 1637 } 1638 1639 ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum, 1640 ¶m->type_cs_vlan_tso, &desc_cb->send_bytes); 1641 if (unlikely(ret < 0)) { 1642 hns3_ring_stats_update(ring, tx_tso_err); 1643 return ret; 1644 } 1645 return 0; 1646 } 1647 1648 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, 1649 struct sk_buff *skb, struct hns3_desc *desc, 1650 struct hns3_desc_cb *desc_cb) 1651 { 1652 struct hns3_desc_param param; 1653 int ret; 1654 1655 hns3_init_desc_data(skb, ¶m); 1656 ret = hns3_handle_vlan_info(ring, skb, ¶m); 1657 if (unlikely(ret < 0)) 1658 return ret; 1659 1660 desc_cb->send_bytes = skb->len; 1661 1662 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1663 ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m); 1664 if (ret) 1665 return ret; 1666 } 1667 1668 /* Set txbd */ 1669 desc->tx.ol_type_vlan_len_msec = 1670 cpu_to_le32(param.ol_type_vlan_len_msec); 1671 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso); 1672 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs); 1673 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum); 1674 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag); 1675 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag); 1676 1677 return 0; 1678 } 1679 1680 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, 1681 unsigned int size) 1682 { 1683 #define HNS3_LIKELY_BD_NUM 1 1684 1685 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1686 unsigned int frag_buf_num; 1687 int k, sizeoflast; 1688 1689 if (likely(size <= HNS3_MAX_BD_SIZE)) { 1690 desc->addr = cpu_to_le64(dma); 1691 desc->tx.send_size = cpu_to_le16(size); 1692 desc->tx.bdtp_fe_sc_vld_ra_ri = 1693 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1694 1695 trace_hns3_tx_desc(ring, ring->next_to_use); 1696 ring_ptr_move_fw(ring, next_to_use); 1697 return HNS3_LIKELY_BD_NUM; 1698 } 1699 1700 frag_buf_num = hns3_tx_bd_count(size); 1701 sizeoflast = size % HNS3_MAX_BD_SIZE; 1702 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; 1703 1704 /* When frag size is bigger than hardware limit, split this frag */ 1705 for (k = 0; k < frag_buf_num; k++) { 1706 /* now, fill the descriptor */ 1707 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); 1708 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? 1709 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); 1710 desc->tx.bdtp_fe_sc_vld_ra_ri = 1711 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1712 1713 trace_hns3_tx_desc(ring, ring->next_to_use); 1714 /* move ring pointer to next */ 1715 ring_ptr_move_fw(ring, next_to_use); 1716 1717 desc = &ring->desc[ring->next_to_use]; 1718 } 1719 1720 return frag_buf_num; 1721 } 1722 1723 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, 1724 unsigned int type) 1725 { 1726 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 1727 struct device *dev = ring_to_dev(ring); 1728 unsigned int size; 1729 dma_addr_t dma; 1730 1731 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { 1732 struct sk_buff *skb = (struct sk_buff *)priv; 1733 1734 size = skb_headlen(skb); 1735 if (!size) 1736 return 0; 1737 1738 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 1739 } else if (type & DESC_TYPE_BOUNCE_HEAD) { 1740 /* Head data has been filled in hns3_handle_tx_bounce(), 1741 * just return 0 here. 1742 */ 1743 return 0; 1744 } else { 1745 skb_frag_t *frag = (skb_frag_t *)priv; 1746 1747 size = skb_frag_size(frag); 1748 if (!size) 1749 return 0; 1750 1751 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 1752 } 1753 1754 if (unlikely(dma_mapping_error(dev, dma))) { 1755 hns3_ring_stats_update(ring, sw_err_cnt); 1756 return -ENOMEM; 1757 } 1758 1759 desc_cb->priv = priv; 1760 desc_cb->length = size; 1761 desc_cb->dma = dma; 1762 desc_cb->type = type; 1763 1764 return hns3_fill_desc(ring, dma, size); 1765 } 1766 1767 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1768 unsigned int bd_num) 1769 { 1770 unsigned int size; 1771 int i; 1772 1773 size = skb_headlen(skb); 1774 while (size > HNS3_MAX_BD_SIZE) { 1775 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1776 size -= HNS3_MAX_BD_SIZE; 1777 1778 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1779 return bd_num; 1780 } 1781 1782 if (size) { 1783 bd_size[bd_num++] = size; 1784 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1785 return bd_num; 1786 } 1787 1788 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1789 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1790 size = skb_frag_size(frag); 1791 if (!size) 1792 continue; 1793 1794 while (size > HNS3_MAX_BD_SIZE) { 1795 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1796 size -= HNS3_MAX_BD_SIZE; 1797 1798 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1799 return bd_num; 1800 } 1801 1802 bd_size[bd_num++] = size; 1803 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1804 return bd_num; 1805 } 1806 1807 return bd_num; 1808 } 1809 1810 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1811 u8 max_non_tso_bd_num, unsigned int bd_num, 1812 unsigned int recursion_level) 1813 { 1814 #define HNS3_MAX_RECURSION_LEVEL 24 1815 1816 struct sk_buff *frag_skb; 1817 1818 /* If the total len is within the max bd limit */ 1819 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && 1820 !skb_has_frag_list(skb) && 1821 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) 1822 return skb_shinfo(skb)->nr_frags + 1U; 1823 1824 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) 1825 return UINT_MAX; 1826 1827 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); 1828 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) 1829 return bd_num; 1830 1831 skb_walk_frags(skb, frag_skb) { 1832 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, 1833 bd_num, recursion_level + 1); 1834 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1835 return bd_num; 1836 } 1837 1838 return bd_num; 1839 } 1840 1841 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) 1842 { 1843 if (!skb->encapsulation) 1844 return skb_tcp_all_headers(skb); 1845 1846 return skb_inner_tcp_all_headers(skb); 1847 } 1848 1849 /* HW need every continuous max_non_tso_bd_num buffer data to be larger 1850 * than MSS, we simplify it by ensuring skb_headlen + the first continuous 1851 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, 1852 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger 1853 * than MSS except the last max_non_tso_bd_num - 1 frags. 1854 */ 1855 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, 1856 unsigned int bd_num, u8 max_non_tso_bd_num) 1857 { 1858 unsigned int tot_len = 0; 1859 int i; 1860 1861 for (i = 0; i < max_non_tso_bd_num - 1U; i++) 1862 tot_len += bd_size[i]; 1863 1864 /* ensure the first max_non_tso_bd_num frags is greater than 1865 * mss + header 1866 */ 1867 if (tot_len + bd_size[max_non_tso_bd_num - 1U] < 1868 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) 1869 return true; 1870 1871 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater 1872 * than mss except the last one. 1873 */ 1874 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { 1875 tot_len -= bd_size[i]; 1876 tot_len += bd_size[i + max_non_tso_bd_num - 1U]; 1877 1878 if (tot_len < skb_shinfo(skb)->gso_size) 1879 return true; 1880 } 1881 1882 return false; 1883 } 1884 1885 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) 1886 { 1887 int i; 1888 1889 for (i = 0; i < MAX_SKB_FRAGS; i++) 1890 size[i] = skb_frag_size(&shinfo->frags[i]); 1891 } 1892 1893 static int hns3_skb_linearize(struct hns3_enet_ring *ring, 1894 struct sk_buff *skb, 1895 unsigned int bd_num) 1896 { 1897 /* 'bd_num == UINT_MAX' means the skb' fraglist has a 1898 * recursion level of over HNS3_MAX_RECURSION_LEVEL. 1899 */ 1900 if (bd_num == UINT_MAX) { 1901 hns3_ring_stats_update(ring, over_max_recursion); 1902 return -ENOMEM; 1903 } 1904 1905 /* The skb->len has exceeded the hw limitation, linearization 1906 * will not help. 1907 */ 1908 if (skb->len > HNS3_MAX_TSO_SIZE || 1909 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) { 1910 hns3_ring_stats_update(ring, hw_limitation); 1911 return -ENOMEM; 1912 } 1913 1914 if (__skb_linearize(skb)) { 1915 hns3_ring_stats_update(ring, sw_err_cnt); 1916 return -ENOMEM; 1917 } 1918 1919 return 0; 1920 } 1921 1922 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, 1923 struct net_device *netdev, 1924 struct sk_buff *skb) 1925 { 1926 struct hns3_nic_priv *priv = netdev_priv(netdev); 1927 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; 1928 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; 1929 unsigned int bd_num; 1930 1931 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); 1932 if (unlikely(bd_num > max_non_tso_bd_num)) { 1933 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && 1934 !hns3_skb_need_linearized(skb, bd_size, bd_num, 1935 max_non_tso_bd_num)) { 1936 trace_hns3_over_max_bd(skb); 1937 goto out; 1938 } 1939 1940 if (hns3_skb_linearize(ring, skb, bd_num)) 1941 return -ENOMEM; 1942 1943 bd_num = hns3_tx_bd_count(skb->len); 1944 1945 hns3_ring_stats_update(ring, tx_copy); 1946 } 1947 1948 out: 1949 if (likely(ring_space(ring) >= bd_num)) 1950 return bd_num; 1951 1952 netif_stop_subqueue(netdev, ring->queue_index); 1953 smp_mb(); /* Memory barrier before checking ring_space */ 1954 1955 /* Start queue in case hns3_clean_tx_ring has just made room 1956 * available and has not seen the queue stopped state performed 1957 * by netif_stop_subqueue above. 1958 */ 1959 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && 1960 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 1961 netif_start_subqueue(netdev, ring->queue_index); 1962 return bd_num; 1963 } 1964 1965 hns3_ring_stats_update(ring, tx_busy); 1966 1967 return -EBUSY; 1968 } 1969 1970 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) 1971 { 1972 struct device *dev = ring_to_dev(ring); 1973 unsigned int i; 1974 1975 for (i = 0; i < ring->desc_num; i++) { 1976 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1977 struct hns3_desc_cb *desc_cb; 1978 1979 memset(desc, 0, sizeof(*desc)); 1980 1981 /* check if this is where we started */ 1982 if (ring->next_to_use == next_to_use_orig) 1983 break; 1984 1985 /* rollback one */ 1986 ring_ptr_move_bw(ring, next_to_use); 1987 1988 desc_cb = &ring->desc_cb[ring->next_to_use]; 1989 1990 if (!desc_cb->dma) 1991 continue; 1992 1993 /* unmap the descriptor dma address */ 1994 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 1995 dma_unmap_single(dev, desc_cb->dma, desc_cb->length, 1996 DMA_TO_DEVICE); 1997 else if (desc_cb->type & 1998 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) 1999 hns3_tx_spare_rollback(ring, desc_cb->length); 2000 else if (desc_cb->length) 2001 dma_unmap_page(dev, desc_cb->dma, desc_cb->length, 2002 DMA_TO_DEVICE); 2003 2004 desc_cb->length = 0; 2005 desc_cb->dma = 0; 2006 desc_cb->type = DESC_TYPE_UNKNOWN; 2007 } 2008 } 2009 2010 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, 2011 struct sk_buff *skb, unsigned int type) 2012 { 2013 struct sk_buff *frag_skb; 2014 int i, ret, bd_num = 0; 2015 2016 ret = hns3_map_and_fill_desc(ring, skb, type); 2017 if (unlikely(ret < 0)) 2018 return ret; 2019 2020 bd_num += ret; 2021 2022 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2023 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2024 2025 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); 2026 if (unlikely(ret < 0)) 2027 return ret; 2028 2029 bd_num += ret; 2030 } 2031 2032 skb_walk_frags(skb, frag_skb) { 2033 ret = hns3_fill_skb_to_desc(ring, frag_skb, 2034 DESC_TYPE_FRAGLIST_SKB); 2035 if (unlikely(ret < 0)) 2036 return ret; 2037 2038 bd_num += ret; 2039 } 2040 2041 return bd_num; 2042 } 2043 2044 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num) 2045 { 2046 #define HNS3_BYTES_PER_64BIT 8 2047 2048 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {}; 2049 int offset = 0; 2050 2051 /* make sure everything is visible to device before 2052 * excuting tx push or updating doorbell 2053 */ 2054 dma_wmb(); 2055 2056 do { 2057 int idx = (ring->next_to_use - num + ring->desc_num) % 2058 ring->desc_num; 2059 2060 u64_stats_update_begin(&ring->syncp); 2061 ring->stats.tx_push++; 2062 u64_stats_update_end(&ring->syncp); 2063 memcpy(&desc[offset], &ring->desc[idx], 2064 sizeof(struct hns3_desc)); 2065 offset++; 2066 } while (--num); 2067 2068 __iowrite64_copy(ring->tqp->mem_base, desc, 2069 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) / 2070 HNS3_BYTES_PER_64BIT); 2071 2072 io_stop_wc(); 2073 } 2074 2075 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring) 2076 { 2077 #define HNS3_MEM_DOORBELL_OFFSET 64 2078 2079 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf); 2080 2081 /* make sure everything is visible to device before 2082 * excuting tx push or updating doorbell 2083 */ 2084 dma_wmb(); 2085 2086 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET, 2087 &bd_num, 1); 2088 u64_stats_update_begin(&ring->syncp); 2089 ring->stats.tx_mem_doorbell += ring->pending_buf; 2090 u64_stats_update_end(&ring->syncp); 2091 2092 io_stop_wc(); 2093 } 2094 2095 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, 2096 bool doorbell) 2097 { 2098 struct net_device *netdev = ring_to_netdev(ring); 2099 struct hns3_nic_priv *priv = netdev_priv(netdev); 2100 2101 /* when tx push is enabled, the packet whose number of BD below 2102 * HNS3_MAX_PUSH_BD_NUM can be pushed directly. 2103 */ 2104 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num && 2105 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) { 2106 /* This smp_store_release() pairs with smp_load_aquire() in 2107 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit 2108 * is updated. 2109 */ 2110 smp_store_release(&ring->last_to_use, ring->next_to_use); 2111 hns3_tx_push_bd(ring, num); 2112 return; 2113 } 2114 2115 ring->pending_buf += num; 2116 2117 if (!doorbell) { 2118 hns3_ring_stats_update(ring, tx_more); 2119 return; 2120 } 2121 2122 /* This smp_store_release() pairs with smp_load_aquire() in 2123 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated. 2124 */ 2125 smp_store_release(&ring->last_to_use, ring->next_to_use); 2126 2127 if (ring->tqp->mem_base) 2128 hns3_tx_mem_doorbell(ring); 2129 else 2130 writel(ring->pending_buf, 2131 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); 2132 2133 ring->pending_buf = 0; 2134 } 2135 2136 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, 2137 struct hns3_desc *desc) 2138 { 2139 struct hnae3_handle *h = hns3_get_handle(netdev); 2140 2141 if (!(h->ae_algo->ops->set_tx_hwts_info && 2142 h->ae_algo->ops->set_tx_hwts_info(h, skb))) 2143 return; 2144 2145 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); 2146 } 2147 2148 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, 2149 struct sk_buff *skb) 2150 { 2151 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2152 unsigned int type = DESC_TYPE_BOUNCE_HEAD; 2153 unsigned int size = skb_headlen(skb); 2154 dma_addr_t dma; 2155 int bd_num = 0; 2156 u32 cb_len; 2157 void *buf; 2158 int ret; 2159 2160 if (skb->len <= ring->tx_copybreak) { 2161 size = skb->len; 2162 type = DESC_TYPE_BOUNCE_ALL; 2163 } 2164 2165 /* hns3_can_use_tx_bounce() is called to ensure the below 2166 * function can always return the tx buffer. 2167 */ 2168 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); 2169 2170 ret = skb_copy_bits(skb, 0, buf, size); 2171 if (unlikely(ret < 0)) { 2172 hns3_tx_spare_rollback(ring, cb_len); 2173 hns3_ring_stats_update(ring, copy_bits_err); 2174 return ret; 2175 } 2176 2177 desc_cb->priv = skb; 2178 desc_cb->length = cb_len; 2179 desc_cb->dma = dma; 2180 desc_cb->type = type; 2181 2182 bd_num += hns3_fill_desc(ring, dma, size); 2183 2184 if (type == DESC_TYPE_BOUNCE_HEAD) { 2185 ret = hns3_fill_skb_to_desc(ring, skb, 2186 DESC_TYPE_BOUNCE_HEAD); 2187 if (unlikely(ret < 0)) 2188 return ret; 2189 2190 bd_num += ret; 2191 } 2192 2193 dma_sync_single_for_device(ring_to_dev(ring), dma, size, 2194 DMA_TO_DEVICE); 2195 2196 hns3_ring_stats_update(ring, tx_bounce); 2197 2198 return bd_num; 2199 } 2200 2201 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, 2202 struct sk_buff *skb) 2203 { 2204 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2205 u32 nfrag = skb_shinfo(skb)->nr_frags + 1; 2206 struct sg_table *sgt; 2207 int i, bd_num = 0; 2208 dma_addr_t dma; 2209 u32 cb_len; 2210 int nents; 2211 2212 if (skb_has_frag_list(skb)) 2213 nfrag = HNS3_MAX_TSO_BD_NUM; 2214 2215 /* hns3_can_use_tx_sgl() is called to ensure the below 2216 * function can always return the tx buffer. 2217 */ 2218 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), 2219 &dma, &cb_len); 2220 2221 /* scatterlist follows by the sg table */ 2222 sgt->sgl = (struct scatterlist *)(sgt + 1); 2223 sg_init_table(sgt->sgl, nfrag); 2224 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); 2225 if (unlikely(nents < 0)) { 2226 hns3_tx_spare_rollback(ring, cb_len); 2227 hns3_ring_stats_update(ring, skb2sgl_err); 2228 return -ENOMEM; 2229 } 2230 2231 sgt->orig_nents = nents; 2232 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 2233 DMA_TO_DEVICE); 2234 if (unlikely(!sgt->nents)) { 2235 hns3_tx_spare_rollback(ring, cb_len); 2236 hns3_ring_stats_update(ring, map_sg_err); 2237 return -ENOMEM; 2238 } 2239 2240 desc_cb->priv = skb; 2241 desc_cb->length = cb_len; 2242 desc_cb->dma = dma; 2243 desc_cb->type = DESC_TYPE_SGL_SKB; 2244 2245 for (i = 0; i < sgt->nents; i++) 2246 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), 2247 sg_dma_len(sgt->sgl + i)); 2248 hns3_ring_stats_update(ring, tx_sgl); 2249 2250 return bd_num; 2251 } 2252 2253 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, 2254 struct sk_buff *skb) 2255 { 2256 u32 space; 2257 2258 if (!ring->tx_spare) 2259 goto out; 2260 2261 space = hns3_tx_spare_space(ring); 2262 2263 if (hns3_can_use_tx_sgl(ring, skb, space)) 2264 return hns3_handle_tx_sgl(ring, skb); 2265 2266 if (hns3_can_use_tx_bounce(ring, skb, space)) 2267 return hns3_handle_tx_bounce(ring, skb); 2268 2269 out: 2270 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); 2271 } 2272 2273 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring, 2274 struct sk_buff *skb, 2275 struct hns3_desc_cb *desc_cb, 2276 int next_to_use_head) 2277 { 2278 int ret; 2279 2280 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], 2281 desc_cb); 2282 if (unlikely(ret < 0)) 2283 goto fill_err; 2284 2285 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is 2286 * zero, which is unlikely, and 'ret > 0' means how many tx desc 2287 * need to be notified to the hw. 2288 */ 2289 ret = hns3_handle_desc_filling(ring, skb); 2290 if (likely(ret > 0)) 2291 return ret; 2292 2293 fill_err: 2294 hns3_clear_desc(ring, next_to_use_head); 2295 return ret; 2296 } 2297 2298 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) 2299 { 2300 struct hns3_nic_priv *priv = netdev_priv(netdev); 2301 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; 2302 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2303 struct netdev_queue *dev_queue; 2304 int pre_ntu, ret; 2305 bool doorbell; 2306 2307 /* Hardware can only handle short frames above 32 bytes */ 2308 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { 2309 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2310 2311 hns3_ring_stats_update(ring, sw_err_cnt); 2312 2313 return NETDEV_TX_OK; 2314 } 2315 2316 /* Prefetch the data used later */ 2317 prefetch(skb->data); 2318 2319 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); 2320 if (unlikely(ret <= 0)) { 2321 if (ret == -EBUSY) { 2322 hns3_tx_doorbell(ring, 0, true); 2323 return NETDEV_TX_BUSY; 2324 } 2325 2326 hns3_rl_err(netdev, "xmit error: %d!\n", ret); 2327 goto out_err_tx_ok; 2328 } 2329 2330 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use); 2331 if (unlikely(ret <= 0)) 2332 goto out_err_tx_ok; 2333 2334 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : 2335 (ring->desc_num - 1); 2336 2337 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 2338 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); 2339 2340 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= 2341 cpu_to_le16(BIT(HNS3_TXD_FE_B)); 2342 trace_hns3_tx_desc(ring, pre_ntu); 2343 2344 skb_tx_timestamp(skb); 2345 2346 /* Complete translate all packets */ 2347 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); 2348 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, 2349 netdev_xmit_more()); 2350 hns3_tx_doorbell(ring, ret, doorbell); 2351 2352 return NETDEV_TX_OK; 2353 2354 out_err_tx_ok: 2355 dev_kfree_skb_any(skb); 2356 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2357 return NETDEV_TX_OK; 2358 } 2359 2360 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) 2361 { 2362 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN]; 2363 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN]; 2364 struct hnae3_handle *h = hns3_get_handle(netdev); 2365 struct sockaddr *mac_addr = p; 2366 int ret; 2367 2368 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 2369 return -EADDRNOTAVAIL; 2370 2371 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { 2372 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2373 netdev_info(netdev, "already using mac address %s\n", 2374 format_mac_addr_sa); 2375 return 0; 2376 } 2377 2378 /* For VF device, if there is a perm_addr, then the user will not 2379 * be allowed to change the address. 2380 */ 2381 if (!hns3_is_phys_func(h->pdev) && 2382 !is_zero_ether_addr(netdev->perm_addr)) { 2383 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr); 2384 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2385 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n", 2386 format_mac_addr_perm, format_mac_addr_sa); 2387 return -EPERM; 2388 } 2389 2390 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); 2391 if (ret) { 2392 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); 2393 return ret; 2394 } 2395 2396 eth_hw_addr_set(netdev, mac_addr->sa_data); 2397 2398 return 0; 2399 } 2400 2401 static int hns3_nic_do_ioctl(struct net_device *netdev, 2402 struct ifreq *ifr, int cmd) 2403 { 2404 struct hnae3_handle *h = hns3_get_handle(netdev); 2405 2406 if (!netif_running(netdev)) 2407 return -EINVAL; 2408 2409 if (!h->ae_algo->ops->do_ioctl) 2410 return -EOPNOTSUPP; 2411 2412 return h->ae_algo->ops->do_ioctl(h, ifr, cmd); 2413 } 2414 2415 static int hns3_nic_set_features(struct net_device *netdev, 2416 netdev_features_t features) 2417 { 2418 netdev_features_t changed = netdev->features ^ features; 2419 struct hns3_nic_priv *priv = netdev_priv(netdev); 2420 struct hnae3_handle *h = priv->ae_handle; 2421 bool enable; 2422 int ret; 2423 2424 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { 2425 enable = !!(features & NETIF_F_GRO_HW); 2426 ret = h->ae_algo->ops->set_gro_en(h, enable); 2427 if (ret) 2428 return ret; 2429 } 2430 2431 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && 2432 h->ae_algo->ops->enable_hw_strip_rxvtag) { 2433 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 2434 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); 2435 if (ret) 2436 return ret; 2437 } 2438 2439 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { 2440 enable = !!(features & NETIF_F_NTUPLE); 2441 h->ae_algo->ops->enable_fd(h, enable); 2442 } 2443 2444 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && 2445 h->ae_algo->ops->cls_flower_active(h)) { 2446 netdev_err(netdev, 2447 "there are offloaded TC filters active, cannot disable HW TC offload"); 2448 return -EINVAL; 2449 } 2450 2451 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && 2452 h->ae_algo->ops->enable_vlan_filter) { 2453 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2454 ret = h->ae_algo->ops->enable_vlan_filter(h, enable); 2455 if (ret) 2456 return ret; 2457 } 2458 2459 netdev->features = features; 2460 return 0; 2461 } 2462 2463 static netdev_features_t hns3_features_check(struct sk_buff *skb, 2464 struct net_device *dev, 2465 netdev_features_t features) 2466 { 2467 #define HNS3_MAX_HDR_LEN 480U 2468 #define HNS3_MAX_L4_HDR_LEN 60U 2469 2470 size_t len; 2471 2472 if (skb->ip_summed != CHECKSUM_PARTIAL) 2473 return features; 2474 2475 if (skb->encapsulation) 2476 len = skb_inner_transport_offset(skb); 2477 else 2478 len = skb_transport_offset(skb); 2479 2480 /* Assume L4 is 60 byte as TCP is the only protocol with a 2481 * a flexible value, and it's max len is 60 bytes. 2482 */ 2483 len += HNS3_MAX_L4_HDR_LEN; 2484 2485 /* Hardware only supports checksum on the skb with a max header 2486 * len of 480 bytes. 2487 */ 2488 if (len > HNS3_MAX_HDR_LEN) 2489 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2490 2491 return features; 2492 } 2493 2494 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats, 2495 struct hns3_enet_ring *ring, bool is_tx) 2496 { 2497 unsigned int start; 2498 2499 do { 2500 start = u64_stats_fetch_begin(&ring->syncp); 2501 if (is_tx) { 2502 stats->tx_bytes += ring->stats.tx_bytes; 2503 stats->tx_packets += ring->stats.tx_pkts; 2504 stats->tx_dropped += ring->stats.sw_err_cnt; 2505 stats->tx_dropped += ring->stats.tx_vlan_err; 2506 stats->tx_dropped += ring->stats.tx_l4_proto_err; 2507 stats->tx_dropped += ring->stats.tx_l2l3l4_err; 2508 stats->tx_dropped += ring->stats.tx_tso_err; 2509 stats->tx_dropped += ring->stats.over_max_recursion; 2510 stats->tx_dropped += ring->stats.hw_limitation; 2511 stats->tx_dropped += ring->stats.copy_bits_err; 2512 stats->tx_dropped += ring->stats.skb2sgl_err; 2513 stats->tx_dropped += ring->stats.map_sg_err; 2514 stats->tx_errors += ring->stats.sw_err_cnt; 2515 stats->tx_errors += ring->stats.tx_vlan_err; 2516 stats->tx_errors += ring->stats.tx_l4_proto_err; 2517 stats->tx_errors += ring->stats.tx_l2l3l4_err; 2518 stats->tx_errors += ring->stats.tx_tso_err; 2519 stats->tx_errors += ring->stats.over_max_recursion; 2520 stats->tx_errors += ring->stats.hw_limitation; 2521 stats->tx_errors += ring->stats.copy_bits_err; 2522 stats->tx_errors += ring->stats.skb2sgl_err; 2523 stats->tx_errors += ring->stats.map_sg_err; 2524 } else { 2525 stats->rx_bytes += ring->stats.rx_bytes; 2526 stats->rx_packets += ring->stats.rx_pkts; 2527 stats->rx_dropped += ring->stats.l2_err; 2528 stats->rx_errors += ring->stats.l2_err; 2529 stats->rx_errors += ring->stats.l3l4_csum_err; 2530 stats->rx_crc_errors += ring->stats.l2_err; 2531 stats->multicast += ring->stats.rx_multicast; 2532 stats->rx_length_errors += ring->stats.err_pkt_len; 2533 } 2534 } while (u64_stats_fetch_retry(&ring->syncp, start)); 2535 } 2536 2537 static void hns3_nic_get_stats64(struct net_device *netdev, 2538 struct rtnl_link_stats64 *stats) 2539 { 2540 struct hns3_nic_priv *priv = netdev_priv(netdev); 2541 int queue_num = priv->ae_handle->kinfo.num_tqps; 2542 struct hnae3_handle *handle = priv->ae_handle; 2543 struct rtnl_link_stats64 ring_total_stats; 2544 struct hns3_enet_ring *ring; 2545 unsigned int idx; 2546 2547 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 2548 return; 2549 2550 handle->ae_algo->ops->update_stats(handle); 2551 2552 memset(&ring_total_stats, 0, sizeof(ring_total_stats)); 2553 for (idx = 0; idx < queue_num; idx++) { 2554 /* fetch the tx stats */ 2555 ring = &priv->ring[idx]; 2556 hns3_fetch_stats(&ring_total_stats, ring, true); 2557 2558 /* fetch the rx stats */ 2559 ring = &priv->ring[idx + queue_num]; 2560 hns3_fetch_stats(&ring_total_stats, ring, false); 2561 } 2562 2563 stats->tx_bytes = ring_total_stats.tx_bytes; 2564 stats->tx_packets = ring_total_stats.tx_packets; 2565 stats->rx_bytes = ring_total_stats.rx_bytes; 2566 stats->rx_packets = ring_total_stats.rx_packets; 2567 2568 stats->rx_errors = ring_total_stats.rx_errors; 2569 stats->multicast = ring_total_stats.multicast; 2570 stats->rx_length_errors = ring_total_stats.rx_length_errors; 2571 stats->rx_crc_errors = ring_total_stats.rx_crc_errors; 2572 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 2573 2574 stats->tx_errors = ring_total_stats.tx_errors; 2575 stats->rx_dropped = ring_total_stats.rx_dropped; 2576 stats->tx_dropped = ring_total_stats.tx_dropped; 2577 stats->collisions = netdev->stats.collisions; 2578 stats->rx_over_errors = netdev->stats.rx_over_errors; 2579 stats->rx_frame_errors = netdev->stats.rx_frame_errors; 2580 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; 2581 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; 2582 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; 2583 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; 2584 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; 2585 stats->tx_window_errors = netdev->stats.tx_window_errors; 2586 stats->rx_compressed = netdev->stats.rx_compressed; 2587 stats->tx_compressed = netdev->stats.tx_compressed; 2588 } 2589 2590 static int hns3_setup_tc(struct net_device *netdev, void *type_data) 2591 { 2592 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2593 struct hnae3_knic_private_info *kinfo; 2594 u8 tc = mqprio_qopt->qopt.num_tc; 2595 u16 mode = mqprio_qopt->mode; 2596 u8 hw = mqprio_qopt->qopt.hw; 2597 struct hnae3_handle *h; 2598 2599 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && 2600 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) 2601 return -EOPNOTSUPP; 2602 2603 if (tc > HNAE3_MAX_TC) 2604 return -EINVAL; 2605 2606 if (!netdev) 2607 return -EINVAL; 2608 2609 h = hns3_get_handle(netdev); 2610 kinfo = &h->kinfo; 2611 2612 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); 2613 2614 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? 2615 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; 2616 } 2617 2618 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, 2619 struct flow_cls_offload *flow) 2620 { 2621 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); 2622 struct hnae3_handle *h = hns3_get_handle(priv->netdev); 2623 2624 switch (flow->command) { 2625 case FLOW_CLS_REPLACE: 2626 if (h->ae_algo->ops->add_cls_flower) 2627 return h->ae_algo->ops->add_cls_flower(h, flow, tc); 2628 break; 2629 case FLOW_CLS_DESTROY: 2630 if (h->ae_algo->ops->del_cls_flower) 2631 return h->ae_algo->ops->del_cls_flower(h, flow); 2632 break; 2633 default: 2634 break; 2635 } 2636 2637 return -EOPNOTSUPP; 2638 } 2639 2640 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2641 void *cb_priv) 2642 { 2643 struct hns3_nic_priv *priv = cb_priv; 2644 2645 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) 2646 return -EOPNOTSUPP; 2647 2648 switch (type) { 2649 case TC_SETUP_CLSFLOWER: 2650 return hns3_setup_tc_cls_flower(priv, type_data); 2651 default: 2652 return -EOPNOTSUPP; 2653 } 2654 } 2655 2656 static LIST_HEAD(hns3_block_cb_list); 2657 2658 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, 2659 void *type_data) 2660 { 2661 struct hns3_nic_priv *priv = netdev_priv(dev); 2662 int ret; 2663 2664 switch (type) { 2665 case TC_SETUP_QDISC_MQPRIO: 2666 ret = hns3_setup_tc(dev, type_data); 2667 break; 2668 case TC_SETUP_BLOCK: 2669 ret = flow_block_cb_setup_simple(type_data, 2670 &hns3_block_cb_list, 2671 hns3_setup_tc_block_cb, 2672 priv, priv, true); 2673 break; 2674 default: 2675 return -EOPNOTSUPP; 2676 } 2677 2678 return ret; 2679 } 2680 2681 static int hns3_vlan_rx_add_vid(struct net_device *netdev, 2682 __be16 proto, u16 vid) 2683 { 2684 struct hnae3_handle *h = hns3_get_handle(netdev); 2685 int ret = -EIO; 2686 2687 if (h->ae_algo->ops->set_vlan_filter) 2688 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); 2689 2690 return ret; 2691 } 2692 2693 static int hns3_vlan_rx_kill_vid(struct net_device *netdev, 2694 __be16 proto, u16 vid) 2695 { 2696 struct hnae3_handle *h = hns3_get_handle(netdev); 2697 int ret = -EIO; 2698 2699 if (h->ae_algo->ops->set_vlan_filter) 2700 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); 2701 2702 return ret; 2703 } 2704 2705 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, 2706 u8 qos, __be16 vlan_proto) 2707 { 2708 struct hnae3_handle *h = hns3_get_handle(netdev); 2709 int ret = -EIO; 2710 2711 netif_dbg(h, drv, netdev, 2712 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", 2713 vf, vlan, qos, ntohs(vlan_proto)); 2714 2715 if (h->ae_algo->ops->set_vf_vlan_filter) 2716 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, 2717 qos, vlan_proto); 2718 2719 return ret; 2720 } 2721 2722 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) 2723 { 2724 struct hnae3_handle *handle = hns3_get_handle(netdev); 2725 2726 if (hns3_nic_resetting(netdev)) 2727 return -EBUSY; 2728 2729 if (!handle->ae_algo->ops->set_vf_spoofchk) 2730 return -EOPNOTSUPP; 2731 2732 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); 2733 } 2734 2735 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) 2736 { 2737 struct hnae3_handle *handle = hns3_get_handle(netdev); 2738 2739 if (!handle->ae_algo->ops->set_vf_trust) 2740 return -EOPNOTSUPP; 2741 2742 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); 2743 } 2744 2745 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) 2746 { 2747 struct hnae3_handle *h = hns3_get_handle(netdev); 2748 int ret; 2749 2750 if (hns3_nic_resetting(netdev)) 2751 return -EBUSY; 2752 2753 if (!h->ae_algo->ops->set_mtu) 2754 return -EOPNOTSUPP; 2755 2756 netif_dbg(h, drv, netdev, 2757 "change mtu from %u to %d\n", netdev->mtu, new_mtu); 2758 2759 ret = h->ae_algo->ops->set_mtu(h, new_mtu); 2760 if (ret) 2761 netdev_err(netdev, "failed to change MTU in hardware %d\n", 2762 ret); 2763 else 2764 netdev->mtu = new_mtu; 2765 2766 return ret; 2767 } 2768 2769 static int hns3_get_timeout_queue(struct net_device *ndev) 2770 { 2771 int i; 2772 2773 /* Find the stopped queue the same way the stack does */ 2774 for (i = 0; i < ndev->num_tx_queues; i++) { 2775 struct netdev_queue *q; 2776 unsigned long trans_start; 2777 2778 q = netdev_get_tx_queue(ndev, i); 2779 trans_start = READ_ONCE(q->trans_start); 2780 if (netif_xmit_stopped(q) && 2781 time_after(jiffies, 2782 (trans_start + ndev->watchdog_timeo))) { 2783 #ifdef CONFIG_BQL 2784 struct dql *dql = &q->dql; 2785 2786 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n", 2787 dql->last_obj_cnt, dql->num_queued, 2788 dql->adj_limit, dql->num_completed); 2789 #endif 2790 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", 2791 q->state, 2792 jiffies_to_msecs(jiffies - trans_start)); 2793 break; 2794 } 2795 } 2796 2797 return i; 2798 } 2799 2800 static void hns3_dump_queue_stats(struct net_device *ndev, 2801 struct hns3_enet_ring *tx_ring, 2802 int timeout_queue) 2803 { 2804 struct napi_struct *napi = &tx_ring->tqp_vector->napi; 2805 struct hns3_nic_priv *priv = netdev_priv(ndev); 2806 2807 netdev_info(ndev, 2808 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", 2809 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, 2810 tx_ring->next_to_clean, napi->state); 2811 2812 netdev_info(ndev, 2813 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", 2814 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, 2815 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); 2816 2817 netdev_info(ndev, 2818 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", 2819 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, 2820 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); 2821 2822 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n", 2823 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell); 2824 } 2825 2826 static void hns3_dump_queue_reg(struct net_device *ndev, 2827 struct hns3_enet_ring *tx_ring) 2828 { 2829 netdev_info(ndev, 2830 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", 2831 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG), 2832 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG), 2833 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG), 2834 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG), 2835 readl(tx_ring->tqp_vector->mask_addr)); 2836 netdev_info(ndev, 2837 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", 2838 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG), 2839 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG), 2840 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG), 2841 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG), 2842 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG), 2843 hns3_tqp_read_reg(tx_ring, 2844 HNS3_RING_TX_RING_EBD_OFFSET_REG)); 2845 } 2846 2847 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) 2848 { 2849 struct hns3_nic_priv *priv = netdev_priv(ndev); 2850 struct hnae3_handle *h = hns3_get_handle(ndev); 2851 struct hns3_enet_ring *tx_ring; 2852 int timeout_queue; 2853 2854 timeout_queue = hns3_get_timeout_queue(ndev); 2855 if (timeout_queue >= ndev->num_tx_queues) { 2856 netdev_info(ndev, 2857 "no netdev TX timeout queue found, timeout count: %llu\n", 2858 priv->tx_timeout_count); 2859 return false; 2860 } 2861 2862 priv->tx_timeout_count++; 2863 2864 tx_ring = &priv->ring[timeout_queue]; 2865 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue); 2866 2867 /* When mac received many pause frames continuous, it's unable to send 2868 * packets, which may cause tx timeout 2869 */ 2870 if (h->ae_algo->ops->get_mac_stats) { 2871 struct hns3_mac_stats mac_stats; 2872 2873 h->ae_algo->ops->get_mac_stats(h, &mac_stats); 2874 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", 2875 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); 2876 } 2877 2878 hns3_dump_queue_reg(ndev, tx_ring); 2879 2880 return true; 2881 } 2882 2883 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 2884 { 2885 struct hns3_nic_priv *priv = netdev_priv(ndev); 2886 struct hnae3_handle *h = priv->ae_handle; 2887 2888 if (!hns3_get_tx_timeo_queue_info(ndev)) 2889 return; 2890 2891 /* request the reset, and let the hclge to determine 2892 * which reset level should be done 2893 */ 2894 if (h->ae_algo->ops->reset_event) 2895 h->ae_algo->ops->reset_event(h->pdev, h); 2896 } 2897 2898 #ifdef CONFIG_RFS_ACCEL 2899 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 2900 u16 rxq_index, u32 flow_id) 2901 { 2902 struct hnae3_handle *h = hns3_get_handle(dev); 2903 struct flow_keys fkeys; 2904 2905 if (!h->ae_algo->ops->add_arfs_entry) 2906 return -EOPNOTSUPP; 2907 2908 if (skb->encapsulation) 2909 return -EPROTONOSUPPORT; 2910 2911 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) 2912 return -EPROTONOSUPPORT; 2913 2914 if ((fkeys.basic.n_proto != htons(ETH_P_IP) && 2915 fkeys.basic.n_proto != htons(ETH_P_IPV6)) || 2916 (fkeys.basic.ip_proto != IPPROTO_TCP && 2917 fkeys.basic.ip_proto != IPPROTO_UDP)) 2918 return -EPROTONOSUPPORT; 2919 2920 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); 2921 } 2922 #endif 2923 2924 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, 2925 struct ifla_vf_info *ivf) 2926 { 2927 struct hnae3_handle *h = hns3_get_handle(ndev); 2928 2929 if (!h->ae_algo->ops->get_vf_config) 2930 return -EOPNOTSUPP; 2931 2932 return h->ae_algo->ops->get_vf_config(h, vf, ivf); 2933 } 2934 2935 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, 2936 int link_state) 2937 { 2938 struct hnae3_handle *h = hns3_get_handle(ndev); 2939 2940 if (!h->ae_algo->ops->set_vf_link_state) 2941 return -EOPNOTSUPP; 2942 2943 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); 2944 } 2945 2946 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, 2947 int min_tx_rate, int max_tx_rate) 2948 { 2949 struct hnae3_handle *h = hns3_get_handle(ndev); 2950 2951 if (!h->ae_algo->ops->set_vf_rate) 2952 return -EOPNOTSUPP; 2953 2954 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, 2955 false); 2956 } 2957 2958 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 2959 { 2960 struct hnae3_handle *h = hns3_get_handle(netdev); 2961 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 2962 2963 if (!h->ae_algo->ops->set_vf_mac) 2964 return -EOPNOTSUPP; 2965 2966 if (is_multicast_ether_addr(mac)) { 2967 hnae3_format_mac_addr(format_mac_addr, mac); 2968 netdev_err(netdev, 2969 "Invalid MAC:%s specified. Could not set MAC\n", 2970 format_mac_addr); 2971 return -EINVAL; 2972 } 2973 2974 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); 2975 } 2976 2977 #define HNS3_INVALID_DSCP 0xff 2978 #define HNS3_DSCP_SHIFT 2 2979 2980 static u8 hns3_get_skb_dscp(struct sk_buff *skb) 2981 { 2982 __be16 protocol = skb->protocol; 2983 u8 dscp = HNS3_INVALID_DSCP; 2984 2985 if (protocol == htons(ETH_P_8021Q)) 2986 protocol = vlan_get_protocol(skb); 2987 2988 if (protocol == htons(ETH_P_IP)) 2989 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT; 2990 else if (protocol == htons(ETH_P_IPV6)) 2991 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT; 2992 2993 return dscp; 2994 } 2995 2996 static u16 hns3_nic_select_queue(struct net_device *netdev, 2997 struct sk_buff *skb, 2998 struct net_device *sb_dev) 2999 { 3000 struct hnae3_handle *h = hns3_get_handle(netdev); 3001 u8 dscp; 3002 3003 if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP || 3004 !h->ae_algo->ops->get_dscp_prio) 3005 goto out; 3006 3007 dscp = hns3_get_skb_dscp(skb); 3008 if (unlikely(dscp >= HNAE3_MAX_DSCP)) 3009 goto out; 3010 3011 skb->priority = h->kinfo.dscp_prio[dscp]; 3012 if (skb->priority == HNAE3_PRIO_ID_INVALID) 3013 skb->priority = 0; 3014 3015 out: 3016 return netdev_pick_tx(netdev, skb, sb_dev); 3017 } 3018 3019 static const struct net_device_ops hns3_nic_netdev_ops = { 3020 .ndo_open = hns3_nic_net_open, 3021 .ndo_stop = hns3_nic_net_stop, 3022 .ndo_start_xmit = hns3_nic_net_xmit, 3023 .ndo_tx_timeout = hns3_nic_net_timeout, 3024 .ndo_set_mac_address = hns3_nic_net_set_mac_address, 3025 .ndo_eth_ioctl = hns3_nic_do_ioctl, 3026 .ndo_change_mtu = hns3_nic_change_mtu, 3027 .ndo_set_features = hns3_nic_set_features, 3028 .ndo_features_check = hns3_features_check, 3029 .ndo_get_stats64 = hns3_nic_get_stats64, 3030 .ndo_setup_tc = hns3_nic_setup_tc, 3031 .ndo_set_rx_mode = hns3_nic_set_rx_mode, 3032 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, 3033 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, 3034 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, 3035 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, 3036 .ndo_set_vf_trust = hns3_set_vf_trust, 3037 #ifdef CONFIG_RFS_ACCEL 3038 .ndo_rx_flow_steer = hns3_rx_flow_steer, 3039 #endif 3040 .ndo_get_vf_config = hns3_nic_get_vf_config, 3041 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, 3042 .ndo_set_vf_rate = hns3_nic_set_vf_rate, 3043 .ndo_set_vf_mac = hns3_nic_set_vf_mac, 3044 .ndo_select_queue = hns3_nic_select_queue, 3045 }; 3046 3047 bool hns3_is_phys_func(struct pci_dev *pdev) 3048 { 3049 u32 dev_id = pdev->device; 3050 3051 switch (dev_id) { 3052 case HNAE3_DEV_ID_GE: 3053 case HNAE3_DEV_ID_25GE: 3054 case HNAE3_DEV_ID_25GE_RDMA: 3055 case HNAE3_DEV_ID_25GE_RDMA_MACSEC: 3056 case HNAE3_DEV_ID_50GE_RDMA: 3057 case HNAE3_DEV_ID_50GE_RDMA_MACSEC: 3058 case HNAE3_DEV_ID_100G_RDMA_MACSEC: 3059 case HNAE3_DEV_ID_200G_RDMA: 3060 return true; 3061 case HNAE3_DEV_ID_VF: 3062 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: 3063 return false; 3064 default: 3065 dev_warn(&pdev->dev, "un-recognized pci device-id %u", 3066 dev_id); 3067 } 3068 3069 return false; 3070 } 3071 3072 static void hns3_disable_sriov(struct pci_dev *pdev) 3073 { 3074 /* If our VFs are assigned we cannot shut down SR-IOV 3075 * without causing issues, so just leave the hardware 3076 * available but disabled 3077 */ 3078 if (pci_vfs_assigned(pdev)) { 3079 dev_warn(&pdev->dev, 3080 "disabling driver while VFs are assigned\n"); 3081 return; 3082 } 3083 3084 pci_disable_sriov(pdev); 3085 } 3086 3087 /* hns3_probe - Device initialization routine 3088 * @pdev: PCI device information struct 3089 * @ent: entry in hns3_pci_tbl 3090 * 3091 * hns3_probe initializes a PF identified by a pci_dev structure. 3092 * The OS initialization, configuring of the PF private structure, 3093 * and a hardware reset occur. 3094 * 3095 * Returns 0 on success, negative on failure 3096 */ 3097 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3098 { 3099 struct hnae3_ae_dev *ae_dev; 3100 int ret; 3101 3102 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); 3103 if (!ae_dev) 3104 return -ENOMEM; 3105 3106 ae_dev->pdev = pdev; 3107 ae_dev->flag = ent->driver_data; 3108 pci_set_drvdata(pdev, ae_dev); 3109 3110 ret = hnae3_register_ae_dev(ae_dev); 3111 if (ret) 3112 pci_set_drvdata(pdev, NULL); 3113 3114 return ret; 3115 } 3116 3117 /** 3118 * hns3_clean_vf_config 3119 * @pdev: pointer to a pci_dev structure 3120 * @num_vfs: number of VFs allocated 3121 * 3122 * Clean residual vf config after disable sriov 3123 **/ 3124 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs) 3125 { 3126 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3127 3128 if (ae_dev->ops->clean_vf_config) 3129 ae_dev->ops->clean_vf_config(ae_dev, num_vfs); 3130 } 3131 3132 /* hns3_remove - Device removal routine 3133 * @pdev: PCI device information struct 3134 */ 3135 static void hns3_remove(struct pci_dev *pdev) 3136 { 3137 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3138 3139 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) 3140 hns3_disable_sriov(pdev); 3141 3142 hnae3_unregister_ae_dev(ae_dev); 3143 pci_set_drvdata(pdev, NULL); 3144 } 3145 3146 /** 3147 * hns3_pci_sriov_configure 3148 * @pdev: pointer to a pci_dev structure 3149 * @num_vfs: number of VFs to allocate 3150 * 3151 * Enable or change the number of VFs. Called when the user updates the number 3152 * of VFs in sysfs. 3153 **/ 3154 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) 3155 { 3156 int ret; 3157 3158 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { 3159 dev_warn(&pdev->dev, "Can not config SRIOV\n"); 3160 return -EINVAL; 3161 } 3162 3163 if (num_vfs) { 3164 ret = pci_enable_sriov(pdev, num_vfs); 3165 if (ret) 3166 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); 3167 else 3168 return num_vfs; 3169 } else if (!pci_vfs_assigned(pdev)) { 3170 int num_vfs_pre = pci_num_vf(pdev); 3171 3172 pci_disable_sriov(pdev); 3173 hns3_clean_vf_config(pdev, num_vfs_pre); 3174 } else { 3175 dev_warn(&pdev->dev, 3176 "Unable to free VFs because some are assigned to VMs.\n"); 3177 } 3178 3179 return 0; 3180 } 3181 3182 static void hns3_shutdown(struct pci_dev *pdev) 3183 { 3184 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3185 3186 hnae3_unregister_ae_dev(ae_dev); 3187 pci_set_drvdata(pdev, NULL); 3188 3189 if (system_state == SYSTEM_POWER_OFF) 3190 pci_set_power_state(pdev, PCI_D3hot); 3191 } 3192 3193 static int __maybe_unused hns3_suspend(struct device *dev) 3194 { 3195 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3196 3197 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3198 dev_info(dev, "Begin to suspend.\n"); 3199 if (ae_dev->ops && ae_dev->ops->reset_prepare) 3200 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET); 3201 } 3202 3203 return 0; 3204 } 3205 3206 static int __maybe_unused hns3_resume(struct device *dev) 3207 { 3208 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3209 3210 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3211 dev_info(dev, "Begin to resume.\n"); 3212 if (ae_dev->ops && ae_dev->ops->reset_done) 3213 ae_dev->ops->reset_done(ae_dev); 3214 } 3215 3216 return 0; 3217 } 3218 3219 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, 3220 pci_channel_state_t state) 3221 { 3222 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3223 pci_ers_result_t ret; 3224 3225 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state); 3226 3227 if (state == pci_channel_io_perm_failure) 3228 return PCI_ERS_RESULT_DISCONNECT; 3229 3230 if (!ae_dev || !ae_dev->ops) { 3231 dev_err(&pdev->dev, 3232 "Can't recover - error happened before device initialized\n"); 3233 return PCI_ERS_RESULT_NONE; 3234 } 3235 3236 if (ae_dev->ops->handle_hw_ras_error) 3237 ret = ae_dev->ops->handle_hw_ras_error(ae_dev); 3238 else 3239 return PCI_ERS_RESULT_NONE; 3240 3241 return ret; 3242 } 3243 3244 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) 3245 { 3246 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3247 const struct hnae3_ae_ops *ops; 3248 enum hnae3_reset_type reset_type; 3249 struct device *dev = &pdev->dev; 3250 3251 if (!ae_dev || !ae_dev->ops) 3252 return PCI_ERS_RESULT_NONE; 3253 3254 ops = ae_dev->ops; 3255 /* request the reset */ 3256 if (ops->reset_event && ops->get_reset_level && 3257 ops->set_default_reset_request) { 3258 if (ae_dev->hw_err_reset_req) { 3259 reset_type = ops->get_reset_level(ae_dev, 3260 &ae_dev->hw_err_reset_req); 3261 ops->set_default_reset_request(ae_dev, reset_type); 3262 dev_info(dev, "requesting reset due to PCI error\n"); 3263 ops->reset_event(pdev, NULL); 3264 } 3265 3266 return PCI_ERS_RESULT_RECOVERED; 3267 } 3268 3269 return PCI_ERS_RESULT_DISCONNECT; 3270 } 3271 3272 static void hns3_reset_prepare(struct pci_dev *pdev) 3273 { 3274 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3275 3276 dev_info(&pdev->dev, "FLR prepare\n"); 3277 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare) 3278 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET); 3279 } 3280 3281 static void hns3_reset_done(struct pci_dev *pdev) 3282 { 3283 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3284 3285 dev_info(&pdev->dev, "FLR done\n"); 3286 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done) 3287 ae_dev->ops->reset_done(ae_dev); 3288 } 3289 3290 static const struct pci_error_handlers hns3_err_handler = { 3291 .error_detected = hns3_error_detected, 3292 .slot_reset = hns3_slot_reset, 3293 .reset_prepare = hns3_reset_prepare, 3294 .reset_done = hns3_reset_done, 3295 }; 3296 3297 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume); 3298 3299 static struct pci_driver hns3_driver = { 3300 .name = hns3_driver_name, 3301 .id_table = hns3_pci_tbl, 3302 .probe = hns3_probe, 3303 .remove = hns3_remove, 3304 .shutdown = hns3_shutdown, 3305 .driver.pm = &hns3_pm_ops, 3306 .sriov_configure = hns3_pci_sriov_configure, 3307 .err_handler = &hns3_err_handler, 3308 }; 3309 3310 /* set default feature to hns3 */ 3311 static void hns3_set_default_feature(struct net_device *netdev) 3312 { 3313 struct hnae3_handle *h = hns3_get_handle(netdev); 3314 struct pci_dev *pdev = h->pdev; 3315 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3316 3317 netdev->priv_flags |= IFF_UNICAST_FLT; 3318 3319 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3320 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 3321 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 3322 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | 3323 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | 3324 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; 3325 3326 if (hnae3_ae_dev_gro_supported(ae_dev)) 3327 netdev->features |= NETIF_F_GRO_HW; 3328 3329 if (hnae3_ae_dev_fd_supported(ae_dev)) 3330 netdev->features |= NETIF_F_NTUPLE; 3331 3332 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) 3333 netdev->features |= NETIF_F_GSO_UDP_L4; 3334 3335 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 3336 netdev->features |= NETIF_F_HW_CSUM; 3337 else 3338 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3339 3340 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) 3341 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 3342 3343 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) 3344 netdev->features |= NETIF_F_HW_TC; 3345 3346 netdev->hw_features |= netdev->features; 3347 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 3348 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3349 3350 netdev->vlan_features |= netdev->features & 3351 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | 3352 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE | 3353 NETIF_F_HW_TC); 3354 3355 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID; 3356 3357 /* The device_version V3 hardware can't offload the checksum for IP in 3358 * GRE packets, but can do it for NvGRE. So default to disable the 3359 * checksum and GSO offload for GRE. 3360 */ 3361 if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) { 3362 netdev->features &= ~NETIF_F_GSO_GRE; 3363 netdev->features &= ~NETIF_F_GSO_GRE_CSUM; 3364 } 3365 } 3366 3367 static int hns3_alloc_buffer(struct hns3_enet_ring *ring, 3368 struct hns3_desc_cb *cb) 3369 { 3370 unsigned int order = hns3_page_order(ring); 3371 struct page *p; 3372 3373 if (ring->page_pool) { 3374 p = page_pool_dev_alloc_frag(ring->page_pool, 3375 &cb->page_offset, 3376 hns3_buf_size(ring)); 3377 if (unlikely(!p)) 3378 return -ENOMEM; 3379 3380 cb->priv = p; 3381 cb->buf = page_address(p); 3382 cb->dma = page_pool_get_dma_addr(p); 3383 cb->type = DESC_TYPE_PP_FRAG; 3384 cb->reuse_flag = 0; 3385 return 0; 3386 } 3387 3388 p = dev_alloc_pages(order); 3389 if (!p) 3390 return -ENOMEM; 3391 3392 cb->priv = p; 3393 cb->page_offset = 0; 3394 cb->reuse_flag = 0; 3395 cb->buf = page_address(p); 3396 cb->length = hns3_page_size(ring); 3397 cb->type = DESC_TYPE_PAGE; 3398 page_ref_add(p, USHRT_MAX - 1); 3399 cb->pagecnt_bias = USHRT_MAX; 3400 3401 return 0; 3402 } 3403 3404 static void hns3_free_buffer(struct hns3_enet_ring *ring, 3405 struct hns3_desc_cb *cb, int budget) 3406 { 3407 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD | 3408 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB)) 3409 napi_consume_skb(cb->priv, budget); 3410 else if (!HNAE3_IS_TX_RING(ring)) { 3411 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias) 3412 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias); 3413 else if (cb->type & DESC_TYPE_PP_FRAG) 3414 page_pool_put_full_page(ring->page_pool, cb->priv, 3415 false); 3416 } 3417 memset(cb, 0, sizeof(*cb)); 3418 } 3419 3420 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) 3421 { 3422 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, 3423 cb->length, ring_to_dma_dir(ring)); 3424 3425 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) 3426 return -EIO; 3427 3428 return 0; 3429 } 3430 3431 static void hns3_unmap_buffer(struct hns3_enet_ring *ring, 3432 struct hns3_desc_cb *cb) 3433 { 3434 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 3435 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, 3436 ring_to_dma_dir(ring)); 3437 else if ((cb->type & DESC_TYPE_PAGE) && cb->length) 3438 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, 3439 ring_to_dma_dir(ring)); 3440 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | 3441 DESC_TYPE_SGL_SKB)) 3442 hns3_tx_spare_reclaim_cb(ring, cb); 3443 } 3444 3445 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) 3446 { 3447 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3448 ring->desc[i].addr = 0; 3449 ring->desc_cb[i].refill = 0; 3450 } 3451 3452 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i, 3453 int budget) 3454 { 3455 struct hns3_desc_cb *cb = &ring->desc_cb[i]; 3456 3457 if (!ring->desc_cb[i].dma) 3458 return; 3459 3460 hns3_buffer_detach(ring, i); 3461 hns3_free_buffer(ring, cb, budget); 3462 } 3463 3464 static void hns3_free_buffers(struct hns3_enet_ring *ring) 3465 { 3466 int i; 3467 3468 for (i = 0; i < ring->desc_num; i++) 3469 hns3_free_buffer_detach(ring, i, 0); 3470 } 3471 3472 /* free desc along with its attached buffer */ 3473 static void hns3_free_desc(struct hns3_enet_ring *ring) 3474 { 3475 int size = ring->desc_num * sizeof(ring->desc[0]); 3476 3477 hns3_free_buffers(ring); 3478 3479 if (ring->desc) { 3480 dma_free_coherent(ring_to_dev(ring), size, 3481 ring->desc, ring->desc_dma_addr); 3482 ring->desc = NULL; 3483 } 3484 } 3485 3486 static int hns3_alloc_desc(struct hns3_enet_ring *ring) 3487 { 3488 int size = ring->desc_num * sizeof(ring->desc[0]); 3489 3490 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, 3491 &ring->desc_dma_addr, GFP_KERNEL); 3492 if (!ring->desc) 3493 return -ENOMEM; 3494 3495 return 0; 3496 } 3497 3498 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring, 3499 struct hns3_desc_cb *cb) 3500 { 3501 int ret; 3502 3503 ret = hns3_alloc_buffer(ring, cb); 3504 if (ret || ring->page_pool) 3505 goto out; 3506 3507 ret = hns3_map_buffer(ring, cb); 3508 if (ret) 3509 goto out_with_buf; 3510 3511 return 0; 3512 3513 out_with_buf: 3514 hns3_free_buffer(ring, cb, 0); 3515 out: 3516 return ret; 3517 } 3518 3519 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i) 3520 { 3521 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]); 3522 3523 if (ret) 3524 return ret; 3525 3526 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3527 ring->desc_cb[i].page_offset); 3528 ring->desc_cb[i].refill = 1; 3529 3530 return 0; 3531 } 3532 3533 /* Allocate memory for raw pkg, and map with dma */ 3534 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) 3535 { 3536 int i, j, ret; 3537 3538 for (i = 0; i < ring->desc_num; i++) { 3539 ret = hns3_alloc_and_attach_buffer(ring, i); 3540 if (ret) 3541 goto out_buffer_fail; 3542 } 3543 3544 return 0; 3545 3546 out_buffer_fail: 3547 for (j = i - 1; j >= 0; j--) 3548 hns3_free_buffer_detach(ring, j, 0); 3549 return ret; 3550 } 3551 3552 /* detach a in-used buffer and replace with a reserved one */ 3553 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, 3554 struct hns3_desc_cb *res_cb) 3555 { 3556 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3557 ring->desc_cb[i] = *res_cb; 3558 ring->desc_cb[i].refill = 1; 3559 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3560 ring->desc_cb[i].page_offset); 3561 ring->desc[i].rx.bd_base_info = 0; 3562 } 3563 3564 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) 3565 { 3566 ring->desc_cb[i].reuse_flag = 0; 3567 ring->desc_cb[i].refill = 1; 3568 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3569 ring->desc_cb[i].page_offset); 3570 ring->desc[i].rx.bd_base_info = 0; 3571 3572 dma_sync_single_for_device(ring_to_dev(ring), 3573 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset, 3574 hns3_buf_size(ring), 3575 DMA_FROM_DEVICE); 3576 } 3577 3578 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, 3579 int *bytes, int *pkts, int budget) 3580 { 3581 /* This smp_load_acquire() pairs with smp_store_release() in 3582 * hns3_tx_doorbell(). 3583 */ 3584 int ltu = smp_load_acquire(&ring->last_to_use); 3585 int ntc = ring->next_to_clean; 3586 struct hns3_desc_cb *desc_cb; 3587 bool reclaimed = false; 3588 struct hns3_desc *desc; 3589 3590 while (ltu != ntc) { 3591 desc = &ring->desc[ntc]; 3592 3593 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) & 3594 BIT(HNS3_TXD_VLD_B)) 3595 break; 3596 3597 desc_cb = &ring->desc_cb[ntc]; 3598 3599 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL | 3600 DESC_TYPE_BOUNCE_HEAD | 3601 DESC_TYPE_SGL_SKB)) { 3602 (*pkts)++; 3603 (*bytes) += desc_cb->send_bytes; 3604 } 3605 3606 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ 3607 hns3_free_buffer_detach(ring, ntc, budget); 3608 3609 if (++ntc == ring->desc_num) 3610 ntc = 0; 3611 3612 /* Issue prefetch for next Tx descriptor */ 3613 prefetch(&ring->desc_cb[ntc]); 3614 reclaimed = true; 3615 } 3616 3617 if (unlikely(!reclaimed)) 3618 return false; 3619 3620 /* This smp_store_release() pairs with smp_load_acquire() in 3621 * ring_space called by hns3_nic_net_xmit. 3622 */ 3623 smp_store_release(&ring->next_to_clean, ntc); 3624 3625 hns3_tx_spare_update(ring); 3626 3627 return true; 3628 } 3629 3630 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget) 3631 { 3632 struct net_device *netdev = ring_to_netdev(ring); 3633 struct hns3_nic_priv *priv = netdev_priv(netdev); 3634 struct netdev_queue *dev_queue; 3635 int bytes, pkts; 3636 3637 bytes = 0; 3638 pkts = 0; 3639 3640 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget))) 3641 return; 3642 3643 ring->tqp_vector->tx_group.total_bytes += bytes; 3644 ring->tqp_vector->tx_group.total_packets += pkts; 3645 3646 u64_stats_update_begin(&ring->syncp); 3647 ring->stats.tx_bytes += bytes; 3648 ring->stats.tx_pkts += pkts; 3649 u64_stats_update_end(&ring->syncp); 3650 3651 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); 3652 netdev_tx_completed_queue(dev_queue, pkts, bytes); 3653 3654 if (unlikely(netif_carrier_ok(netdev) && 3655 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { 3656 /* Make sure that anybody stopping the queue after this 3657 * sees the new next_to_clean. 3658 */ 3659 smp_mb(); 3660 if (netif_tx_queue_stopped(dev_queue) && 3661 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 3662 netif_tx_wake_queue(dev_queue); 3663 ring->stats.restart_queue++; 3664 } 3665 } 3666 } 3667 3668 static int hns3_desc_unused(struct hns3_enet_ring *ring) 3669 { 3670 int ntc = ring->next_to_clean; 3671 int ntu = ring->next_to_use; 3672 3673 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill)) 3674 return ring->desc_num; 3675 3676 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 3677 } 3678 3679 /* Return true if there is any allocation failure */ 3680 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, 3681 int cleand_count) 3682 { 3683 struct hns3_desc_cb *desc_cb; 3684 struct hns3_desc_cb res_cbs; 3685 int i, ret; 3686 3687 for (i = 0; i < cleand_count; i++) { 3688 desc_cb = &ring->desc_cb[ring->next_to_use]; 3689 if (desc_cb->reuse_flag) { 3690 hns3_ring_stats_update(ring, reuse_pg_cnt); 3691 3692 hns3_reuse_buffer(ring, ring->next_to_use); 3693 } else { 3694 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 3695 if (ret) { 3696 hns3_ring_stats_update(ring, sw_err_cnt); 3697 3698 hns3_rl_err(ring_to_netdev(ring), 3699 "alloc rx buffer failed: %d\n", 3700 ret); 3701 3702 writel(i, ring->tqp->io_base + 3703 HNS3_RING_RX_RING_HEAD_REG); 3704 return true; 3705 } 3706 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 3707 3708 hns3_ring_stats_update(ring, non_reuse_pg); 3709 } 3710 3711 ring_ptr_move_fw(ring, next_to_use); 3712 } 3713 3714 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); 3715 return false; 3716 } 3717 3718 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb) 3719 { 3720 return page_count(cb->priv) == cb->pagecnt_bias; 3721 } 3722 3723 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i, 3724 struct hns3_enet_ring *ring, 3725 int pull_len, 3726 struct hns3_desc_cb *desc_cb) 3727 { 3728 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3729 u32 frag_offset = desc_cb->page_offset + pull_len; 3730 int size = le16_to_cpu(desc->rx.size); 3731 u32 frag_size = size - pull_len; 3732 void *frag = napi_alloc_frag(frag_size); 3733 3734 if (unlikely(!frag)) { 3735 hns3_ring_stats_update(ring, frag_alloc_err); 3736 3737 hns3_rl_err(ring_to_netdev(ring), 3738 "failed to allocate rx frag\n"); 3739 return -ENOMEM; 3740 } 3741 3742 desc_cb->reuse_flag = 1; 3743 memcpy(frag, desc_cb->buf + frag_offset, frag_size); 3744 skb_add_rx_frag(skb, i, virt_to_page(frag), 3745 offset_in_page(frag), frag_size, frag_size); 3746 3747 hns3_ring_stats_update(ring, frag_alloc); 3748 return 0; 3749 } 3750 3751 static void hns3_nic_reuse_page(struct sk_buff *skb, int i, 3752 struct hns3_enet_ring *ring, int pull_len, 3753 struct hns3_desc_cb *desc_cb) 3754 { 3755 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3756 u32 frag_offset = desc_cb->page_offset + pull_len; 3757 int size = le16_to_cpu(desc->rx.size); 3758 u32 truesize = hns3_buf_size(ring); 3759 u32 frag_size = size - pull_len; 3760 int ret = 0; 3761 bool reused; 3762 3763 if (ring->page_pool) { 3764 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3765 frag_size, truesize); 3766 return; 3767 } 3768 3769 /* Avoid re-using remote or pfmem page */ 3770 if (unlikely(!dev_page_is_reusable(desc_cb->priv))) 3771 goto out; 3772 3773 reused = hns3_can_reuse_page(desc_cb); 3774 3775 /* Rx page can be reused when: 3776 * 1. Rx page is only owned by the driver when page_offset 3777 * is zero, which means 0 @ truesize will be used by 3778 * stack after skb_add_rx_frag() is called, and the rest 3779 * of rx page can be reused by driver. 3780 * Or 3781 * 2. Rx page is only owned by the driver when page_offset 3782 * is non-zero, which means page_offset @ truesize will 3783 * be used by stack after skb_add_rx_frag() is called, 3784 * and 0 @ truesize can be reused by driver. 3785 */ 3786 if ((!desc_cb->page_offset && reused) || 3787 ((desc_cb->page_offset + truesize + truesize) <= 3788 hns3_page_size(ring) && desc_cb->page_offset)) { 3789 desc_cb->page_offset += truesize; 3790 desc_cb->reuse_flag = 1; 3791 } else if (desc_cb->page_offset && reused) { 3792 desc_cb->page_offset = 0; 3793 desc_cb->reuse_flag = 1; 3794 } else if (frag_size <= ring->rx_copybreak) { 3795 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb); 3796 if (!ret) 3797 return; 3798 } 3799 3800 out: 3801 desc_cb->pagecnt_bias--; 3802 3803 if (unlikely(!desc_cb->pagecnt_bias)) { 3804 page_ref_add(desc_cb->priv, USHRT_MAX); 3805 desc_cb->pagecnt_bias = USHRT_MAX; 3806 } 3807 3808 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3809 frag_size, truesize); 3810 3811 if (unlikely(!desc_cb->reuse_flag)) 3812 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); 3813 } 3814 3815 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) 3816 { 3817 __be16 type = skb->protocol; 3818 struct tcphdr *th; 3819 int depth = 0; 3820 3821 while (eth_type_vlan(type)) { 3822 struct vlan_hdr *vh; 3823 3824 if ((depth + VLAN_HLEN) > skb_headlen(skb)) 3825 return -EFAULT; 3826 3827 vh = (struct vlan_hdr *)(skb->data + depth); 3828 type = vh->h_vlan_encapsulated_proto; 3829 depth += VLAN_HLEN; 3830 } 3831 3832 skb_set_network_header(skb, depth); 3833 3834 if (type == htons(ETH_P_IP)) { 3835 const struct iphdr *iph = ip_hdr(skb); 3836 3837 depth += sizeof(struct iphdr); 3838 skb_set_transport_header(skb, depth); 3839 th = tcp_hdr(skb); 3840 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, 3841 iph->daddr, 0); 3842 } else if (type == htons(ETH_P_IPV6)) { 3843 const struct ipv6hdr *iph = ipv6_hdr(skb); 3844 3845 depth += sizeof(struct ipv6hdr); 3846 skb_set_transport_header(skb, depth); 3847 th = tcp_hdr(skb); 3848 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, 3849 &iph->daddr, 0); 3850 } else { 3851 hns3_rl_err(skb->dev, 3852 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", 3853 be16_to_cpu(type), depth); 3854 return -EFAULT; 3855 } 3856 3857 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3858 if (th->cwr) 3859 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3860 3861 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) 3862 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; 3863 3864 skb->csum_start = (unsigned char *)th - skb->head; 3865 skb->csum_offset = offsetof(struct tcphdr, check); 3866 skb->ip_summed = CHECKSUM_PARTIAL; 3867 3868 trace_hns3_gro(skb); 3869 3870 return 0; 3871 } 3872 3873 static void hns3_checksum_complete(struct hns3_enet_ring *ring, 3874 struct sk_buff *skb, u32 ptype, u16 csum) 3875 { 3876 if (ptype == HNS3_INVALID_PTYPE || 3877 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE) 3878 return; 3879 3880 hns3_ring_stats_update(ring, csum_complete); 3881 skb->ip_summed = CHECKSUM_COMPLETE; 3882 skb->csum = csum_unfold((__force __sum16)csum); 3883 } 3884 3885 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info, 3886 u32 ol_info, u32 ptype) 3887 { 3888 int l3_type, l4_type; 3889 int ol4_type; 3890 3891 if (ptype != HNS3_INVALID_PTYPE) { 3892 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level; 3893 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed; 3894 3895 return; 3896 } 3897 3898 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, 3899 HNS3_RXD_OL4ID_S); 3900 switch (ol4_type) { 3901 case HNS3_OL4_TYPE_MAC_IN_UDP: 3902 case HNS3_OL4_TYPE_NVGRE: 3903 skb->csum_level = 1; 3904 fallthrough; 3905 case HNS3_OL4_TYPE_NO_TUN: 3906 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 3907 HNS3_RXD_L3ID_S); 3908 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, 3909 HNS3_RXD_L4ID_S); 3910 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ 3911 if ((l3_type == HNS3_L3_TYPE_IPV4 || 3912 l3_type == HNS3_L3_TYPE_IPV6) && 3913 (l4_type == HNS3_L4_TYPE_UDP || 3914 l4_type == HNS3_L4_TYPE_TCP || 3915 l4_type == HNS3_L4_TYPE_SCTP)) 3916 skb->ip_summed = CHECKSUM_UNNECESSARY; 3917 break; 3918 default: 3919 break; 3920 } 3921 } 3922 3923 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, 3924 u32 l234info, u32 bd_base_info, u32 ol_info, 3925 u16 csum) 3926 { 3927 struct net_device *netdev = ring_to_netdev(ring); 3928 struct hns3_nic_priv *priv = netdev_priv(netdev); 3929 u32 ptype = HNS3_INVALID_PTYPE; 3930 3931 skb->ip_summed = CHECKSUM_NONE; 3932 3933 skb_checksum_none_assert(skb); 3934 3935 if (!(netdev->features & NETIF_F_RXCSUM)) 3936 return; 3937 3938 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) 3939 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 3940 HNS3_RXD_PTYPE_S); 3941 3942 hns3_checksum_complete(ring, skb, ptype, csum); 3943 3944 /* check if hardware has done checksum */ 3945 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) 3946 return; 3947 3948 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | 3949 BIT(HNS3_RXD_OL3E_B) | 3950 BIT(HNS3_RXD_OL4E_B)))) { 3951 skb->ip_summed = CHECKSUM_NONE; 3952 hns3_ring_stats_update(ring, l3l4_csum_err); 3953 3954 return; 3955 } 3956 3957 hns3_rx_handle_csum(skb, l234info, ol_info, ptype); 3958 } 3959 3960 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) 3961 { 3962 if (skb_has_frag_list(skb)) 3963 napi_gro_flush(&ring->tqp_vector->napi, false); 3964 3965 napi_gro_receive(&ring->tqp_vector->napi, skb); 3966 } 3967 3968 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, 3969 struct hns3_desc *desc, u32 l234info, 3970 u16 *vlan_tag) 3971 { 3972 struct hnae3_handle *handle = ring->tqp->handle; 3973 struct pci_dev *pdev = ring->tqp->handle->pdev; 3974 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3975 3976 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) { 3977 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3978 if (!(*vlan_tag & VLAN_VID_MASK)) 3979 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3980 3981 return (*vlan_tag != 0); 3982 } 3983 3984 #define HNS3_STRP_OUTER_VLAN 0x1 3985 #define HNS3_STRP_INNER_VLAN 0x2 3986 #define HNS3_STRP_BOTH 0x3 3987 3988 /* Hardware always insert VLAN tag into RX descriptor when 3989 * remove the tag from packet, driver needs to determine 3990 * reporting which tag to stack. 3991 */ 3992 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, 3993 HNS3_RXD_STRP_TAGP_S)) { 3994 case HNS3_STRP_OUTER_VLAN: 3995 if (handle->port_base_vlan_state != 3996 HNAE3_PORT_BASE_VLAN_DISABLE) 3997 return false; 3998 3999 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 4000 return true; 4001 case HNS3_STRP_INNER_VLAN: 4002 if (handle->port_base_vlan_state != 4003 HNAE3_PORT_BASE_VLAN_DISABLE) 4004 return false; 4005 4006 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 4007 return true; 4008 case HNS3_STRP_BOTH: 4009 if (handle->port_base_vlan_state == 4010 HNAE3_PORT_BASE_VLAN_DISABLE) 4011 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 4012 else 4013 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 4014 4015 return true; 4016 default: 4017 return false; 4018 } 4019 } 4020 4021 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring) 4022 { 4023 ring->desc[ring->next_to_clean].rx.bd_base_info &= 4024 cpu_to_le32(~BIT(HNS3_RXD_VLD_B)); 4025 ring->desc_cb[ring->next_to_clean].refill = 0; 4026 ring->next_to_clean += 1; 4027 4028 if (unlikely(ring->next_to_clean == ring->desc_num)) 4029 ring->next_to_clean = 0; 4030 } 4031 4032 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, 4033 unsigned char *va) 4034 { 4035 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 4036 struct net_device *netdev = ring_to_netdev(ring); 4037 struct sk_buff *skb; 4038 4039 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); 4040 skb = ring->skb; 4041 if (unlikely(!skb)) { 4042 hns3_rl_err(netdev, "alloc rx skb fail\n"); 4043 hns3_ring_stats_update(ring, sw_err_cnt); 4044 4045 return -ENOMEM; 4046 } 4047 4048 trace_hns3_rx_desc(ring); 4049 prefetchw(skb->data); 4050 4051 ring->pending_buf = 1; 4052 ring->frag_num = 0; 4053 ring->tail_skb = NULL; 4054 if (length <= HNS3_RX_HEAD_SIZE) { 4055 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 4056 4057 /* We can reuse buffer as-is, just make sure it is reusable */ 4058 if (dev_page_is_reusable(desc_cb->priv)) 4059 desc_cb->reuse_flag = 1; 4060 else if (desc_cb->type & DESC_TYPE_PP_FRAG) 4061 page_pool_put_full_page(ring->page_pool, desc_cb->priv, 4062 false); 4063 else /* This page cannot be reused so discard it */ 4064 __page_frag_cache_drain(desc_cb->priv, 4065 desc_cb->pagecnt_bias); 4066 4067 hns3_rx_ring_move_fw(ring); 4068 return 0; 4069 } 4070 4071 if (ring->page_pool) 4072 skb_mark_for_recycle(skb); 4073 4074 hns3_ring_stats_update(ring, seg_pkt_cnt); 4075 4076 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); 4077 __skb_put(skb, ring->pull_len); 4078 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, 4079 desc_cb); 4080 hns3_rx_ring_move_fw(ring); 4081 4082 return 0; 4083 } 4084 4085 static int hns3_add_frag(struct hns3_enet_ring *ring) 4086 { 4087 struct sk_buff *skb = ring->skb; 4088 struct sk_buff *head_skb = skb; 4089 struct sk_buff *new_skb; 4090 struct hns3_desc_cb *desc_cb; 4091 struct hns3_desc *desc; 4092 u32 bd_base_info; 4093 4094 do { 4095 desc = &ring->desc[ring->next_to_clean]; 4096 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4097 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4098 /* make sure HW write desc complete */ 4099 dma_rmb(); 4100 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) 4101 return -ENXIO; 4102 4103 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { 4104 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0); 4105 if (unlikely(!new_skb)) { 4106 hns3_rl_err(ring_to_netdev(ring), 4107 "alloc rx fraglist skb fail\n"); 4108 return -ENXIO; 4109 } 4110 4111 if (ring->page_pool) 4112 skb_mark_for_recycle(new_skb); 4113 4114 ring->frag_num = 0; 4115 4116 if (ring->tail_skb) { 4117 ring->tail_skb->next = new_skb; 4118 ring->tail_skb = new_skb; 4119 } else { 4120 skb_shinfo(skb)->frag_list = new_skb; 4121 ring->tail_skb = new_skb; 4122 } 4123 } 4124 4125 if (ring->tail_skb) { 4126 head_skb->truesize += hns3_buf_size(ring); 4127 head_skb->data_len += le16_to_cpu(desc->rx.size); 4128 head_skb->len += le16_to_cpu(desc->rx.size); 4129 skb = ring->tail_skb; 4130 } 4131 4132 dma_sync_single_for_cpu(ring_to_dev(ring), 4133 desc_cb->dma + desc_cb->page_offset, 4134 hns3_buf_size(ring), 4135 DMA_FROM_DEVICE); 4136 4137 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); 4138 trace_hns3_rx_desc(ring); 4139 hns3_rx_ring_move_fw(ring); 4140 ring->pending_buf++; 4141 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))); 4142 4143 return 0; 4144 } 4145 4146 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, 4147 struct sk_buff *skb, u32 l234info, 4148 u32 bd_base_info, u32 ol_info, u16 csum) 4149 { 4150 struct net_device *netdev = ring_to_netdev(ring); 4151 struct hns3_nic_priv *priv = netdev_priv(netdev); 4152 u32 l3_type; 4153 4154 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, 4155 HNS3_RXD_GRO_SIZE_M, 4156 HNS3_RXD_GRO_SIZE_S); 4157 /* if there is no HW GRO, do not set gro params */ 4158 if (!skb_shinfo(skb)->gso_size) { 4159 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info, 4160 csum); 4161 return 0; 4162 } 4163 4164 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, 4165 HNS3_RXD_GRO_COUNT_M, 4166 HNS3_RXD_GRO_COUNT_S); 4167 4168 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { 4169 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 4170 HNS3_RXD_PTYPE_S); 4171 4172 l3_type = hns3_rx_ptype_tbl[ptype].l3_type; 4173 } else { 4174 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 4175 HNS3_RXD_L3ID_S); 4176 } 4177 4178 if (l3_type == HNS3_L3_TYPE_IPV4) 4179 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 4180 else if (l3_type == HNS3_L3_TYPE_IPV6) 4181 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 4182 else 4183 return -EFAULT; 4184 4185 return hns3_gro_complete(skb, l234info); 4186 } 4187 4188 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, 4189 struct sk_buff *skb, u32 rss_hash, 4190 u32 l234info, u32 ol_info) 4191 { 4192 enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE; 4193 struct net_device *netdev = ring_to_netdev(ring); 4194 struct hns3_nic_priv *priv = netdev_priv(netdev); 4195 4196 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { 4197 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 4198 HNS3_RXD_PTYPE_S); 4199 4200 rss_type = hns3_rx_ptype_tbl[ptype].hash_type; 4201 } else { 4202 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 4203 HNS3_RXD_L3ID_S); 4204 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, 4205 HNS3_RXD_L4ID_S); 4206 4207 if (l3_type == HNS3_L3_TYPE_IPV4 || 4208 l3_type == HNS3_L3_TYPE_IPV6) { 4209 if (l4_type == HNS3_L4_TYPE_UDP || 4210 l4_type == HNS3_L4_TYPE_TCP || 4211 l4_type == HNS3_L4_TYPE_SCTP) 4212 rss_type = PKT_HASH_TYPE_L4; 4213 else if (l4_type == HNS3_L4_TYPE_IGMP || 4214 l4_type == HNS3_L4_TYPE_ICMP) 4215 rss_type = PKT_HASH_TYPE_L3; 4216 } 4217 } 4218 4219 skb_set_hash(skb, rss_hash, rss_type); 4220 } 4221 4222 static void hns3_handle_rx_ts_info(struct net_device *netdev, 4223 struct hns3_desc *desc, struct sk_buff *skb, 4224 u32 bd_base_info) 4225 { 4226 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) { 4227 struct hnae3_handle *h = hns3_get_handle(netdev); 4228 u32 nsec = le32_to_cpu(desc->ts_nsec); 4229 u32 sec = le32_to_cpu(desc->ts_sec); 4230 4231 if (h->ae_algo->ops->get_rx_hwts) 4232 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec); 4233 } 4234 } 4235 4236 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring, 4237 struct hns3_desc *desc, struct sk_buff *skb, 4238 u32 l234info) 4239 { 4240 struct net_device *netdev = ring_to_netdev(ring); 4241 4242 /* Based on hw strategy, the tag offloaded will be stored at 4243 * ot_vlan_tag in two layer tag case, and stored at vlan_tag 4244 * in one layer tag case. 4245 */ 4246 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 4247 u16 vlan_tag; 4248 4249 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) 4250 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 4251 vlan_tag); 4252 } 4253 } 4254 4255 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) 4256 { 4257 struct net_device *netdev = ring_to_netdev(ring); 4258 enum hns3_pkt_l2t_type l2_frame_type; 4259 u32 bd_base_info, l234info, ol_info; 4260 struct hns3_desc *desc; 4261 unsigned int len; 4262 int pre_ntc, ret; 4263 u16 csum; 4264 4265 /* bdinfo handled below is only valid on the last BD of the 4266 * current packet, and ring->next_to_clean indicates the first 4267 * descriptor of next packet, so need - 1 below. 4268 */ 4269 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : 4270 (ring->desc_num - 1); 4271 desc = &ring->desc[pre_ntc]; 4272 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4273 l234info = le32_to_cpu(desc->rx.l234_info); 4274 ol_info = le32_to_cpu(desc->rx.ol_info); 4275 csum = le16_to_cpu(desc->csum); 4276 4277 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info); 4278 4279 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info); 4280 4281 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | 4282 BIT(HNS3_RXD_L2E_B))))) { 4283 u64_stats_update_begin(&ring->syncp); 4284 if (l234info & BIT(HNS3_RXD_L2E_B)) 4285 ring->stats.l2_err++; 4286 else 4287 ring->stats.err_pkt_len++; 4288 u64_stats_update_end(&ring->syncp); 4289 4290 return -EFAULT; 4291 } 4292 4293 len = skb->len; 4294 4295 /* Do update ip stack process */ 4296 skb->protocol = eth_type_trans(skb, netdev); 4297 4298 /* This is needed in order to enable forwarding support */ 4299 ret = hns3_set_gro_and_checksum(ring, skb, l234info, 4300 bd_base_info, ol_info, csum); 4301 if (unlikely(ret)) { 4302 hns3_ring_stats_update(ring, rx_err_cnt); 4303 return ret; 4304 } 4305 4306 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, 4307 HNS3_RXD_DMAC_S); 4308 4309 u64_stats_update_begin(&ring->syncp); 4310 ring->stats.rx_pkts++; 4311 ring->stats.rx_bytes += len; 4312 4313 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) 4314 ring->stats.rx_multicast++; 4315 4316 u64_stats_update_end(&ring->syncp); 4317 4318 ring->tqp_vector->rx_group.total_bytes += len; 4319 4320 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash), 4321 l234info, ol_info); 4322 return 0; 4323 } 4324 4325 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring) 4326 { 4327 struct sk_buff *skb = ring->skb; 4328 struct hns3_desc_cb *desc_cb; 4329 struct hns3_desc *desc; 4330 unsigned int length; 4331 u32 bd_base_info; 4332 int ret; 4333 4334 desc = &ring->desc[ring->next_to_clean]; 4335 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4336 4337 prefetch(desc); 4338 4339 if (!skb) { 4340 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4341 /* Check valid BD */ 4342 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 4343 return -ENXIO; 4344 4345 dma_rmb(); 4346 length = le16_to_cpu(desc->rx.size); 4347 4348 ring->va = desc_cb->buf + desc_cb->page_offset; 4349 4350 dma_sync_single_for_cpu(ring_to_dev(ring), 4351 desc_cb->dma + desc_cb->page_offset, 4352 hns3_buf_size(ring), 4353 DMA_FROM_DEVICE); 4354 4355 /* Prefetch first cache line of first page. 4356 * Idea is to cache few bytes of the header of the packet. 4357 * Our L1 Cache line size is 64B so need to prefetch twice to make 4358 * it 128B. But in actual we can have greater size of caches with 4359 * 128B Level 1 cache lines. In such a case, single fetch would 4360 * suffice to cache in the relevant part of the header. 4361 */ 4362 net_prefetch(ring->va); 4363 4364 ret = hns3_alloc_skb(ring, length, ring->va); 4365 skb = ring->skb; 4366 4367 if (ret < 0) /* alloc buffer fail */ 4368 return ret; 4369 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */ 4370 ret = hns3_add_frag(ring); 4371 if (ret) 4372 return ret; 4373 } 4374 } else { 4375 ret = hns3_add_frag(ring); 4376 if (ret) 4377 return ret; 4378 } 4379 4380 /* As the head data may be changed when GRO enable, copy 4381 * the head data in after other data rx completed 4382 */ 4383 if (skb->len > HNS3_RX_HEAD_SIZE) 4384 memcpy(skb->data, ring->va, 4385 ALIGN(ring->pull_len, sizeof(long))); 4386 4387 ret = hns3_handle_bdinfo(ring, skb); 4388 if (unlikely(ret)) { 4389 dev_kfree_skb_any(skb); 4390 return ret; 4391 } 4392 4393 skb_record_rx_queue(skb, ring->tqp->tqp_index); 4394 return 0; 4395 } 4396 4397 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, 4398 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) 4399 { 4400 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 4401 int unused_count = hns3_desc_unused(ring); 4402 bool failure = false; 4403 int recv_pkts = 0; 4404 int err; 4405 4406 unused_count -= ring->pending_buf; 4407 4408 while (recv_pkts < budget) { 4409 /* Reuse or realloc buffers */ 4410 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 4411 failure = failure || 4412 hns3_nic_alloc_rx_buffers(ring, unused_count); 4413 unused_count = 0; 4414 } 4415 4416 /* Poll one pkt */ 4417 err = hns3_handle_rx_bd(ring); 4418 /* Do not get FE for the packet or failed to alloc skb */ 4419 if (unlikely(!ring->skb || err == -ENXIO)) { 4420 goto out; 4421 } else if (likely(!err)) { 4422 rx_fn(ring, ring->skb); 4423 recv_pkts++; 4424 } 4425 4426 unused_count += ring->pending_buf; 4427 ring->skb = NULL; 4428 ring->pending_buf = 0; 4429 } 4430 4431 out: 4432 /* sync head pointer before exiting, since hardware will calculate 4433 * FBD number with head pointer 4434 */ 4435 if (unused_count > 0) 4436 failure = failure || 4437 hns3_nic_alloc_rx_buffers(ring, unused_count); 4438 4439 return failure ? budget : recv_pkts; 4440 } 4441 4442 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4443 { 4444 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; 4445 struct dim_sample sample = {}; 4446 4447 if (!rx_group->coal.adapt_enable) 4448 return; 4449 4450 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets, 4451 rx_group->total_bytes, &sample); 4452 net_dim(&rx_group->dim, sample); 4453 } 4454 4455 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4456 { 4457 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; 4458 struct dim_sample sample = {}; 4459 4460 if (!tx_group->coal.adapt_enable) 4461 return; 4462 4463 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets, 4464 tx_group->total_bytes, &sample); 4465 net_dim(&tx_group->dim, sample); 4466 } 4467 4468 static int hns3_nic_common_poll(struct napi_struct *napi, int budget) 4469 { 4470 struct hns3_nic_priv *priv = netdev_priv(napi->dev); 4471 struct hns3_enet_ring *ring; 4472 int rx_pkt_total = 0; 4473 4474 struct hns3_enet_tqp_vector *tqp_vector = 4475 container_of(napi, struct hns3_enet_tqp_vector, napi); 4476 bool clean_complete = true; 4477 int rx_budget = budget; 4478 4479 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4480 napi_complete(napi); 4481 return 0; 4482 } 4483 4484 /* Since the actual Tx work is minimal, we can give the Tx a larger 4485 * budget and be more aggressive about cleaning up the Tx descriptors. 4486 */ 4487 hns3_for_each_ring(ring, tqp_vector->tx_group) 4488 hns3_clean_tx_ring(ring, budget); 4489 4490 /* make sure rx ring budget not smaller than 1 */ 4491 if (tqp_vector->num_tqps > 1) 4492 rx_budget = max(budget / tqp_vector->num_tqps, 1); 4493 4494 hns3_for_each_ring(ring, tqp_vector->rx_group) { 4495 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, 4496 hns3_rx_skb); 4497 if (rx_cleaned >= rx_budget) 4498 clean_complete = false; 4499 4500 rx_pkt_total += rx_cleaned; 4501 } 4502 4503 tqp_vector->rx_group.total_packets += rx_pkt_total; 4504 4505 if (!clean_complete) 4506 return budget; 4507 4508 if (napi_complete(napi) && 4509 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4510 hns3_update_rx_int_coalesce(tqp_vector); 4511 hns3_update_tx_int_coalesce(tqp_vector); 4512 4513 hns3_mask_vector_irq(tqp_vector, 1); 4514 } 4515 4516 return rx_pkt_total; 4517 } 4518 4519 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4520 struct hnae3_ring_chain_node **head, 4521 bool is_tx) 4522 { 4523 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX; 4524 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX; 4525 struct hnae3_ring_chain_node *cur_chain = *head; 4526 struct pci_dev *pdev = tqp_vector->handle->pdev; 4527 struct hnae3_ring_chain_node *chain; 4528 struct hns3_enet_ring *ring; 4529 4530 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring; 4531 4532 if (cur_chain) { 4533 while (cur_chain->next) 4534 cur_chain = cur_chain->next; 4535 } 4536 4537 while (ring) { 4538 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); 4539 if (!chain) 4540 return -ENOMEM; 4541 if (cur_chain) 4542 cur_chain->next = chain; 4543 else 4544 *head = chain; 4545 chain->tqp_index = ring->tqp->tqp_index; 4546 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, 4547 bit_value); 4548 hnae3_set_field(chain->int_gl_idx, 4549 HNAE3_RING_GL_IDX_M, 4550 HNAE3_RING_GL_IDX_S, field_value); 4551 4552 cur_chain = chain; 4553 4554 ring = ring->next; 4555 } 4556 4557 return 0; 4558 } 4559 4560 static struct hnae3_ring_chain_node * 4561 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector) 4562 { 4563 struct pci_dev *pdev = tqp_vector->handle->pdev; 4564 struct hnae3_ring_chain_node *cur_chain = NULL; 4565 struct hnae3_ring_chain_node *chain; 4566 4567 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true)) 4568 goto err_free_chain; 4569 4570 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false)) 4571 goto err_free_chain; 4572 4573 return cur_chain; 4574 4575 err_free_chain: 4576 while (cur_chain) { 4577 chain = cur_chain->next; 4578 devm_kfree(&pdev->dev, cur_chain); 4579 cur_chain = chain; 4580 } 4581 4582 return NULL; 4583 } 4584 4585 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4586 struct hnae3_ring_chain_node *head) 4587 { 4588 struct pci_dev *pdev = tqp_vector->handle->pdev; 4589 struct hnae3_ring_chain_node *chain_tmp, *chain; 4590 4591 chain = head; 4592 4593 while (chain) { 4594 chain_tmp = chain->next; 4595 devm_kfree(&pdev->dev, chain); 4596 chain = chain_tmp; 4597 } 4598 } 4599 4600 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, 4601 struct hns3_enet_ring *ring) 4602 { 4603 ring->next = group->ring; 4604 group->ring = ring; 4605 4606 group->count++; 4607 } 4608 4609 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) 4610 { 4611 struct pci_dev *pdev = priv->ae_handle->pdev; 4612 struct hns3_enet_tqp_vector *tqp_vector; 4613 int num_vectors = priv->vector_num; 4614 int numa_node; 4615 int vector_i; 4616 4617 numa_node = dev_to_node(&pdev->dev); 4618 4619 for (vector_i = 0; vector_i < num_vectors; vector_i++) { 4620 tqp_vector = &priv->tqp_vector[vector_i]; 4621 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), 4622 &tqp_vector->affinity_mask); 4623 } 4624 } 4625 4626 static void hns3_rx_dim_work(struct work_struct *work) 4627 { 4628 struct dim *dim = container_of(work, struct dim, work); 4629 struct hns3_enet_ring_group *group = container_of(dim, 4630 struct hns3_enet_ring_group, dim); 4631 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4632 struct dim_cq_moder cur_moder = 4633 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 4634 4635 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec); 4636 tqp_vector->rx_group.coal.int_gl = cur_moder.usec; 4637 4638 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) { 4639 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts); 4640 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts; 4641 } 4642 4643 dim->state = DIM_START_MEASURE; 4644 } 4645 4646 static void hns3_tx_dim_work(struct work_struct *work) 4647 { 4648 struct dim *dim = container_of(work, struct dim, work); 4649 struct hns3_enet_ring_group *group = container_of(dim, 4650 struct hns3_enet_ring_group, dim); 4651 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4652 struct dim_cq_moder cur_moder = 4653 net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 4654 4655 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec); 4656 tqp_vector->tx_group.coal.int_gl = cur_moder.usec; 4657 4658 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) { 4659 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts); 4660 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts; 4661 } 4662 4663 dim->state = DIM_START_MEASURE; 4664 } 4665 4666 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector) 4667 { 4668 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work); 4669 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work); 4670 } 4671 4672 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) 4673 { 4674 struct hnae3_handle *h = priv->ae_handle; 4675 struct hns3_enet_tqp_vector *tqp_vector; 4676 int ret; 4677 int i; 4678 4679 hns3_nic_set_cpumask(priv); 4680 4681 for (i = 0; i < priv->vector_num; i++) { 4682 tqp_vector = &priv->tqp_vector[i]; 4683 hns3_vector_coalesce_init_hw(tqp_vector, priv); 4684 tqp_vector->num_tqps = 0; 4685 hns3_nic_init_dim(tqp_vector); 4686 } 4687 4688 for (i = 0; i < h->kinfo.num_tqps; i++) { 4689 u16 vector_i = i % priv->vector_num; 4690 u16 tqp_num = h->kinfo.num_tqps; 4691 4692 tqp_vector = &priv->tqp_vector[vector_i]; 4693 4694 hns3_add_ring_to_group(&tqp_vector->tx_group, 4695 &priv->ring[i]); 4696 4697 hns3_add_ring_to_group(&tqp_vector->rx_group, 4698 &priv->ring[i + tqp_num]); 4699 4700 priv->ring[i].tqp_vector = tqp_vector; 4701 priv->ring[i + tqp_num].tqp_vector = tqp_vector; 4702 tqp_vector->num_tqps++; 4703 } 4704 4705 for (i = 0; i < priv->vector_num; i++) { 4706 struct hnae3_ring_chain_node *vector_ring_chain; 4707 4708 tqp_vector = &priv->tqp_vector[i]; 4709 4710 tqp_vector->rx_group.total_bytes = 0; 4711 tqp_vector->rx_group.total_packets = 0; 4712 tqp_vector->tx_group.total_bytes = 0; 4713 tqp_vector->tx_group.total_packets = 0; 4714 tqp_vector->handle = h; 4715 4716 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4717 if (!vector_ring_chain) { 4718 ret = -ENOMEM; 4719 goto map_ring_fail; 4720 } 4721 4722 ret = h->ae_algo->ops->map_ring_to_vector(h, 4723 tqp_vector->vector_irq, vector_ring_chain); 4724 4725 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4726 4727 if (ret) 4728 goto map_ring_fail; 4729 4730 netif_napi_add(priv->netdev, &tqp_vector->napi, 4731 hns3_nic_common_poll); 4732 } 4733 4734 return 0; 4735 4736 map_ring_fail: 4737 while (i--) 4738 netif_napi_del(&priv->tqp_vector[i].napi); 4739 4740 return ret; 4741 } 4742 4743 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv) 4744 { 4745 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 4746 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal; 4747 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal; 4748 4749 /* initialize the configuration for interrupt coalescing. 4750 * 1. GL (Interrupt Gap Limiter) 4751 * 2. RL (Interrupt Rate Limiter) 4752 * 3. QL (Interrupt Quantity Limiter) 4753 * 4754 * Default: enable interrupt coalescing self-adaptive and GL 4755 */ 4756 tx_coal->adapt_enable = 1; 4757 rx_coal->adapt_enable = 1; 4758 4759 tx_coal->int_gl = HNS3_INT_GL_50K; 4760 rx_coal->int_gl = HNS3_INT_GL_50K; 4761 4762 rx_coal->flow_level = HNS3_FLOW_LOW; 4763 tx_coal->flow_level = HNS3_FLOW_LOW; 4764 4765 if (ae_dev->dev_specs.int_ql_max) { 4766 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4767 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4768 } 4769 } 4770 4771 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) 4772 { 4773 struct hnae3_handle *h = priv->ae_handle; 4774 struct hns3_enet_tqp_vector *tqp_vector; 4775 struct hnae3_vector_info *vector; 4776 struct pci_dev *pdev = h->pdev; 4777 u16 tqp_num = h->kinfo.num_tqps; 4778 u16 vector_num; 4779 int ret = 0; 4780 u16 i; 4781 4782 /* RSS size, cpu online and vector_num should be the same */ 4783 /* Should consider 2p/4p later */ 4784 vector_num = min_t(u16, num_online_cpus(), tqp_num); 4785 4786 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), 4787 GFP_KERNEL); 4788 if (!vector) 4789 return -ENOMEM; 4790 4791 /* save the actual available vector number */ 4792 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); 4793 4794 priv->vector_num = vector_num; 4795 priv->tqp_vector = (struct hns3_enet_tqp_vector *) 4796 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), 4797 GFP_KERNEL); 4798 if (!priv->tqp_vector) { 4799 ret = -ENOMEM; 4800 goto out; 4801 } 4802 4803 for (i = 0; i < priv->vector_num; i++) { 4804 tqp_vector = &priv->tqp_vector[i]; 4805 tqp_vector->idx = i; 4806 tqp_vector->mask_addr = vector[i].io_addr; 4807 tqp_vector->vector_irq = vector[i].vector; 4808 hns3_vector_coalesce_init(tqp_vector, priv); 4809 } 4810 4811 out: 4812 devm_kfree(&pdev->dev, vector); 4813 return ret; 4814 } 4815 4816 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) 4817 { 4818 group->ring = NULL; 4819 group->count = 0; 4820 } 4821 4822 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) 4823 { 4824 struct hnae3_ring_chain_node *vector_ring_chain; 4825 struct hnae3_handle *h = priv->ae_handle; 4826 struct hns3_enet_tqp_vector *tqp_vector; 4827 int i; 4828 4829 for (i = 0; i < priv->vector_num; i++) { 4830 tqp_vector = &priv->tqp_vector[i]; 4831 4832 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) 4833 continue; 4834 4835 /* Since the mapping can be overwritten, when fail to get the 4836 * chain between vector and ring, we should go on to deal with 4837 * the remaining options. 4838 */ 4839 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4840 if (!vector_ring_chain) 4841 dev_warn(priv->dev, "failed to get ring chain\n"); 4842 4843 h->ae_algo->ops->unmap_ring_from_vector(h, 4844 tqp_vector->vector_irq, vector_ring_chain); 4845 4846 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4847 4848 hns3_clear_ring_group(&tqp_vector->rx_group); 4849 hns3_clear_ring_group(&tqp_vector->tx_group); 4850 netif_napi_del(&priv->tqp_vector[i].napi); 4851 } 4852 } 4853 4854 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) 4855 { 4856 struct hnae3_handle *h = priv->ae_handle; 4857 struct pci_dev *pdev = h->pdev; 4858 int i, ret; 4859 4860 for (i = 0; i < priv->vector_num; i++) { 4861 struct hns3_enet_tqp_vector *tqp_vector; 4862 4863 tqp_vector = &priv->tqp_vector[i]; 4864 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); 4865 if (ret) 4866 return; 4867 } 4868 4869 devm_kfree(&pdev->dev, priv->tqp_vector); 4870 } 4871 4872 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, 4873 unsigned int ring_type) 4874 { 4875 int queue_num = priv->ae_handle->kinfo.num_tqps; 4876 struct hns3_enet_ring *ring; 4877 int desc_num; 4878 4879 if (ring_type == HNAE3_RING_TYPE_TX) { 4880 ring = &priv->ring[q->tqp_index]; 4881 desc_num = priv->ae_handle->kinfo.num_tx_desc; 4882 ring->queue_index = q->tqp_index; 4883 ring->tx_copybreak = priv->tx_copybreak; 4884 ring->last_to_use = 0; 4885 } else { 4886 ring = &priv->ring[q->tqp_index + queue_num]; 4887 desc_num = priv->ae_handle->kinfo.num_rx_desc; 4888 ring->queue_index = q->tqp_index; 4889 ring->rx_copybreak = priv->rx_copybreak; 4890 } 4891 4892 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); 4893 4894 ring->tqp = q; 4895 ring->desc = NULL; 4896 ring->desc_cb = NULL; 4897 ring->dev = priv->dev; 4898 ring->desc_dma_addr = 0; 4899 ring->buf_size = q->buf_size; 4900 ring->desc_num = desc_num; 4901 ring->next_to_use = 0; 4902 ring->next_to_clean = 0; 4903 } 4904 4905 static void hns3_queue_to_ring(struct hnae3_queue *tqp, 4906 struct hns3_nic_priv *priv) 4907 { 4908 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); 4909 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); 4910 } 4911 4912 static int hns3_get_ring_config(struct hns3_nic_priv *priv) 4913 { 4914 struct hnae3_handle *h = priv->ae_handle; 4915 struct pci_dev *pdev = h->pdev; 4916 int i; 4917 4918 priv->ring = devm_kzalloc(&pdev->dev, 4919 array3_size(h->kinfo.num_tqps, 4920 sizeof(*priv->ring), 2), 4921 GFP_KERNEL); 4922 if (!priv->ring) 4923 return -ENOMEM; 4924 4925 for (i = 0; i < h->kinfo.num_tqps; i++) 4926 hns3_queue_to_ring(h->kinfo.tqp[i], priv); 4927 4928 return 0; 4929 } 4930 4931 static void hns3_put_ring_config(struct hns3_nic_priv *priv) 4932 { 4933 if (!priv->ring) 4934 return; 4935 4936 devm_kfree(priv->dev, priv->ring); 4937 priv->ring = NULL; 4938 } 4939 4940 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring) 4941 { 4942 struct page_pool_params pp_params = { 4943 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 4944 .order = hns3_page_order(ring), 4945 .pool_size = ring->desc_num * hns3_buf_size(ring) / 4946 (PAGE_SIZE << hns3_page_order(ring)), 4947 .nid = dev_to_node(ring_to_dev(ring)), 4948 .dev = ring_to_dev(ring), 4949 .dma_dir = DMA_FROM_DEVICE, 4950 .offset = 0, 4951 .max_len = PAGE_SIZE << hns3_page_order(ring), 4952 }; 4953 4954 ring->page_pool = page_pool_create(&pp_params); 4955 if (IS_ERR(ring->page_pool)) { 4956 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n", 4957 PTR_ERR(ring->page_pool)); 4958 ring->page_pool = NULL; 4959 } 4960 } 4961 4962 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) 4963 { 4964 int ret; 4965 4966 if (ring->desc_num <= 0 || ring->buf_size <= 0) 4967 return -EINVAL; 4968 4969 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, 4970 sizeof(ring->desc_cb[0]), GFP_KERNEL); 4971 if (!ring->desc_cb) { 4972 ret = -ENOMEM; 4973 goto out; 4974 } 4975 4976 ret = hns3_alloc_desc(ring); 4977 if (ret) 4978 goto out_with_desc_cb; 4979 4980 if (!HNAE3_IS_TX_RING(ring)) { 4981 if (page_pool_enabled) 4982 hns3_alloc_page_pool(ring); 4983 4984 ret = hns3_alloc_ring_buffers(ring); 4985 if (ret) 4986 goto out_with_desc; 4987 } else { 4988 hns3_init_tx_spare_buffer(ring); 4989 } 4990 4991 return 0; 4992 4993 out_with_desc: 4994 hns3_free_desc(ring); 4995 out_with_desc_cb: 4996 devm_kfree(ring_to_dev(ring), ring->desc_cb); 4997 ring->desc_cb = NULL; 4998 out: 4999 return ret; 5000 } 5001 5002 void hns3_fini_ring(struct hns3_enet_ring *ring) 5003 { 5004 hns3_free_desc(ring); 5005 devm_kfree(ring_to_dev(ring), ring->desc_cb); 5006 ring->desc_cb = NULL; 5007 ring->next_to_clean = 0; 5008 ring->next_to_use = 0; 5009 ring->last_to_use = 0; 5010 ring->pending_buf = 0; 5011 if (!HNAE3_IS_TX_RING(ring) && ring->skb) { 5012 dev_kfree_skb_any(ring->skb); 5013 ring->skb = NULL; 5014 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) { 5015 struct hns3_tx_spare *tx_spare = ring->tx_spare; 5016 5017 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len, 5018 DMA_TO_DEVICE); 5019 free_pages((unsigned long)tx_spare->buf, 5020 get_order(tx_spare->len)); 5021 devm_kfree(ring_to_dev(ring), tx_spare); 5022 ring->tx_spare = NULL; 5023 } 5024 5025 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) { 5026 page_pool_destroy(ring->page_pool); 5027 ring->page_pool = NULL; 5028 } 5029 } 5030 5031 static int hns3_buf_size2type(u32 buf_size) 5032 { 5033 int bd_size_type; 5034 5035 switch (buf_size) { 5036 case 512: 5037 bd_size_type = HNS3_BD_SIZE_512_TYPE; 5038 break; 5039 case 1024: 5040 bd_size_type = HNS3_BD_SIZE_1024_TYPE; 5041 break; 5042 case 2048: 5043 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 5044 break; 5045 case 4096: 5046 bd_size_type = HNS3_BD_SIZE_4096_TYPE; 5047 break; 5048 default: 5049 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 5050 } 5051 5052 return bd_size_type; 5053 } 5054 5055 static void hns3_init_ring_hw(struct hns3_enet_ring *ring) 5056 { 5057 dma_addr_t dma = ring->desc_dma_addr; 5058 struct hnae3_queue *q = ring->tqp; 5059 5060 if (!HNAE3_IS_TX_RING(ring)) { 5061 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); 5062 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, 5063 (u32)((dma >> 31) >> 1)); 5064 5065 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, 5066 hns3_buf_size2type(ring->buf_size)); 5067 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, 5068 ring->desc_num / 8 - 1); 5069 } else { 5070 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, 5071 (u32)dma); 5072 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, 5073 (u32)((dma >> 31) >> 1)); 5074 5075 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, 5076 ring->desc_num / 8 - 1); 5077 } 5078 } 5079 5080 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) 5081 { 5082 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5083 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 5084 int i; 5085 5086 for (i = 0; i < tc_info->num_tc; i++) { 5087 int j; 5088 5089 for (j = 0; j < tc_info->tqp_count[i]; j++) { 5090 struct hnae3_queue *q; 5091 5092 q = priv->ring[tc_info->tqp_offset[i] + j].tqp; 5093 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i); 5094 } 5095 } 5096 } 5097 5098 int hns3_init_all_ring(struct hns3_nic_priv *priv) 5099 { 5100 struct hnae3_handle *h = priv->ae_handle; 5101 int ring_num = h->kinfo.num_tqps * 2; 5102 int i, j; 5103 int ret; 5104 5105 for (i = 0; i < ring_num; i++) { 5106 ret = hns3_alloc_ring_memory(&priv->ring[i]); 5107 if (ret) { 5108 dev_err(priv->dev, 5109 "Alloc ring memory fail! ret=%d\n", ret); 5110 goto out_when_alloc_ring_memory; 5111 } 5112 5113 u64_stats_init(&priv->ring[i].syncp); 5114 } 5115 5116 return 0; 5117 5118 out_when_alloc_ring_memory: 5119 for (j = i - 1; j >= 0; j--) 5120 hns3_fini_ring(&priv->ring[j]); 5121 5122 return -ENOMEM; 5123 } 5124 5125 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv) 5126 { 5127 struct hnae3_handle *h = priv->ae_handle; 5128 int i; 5129 5130 for (i = 0; i < h->kinfo.num_tqps; i++) { 5131 hns3_fini_ring(&priv->ring[i]); 5132 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); 5133 } 5134 } 5135 5136 /* Set mac addr if it is configured. or leave it to the AE driver */ 5137 static int hns3_init_mac_addr(struct net_device *netdev) 5138 { 5139 struct hns3_nic_priv *priv = netdev_priv(netdev); 5140 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5141 struct hnae3_handle *h = priv->ae_handle; 5142 u8 mac_addr_temp[ETH_ALEN] = {0}; 5143 int ret = 0; 5144 5145 if (h->ae_algo->ops->get_mac_addr) 5146 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); 5147 5148 /* Check if the MAC address is valid, if not get a random one */ 5149 if (!is_valid_ether_addr(mac_addr_temp)) { 5150 eth_hw_addr_random(netdev); 5151 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr); 5152 dev_warn(priv->dev, "using random MAC address %s\n", 5153 format_mac_addr); 5154 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) { 5155 eth_hw_addr_set(netdev, mac_addr_temp); 5156 ether_addr_copy(netdev->perm_addr, mac_addr_temp); 5157 } else { 5158 return 0; 5159 } 5160 5161 if (h->ae_algo->ops->set_mac_addr) 5162 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); 5163 5164 return ret; 5165 } 5166 5167 static int hns3_init_phy(struct net_device *netdev) 5168 { 5169 struct hnae3_handle *h = hns3_get_handle(netdev); 5170 int ret = 0; 5171 5172 if (h->ae_algo->ops->mac_connect_phy) 5173 ret = h->ae_algo->ops->mac_connect_phy(h); 5174 5175 return ret; 5176 } 5177 5178 static void hns3_uninit_phy(struct net_device *netdev) 5179 { 5180 struct hnae3_handle *h = hns3_get_handle(netdev); 5181 5182 if (h->ae_algo->ops->mac_disconnect_phy) 5183 h->ae_algo->ops->mac_disconnect_phy(h); 5184 } 5185 5186 static int hns3_client_start(struct hnae3_handle *handle) 5187 { 5188 if (!handle->ae_algo->ops->client_start) 5189 return 0; 5190 5191 return handle->ae_algo->ops->client_start(handle); 5192 } 5193 5194 static void hns3_client_stop(struct hnae3_handle *handle) 5195 { 5196 if (!handle->ae_algo->ops->client_stop) 5197 return; 5198 5199 handle->ae_algo->ops->client_stop(handle); 5200 } 5201 5202 static void hns3_info_show(struct hns3_nic_priv *priv) 5203 { 5204 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5205 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5206 5207 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr); 5208 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr); 5209 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps); 5210 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size); 5211 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size); 5212 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len); 5213 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc); 5214 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc); 5215 dev_info(priv->dev, "Total number of enabled TCs: %u\n", 5216 kinfo->tc_info.num_tc); 5217 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu); 5218 } 5219 5220 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv, 5221 enum dim_cq_period_mode mode, bool is_tx) 5222 { 5223 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 5224 struct hnae3_handle *handle = priv->ae_handle; 5225 int i; 5226 5227 if (is_tx) { 5228 priv->tx_cqe_mode = mode; 5229 5230 for (i = 0; i < priv->vector_num; i++) 5231 priv->tqp_vector[i].tx_group.dim.mode = mode; 5232 } else { 5233 priv->rx_cqe_mode = mode; 5234 5235 for (i = 0; i < priv->vector_num; i++) 5236 priv->tqp_vector[i].rx_group.dim.mode = mode; 5237 } 5238 5239 if (hnae3_ae_dev_cq_supported(ae_dev)) { 5240 u32 new_mode; 5241 u64 reg; 5242 5243 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ? 5244 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE; 5245 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG; 5246 5247 writel(new_mode, handle->kinfo.io_base + reg); 5248 } 5249 } 5250 5251 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv, 5252 enum dim_cq_period_mode tx_mode, 5253 enum dim_cq_period_mode rx_mode) 5254 { 5255 hns3_set_cq_period_mode(priv, tx_mode, true); 5256 hns3_set_cq_period_mode(priv, rx_mode, false); 5257 } 5258 5259 static void hns3_state_init(struct hnae3_handle *handle) 5260 { 5261 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 5262 struct net_device *netdev = handle->kinfo.netdev; 5263 struct hns3_nic_priv *priv = netdev_priv(netdev); 5264 5265 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5266 5267 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 5268 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state); 5269 5270 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5271 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags); 5272 5273 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 5274 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state); 5275 5276 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev)) 5277 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state); 5278 } 5279 5280 static void hns3_state_uninit(struct hnae3_handle *handle) 5281 { 5282 struct hns3_nic_priv *priv = handle->priv; 5283 5284 clear_bit(HNS3_NIC_STATE_INITED, &priv->state); 5285 } 5286 5287 static int hns3_client_init(struct hnae3_handle *handle) 5288 { 5289 struct pci_dev *pdev = handle->pdev; 5290 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 5291 u16 alloc_tqps, max_rss_size; 5292 struct hns3_nic_priv *priv; 5293 struct net_device *netdev; 5294 int ret; 5295 5296 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, 5297 &max_rss_size); 5298 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); 5299 if (!netdev) 5300 return -ENOMEM; 5301 5302 priv = netdev_priv(netdev); 5303 priv->dev = &pdev->dev; 5304 priv->netdev = netdev; 5305 priv->ae_handle = handle; 5306 priv->tx_timeout_count = 0; 5307 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num; 5308 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 5309 5310 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); 5311 5312 handle->kinfo.netdev = netdev; 5313 handle->priv = (void *)priv; 5314 5315 hns3_init_mac_addr(netdev); 5316 5317 hns3_set_default_feature(netdev); 5318 5319 netdev->watchdog_timeo = HNS3_TX_TIMEOUT; 5320 netdev->priv_flags |= IFF_UNICAST_FLT; 5321 netdev->netdev_ops = &hns3_nic_netdev_ops; 5322 SET_NETDEV_DEV(netdev, &pdev->dev); 5323 hns3_ethtool_set_ops(netdev); 5324 5325 /* Carrier off reporting is important to ethtool even BEFORE open */ 5326 netif_carrier_off(netdev); 5327 5328 ret = hns3_get_ring_config(priv); 5329 if (ret) { 5330 ret = -ENOMEM; 5331 goto out_get_ring_cfg; 5332 } 5333 5334 hns3_nic_init_coal_cfg(priv); 5335 5336 ret = hns3_nic_alloc_vector_data(priv); 5337 if (ret) { 5338 ret = -ENOMEM; 5339 goto out_alloc_vector_data; 5340 } 5341 5342 ret = hns3_nic_init_vector_data(priv); 5343 if (ret) { 5344 ret = -ENOMEM; 5345 goto out_init_vector_data; 5346 } 5347 5348 ret = hns3_init_all_ring(priv); 5349 if (ret) { 5350 ret = -ENOMEM; 5351 goto out_init_ring; 5352 } 5353 5354 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE, 5355 DIM_CQ_PERIOD_MODE_START_FROM_EQE); 5356 5357 ret = hns3_init_phy(netdev); 5358 if (ret) 5359 goto out_init_phy; 5360 5361 /* the device can work without cpu rmap, only aRFS needs it */ 5362 ret = hns3_set_rx_cpu_rmap(netdev); 5363 if (ret) 5364 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5365 5366 ret = hns3_nic_init_irq(priv); 5367 if (ret) { 5368 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5369 hns3_free_rx_cpu_rmap(netdev); 5370 goto out_init_irq_fail; 5371 } 5372 5373 ret = hns3_client_start(handle); 5374 if (ret) { 5375 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5376 goto out_client_start; 5377 } 5378 5379 hns3_dcbnl_setup(handle); 5380 5381 ret = hns3_dbg_init(handle); 5382 if (ret) { 5383 dev_err(priv->dev, "failed to init debugfs, ret = %d\n", 5384 ret); 5385 goto out_client_start; 5386 } 5387 5388 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size); 5389 5390 hns3_state_init(handle); 5391 5392 ret = register_netdev(netdev); 5393 if (ret) { 5394 dev_err(priv->dev, "probe register netdev fail!\n"); 5395 goto out_reg_netdev_fail; 5396 } 5397 5398 if (netif_msg_drv(handle)) 5399 hns3_info_show(priv); 5400 5401 return ret; 5402 5403 out_reg_netdev_fail: 5404 hns3_state_uninit(handle); 5405 hns3_dbg_uninit(handle); 5406 hns3_client_stop(handle); 5407 out_client_start: 5408 hns3_free_rx_cpu_rmap(netdev); 5409 hns3_nic_uninit_irq(priv); 5410 out_init_irq_fail: 5411 hns3_uninit_phy(netdev); 5412 out_init_phy: 5413 hns3_uninit_all_ring(priv); 5414 out_init_ring: 5415 hns3_nic_uninit_vector_data(priv); 5416 out_init_vector_data: 5417 hns3_nic_dealloc_vector_data(priv); 5418 out_alloc_vector_data: 5419 priv->ring = NULL; 5420 out_get_ring_cfg: 5421 priv->ae_handle = NULL; 5422 free_netdev(netdev); 5423 return ret; 5424 } 5425 5426 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) 5427 { 5428 struct net_device *netdev = handle->kinfo.netdev; 5429 struct hns3_nic_priv *priv = netdev_priv(netdev); 5430 5431 if (netdev->reg_state != NETREG_UNINITIALIZED) 5432 unregister_netdev(netdev); 5433 5434 hns3_client_stop(handle); 5435 5436 hns3_uninit_phy(netdev); 5437 5438 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5439 netdev_warn(netdev, "already uninitialized\n"); 5440 goto out_netdev_free; 5441 } 5442 5443 hns3_free_rx_cpu_rmap(netdev); 5444 5445 hns3_nic_uninit_irq(priv); 5446 5447 hns3_clear_all_ring(handle, true); 5448 5449 hns3_nic_uninit_vector_data(priv); 5450 5451 hns3_nic_dealloc_vector_data(priv); 5452 5453 hns3_uninit_all_ring(priv); 5454 5455 hns3_put_ring_config(priv); 5456 5457 out_netdev_free: 5458 hns3_dbg_uninit(handle); 5459 free_netdev(netdev); 5460 } 5461 5462 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) 5463 { 5464 struct net_device *netdev = handle->kinfo.netdev; 5465 5466 if (!netdev) 5467 return; 5468 5469 if (linkup) { 5470 netif_tx_wake_all_queues(netdev); 5471 netif_carrier_on(netdev); 5472 if (netif_msg_link(handle)) 5473 netdev_info(netdev, "link up\n"); 5474 } else { 5475 netif_carrier_off(netdev); 5476 netif_tx_stop_all_queues(netdev); 5477 if (netif_msg_link(handle)) 5478 netdev_info(netdev, "link down\n"); 5479 } 5480 } 5481 5482 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) 5483 { 5484 while (ring->next_to_clean != ring->next_to_use) { 5485 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; 5486 hns3_free_buffer_detach(ring, ring->next_to_clean, 0); 5487 ring_ptr_move_fw(ring, next_to_clean); 5488 } 5489 5490 ring->pending_buf = 0; 5491 } 5492 5493 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) 5494 { 5495 struct hns3_desc_cb res_cbs; 5496 int ret; 5497 5498 while (ring->next_to_use != ring->next_to_clean) { 5499 /* When a buffer is not reused, it's memory has been 5500 * freed in hns3_handle_rx_bd or will be freed by 5501 * stack, so we need to replace the buffer here. 5502 */ 5503 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5504 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 5505 if (ret) { 5506 hns3_ring_stats_update(ring, sw_err_cnt); 5507 /* if alloc new buffer fail, exit directly 5508 * and reclear in up flow. 5509 */ 5510 netdev_warn(ring_to_netdev(ring), 5511 "reserve buffer map failed, ret = %d\n", 5512 ret); 5513 return ret; 5514 } 5515 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 5516 } 5517 ring_ptr_move_fw(ring, next_to_use); 5518 } 5519 5520 /* Free the pending skb in rx ring */ 5521 if (ring->skb) { 5522 dev_kfree_skb_any(ring->skb); 5523 ring->skb = NULL; 5524 ring->pending_buf = 0; 5525 } 5526 5527 return 0; 5528 } 5529 5530 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) 5531 { 5532 while (ring->next_to_use != ring->next_to_clean) { 5533 /* When a buffer is not reused, it's memory has been 5534 * freed in hns3_handle_rx_bd or will be freed by 5535 * stack, so only need to unmap the buffer here. 5536 */ 5537 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5538 hns3_unmap_buffer(ring, 5539 &ring->desc_cb[ring->next_to_use]); 5540 ring->desc_cb[ring->next_to_use].dma = 0; 5541 } 5542 5543 ring_ptr_move_fw(ring, next_to_use); 5544 } 5545 } 5546 5547 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) 5548 { 5549 struct net_device *ndev = h->kinfo.netdev; 5550 struct hns3_nic_priv *priv = netdev_priv(ndev); 5551 u32 i; 5552 5553 for (i = 0; i < h->kinfo.num_tqps; i++) { 5554 struct hns3_enet_ring *ring; 5555 5556 ring = &priv->ring[i]; 5557 hns3_clear_tx_ring(ring); 5558 5559 ring = &priv->ring[i + h->kinfo.num_tqps]; 5560 /* Continue to clear other rings even if clearing some 5561 * rings failed. 5562 */ 5563 if (force) 5564 hns3_force_clear_rx_ring(ring); 5565 else 5566 hns3_clear_rx_ring(ring); 5567 } 5568 } 5569 5570 int hns3_nic_reset_all_ring(struct hnae3_handle *h) 5571 { 5572 struct net_device *ndev = h->kinfo.netdev; 5573 struct hns3_nic_priv *priv = netdev_priv(ndev); 5574 struct hns3_enet_ring *rx_ring; 5575 int i, j; 5576 int ret; 5577 5578 ret = h->ae_algo->ops->reset_queue(h); 5579 if (ret) 5580 return ret; 5581 5582 for (i = 0; i < h->kinfo.num_tqps; i++) { 5583 hns3_init_ring_hw(&priv->ring[i]); 5584 5585 /* We need to clear tx ring here because self test will 5586 * use the ring and will not run down before up 5587 */ 5588 hns3_clear_tx_ring(&priv->ring[i]); 5589 priv->ring[i].next_to_clean = 0; 5590 priv->ring[i].next_to_use = 0; 5591 priv->ring[i].last_to_use = 0; 5592 5593 rx_ring = &priv->ring[i + h->kinfo.num_tqps]; 5594 hns3_init_ring_hw(rx_ring); 5595 ret = hns3_clear_rx_ring(rx_ring); 5596 if (ret) 5597 return ret; 5598 5599 /* We can not know the hardware head and tail when this 5600 * function is called in reset flow, so we reuse all desc. 5601 */ 5602 for (j = 0; j < rx_ring->desc_num; j++) 5603 hns3_reuse_buffer(rx_ring, j); 5604 5605 rx_ring->next_to_clean = 0; 5606 rx_ring->next_to_use = 0; 5607 } 5608 5609 hns3_init_tx_ring_tc(priv); 5610 5611 return 0; 5612 } 5613 5614 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) 5615 { 5616 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5617 struct net_device *ndev = kinfo->netdev; 5618 struct hns3_nic_priv *priv = netdev_priv(ndev); 5619 5620 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) 5621 return 0; 5622 5623 if (!netif_running(ndev)) 5624 return 0; 5625 5626 return hns3_nic_net_stop(ndev); 5627 } 5628 5629 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) 5630 { 5631 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5632 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); 5633 int ret = 0; 5634 5635 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5636 netdev_err(kinfo->netdev, "device is not initialized yet\n"); 5637 return -EFAULT; 5638 } 5639 5640 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5641 5642 if (netif_running(kinfo->netdev)) { 5643 ret = hns3_nic_net_open(kinfo->netdev); 5644 if (ret) { 5645 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5646 netdev_err(kinfo->netdev, 5647 "net up fail, ret=%d!\n", ret); 5648 return ret; 5649 } 5650 } 5651 5652 return ret; 5653 } 5654 5655 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) 5656 { 5657 struct net_device *netdev = handle->kinfo.netdev; 5658 struct hns3_nic_priv *priv = netdev_priv(netdev); 5659 int ret; 5660 5661 /* Carrier off reporting is important to ethtool even BEFORE open */ 5662 netif_carrier_off(netdev); 5663 5664 ret = hns3_get_ring_config(priv); 5665 if (ret) 5666 return ret; 5667 5668 ret = hns3_nic_alloc_vector_data(priv); 5669 if (ret) 5670 goto err_put_ring; 5671 5672 ret = hns3_nic_init_vector_data(priv); 5673 if (ret) 5674 goto err_dealloc_vector; 5675 5676 ret = hns3_init_all_ring(priv); 5677 if (ret) 5678 goto err_uninit_vector; 5679 5680 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode); 5681 5682 /* the device can work without cpu rmap, only aRFS needs it */ 5683 ret = hns3_set_rx_cpu_rmap(netdev); 5684 if (ret) 5685 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5686 5687 ret = hns3_nic_init_irq(priv); 5688 if (ret) { 5689 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5690 hns3_free_rx_cpu_rmap(netdev); 5691 goto err_init_irq_fail; 5692 } 5693 5694 if (!hns3_is_phys_func(handle->pdev)) 5695 hns3_init_mac_addr(netdev); 5696 5697 ret = hns3_client_start(handle); 5698 if (ret) { 5699 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5700 goto err_client_start_fail; 5701 } 5702 5703 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5704 5705 return ret; 5706 5707 err_client_start_fail: 5708 hns3_free_rx_cpu_rmap(netdev); 5709 hns3_nic_uninit_irq(priv); 5710 err_init_irq_fail: 5711 hns3_uninit_all_ring(priv); 5712 err_uninit_vector: 5713 hns3_nic_uninit_vector_data(priv); 5714 err_dealloc_vector: 5715 hns3_nic_dealloc_vector_data(priv); 5716 err_put_ring: 5717 hns3_put_ring_config(priv); 5718 5719 return ret; 5720 } 5721 5722 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) 5723 { 5724 struct net_device *netdev = handle->kinfo.netdev; 5725 struct hns3_nic_priv *priv = netdev_priv(netdev); 5726 5727 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5728 netdev_warn(netdev, "already uninitialized\n"); 5729 return 0; 5730 } 5731 5732 hns3_free_rx_cpu_rmap(netdev); 5733 hns3_nic_uninit_irq(priv); 5734 hns3_clear_all_ring(handle, true); 5735 hns3_reset_tx_queue(priv->ae_handle); 5736 5737 hns3_nic_uninit_vector_data(priv); 5738 5739 hns3_nic_dealloc_vector_data(priv); 5740 5741 hns3_uninit_all_ring(priv); 5742 5743 hns3_put_ring_config(priv); 5744 5745 return 0; 5746 } 5747 5748 int hns3_reset_notify(struct hnae3_handle *handle, 5749 enum hnae3_reset_notify_type type) 5750 { 5751 int ret = 0; 5752 5753 switch (type) { 5754 case HNAE3_UP_CLIENT: 5755 ret = hns3_reset_notify_up_enet(handle); 5756 break; 5757 case HNAE3_DOWN_CLIENT: 5758 ret = hns3_reset_notify_down_enet(handle); 5759 break; 5760 case HNAE3_INIT_CLIENT: 5761 ret = hns3_reset_notify_init_enet(handle); 5762 break; 5763 case HNAE3_UNINIT_CLIENT: 5764 ret = hns3_reset_notify_uninit_enet(handle); 5765 break; 5766 default: 5767 break; 5768 } 5769 5770 return ret; 5771 } 5772 5773 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, 5774 bool rxfh_configured) 5775 { 5776 int ret; 5777 5778 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, 5779 rxfh_configured); 5780 if (ret) { 5781 dev_err(&handle->pdev->dev, 5782 "Change tqp num(%u) fail.\n", new_tqp_num); 5783 return ret; 5784 } 5785 5786 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); 5787 if (ret) 5788 return ret; 5789 5790 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); 5791 if (ret) 5792 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); 5793 5794 return ret; 5795 } 5796 5797 int hns3_set_channels(struct net_device *netdev, 5798 struct ethtool_channels *ch) 5799 { 5800 struct hnae3_handle *h = hns3_get_handle(netdev); 5801 struct hnae3_knic_private_info *kinfo = &h->kinfo; 5802 bool rxfh_configured = netif_is_rxfh_configured(netdev); 5803 u32 new_tqp_num = ch->combined_count; 5804 u16 org_tqp_num; 5805 int ret; 5806 5807 if (hns3_nic_resetting(netdev)) 5808 return -EBUSY; 5809 5810 if (ch->rx_count || ch->tx_count) 5811 return -EINVAL; 5812 5813 if (kinfo->tc_info.mqprio_active) { 5814 dev_err(&netdev->dev, 5815 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n"); 5816 return -EINVAL; 5817 } 5818 5819 if (new_tqp_num > hns3_get_max_available_channels(h) || 5820 new_tqp_num < 1) { 5821 dev_err(&netdev->dev, 5822 "Change tqps fail, the tqp range is from 1 to %u", 5823 hns3_get_max_available_channels(h)); 5824 return -EINVAL; 5825 } 5826 5827 if (kinfo->rss_size == new_tqp_num) 5828 return 0; 5829 5830 netif_dbg(h, drv, netdev, 5831 "set channels: tqp_num=%u, rxfh=%d\n", 5832 new_tqp_num, rxfh_configured); 5833 5834 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); 5835 if (ret) 5836 return ret; 5837 5838 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); 5839 if (ret) 5840 return ret; 5841 5842 org_tqp_num = h->kinfo.num_tqps; 5843 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); 5844 if (ret) { 5845 int ret1; 5846 5847 netdev_warn(netdev, 5848 "Change channels fail, revert to old value\n"); 5849 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); 5850 if (ret1) { 5851 netdev_err(netdev, 5852 "revert to old channel fail\n"); 5853 return ret1; 5854 } 5855 5856 return ret; 5857 } 5858 5859 return 0; 5860 } 5861 5862 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running) 5863 { 5864 struct hns3_nic_priv *priv = netdev_priv(ndev); 5865 struct hnae3_handle *h = priv->ae_handle; 5866 int i; 5867 5868 if (!if_running) 5869 return; 5870 5871 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 5872 return; 5873 5874 netif_carrier_off(ndev); 5875 netif_tx_disable(ndev); 5876 5877 for (i = 0; i < priv->vector_num; i++) 5878 hns3_vector_disable(&priv->tqp_vector[i]); 5879 5880 for (i = 0; i < h->kinfo.num_tqps; i++) 5881 hns3_tqp_disable(h->kinfo.tqp[i]); 5882 5883 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet 5884 * during reset process, because driver may not be able 5885 * to disable the ring through firmware when downing the netdev. 5886 */ 5887 if (!hns3_nic_resetting(ndev)) 5888 hns3_nic_reset_all_ring(priv->ae_handle); 5889 5890 hns3_reset_tx_queue(priv->ae_handle); 5891 } 5892 5893 void hns3_external_lb_restore(struct net_device *ndev, bool if_running) 5894 { 5895 struct hns3_nic_priv *priv = netdev_priv(ndev); 5896 struct hnae3_handle *h = priv->ae_handle; 5897 int i; 5898 5899 if (!if_running) 5900 return; 5901 5902 if (hns3_nic_resetting(ndev)) 5903 return; 5904 5905 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 5906 return; 5907 5908 if (hns3_nic_reset_all_ring(priv->ae_handle)) 5909 return; 5910 5911 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); 5912 5913 for (i = 0; i < priv->vector_num; i++) 5914 hns3_vector_enable(&priv->tqp_vector[i]); 5915 5916 for (i = 0; i < h->kinfo.num_tqps; i++) 5917 hns3_tqp_enable(h->kinfo.tqp[i]); 5918 5919 netif_tx_wake_all_queues(ndev); 5920 5921 if (h->ae_algo->ops->get_status(h)) 5922 netif_carrier_on(ndev); 5923 } 5924 5925 static const struct hns3_hw_error_info hns3_hw_err[] = { 5926 { .type = HNAE3_PPU_POISON_ERROR, 5927 .msg = "PPU poison" }, 5928 { .type = HNAE3_CMDQ_ECC_ERROR, 5929 .msg = "IMP CMDQ error" }, 5930 { .type = HNAE3_IMP_RD_POISON_ERROR, 5931 .msg = "IMP RD poison" }, 5932 { .type = HNAE3_ROCEE_AXI_RESP_ERROR, 5933 .msg = "ROCEE AXI RESP error" }, 5934 }; 5935 5936 static void hns3_process_hw_error(struct hnae3_handle *handle, 5937 enum hnae3_hw_error_type type) 5938 { 5939 int i; 5940 5941 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { 5942 if (hns3_hw_err[i].type == type) { 5943 dev_err(&handle->pdev->dev, "Detected %s!\n", 5944 hns3_hw_err[i].msg); 5945 break; 5946 } 5947 } 5948 } 5949 5950 static const struct hnae3_client_ops client_ops = { 5951 .init_instance = hns3_client_init, 5952 .uninit_instance = hns3_client_uninit, 5953 .link_status_change = hns3_link_status_change, 5954 .reset_notify = hns3_reset_notify, 5955 .process_hw_error = hns3_process_hw_error, 5956 }; 5957 5958 /* hns3_init_module - Driver registration routine 5959 * hns3_init_module is the first routine called when the driver is 5960 * loaded. All it does is register with the PCI subsystem. 5961 */ 5962 static int __init hns3_init_module(void) 5963 { 5964 int ret; 5965 5966 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); 5967 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); 5968 5969 client.type = HNAE3_CLIENT_KNIC; 5970 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s", 5971 hns3_driver_name); 5972 5973 client.ops = &client_ops; 5974 5975 INIT_LIST_HEAD(&client.node); 5976 5977 hns3_dbg_register_debugfs(hns3_driver_name); 5978 5979 ret = hnae3_register_client(&client); 5980 if (ret) 5981 goto err_reg_client; 5982 5983 ret = pci_register_driver(&hns3_driver); 5984 if (ret) 5985 goto err_reg_driver; 5986 5987 return ret; 5988 5989 err_reg_driver: 5990 hnae3_unregister_client(&client); 5991 err_reg_client: 5992 hns3_dbg_unregister_debugfs(); 5993 return ret; 5994 } 5995 module_init(hns3_init_module); 5996 5997 /* hns3_exit_module - Driver exit cleanup routine 5998 * hns3_exit_module is called just before the driver is removed 5999 * from memory. 6000 */ 6001 static void __exit hns3_exit_module(void) 6002 { 6003 pci_unregister_driver(&hns3_driver); 6004 hnae3_unregister_client(&client); 6005 hns3_dbg_unregister_debugfs(); 6006 } 6007 module_exit(hns3_exit_module); 6008 6009 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); 6010 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 6011 MODULE_LICENSE("GPL"); 6012 MODULE_ALIAS("pci:hns-nic"); 6013