xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 6d9b262afe0ec1d6e0ef99321ca9d6b921310471)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/gro.h>
20 #include <net/ip6_checksum.h>
21 #include <net/page_pool/helpers.h>
22 #include <net/pkt_cls.h>
23 #include <net/pkt_sched.h>
24 #include <net/tcp.h>
25 #include <net/vxlan.h>
26 #include <net/geneve.h>
27 
28 #include "hnae3.h"
29 #include "hns3_enet.h"
30 /* All hns3 tracepoints are defined by the include below, which
31  * must be included exactly once across the whole kernel with
32  * CREATE_TRACE_POINTS defined
33  */
34 #define CREATE_TRACE_POINTS
35 #include "hns3_trace.h"
36 
37 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
38 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
39 
40 #define hns3_rl_err(fmt, ...)						\
41 	do {								\
42 		if (net_ratelimit())					\
43 			netdev_err(fmt, ##__VA_ARGS__);			\
44 	} while (0)
45 
46 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
47 
48 static const char hns3_driver_name[] = "hns3";
49 static const char hns3_driver_string[] =
50 			"Hisilicon Ethernet Network Driver for Hip08 Family";
51 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
52 static struct hnae3_client client;
53 
54 static int debug = -1;
55 module_param(debug, int, 0);
56 MODULE_PARM_DESC(debug, " Network interface message level setting");
57 
58 static unsigned int tx_sgl = 1;
59 module_param(tx_sgl, uint, 0600);
60 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
61 
62 static bool page_pool_enabled = true;
63 module_param(page_pool_enabled, bool, 0400);
64 
65 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
66 				 sizeof(struct sg_table))
67 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
68 				      dma_get_cache_alignment())
69 
70 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
71 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
72 
73 #define HNS3_INNER_VLAN_TAG	1
74 #define HNS3_OUTER_VLAN_TAG	2
75 
76 #define HNS3_MIN_TX_LEN		33U
77 #define HNS3_MIN_TUN_PKT_LEN	65U
78 
79 /* hns3_pci_tbl - PCI Device ID Table
80  *
81  * Last entry must be all 0s
82  *
83  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
84  *   Class, Class Mask, private data (not used) }
85  */
86 static const struct pci_device_id hns3_pci_tbl[] = {
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
89 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
90 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
91 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
92 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
94 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
96 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
98 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
100 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
102 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
103 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
104 	/* required last entry */
105 	{0,}
106 };
107 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
108 
109 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \
110 	{	ptype, \
111 		l, \
112 		CHECKSUM_##s, \
113 		HNS3_L3_TYPE_##t, \
114 		1, \
115 		h}
116 
117 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
118 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \
119 		  PKT_HASH_TYPE_NONE }
120 
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE),
124 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE),
125 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE),
126 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
127 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
128 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
129 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE),
130 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
131 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
139 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
140 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE),
141 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
142 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
143 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE),
144 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
145 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
146 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3),
147 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
148 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
152 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
153 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
154 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
155 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
156 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
157 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
158 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
159 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
160 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
162 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
163 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
164 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
165 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
166 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
167 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
168 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
234 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
235 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
236 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
237 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
238 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
239 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
240 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3),
241 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
242 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
246 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE),
247 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
248 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
249 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
250 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
251 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4),
252 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
253 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3),
254 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
256 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
257 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
258 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
259 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4),
260 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
261 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3),
262 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379 
380 #define HNS3_INVALID_PTYPE \
381 		ARRAY_SIZE(hns3_rx_ptype_tbl)
382 
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385 	struct hns3_enet_tqp_vector *tqp_vector = vector;
386 
387 	napi_schedule_irqoff(&tqp_vector->napi);
388 	tqp_vector->event_cnt++;
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395 	struct hns3_enet_tqp_vector *tqp_vectors;
396 	unsigned int i;
397 
398 	for (i = 0; i < priv->vector_num; i++) {
399 		tqp_vectors = &priv->tqp_vector[i];
400 
401 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402 			continue;
403 
404 		/* clear the affinity mask */
405 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406 
407 		/* release the irq resource */
408 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
409 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410 	}
411 }
412 
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415 	struct hns3_enet_tqp_vector *tqp_vectors;
416 	int txrx_int_idx = 0;
417 	int rx_int_idx = 0;
418 	int tx_int_idx = 0;
419 	unsigned int i;
420 	int ret;
421 
422 	for (i = 0; i < priv->vector_num; i++) {
423 		tqp_vectors = &priv->tqp_vector[i];
424 
425 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426 			continue;
427 
428 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430 				 "%s-%s-%s-%d", hns3_driver_name,
431 				 pci_name(priv->ae_handle->pdev),
432 				 "TxRx", txrx_int_idx++);
433 			txrx_int_idx++;
434 		} else if (tqp_vectors->rx_group.ring) {
435 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436 				 "%s-%s-%s-%d", hns3_driver_name,
437 				 pci_name(priv->ae_handle->pdev),
438 				 "Rx", rx_int_idx++);
439 		} else if (tqp_vectors->tx_group.ring) {
440 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441 				 "%s-%s-%s-%d", hns3_driver_name,
442 				 pci_name(priv->ae_handle->pdev),
443 				 "Tx", tx_int_idx++);
444 		} else {
445 			/* Skip this unused q_vector */
446 			continue;
447 		}
448 
449 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450 
451 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453 				  tqp_vectors->name, tqp_vectors);
454 		if (ret) {
455 			netdev_err(priv->netdev, "request irq(%d) fail\n",
456 				   tqp_vectors->vector_irq);
457 			hns3_nic_uninit_irq(priv);
458 			return ret;
459 		}
460 
461 		irq_set_affinity_hint(tqp_vectors->vector_irq,
462 				      &tqp_vectors->affinity_mask);
463 
464 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465 	}
466 
467 	return 0;
468 }
469 
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471 				 u32 mask_en)
472 {
473 	writel(mask_en, tqp_vector->mask_addr);
474 }
475 
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478 	napi_enable(&tqp_vector->napi);
479 	enable_irq(tqp_vector->vector_irq);
480 
481 	/* enable vector */
482 	hns3_mask_vector_irq(tqp_vector, 1);
483 }
484 
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487 	/* disable vector */
488 	hns3_mask_vector_irq(tqp_vector, 0);
489 
490 	disable_irq(tqp_vector->vector_irq);
491 	napi_disable(&tqp_vector->napi);
492 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
493 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495 
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497 				 u32 rl_value)
498 {
499 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500 
501 	/* this defines the configuration for RL (Interrupt Rate Limiter).
502 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
503 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504 	 */
505 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506 	    !tqp_vector->rx_group.coal.adapt_enable)
507 		/* According to the hardware, the range of rl_reg is
508 		 * 0-59 and the unit is 4.
509 		 */
510 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
511 
512 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514 
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516 				    u32 gl_value)
517 {
518 	u32 new_val;
519 
520 	if (tqp_vector->rx_group.coal.unit_1us)
521 		new_val = gl_value | HNS3_INT_GL_1US;
522 	else
523 		new_val = hns3_gl_usec_to_reg(gl_value);
524 
525 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527 
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529 				    u32 gl_value)
530 {
531 	u32 new_val;
532 
533 	if (tqp_vector->tx_group.coal.unit_1us)
534 		new_val = gl_value | HNS3_INT_GL_1US;
535 	else
536 		new_val = hns3_gl_usec_to_reg(gl_value);
537 
538 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540 
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542 				    u32 ql_value)
543 {
544 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546 
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548 				    u32 ql_value)
549 {
550 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552 
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554 				      struct hns3_nic_priv *priv)
555 {
556 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561 
562 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
563 	rx_coal->adapt_enable = prx_coal->adapt_enable;
564 
565 	tx_coal->int_gl = ptx_coal->int_gl;
566 	rx_coal->int_gl = prx_coal->int_gl;
567 
568 	rx_coal->flow_level = prx_coal->flow_level;
569 	tx_coal->flow_level = ptx_coal->flow_level;
570 
571 	/* device version above V3(include V3), GL can configure 1us
572 	 * unit, so uses 1us unit.
573 	 */
574 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575 		tx_coal->unit_1us = 1;
576 		rx_coal->unit_1us = 1;
577 	}
578 
579 	if (ae_dev->dev_specs.int_ql_max) {
580 		tx_coal->ql_enable = 1;
581 		rx_coal->ql_enable = 1;
582 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584 		tx_coal->int_ql = ptx_coal->int_ql;
585 		rx_coal->int_ql = prx_coal->int_ql;
586 	}
587 }
588 
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591 			     struct hns3_nic_priv *priv)
592 {
593 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595 	struct hnae3_handle *h = priv->ae_handle;
596 
597 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600 
601 	if (tx_coal->ql_enable)
602 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603 
604 	if (rx_coal->ql_enable)
605 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607 
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610 	struct hnae3_handle *h = hns3_get_handle(netdev);
611 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
612 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613 	unsigned int queue_size = kinfo->num_tqps;
614 	int i, ret;
615 
616 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617 		netdev_reset_tc(netdev);
618 	} else {
619 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620 		if (ret) {
621 			netdev_err(netdev,
622 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
623 			return ret;
624 		}
625 
626 		for (i = 0; i < tc_info->num_tc; i++)
627 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628 					    tc_info->tqp_offset[i]);
629 	}
630 
631 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
632 	if (ret) {
633 		netdev_err(netdev,
634 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635 		return ret;
636 	}
637 
638 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
639 	if (ret) {
640 		netdev_err(netdev,
641 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642 		return ret;
643 	}
644 
645 	return 0;
646 }
647 
648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650 	u16 alloc_tqps, max_rss_size, rss_size;
651 
652 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654 
655 	return min_t(u16, rss_size, max_rss_size);
656 }
657 
658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660 	u32 rcb_reg;
661 
662 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663 	rcb_reg |= BIT(HNS3_RING_EN_B);
664 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666 
667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669 	u32 rcb_reg;
670 
671 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
673 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675 
676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680 	netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683 
684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687 	struct hns3_nic_priv *priv = netdev_priv(netdev);
688 	struct hns3_enet_tqp_vector *tqp_vector;
689 	int i, ret;
690 
691 	if (!netdev->rx_cpu_rmap) {
692 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693 		if (!netdev->rx_cpu_rmap)
694 			return -ENOMEM;
695 	}
696 
697 	for (i = 0; i < priv->vector_num; i++) {
698 		tqp_vector = &priv->tqp_vector[i];
699 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700 				       tqp_vector->vector_irq);
701 		if (ret) {
702 			hns3_free_rx_cpu_rmap(netdev);
703 			return ret;
704 		}
705 	}
706 #endif
707 	return 0;
708 }
709 
710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712 	struct hns3_nic_priv *priv = netdev_priv(netdev);
713 	struct hnae3_handle *h = priv->ae_handle;
714 	int i, j;
715 	int ret;
716 
717 	ret = hns3_nic_reset_all_ring(h);
718 	if (ret)
719 		return ret;
720 
721 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722 
723 	/* enable the vectors */
724 	for (i = 0; i < priv->vector_num; i++)
725 		hns3_vector_enable(&priv->tqp_vector[i]);
726 
727 	/* enable rcb */
728 	for (j = 0; j < h->kinfo.num_tqps; j++)
729 		hns3_tqp_enable(h->kinfo.tqp[j]);
730 
731 	/* start the ae_dev */
732 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733 	if (ret) {
734 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735 		while (j--)
736 			hns3_tqp_disable(h->kinfo.tqp[j]);
737 
738 		for (j = i - 1; j >= 0; j--)
739 			hns3_vector_disable(&priv->tqp_vector[j]);
740 	}
741 
742 	return ret;
743 }
744 
745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747 	int i;
748 
749 	for (i = 0; i < priv->vector_num; i++) {
750 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752 
753 		while (ring) {
754 			int ret;
755 
756 			ret = netif_set_xps_queue(priv->netdev,
757 						  &tqp_vector->affinity_mask,
758 						  ring->tqp->tqp_index);
759 			if (ret)
760 				netdev_warn(priv->netdev,
761 					    "set xps queue failed: %d", ret);
762 
763 			ring = ring->next;
764 		}
765 	}
766 }
767 
768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770 	struct hns3_nic_priv *priv = netdev_priv(netdev);
771 	struct hnae3_handle *h = hns3_get_handle(netdev);
772 	struct hnae3_knic_private_info *kinfo;
773 	int i, ret;
774 
775 	if (hns3_nic_resetting(netdev))
776 		return -EBUSY;
777 
778 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779 		netdev_warn(netdev, "net open repeatedly!\n");
780 		return 0;
781 	}
782 
783 	netif_carrier_off(netdev);
784 
785 	ret = hns3_nic_set_real_num_queue(netdev);
786 	if (ret)
787 		return ret;
788 
789 	ret = hns3_nic_net_up(netdev);
790 	if (ret) {
791 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792 		return ret;
793 	}
794 
795 	kinfo = &h->kinfo;
796 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798 
799 	if (h->ae_algo->ops->set_timer_task)
800 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801 
802 	hns3_config_xps(priv);
803 
804 	netif_dbg(h, drv, netdev, "net open\n");
805 
806 	return 0;
807 }
808 
809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811 	struct net_device *ndev = h->kinfo.netdev;
812 	struct hns3_nic_priv *priv = netdev_priv(ndev);
813 	struct netdev_queue *dev_queue;
814 	u32 i;
815 
816 	for (i = 0; i < h->kinfo.num_tqps; i++) {
817 		dev_queue = netdev_get_tx_queue(ndev,
818 						priv->ring[i].queue_index);
819 		netdev_tx_reset_queue(dev_queue);
820 	}
821 }
822 
823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825 	struct hns3_nic_priv *priv = netdev_priv(netdev);
826 	struct hnae3_handle *h = hns3_get_handle(netdev);
827 	const struct hnae3_ae_ops *ops;
828 	int i;
829 
830 	/* disable vectors */
831 	for (i = 0; i < priv->vector_num; i++)
832 		hns3_vector_disable(&priv->tqp_vector[i]);
833 
834 	/* disable rcb */
835 	for (i = 0; i < h->kinfo.num_tqps; i++)
836 		hns3_tqp_disable(h->kinfo.tqp[i]);
837 
838 	/* stop ae_dev */
839 	ops = priv->ae_handle->ae_algo->ops;
840 	if (ops->stop)
841 		ops->stop(priv->ae_handle);
842 
843 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844 	 * during reset process, because driver may not be able
845 	 * to disable the ring through firmware when downing the netdev.
846 	 */
847 	if (!hns3_nic_resetting(netdev))
848 		hns3_clear_all_ring(priv->ae_handle, false);
849 
850 	hns3_reset_tx_queue(priv->ae_handle);
851 }
852 
853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855 	struct hns3_nic_priv *priv = netdev_priv(netdev);
856 	struct hnae3_handle *h = hns3_get_handle(netdev);
857 
858 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859 		return 0;
860 
861 	netif_dbg(h, drv, netdev, "net stop\n");
862 
863 	if (h->ae_algo->ops->set_timer_task)
864 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865 
866 	netif_carrier_off(netdev);
867 	netif_tx_disable(netdev);
868 
869 	hns3_nic_net_down(netdev);
870 
871 	return 0;
872 }
873 
874 static int hns3_nic_uc_sync(struct net_device *netdev,
875 			    const unsigned char *addr)
876 {
877 	struct hnae3_handle *h = hns3_get_handle(netdev);
878 
879 	if (h->ae_algo->ops->add_uc_addr)
880 		return h->ae_algo->ops->add_uc_addr(h, addr);
881 
882 	return 0;
883 }
884 
885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886 			      const unsigned char *addr)
887 {
888 	struct hnae3_handle *h = hns3_get_handle(netdev);
889 
890 	/* need ignore the request of removing device address, because
891 	 * we store the device address and other addresses of uc list
892 	 * in the function's mac filter list.
893 	 */
894 	if (ether_addr_equal(addr, netdev->dev_addr))
895 		return 0;
896 
897 	if (h->ae_algo->ops->rm_uc_addr)
898 		return h->ae_algo->ops->rm_uc_addr(h, addr);
899 
900 	return 0;
901 }
902 
903 static int hns3_nic_mc_sync(struct net_device *netdev,
904 			    const unsigned char *addr)
905 {
906 	struct hnae3_handle *h = hns3_get_handle(netdev);
907 
908 	if (h->ae_algo->ops->add_mc_addr)
909 		return h->ae_algo->ops->add_mc_addr(h, addr);
910 
911 	return 0;
912 }
913 
914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915 			      const unsigned char *addr)
916 {
917 	struct hnae3_handle *h = hns3_get_handle(netdev);
918 
919 	if (h->ae_algo->ops->rm_mc_addr)
920 		return h->ae_algo->ops->rm_mc_addr(h, addr);
921 
922 	return 0;
923 }
924 
925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927 	u8 flags = 0;
928 
929 	if (netdev->flags & IFF_PROMISC)
930 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931 	else if (netdev->flags & IFF_ALLMULTI)
932 		flags = HNAE3_USER_MPE;
933 
934 	return flags;
935 }
936 
937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939 	struct hnae3_handle *h = hns3_get_handle(netdev);
940 	u8 new_flags;
941 
942 	new_flags = hns3_get_netdev_flags(netdev);
943 
944 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946 
947 	/* User mode Promisc mode enable and vlan filtering is disabled to
948 	 * let all packets in.
949 	 */
950 	h->netdev_flags = new_flags;
951 	hns3_request_update_promisc_mode(h);
952 }
953 
954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957 
958 	if (ops->request_update_promisc_mode)
959 		ops->request_update_promisc_mode(handle);
960 }
961 
962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
965 	u32 ntc, ntu;
966 
967 	/* This smp_load_acquire() pairs with smp_store_release() in
968 	 * hns3_tx_spare_update() called in tx desc cleaning process.
969 	 */
970 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
971 	ntu = tx_spare->next_to_use;
972 
973 	if (ntc > ntu)
974 		return ntc - ntu - 1;
975 
976 	/* The free tx buffer is divided into two part, so pick the
977 	 * larger one.
978 	 */
979 	return max(ntc, tx_spare->len - ntu) - 1;
980 }
981 
982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
985 
986 	if (!tx_spare ||
987 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
988 		return;
989 
990 	/* This smp_store_release() pairs with smp_load_acquire() in
991 	 * hns3_tx_spare_space() called in xmit process.
992 	 */
993 	smp_store_release(&tx_spare->last_to_clean,
994 			  tx_spare->next_to_clean);
995 }
996 
997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998 				   struct sk_buff *skb,
999 				   u32 space)
1000 {
1001 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002 				skb_headlen(skb);
1003 
1004 	if (len > ring->tx_copybreak)
1005 		return false;
1006 
1007 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008 		hns3_ring_stats_update(ring, tx_spare_full);
1009 		return false;
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1016 				struct sk_buff *skb,
1017 				u32 space)
1018 {
1019 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1020 	    (!skb_has_frag_list(skb) &&
1021 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1022 		return false;
1023 
1024 	if (space < HNS3_MAX_SGL_SIZE) {
1025 		hns3_ring_stats_update(ring, tx_spare_full);
1026 		return false;
1027 	}
1028 
1029 	return true;
1030 }
1031 
1032 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1033 {
1034 	u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size;
1035 	struct hns3_tx_spare *tx_spare;
1036 	struct page *page;
1037 	dma_addr_t dma;
1038 	int order;
1039 
1040 	if (!alloc_size)
1041 		return;
1042 
1043 	order = get_order(alloc_size);
1044 	if (order > MAX_PAGE_ORDER) {
1045 		if (net_ratelimit())
1046 			dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n");
1047 		return;
1048 	}
1049 
1050 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051 				GFP_KERNEL);
1052 	if (!tx_spare) {
1053 		/* The driver still work without the tx spare buffer */
1054 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055 		goto devm_kzalloc_error;
1056 	}
1057 
1058 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059 				GFP_KERNEL, order);
1060 	if (!page) {
1061 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062 		goto alloc_pages_error;
1063 	}
1064 
1065 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1066 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1067 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1068 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1069 		goto dma_mapping_error;
1070 	}
1071 
1072 	tx_spare->dma = dma;
1073 	tx_spare->buf = page_address(page);
1074 	tx_spare->len = PAGE_SIZE << order;
1075 	ring->tx_spare = tx_spare;
1076 	return;
1077 
1078 dma_mapping_error:
1079 	put_page(page);
1080 alloc_pages_error:
1081 	devm_kfree(ring_to_dev(ring), tx_spare);
1082 devm_kzalloc_error:
1083 	ring->tqp->handle->kinfo.tx_spare_buf_size = 0;
1084 }
1085 
1086 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1087  * before calling below function to allocate tx buffer.
1088  */
1089 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1090 				 unsigned int size, dma_addr_t *dma,
1091 				 u32 *cb_len)
1092 {
1093 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1094 	u32 ntu = tx_spare->next_to_use;
1095 
1096 	size = ALIGN(size, dma_get_cache_alignment());
1097 	*cb_len = size;
1098 
1099 	/* Tx spare buffer wraps back here because the end of
1100 	 * freed tx buffer is not enough.
1101 	 */
1102 	if (ntu + size > tx_spare->len) {
1103 		*cb_len += (tx_spare->len - ntu);
1104 		ntu = 0;
1105 	}
1106 
1107 	tx_spare->next_to_use = ntu + size;
1108 	if (tx_spare->next_to_use == tx_spare->len)
1109 		tx_spare->next_to_use = 0;
1110 
1111 	*dma = tx_spare->dma + ntu;
1112 
1113 	return tx_spare->buf + ntu;
1114 }
1115 
1116 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1117 {
1118 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1119 
1120 	if (len > tx_spare->next_to_use) {
1121 		len -= tx_spare->next_to_use;
1122 		tx_spare->next_to_use = tx_spare->len - len;
1123 	} else {
1124 		tx_spare->next_to_use -= len;
1125 	}
1126 }
1127 
1128 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1129 				     struct hns3_desc_cb *cb)
1130 {
1131 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1132 	u32 ntc = tx_spare->next_to_clean;
1133 	u32 len = cb->length;
1134 
1135 	tx_spare->next_to_clean += len;
1136 
1137 	if (tx_spare->next_to_clean >= tx_spare->len) {
1138 		tx_spare->next_to_clean -= tx_spare->len;
1139 
1140 		if (tx_spare->next_to_clean) {
1141 			ntc = 0;
1142 			len = tx_spare->next_to_clean;
1143 		}
1144 	}
1145 
1146 	/* This tx spare buffer is only really reclaimed after calling
1147 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1148 	 * the tx buffer to do the dma sync or sg unmapping after
1149 	 * tx_spare->next_to_clean is moved forword.
1150 	 */
1151 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1152 		dma_addr_t dma = tx_spare->dma + ntc;
1153 
1154 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1155 					DMA_TO_DEVICE);
1156 	} else {
1157 		struct sg_table *sgt = tx_spare->buf + ntc;
1158 
1159 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1160 			     DMA_TO_DEVICE);
1161 	}
1162 }
1163 
1164 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1165 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1166 {
1167 	u32 l4_offset, hdr_len;
1168 	union l3_hdr_info l3;
1169 	union l4_hdr_info l4;
1170 	u32 l4_paylen;
1171 	int ret;
1172 
1173 	if (!skb_is_gso(skb))
1174 		return 0;
1175 
1176 	ret = skb_cow_head(skb, 0);
1177 	if (unlikely(ret < 0))
1178 		return ret;
1179 
1180 	l3.hdr = skb_network_header(skb);
1181 	l4.hdr = skb_transport_header(skb);
1182 
1183 	/* Software should clear the IPv4's checksum field when tso is
1184 	 * needed.
1185 	 */
1186 	if (l3.v4->version == 4)
1187 		l3.v4->check = 0;
1188 
1189 	/* tunnel packet */
1190 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1191 					 SKB_GSO_GRE_CSUM |
1192 					 SKB_GSO_UDP_TUNNEL |
1193 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1194 		/* reset l3&l4 pointers from outer to inner headers */
1195 		l3.hdr = skb_inner_network_header(skb);
1196 		l4.hdr = skb_inner_transport_header(skb);
1197 
1198 		/* Software should clear the IPv4's checksum field when
1199 		 * tso is needed.
1200 		 */
1201 		if (l3.v4->version == 4)
1202 			l3.v4->check = 0;
1203 	}
1204 
1205 	/* normal or tunnel packet */
1206 	l4_offset = l4.hdr - skb->data;
1207 
1208 	/* remove payload length from inner pseudo checksum when tso */
1209 	l4_paylen = skb->len - l4_offset;
1210 
1211 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1212 		hdr_len = sizeof(*l4.udp) + l4_offset;
1213 		csum_replace_by_diff(&l4.udp->check,
1214 				     (__force __wsum)htonl(l4_paylen));
1215 	} else {
1216 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1217 		csum_replace_by_diff(&l4.tcp->check,
1218 				     (__force __wsum)htonl(l4_paylen));
1219 	}
1220 
1221 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1222 
1223 	/* find the txbd field values */
1224 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1225 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1226 
1227 	/* offload outer UDP header checksum */
1228 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1229 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1230 
1231 	/* get MSS for TSO */
1232 	*mss = skb_shinfo(skb)->gso_size;
1233 
1234 	trace_hns3_tso(skb);
1235 
1236 	return 0;
1237 }
1238 
1239 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1240 				u8 *il4_proto)
1241 {
1242 	union l3_hdr_info l3;
1243 	unsigned char *l4_hdr;
1244 	unsigned char *exthdr;
1245 	u8 l4_proto_tmp;
1246 	__be16 frag_off;
1247 
1248 	/* find outer header point */
1249 	l3.hdr = skb_network_header(skb);
1250 	l4_hdr = skb_transport_header(skb);
1251 
1252 	if (skb->protocol == htons(ETH_P_IPV6)) {
1253 		exthdr = l3.hdr + sizeof(*l3.v6);
1254 		l4_proto_tmp = l3.v6->nexthdr;
1255 		if (l4_hdr != exthdr)
1256 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1257 					 &l4_proto_tmp, &frag_off);
1258 	} else if (skb->protocol == htons(ETH_P_IP)) {
1259 		l4_proto_tmp = l3.v4->protocol;
1260 	} else {
1261 		return -EINVAL;
1262 	}
1263 
1264 	*ol4_proto = l4_proto_tmp;
1265 
1266 	/* tunnel packet */
1267 	if (!skb->encapsulation) {
1268 		*il4_proto = 0;
1269 		return 0;
1270 	}
1271 
1272 	/* find inner header point */
1273 	l3.hdr = skb_inner_network_header(skb);
1274 	l4_hdr = skb_inner_transport_header(skb);
1275 
1276 	if (l3.v6->version == 6) {
1277 		exthdr = l3.hdr + sizeof(*l3.v6);
1278 		l4_proto_tmp = l3.v6->nexthdr;
1279 		if (l4_hdr != exthdr)
1280 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1281 					 &l4_proto_tmp, &frag_off);
1282 	} else if (l3.v4->version == 4) {
1283 		l4_proto_tmp = l3.v4->protocol;
1284 	}
1285 
1286 	*il4_proto = l4_proto_tmp;
1287 
1288 	return 0;
1289 }
1290 
1291 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1292  * and it is udp packet, which has a dest port as the IANA assigned.
1293  * the hardware is expected to do the checksum offload, but the
1294  * hardware will not do the checksum offload when udp dest port is
1295  * 4789, 4790 or 6081.
1296  */
1297 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1298 {
1299 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1300 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1301 	union l4_hdr_info l4;
1302 
1303 	/* device version above V3(include V3), the hardware can
1304 	 * do this checksum offload.
1305 	 */
1306 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1307 		return false;
1308 
1309 	l4.hdr = skb_transport_header(skb);
1310 
1311 	if (!(!skb->encapsulation &&
1312 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1313 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1314 	      l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT))))
1315 		return false;
1316 
1317 	return true;
1318 }
1319 
1320 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1321 				  u32 *ol_type_vlan_len_msec)
1322 {
1323 	u32 l2_len, l3_len, l4_len;
1324 	unsigned char *il2_hdr;
1325 	union l3_hdr_info l3;
1326 	union l4_hdr_info l4;
1327 
1328 	l3.hdr = skb_network_header(skb);
1329 	l4.hdr = skb_transport_header(skb);
1330 
1331 	/* compute OL2 header size, defined in 2 Bytes */
1332 	l2_len = l3.hdr - skb->data;
1333 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1334 
1335 	/* compute OL3 header size, defined in 4 Bytes */
1336 	l3_len = l4.hdr - l3.hdr;
1337 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1338 
1339 	il2_hdr = skb_inner_mac_header(skb);
1340 	/* compute OL4 header size, defined in 4 Bytes */
1341 	l4_len = il2_hdr - l4.hdr;
1342 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1343 
1344 	/* define outer network header type */
1345 	if (skb->protocol == htons(ETH_P_IP)) {
1346 		if (skb_is_gso(skb))
1347 			hns3_set_field(*ol_type_vlan_len_msec,
1348 				       HNS3_TXD_OL3T_S,
1349 				       HNS3_OL3T_IPV4_CSUM);
1350 		else
1351 			hns3_set_field(*ol_type_vlan_len_msec,
1352 				       HNS3_TXD_OL3T_S,
1353 				       HNS3_OL3T_IPV4_NO_CSUM);
1354 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1355 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1356 			       HNS3_OL3T_IPV6);
1357 	}
1358 
1359 	if (ol4_proto == IPPROTO_UDP)
1360 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1361 			       HNS3_TUN_MAC_IN_UDP);
1362 	else if (ol4_proto == IPPROTO_GRE)
1363 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1364 			       HNS3_TUN_NVGRE);
1365 }
1366 
1367 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3,
1368 			     u32 *type_cs_vlan_tso)
1369 {
1370 	if (l3.v4->version == 4) {
1371 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1372 			       HNS3_L3T_IPV4);
1373 
1374 		/* the stack computes the IP header already, the only time we
1375 		 * need the hardware to recompute it is in the case of TSO.
1376 		 */
1377 		if (skb_is_gso(skb))
1378 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1379 	} else if (l3.v6->version == 6) {
1380 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1381 			       HNS3_L3T_IPV6);
1382 	}
1383 }
1384 
1385 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4,
1386 				   u32 l4_proto, u32 *type_cs_vlan_tso)
1387 {
1388 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1389 	switch (l4_proto) {
1390 	case IPPROTO_TCP:
1391 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1392 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1393 			       HNS3_L4T_TCP);
1394 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1395 			       l4.tcp->doff);
1396 		break;
1397 	case IPPROTO_UDP:
1398 		if (hns3_tunnel_csum_bug(skb)) {
1399 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1400 
1401 			return ret ? ret : skb_checksum_help(skb);
1402 		}
1403 
1404 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1405 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1406 			       HNS3_L4T_UDP);
1407 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1408 			       (sizeof(struct udphdr) >> 2));
1409 		break;
1410 	case IPPROTO_SCTP:
1411 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1412 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1413 			       HNS3_L4T_SCTP);
1414 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1415 			       (sizeof(struct sctphdr) >> 2));
1416 		break;
1417 	default:
1418 		/* drop the skb tunnel packet if hardware don't support,
1419 		 * because hardware can't calculate csum when TSO.
1420 		 */
1421 		if (skb_is_gso(skb))
1422 			return -EDOM;
1423 
1424 		/* the stack computes the IP header already,
1425 		 * driver calculate l4 checksum when not TSO.
1426 		 */
1427 		return skb_checksum_help(skb);
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1434 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1435 			   u32 *ol_type_vlan_len_msec)
1436 {
1437 	unsigned char *l2_hdr = skb->data;
1438 	u32 l4_proto = ol4_proto;
1439 	union l4_hdr_info l4;
1440 	union l3_hdr_info l3;
1441 	u32 l2_len, l3_len;
1442 
1443 	l4.hdr = skb_transport_header(skb);
1444 	l3.hdr = skb_network_header(skb);
1445 
1446 	/* handle encapsulation skb */
1447 	if (skb->encapsulation) {
1448 		/* If this is a not UDP/GRE encapsulation skb */
1449 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1450 			/* drop the skb tunnel packet if hardware don't support,
1451 			 * because hardware can't calculate csum when TSO.
1452 			 */
1453 			if (skb_is_gso(skb))
1454 				return -EDOM;
1455 
1456 			/* the stack computes the IP header already,
1457 			 * driver calculate l4 checksum when not TSO.
1458 			 */
1459 			return skb_checksum_help(skb);
1460 		}
1461 
1462 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1463 
1464 		/* switch to inner header */
1465 		l2_hdr = skb_inner_mac_header(skb);
1466 		l3.hdr = skb_inner_network_header(skb);
1467 		l4.hdr = skb_inner_transport_header(skb);
1468 		l4_proto = il4_proto;
1469 	}
1470 
1471 	hns3_set_l3_type(skb, l3, type_cs_vlan_tso);
1472 
1473 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1474 	l2_len = l3.hdr - l2_hdr;
1475 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1476 
1477 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1478 	l3_len = l4.hdr - l3.hdr;
1479 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1480 
1481 	return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso);
1482 }
1483 
1484 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1485 			     struct sk_buff *skb)
1486 {
1487 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1488 	struct hnae3_ae_dev *ae_dev;
1489 	struct vlan_ethhdr *vhdr;
1490 	int rc;
1491 
1492 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1493 	      skb_vlan_tag_present(skb)))
1494 		return 0;
1495 
1496 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1497 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1498 	 * will cause RAS error.
1499 	 */
1500 	ae_dev = pci_get_drvdata(handle->pdev);
1501 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1502 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1503 		     handle->port_base_vlan_state ==
1504 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1505 		return -EINVAL;
1506 
1507 	if (skb->protocol == htons(ETH_P_8021Q) &&
1508 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1509 		/* When HW VLAN acceleration is turned off, and the stack
1510 		 * sets the protocol to 802.1q, the driver just need to
1511 		 * set the protocol to the encapsulated ethertype.
1512 		 */
1513 		skb->protocol = vlan_get_protocol(skb);
1514 		return 0;
1515 	}
1516 
1517 	if (skb_vlan_tag_present(skb)) {
1518 		/* Based on hw strategy, use out_vtag in two layer tag case,
1519 		 * and use inner_vtag in one tag case.
1520 		 */
1521 		if (skb->protocol == htons(ETH_P_8021Q) &&
1522 		    handle->port_base_vlan_state ==
1523 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1524 			rc = HNS3_OUTER_VLAN_TAG;
1525 		else
1526 			rc = HNS3_INNER_VLAN_TAG;
1527 
1528 		skb->protocol = vlan_get_protocol(skb);
1529 		return rc;
1530 	}
1531 
1532 	rc = skb_cow_head(skb, 0);
1533 	if (unlikely(rc < 0))
1534 		return rc;
1535 
1536 	vhdr = skb_vlan_eth_hdr(skb);
1537 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1538 					 & VLAN_PRIO_MASK);
1539 
1540 	skb->protocol = vlan_get_protocol(skb);
1541 	return 0;
1542 }
1543 
1544 /* check if the hardware is capable of checksum offloading */
1545 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1546 {
1547 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1548 
1549 	/* Kindly note, due to backward compatibility of the TX descriptor,
1550 	 * HW checksum of the non-IP packets and GSO packets is handled at
1551 	 * different place in the following code
1552 	 */
1553 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1554 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1555 		return false;
1556 
1557 	return true;
1558 }
1559 
1560 struct hns3_desc_param {
1561 	u32 paylen_ol4cs;
1562 	u32 ol_type_vlan_len_msec;
1563 	u32 type_cs_vlan_tso;
1564 	u16 mss_hw_csum;
1565 	u16 inner_vtag;
1566 	u16 out_vtag;
1567 };
1568 
1569 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa)
1570 {
1571 	pa->paylen_ol4cs = skb->len;
1572 	pa->ol_type_vlan_len_msec = 0;
1573 	pa->type_cs_vlan_tso = 0;
1574 	pa->mss_hw_csum = 0;
1575 	pa->inner_vtag = 0;
1576 	pa->out_vtag = 0;
1577 }
1578 
1579 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring,
1580 				 struct sk_buff *skb,
1581 				 struct hns3_desc_param *param)
1582 {
1583 	int ret;
1584 
1585 	ret = hns3_handle_vtags(ring, skb);
1586 	if (unlikely(ret < 0)) {
1587 		hns3_ring_stats_update(ring, tx_vlan_err);
1588 		return ret;
1589 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1590 		param->inner_vtag = skb_vlan_tag_get(skb);
1591 		param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1592 				VLAN_PRIO_MASK;
1593 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1594 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1595 		param->out_vtag = skb_vlan_tag_get(skb);
1596 		param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1597 				VLAN_PRIO_MASK;
1598 		hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1599 			       1);
1600 	}
1601 	return 0;
1602 }
1603 
1604 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring,
1605 				    struct sk_buff *skb,
1606 				    struct hns3_desc_cb *desc_cb,
1607 				    struct hns3_desc_param *param)
1608 {
1609 	u8 ol4_proto, il4_proto;
1610 	int ret;
1611 
1612 	if (hns3_check_hw_tx_csum(skb)) {
1613 		/* set checksum start and offset, defined in 2 Bytes */
1614 		hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1615 			       skb_checksum_start_offset(skb) >> 1);
1616 		hns3_set_field(param->ol_type_vlan_len_msec,
1617 			       HNS3_TXD_CSUM_OFFSET_S,
1618 			       skb->csum_offset >> 1);
1619 		param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1620 		return 0;
1621 	}
1622 
1623 	skb_reset_mac_len(skb);
1624 
1625 	ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1626 	if (unlikely(ret < 0)) {
1627 		hns3_ring_stats_update(ring, tx_l4_proto_err);
1628 		return ret;
1629 	}
1630 
1631 	ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1632 			      &param->type_cs_vlan_tso,
1633 			      &param->ol_type_vlan_len_msec);
1634 	if (unlikely(ret < 0)) {
1635 		hns3_ring_stats_update(ring, tx_l2l3l4_err);
1636 		return ret;
1637 	}
1638 
1639 	ret = hns3_set_tso(skb, &param->paylen_ol4cs, &param->mss_hw_csum,
1640 			   &param->type_cs_vlan_tso, &desc_cb->send_bytes);
1641 	if (unlikely(ret < 0)) {
1642 		hns3_ring_stats_update(ring, tx_tso_err);
1643 		return ret;
1644 	}
1645 	return 0;
1646 }
1647 
1648 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1649 			      struct sk_buff *skb, struct hns3_desc *desc,
1650 			      struct hns3_desc_cb *desc_cb)
1651 {
1652 	struct hns3_desc_param param;
1653 	int ret;
1654 
1655 	hns3_init_desc_data(skb, &param);
1656 	ret = hns3_handle_vlan_info(ring, skb, &param);
1657 	if (unlikely(ret < 0))
1658 		return ret;
1659 
1660 	desc_cb->send_bytes = skb->len;
1661 
1662 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1663 		ret = hns3_handle_csum_partial(ring, skb, desc_cb, &param);
1664 		if (ret)
1665 			return ret;
1666 	}
1667 
1668 	/* Set txbd */
1669 	desc->tx.ol_type_vlan_len_msec =
1670 		cpu_to_le32(param.ol_type_vlan_len_msec);
1671 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso);
1672 	desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs);
1673 	desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum);
1674 	desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag);
1675 	desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag);
1676 
1677 	return 0;
1678 }
1679 
1680 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1681 			  unsigned int size)
1682 {
1683 #define HNS3_LIKELY_BD_NUM	1
1684 
1685 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1686 	unsigned int frag_buf_num;
1687 	int k, sizeoflast;
1688 
1689 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1690 		desc->addr = cpu_to_le64(dma);
1691 		desc->tx.send_size = cpu_to_le16(size);
1692 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1693 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1694 
1695 		trace_hns3_tx_desc(ring, ring->next_to_use);
1696 		ring_ptr_move_fw(ring, next_to_use);
1697 		return HNS3_LIKELY_BD_NUM;
1698 	}
1699 
1700 	frag_buf_num = hns3_tx_bd_count(size);
1701 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1702 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1703 
1704 	/* When frag size is bigger than hardware limit, split this frag */
1705 	for (k = 0; k < frag_buf_num; k++) {
1706 		/* now, fill the descriptor */
1707 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1708 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1709 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1710 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1711 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1712 
1713 		trace_hns3_tx_desc(ring, ring->next_to_use);
1714 		/* move ring pointer to next */
1715 		ring_ptr_move_fw(ring, next_to_use);
1716 
1717 		desc = &ring->desc[ring->next_to_use];
1718 	}
1719 
1720 	return frag_buf_num;
1721 }
1722 
1723 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1724 				  unsigned int type)
1725 {
1726 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1727 	struct device *dev = ring_to_dev(ring);
1728 	unsigned int size;
1729 	dma_addr_t dma;
1730 
1731 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1732 		struct sk_buff *skb = (struct sk_buff *)priv;
1733 
1734 		size = skb_headlen(skb);
1735 		if (!size)
1736 			return 0;
1737 
1738 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1739 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1740 		/* Head data has been filled in hns3_handle_tx_bounce(),
1741 		 * just return 0 here.
1742 		 */
1743 		return 0;
1744 	} else {
1745 		skb_frag_t *frag = (skb_frag_t *)priv;
1746 
1747 		size = skb_frag_size(frag);
1748 		if (!size)
1749 			return 0;
1750 
1751 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1752 	}
1753 
1754 	if (unlikely(dma_mapping_error(dev, dma))) {
1755 		hns3_ring_stats_update(ring, sw_err_cnt);
1756 		return -ENOMEM;
1757 	}
1758 
1759 	desc_cb->priv = priv;
1760 	desc_cb->length = size;
1761 	desc_cb->dma = dma;
1762 	desc_cb->type = type;
1763 
1764 	return hns3_fill_desc(ring, dma, size);
1765 }
1766 
1767 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1768 				    unsigned int bd_num)
1769 {
1770 	unsigned int size;
1771 	int i;
1772 
1773 	size = skb_headlen(skb);
1774 	while (size > HNS3_MAX_BD_SIZE) {
1775 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1776 		size -= HNS3_MAX_BD_SIZE;
1777 
1778 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1779 			return bd_num;
1780 	}
1781 
1782 	if (size) {
1783 		bd_size[bd_num++] = size;
1784 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1785 			return bd_num;
1786 	}
1787 
1788 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1789 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1790 		size = skb_frag_size(frag);
1791 		if (!size)
1792 			continue;
1793 
1794 		while (size > HNS3_MAX_BD_SIZE) {
1795 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1796 			size -= HNS3_MAX_BD_SIZE;
1797 
1798 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1799 				return bd_num;
1800 		}
1801 
1802 		bd_size[bd_num++] = size;
1803 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1804 			return bd_num;
1805 	}
1806 
1807 	return bd_num;
1808 }
1809 
1810 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1811 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1812 				   unsigned int recursion_level)
1813 {
1814 #define HNS3_MAX_RECURSION_LEVEL	24
1815 
1816 	struct sk_buff *frag_skb;
1817 
1818 	/* If the total len is within the max bd limit */
1819 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1820 		   !skb_has_frag_list(skb) &&
1821 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1822 		return skb_shinfo(skb)->nr_frags + 1U;
1823 
1824 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1825 		return UINT_MAX;
1826 
1827 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1828 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1829 		return bd_num;
1830 
1831 	skb_walk_frags(skb, frag_skb) {
1832 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1833 					bd_num, recursion_level + 1);
1834 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1835 			return bd_num;
1836 	}
1837 
1838 	return bd_num;
1839 }
1840 
1841 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1842 {
1843 	if (!skb->encapsulation)
1844 		return skb_tcp_all_headers(skb);
1845 
1846 	return skb_inner_tcp_all_headers(skb);
1847 }
1848 
1849 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1850  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1851  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1852  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1853  * than MSS except the last max_non_tso_bd_num - 1 frags.
1854  */
1855 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1856 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1857 {
1858 	unsigned int tot_len = 0;
1859 	int i;
1860 
1861 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1862 		tot_len += bd_size[i];
1863 
1864 	/* ensure the first max_non_tso_bd_num frags is greater than
1865 	 * mss + header
1866 	 */
1867 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1868 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1869 		return true;
1870 
1871 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1872 	 * than mss except the last one.
1873 	 */
1874 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1875 		tot_len -= bd_size[i];
1876 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1877 
1878 		if (tot_len < skb_shinfo(skb)->gso_size)
1879 			return true;
1880 	}
1881 
1882 	return false;
1883 }
1884 
1885 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1886 {
1887 	int i;
1888 
1889 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1890 		size[i] = skb_frag_size(&shinfo->frags[i]);
1891 }
1892 
1893 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1894 			      struct sk_buff *skb,
1895 			      unsigned int bd_num)
1896 {
1897 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1898 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1899 	 */
1900 	if (bd_num == UINT_MAX) {
1901 		hns3_ring_stats_update(ring, over_max_recursion);
1902 		return -ENOMEM;
1903 	}
1904 
1905 	/* The skb->len has exceeded the hw limitation, linearization
1906 	 * will not help.
1907 	 */
1908 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1909 	    (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) {
1910 		hns3_ring_stats_update(ring, hw_limitation);
1911 		return -ENOMEM;
1912 	}
1913 
1914 	if (__skb_linearize(skb)) {
1915 		hns3_ring_stats_update(ring, sw_err_cnt);
1916 		return -ENOMEM;
1917 	}
1918 
1919 	return 0;
1920 }
1921 
1922 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1923 				  struct net_device *netdev,
1924 				  struct sk_buff *skb)
1925 {
1926 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1927 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1928 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1929 	unsigned int bd_num;
1930 
1931 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1932 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1933 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1934 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1935 					      max_non_tso_bd_num)) {
1936 			trace_hns3_over_max_bd(skb);
1937 			goto out;
1938 		}
1939 
1940 		if (hns3_skb_linearize(ring, skb, bd_num))
1941 			return -ENOMEM;
1942 
1943 		bd_num = hns3_tx_bd_count(skb->len);
1944 
1945 		hns3_ring_stats_update(ring, tx_copy);
1946 	}
1947 
1948 out:
1949 	if (likely(ring_space(ring) >= bd_num))
1950 		return bd_num;
1951 
1952 	netif_stop_subqueue(netdev, ring->queue_index);
1953 	smp_mb(); /* Memory barrier before checking ring_space */
1954 
1955 	/* Start queue in case hns3_clean_tx_ring has just made room
1956 	 * available and has not seen the queue stopped state performed
1957 	 * by netif_stop_subqueue above.
1958 	 */
1959 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1960 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1961 		netif_start_subqueue(netdev, ring->queue_index);
1962 		return bd_num;
1963 	}
1964 
1965 	hns3_ring_stats_update(ring, tx_busy);
1966 
1967 	return -EBUSY;
1968 }
1969 
1970 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1971 {
1972 	struct device *dev = ring_to_dev(ring);
1973 	unsigned int i;
1974 
1975 	for (i = 0; i < ring->desc_num; i++) {
1976 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1977 		struct hns3_desc_cb *desc_cb;
1978 
1979 		memset(desc, 0, sizeof(*desc));
1980 
1981 		/* check if this is where we started */
1982 		if (ring->next_to_use == next_to_use_orig)
1983 			break;
1984 
1985 		/* rollback one */
1986 		ring_ptr_move_bw(ring, next_to_use);
1987 
1988 		desc_cb = &ring->desc_cb[ring->next_to_use];
1989 
1990 		if (!desc_cb->dma)
1991 			continue;
1992 
1993 		/* unmap the descriptor dma address */
1994 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1995 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1996 					 DMA_TO_DEVICE);
1997 		else if (desc_cb->type &
1998 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1999 			hns3_tx_spare_rollback(ring, desc_cb->length);
2000 		else if (desc_cb->length)
2001 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
2002 				       DMA_TO_DEVICE);
2003 
2004 		desc_cb->length = 0;
2005 		desc_cb->dma = 0;
2006 		desc_cb->type = DESC_TYPE_UNKNOWN;
2007 	}
2008 }
2009 
2010 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
2011 				 struct sk_buff *skb, unsigned int type)
2012 {
2013 	struct sk_buff *frag_skb;
2014 	int i, ret, bd_num = 0;
2015 
2016 	ret = hns3_map_and_fill_desc(ring, skb, type);
2017 	if (unlikely(ret < 0))
2018 		return ret;
2019 
2020 	bd_num += ret;
2021 
2022 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2023 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2024 
2025 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
2026 		if (unlikely(ret < 0))
2027 			return ret;
2028 
2029 		bd_num += ret;
2030 	}
2031 
2032 	skb_walk_frags(skb, frag_skb) {
2033 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2034 					    DESC_TYPE_FRAGLIST_SKB);
2035 		if (unlikely(ret < 0))
2036 			return ret;
2037 
2038 		bd_num += ret;
2039 	}
2040 
2041 	return bd_num;
2042 }
2043 
2044 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num)
2045 {
2046 #define HNS3_BYTES_PER_64BIT		8
2047 
2048 	struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {};
2049 	int offset = 0;
2050 
2051 	/* make sure everything is visible to device before
2052 	 * excuting tx push or updating doorbell
2053 	 */
2054 	dma_wmb();
2055 
2056 	do {
2057 		int idx = (ring->next_to_use - num + ring->desc_num) %
2058 			  ring->desc_num;
2059 
2060 		u64_stats_update_begin(&ring->syncp);
2061 		ring->stats.tx_push++;
2062 		u64_stats_update_end(&ring->syncp);
2063 		memcpy(&desc[offset], &ring->desc[idx],
2064 		       sizeof(struct hns3_desc));
2065 		offset++;
2066 	} while (--num);
2067 
2068 	__iowrite64_copy(ring->tqp->mem_base, desc,
2069 			 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) /
2070 			 HNS3_BYTES_PER_64BIT);
2071 
2072 	io_stop_wc();
2073 }
2074 
2075 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring)
2076 {
2077 #define HNS3_MEM_DOORBELL_OFFSET	64
2078 
2079 	__le64 bd_num = cpu_to_le64((u64)ring->pending_buf);
2080 
2081 	/* make sure everything is visible to device before
2082 	 * excuting tx push or updating doorbell
2083 	 */
2084 	dma_wmb();
2085 
2086 	__iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET,
2087 			 &bd_num, 1);
2088 	u64_stats_update_begin(&ring->syncp);
2089 	ring->stats.tx_mem_doorbell += ring->pending_buf;
2090 	u64_stats_update_end(&ring->syncp);
2091 
2092 	io_stop_wc();
2093 }
2094 
2095 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2096 			     bool doorbell)
2097 {
2098 	struct net_device *netdev = ring_to_netdev(ring);
2099 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2100 
2101 	/* when tx push is enabled, the packet whose number of BD below
2102 	 * HNS3_MAX_PUSH_BD_NUM can be pushed directly.
2103 	 */
2104 	if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num &&
2105 	    !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) {
2106 		/* This smp_store_release() pairs with smp_load_aquire() in
2107 		 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit
2108 		 * is updated.
2109 		 */
2110 		smp_store_release(&ring->last_to_use, ring->next_to_use);
2111 		hns3_tx_push_bd(ring, num);
2112 		return;
2113 	}
2114 
2115 	ring->pending_buf += num;
2116 
2117 	if (!doorbell) {
2118 		hns3_ring_stats_update(ring, tx_more);
2119 		return;
2120 	}
2121 
2122 	/* This smp_store_release() pairs with smp_load_aquire() in
2123 	 * hns3_nic_reclaim_desc(). Ensure that the BD valid bit is updated.
2124 	 */
2125 	smp_store_release(&ring->last_to_use, ring->next_to_use);
2126 
2127 	if (ring->tqp->mem_base)
2128 		hns3_tx_mem_doorbell(ring);
2129 	else
2130 		writel(ring->pending_buf,
2131 		       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2132 
2133 	ring->pending_buf = 0;
2134 }
2135 
2136 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2137 		      struct hns3_desc *desc)
2138 {
2139 	struct hnae3_handle *h = hns3_get_handle(netdev);
2140 
2141 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2142 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2143 		return;
2144 
2145 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2146 }
2147 
2148 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2149 				 struct sk_buff *skb)
2150 {
2151 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2152 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2153 	unsigned int size = skb_headlen(skb);
2154 	dma_addr_t dma;
2155 	int bd_num = 0;
2156 	u32 cb_len;
2157 	void *buf;
2158 	int ret;
2159 
2160 	if (skb->len <= ring->tx_copybreak) {
2161 		size = skb->len;
2162 		type = DESC_TYPE_BOUNCE_ALL;
2163 	}
2164 
2165 	/* hns3_can_use_tx_bounce() is called to ensure the below
2166 	 * function can always return the tx buffer.
2167 	 */
2168 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2169 
2170 	ret = skb_copy_bits(skb, 0, buf, size);
2171 	if (unlikely(ret < 0)) {
2172 		hns3_tx_spare_rollback(ring, cb_len);
2173 		hns3_ring_stats_update(ring, copy_bits_err);
2174 		return ret;
2175 	}
2176 
2177 	desc_cb->priv = skb;
2178 	desc_cb->length = cb_len;
2179 	desc_cb->dma = dma;
2180 	desc_cb->type = type;
2181 
2182 	bd_num += hns3_fill_desc(ring, dma, size);
2183 
2184 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2185 		ret = hns3_fill_skb_to_desc(ring, skb,
2186 					    DESC_TYPE_BOUNCE_HEAD);
2187 		if (unlikely(ret < 0))
2188 			return ret;
2189 
2190 		bd_num += ret;
2191 	}
2192 
2193 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2194 				   DMA_TO_DEVICE);
2195 
2196 	hns3_ring_stats_update(ring, tx_bounce);
2197 
2198 	return bd_num;
2199 }
2200 
2201 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2202 			      struct sk_buff *skb)
2203 {
2204 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2205 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2206 	struct sg_table *sgt;
2207 	int i, bd_num = 0;
2208 	dma_addr_t dma;
2209 	u32 cb_len;
2210 	int nents;
2211 
2212 	if (skb_has_frag_list(skb))
2213 		nfrag = HNS3_MAX_TSO_BD_NUM;
2214 
2215 	/* hns3_can_use_tx_sgl() is called to ensure the below
2216 	 * function can always return the tx buffer.
2217 	 */
2218 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2219 				  &dma, &cb_len);
2220 
2221 	/* scatterlist follows by the sg table */
2222 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2223 	sg_init_table(sgt->sgl, nfrag);
2224 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2225 	if (unlikely(nents < 0)) {
2226 		hns3_tx_spare_rollback(ring, cb_len);
2227 		hns3_ring_stats_update(ring, skb2sgl_err);
2228 		return -ENOMEM;
2229 	}
2230 
2231 	sgt->orig_nents = nents;
2232 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2233 				DMA_TO_DEVICE);
2234 	if (unlikely(!sgt->nents)) {
2235 		hns3_tx_spare_rollback(ring, cb_len);
2236 		hns3_ring_stats_update(ring, map_sg_err);
2237 		return -ENOMEM;
2238 	}
2239 
2240 	desc_cb->priv = skb;
2241 	desc_cb->length = cb_len;
2242 	desc_cb->dma = dma;
2243 	desc_cb->type = DESC_TYPE_SGL_SKB;
2244 
2245 	for (i = 0; i < sgt->nents; i++)
2246 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2247 					 sg_dma_len(sgt->sgl + i));
2248 	hns3_ring_stats_update(ring, tx_sgl);
2249 
2250 	return bd_num;
2251 }
2252 
2253 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2254 				    struct sk_buff *skb)
2255 {
2256 	u32 space;
2257 
2258 	if (!ring->tx_spare)
2259 		goto out;
2260 
2261 	space = hns3_tx_spare_space(ring);
2262 
2263 	if (hns3_can_use_tx_sgl(ring, skb, space))
2264 		return hns3_handle_tx_sgl(ring, skb);
2265 
2266 	if (hns3_can_use_tx_bounce(ring, skb, space))
2267 		return hns3_handle_tx_bounce(ring, skb);
2268 
2269 out:
2270 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2271 }
2272 
2273 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring,
2274 				struct sk_buff *skb,
2275 				struct hns3_desc_cb *desc_cb,
2276 				int next_to_use_head)
2277 {
2278 	int ret;
2279 
2280 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2281 				 desc_cb);
2282 	if (unlikely(ret < 0))
2283 		goto fill_err;
2284 
2285 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2286 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2287 	 * need to be notified to the hw.
2288 	 */
2289 	ret = hns3_handle_desc_filling(ring, skb);
2290 	if (likely(ret > 0))
2291 		return ret;
2292 
2293 fill_err:
2294 	hns3_clear_desc(ring, next_to_use_head);
2295 	return ret;
2296 }
2297 
2298 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2299 {
2300 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2301 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2302 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2303 	struct netdev_queue *dev_queue;
2304 	int pre_ntu, ret;
2305 	bool doorbell;
2306 
2307 	/* Hardware can only handle short frames above 32 bytes */
2308 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2309 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2310 
2311 		hns3_ring_stats_update(ring, sw_err_cnt);
2312 
2313 		return NETDEV_TX_OK;
2314 	}
2315 
2316 	/* Prefetch the data used later */
2317 	prefetch(skb->data);
2318 
2319 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2320 	if (unlikely(ret <= 0)) {
2321 		if (ret == -EBUSY) {
2322 			hns3_tx_doorbell(ring, 0, true);
2323 			return NETDEV_TX_BUSY;
2324 		}
2325 
2326 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2327 		goto out_err_tx_ok;
2328 	}
2329 
2330 	ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use);
2331 	if (unlikely(ret <= 0))
2332 		goto out_err_tx_ok;
2333 
2334 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2335 					(ring->desc_num - 1);
2336 
2337 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2338 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2339 
2340 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2341 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2342 	trace_hns3_tx_desc(ring, pre_ntu);
2343 
2344 	skb_tx_timestamp(skb);
2345 
2346 	/* Complete translate all packets */
2347 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2348 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2349 					  netdev_xmit_more());
2350 	hns3_tx_doorbell(ring, ret, doorbell);
2351 
2352 	return NETDEV_TX_OK;
2353 
2354 out_err_tx_ok:
2355 	dev_kfree_skb_any(skb);
2356 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2357 	return NETDEV_TX_OK;
2358 }
2359 
2360 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2361 {
2362 	char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN];
2363 	char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN];
2364 	struct hnae3_handle *h = hns3_get_handle(netdev);
2365 	struct sockaddr *mac_addr = p;
2366 	int ret;
2367 
2368 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2369 		return -EADDRNOTAVAIL;
2370 
2371 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2372 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2373 		netdev_info(netdev, "already using mac address %s\n",
2374 			    format_mac_addr_sa);
2375 		return 0;
2376 	}
2377 
2378 	/* For VF device, if there is a perm_addr, then the user will not
2379 	 * be allowed to change the address.
2380 	 */
2381 	if (!hns3_is_phys_func(h->pdev) &&
2382 	    !is_zero_ether_addr(netdev->perm_addr)) {
2383 		hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr);
2384 		hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data);
2385 		netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n",
2386 			   format_mac_addr_perm, format_mac_addr_sa);
2387 		return -EPERM;
2388 	}
2389 
2390 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2391 	if (ret) {
2392 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2393 		return ret;
2394 	}
2395 
2396 	eth_hw_addr_set(netdev, mac_addr->sa_data);
2397 
2398 	return 0;
2399 }
2400 
2401 static int hns3_nic_do_ioctl(struct net_device *netdev,
2402 			     struct ifreq *ifr, int cmd)
2403 {
2404 	struct hnae3_handle *h = hns3_get_handle(netdev);
2405 
2406 	if (!netif_running(netdev))
2407 		return -EINVAL;
2408 
2409 	if (!h->ae_algo->ops->do_ioctl)
2410 		return -EOPNOTSUPP;
2411 
2412 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2413 }
2414 
2415 static int hns3_nic_set_features(struct net_device *netdev,
2416 				 netdev_features_t features)
2417 {
2418 	netdev_features_t changed = netdev->features ^ features;
2419 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2420 	struct hnae3_handle *h = priv->ae_handle;
2421 	bool enable;
2422 	int ret;
2423 
2424 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2425 		enable = !!(features & NETIF_F_GRO_HW);
2426 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2427 		if (ret)
2428 			return ret;
2429 	}
2430 
2431 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2432 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2433 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2434 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2435 		if (ret)
2436 			return ret;
2437 	}
2438 
2439 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2440 		enable = !!(features & NETIF_F_NTUPLE);
2441 		h->ae_algo->ops->enable_fd(h, enable);
2442 	}
2443 
2444 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2445 	    h->ae_algo->ops->cls_flower_active(h)) {
2446 		netdev_err(netdev,
2447 			   "there are offloaded TC filters active, cannot disable HW TC offload");
2448 		return -EINVAL;
2449 	}
2450 
2451 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2452 	    h->ae_algo->ops->enable_vlan_filter) {
2453 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2454 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2455 		if (ret)
2456 			return ret;
2457 	}
2458 
2459 	netdev->features = features;
2460 	return 0;
2461 }
2462 
2463 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2464 					     struct net_device *dev,
2465 					     netdev_features_t features)
2466 {
2467 #define HNS3_MAX_HDR_LEN	480U
2468 #define HNS3_MAX_L4_HDR_LEN	60U
2469 
2470 	size_t len;
2471 
2472 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2473 		return features;
2474 
2475 	if (skb->encapsulation)
2476 		len = skb_inner_transport_offset(skb);
2477 	else
2478 		len = skb_transport_offset(skb);
2479 
2480 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2481 	 * a flexible value, and it's max len is 60 bytes.
2482 	 */
2483 	len += HNS3_MAX_L4_HDR_LEN;
2484 
2485 	/* Hardware only supports checksum on the skb with a max header
2486 	 * len of 480 bytes.
2487 	 */
2488 	if (len > HNS3_MAX_HDR_LEN)
2489 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2490 
2491 	return features;
2492 }
2493 
2494 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats,
2495 			     struct hns3_enet_ring *ring, bool is_tx)
2496 {
2497 	unsigned int start;
2498 
2499 	do {
2500 		start = u64_stats_fetch_begin(&ring->syncp);
2501 		if (is_tx) {
2502 			stats->tx_bytes += ring->stats.tx_bytes;
2503 			stats->tx_packets += ring->stats.tx_pkts;
2504 			stats->tx_dropped += ring->stats.sw_err_cnt;
2505 			stats->tx_dropped += ring->stats.tx_vlan_err;
2506 			stats->tx_dropped += ring->stats.tx_l4_proto_err;
2507 			stats->tx_dropped += ring->stats.tx_l2l3l4_err;
2508 			stats->tx_dropped += ring->stats.tx_tso_err;
2509 			stats->tx_dropped += ring->stats.over_max_recursion;
2510 			stats->tx_dropped += ring->stats.hw_limitation;
2511 			stats->tx_dropped += ring->stats.copy_bits_err;
2512 			stats->tx_dropped += ring->stats.skb2sgl_err;
2513 			stats->tx_dropped += ring->stats.map_sg_err;
2514 			stats->tx_errors += ring->stats.sw_err_cnt;
2515 			stats->tx_errors += ring->stats.tx_vlan_err;
2516 			stats->tx_errors += ring->stats.tx_l4_proto_err;
2517 			stats->tx_errors += ring->stats.tx_l2l3l4_err;
2518 			stats->tx_errors += ring->stats.tx_tso_err;
2519 			stats->tx_errors += ring->stats.over_max_recursion;
2520 			stats->tx_errors += ring->stats.hw_limitation;
2521 			stats->tx_errors += ring->stats.copy_bits_err;
2522 			stats->tx_errors += ring->stats.skb2sgl_err;
2523 			stats->tx_errors += ring->stats.map_sg_err;
2524 		} else {
2525 			stats->rx_bytes += ring->stats.rx_bytes;
2526 			stats->rx_packets += ring->stats.rx_pkts;
2527 			stats->rx_dropped += ring->stats.l2_err;
2528 			stats->rx_errors += ring->stats.l2_err;
2529 			stats->rx_errors += ring->stats.l3l4_csum_err;
2530 			stats->rx_crc_errors += ring->stats.l2_err;
2531 			stats->multicast += ring->stats.rx_multicast;
2532 			stats->rx_length_errors += ring->stats.err_pkt_len;
2533 		}
2534 	} while (u64_stats_fetch_retry(&ring->syncp, start));
2535 }
2536 
2537 static void hns3_nic_get_stats64(struct net_device *netdev,
2538 				 struct rtnl_link_stats64 *stats)
2539 {
2540 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2541 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2542 	struct hnae3_handle *handle = priv->ae_handle;
2543 	struct rtnl_link_stats64 ring_total_stats;
2544 	struct hns3_enet_ring *ring;
2545 	unsigned int idx;
2546 
2547 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2548 		return;
2549 
2550 	handle->ae_algo->ops->update_stats(handle);
2551 
2552 	memset(&ring_total_stats, 0, sizeof(ring_total_stats));
2553 	for (idx = 0; idx < queue_num; idx++) {
2554 		/* fetch the tx stats */
2555 		ring = &priv->ring[idx];
2556 		hns3_fetch_stats(&ring_total_stats, ring, true);
2557 
2558 		/* fetch the rx stats */
2559 		ring = &priv->ring[idx + queue_num];
2560 		hns3_fetch_stats(&ring_total_stats, ring, false);
2561 	}
2562 
2563 	stats->tx_bytes = ring_total_stats.tx_bytes;
2564 	stats->tx_packets = ring_total_stats.tx_packets;
2565 	stats->rx_bytes = ring_total_stats.rx_bytes;
2566 	stats->rx_packets = ring_total_stats.rx_packets;
2567 
2568 	stats->rx_errors = ring_total_stats.rx_errors;
2569 	stats->multicast = ring_total_stats.multicast;
2570 	stats->rx_length_errors = ring_total_stats.rx_length_errors;
2571 	stats->rx_crc_errors = ring_total_stats.rx_crc_errors;
2572 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2573 
2574 	stats->tx_errors = ring_total_stats.tx_errors;
2575 	stats->rx_dropped = ring_total_stats.rx_dropped;
2576 	stats->tx_dropped = ring_total_stats.tx_dropped;
2577 	stats->collisions = netdev->stats.collisions;
2578 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2579 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2580 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2581 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2582 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2583 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2584 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2585 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2586 	stats->rx_compressed = netdev->stats.rx_compressed;
2587 	stats->tx_compressed = netdev->stats.tx_compressed;
2588 }
2589 
2590 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2591 {
2592 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2593 	struct hnae3_knic_private_info *kinfo;
2594 	u8 tc = mqprio_qopt->qopt.num_tc;
2595 	u16 mode = mqprio_qopt->mode;
2596 	u8 hw = mqprio_qopt->qopt.hw;
2597 	struct hnae3_handle *h;
2598 
2599 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2600 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2601 		return -EOPNOTSUPP;
2602 
2603 	if (tc > HNAE3_MAX_TC)
2604 		return -EINVAL;
2605 
2606 	if (!netdev)
2607 		return -EINVAL;
2608 
2609 	h = hns3_get_handle(netdev);
2610 	kinfo = &h->kinfo;
2611 
2612 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2613 
2614 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2615 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2616 }
2617 
2618 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2619 				    struct flow_cls_offload *flow)
2620 {
2621 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2622 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2623 
2624 	switch (flow->command) {
2625 	case FLOW_CLS_REPLACE:
2626 		if (h->ae_algo->ops->add_cls_flower)
2627 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2628 		break;
2629 	case FLOW_CLS_DESTROY:
2630 		if (h->ae_algo->ops->del_cls_flower)
2631 			return h->ae_algo->ops->del_cls_flower(h, flow);
2632 		break;
2633 	default:
2634 		break;
2635 	}
2636 
2637 	return -EOPNOTSUPP;
2638 }
2639 
2640 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2641 				  void *cb_priv)
2642 {
2643 	struct hns3_nic_priv *priv = cb_priv;
2644 
2645 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2646 		return -EOPNOTSUPP;
2647 
2648 	switch (type) {
2649 	case TC_SETUP_CLSFLOWER:
2650 		return hns3_setup_tc_cls_flower(priv, type_data);
2651 	default:
2652 		return -EOPNOTSUPP;
2653 	}
2654 }
2655 
2656 static LIST_HEAD(hns3_block_cb_list);
2657 
2658 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2659 			     void *type_data)
2660 {
2661 	struct hns3_nic_priv *priv = netdev_priv(dev);
2662 	int ret;
2663 
2664 	switch (type) {
2665 	case TC_SETUP_QDISC_MQPRIO:
2666 		ret = hns3_setup_tc(dev, type_data);
2667 		break;
2668 	case TC_SETUP_BLOCK:
2669 		ret = flow_block_cb_setup_simple(type_data,
2670 						 &hns3_block_cb_list,
2671 						 hns3_setup_tc_block_cb,
2672 						 priv, priv, true);
2673 		break;
2674 	default:
2675 		return -EOPNOTSUPP;
2676 	}
2677 
2678 	return ret;
2679 }
2680 
2681 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2682 				__be16 proto, u16 vid)
2683 {
2684 	struct hnae3_handle *h = hns3_get_handle(netdev);
2685 	int ret = -EIO;
2686 
2687 	if (h->ae_algo->ops->set_vlan_filter)
2688 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2689 
2690 	return ret;
2691 }
2692 
2693 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2694 				 __be16 proto, u16 vid)
2695 {
2696 	struct hnae3_handle *h = hns3_get_handle(netdev);
2697 	int ret = -EIO;
2698 
2699 	if (h->ae_algo->ops->set_vlan_filter)
2700 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2701 
2702 	return ret;
2703 }
2704 
2705 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2706 				u8 qos, __be16 vlan_proto)
2707 {
2708 	struct hnae3_handle *h = hns3_get_handle(netdev);
2709 	int ret = -EIO;
2710 
2711 	netif_dbg(h, drv, netdev,
2712 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2713 		  vf, vlan, qos, ntohs(vlan_proto));
2714 
2715 	if (h->ae_algo->ops->set_vf_vlan_filter)
2716 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2717 							  qos, vlan_proto);
2718 
2719 	return ret;
2720 }
2721 
2722 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2723 {
2724 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2725 
2726 	if (hns3_nic_resetting(netdev))
2727 		return -EBUSY;
2728 
2729 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2730 		return -EOPNOTSUPP;
2731 
2732 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2733 }
2734 
2735 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2736 {
2737 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2738 
2739 	if (!handle->ae_algo->ops->set_vf_trust)
2740 		return -EOPNOTSUPP;
2741 
2742 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2743 }
2744 
2745 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2746 {
2747 	struct hnae3_handle *h = hns3_get_handle(netdev);
2748 	int ret;
2749 
2750 	if (hns3_nic_resetting(netdev))
2751 		return -EBUSY;
2752 
2753 	if (!h->ae_algo->ops->set_mtu)
2754 		return -EOPNOTSUPP;
2755 
2756 	netif_dbg(h, drv, netdev,
2757 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2758 
2759 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2760 	if (ret)
2761 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2762 			   ret);
2763 	else
2764 		netdev->mtu = new_mtu;
2765 
2766 	return ret;
2767 }
2768 
2769 static int hns3_get_timeout_queue(struct net_device *ndev)
2770 {
2771 	int i;
2772 
2773 	/* Find the stopped queue the same way the stack does */
2774 	for (i = 0; i < ndev->num_tx_queues; i++) {
2775 		struct netdev_queue *q;
2776 		unsigned long trans_start;
2777 
2778 		q = netdev_get_tx_queue(ndev, i);
2779 		trans_start = READ_ONCE(q->trans_start);
2780 		if (netif_xmit_stopped(q) &&
2781 		    time_after(jiffies,
2782 			       (trans_start + ndev->watchdog_timeo))) {
2783 #ifdef CONFIG_BQL
2784 			struct dql *dql = &q->dql;
2785 
2786 			netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n",
2787 				    dql->last_obj_cnt, dql->num_queued,
2788 				    dql->adj_limit, dql->num_completed);
2789 #endif
2790 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2791 				    q->state,
2792 				    jiffies_to_msecs(jiffies - trans_start));
2793 			break;
2794 		}
2795 	}
2796 
2797 	return i;
2798 }
2799 
2800 static void hns3_dump_queue_stats(struct net_device *ndev,
2801 				  struct hns3_enet_ring *tx_ring,
2802 				  int timeout_queue)
2803 {
2804 	struct napi_struct *napi = &tx_ring->tqp_vector->napi;
2805 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2806 
2807 	netdev_info(ndev,
2808 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2809 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2810 		    tx_ring->next_to_clean, napi->state);
2811 
2812 	netdev_info(ndev,
2813 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2814 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2815 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2816 
2817 	netdev_info(ndev,
2818 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2819 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2820 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2821 
2822 	netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n",
2823 		    tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell);
2824 }
2825 
2826 static void hns3_dump_queue_reg(struct net_device *ndev,
2827 				struct hns3_enet_ring *tx_ring)
2828 {
2829 	netdev_info(ndev,
2830 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2831 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG),
2832 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG),
2833 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG),
2834 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG),
2835 		    readl(tx_ring->tqp_vector->mask_addr));
2836 	netdev_info(ndev,
2837 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2838 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG),
2839 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG),
2840 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG),
2841 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG),
2842 		    hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG),
2843 		    hns3_tqp_read_reg(tx_ring,
2844 				      HNS3_RING_TX_RING_EBD_OFFSET_REG));
2845 }
2846 
2847 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2848 {
2849 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2850 	struct hnae3_handle *h = hns3_get_handle(ndev);
2851 	struct hns3_enet_ring *tx_ring;
2852 	int timeout_queue;
2853 
2854 	timeout_queue = hns3_get_timeout_queue(ndev);
2855 	if (timeout_queue >= ndev->num_tx_queues) {
2856 		netdev_info(ndev,
2857 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2858 			    priv->tx_timeout_count);
2859 		return false;
2860 	}
2861 
2862 	priv->tx_timeout_count++;
2863 
2864 	tx_ring = &priv->ring[timeout_queue];
2865 	hns3_dump_queue_stats(ndev, tx_ring, timeout_queue);
2866 
2867 	/* When mac received many pause frames continuous, it's unable to send
2868 	 * packets, which may cause tx timeout
2869 	 */
2870 	if (h->ae_algo->ops->get_mac_stats) {
2871 		struct hns3_mac_stats mac_stats;
2872 
2873 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2874 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2875 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2876 	}
2877 
2878 	hns3_dump_queue_reg(ndev, tx_ring);
2879 
2880 	return true;
2881 }
2882 
2883 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2884 {
2885 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2886 	struct hnae3_handle *h = priv->ae_handle;
2887 
2888 	if (!hns3_get_tx_timeo_queue_info(ndev))
2889 		return;
2890 
2891 	/* request the reset, and let the hclge to determine
2892 	 * which reset level should be done
2893 	 */
2894 	if (h->ae_algo->ops->reset_event)
2895 		h->ae_algo->ops->reset_event(h->pdev, h);
2896 }
2897 
2898 #ifdef CONFIG_RFS_ACCEL
2899 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2900 			      u16 rxq_index, u32 flow_id)
2901 {
2902 	struct hnae3_handle *h = hns3_get_handle(dev);
2903 	struct flow_keys fkeys;
2904 
2905 	if (!h->ae_algo->ops->add_arfs_entry)
2906 		return -EOPNOTSUPP;
2907 
2908 	if (skb->encapsulation)
2909 		return -EPROTONOSUPPORT;
2910 
2911 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2912 		return -EPROTONOSUPPORT;
2913 
2914 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2915 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2916 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2917 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2918 		return -EPROTONOSUPPORT;
2919 
2920 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2921 }
2922 #endif
2923 
2924 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2925 				  struct ifla_vf_info *ivf)
2926 {
2927 	struct hnae3_handle *h = hns3_get_handle(ndev);
2928 
2929 	if (!h->ae_algo->ops->get_vf_config)
2930 		return -EOPNOTSUPP;
2931 
2932 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2933 }
2934 
2935 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2936 				      int link_state)
2937 {
2938 	struct hnae3_handle *h = hns3_get_handle(ndev);
2939 
2940 	if (!h->ae_algo->ops->set_vf_link_state)
2941 		return -EOPNOTSUPP;
2942 
2943 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2944 }
2945 
2946 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2947 				int min_tx_rate, int max_tx_rate)
2948 {
2949 	struct hnae3_handle *h = hns3_get_handle(ndev);
2950 
2951 	if (!h->ae_algo->ops->set_vf_rate)
2952 		return -EOPNOTSUPP;
2953 
2954 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2955 					    false);
2956 }
2957 
2958 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2959 {
2960 	struct hnae3_handle *h = hns3_get_handle(netdev);
2961 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
2962 
2963 	if (!h->ae_algo->ops->set_vf_mac)
2964 		return -EOPNOTSUPP;
2965 
2966 	if (is_multicast_ether_addr(mac)) {
2967 		hnae3_format_mac_addr(format_mac_addr, mac);
2968 		netdev_err(netdev,
2969 			   "Invalid MAC:%s specified. Could not set MAC\n",
2970 			   format_mac_addr);
2971 		return -EINVAL;
2972 	}
2973 
2974 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2975 }
2976 
2977 #define HNS3_INVALID_DSCP		0xff
2978 #define HNS3_DSCP_SHIFT			2
2979 
2980 static u8 hns3_get_skb_dscp(struct sk_buff *skb)
2981 {
2982 	__be16 protocol = skb->protocol;
2983 	u8 dscp = HNS3_INVALID_DSCP;
2984 
2985 	if (protocol == htons(ETH_P_8021Q))
2986 		protocol = vlan_get_protocol(skb);
2987 
2988 	if (protocol == htons(ETH_P_IP))
2989 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT;
2990 	else if (protocol == htons(ETH_P_IPV6))
2991 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT;
2992 
2993 	return dscp;
2994 }
2995 
2996 static u16 hns3_nic_select_queue(struct net_device *netdev,
2997 				 struct sk_buff *skb,
2998 				 struct net_device *sb_dev)
2999 {
3000 	struct hnae3_handle *h = hns3_get_handle(netdev);
3001 	u8 dscp;
3002 
3003 	if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP ||
3004 	    !h->ae_algo->ops->get_dscp_prio)
3005 		goto out;
3006 
3007 	dscp = hns3_get_skb_dscp(skb);
3008 	if (unlikely(dscp >= HNAE3_MAX_DSCP))
3009 		goto out;
3010 
3011 	skb->priority = h->kinfo.dscp_prio[dscp];
3012 	if (skb->priority == HNAE3_PRIO_ID_INVALID)
3013 		skb->priority = 0;
3014 
3015 out:
3016 	return netdev_pick_tx(netdev, skb, sb_dev);
3017 }
3018 
3019 static const struct net_device_ops hns3_nic_netdev_ops = {
3020 	.ndo_open		= hns3_nic_net_open,
3021 	.ndo_stop		= hns3_nic_net_stop,
3022 	.ndo_start_xmit		= hns3_nic_net_xmit,
3023 	.ndo_tx_timeout		= hns3_nic_net_timeout,
3024 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
3025 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
3026 	.ndo_change_mtu		= hns3_nic_change_mtu,
3027 	.ndo_set_features	= hns3_nic_set_features,
3028 	.ndo_features_check	= hns3_features_check,
3029 	.ndo_get_stats64	= hns3_nic_get_stats64,
3030 	.ndo_setup_tc		= hns3_nic_setup_tc,
3031 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
3032 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
3033 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
3034 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
3035 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
3036 	.ndo_set_vf_trust	= hns3_set_vf_trust,
3037 #ifdef CONFIG_RFS_ACCEL
3038 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
3039 #endif
3040 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
3041 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
3042 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
3043 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
3044 	.ndo_select_queue	= hns3_nic_select_queue,
3045 };
3046 
3047 bool hns3_is_phys_func(struct pci_dev *pdev)
3048 {
3049 	u32 dev_id = pdev->device;
3050 
3051 	switch (dev_id) {
3052 	case HNAE3_DEV_ID_GE:
3053 	case HNAE3_DEV_ID_25GE:
3054 	case HNAE3_DEV_ID_25GE_RDMA:
3055 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
3056 	case HNAE3_DEV_ID_50GE_RDMA:
3057 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
3058 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
3059 	case HNAE3_DEV_ID_200G_RDMA:
3060 		return true;
3061 	case HNAE3_DEV_ID_VF:
3062 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
3063 		return false;
3064 	default:
3065 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
3066 			 dev_id);
3067 	}
3068 
3069 	return false;
3070 }
3071 
3072 static void hns3_disable_sriov(struct pci_dev *pdev)
3073 {
3074 	/* If our VFs are assigned we cannot shut down SR-IOV
3075 	 * without causing issues, so just leave the hardware
3076 	 * available but disabled
3077 	 */
3078 	if (pci_vfs_assigned(pdev)) {
3079 		dev_warn(&pdev->dev,
3080 			 "disabling driver while VFs are assigned\n");
3081 		return;
3082 	}
3083 
3084 	pci_disable_sriov(pdev);
3085 }
3086 
3087 /* hns3_probe - Device initialization routine
3088  * @pdev: PCI device information struct
3089  * @ent: entry in hns3_pci_tbl
3090  *
3091  * hns3_probe initializes a PF identified by a pci_dev structure.
3092  * The OS initialization, configuring of the PF private structure,
3093  * and a hardware reset occur.
3094  *
3095  * Returns 0 on success, negative on failure
3096  */
3097 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3098 {
3099 	struct hnae3_ae_dev *ae_dev;
3100 	int ret;
3101 
3102 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
3103 	if (!ae_dev)
3104 		return -ENOMEM;
3105 
3106 	ae_dev->pdev = pdev;
3107 	ae_dev->flag = ent->driver_data;
3108 	pci_set_drvdata(pdev, ae_dev);
3109 
3110 	ret = hnae3_register_ae_dev(ae_dev);
3111 	if (ret)
3112 		pci_set_drvdata(pdev, NULL);
3113 
3114 	return ret;
3115 }
3116 
3117 /**
3118  * hns3_clean_vf_config
3119  * @pdev: pointer to a pci_dev structure
3120  * @num_vfs: number of VFs allocated
3121  *
3122  * Clean residual vf config after disable sriov
3123  **/
3124 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs)
3125 {
3126 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3127 
3128 	if (ae_dev->ops->clean_vf_config)
3129 		ae_dev->ops->clean_vf_config(ae_dev, num_vfs);
3130 }
3131 
3132 /* hns3_remove - Device removal routine
3133  * @pdev: PCI device information struct
3134  */
3135 static void hns3_remove(struct pci_dev *pdev)
3136 {
3137 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3138 
3139 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
3140 		hns3_disable_sriov(pdev);
3141 
3142 	hnae3_unregister_ae_dev(ae_dev);
3143 	pci_set_drvdata(pdev, NULL);
3144 }
3145 
3146 /**
3147  * hns3_pci_sriov_configure
3148  * @pdev: pointer to a pci_dev structure
3149  * @num_vfs: number of VFs to allocate
3150  *
3151  * Enable or change the number of VFs. Called when the user updates the number
3152  * of VFs in sysfs.
3153  **/
3154 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
3155 {
3156 	int ret;
3157 
3158 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
3159 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
3160 		return -EINVAL;
3161 	}
3162 
3163 	if (num_vfs) {
3164 		ret = pci_enable_sriov(pdev, num_vfs);
3165 		if (ret)
3166 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
3167 		else
3168 			return num_vfs;
3169 	} else if (!pci_vfs_assigned(pdev)) {
3170 		int num_vfs_pre = pci_num_vf(pdev);
3171 
3172 		pci_disable_sriov(pdev);
3173 		hns3_clean_vf_config(pdev, num_vfs_pre);
3174 	} else {
3175 		dev_warn(&pdev->dev,
3176 			 "Unable to free VFs because some are assigned to VMs.\n");
3177 	}
3178 
3179 	return 0;
3180 }
3181 
3182 static void hns3_shutdown(struct pci_dev *pdev)
3183 {
3184 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3185 
3186 	hnae3_unregister_ae_dev(ae_dev);
3187 	pci_set_drvdata(pdev, NULL);
3188 
3189 	if (system_state == SYSTEM_POWER_OFF)
3190 		pci_set_power_state(pdev, PCI_D3hot);
3191 }
3192 
3193 static int __maybe_unused hns3_suspend(struct device *dev)
3194 {
3195 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3196 
3197 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3198 		dev_info(dev, "Begin to suspend.\n");
3199 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3200 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3201 	}
3202 
3203 	return 0;
3204 }
3205 
3206 static int __maybe_unused hns3_resume(struct device *dev)
3207 {
3208 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3209 
3210 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3211 		dev_info(dev, "Begin to resume.\n");
3212 		if (ae_dev->ops && ae_dev->ops->reset_done)
3213 			ae_dev->ops->reset_done(ae_dev);
3214 	}
3215 
3216 	return 0;
3217 }
3218 
3219 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3220 					    pci_channel_state_t state)
3221 {
3222 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3223 	pci_ers_result_t ret;
3224 
3225 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3226 
3227 	if (state == pci_channel_io_perm_failure)
3228 		return PCI_ERS_RESULT_DISCONNECT;
3229 
3230 	if (!ae_dev || !ae_dev->ops) {
3231 		dev_err(&pdev->dev,
3232 			"Can't recover - error happened before device initialized\n");
3233 		return PCI_ERS_RESULT_NONE;
3234 	}
3235 
3236 	if (ae_dev->ops->handle_hw_ras_error)
3237 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3238 	else
3239 		return PCI_ERS_RESULT_NONE;
3240 
3241 	return ret;
3242 }
3243 
3244 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3245 {
3246 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3247 	const struct hnae3_ae_ops *ops;
3248 	enum hnae3_reset_type reset_type;
3249 	struct device *dev = &pdev->dev;
3250 
3251 	if (!ae_dev || !ae_dev->ops)
3252 		return PCI_ERS_RESULT_NONE;
3253 
3254 	ops = ae_dev->ops;
3255 	/* request the reset */
3256 	if (ops->reset_event && ops->get_reset_level &&
3257 	    ops->set_default_reset_request) {
3258 		if (ae_dev->hw_err_reset_req) {
3259 			reset_type = ops->get_reset_level(ae_dev,
3260 						&ae_dev->hw_err_reset_req);
3261 			ops->set_default_reset_request(ae_dev, reset_type);
3262 			dev_info(dev, "requesting reset due to PCI error\n");
3263 			ops->reset_event(pdev, NULL);
3264 		}
3265 
3266 		return PCI_ERS_RESULT_RECOVERED;
3267 	}
3268 
3269 	return PCI_ERS_RESULT_DISCONNECT;
3270 }
3271 
3272 static void hns3_reset_prepare(struct pci_dev *pdev)
3273 {
3274 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3275 
3276 	dev_info(&pdev->dev, "FLR prepare\n");
3277 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3278 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3279 }
3280 
3281 static void hns3_reset_done(struct pci_dev *pdev)
3282 {
3283 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3284 
3285 	dev_info(&pdev->dev, "FLR done\n");
3286 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3287 		ae_dev->ops->reset_done(ae_dev);
3288 }
3289 
3290 static const struct pci_error_handlers hns3_err_handler = {
3291 	.error_detected = hns3_error_detected,
3292 	.slot_reset     = hns3_slot_reset,
3293 	.reset_prepare	= hns3_reset_prepare,
3294 	.reset_done	= hns3_reset_done,
3295 };
3296 
3297 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3298 
3299 static struct pci_driver hns3_driver = {
3300 	.name     = hns3_driver_name,
3301 	.id_table = hns3_pci_tbl,
3302 	.probe    = hns3_probe,
3303 	.remove   = hns3_remove,
3304 	.shutdown = hns3_shutdown,
3305 	.driver.pm  = &hns3_pm_ops,
3306 	.sriov_configure = hns3_pci_sriov_configure,
3307 	.err_handler    = &hns3_err_handler,
3308 };
3309 
3310 /* set default feature to hns3 */
3311 static void hns3_set_default_feature(struct net_device *netdev)
3312 {
3313 	struct hnae3_handle *h = hns3_get_handle(netdev);
3314 	struct pci_dev *pdev = h->pdev;
3315 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3316 
3317 	netdev->priv_flags |= IFF_UNICAST_FLT;
3318 
3319 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3320 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3321 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3322 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3323 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3324 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3325 
3326 	if (hnae3_ae_dev_gro_supported(ae_dev))
3327 		netdev->features |= NETIF_F_GRO_HW;
3328 
3329 	if (hnae3_ae_dev_fd_supported(ae_dev))
3330 		netdev->features |= NETIF_F_NTUPLE;
3331 
3332 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3333 		netdev->features |= NETIF_F_GSO_UDP_L4;
3334 
3335 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3336 		netdev->features |= NETIF_F_HW_CSUM;
3337 	else
3338 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3339 
3340 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3341 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3342 
3343 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3344 		netdev->features |= NETIF_F_HW_TC;
3345 
3346 	netdev->hw_features |= netdev->features;
3347 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3348 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3349 
3350 	netdev->vlan_features |= netdev->features &
3351 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3352 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3353 		  NETIF_F_HW_TC);
3354 
3355 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3356 
3357 	/* The device_version V3 hardware can't offload the checksum for IP in
3358 	 * GRE packets, but can do it for NvGRE. So default to disable the
3359 	 * checksum and GSO offload for GRE.
3360 	 */
3361 	if (ae_dev->dev_version > HNAE3_DEVICE_VERSION_V2) {
3362 		netdev->features &= ~NETIF_F_GSO_GRE;
3363 		netdev->features &= ~NETIF_F_GSO_GRE_CSUM;
3364 	}
3365 }
3366 
3367 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3368 			     struct hns3_desc_cb *cb)
3369 {
3370 	unsigned int order = hns3_page_order(ring);
3371 	struct page *p;
3372 
3373 	if (ring->page_pool) {
3374 		p = page_pool_dev_alloc_frag(ring->page_pool,
3375 					     &cb->page_offset,
3376 					     hns3_buf_size(ring));
3377 		if (unlikely(!p))
3378 			return -ENOMEM;
3379 
3380 		cb->priv = p;
3381 		cb->buf = page_address(p);
3382 		cb->dma = page_pool_get_dma_addr(p);
3383 		cb->type = DESC_TYPE_PP_FRAG;
3384 		cb->reuse_flag = 0;
3385 		return 0;
3386 	}
3387 
3388 	p = dev_alloc_pages(order);
3389 	if (!p)
3390 		return -ENOMEM;
3391 
3392 	cb->priv = p;
3393 	cb->page_offset = 0;
3394 	cb->reuse_flag = 0;
3395 	cb->buf  = page_address(p);
3396 	cb->length = hns3_page_size(ring);
3397 	cb->type = DESC_TYPE_PAGE;
3398 	page_ref_add(p, USHRT_MAX - 1);
3399 	cb->pagecnt_bias = USHRT_MAX;
3400 
3401 	return 0;
3402 }
3403 
3404 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3405 			     struct hns3_desc_cb *cb, int budget)
3406 {
3407 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3408 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3409 		napi_consume_skb(cb->priv, budget);
3410 	else if (!HNAE3_IS_TX_RING(ring)) {
3411 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3412 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3413 		else if (cb->type & DESC_TYPE_PP_FRAG)
3414 			page_pool_put_full_page(ring->page_pool, cb->priv,
3415 						false);
3416 	}
3417 	memset(cb, 0, sizeof(*cb));
3418 }
3419 
3420 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3421 {
3422 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3423 			       cb->length, ring_to_dma_dir(ring));
3424 
3425 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3426 		return -EIO;
3427 
3428 	return 0;
3429 }
3430 
3431 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3432 			      struct hns3_desc_cb *cb)
3433 {
3434 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3435 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3436 				 ring_to_dma_dir(ring));
3437 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3438 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3439 			       ring_to_dma_dir(ring));
3440 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3441 			     DESC_TYPE_SGL_SKB))
3442 		hns3_tx_spare_reclaim_cb(ring, cb);
3443 }
3444 
3445 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3446 {
3447 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3448 	ring->desc[i].addr = 0;
3449 	ring->desc_cb[i].refill = 0;
3450 }
3451 
3452 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3453 				    int budget)
3454 {
3455 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3456 
3457 	if (!ring->desc_cb[i].dma)
3458 		return;
3459 
3460 	hns3_buffer_detach(ring, i);
3461 	hns3_free_buffer(ring, cb, budget);
3462 }
3463 
3464 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3465 {
3466 	int i;
3467 
3468 	for (i = 0; i < ring->desc_num; i++)
3469 		hns3_free_buffer_detach(ring, i, 0);
3470 }
3471 
3472 /* free desc along with its attached buffer */
3473 static void hns3_free_desc(struct hns3_enet_ring *ring)
3474 {
3475 	int size = ring->desc_num * sizeof(ring->desc[0]);
3476 
3477 	hns3_free_buffers(ring);
3478 
3479 	if (ring->desc) {
3480 		dma_free_coherent(ring_to_dev(ring), size,
3481 				  ring->desc, ring->desc_dma_addr);
3482 		ring->desc = NULL;
3483 	}
3484 }
3485 
3486 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3487 {
3488 	int size = ring->desc_num * sizeof(ring->desc[0]);
3489 
3490 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3491 					&ring->desc_dma_addr, GFP_KERNEL);
3492 	if (!ring->desc)
3493 		return -ENOMEM;
3494 
3495 	return 0;
3496 }
3497 
3498 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3499 				   struct hns3_desc_cb *cb)
3500 {
3501 	int ret;
3502 
3503 	ret = hns3_alloc_buffer(ring, cb);
3504 	if (ret || ring->page_pool)
3505 		goto out;
3506 
3507 	ret = hns3_map_buffer(ring, cb);
3508 	if (ret)
3509 		goto out_with_buf;
3510 
3511 	return 0;
3512 
3513 out_with_buf:
3514 	hns3_free_buffer(ring, cb, 0);
3515 out:
3516 	return ret;
3517 }
3518 
3519 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3520 {
3521 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3522 
3523 	if (ret)
3524 		return ret;
3525 
3526 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3527 					 ring->desc_cb[i].page_offset);
3528 	ring->desc_cb[i].refill = 1;
3529 
3530 	return 0;
3531 }
3532 
3533 /* Allocate memory for raw pkg, and map with dma */
3534 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3535 {
3536 	int i, j, ret;
3537 
3538 	for (i = 0; i < ring->desc_num; i++) {
3539 		ret = hns3_alloc_and_attach_buffer(ring, i);
3540 		if (ret)
3541 			goto out_buffer_fail;
3542 	}
3543 
3544 	return 0;
3545 
3546 out_buffer_fail:
3547 	for (j = i - 1; j >= 0; j--)
3548 		hns3_free_buffer_detach(ring, j, 0);
3549 	return ret;
3550 }
3551 
3552 /* detach a in-used buffer and replace with a reserved one */
3553 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3554 				struct hns3_desc_cb *res_cb)
3555 {
3556 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3557 	ring->desc_cb[i] = *res_cb;
3558 	ring->desc_cb[i].refill = 1;
3559 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3560 					 ring->desc_cb[i].page_offset);
3561 	ring->desc[i].rx.bd_base_info = 0;
3562 }
3563 
3564 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3565 {
3566 	ring->desc_cb[i].reuse_flag = 0;
3567 	ring->desc_cb[i].refill = 1;
3568 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3569 					 ring->desc_cb[i].page_offset);
3570 	ring->desc[i].rx.bd_base_info = 0;
3571 
3572 	dma_sync_single_for_device(ring_to_dev(ring),
3573 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3574 			hns3_buf_size(ring),
3575 			DMA_FROM_DEVICE);
3576 }
3577 
3578 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3579 				  int *bytes, int *pkts, int budget)
3580 {
3581 	/* This smp_load_acquire() pairs with smp_store_release() in
3582 	 * hns3_tx_doorbell().
3583 	 */
3584 	int ltu = smp_load_acquire(&ring->last_to_use);
3585 	int ntc = ring->next_to_clean;
3586 	struct hns3_desc_cb *desc_cb;
3587 	bool reclaimed = false;
3588 	struct hns3_desc *desc;
3589 
3590 	while (ltu != ntc) {
3591 		desc = &ring->desc[ntc];
3592 
3593 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3594 				BIT(HNS3_TXD_VLD_B))
3595 			break;
3596 
3597 		desc_cb = &ring->desc_cb[ntc];
3598 
3599 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3600 				     DESC_TYPE_BOUNCE_HEAD |
3601 				     DESC_TYPE_SGL_SKB)) {
3602 			(*pkts)++;
3603 			(*bytes) += desc_cb->send_bytes;
3604 		}
3605 
3606 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3607 		hns3_free_buffer_detach(ring, ntc, budget);
3608 
3609 		if (++ntc == ring->desc_num)
3610 			ntc = 0;
3611 
3612 		/* Issue prefetch for next Tx descriptor */
3613 		prefetch(&ring->desc_cb[ntc]);
3614 		reclaimed = true;
3615 	}
3616 
3617 	if (unlikely(!reclaimed))
3618 		return false;
3619 
3620 	/* This smp_store_release() pairs with smp_load_acquire() in
3621 	 * ring_space called by hns3_nic_net_xmit.
3622 	 */
3623 	smp_store_release(&ring->next_to_clean, ntc);
3624 
3625 	hns3_tx_spare_update(ring);
3626 
3627 	return true;
3628 }
3629 
3630 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3631 {
3632 	struct net_device *netdev = ring_to_netdev(ring);
3633 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3634 	struct netdev_queue *dev_queue;
3635 	int bytes, pkts;
3636 
3637 	bytes = 0;
3638 	pkts = 0;
3639 
3640 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3641 		return;
3642 
3643 	ring->tqp_vector->tx_group.total_bytes += bytes;
3644 	ring->tqp_vector->tx_group.total_packets += pkts;
3645 
3646 	u64_stats_update_begin(&ring->syncp);
3647 	ring->stats.tx_bytes += bytes;
3648 	ring->stats.tx_pkts += pkts;
3649 	u64_stats_update_end(&ring->syncp);
3650 
3651 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3652 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3653 
3654 	if (unlikely(netif_carrier_ok(netdev) &&
3655 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3656 		/* Make sure that anybody stopping the queue after this
3657 		 * sees the new next_to_clean.
3658 		 */
3659 		smp_mb();
3660 		if (netif_tx_queue_stopped(dev_queue) &&
3661 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3662 			netif_tx_wake_queue(dev_queue);
3663 			ring->stats.restart_queue++;
3664 		}
3665 	}
3666 }
3667 
3668 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3669 {
3670 	int ntc = ring->next_to_clean;
3671 	int ntu = ring->next_to_use;
3672 
3673 	if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill))
3674 		return ring->desc_num;
3675 
3676 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3677 }
3678 
3679 /* Return true if there is any allocation failure */
3680 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3681 				      int cleand_count)
3682 {
3683 	struct hns3_desc_cb *desc_cb;
3684 	struct hns3_desc_cb res_cbs;
3685 	int i, ret;
3686 
3687 	for (i = 0; i < cleand_count; i++) {
3688 		desc_cb = &ring->desc_cb[ring->next_to_use];
3689 		if (desc_cb->reuse_flag) {
3690 			hns3_ring_stats_update(ring, reuse_pg_cnt);
3691 
3692 			hns3_reuse_buffer(ring, ring->next_to_use);
3693 		} else {
3694 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3695 			if (ret) {
3696 				hns3_ring_stats_update(ring, sw_err_cnt);
3697 
3698 				hns3_rl_err(ring_to_netdev(ring),
3699 					    "alloc rx buffer failed: %d\n",
3700 					    ret);
3701 
3702 				writel(i, ring->tqp->io_base +
3703 				       HNS3_RING_RX_RING_HEAD_REG);
3704 				return true;
3705 			}
3706 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3707 
3708 			hns3_ring_stats_update(ring, non_reuse_pg);
3709 		}
3710 
3711 		ring_ptr_move_fw(ring, next_to_use);
3712 	}
3713 
3714 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3715 	return false;
3716 }
3717 
3718 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3719 {
3720 	return page_count(cb->priv) == cb->pagecnt_bias;
3721 }
3722 
3723 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i,
3724 				    struct hns3_enet_ring *ring,
3725 				    int pull_len,
3726 				    struct hns3_desc_cb *desc_cb)
3727 {
3728 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3729 	u32 frag_offset = desc_cb->page_offset + pull_len;
3730 	int size = le16_to_cpu(desc->rx.size);
3731 	u32 frag_size = size - pull_len;
3732 	void *frag = napi_alloc_frag(frag_size);
3733 
3734 	if (unlikely(!frag)) {
3735 		hns3_ring_stats_update(ring, frag_alloc_err);
3736 
3737 		hns3_rl_err(ring_to_netdev(ring),
3738 			    "failed to allocate rx frag\n");
3739 		return -ENOMEM;
3740 	}
3741 
3742 	desc_cb->reuse_flag = 1;
3743 	memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3744 	skb_add_rx_frag(skb, i, virt_to_page(frag),
3745 			offset_in_page(frag), frag_size, frag_size);
3746 
3747 	hns3_ring_stats_update(ring, frag_alloc);
3748 	return 0;
3749 }
3750 
3751 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3752 				struct hns3_enet_ring *ring, int pull_len,
3753 				struct hns3_desc_cb *desc_cb)
3754 {
3755 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3756 	u32 frag_offset = desc_cb->page_offset + pull_len;
3757 	int size = le16_to_cpu(desc->rx.size);
3758 	u32 truesize = hns3_buf_size(ring);
3759 	u32 frag_size = size - pull_len;
3760 	int ret = 0;
3761 	bool reused;
3762 
3763 	if (ring->page_pool) {
3764 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3765 				frag_size, truesize);
3766 		return;
3767 	}
3768 
3769 	/* Avoid re-using remote or pfmem page */
3770 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3771 		goto out;
3772 
3773 	reused = hns3_can_reuse_page(desc_cb);
3774 
3775 	/* Rx page can be reused when:
3776 	 * 1. Rx page is only owned by the driver when page_offset
3777 	 *    is zero, which means 0 @ truesize will be used by
3778 	 *    stack after skb_add_rx_frag() is called, and the rest
3779 	 *    of rx page can be reused by driver.
3780 	 * Or
3781 	 * 2. Rx page is only owned by the driver when page_offset
3782 	 *    is non-zero, which means page_offset @ truesize will
3783 	 *    be used by stack after skb_add_rx_frag() is called,
3784 	 *    and 0 @ truesize can be reused by driver.
3785 	 */
3786 	if ((!desc_cb->page_offset && reused) ||
3787 	    ((desc_cb->page_offset + truesize + truesize) <=
3788 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3789 		desc_cb->page_offset += truesize;
3790 		desc_cb->reuse_flag = 1;
3791 	} else if (desc_cb->page_offset && reused) {
3792 		desc_cb->page_offset = 0;
3793 		desc_cb->reuse_flag = 1;
3794 	} else if (frag_size <= ring->rx_copybreak) {
3795 		ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb);
3796 		if (!ret)
3797 			return;
3798 	}
3799 
3800 out:
3801 	desc_cb->pagecnt_bias--;
3802 
3803 	if (unlikely(!desc_cb->pagecnt_bias)) {
3804 		page_ref_add(desc_cb->priv, USHRT_MAX);
3805 		desc_cb->pagecnt_bias = USHRT_MAX;
3806 	}
3807 
3808 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3809 			frag_size, truesize);
3810 
3811 	if (unlikely(!desc_cb->reuse_flag))
3812 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3813 }
3814 
3815 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3816 {
3817 	__be16 type = skb->protocol;
3818 	struct tcphdr *th;
3819 	int depth = 0;
3820 
3821 	while (eth_type_vlan(type)) {
3822 		struct vlan_hdr *vh;
3823 
3824 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3825 			return -EFAULT;
3826 
3827 		vh = (struct vlan_hdr *)(skb->data + depth);
3828 		type = vh->h_vlan_encapsulated_proto;
3829 		depth += VLAN_HLEN;
3830 	}
3831 
3832 	skb_set_network_header(skb, depth);
3833 
3834 	if (type == htons(ETH_P_IP)) {
3835 		const struct iphdr *iph = ip_hdr(skb);
3836 
3837 		depth += sizeof(struct iphdr);
3838 		skb_set_transport_header(skb, depth);
3839 		th = tcp_hdr(skb);
3840 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3841 					  iph->daddr, 0);
3842 	} else if (type == htons(ETH_P_IPV6)) {
3843 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3844 
3845 		depth += sizeof(struct ipv6hdr);
3846 		skb_set_transport_header(skb, depth);
3847 		th = tcp_hdr(skb);
3848 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3849 					  &iph->daddr, 0);
3850 	} else {
3851 		hns3_rl_err(skb->dev,
3852 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3853 			    be16_to_cpu(type), depth);
3854 		return -EFAULT;
3855 	}
3856 
3857 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3858 	if (th->cwr)
3859 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3860 
3861 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3862 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3863 
3864 	skb->csum_start = (unsigned char *)th - skb->head;
3865 	skb->csum_offset = offsetof(struct tcphdr, check);
3866 	skb->ip_summed = CHECKSUM_PARTIAL;
3867 
3868 	trace_hns3_gro(skb);
3869 
3870 	return 0;
3871 }
3872 
3873 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
3874 				   struct sk_buff *skb, u32 ptype, u16 csum)
3875 {
3876 	if (ptype == HNS3_INVALID_PTYPE ||
3877 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3878 		return;
3879 
3880 	hns3_ring_stats_update(ring, csum_complete);
3881 	skb->ip_summed = CHECKSUM_COMPLETE;
3882 	skb->csum = csum_unfold((__force __sum16)csum);
3883 }
3884 
3885 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3886 				u32 ol_info, u32 ptype)
3887 {
3888 	int l3_type, l4_type;
3889 	int ol4_type;
3890 
3891 	if (ptype != HNS3_INVALID_PTYPE) {
3892 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3893 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3894 
3895 		return;
3896 	}
3897 
3898 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3899 				   HNS3_RXD_OL4ID_S);
3900 	switch (ol4_type) {
3901 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3902 	case HNS3_OL4_TYPE_NVGRE:
3903 		skb->csum_level = 1;
3904 		fallthrough;
3905 	case HNS3_OL4_TYPE_NO_TUN:
3906 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3907 					  HNS3_RXD_L3ID_S);
3908 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3909 					  HNS3_RXD_L4ID_S);
3910 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3911 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3912 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3913 		    (l4_type == HNS3_L4_TYPE_UDP ||
3914 		     l4_type == HNS3_L4_TYPE_TCP ||
3915 		     l4_type == HNS3_L4_TYPE_SCTP))
3916 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3917 		break;
3918 	default:
3919 		break;
3920 	}
3921 }
3922 
3923 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3924 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3925 			     u16 csum)
3926 {
3927 	struct net_device *netdev = ring_to_netdev(ring);
3928 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3929 	u32 ptype = HNS3_INVALID_PTYPE;
3930 
3931 	skb->ip_summed = CHECKSUM_NONE;
3932 
3933 	skb_checksum_none_assert(skb);
3934 
3935 	if (!(netdev->features & NETIF_F_RXCSUM))
3936 		return;
3937 
3938 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3939 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3940 					HNS3_RXD_PTYPE_S);
3941 
3942 	hns3_checksum_complete(ring, skb, ptype, csum);
3943 
3944 	/* check if hardware has done checksum */
3945 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3946 		return;
3947 
3948 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3949 				 BIT(HNS3_RXD_OL3E_B) |
3950 				 BIT(HNS3_RXD_OL4E_B)))) {
3951 		skb->ip_summed = CHECKSUM_NONE;
3952 		hns3_ring_stats_update(ring, l3l4_csum_err);
3953 
3954 		return;
3955 	}
3956 
3957 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3958 }
3959 
3960 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3961 {
3962 	if (skb_has_frag_list(skb))
3963 		napi_gro_flush(&ring->tqp_vector->napi, false);
3964 
3965 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3966 }
3967 
3968 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3969 				struct hns3_desc *desc, u32 l234info,
3970 				u16 *vlan_tag)
3971 {
3972 	struct hnae3_handle *handle = ring->tqp->handle;
3973 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3974 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3975 
3976 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3977 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3978 		if (!(*vlan_tag & VLAN_VID_MASK))
3979 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3980 
3981 		return (*vlan_tag != 0);
3982 	}
3983 
3984 #define HNS3_STRP_OUTER_VLAN	0x1
3985 #define HNS3_STRP_INNER_VLAN	0x2
3986 #define HNS3_STRP_BOTH		0x3
3987 
3988 	/* Hardware always insert VLAN tag into RX descriptor when
3989 	 * remove the tag from packet, driver needs to determine
3990 	 * reporting which tag to stack.
3991 	 */
3992 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3993 				HNS3_RXD_STRP_TAGP_S)) {
3994 	case HNS3_STRP_OUTER_VLAN:
3995 		if (handle->port_base_vlan_state !=
3996 				HNAE3_PORT_BASE_VLAN_DISABLE)
3997 			return false;
3998 
3999 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4000 		return true;
4001 	case HNS3_STRP_INNER_VLAN:
4002 		if (handle->port_base_vlan_state !=
4003 				HNAE3_PORT_BASE_VLAN_DISABLE)
4004 			return false;
4005 
4006 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4007 		return true;
4008 	case HNS3_STRP_BOTH:
4009 		if (handle->port_base_vlan_state ==
4010 				HNAE3_PORT_BASE_VLAN_DISABLE)
4011 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
4012 		else
4013 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
4014 
4015 		return true;
4016 	default:
4017 		return false;
4018 	}
4019 }
4020 
4021 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
4022 {
4023 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
4024 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
4025 	ring->desc_cb[ring->next_to_clean].refill = 0;
4026 	ring->next_to_clean += 1;
4027 
4028 	if (unlikely(ring->next_to_clean == ring->desc_num))
4029 		ring->next_to_clean = 0;
4030 }
4031 
4032 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
4033 			  unsigned char *va)
4034 {
4035 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
4036 	struct net_device *netdev = ring_to_netdev(ring);
4037 	struct sk_buff *skb;
4038 
4039 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
4040 	skb = ring->skb;
4041 	if (unlikely(!skb)) {
4042 		hns3_rl_err(netdev, "alloc rx skb fail\n");
4043 		hns3_ring_stats_update(ring, sw_err_cnt);
4044 
4045 		return -ENOMEM;
4046 	}
4047 
4048 	trace_hns3_rx_desc(ring);
4049 	prefetchw(skb->data);
4050 
4051 	ring->pending_buf = 1;
4052 	ring->frag_num = 0;
4053 	ring->tail_skb = NULL;
4054 	if (length <= HNS3_RX_HEAD_SIZE) {
4055 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
4056 
4057 		/* We can reuse buffer as-is, just make sure it is reusable */
4058 		if (dev_page_is_reusable(desc_cb->priv))
4059 			desc_cb->reuse_flag = 1;
4060 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
4061 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
4062 						false);
4063 		else /* This page cannot be reused so discard it */
4064 			__page_frag_cache_drain(desc_cb->priv,
4065 						desc_cb->pagecnt_bias);
4066 
4067 		hns3_rx_ring_move_fw(ring);
4068 		return 0;
4069 	}
4070 
4071 	if (ring->page_pool)
4072 		skb_mark_for_recycle(skb);
4073 
4074 	hns3_ring_stats_update(ring, seg_pkt_cnt);
4075 
4076 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
4077 	__skb_put(skb, ring->pull_len);
4078 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
4079 			    desc_cb);
4080 	hns3_rx_ring_move_fw(ring);
4081 
4082 	return 0;
4083 }
4084 
4085 static int hns3_add_frag(struct hns3_enet_ring *ring)
4086 {
4087 	struct sk_buff *skb = ring->skb;
4088 	struct sk_buff *head_skb = skb;
4089 	struct sk_buff *new_skb;
4090 	struct hns3_desc_cb *desc_cb;
4091 	struct hns3_desc *desc;
4092 	u32 bd_base_info;
4093 
4094 	do {
4095 		desc = &ring->desc[ring->next_to_clean];
4096 		desc_cb = &ring->desc_cb[ring->next_to_clean];
4097 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4098 		/* make sure HW write desc complete */
4099 		dma_rmb();
4100 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
4101 			return -ENXIO;
4102 
4103 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
4104 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
4105 			if (unlikely(!new_skb)) {
4106 				hns3_rl_err(ring_to_netdev(ring),
4107 					    "alloc rx fraglist skb fail\n");
4108 				return -ENXIO;
4109 			}
4110 
4111 			if (ring->page_pool)
4112 				skb_mark_for_recycle(new_skb);
4113 
4114 			ring->frag_num = 0;
4115 
4116 			if (ring->tail_skb) {
4117 				ring->tail_skb->next = new_skb;
4118 				ring->tail_skb = new_skb;
4119 			} else {
4120 				skb_shinfo(skb)->frag_list = new_skb;
4121 				ring->tail_skb = new_skb;
4122 			}
4123 		}
4124 
4125 		if (ring->tail_skb) {
4126 			head_skb->truesize += hns3_buf_size(ring);
4127 			head_skb->data_len += le16_to_cpu(desc->rx.size);
4128 			head_skb->len += le16_to_cpu(desc->rx.size);
4129 			skb = ring->tail_skb;
4130 		}
4131 
4132 		dma_sync_single_for_cpu(ring_to_dev(ring),
4133 				desc_cb->dma + desc_cb->page_offset,
4134 				hns3_buf_size(ring),
4135 				DMA_FROM_DEVICE);
4136 
4137 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
4138 		trace_hns3_rx_desc(ring);
4139 		hns3_rx_ring_move_fw(ring);
4140 		ring->pending_buf++;
4141 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
4142 
4143 	return 0;
4144 }
4145 
4146 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
4147 				     struct sk_buff *skb, u32 l234info,
4148 				     u32 bd_base_info, u32 ol_info, u16 csum)
4149 {
4150 	struct net_device *netdev = ring_to_netdev(ring);
4151 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4152 	u32 l3_type;
4153 
4154 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
4155 						    HNS3_RXD_GRO_SIZE_M,
4156 						    HNS3_RXD_GRO_SIZE_S);
4157 	/* if there is no HW GRO, do not set gro params */
4158 	if (!skb_shinfo(skb)->gso_size) {
4159 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
4160 				 csum);
4161 		return 0;
4162 	}
4163 
4164 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
4165 						  HNS3_RXD_GRO_COUNT_M,
4166 						  HNS3_RXD_GRO_COUNT_S);
4167 
4168 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4169 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4170 					    HNS3_RXD_PTYPE_S);
4171 
4172 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
4173 	} else {
4174 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4175 					  HNS3_RXD_L3ID_S);
4176 	}
4177 
4178 	if (l3_type == HNS3_L3_TYPE_IPV4)
4179 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
4180 	else if (l3_type == HNS3_L3_TYPE_IPV6)
4181 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
4182 	else
4183 		return -EFAULT;
4184 
4185 	return  hns3_gro_complete(skb, l234info);
4186 }
4187 
4188 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
4189 				     struct sk_buff *skb, u32 rss_hash,
4190 				     u32 l234info, u32 ol_info)
4191 {
4192 	enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE;
4193 	struct net_device *netdev = ring_to_netdev(ring);
4194 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4195 
4196 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
4197 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
4198 					    HNS3_RXD_PTYPE_S);
4199 
4200 		rss_type = hns3_rx_ptype_tbl[ptype].hash_type;
4201 	} else {
4202 		int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
4203 					      HNS3_RXD_L3ID_S);
4204 		int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
4205 					      HNS3_RXD_L4ID_S);
4206 
4207 		if (l3_type == HNS3_L3_TYPE_IPV4 ||
4208 		    l3_type == HNS3_L3_TYPE_IPV6) {
4209 			if (l4_type == HNS3_L4_TYPE_UDP ||
4210 			    l4_type == HNS3_L4_TYPE_TCP ||
4211 			    l4_type == HNS3_L4_TYPE_SCTP)
4212 				rss_type = PKT_HASH_TYPE_L4;
4213 			else if (l4_type == HNS3_L4_TYPE_IGMP ||
4214 				 l4_type == HNS3_L4_TYPE_ICMP)
4215 				rss_type = PKT_HASH_TYPE_L3;
4216 		}
4217 	}
4218 
4219 	skb_set_hash(skb, rss_hash, rss_type);
4220 }
4221 
4222 static void hns3_handle_rx_ts_info(struct net_device *netdev,
4223 				   struct hns3_desc *desc, struct sk_buff *skb,
4224 				   u32 bd_base_info)
4225 {
4226 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4227 		struct hnae3_handle *h = hns3_get_handle(netdev);
4228 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4229 		u32 sec = le32_to_cpu(desc->ts_sec);
4230 
4231 		if (h->ae_algo->ops->get_rx_hwts)
4232 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4233 	}
4234 }
4235 
4236 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring,
4237 				    struct hns3_desc *desc, struct sk_buff *skb,
4238 				    u32 l234info)
4239 {
4240 	struct net_device *netdev = ring_to_netdev(ring);
4241 
4242 	/* Based on hw strategy, the tag offloaded will be stored at
4243 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4244 	 * in one layer tag case.
4245 	 */
4246 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4247 		u16 vlan_tag;
4248 
4249 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4250 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4251 					       vlan_tag);
4252 	}
4253 }
4254 
4255 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4256 {
4257 	struct net_device *netdev = ring_to_netdev(ring);
4258 	enum hns3_pkt_l2t_type l2_frame_type;
4259 	u32 bd_base_info, l234info, ol_info;
4260 	struct hns3_desc *desc;
4261 	unsigned int len;
4262 	int pre_ntc, ret;
4263 	u16 csum;
4264 
4265 	/* bdinfo handled below is only valid on the last BD of the
4266 	 * current packet, and ring->next_to_clean indicates the first
4267 	 * descriptor of next packet, so need - 1 below.
4268 	 */
4269 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4270 					(ring->desc_num - 1);
4271 	desc = &ring->desc[pre_ntc];
4272 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4273 	l234info = le32_to_cpu(desc->rx.l234_info);
4274 	ol_info = le32_to_cpu(desc->rx.ol_info);
4275 	csum = le16_to_cpu(desc->csum);
4276 
4277 	hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info);
4278 
4279 	hns3_handle_rx_vlan_tag(ring, desc, skb, l234info);
4280 
4281 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4282 				  BIT(HNS3_RXD_L2E_B))))) {
4283 		u64_stats_update_begin(&ring->syncp);
4284 		if (l234info & BIT(HNS3_RXD_L2E_B))
4285 			ring->stats.l2_err++;
4286 		else
4287 			ring->stats.err_pkt_len++;
4288 		u64_stats_update_end(&ring->syncp);
4289 
4290 		return -EFAULT;
4291 	}
4292 
4293 	len = skb->len;
4294 
4295 	/* Do update ip stack process */
4296 	skb->protocol = eth_type_trans(skb, netdev);
4297 
4298 	/* This is needed in order to enable forwarding support */
4299 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4300 					bd_base_info, ol_info, csum);
4301 	if (unlikely(ret)) {
4302 		hns3_ring_stats_update(ring, rx_err_cnt);
4303 		return ret;
4304 	}
4305 
4306 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4307 					HNS3_RXD_DMAC_S);
4308 
4309 	u64_stats_update_begin(&ring->syncp);
4310 	ring->stats.rx_pkts++;
4311 	ring->stats.rx_bytes += len;
4312 
4313 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4314 		ring->stats.rx_multicast++;
4315 
4316 	u64_stats_update_end(&ring->syncp);
4317 
4318 	ring->tqp_vector->rx_group.total_bytes += len;
4319 
4320 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash),
4321 				 l234info, ol_info);
4322 	return 0;
4323 }
4324 
4325 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4326 {
4327 	struct sk_buff *skb = ring->skb;
4328 	struct hns3_desc_cb *desc_cb;
4329 	struct hns3_desc *desc;
4330 	unsigned int length;
4331 	u32 bd_base_info;
4332 	int ret;
4333 
4334 	desc = &ring->desc[ring->next_to_clean];
4335 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4336 
4337 	prefetch(desc);
4338 
4339 	if (!skb) {
4340 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4341 		/* Check valid BD */
4342 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4343 			return -ENXIO;
4344 
4345 		dma_rmb();
4346 		length = le16_to_cpu(desc->rx.size);
4347 
4348 		ring->va = desc_cb->buf + desc_cb->page_offset;
4349 
4350 		dma_sync_single_for_cpu(ring_to_dev(ring),
4351 				desc_cb->dma + desc_cb->page_offset,
4352 				hns3_buf_size(ring),
4353 				DMA_FROM_DEVICE);
4354 
4355 		/* Prefetch first cache line of first page.
4356 		 * Idea is to cache few bytes of the header of the packet.
4357 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4358 		 * it 128B. But in actual we can have greater size of caches with
4359 		 * 128B Level 1 cache lines. In such a case, single fetch would
4360 		 * suffice to cache in the relevant part of the header.
4361 		 */
4362 		net_prefetch(ring->va);
4363 
4364 		ret = hns3_alloc_skb(ring, length, ring->va);
4365 		skb = ring->skb;
4366 
4367 		if (ret < 0) /* alloc buffer fail */
4368 			return ret;
4369 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4370 			ret = hns3_add_frag(ring);
4371 			if (ret)
4372 				return ret;
4373 		}
4374 	} else {
4375 		ret = hns3_add_frag(ring);
4376 		if (ret)
4377 			return ret;
4378 	}
4379 
4380 	/* As the head data may be changed when GRO enable, copy
4381 	 * the head data in after other data rx completed
4382 	 */
4383 	if (skb->len > HNS3_RX_HEAD_SIZE)
4384 		memcpy(skb->data, ring->va,
4385 		       ALIGN(ring->pull_len, sizeof(long)));
4386 
4387 	ret = hns3_handle_bdinfo(ring, skb);
4388 	if (unlikely(ret)) {
4389 		dev_kfree_skb_any(skb);
4390 		return ret;
4391 	}
4392 
4393 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4394 	return 0;
4395 }
4396 
4397 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4398 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4399 {
4400 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4401 	int unused_count = hns3_desc_unused(ring);
4402 	bool failure = false;
4403 	int recv_pkts = 0;
4404 	int err;
4405 
4406 	unused_count -= ring->pending_buf;
4407 
4408 	while (recv_pkts < budget) {
4409 		/* Reuse or realloc buffers */
4410 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4411 			failure = failure ||
4412 				hns3_nic_alloc_rx_buffers(ring, unused_count);
4413 			unused_count = 0;
4414 		}
4415 
4416 		/* Poll one pkt */
4417 		err = hns3_handle_rx_bd(ring);
4418 		/* Do not get FE for the packet or failed to alloc skb */
4419 		if (unlikely(!ring->skb || err == -ENXIO)) {
4420 			goto out;
4421 		} else if (likely(!err)) {
4422 			rx_fn(ring, ring->skb);
4423 			recv_pkts++;
4424 		}
4425 
4426 		unused_count += ring->pending_buf;
4427 		ring->skb = NULL;
4428 		ring->pending_buf = 0;
4429 	}
4430 
4431 out:
4432 	/* sync head pointer before exiting, since hardware will calculate
4433 	 * FBD number with head pointer
4434 	 */
4435 	if (unused_count > 0)
4436 		failure = failure ||
4437 			  hns3_nic_alloc_rx_buffers(ring, unused_count);
4438 
4439 	return failure ? budget : recv_pkts;
4440 }
4441 
4442 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4443 {
4444 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4445 	struct dim_sample sample = {};
4446 
4447 	if (!rx_group->coal.adapt_enable)
4448 		return;
4449 
4450 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4451 			  rx_group->total_bytes, &sample);
4452 	net_dim(&rx_group->dim, sample);
4453 }
4454 
4455 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4456 {
4457 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4458 	struct dim_sample sample = {};
4459 
4460 	if (!tx_group->coal.adapt_enable)
4461 		return;
4462 
4463 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4464 			  tx_group->total_bytes, &sample);
4465 	net_dim(&tx_group->dim, sample);
4466 }
4467 
4468 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4469 {
4470 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4471 	struct hns3_enet_ring *ring;
4472 	int rx_pkt_total = 0;
4473 
4474 	struct hns3_enet_tqp_vector *tqp_vector =
4475 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4476 	bool clean_complete = true;
4477 	int rx_budget = budget;
4478 
4479 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4480 		napi_complete(napi);
4481 		return 0;
4482 	}
4483 
4484 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4485 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4486 	 */
4487 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4488 		hns3_clean_tx_ring(ring, budget);
4489 
4490 	/* make sure rx ring budget not smaller than 1 */
4491 	if (tqp_vector->num_tqps > 1)
4492 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4493 
4494 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4495 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4496 						    hns3_rx_skb);
4497 		if (rx_cleaned >= rx_budget)
4498 			clean_complete = false;
4499 
4500 		rx_pkt_total += rx_cleaned;
4501 	}
4502 
4503 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4504 
4505 	if (!clean_complete)
4506 		return budget;
4507 
4508 	if (napi_complete(napi) &&
4509 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4510 		hns3_update_rx_int_coalesce(tqp_vector);
4511 		hns3_update_tx_int_coalesce(tqp_vector);
4512 
4513 		hns3_mask_vector_irq(tqp_vector, 1);
4514 	}
4515 
4516 	return rx_pkt_total;
4517 }
4518 
4519 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4520 				  struct hnae3_ring_chain_node **head,
4521 				  bool is_tx)
4522 {
4523 	u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX;
4524 	u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX;
4525 	struct hnae3_ring_chain_node *cur_chain = *head;
4526 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4527 	struct hnae3_ring_chain_node *chain;
4528 	struct hns3_enet_ring *ring;
4529 
4530 	ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring;
4531 
4532 	if (cur_chain) {
4533 		while (cur_chain->next)
4534 			cur_chain = cur_chain->next;
4535 	}
4536 
4537 	while (ring) {
4538 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4539 		if (!chain)
4540 			return -ENOMEM;
4541 		if (cur_chain)
4542 			cur_chain->next = chain;
4543 		else
4544 			*head = chain;
4545 		chain->tqp_index = ring->tqp->tqp_index;
4546 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4547 				bit_value);
4548 		hnae3_set_field(chain->int_gl_idx,
4549 				HNAE3_RING_GL_IDX_M,
4550 				HNAE3_RING_GL_IDX_S, field_value);
4551 
4552 		cur_chain = chain;
4553 
4554 		ring = ring->next;
4555 	}
4556 
4557 	return 0;
4558 }
4559 
4560 static struct hnae3_ring_chain_node *
4561 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector)
4562 {
4563 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4564 	struct hnae3_ring_chain_node *cur_chain = NULL;
4565 	struct hnae3_ring_chain_node *chain;
4566 
4567 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, true))
4568 		goto err_free_chain;
4569 
4570 	if (hns3_create_ring_chain(tqp_vector, &cur_chain, false))
4571 		goto err_free_chain;
4572 
4573 	return cur_chain;
4574 
4575 err_free_chain:
4576 	while (cur_chain) {
4577 		chain = cur_chain->next;
4578 		devm_kfree(&pdev->dev, cur_chain);
4579 		cur_chain = chain;
4580 	}
4581 
4582 	return NULL;
4583 }
4584 
4585 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4586 					struct hnae3_ring_chain_node *head)
4587 {
4588 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4589 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4590 
4591 	chain = head;
4592 
4593 	while (chain) {
4594 		chain_tmp = chain->next;
4595 		devm_kfree(&pdev->dev, chain);
4596 		chain = chain_tmp;
4597 	}
4598 }
4599 
4600 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4601 				   struct hns3_enet_ring *ring)
4602 {
4603 	ring->next = group->ring;
4604 	group->ring = ring;
4605 
4606 	group->count++;
4607 }
4608 
4609 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4610 {
4611 	struct pci_dev *pdev = priv->ae_handle->pdev;
4612 	struct hns3_enet_tqp_vector *tqp_vector;
4613 	int num_vectors = priv->vector_num;
4614 	int numa_node;
4615 	int vector_i;
4616 
4617 	numa_node = dev_to_node(&pdev->dev);
4618 
4619 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4620 		tqp_vector = &priv->tqp_vector[vector_i];
4621 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4622 				&tqp_vector->affinity_mask);
4623 	}
4624 }
4625 
4626 static void hns3_rx_dim_work(struct work_struct *work)
4627 {
4628 	struct dim *dim = container_of(work, struct dim, work);
4629 	struct hns3_enet_ring_group *group = container_of(dim,
4630 		struct hns3_enet_ring_group, dim);
4631 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4632 	struct dim_cq_moder cur_moder =
4633 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4634 
4635 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4636 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4637 
4638 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4639 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4640 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4641 	}
4642 
4643 	dim->state = DIM_START_MEASURE;
4644 }
4645 
4646 static void hns3_tx_dim_work(struct work_struct *work)
4647 {
4648 	struct dim *dim = container_of(work, struct dim, work);
4649 	struct hns3_enet_ring_group *group = container_of(dim,
4650 		struct hns3_enet_ring_group, dim);
4651 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4652 	struct dim_cq_moder cur_moder =
4653 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4654 
4655 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4656 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4657 
4658 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4659 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4660 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4661 	}
4662 
4663 	dim->state = DIM_START_MEASURE;
4664 }
4665 
4666 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4667 {
4668 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4669 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4670 }
4671 
4672 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4673 {
4674 	struct hnae3_handle *h = priv->ae_handle;
4675 	struct hns3_enet_tqp_vector *tqp_vector;
4676 	int ret;
4677 	int i;
4678 
4679 	hns3_nic_set_cpumask(priv);
4680 
4681 	for (i = 0; i < priv->vector_num; i++) {
4682 		tqp_vector = &priv->tqp_vector[i];
4683 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4684 		tqp_vector->num_tqps = 0;
4685 		hns3_nic_init_dim(tqp_vector);
4686 	}
4687 
4688 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4689 		u16 vector_i = i % priv->vector_num;
4690 		u16 tqp_num = h->kinfo.num_tqps;
4691 
4692 		tqp_vector = &priv->tqp_vector[vector_i];
4693 
4694 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4695 				       &priv->ring[i]);
4696 
4697 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4698 				       &priv->ring[i + tqp_num]);
4699 
4700 		priv->ring[i].tqp_vector = tqp_vector;
4701 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4702 		tqp_vector->num_tqps++;
4703 	}
4704 
4705 	for (i = 0; i < priv->vector_num; i++) {
4706 		struct hnae3_ring_chain_node *vector_ring_chain;
4707 
4708 		tqp_vector = &priv->tqp_vector[i];
4709 
4710 		tqp_vector->rx_group.total_bytes = 0;
4711 		tqp_vector->rx_group.total_packets = 0;
4712 		tqp_vector->tx_group.total_bytes = 0;
4713 		tqp_vector->tx_group.total_packets = 0;
4714 		tqp_vector->handle = h;
4715 
4716 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4717 		if (!vector_ring_chain) {
4718 			ret = -ENOMEM;
4719 			goto map_ring_fail;
4720 		}
4721 
4722 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4723 			tqp_vector->vector_irq, vector_ring_chain);
4724 
4725 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4726 
4727 		if (ret)
4728 			goto map_ring_fail;
4729 
4730 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4731 			       hns3_nic_common_poll);
4732 	}
4733 
4734 	return 0;
4735 
4736 map_ring_fail:
4737 	while (i--)
4738 		netif_napi_del(&priv->tqp_vector[i].napi);
4739 
4740 	return ret;
4741 }
4742 
4743 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4744 {
4745 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4746 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4747 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4748 
4749 	/* initialize the configuration for interrupt coalescing.
4750 	 * 1. GL (Interrupt Gap Limiter)
4751 	 * 2. RL (Interrupt Rate Limiter)
4752 	 * 3. QL (Interrupt Quantity Limiter)
4753 	 *
4754 	 * Default: enable interrupt coalescing self-adaptive and GL
4755 	 */
4756 	tx_coal->adapt_enable = 1;
4757 	rx_coal->adapt_enable = 1;
4758 
4759 	tx_coal->int_gl = HNS3_INT_GL_50K;
4760 	rx_coal->int_gl = HNS3_INT_GL_50K;
4761 
4762 	rx_coal->flow_level = HNS3_FLOW_LOW;
4763 	tx_coal->flow_level = HNS3_FLOW_LOW;
4764 
4765 	if (ae_dev->dev_specs.int_ql_max) {
4766 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4767 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4768 	}
4769 }
4770 
4771 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4772 {
4773 	struct hnae3_handle *h = priv->ae_handle;
4774 	struct hns3_enet_tqp_vector *tqp_vector;
4775 	struct hnae3_vector_info *vector;
4776 	struct pci_dev *pdev = h->pdev;
4777 	u16 tqp_num = h->kinfo.num_tqps;
4778 	u16 vector_num;
4779 	int ret = 0;
4780 	u16 i;
4781 
4782 	/* RSS size, cpu online and vector_num should be the same */
4783 	/* Should consider 2p/4p later */
4784 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4785 
4786 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4787 			      GFP_KERNEL);
4788 	if (!vector)
4789 		return -ENOMEM;
4790 
4791 	/* save the actual available vector number */
4792 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4793 
4794 	priv->vector_num = vector_num;
4795 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4796 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4797 			     GFP_KERNEL);
4798 	if (!priv->tqp_vector) {
4799 		ret = -ENOMEM;
4800 		goto out;
4801 	}
4802 
4803 	for (i = 0; i < priv->vector_num; i++) {
4804 		tqp_vector = &priv->tqp_vector[i];
4805 		tqp_vector->idx = i;
4806 		tqp_vector->mask_addr = vector[i].io_addr;
4807 		tqp_vector->vector_irq = vector[i].vector;
4808 		hns3_vector_coalesce_init(tqp_vector, priv);
4809 	}
4810 
4811 out:
4812 	devm_kfree(&pdev->dev, vector);
4813 	return ret;
4814 }
4815 
4816 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4817 {
4818 	group->ring = NULL;
4819 	group->count = 0;
4820 }
4821 
4822 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4823 {
4824 	struct hnae3_ring_chain_node *vector_ring_chain;
4825 	struct hnae3_handle *h = priv->ae_handle;
4826 	struct hns3_enet_tqp_vector *tqp_vector;
4827 	int i;
4828 
4829 	for (i = 0; i < priv->vector_num; i++) {
4830 		tqp_vector = &priv->tqp_vector[i];
4831 
4832 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4833 			continue;
4834 
4835 		/* Since the mapping can be overwritten, when fail to get the
4836 		 * chain between vector and ring, we should go on to deal with
4837 		 * the remaining options.
4838 		 */
4839 		vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector);
4840 		if (!vector_ring_chain)
4841 			dev_warn(priv->dev, "failed to get ring chain\n");
4842 
4843 		h->ae_algo->ops->unmap_ring_from_vector(h,
4844 			tqp_vector->vector_irq, vector_ring_chain);
4845 
4846 		hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain);
4847 
4848 		hns3_clear_ring_group(&tqp_vector->rx_group);
4849 		hns3_clear_ring_group(&tqp_vector->tx_group);
4850 		netif_napi_del(&priv->tqp_vector[i].napi);
4851 	}
4852 }
4853 
4854 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4855 {
4856 	struct hnae3_handle *h = priv->ae_handle;
4857 	struct pci_dev *pdev = h->pdev;
4858 	int i, ret;
4859 
4860 	for (i = 0; i < priv->vector_num; i++) {
4861 		struct hns3_enet_tqp_vector *tqp_vector;
4862 
4863 		tqp_vector = &priv->tqp_vector[i];
4864 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4865 		if (ret)
4866 			return;
4867 	}
4868 
4869 	devm_kfree(&pdev->dev, priv->tqp_vector);
4870 }
4871 
4872 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4873 			      unsigned int ring_type)
4874 {
4875 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4876 	struct hns3_enet_ring *ring;
4877 	int desc_num;
4878 
4879 	if (ring_type == HNAE3_RING_TYPE_TX) {
4880 		ring = &priv->ring[q->tqp_index];
4881 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4882 		ring->queue_index = q->tqp_index;
4883 		ring->tx_copybreak = priv->tx_copybreak;
4884 		ring->last_to_use = 0;
4885 	} else {
4886 		ring = &priv->ring[q->tqp_index + queue_num];
4887 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4888 		ring->queue_index = q->tqp_index;
4889 		ring->rx_copybreak = priv->rx_copybreak;
4890 	}
4891 
4892 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4893 
4894 	ring->tqp = q;
4895 	ring->desc = NULL;
4896 	ring->desc_cb = NULL;
4897 	ring->dev = priv->dev;
4898 	ring->desc_dma_addr = 0;
4899 	ring->buf_size = q->buf_size;
4900 	ring->desc_num = desc_num;
4901 	ring->next_to_use = 0;
4902 	ring->next_to_clean = 0;
4903 }
4904 
4905 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4906 			       struct hns3_nic_priv *priv)
4907 {
4908 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4909 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4910 }
4911 
4912 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4913 {
4914 	struct hnae3_handle *h = priv->ae_handle;
4915 	struct pci_dev *pdev = h->pdev;
4916 	int i;
4917 
4918 	priv->ring = devm_kzalloc(&pdev->dev,
4919 				  array3_size(h->kinfo.num_tqps,
4920 					      sizeof(*priv->ring), 2),
4921 				  GFP_KERNEL);
4922 	if (!priv->ring)
4923 		return -ENOMEM;
4924 
4925 	for (i = 0; i < h->kinfo.num_tqps; i++)
4926 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4927 
4928 	return 0;
4929 }
4930 
4931 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4932 {
4933 	if (!priv->ring)
4934 		return;
4935 
4936 	devm_kfree(priv->dev, priv->ring);
4937 	priv->ring = NULL;
4938 }
4939 
4940 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4941 {
4942 	struct page_pool_params pp_params = {
4943 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
4944 		.order = hns3_page_order(ring),
4945 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4946 				(PAGE_SIZE << hns3_page_order(ring)),
4947 		.nid = dev_to_node(ring_to_dev(ring)),
4948 		.dev = ring_to_dev(ring),
4949 		.dma_dir = DMA_FROM_DEVICE,
4950 		.offset = 0,
4951 		.max_len = PAGE_SIZE << hns3_page_order(ring),
4952 	};
4953 
4954 	ring->page_pool = page_pool_create(&pp_params);
4955 	if (IS_ERR(ring->page_pool)) {
4956 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4957 			 PTR_ERR(ring->page_pool));
4958 		ring->page_pool = NULL;
4959 	}
4960 }
4961 
4962 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4963 {
4964 	int ret;
4965 
4966 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4967 		return -EINVAL;
4968 
4969 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4970 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4971 	if (!ring->desc_cb) {
4972 		ret = -ENOMEM;
4973 		goto out;
4974 	}
4975 
4976 	ret = hns3_alloc_desc(ring);
4977 	if (ret)
4978 		goto out_with_desc_cb;
4979 
4980 	if (!HNAE3_IS_TX_RING(ring)) {
4981 		if (page_pool_enabled)
4982 			hns3_alloc_page_pool(ring);
4983 
4984 		ret = hns3_alloc_ring_buffers(ring);
4985 		if (ret)
4986 			goto out_with_desc;
4987 	} else {
4988 		hns3_init_tx_spare_buffer(ring);
4989 	}
4990 
4991 	return 0;
4992 
4993 out_with_desc:
4994 	hns3_free_desc(ring);
4995 out_with_desc_cb:
4996 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4997 	ring->desc_cb = NULL;
4998 out:
4999 	return ret;
5000 }
5001 
5002 void hns3_fini_ring(struct hns3_enet_ring *ring)
5003 {
5004 	hns3_free_desc(ring);
5005 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
5006 	ring->desc_cb = NULL;
5007 	ring->next_to_clean = 0;
5008 	ring->next_to_use = 0;
5009 	ring->last_to_use = 0;
5010 	ring->pending_buf = 0;
5011 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
5012 		dev_kfree_skb_any(ring->skb);
5013 		ring->skb = NULL;
5014 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
5015 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
5016 
5017 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
5018 			       DMA_TO_DEVICE);
5019 		free_pages((unsigned long)tx_spare->buf,
5020 			   get_order(tx_spare->len));
5021 		devm_kfree(ring_to_dev(ring), tx_spare);
5022 		ring->tx_spare = NULL;
5023 	}
5024 
5025 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
5026 		page_pool_destroy(ring->page_pool);
5027 		ring->page_pool = NULL;
5028 	}
5029 }
5030 
5031 static int hns3_buf_size2type(u32 buf_size)
5032 {
5033 	int bd_size_type;
5034 
5035 	switch (buf_size) {
5036 	case 512:
5037 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
5038 		break;
5039 	case 1024:
5040 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
5041 		break;
5042 	case 2048:
5043 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5044 		break;
5045 	case 4096:
5046 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
5047 		break;
5048 	default:
5049 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
5050 	}
5051 
5052 	return bd_size_type;
5053 }
5054 
5055 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
5056 {
5057 	dma_addr_t dma = ring->desc_dma_addr;
5058 	struct hnae3_queue *q = ring->tqp;
5059 
5060 	if (!HNAE3_IS_TX_RING(ring)) {
5061 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
5062 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
5063 			       (u32)((dma >> 31) >> 1));
5064 
5065 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
5066 			       hns3_buf_size2type(ring->buf_size));
5067 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
5068 			       ring->desc_num / 8 - 1);
5069 	} else {
5070 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
5071 			       (u32)dma);
5072 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
5073 			       (u32)((dma >> 31) >> 1));
5074 
5075 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
5076 			       ring->desc_num / 8 - 1);
5077 	}
5078 }
5079 
5080 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
5081 {
5082 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5083 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
5084 	int i;
5085 
5086 	for (i = 0; i < tc_info->num_tc; i++) {
5087 		int j;
5088 
5089 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
5090 			struct hnae3_queue *q;
5091 
5092 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
5093 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
5094 		}
5095 	}
5096 }
5097 
5098 int hns3_init_all_ring(struct hns3_nic_priv *priv)
5099 {
5100 	struct hnae3_handle *h = priv->ae_handle;
5101 	int ring_num = h->kinfo.num_tqps * 2;
5102 	int i, j;
5103 	int ret;
5104 
5105 	for (i = 0; i < ring_num; i++) {
5106 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
5107 		if (ret) {
5108 			dev_err(priv->dev,
5109 				"Alloc ring memory fail! ret=%d\n", ret);
5110 			goto out_when_alloc_ring_memory;
5111 		}
5112 
5113 		u64_stats_init(&priv->ring[i].syncp);
5114 	}
5115 
5116 	return 0;
5117 
5118 out_when_alloc_ring_memory:
5119 	for (j = i - 1; j >= 0; j--)
5120 		hns3_fini_ring(&priv->ring[j]);
5121 
5122 	return -ENOMEM;
5123 }
5124 
5125 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
5126 {
5127 	struct hnae3_handle *h = priv->ae_handle;
5128 	int i;
5129 
5130 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5131 		hns3_fini_ring(&priv->ring[i]);
5132 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
5133 	}
5134 }
5135 
5136 /* Set mac addr if it is configured. or leave it to the AE driver */
5137 static int hns3_init_mac_addr(struct net_device *netdev)
5138 {
5139 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5140 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5141 	struct hnae3_handle *h = priv->ae_handle;
5142 	u8 mac_addr_temp[ETH_ALEN] = {0};
5143 	int ret = 0;
5144 
5145 	if (h->ae_algo->ops->get_mac_addr)
5146 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
5147 
5148 	/* Check if the MAC address is valid, if not get a random one */
5149 	if (!is_valid_ether_addr(mac_addr_temp)) {
5150 		eth_hw_addr_random(netdev);
5151 		hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr);
5152 		dev_warn(priv->dev, "using random MAC address %s\n",
5153 			 format_mac_addr);
5154 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
5155 		eth_hw_addr_set(netdev, mac_addr_temp);
5156 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
5157 	} else {
5158 		return 0;
5159 	}
5160 
5161 	if (h->ae_algo->ops->set_mac_addr)
5162 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
5163 
5164 	return ret;
5165 }
5166 
5167 static int hns3_init_phy(struct net_device *netdev)
5168 {
5169 	struct hnae3_handle *h = hns3_get_handle(netdev);
5170 	int ret = 0;
5171 
5172 	if (h->ae_algo->ops->mac_connect_phy)
5173 		ret = h->ae_algo->ops->mac_connect_phy(h);
5174 
5175 	return ret;
5176 }
5177 
5178 static void hns3_uninit_phy(struct net_device *netdev)
5179 {
5180 	struct hnae3_handle *h = hns3_get_handle(netdev);
5181 
5182 	if (h->ae_algo->ops->mac_disconnect_phy)
5183 		h->ae_algo->ops->mac_disconnect_phy(h);
5184 }
5185 
5186 static int hns3_client_start(struct hnae3_handle *handle)
5187 {
5188 	if (!handle->ae_algo->ops->client_start)
5189 		return 0;
5190 
5191 	return handle->ae_algo->ops->client_start(handle);
5192 }
5193 
5194 static void hns3_client_stop(struct hnae3_handle *handle)
5195 {
5196 	if (!handle->ae_algo->ops->client_stop)
5197 		return;
5198 
5199 	handle->ae_algo->ops->client_stop(handle);
5200 }
5201 
5202 static void hns3_info_show(struct hns3_nic_priv *priv)
5203 {
5204 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
5205 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
5206 
5207 	hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr);
5208 	dev_info(priv->dev, "MAC address: %s\n", format_mac_addr);
5209 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
5210 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
5211 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
5212 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
5213 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
5214 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
5215 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
5216 		 kinfo->tc_info.num_tc);
5217 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
5218 }
5219 
5220 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5221 				    enum dim_cq_period_mode mode, bool is_tx)
5222 {
5223 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5224 	struct hnae3_handle *handle = priv->ae_handle;
5225 	int i;
5226 
5227 	if (is_tx) {
5228 		priv->tx_cqe_mode = mode;
5229 
5230 		for (i = 0; i < priv->vector_num; i++)
5231 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5232 	} else {
5233 		priv->rx_cqe_mode = mode;
5234 
5235 		for (i = 0; i < priv->vector_num; i++)
5236 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5237 	}
5238 
5239 	if (hnae3_ae_dev_cq_supported(ae_dev)) {
5240 		u32 new_mode;
5241 		u64 reg;
5242 
5243 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5244 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5245 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5246 
5247 		writel(new_mode, handle->kinfo.io_base + reg);
5248 	}
5249 }
5250 
5251 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5252 			      enum dim_cq_period_mode tx_mode,
5253 			      enum dim_cq_period_mode rx_mode)
5254 {
5255 	hns3_set_cq_period_mode(priv, tx_mode, true);
5256 	hns3_set_cq_period_mode(priv, rx_mode, false);
5257 }
5258 
5259 static void hns3_state_init(struct hnae3_handle *handle)
5260 {
5261 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5262 	struct net_device *netdev = handle->kinfo.netdev;
5263 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5264 
5265 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5266 
5267 	if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
5268 		set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state);
5269 
5270 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5271 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5272 
5273 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5274 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5275 
5276 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5277 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5278 }
5279 
5280 static void hns3_state_uninit(struct hnae3_handle *handle)
5281 {
5282 	struct hns3_nic_priv *priv  = handle->priv;
5283 
5284 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
5285 }
5286 
5287 static int hns3_client_init(struct hnae3_handle *handle)
5288 {
5289 	struct pci_dev *pdev = handle->pdev;
5290 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5291 	u16 alloc_tqps, max_rss_size;
5292 	struct hns3_nic_priv *priv;
5293 	struct net_device *netdev;
5294 	int ret;
5295 
5296 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5297 						    &max_rss_size);
5298 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5299 	if (!netdev)
5300 		return -ENOMEM;
5301 
5302 	priv = netdev_priv(netdev);
5303 	priv->dev = &pdev->dev;
5304 	priv->netdev = netdev;
5305 	priv->ae_handle = handle;
5306 	priv->tx_timeout_count = 0;
5307 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5308 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5309 
5310 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5311 
5312 	handle->kinfo.netdev = netdev;
5313 	handle->priv = (void *)priv;
5314 
5315 	hns3_init_mac_addr(netdev);
5316 
5317 	hns3_set_default_feature(netdev);
5318 
5319 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5320 	netdev->priv_flags |= IFF_UNICAST_FLT;
5321 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5322 	SET_NETDEV_DEV(netdev, &pdev->dev);
5323 	hns3_ethtool_set_ops(netdev);
5324 
5325 	/* Carrier off reporting is important to ethtool even BEFORE open */
5326 	netif_carrier_off(netdev);
5327 
5328 	ret = hns3_get_ring_config(priv);
5329 	if (ret) {
5330 		ret = -ENOMEM;
5331 		goto out_get_ring_cfg;
5332 	}
5333 
5334 	hns3_nic_init_coal_cfg(priv);
5335 
5336 	ret = hns3_nic_alloc_vector_data(priv);
5337 	if (ret) {
5338 		ret = -ENOMEM;
5339 		goto out_alloc_vector_data;
5340 	}
5341 
5342 	ret = hns3_nic_init_vector_data(priv);
5343 	if (ret) {
5344 		ret = -ENOMEM;
5345 		goto out_init_vector_data;
5346 	}
5347 
5348 	ret = hns3_init_all_ring(priv);
5349 	if (ret) {
5350 		ret = -ENOMEM;
5351 		goto out_init_ring;
5352 	}
5353 
5354 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5355 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5356 
5357 	ret = hns3_init_phy(netdev);
5358 	if (ret)
5359 		goto out_init_phy;
5360 
5361 	/* the device can work without cpu rmap, only aRFS needs it */
5362 	ret = hns3_set_rx_cpu_rmap(netdev);
5363 	if (ret)
5364 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5365 
5366 	ret = hns3_nic_init_irq(priv);
5367 	if (ret) {
5368 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5369 		hns3_free_rx_cpu_rmap(netdev);
5370 		goto out_init_irq_fail;
5371 	}
5372 
5373 	ret = hns3_client_start(handle);
5374 	if (ret) {
5375 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5376 		goto out_client_start;
5377 	}
5378 
5379 	hns3_dcbnl_setup(handle);
5380 
5381 	ret = hns3_dbg_init(handle);
5382 	if (ret) {
5383 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5384 			ret);
5385 		goto out_client_start;
5386 	}
5387 
5388 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5389 
5390 	hns3_state_init(handle);
5391 
5392 	ret = register_netdev(netdev);
5393 	if (ret) {
5394 		dev_err(priv->dev, "probe register netdev fail!\n");
5395 		goto out_reg_netdev_fail;
5396 	}
5397 
5398 	if (netif_msg_drv(handle))
5399 		hns3_info_show(priv);
5400 
5401 	return ret;
5402 
5403 out_reg_netdev_fail:
5404 	hns3_state_uninit(handle);
5405 	hns3_dbg_uninit(handle);
5406 	hns3_client_stop(handle);
5407 out_client_start:
5408 	hns3_free_rx_cpu_rmap(netdev);
5409 	hns3_nic_uninit_irq(priv);
5410 out_init_irq_fail:
5411 	hns3_uninit_phy(netdev);
5412 out_init_phy:
5413 	hns3_uninit_all_ring(priv);
5414 out_init_ring:
5415 	hns3_nic_uninit_vector_data(priv);
5416 out_init_vector_data:
5417 	hns3_nic_dealloc_vector_data(priv);
5418 out_alloc_vector_data:
5419 	priv->ring = NULL;
5420 out_get_ring_cfg:
5421 	priv->ae_handle = NULL;
5422 	free_netdev(netdev);
5423 	return ret;
5424 }
5425 
5426 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5427 {
5428 	struct net_device *netdev = handle->kinfo.netdev;
5429 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5430 
5431 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5432 		unregister_netdev(netdev);
5433 
5434 	hns3_client_stop(handle);
5435 
5436 	hns3_uninit_phy(netdev);
5437 
5438 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5439 		netdev_warn(netdev, "already uninitialized\n");
5440 		goto out_netdev_free;
5441 	}
5442 
5443 	hns3_free_rx_cpu_rmap(netdev);
5444 
5445 	hns3_nic_uninit_irq(priv);
5446 
5447 	hns3_clear_all_ring(handle, true);
5448 
5449 	hns3_nic_uninit_vector_data(priv);
5450 
5451 	hns3_nic_dealloc_vector_data(priv);
5452 
5453 	hns3_uninit_all_ring(priv);
5454 
5455 	hns3_put_ring_config(priv);
5456 
5457 out_netdev_free:
5458 	hns3_dbg_uninit(handle);
5459 	free_netdev(netdev);
5460 }
5461 
5462 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5463 {
5464 	struct net_device *netdev = handle->kinfo.netdev;
5465 
5466 	if (!netdev)
5467 		return;
5468 
5469 	if (linkup) {
5470 		netif_tx_wake_all_queues(netdev);
5471 		netif_carrier_on(netdev);
5472 		if (netif_msg_link(handle))
5473 			netdev_info(netdev, "link up\n");
5474 	} else {
5475 		netif_carrier_off(netdev);
5476 		netif_tx_stop_all_queues(netdev);
5477 		if (netif_msg_link(handle))
5478 			netdev_info(netdev, "link down\n");
5479 	}
5480 }
5481 
5482 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5483 {
5484 	while (ring->next_to_clean != ring->next_to_use) {
5485 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5486 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5487 		ring_ptr_move_fw(ring, next_to_clean);
5488 	}
5489 
5490 	ring->pending_buf = 0;
5491 }
5492 
5493 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5494 {
5495 	struct hns3_desc_cb res_cbs;
5496 	int ret;
5497 
5498 	while (ring->next_to_use != ring->next_to_clean) {
5499 		/* When a buffer is not reused, it's memory has been
5500 		 * freed in hns3_handle_rx_bd or will be freed by
5501 		 * stack, so we need to replace the buffer here.
5502 		 */
5503 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5504 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5505 			if (ret) {
5506 				hns3_ring_stats_update(ring, sw_err_cnt);
5507 				/* if alloc new buffer fail, exit directly
5508 				 * and reclear in up flow.
5509 				 */
5510 				netdev_warn(ring_to_netdev(ring),
5511 					    "reserve buffer map failed, ret = %d\n",
5512 					    ret);
5513 				return ret;
5514 			}
5515 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5516 		}
5517 		ring_ptr_move_fw(ring, next_to_use);
5518 	}
5519 
5520 	/* Free the pending skb in rx ring */
5521 	if (ring->skb) {
5522 		dev_kfree_skb_any(ring->skb);
5523 		ring->skb = NULL;
5524 		ring->pending_buf = 0;
5525 	}
5526 
5527 	return 0;
5528 }
5529 
5530 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5531 {
5532 	while (ring->next_to_use != ring->next_to_clean) {
5533 		/* When a buffer is not reused, it's memory has been
5534 		 * freed in hns3_handle_rx_bd or will be freed by
5535 		 * stack, so only need to unmap the buffer here.
5536 		 */
5537 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5538 			hns3_unmap_buffer(ring,
5539 					  &ring->desc_cb[ring->next_to_use]);
5540 			ring->desc_cb[ring->next_to_use].dma = 0;
5541 		}
5542 
5543 		ring_ptr_move_fw(ring, next_to_use);
5544 	}
5545 }
5546 
5547 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5548 {
5549 	struct net_device *ndev = h->kinfo.netdev;
5550 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5551 	u32 i;
5552 
5553 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5554 		struct hns3_enet_ring *ring;
5555 
5556 		ring = &priv->ring[i];
5557 		hns3_clear_tx_ring(ring);
5558 
5559 		ring = &priv->ring[i + h->kinfo.num_tqps];
5560 		/* Continue to clear other rings even if clearing some
5561 		 * rings failed.
5562 		 */
5563 		if (force)
5564 			hns3_force_clear_rx_ring(ring);
5565 		else
5566 			hns3_clear_rx_ring(ring);
5567 	}
5568 }
5569 
5570 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5571 {
5572 	struct net_device *ndev = h->kinfo.netdev;
5573 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5574 	struct hns3_enet_ring *rx_ring;
5575 	int i, j;
5576 	int ret;
5577 
5578 	ret = h->ae_algo->ops->reset_queue(h);
5579 	if (ret)
5580 		return ret;
5581 
5582 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5583 		hns3_init_ring_hw(&priv->ring[i]);
5584 
5585 		/* We need to clear tx ring here because self test will
5586 		 * use the ring and will not run down before up
5587 		 */
5588 		hns3_clear_tx_ring(&priv->ring[i]);
5589 		priv->ring[i].next_to_clean = 0;
5590 		priv->ring[i].next_to_use = 0;
5591 		priv->ring[i].last_to_use = 0;
5592 
5593 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5594 		hns3_init_ring_hw(rx_ring);
5595 		ret = hns3_clear_rx_ring(rx_ring);
5596 		if (ret)
5597 			return ret;
5598 
5599 		/* We can not know the hardware head and tail when this
5600 		 * function is called in reset flow, so we reuse all desc.
5601 		 */
5602 		for (j = 0; j < rx_ring->desc_num; j++)
5603 			hns3_reuse_buffer(rx_ring, j);
5604 
5605 		rx_ring->next_to_clean = 0;
5606 		rx_ring->next_to_use = 0;
5607 	}
5608 
5609 	hns3_init_tx_ring_tc(priv);
5610 
5611 	return 0;
5612 }
5613 
5614 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5615 {
5616 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5617 	struct net_device *ndev = kinfo->netdev;
5618 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5619 
5620 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5621 		return 0;
5622 
5623 	if (!netif_running(ndev))
5624 		return 0;
5625 
5626 	return hns3_nic_net_stop(ndev);
5627 }
5628 
5629 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5630 {
5631 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5632 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5633 	int ret = 0;
5634 
5635 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5636 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5637 		return -EFAULT;
5638 	}
5639 
5640 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5641 
5642 	if (netif_running(kinfo->netdev)) {
5643 		ret = hns3_nic_net_open(kinfo->netdev);
5644 		if (ret) {
5645 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5646 			netdev_err(kinfo->netdev,
5647 				   "net up fail, ret=%d!\n", ret);
5648 			return ret;
5649 		}
5650 	}
5651 
5652 	return ret;
5653 }
5654 
5655 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5656 {
5657 	struct net_device *netdev = handle->kinfo.netdev;
5658 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5659 	int ret;
5660 
5661 	/* Carrier off reporting is important to ethtool even BEFORE open */
5662 	netif_carrier_off(netdev);
5663 
5664 	ret = hns3_get_ring_config(priv);
5665 	if (ret)
5666 		return ret;
5667 
5668 	ret = hns3_nic_alloc_vector_data(priv);
5669 	if (ret)
5670 		goto err_put_ring;
5671 
5672 	ret = hns3_nic_init_vector_data(priv);
5673 	if (ret)
5674 		goto err_dealloc_vector;
5675 
5676 	ret = hns3_init_all_ring(priv);
5677 	if (ret)
5678 		goto err_uninit_vector;
5679 
5680 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5681 
5682 	/* the device can work without cpu rmap, only aRFS needs it */
5683 	ret = hns3_set_rx_cpu_rmap(netdev);
5684 	if (ret)
5685 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5686 
5687 	ret = hns3_nic_init_irq(priv);
5688 	if (ret) {
5689 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5690 		hns3_free_rx_cpu_rmap(netdev);
5691 		goto err_init_irq_fail;
5692 	}
5693 
5694 	if (!hns3_is_phys_func(handle->pdev))
5695 		hns3_init_mac_addr(netdev);
5696 
5697 	ret = hns3_client_start(handle);
5698 	if (ret) {
5699 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5700 		goto err_client_start_fail;
5701 	}
5702 
5703 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5704 
5705 	return ret;
5706 
5707 err_client_start_fail:
5708 	hns3_free_rx_cpu_rmap(netdev);
5709 	hns3_nic_uninit_irq(priv);
5710 err_init_irq_fail:
5711 	hns3_uninit_all_ring(priv);
5712 err_uninit_vector:
5713 	hns3_nic_uninit_vector_data(priv);
5714 err_dealloc_vector:
5715 	hns3_nic_dealloc_vector_data(priv);
5716 err_put_ring:
5717 	hns3_put_ring_config(priv);
5718 
5719 	return ret;
5720 }
5721 
5722 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5723 {
5724 	struct net_device *netdev = handle->kinfo.netdev;
5725 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5726 
5727 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5728 		netdev_warn(netdev, "already uninitialized\n");
5729 		return 0;
5730 	}
5731 
5732 	hns3_free_rx_cpu_rmap(netdev);
5733 	hns3_nic_uninit_irq(priv);
5734 	hns3_clear_all_ring(handle, true);
5735 	hns3_reset_tx_queue(priv->ae_handle);
5736 
5737 	hns3_nic_uninit_vector_data(priv);
5738 
5739 	hns3_nic_dealloc_vector_data(priv);
5740 
5741 	hns3_uninit_all_ring(priv);
5742 
5743 	hns3_put_ring_config(priv);
5744 
5745 	return 0;
5746 }
5747 
5748 int hns3_reset_notify(struct hnae3_handle *handle,
5749 		      enum hnae3_reset_notify_type type)
5750 {
5751 	int ret = 0;
5752 
5753 	switch (type) {
5754 	case HNAE3_UP_CLIENT:
5755 		ret = hns3_reset_notify_up_enet(handle);
5756 		break;
5757 	case HNAE3_DOWN_CLIENT:
5758 		ret = hns3_reset_notify_down_enet(handle);
5759 		break;
5760 	case HNAE3_INIT_CLIENT:
5761 		ret = hns3_reset_notify_init_enet(handle);
5762 		break;
5763 	case HNAE3_UNINIT_CLIENT:
5764 		ret = hns3_reset_notify_uninit_enet(handle);
5765 		break;
5766 	default:
5767 		break;
5768 	}
5769 
5770 	return ret;
5771 }
5772 
5773 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5774 				bool rxfh_configured)
5775 {
5776 	int ret;
5777 
5778 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5779 						 rxfh_configured);
5780 	if (ret) {
5781 		dev_err(&handle->pdev->dev,
5782 			"Change tqp num(%u) fail.\n", new_tqp_num);
5783 		return ret;
5784 	}
5785 
5786 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5787 	if (ret)
5788 		return ret;
5789 
5790 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5791 	if (ret)
5792 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5793 
5794 	return ret;
5795 }
5796 
5797 int hns3_set_channels(struct net_device *netdev,
5798 		      struct ethtool_channels *ch)
5799 {
5800 	struct hnae3_handle *h = hns3_get_handle(netdev);
5801 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5802 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5803 	u32 new_tqp_num = ch->combined_count;
5804 	u16 org_tqp_num;
5805 	int ret;
5806 
5807 	if (hns3_nic_resetting(netdev))
5808 		return -EBUSY;
5809 
5810 	if (ch->rx_count || ch->tx_count)
5811 		return -EINVAL;
5812 
5813 	if (kinfo->tc_info.mqprio_active) {
5814 		dev_err(&netdev->dev,
5815 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5816 		return -EINVAL;
5817 	}
5818 
5819 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5820 	    new_tqp_num < 1) {
5821 		dev_err(&netdev->dev,
5822 			"Change tqps fail, the tqp range is from 1 to %u",
5823 			hns3_get_max_available_channels(h));
5824 		return -EINVAL;
5825 	}
5826 
5827 	if (kinfo->rss_size == new_tqp_num)
5828 		return 0;
5829 
5830 	netif_dbg(h, drv, netdev,
5831 		  "set channels: tqp_num=%u, rxfh=%d\n",
5832 		  new_tqp_num, rxfh_configured);
5833 
5834 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5835 	if (ret)
5836 		return ret;
5837 
5838 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5839 	if (ret)
5840 		return ret;
5841 
5842 	org_tqp_num = h->kinfo.num_tqps;
5843 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5844 	if (ret) {
5845 		int ret1;
5846 
5847 		netdev_warn(netdev,
5848 			    "Change channels fail, revert to old value\n");
5849 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5850 		if (ret1) {
5851 			netdev_err(netdev,
5852 				   "revert to old channel fail\n");
5853 			return ret1;
5854 		}
5855 
5856 		return ret;
5857 	}
5858 
5859 	return 0;
5860 }
5861 
5862 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running)
5863 {
5864 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5865 	struct hnae3_handle *h = priv->ae_handle;
5866 	int i;
5867 
5868 	if (!if_running)
5869 		return;
5870 
5871 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5872 		return;
5873 
5874 	netif_carrier_off(ndev);
5875 	netif_tx_disable(ndev);
5876 
5877 	for (i = 0; i < priv->vector_num; i++)
5878 		hns3_vector_disable(&priv->tqp_vector[i]);
5879 
5880 	for (i = 0; i < h->kinfo.num_tqps; i++)
5881 		hns3_tqp_disable(h->kinfo.tqp[i]);
5882 
5883 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
5884 	 * during reset process, because driver may not be able
5885 	 * to disable the ring through firmware when downing the netdev.
5886 	 */
5887 	if (!hns3_nic_resetting(ndev))
5888 		hns3_nic_reset_all_ring(priv->ae_handle);
5889 
5890 	hns3_reset_tx_queue(priv->ae_handle);
5891 }
5892 
5893 void hns3_external_lb_restore(struct net_device *ndev, bool if_running)
5894 {
5895 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5896 	struct hnae3_handle *h = priv->ae_handle;
5897 	int i;
5898 
5899 	if (!if_running)
5900 		return;
5901 
5902 	if (hns3_nic_resetting(ndev))
5903 		return;
5904 
5905 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
5906 		return;
5907 
5908 	if (hns3_nic_reset_all_ring(priv->ae_handle))
5909 		return;
5910 
5911 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5912 
5913 	for (i = 0; i < priv->vector_num; i++)
5914 		hns3_vector_enable(&priv->tqp_vector[i]);
5915 
5916 	for (i = 0; i < h->kinfo.num_tqps; i++)
5917 		hns3_tqp_enable(h->kinfo.tqp[i]);
5918 
5919 	netif_tx_wake_all_queues(ndev);
5920 
5921 	if (h->ae_algo->ops->get_status(h))
5922 		netif_carrier_on(ndev);
5923 }
5924 
5925 static const struct hns3_hw_error_info hns3_hw_err[] = {
5926 	{ .type = HNAE3_PPU_POISON_ERROR,
5927 	  .msg = "PPU poison" },
5928 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5929 	  .msg = "IMP CMDQ error" },
5930 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5931 	  .msg = "IMP RD poison" },
5932 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5933 	  .msg = "ROCEE AXI RESP error" },
5934 };
5935 
5936 static void hns3_process_hw_error(struct hnae3_handle *handle,
5937 				  enum hnae3_hw_error_type type)
5938 {
5939 	int i;
5940 
5941 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5942 		if (hns3_hw_err[i].type == type) {
5943 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5944 				hns3_hw_err[i].msg);
5945 			break;
5946 		}
5947 	}
5948 }
5949 
5950 static const struct hnae3_client_ops client_ops = {
5951 	.init_instance = hns3_client_init,
5952 	.uninit_instance = hns3_client_uninit,
5953 	.link_status_change = hns3_link_status_change,
5954 	.reset_notify = hns3_reset_notify,
5955 	.process_hw_error = hns3_process_hw_error,
5956 };
5957 
5958 /* hns3_init_module - Driver registration routine
5959  * hns3_init_module is the first routine called when the driver is
5960  * loaded. All it does is register with the PCI subsystem.
5961  */
5962 static int __init hns3_init_module(void)
5963 {
5964 	int ret;
5965 
5966 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5967 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5968 
5969 	client.type = HNAE3_CLIENT_KNIC;
5970 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5971 		 hns3_driver_name);
5972 
5973 	client.ops = &client_ops;
5974 
5975 	INIT_LIST_HEAD(&client.node);
5976 
5977 	hns3_dbg_register_debugfs(hns3_driver_name);
5978 
5979 	ret = hnae3_register_client(&client);
5980 	if (ret)
5981 		goto err_reg_client;
5982 
5983 	ret = pci_register_driver(&hns3_driver);
5984 	if (ret)
5985 		goto err_reg_driver;
5986 
5987 	return ret;
5988 
5989 err_reg_driver:
5990 	hnae3_unregister_client(&client);
5991 err_reg_client:
5992 	hns3_dbg_unregister_debugfs();
5993 	return ret;
5994 }
5995 module_init(hns3_init_module);
5996 
5997 /* hns3_exit_module - Driver exit cleanup routine
5998  * hns3_exit_module is called just before the driver is removed
5999  * from memory.
6000  */
6001 static void __exit hns3_exit_module(void)
6002 {
6003 	pci_unregister_driver(&hns3_driver);
6004 	hnae3_unregister_client(&client);
6005 	hns3_dbg_unregister_debugfs();
6006 }
6007 module_exit(hns3_exit_module);
6008 
6009 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
6010 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
6011 MODULE_LICENSE("GPL");
6012 MODULE_ALIAS("pci:hns-nic");
6013