xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 55223394d56bab42ebac71ba52e0fd8bfdc6fc07)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
25 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
26 
27 static void hns3_clear_all_ring(struct hnae3_handle *h);
28 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
29 static void hns3_remove_hw_addr(struct net_device *netdev);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
60 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61 	/* required last entry */
62 	{0, }
63 };
64 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
65 
66 static irqreturn_t hns3_irq_handle(int irq, void *vector)
67 {
68 	struct hns3_enet_tqp_vector *tqp_vector = vector;
69 
70 	napi_schedule(&tqp_vector->napi);
71 
72 	return IRQ_HANDLED;
73 }
74 
75 /* This callback function is used to set affinity changes to the irq affinity
76  * masks when the irq_set_affinity_notifier function is used.
77  */
78 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
79 					 const cpumask_t *mask)
80 {
81 	struct hns3_enet_tqp_vector *tqp_vectors =
82 		container_of(notify, struct hns3_enet_tqp_vector,
83 			     affinity_notify);
84 
85 	tqp_vectors->affinity_mask = *mask;
86 }
87 
88 static void hns3_nic_irq_affinity_release(struct kref *ref)
89 {
90 }
91 
92 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
93 {
94 	struct hns3_enet_tqp_vector *tqp_vectors;
95 	unsigned int i;
96 
97 	for (i = 0; i < priv->vector_num; i++) {
98 		tqp_vectors = &priv->tqp_vector[i];
99 
100 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
101 			continue;
102 
103 		/* clear the affinity notifier and affinity mask */
104 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
105 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
106 
107 		/* release the irq resource */
108 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
109 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
110 	}
111 }
112 
113 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
114 {
115 	struct hns3_enet_tqp_vector *tqp_vectors;
116 	int txrx_int_idx = 0;
117 	int rx_int_idx = 0;
118 	int tx_int_idx = 0;
119 	unsigned int i;
120 	int ret;
121 
122 	for (i = 0; i < priv->vector_num; i++) {
123 		tqp_vectors = &priv->tqp_vector[i];
124 
125 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
126 			continue;
127 
128 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
129 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
130 				 "%s-%s-%d", priv->netdev->name, "TxRx",
131 				 txrx_int_idx++);
132 			txrx_int_idx++;
133 		} else if (tqp_vectors->rx_group.ring) {
134 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
135 				 "%s-%s-%d", priv->netdev->name, "Rx",
136 				 rx_int_idx++);
137 		} else if (tqp_vectors->tx_group.ring) {
138 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
139 				 "%s-%s-%d", priv->netdev->name, "Tx",
140 				 tx_int_idx++);
141 		} else {
142 			/* Skip this unused q_vector */
143 			continue;
144 		}
145 
146 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
147 
148 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
149 				  tqp_vectors->name,
150 				       tqp_vectors);
151 		if (ret) {
152 			netdev_err(priv->netdev, "request irq(%d) fail\n",
153 				   tqp_vectors->vector_irq);
154 			return ret;
155 		}
156 
157 		tqp_vectors->affinity_notify.notify =
158 					hns3_nic_irq_affinity_notify;
159 		tqp_vectors->affinity_notify.release =
160 					hns3_nic_irq_affinity_release;
161 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
162 					  &tqp_vectors->affinity_notify);
163 		irq_set_affinity_hint(tqp_vectors->vector_irq,
164 				      &tqp_vectors->affinity_mask);
165 
166 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
167 	}
168 
169 	return 0;
170 }
171 
172 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
173 				 u32 mask_en)
174 {
175 	writel(mask_en, tqp_vector->mask_addr);
176 }
177 
178 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
179 {
180 	napi_enable(&tqp_vector->napi);
181 
182 	/* enable vector */
183 	hns3_mask_vector_irq(tqp_vector, 1);
184 }
185 
186 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	/* disable vector */
189 	hns3_mask_vector_irq(tqp_vector, 0);
190 
191 	disable_irq(tqp_vector->vector_irq);
192 	napi_disable(&tqp_vector->napi);
193 }
194 
195 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
196 				 u32 rl_value)
197 {
198 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
199 
200 	/* this defines the configuration for RL (Interrupt Rate Limiter).
201 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
202 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
203 	 */
204 
205 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
206 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
207 		/* According to the hardware, the range of rl_reg is
208 		 * 0-59 and the unit is 4.
209 		 */
210 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
211 
212 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
213 }
214 
215 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
216 				    u32 gl_value)
217 {
218 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
219 
220 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
221 }
222 
223 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224 				    u32 gl_value)
225 {
226 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
227 
228 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
229 }
230 
231 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
232 				   struct hns3_nic_priv *priv)
233 {
234 	/* initialize the configuration for interrupt coalescing.
235 	 * 1. GL (Interrupt Gap Limiter)
236 	 * 2. RL (Interrupt Rate Limiter)
237 	 */
238 
239 	/* Default: enable interrupt coalescing self-adaptive and GL */
240 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
241 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
242 
243 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
244 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
245 
246 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
247 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
248 }
249 
250 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
251 				      struct hns3_nic_priv *priv)
252 {
253 	struct hnae3_handle *h = priv->ae_handle;
254 
255 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
256 				       tqp_vector->tx_group.coal.int_gl);
257 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
258 				       tqp_vector->rx_group.coal.int_gl);
259 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
260 }
261 
262 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
263 {
264 	struct hnae3_handle *h = hns3_get_handle(netdev);
265 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
266 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
267 	int i, ret;
268 
269 	if (kinfo->num_tc <= 1) {
270 		netdev_reset_tc(netdev);
271 	} else {
272 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
273 		if (ret) {
274 			netdev_err(netdev,
275 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
276 			return ret;
277 		}
278 
279 		for (i = 0; i < HNAE3_MAX_TC; i++) {
280 			if (!kinfo->tc_info[i].enable)
281 				continue;
282 
283 			netdev_set_tc_queue(netdev,
284 					    kinfo->tc_info[i].tc,
285 					    kinfo->tc_info[i].tqp_count,
286 					    kinfo->tc_info[i].tqp_offset);
287 		}
288 	}
289 
290 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
291 	if (ret) {
292 		netdev_err(netdev,
293 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
294 			   ret);
295 		return ret;
296 	}
297 
298 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
299 	if (ret) {
300 		netdev_err(netdev,
301 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
302 		return ret;
303 	}
304 
305 	return 0;
306 }
307 
308 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
309 {
310 	u16 alloc_tqps, max_rss_size, rss_size;
311 
312 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
313 	rss_size = alloc_tqps / h->kinfo.num_tc;
314 
315 	return min_t(u16, rss_size, max_rss_size);
316 }
317 
318 static void hns3_tqp_enable(struct hnae3_queue *tqp)
319 {
320 	u32 rcb_reg;
321 
322 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
323 	rcb_reg |= BIT(HNS3_RING_EN_B);
324 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
325 }
326 
327 static void hns3_tqp_disable(struct hnae3_queue *tqp)
328 {
329 	u32 rcb_reg;
330 
331 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
333 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335 
336 static int hns3_nic_net_up(struct net_device *netdev)
337 {
338 	struct hns3_nic_priv *priv = netdev_priv(netdev);
339 	struct hnae3_handle *h = priv->ae_handle;
340 	int i, j;
341 	int ret;
342 
343 	ret = hns3_nic_reset_all_ring(h);
344 	if (ret)
345 		return ret;
346 
347 	/* get irq resource for all vectors */
348 	ret = hns3_nic_init_irq(priv);
349 	if (ret) {
350 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
351 		return ret;
352 	}
353 
354 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
355 
356 	/* enable the vectors */
357 	for (i = 0; i < priv->vector_num; i++)
358 		hns3_vector_enable(&priv->tqp_vector[i]);
359 
360 	/* enable rcb */
361 	for (j = 0; j < h->kinfo.num_tqps; j++)
362 		hns3_tqp_enable(h->kinfo.tqp[j]);
363 
364 	/* start the ae_dev */
365 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
366 	if (ret)
367 		goto out_start_err;
368 
369 	return 0;
370 
371 out_start_err:
372 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
373 	while (j--)
374 		hns3_tqp_disable(h->kinfo.tqp[j]);
375 
376 	for (j = i - 1; j >= 0; j--)
377 		hns3_vector_disable(&priv->tqp_vector[j]);
378 
379 	hns3_nic_uninit_irq(priv);
380 
381 	return ret;
382 }
383 
384 static void hns3_config_xps(struct hns3_nic_priv *priv)
385 {
386 	int i;
387 
388 	for (i = 0; i < priv->vector_num; i++) {
389 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
390 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
391 
392 		while (ring) {
393 			int ret;
394 
395 			ret = netif_set_xps_queue(priv->netdev,
396 						  &tqp_vector->affinity_mask,
397 						  ring->tqp->tqp_index);
398 			if (ret)
399 				netdev_warn(priv->netdev,
400 					    "set xps queue failed: %d", ret);
401 
402 			ring = ring->next;
403 		}
404 	}
405 }
406 
407 static int hns3_nic_net_open(struct net_device *netdev)
408 {
409 	struct hns3_nic_priv *priv = netdev_priv(netdev);
410 	struct hnae3_handle *h = hns3_get_handle(netdev);
411 	struct hnae3_knic_private_info *kinfo;
412 	int i, ret;
413 
414 	if (hns3_nic_resetting(netdev))
415 		return -EBUSY;
416 
417 	netif_carrier_off(netdev);
418 
419 	ret = hns3_nic_set_real_num_queue(netdev);
420 	if (ret)
421 		return ret;
422 
423 	ret = hns3_nic_net_up(netdev);
424 	if (ret) {
425 		netdev_err(netdev,
426 			   "hns net up fail, ret=%d!\n", ret);
427 		return ret;
428 	}
429 
430 	kinfo = &h->kinfo;
431 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
432 		netdev_set_prio_tc_map(netdev, i,
433 				       kinfo->prio_tc[i]);
434 	}
435 
436 	if (h->ae_algo->ops->set_timer_task)
437 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
438 
439 	hns3_config_xps(priv);
440 	return 0;
441 }
442 
443 static void hns3_nic_net_down(struct net_device *netdev)
444 {
445 	struct hns3_nic_priv *priv = netdev_priv(netdev);
446 	struct hnae3_handle *h = hns3_get_handle(netdev);
447 	const struct hnae3_ae_ops *ops;
448 	int i;
449 
450 	/* disable vectors */
451 	for (i = 0; i < priv->vector_num; i++)
452 		hns3_vector_disable(&priv->tqp_vector[i]);
453 
454 	/* disable rcb */
455 	for (i = 0; i < h->kinfo.num_tqps; i++)
456 		hns3_tqp_disable(h->kinfo.tqp[i]);
457 
458 	/* stop ae_dev */
459 	ops = priv->ae_handle->ae_algo->ops;
460 	if (ops->stop)
461 		ops->stop(priv->ae_handle);
462 
463 	/* free irq resources */
464 	hns3_nic_uninit_irq(priv);
465 
466 	hns3_clear_all_ring(priv->ae_handle);
467 }
468 
469 static int hns3_nic_net_stop(struct net_device *netdev)
470 {
471 	struct hns3_nic_priv *priv = netdev_priv(netdev);
472 	struct hnae3_handle *h = hns3_get_handle(netdev);
473 
474 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
475 		return 0;
476 
477 	if (h->ae_algo->ops->set_timer_task)
478 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
479 
480 	netif_tx_stop_all_queues(netdev);
481 	netif_carrier_off(netdev);
482 
483 	hns3_nic_net_down(netdev);
484 
485 	return 0;
486 }
487 
488 static int hns3_nic_uc_sync(struct net_device *netdev,
489 			    const unsigned char *addr)
490 {
491 	struct hnae3_handle *h = hns3_get_handle(netdev);
492 
493 	if (h->ae_algo->ops->add_uc_addr)
494 		return h->ae_algo->ops->add_uc_addr(h, addr);
495 
496 	return 0;
497 }
498 
499 static int hns3_nic_uc_unsync(struct net_device *netdev,
500 			      const unsigned char *addr)
501 {
502 	struct hnae3_handle *h = hns3_get_handle(netdev);
503 
504 	if (h->ae_algo->ops->rm_uc_addr)
505 		return h->ae_algo->ops->rm_uc_addr(h, addr);
506 
507 	return 0;
508 }
509 
510 static int hns3_nic_mc_sync(struct net_device *netdev,
511 			    const unsigned char *addr)
512 {
513 	struct hnae3_handle *h = hns3_get_handle(netdev);
514 
515 	if (h->ae_algo->ops->add_mc_addr)
516 		return h->ae_algo->ops->add_mc_addr(h, addr);
517 
518 	return 0;
519 }
520 
521 static int hns3_nic_mc_unsync(struct net_device *netdev,
522 			      const unsigned char *addr)
523 {
524 	struct hnae3_handle *h = hns3_get_handle(netdev);
525 
526 	if (h->ae_algo->ops->rm_mc_addr)
527 		return h->ae_algo->ops->rm_mc_addr(h, addr);
528 
529 	return 0;
530 }
531 
532 static u8 hns3_get_netdev_flags(struct net_device *netdev)
533 {
534 	u8 flags = 0;
535 
536 	if (netdev->flags & IFF_PROMISC) {
537 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
538 	} else {
539 		flags |= HNAE3_VLAN_FLTR;
540 		if (netdev->flags & IFF_ALLMULTI)
541 			flags |= HNAE3_USER_MPE;
542 	}
543 
544 	return flags;
545 }
546 
547 static void hns3_nic_set_rx_mode(struct net_device *netdev)
548 {
549 	struct hnae3_handle *h = hns3_get_handle(netdev);
550 	u8 new_flags;
551 	int ret;
552 
553 	new_flags = hns3_get_netdev_flags(netdev);
554 
555 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
556 	if (ret) {
557 		netdev_err(netdev, "sync uc address fail\n");
558 		if (ret == -ENOSPC)
559 			new_flags |= HNAE3_OVERFLOW_UPE;
560 	}
561 
562 	if (netdev->flags & IFF_MULTICAST) {
563 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
564 				    hns3_nic_mc_unsync);
565 		if (ret) {
566 			netdev_err(netdev, "sync mc address fail\n");
567 			if (ret == -ENOSPC)
568 				new_flags |= HNAE3_OVERFLOW_MPE;
569 		}
570 	}
571 
572 	/* User mode Promisc mode enable and vlan filtering is disabled to
573 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
574 	 * vlan fitering is enabled
575 	 */
576 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
577 	h->netdev_flags = new_flags;
578 	hns3_update_promisc_mode(netdev, new_flags);
579 }
580 
581 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
582 {
583 	struct hns3_nic_priv *priv = netdev_priv(netdev);
584 	struct hnae3_handle *h = priv->ae_handle;
585 
586 	if (h->ae_algo->ops->set_promisc_mode) {
587 		return h->ae_algo->ops->set_promisc_mode(h,
588 						promisc_flags & HNAE3_UPE,
589 						promisc_flags & HNAE3_MPE);
590 	}
591 
592 	return 0;
593 }
594 
595 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
596 {
597 	struct hns3_nic_priv *priv = netdev_priv(netdev);
598 	struct hnae3_handle *h = priv->ae_handle;
599 	bool last_state;
600 
601 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
602 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
603 		if (enable != last_state) {
604 			netdev_info(netdev,
605 				    "%s vlan filter\n",
606 				    enable ? "enable" : "disable");
607 			h->ae_algo->ops->enable_vlan_filter(h, enable);
608 		}
609 	}
610 }
611 
612 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
613 			u16 *mss, u32 *type_cs_vlan_tso)
614 {
615 	u32 l4_offset, hdr_len;
616 	union l3_hdr_info l3;
617 	union l4_hdr_info l4;
618 	u32 l4_paylen;
619 	int ret;
620 
621 	if (!skb_is_gso(skb))
622 		return 0;
623 
624 	ret = skb_cow_head(skb, 0);
625 	if (unlikely(ret))
626 		return ret;
627 
628 	l3.hdr = skb_network_header(skb);
629 	l4.hdr = skb_transport_header(skb);
630 
631 	/* Software should clear the IPv4's checksum field when tso is
632 	 * needed.
633 	 */
634 	if (l3.v4->version == 4)
635 		l3.v4->check = 0;
636 
637 	/* tunnel packet.*/
638 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
639 					 SKB_GSO_GRE_CSUM |
640 					 SKB_GSO_UDP_TUNNEL |
641 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
642 		if ((!(skb_shinfo(skb)->gso_type &
643 		    SKB_GSO_PARTIAL)) &&
644 		    (skb_shinfo(skb)->gso_type &
645 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
646 			/* Software should clear the udp's checksum
647 			 * field when tso is needed.
648 			 */
649 			l4.udp->check = 0;
650 		}
651 		/* reset l3&l4 pointers from outer to inner headers */
652 		l3.hdr = skb_inner_network_header(skb);
653 		l4.hdr = skb_inner_transport_header(skb);
654 
655 		/* Software should clear the IPv4's checksum field when
656 		 * tso is needed.
657 		 */
658 		if (l3.v4->version == 4)
659 			l3.v4->check = 0;
660 	}
661 
662 	/* normal or tunnel packet*/
663 	l4_offset = l4.hdr - skb->data;
664 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
665 
666 	/* remove payload length from inner pseudo checksum when tso*/
667 	l4_paylen = skb->len - l4_offset;
668 	csum_replace_by_diff(&l4.tcp->check,
669 			     (__force __wsum)htonl(l4_paylen));
670 
671 	/* find the txbd field values */
672 	*paylen = skb->len - hdr_len;
673 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
674 
675 	/* get MSS for TSO */
676 	*mss = skb_shinfo(skb)->gso_size;
677 
678 	return 0;
679 }
680 
681 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
682 				u8 *il4_proto)
683 {
684 	union l3_hdr_info l3;
685 	unsigned char *l4_hdr;
686 	unsigned char *exthdr;
687 	u8 l4_proto_tmp;
688 	__be16 frag_off;
689 
690 	/* find outer header point */
691 	l3.hdr = skb_network_header(skb);
692 	l4_hdr = skb_transport_header(skb);
693 
694 	if (skb->protocol == htons(ETH_P_IPV6)) {
695 		exthdr = l3.hdr + sizeof(*l3.v6);
696 		l4_proto_tmp = l3.v6->nexthdr;
697 		if (l4_hdr != exthdr)
698 			ipv6_skip_exthdr(skb, exthdr - skb->data,
699 					 &l4_proto_tmp, &frag_off);
700 	} else if (skb->protocol == htons(ETH_P_IP)) {
701 		l4_proto_tmp = l3.v4->protocol;
702 	} else {
703 		return -EINVAL;
704 	}
705 
706 	*ol4_proto = l4_proto_tmp;
707 
708 	/* tunnel packet */
709 	if (!skb->encapsulation) {
710 		*il4_proto = 0;
711 		return 0;
712 	}
713 
714 	/* find inner header point */
715 	l3.hdr = skb_inner_network_header(skb);
716 	l4_hdr = skb_inner_transport_header(skb);
717 
718 	if (l3.v6->version == 6) {
719 		exthdr = l3.hdr + sizeof(*l3.v6);
720 		l4_proto_tmp = l3.v6->nexthdr;
721 		if (l4_hdr != exthdr)
722 			ipv6_skip_exthdr(skb, exthdr - skb->data,
723 					 &l4_proto_tmp, &frag_off);
724 	} else if (l3.v4->version == 4) {
725 		l4_proto_tmp = l3.v4->protocol;
726 	}
727 
728 	*il4_proto = l4_proto_tmp;
729 
730 	return 0;
731 }
732 
733 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
734 				u8 il4_proto, u32 *type_cs_vlan_tso,
735 				u32 *ol_type_vlan_len_msec)
736 {
737 	union l3_hdr_info l3;
738 	union l4_hdr_info l4;
739 	unsigned char *l2_hdr;
740 	u8 l4_proto = ol4_proto;
741 	u32 ol2_len;
742 	u32 ol3_len;
743 	u32 ol4_len;
744 	u32 l2_len;
745 	u32 l3_len;
746 
747 	l3.hdr = skb_network_header(skb);
748 	l4.hdr = skb_transport_header(skb);
749 
750 	/* compute L2 header size for normal packet, defined in 2 Bytes */
751 	l2_len = l3.hdr - skb->data;
752 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
753 
754 	/* tunnel packet*/
755 	if (skb->encapsulation) {
756 		/* compute OL2 header size, defined in 2 Bytes */
757 		ol2_len = l2_len;
758 		hns3_set_field(*ol_type_vlan_len_msec,
759 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
760 
761 		/* compute OL3 header size, defined in 4 Bytes */
762 		ol3_len = l4.hdr - l3.hdr;
763 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
764 			       ol3_len >> 2);
765 
766 		/* MAC in UDP, MAC in GRE (0x6558)*/
767 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
768 			/* switch MAC header ptr from outer to inner header.*/
769 			l2_hdr = skb_inner_mac_header(skb);
770 
771 			/* compute OL4 header size, defined in 4 Bytes. */
772 			ol4_len = l2_hdr - l4.hdr;
773 			hns3_set_field(*ol_type_vlan_len_msec,
774 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
775 
776 			/* switch IP header ptr from outer to inner header */
777 			l3.hdr = skb_inner_network_header(skb);
778 
779 			/* compute inner l2 header size, defined in 2 Bytes. */
780 			l2_len = l3.hdr - l2_hdr;
781 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
782 				       l2_len >> 1);
783 		} else {
784 			/* skb packet types not supported by hardware,
785 			 * txbd len fild doesn't be filled.
786 			 */
787 			return;
788 		}
789 
790 		/* switch L4 header pointer from outer to inner */
791 		l4.hdr = skb_inner_transport_header(skb);
792 
793 		l4_proto = il4_proto;
794 	}
795 
796 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
797 	l3_len = l4.hdr - l3.hdr;
798 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
799 
800 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
801 	switch (l4_proto) {
802 	case IPPROTO_TCP:
803 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
804 			       l4.tcp->doff);
805 		break;
806 	case IPPROTO_SCTP:
807 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
808 			       (sizeof(struct sctphdr) >> 2));
809 		break;
810 	case IPPROTO_UDP:
811 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
812 			       (sizeof(struct udphdr) >> 2));
813 		break;
814 	default:
815 		/* skb packet types not supported by hardware,
816 		 * txbd len fild doesn't be filled.
817 		 */
818 		return;
819 	}
820 }
821 
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 #define IANA_VXLAN_PORT	4789
831 	union l4_hdr_info l4;
832 
833 	l4.hdr = skb_transport_header(skb);
834 
835 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
836 		return false;
837 
838 	skb_checksum_help(skb);
839 
840 	return true;
841 }
842 
843 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
844 				   u8 il4_proto, u32 *type_cs_vlan_tso,
845 				   u32 *ol_type_vlan_len_msec)
846 {
847 	union l3_hdr_info l3;
848 	u32 l4_proto = ol4_proto;
849 
850 	l3.hdr = skb_network_header(skb);
851 
852 	/* define OL3 type and tunnel type(OL4).*/
853 	if (skb->encapsulation) {
854 		/* define outer network header type.*/
855 		if (skb->protocol == htons(ETH_P_IP)) {
856 			if (skb_is_gso(skb))
857 				hns3_set_field(*ol_type_vlan_len_msec,
858 					       HNS3_TXD_OL3T_S,
859 					       HNS3_OL3T_IPV4_CSUM);
860 			else
861 				hns3_set_field(*ol_type_vlan_len_msec,
862 					       HNS3_TXD_OL3T_S,
863 					       HNS3_OL3T_IPV4_NO_CSUM);
864 
865 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
866 			hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
867 				       HNS3_OL3T_IPV6);
868 		}
869 
870 		/* define tunnel type(OL4).*/
871 		switch (l4_proto) {
872 		case IPPROTO_UDP:
873 			hns3_set_field(*ol_type_vlan_len_msec,
874 				       HNS3_TXD_TUNTYPE_S,
875 				       HNS3_TUN_MAC_IN_UDP);
876 			break;
877 		case IPPROTO_GRE:
878 			hns3_set_field(*ol_type_vlan_len_msec,
879 				       HNS3_TXD_TUNTYPE_S,
880 				       HNS3_TUN_NVGRE);
881 			break;
882 		default:
883 			/* drop the skb tunnel packet if hardware don't support,
884 			 * because hardware can't calculate csum when TSO.
885 			 */
886 			if (skb_is_gso(skb))
887 				return -EDOM;
888 
889 			/* the stack computes the IP header already,
890 			 * driver calculate l4 checksum when not TSO.
891 			 */
892 			skb_checksum_help(skb);
893 			return 0;
894 		}
895 
896 		l3.hdr = skb_inner_network_header(skb);
897 		l4_proto = il4_proto;
898 	}
899 
900 	if (l3.v4->version == 4) {
901 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
902 			       HNS3_L3T_IPV4);
903 
904 		/* the stack computes the IP header already, the only time we
905 		 * need the hardware to recompute it is in the case of TSO.
906 		 */
907 		if (skb_is_gso(skb))
908 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
909 	} else if (l3.v6->version == 6) {
910 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
911 			       HNS3_L3T_IPV6);
912 	}
913 
914 	switch (l4_proto) {
915 	case IPPROTO_TCP:
916 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
917 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
918 			       HNS3_L4T_TCP);
919 		break;
920 	case IPPROTO_UDP:
921 		if (hns3_tunnel_csum_bug(skb))
922 			break;
923 
924 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
926 			       HNS3_L4T_UDP);
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		break;
933 	default:
934 		/* drop the skb tunnel packet if hardware don't support,
935 		 * because hardware can't calculate csum when TSO.
936 		 */
937 		if (skb_is_gso(skb))
938 			return -EDOM;
939 
940 		/* the stack computes the IP header already,
941 		 * driver calculate l4 checksum when not TSO.
942 		 */
943 		skb_checksum_help(skb);
944 		return 0;
945 	}
946 
947 	return 0;
948 }
949 
950 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
951 {
952 	/* Config bd buffer end */
953 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
954 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
955 }
956 
957 static int hns3_fill_desc_vtags(struct sk_buff *skb,
958 				struct hns3_enet_ring *tx_ring,
959 				u32 *inner_vlan_flag,
960 				u32 *out_vlan_flag,
961 				u16 *inner_vtag,
962 				u16 *out_vtag)
963 {
964 #define HNS3_TX_VLAN_PRIO_SHIFT 13
965 
966 	if (skb->protocol == htons(ETH_P_8021Q) &&
967 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
968 	    NETIF_F_HW_VLAN_CTAG_TX)) {
969 		/* When HW VLAN acceleration is turned off, and the stack
970 		 * sets the protocol to 802.1q, the driver just need to
971 		 * set the protocol to the encapsulated ethertype.
972 		 */
973 		skb->protocol = vlan_get_protocol(skb);
974 		return 0;
975 	}
976 
977 	if (skb_vlan_tag_present(skb)) {
978 		u16 vlan_tag;
979 
980 		vlan_tag = skb_vlan_tag_get(skb);
981 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
982 
983 		/* Based on hw strategy, use out_vtag in two layer tag case,
984 		 * and use inner_vtag in one tag case.
985 		 */
986 		if (skb->protocol == htons(ETH_P_8021Q)) {
987 			hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
988 			*out_vtag = vlan_tag;
989 		} else {
990 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
991 			*inner_vtag = vlan_tag;
992 		}
993 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
994 		struct vlan_ethhdr *vhdr;
995 		int rc;
996 
997 		rc = skb_cow_head(skb, 0);
998 		if (unlikely(rc < 0))
999 			return rc;
1000 		vhdr = (struct vlan_ethhdr *)skb->data;
1001 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1002 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1003 	}
1004 
1005 	skb->protocol = vlan_get_protocol(skb);
1006 	return 0;
1007 }
1008 
1009 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1010 			  int size, int frag_end, enum hns_desc_type type)
1011 {
1012 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1013 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1014 	struct device *dev = ring_to_dev(ring);
1015 	u16 bdtp_fe_sc_vld_ra_ri = 0;
1016 	struct skb_frag_struct *frag;
1017 	unsigned int frag_buf_num;
1018 	int k, sizeoflast;
1019 	dma_addr_t dma;
1020 
1021 	if (type == DESC_TYPE_SKB) {
1022 		struct sk_buff *skb = (struct sk_buff *)priv;
1023 		u32 ol_type_vlan_len_msec = 0;
1024 		u32 type_cs_vlan_tso = 0;
1025 		u32 paylen = skb->len;
1026 		u16 inner_vtag = 0;
1027 		u16 out_vtag = 0;
1028 		u16 mss = 0;
1029 		int ret;
1030 
1031 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1032 					   &ol_type_vlan_len_msec,
1033 					   &inner_vtag, &out_vtag);
1034 		if (unlikely(ret))
1035 			return ret;
1036 
1037 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1038 			u8 ol4_proto, il4_proto;
1039 
1040 			skb_reset_mac_len(skb);
1041 
1042 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1043 			if (unlikely(ret))
1044 				return ret;
1045 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1046 					    &type_cs_vlan_tso,
1047 					    &ol_type_vlan_len_msec);
1048 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1049 						      &type_cs_vlan_tso,
1050 						      &ol_type_vlan_len_msec);
1051 			if (unlikely(ret))
1052 				return ret;
1053 
1054 			ret = hns3_set_tso(skb, &paylen, &mss,
1055 					   &type_cs_vlan_tso);
1056 			if (unlikely(ret))
1057 				return ret;
1058 		}
1059 
1060 		/* Set txbd */
1061 		desc->tx.ol_type_vlan_len_msec =
1062 			cpu_to_le32(ol_type_vlan_len_msec);
1063 		desc->tx.type_cs_vlan_tso_len =
1064 			cpu_to_le32(type_cs_vlan_tso);
1065 		desc->tx.paylen = cpu_to_le32(paylen);
1066 		desc->tx.mss = cpu_to_le16(mss);
1067 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1068 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1069 
1070 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1071 	} else {
1072 		frag = (struct skb_frag_struct *)priv;
1073 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1074 	}
1075 
1076 	if (unlikely(dma_mapping_error(ring->dev, dma))) {
1077 		ring->stats.sw_err_cnt++;
1078 		return -ENOMEM;
1079 	}
1080 
1081 	desc_cb->length = size;
1082 
1083 	frag_buf_num = hns3_tx_bd_count(size);
1084 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1085 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1086 
1087 	/* When frag size is bigger than hardware limit, split this frag */
1088 	for (k = 0; k < frag_buf_num; k++) {
1089 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1090 		desc_cb->priv = priv;
1091 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1092 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1093 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1094 
1095 		/* now, fill the descriptor */
1096 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1097 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1098 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1099 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1100 				       frag_end && (k == frag_buf_num - 1) ?
1101 						1 : 0);
1102 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1103 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1104 
1105 		/* move ring pointer to next.*/
1106 		ring_ptr_move_fw(ring, next_to_use);
1107 
1108 		desc_cb = &ring->desc_cb[ring->next_to_use];
1109 		desc = &ring->desc[ring->next_to_use];
1110 	}
1111 
1112 	return 0;
1113 }
1114 
1115 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1116 				   struct hns3_enet_ring *ring)
1117 {
1118 	struct sk_buff *skb = *out_skb;
1119 	struct sk_buff *new_skb = NULL;
1120 	struct skb_frag_struct *frag;
1121 	int bdnum_for_frag;
1122 	int frag_num;
1123 	int buf_num;
1124 	int size;
1125 	int i;
1126 
1127 	size = skb_headlen(skb);
1128 	buf_num = hns3_tx_bd_count(size);
1129 
1130 	frag_num = skb_shinfo(skb)->nr_frags;
1131 	for (i = 0; i < frag_num; i++) {
1132 		frag = &skb_shinfo(skb)->frags[i];
1133 		size = skb_frag_size(frag);
1134 		bdnum_for_frag = hns3_tx_bd_count(size);
1135 		if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1136 			return -ENOMEM;
1137 
1138 		buf_num += bdnum_for_frag;
1139 	}
1140 
1141 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1142 		buf_num = hns3_tx_bd_count(skb->len);
1143 		if (ring_space(ring) < buf_num)
1144 			return -EBUSY;
1145 		/* manual split the send packet */
1146 		new_skb = skb_copy(skb, GFP_ATOMIC);
1147 		if (!new_skb)
1148 			return -ENOMEM;
1149 		dev_kfree_skb_any(skb);
1150 		*out_skb = new_skb;
1151 	}
1152 
1153 	if (unlikely(ring_space(ring) < buf_num))
1154 		return -EBUSY;
1155 
1156 	*bnum = buf_num;
1157 	return 0;
1158 }
1159 
1160 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1161 				  struct hns3_enet_ring *ring)
1162 {
1163 	struct sk_buff *skb = *out_skb;
1164 	struct sk_buff *new_skb = NULL;
1165 	int buf_num;
1166 
1167 	/* No. of segments (plus a header) */
1168 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1169 
1170 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1171 		buf_num = hns3_tx_bd_count(skb->len);
1172 		if (ring_space(ring) < buf_num)
1173 			return -EBUSY;
1174 		/* manual split the send packet */
1175 		new_skb = skb_copy(skb, GFP_ATOMIC);
1176 		if (!new_skb)
1177 			return -ENOMEM;
1178 		dev_kfree_skb_any(skb);
1179 		*out_skb = new_skb;
1180 	}
1181 
1182 	if (unlikely(ring_space(ring) < buf_num))
1183 		return -EBUSY;
1184 
1185 	*bnum = buf_num;
1186 
1187 	return 0;
1188 }
1189 
1190 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1191 {
1192 	struct device *dev = ring_to_dev(ring);
1193 	unsigned int i;
1194 
1195 	for (i = 0; i < ring->desc_num; i++) {
1196 		/* check if this is where we started */
1197 		if (ring->next_to_use == next_to_use_orig)
1198 			break;
1199 
1200 		/* unmap the descriptor dma address */
1201 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1202 			dma_unmap_single(dev,
1203 					 ring->desc_cb[ring->next_to_use].dma,
1204 					ring->desc_cb[ring->next_to_use].length,
1205 					DMA_TO_DEVICE);
1206 		else if (ring->desc_cb[ring->next_to_use].length)
1207 			dma_unmap_page(dev,
1208 				       ring->desc_cb[ring->next_to_use].dma,
1209 				       ring->desc_cb[ring->next_to_use].length,
1210 				       DMA_TO_DEVICE);
1211 
1212 		ring->desc_cb[ring->next_to_use].length = 0;
1213 
1214 		/* rollback one */
1215 		ring_ptr_move_bw(ring, next_to_use);
1216 	}
1217 }
1218 
1219 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1220 {
1221 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1222 	struct hns3_nic_ring_data *ring_data =
1223 		&tx_ring_data(priv, skb->queue_mapping);
1224 	struct hns3_enet_ring *ring = ring_data->ring;
1225 	struct netdev_queue *dev_queue;
1226 	struct skb_frag_struct *frag;
1227 	int next_to_use_head;
1228 	int next_to_use_frag;
1229 	int buf_num;
1230 	int seg_num;
1231 	int size;
1232 	int ret;
1233 	int i;
1234 
1235 	/* Prefetch the data used later */
1236 	prefetch(skb->data);
1237 
1238 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1239 	case -EBUSY:
1240 		u64_stats_update_begin(&ring->syncp);
1241 		ring->stats.tx_busy++;
1242 		u64_stats_update_end(&ring->syncp);
1243 
1244 		goto out_net_tx_busy;
1245 	case -ENOMEM:
1246 		u64_stats_update_begin(&ring->syncp);
1247 		ring->stats.sw_err_cnt++;
1248 		u64_stats_update_end(&ring->syncp);
1249 		netdev_err(netdev, "no memory to xmit!\n");
1250 
1251 		goto out_err_tx_ok;
1252 	default:
1253 		break;
1254 	}
1255 
1256 	/* No. of segments (plus a header) */
1257 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1258 	/* Fill the first part */
1259 	size = skb_headlen(skb);
1260 
1261 	next_to_use_head = ring->next_to_use;
1262 
1263 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1264 			     DESC_TYPE_SKB);
1265 	if (unlikely(ret))
1266 		goto head_fill_err;
1267 
1268 	next_to_use_frag = ring->next_to_use;
1269 	/* Fill the fragments */
1270 	for (i = 1; i < seg_num; i++) {
1271 		frag = &skb_shinfo(skb)->frags[i - 1];
1272 		size = skb_frag_size(frag);
1273 
1274 		ret = hns3_fill_desc(ring, frag, size,
1275 				     seg_num - 1 == i ? 1 : 0,
1276 				     DESC_TYPE_PAGE);
1277 
1278 		if (unlikely(ret))
1279 			goto frag_fill_err;
1280 	}
1281 
1282 	/* Complete translate all packets */
1283 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1284 	netdev_tx_sent_queue(dev_queue, skb->len);
1285 
1286 	wmb(); /* Commit all data before submit */
1287 
1288 	hnae3_queue_xmit(ring->tqp, buf_num);
1289 
1290 	return NETDEV_TX_OK;
1291 
1292 frag_fill_err:
1293 	hns3_clear_desc(ring, next_to_use_frag);
1294 
1295 head_fill_err:
1296 	hns3_clear_desc(ring, next_to_use_head);
1297 
1298 out_err_tx_ok:
1299 	dev_kfree_skb_any(skb);
1300 	return NETDEV_TX_OK;
1301 
1302 out_net_tx_busy:
1303 	netif_stop_subqueue(netdev, ring_data->queue_index);
1304 	smp_mb(); /* Commit all data before submit */
1305 
1306 	return NETDEV_TX_BUSY;
1307 }
1308 
1309 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1310 {
1311 	struct hnae3_handle *h = hns3_get_handle(netdev);
1312 	struct sockaddr *mac_addr = p;
1313 	int ret;
1314 
1315 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1316 		return -EADDRNOTAVAIL;
1317 
1318 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1319 		netdev_info(netdev, "already using mac address %pM\n",
1320 			    mac_addr->sa_data);
1321 		return 0;
1322 	}
1323 
1324 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1325 	if (ret) {
1326 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1327 		return ret;
1328 	}
1329 
1330 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1331 
1332 	return 0;
1333 }
1334 
1335 static int hns3_nic_do_ioctl(struct net_device *netdev,
1336 			     struct ifreq *ifr, int cmd)
1337 {
1338 	struct hnae3_handle *h = hns3_get_handle(netdev);
1339 
1340 	if (!netif_running(netdev))
1341 		return -EINVAL;
1342 
1343 	if (!h->ae_algo->ops->do_ioctl)
1344 		return -EOPNOTSUPP;
1345 
1346 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1347 }
1348 
1349 static int hns3_nic_set_features(struct net_device *netdev,
1350 				 netdev_features_t features)
1351 {
1352 	netdev_features_t changed = netdev->features ^ features;
1353 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1354 	struct hnae3_handle *h = priv->ae_handle;
1355 	bool enable;
1356 	int ret;
1357 
1358 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1359 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1360 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1361 		else
1362 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1363 	}
1364 
1365 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1366 		enable = !!(features & NETIF_F_GRO_HW);
1367 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1368 		if (ret)
1369 			return ret;
1370 	}
1371 
1372 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1373 	    h->ae_algo->ops->enable_vlan_filter) {
1374 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1375 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1376 	}
1377 
1378 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1379 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1380 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1381 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1382 		if (ret)
1383 			return ret;
1384 	}
1385 
1386 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1387 		enable = !!(features & NETIF_F_NTUPLE);
1388 		h->ae_algo->ops->enable_fd(h, enable);
1389 	}
1390 
1391 	netdev->features = features;
1392 	return 0;
1393 }
1394 
1395 static void hns3_nic_get_stats64(struct net_device *netdev,
1396 				 struct rtnl_link_stats64 *stats)
1397 {
1398 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1399 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1400 	struct hnae3_handle *handle = priv->ae_handle;
1401 	struct hns3_enet_ring *ring;
1402 	u64 rx_length_errors = 0;
1403 	u64 rx_crc_errors = 0;
1404 	u64 rx_multicast = 0;
1405 	unsigned int start;
1406 	u64 tx_errors = 0;
1407 	u64 rx_errors = 0;
1408 	unsigned int idx;
1409 	u64 tx_bytes = 0;
1410 	u64 rx_bytes = 0;
1411 	u64 tx_pkts = 0;
1412 	u64 rx_pkts = 0;
1413 	u64 tx_drop = 0;
1414 	u64 rx_drop = 0;
1415 
1416 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1417 		return;
1418 
1419 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1420 
1421 	for (idx = 0; idx < queue_num; idx++) {
1422 		/* fetch the tx stats */
1423 		ring = priv->ring_data[idx].ring;
1424 		do {
1425 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1426 			tx_bytes += ring->stats.tx_bytes;
1427 			tx_pkts += ring->stats.tx_pkts;
1428 			tx_drop += ring->stats.sw_err_cnt;
1429 			tx_errors += ring->stats.sw_err_cnt;
1430 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1431 
1432 		/* fetch the rx stats */
1433 		ring = priv->ring_data[idx + queue_num].ring;
1434 		do {
1435 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1436 			rx_bytes += ring->stats.rx_bytes;
1437 			rx_pkts += ring->stats.rx_pkts;
1438 			rx_drop += ring->stats.non_vld_descs;
1439 			rx_drop += ring->stats.l2_err;
1440 			rx_errors += ring->stats.non_vld_descs;
1441 			rx_errors += ring->stats.l2_err;
1442 			rx_crc_errors += ring->stats.l2_err;
1443 			rx_crc_errors += ring->stats.l3l4_csum_err;
1444 			rx_multicast += ring->stats.rx_multicast;
1445 			rx_length_errors += ring->stats.err_pkt_len;
1446 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1447 	}
1448 
1449 	stats->tx_bytes = tx_bytes;
1450 	stats->tx_packets = tx_pkts;
1451 	stats->rx_bytes = rx_bytes;
1452 	stats->rx_packets = rx_pkts;
1453 
1454 	stats->rx_errors = rx_errors;
1455 	stats->multicast = rx_multicast;
1456 	stats->rx_length_errors = rx_length_errors;
1457 	stats->rx_crc_errors = rx_crc_errors;
1458 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1459 
1460 	stats->tx_errors = tx_errors;
1461 	stats->rx_dropped = rx_drop;
1462 	stats->tx_dropped = tx_drop;
1463 	stats->collisions = netdev->stats.collisions;
1464 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1465 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1466 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1467 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1468 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1469 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1470 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1471 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1472 	stats->rx_compressed = netdev->stats.rx_compressed;
1473 	stats->tx_compressed = netdev->stats.tx_compressed;
1474 }
1475 
1476 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1477 {
1478 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1479 	struct hnae3_handle *h = hns3_get_handle(netdev);
1480 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1481 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1482 	u8 tc = mqprio_qopt->qopt.num_tc;
1483 	u16 mode = mqprio_qopt->mode;
1484 	u8 hw = mqprio_qopt->qopt.hw;
1485 
1486 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1487 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1488 		return -EOPNOTSUPP;
1489 
1490 	if (tc > HNAE3_MAX_TC)
1491 		return -EINVAL;
1492 
1493 	if (!netdev)
1494 		return -EINVAL;
1495 
1496 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1497 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1498 }
1499 
1500 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1501 			     void *type_data)
1502 {
1503 	if (type != TC_SETUP_QDISC_MQPRIO)
1504 		return -EOPNOTSUPP;
1505 
1506 	return hns3_setup_tc(dev, type_data);
1507 }
1508 
1509 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1510 				__be16 proto, u16 vid)
1511 {
1512 	struct hnae3_handle *h = hns3_get_handle(netdev);
1513 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1514 	int ret = -EIO;
1515 
1516 	if (h->ae_algo->ops->set_vlan_filter)
1517 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1518 
1519 	if (!ret)
1520 		set_bit(vid, priv->active_vlans);
1521 
1522 	return ret;
1523 }
1524 
1525 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1526 				 __be16 proto, u16 vid)
1527 {
1528 	struct hnae3_handle *h = hns3_get_handle(netdev);
1529 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1530 	int ret = -EIO;
1531 
1532 	if (h->ae_algo->ops->set_vlan_filter)
1533 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1534 
1535 	if (!ret)
1536 		clear_bit(vid, priv->active_vlans);
1537 
1538 	return ret;
1539 }
1540 
1541 static int hns3_restore_vlan(struct net_device *netdev)
1542 {
1543 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1544 	int ret = 0;
1545 	u16 vid;
1546 
1547 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1548 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1549 		if (ret) {
1550 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1551 				   vid, ret);
1552 			return ret;
1553 		}
1554 	}
1555 
1556 	return ret;
1557 }
1558 
1559 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1560 				u8 qos, __be16 vlan_proto)
1561 {
1562 	struct hnae3_handle *h = hns3_get_handle(netdev);
1563 	int ret = -EIO;
1564 
1565 	if (h->ae_algo->ops->set_vf_vlan_filter)
1566 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1567 						   qos, vlan_proto);
1568 
1569 	return ret;
1570 }
1571 
1572 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1573 {
1574 	struct hnae3_handle *h = hns3_get_handle(netdev);
1575 	int ret;
1576 
1577 	if (!h->ae_algo->ops->set_mtu)
1578 		return -EOPNOTSUPP;
1579 
1580 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1581 	if (ret)
1582 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1583 			   ret);
1584 	else
1585 		netdev->mtu = new_mtu;
1586 
1587 	return ret;
1588 }
1589 
1590 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1591 {
1592 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1593 	struct hns3_enet_ring *tx_ring = NULL;
1594 	int timeout_queue = 0;
1595 	int hw_head, hw_tail;
1596 	int i;
1597 
1598 	/* Find the stopped queue the same way the stack does */
1599 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1600 		struct netdev_queue *q;
1601 		unsigned long trans_start;
1602 
1603 		q = netdev_get_tx_queue(ndev, i);
1604 		trans_start = q->trans_start;
1605 		if (netif_xmit_stopped(q) &&
1606 		    time_after(jiffies,
1607 			       (trans_start + ndev->watchdog_timeo))) {
1608 			timeout_queue = i;
1609 			break;
1610 		}
1611 	}
1612 
1613 	if (i == ndev->num_tx_queues) {
1614 		netdev_info(ndev,
1615 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1616 			    priv->tx_timeout_count);
1617 		return false;
1618 	}
1619 
1620 	tx_ring = priv->ring_data[timeout_queue].ring;
1621 
1622 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1623 				HNS3_RING_TX_RING_HEAD_REG);
1624 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1625 				HNS3_RING_TX_RING_TAIL_REG);
1626 	netdev_info(ndev,
1627 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1628 		    priv->tx_timeout_count,
1629 		    timeout_queue,
1630 		    tx_ring->next_to_use,
1631 		    tx_ring->next_to_clean,
1632 		    hw_head,
1633 		    hw_tail,
1634 		    readl(tx_ring->tqp_vector->mask_addr));
1635 
1636 	return true;
1637 }
1638 
1639 static void hns3_nic_net_timeout(struct net_device *ndev)
1640 {
1641 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1642 	struct hnae3_handle *h = priv->ae_handle;
1643 
1644 	if (!hns3_get_tx_timeo_queue_info(ndev))
1645 		return;
1646 
1647 	priv->tx_timeout_count++;
1648 
1649 	/* request the reset, and let the hclge to determine
1650 	 * which reset level should be done
1651 	 */
1652 	if (h->ae_algo->ops->reset_event)
1653 		h->ae_algo->ops->reset_event(h->pdev, h);
1654 }
1655 
1656 static const struct net_device_ops hns3_nic_netdev_ops = {
1657 	.ndo_open		= hns3_nic_net_open,
1658 	.ndo_stop		= hns3_nic_net_stop,
1659 	.ndo_start_xmit		= hns3_nic_net_xmit,
1660 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1661 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1662 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1663 	.ndo_change_mtu		= hns3_nic_change_mtu,
1664 	.ndo_set_features	= hns3_nic_set_features,
1665 	.ndo_get_stats64	= hns3_nic_get_stats64,
1666 	.ndo_setup_tc		= hns3_nic_setup_tc,
1667 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1668 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1669 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1670 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1671 };
1672 
1673 static bool hns3_is_phys_func(struct pci_dev *pdev)
1674 {
1675 	u32 dev_id = pdev->device;
1676 
1677 	switch (dev_id) {
1678 	case HNAE3_DEV_ID_GE:
1679 	case HNAE3_DEV_ID_25GE:
1680 	case HNAE3_DEV_ID_25GE_RDMA:
1681 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1682 	case HNAE3_DEV_ID_50GE_RDMA:
1683 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1684 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1685 		return true;
1686 	case HNAE3_DEV_ID_100G_VF:
1687 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1688 		return false;
1689 	default:
1690 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1691 			 dev_id);
1692 	}
1693 
1694 	return false;
1695 }
1696 
1697 static void hns3_disable_sriov(struct pci_dev *pdev)
1698 {
1699 	/* If our VFs are assigned we cannot shut down SR-IOV
1700 	 * without causing issues, so just leave the hardware
1701 	 * available but disabled
1702 	 */
1703 	if (pci_vfs_assigned(pdev)) {
1704 		dev_warn(&pdev->dev,
1705 			 "disabling driver while VFs are assigned\n");
1706 		return;
1707 	}
1708 
1709 	pci_disable_sriov(pdev);
1710 }
1711 
1712 static void hns3_get_dev_capability(struct pci_dev *pdev,
1713 				    struct hnae3_ae_dev *ae_dev)
1714 {
1715 	if (pdev->revision >= 0x21) {
1716 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1717 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1718 	}
1719 }
1720 
1721 /* hns3_probe - Device initialization routine
1722  * @pdev: PCI device information struct
1723  * @ent: entry in hns3_pci_tbl
1724  *
1725  * hns3_probe initializes a PF identified by a pci_dev structure.
1726  * The OS initialization, configuring of the PF private structure,
1727  * and a hardware reset occur.
1728  *
1729  * Returns 0 on success, negative on failure
1730  */
1731 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1732 {
1733 	struct hnae3_ae_dev *ae_dev;
1734 	int ret;
1735 
1736 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1737 			      GFP_KERNEL);
1738 	if (!ae_dev) {
1739 		ret = -ENOMEM;
1740 		return ret;
1741 	}
1742 
1743 	ae_dev->pdev = pdev;
1744 	ae_dev->flag = ent->driver_data;
1745 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1746 	ae_dev->reset_type = HNAE3_NONE_RESET;
1747 	hns3_get_dev_capability(pdev, ae_dev);
1748 	pci_set_drvdata(pdev, ae_dev);
1749 
1750 	ret = hnae3_register_ae_dev(ae_dev);
1751 	if (ret) {
1752 		devm_kfree(&pdev->dev, ae_dev);
1753 		pci_set_drvdata(pdev, NULL);
1754 	}
1755 
1756 	return ret;
1757 }
1758 
1759 /* hns3_remove - Device removal routine
1760  * @pdev: PCI device information struct
1761  */
1762 static void hns3_remove(struct pci_dev *pdev)
1763 {
1764 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1765 
1766 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1767 		hns3_disable_sriov(pdev);
1768 
1769 	hnae3_unregister_ae_dev(ae_dev);
1770 	pci_set_drvdata(pdev, NULL);
1771 }
1772 
1773 /**
1774  * hns3_pci_sriov_configure
1775  * @pdev: pointer to a pci_dev structure
1776  * @num_vfs: number of VFs to allocate
1777  *
1778  * Enable or change the number of VFs. Called when the user updates the number
1779  * of VFs in sysfs.
1780  **/
1781 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1782 {
1783 	int ret;
1784 
1785 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1786 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1787 		return -EINVAL;
1788 	}
1789 
1790 	if (num_vfs) {
1791 		ret = pci_enable_sriov(pdev, num_vfs);
1792 		if (ret)
1793 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1794 		else
1795 			return num_vfs;
1796 	} else if (!pci_vfs_assigned(pdev)) {
1797 		pci_disable_sriov(pdev);
1798 	} else {
1799 		dev_warn(&pdev->dev,
1800 			 "Unable to free VFs because some are assigned to VMs.\n");
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static void hns3_shutdown(struct pci_dev *pdev)
1807 {
1808 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1809 
1810 	hnae3_unregister_ae_dev(ae_dev);
1811 	devm_kfree(&pdev->dev, ae_dev);
1812 	pci_set_drvdata(pdev, NULL);
1813 
1814 	if (system_state == SYSTEM_POWER_OFF)
1815 		pci_set_power_state(pdev, PCI_D3hot);
1816 }
1817 
1818 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1819 					    pci_channel_state_t state)
1820 {
1821 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1822 	pci_ers_result_t ret;
1823 
1824 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1825 
1826 	if (state == pci_channel_io_perm_failure)
1827 		return PCI_ERS_RESULT_DISCONNECT;
1828 
1829 	if (!ae_dev) {
1830 		dev_err(&pdev->dev,
1831 			"Can't recover - error happened during device init\n");
1832 		return PCI_ERS_RESULT_NONE;
1833 	}
1834 
1835 	if (ae_dev->ops->handle_hw_ras_error)
1836 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1837 	else
1838 		return PCI_ERS_RESULT_NONE;
1839 
1840 	return ret;
1841 }
1842 
1843 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1844 {
1845 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1846 	struct device *dev = &pdev->dev;
1847 
1848 	dev_info(dev, "requesting reset due to PCI error\n");
1849 
1850 	/* request the reset */
1851 	if (ae_dev->ops->reset_event) {
1852 		if (!ae_dev->override_pci_need_reset)
1853 			ae_dev->ops->reset_event(pdev, NULL);
1854 
1855 		return PCI_ERS_RESULT_RECOVERED;
1856 	}
1857 
1858 	return PCI_ERS_RESULT_DISCONNECT;
1859 }
1860 
1861 static void hns3_reset_prepare(struct pci_dev *pdev)
1862 {
1863 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1864 
1865 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1866 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1867 		ae_dev->ops->flr_prepare(ae_dev);
1868 }
1869 
1870 static void hns3_reset_done(struct pci_dev *pdev)
1871 {
1872 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1873 
1874 	dev_info(&pdev->dev, "hns3 flr done\n");
1875 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1876 		ae_dev->ops->flr_done(ae_dev);
1877 }
1878 
1879 static const struct pci_error_handlers hns3_err_handler = {
1880 	.error_detected = hns3_error_detected,
1881 	.slot_reset     = hns3_slot_reset,
1882 	.reset_prepare	= hns3_reset_prepare,
1883 	.reset_done	= hns3_reset_done,
1884 };
1885 
1886 static struct pci_driver hns3_driver = {
1887 	.name     = hns3_driver_name,
1888 	.id_table = hns3_pci_tbl,
1889 	.probe    = hns3_probe,
1890 	.remove   = hns3_remove,
1891 	.shutdown = hns3_shutdown,
1892 	.sriov_configure = hns3_pci_sriov_configure,
1893 	.err_handler    = &hns3_err_handler,
1894 };
1895 
1896 /* set default feature to hns3 */
1897 static void hns3_set_default_feature(struct net_device *netdev)
1898 {
1899 	struct hnae3_handle *h = hns3_get_handle(netdev);
1900 	struct pci_dev *pdev = h->pdev;
1901 
1902 	netdev->priv_flags |= IFF_UNICAST_FLT;
1903 
1904 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1905 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1906 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1907 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1908 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1909 
1910 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1911 
1912 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1913 
1914 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1915 		NETIF_F_HW_VLAN_CTAG_FILTER |
1916 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1917 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1918 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1919 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1920 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1921 
1922 	netdev->vlan_features |=
1923 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1924 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1925 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1926 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1927 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1928 
1929 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1930 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1931 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1932 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1933 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1934 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1935 
1936 	if (pdev->revision >= 0x21) {
1937 		netdev->hw_features |= NETIF_F_GRO_HW;
1938 		netdev->features |= NETIF_F_GRO_HW;
1939 
1940 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1941 			netdev->hw_features |= NETIF_F_NTUPLE;
1942 			netdev->features |= NETIF_F_NTUPLE;
1943 		}
1944 	}
1945 }
1946 
1947 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1948 			     struct hns3_desc_cb *cb)
1949 {
1950 	unsigned int order = hnae3_page_order(ring);
1951 	struct page *p;
1952 
1953 	p = dev_alloc_pages(order);
1954 	if (!p)
1955 		return -ENOMEM;
1956 
1957 	cb->priv = p;
1958 	cb->page_offset = 0;
1959 	cb->reuse_flag = 0;
1960 	cb->buf  = page_address(p);
1961 	cb->length = hnae3_page_size(ring);
1962 	cb->type = DESC_TYPE_PAGE;
1963 
1964 	return 0;
1965 }
1966 
1967 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1968 			     struct hns3_desc_cb *cb)
1969 {
1970 	if (cb->type == DESC_TYPE_SKB)
1971 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1972 	else if (!HNAE3_IS_TX_RING(ring))
1973 		put_page((struct page *)cb->priv);
1974 	memset(cb, 0, sizeof(*cb));
1975 }
1976 
1977 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1978 {
1979 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1980 			       cb->length, ring_to_dma_dir(ring));
1981 
1982 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1983 		return -EIO;
1984 
1985 	return 0;
1986 }
1987 
1988 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1989 			      struct hns3_desc_cb *cb)
1990 {
1991 	if (cb->type == DESC_TYPE_SKB)
1992 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1993 				 ring_to_dma_dir(ring));
1994 	else if (cb->length)
1995 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1996 			       ring_to_dma_dir(ring));
1997 }
1998 
1999 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2000 {
2001 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2002 	ring->desc[i].addr = 0;
2003 }
2004 
2005 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2006 {
2007 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2008 
2009 	if (!ring->desc_cb[i].dma)
2010 		return;
2011 
2012 	hns3_buffer_detach(ring, i);
2013 	hns3_free_buffer(ring, cb);
2014 }
2015 
2016 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2017 {
2018 	int i;
2019 
2020 	for (i = 0; i < ring->desc_num; i++)
2021 		hns3_free_buffer_detach(ring, i);
2022 }
2023 
2024 /* free desc along with its attached buffer */
2025 static void hns3_free_desc(struct hns3_enet_ring *ring)
2026 {
2027 	int size = ring->desc_num * sizeof(ring->desc[0]);
2028 
2029 	hns3_free_buffers(ring);
2030 
2031 	if (ring->desc) {
2032 		dma_free_coherent(ring_to_dev(ring), size,
2033 				  ring->desc, ring->desc_dma_addr);
2034 		ring->desc = NULL;
2035 	}
2036 }
2037 
2038 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2039 {
2040 	int size = ring->desc_num * sizeof(ring->desc[0]);
2041 
2042 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2043 					&ring->desc_dma_addr, GFP_KERNEL);
2044 	if (!ring->desc)
2045 		return -ENOMEM;
2046 
2047 	return 0;
2048 }
2049 
2050 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2051 				   struct hns3_desc_cb *cb)
2052 {
2053 	int ret;
2054 
2055 	ret = hns3_alloc_buffer(ring, cb);
2056 	if (ret)
2057 		goto out;
2058 
2059 	ret = hns3_map_buffer(ring, cb);
2060 	if (ret)
2061 		goto out_with_buf;
2062 
2063 	return 0;
2064 
2065 out_with_buf:
2066 	hns3_free_buffer(ring, cb);
2067 out:
2068 	return ret;
2069 }
2070 
2071 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2072 {
2073 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2074 
2075 	if (ret)
2076 		return ret;
2077 
2078 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2079 
2080 	return 0;
2081 }
2082 
2083 /* Allocate memory for raw pkg, and map with dma */
2084 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2085 {
2086 	int i, j, ret;
2087 
2088 	for (i = 0; i < ring->desc_num; i++) {
2089 		ret = hns3_alloc_buffer_attach(ring, i);
2090 		if (ret)
2091 			goto out_buffer_fail;
2092 	}
2093 
2094 	return 0;
2095 
2096 out_buffer_fail:
2097 	for (j = i - 1; j >= 0; j--)
2098 		hns3_free_buffer_detach(ring, j);
2099 	return ret;
2100 }
2101 
2102 /* detach a in-used buffer and replace with a reserved one  */
2103 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2104 				struct hns3_desc_cb *res_cb)
2105 {
2106 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2107 	ring->desc_cb[i] = *res_cb;
2108 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2109 	ring->desc[i].rx.bd_base_info = 0;
2110 }
2111 
2112 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2113 {
2114 	ring->desc_cb[i].reuse_flag = 0;
2115 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2116 		+ ring->desc_cb[i].page_offset);
2117 	ring->desc[i].rx.bd_base_info = 0;
2118 }
2119 
2120 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2121 				      int *pkts)
2122 {
2123 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2124 
2125 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2126 	(*bytes) += desc_cb->length;
2127 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2128 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2129 
2130 	ring_ptr_move_fw(ring, next_to_clean);
2131 }
2132 
2133 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2134 {
2135 	int u = ring->next_to_use;
2136 	int c = ring->next_to_clean;
2137 
2138 	if (unlikely(h > ring->desc_num))
2139 		return 0;
2140 
2141 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2142 }
2143 
2144 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2145 {
2146 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2147 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2148 	struct netdev_queue *dev_queue;
2149 	int bytes, pkts;
2150 	int head;
2151 
2152 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2153 	rmb(); /* Make sure head is ready before touch any data */
2154 
2155 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2156 		return; /* no data to poll */
2157 
2158 	if (unlikely(!is_valid_clean_head(ring, head))) {
2159 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2160 			   ring->next_to_use, ring->next_to_clean);
2161 
2162 		u64_stats_update_begin(&ring->syncp);
2163 		ring->stats.io_err_cnt++;
2164 		u64_stats_update_end(&ring->syncp);
2165 		return;
2166 	}
2167 
2168 	bytes = 0;
2169 	pkts = 0;
2170 	while (head != ring->next_to_clean) {
2171 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2172 		/* Issue prefetch for next Tx descriptor */
2173 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2174 	}
2175 
2176 	ring->tqp_vector->tx_group.total_bytes += bytes;
2177 	ring->tqp_vector->tx_group.total_packets += pkts;
2178 
2179 	u64_stats_update_begin(&ring->syncp);
2180 	ring->stats.tx_bytes += bytes;
2181 	ring->stats.tx_pkts += pkts;
2182 	u64_stats_update_end(&ring->syncp);
2183 
2184 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2185 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2186 
2187 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2188 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2189 		/* Make sure that anybody stopping the queue after this
2190 		 * sees the new next_to_clean.
2191 		 */
2192 		smp_mb();
2193 		if (netif_tx_queue_stopped(dev_queue) &&
2194 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2195 			netif_tx_wake_queue(dev_queue);
2196 			ring->stats.restart_queue++;
2197 		}
2198 	}
2199 }
2200 
2201 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2202 {
2203 	int ntc = ring->next_to_clean;
2204 	int ntu = ring->next_to_use;
2205 
2206 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2207 }
2208 
2209 static void
2210 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2211 {
2212 	struct hns3_desc_cb *desc_cb;
2213 	struct hns3_desc_cb res_cbs;
2214 	int i, ret;
2215 
2216 	for (i = 0; i < cleand_count; i++) {
2217 		desc_cb = &ring->desc_cb[ring->next_to_use];
2218 		if (desc_cb->reuse_flag) {
2219 			u64_stats_update_begin(&ring->syncp);
2220 			ring->stats.reuse_pg_cnt++;
2221 			u64_stats_update_end(&ring->syncp);
2222 
2223 			hns3_reuse_buffer(ring, ring->next_to_use);
2224 		} else {
2225 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2226 			if (ret) {
2227 				u64_stats_update_begin(&ring->syncp);
2228 				ring->stats.sw_err_cnt++;
2229 				u64_stats_update_end(&ring->syncp);
2230 
2231 				netdev_err(ring->tqp->handle->kinfo.netdev,
2232 					   "hnae reserve buffer map failed.\n");
2233 				break;
2234 			}
2235 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2236 		}
2237 
2238 		ring_ptr_move_fw(ring, next_to_use);
2239 	}
2240 
2241 	wmb(); /* Make all data has been write before submit */
2242 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2243 }
2244 
2245 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2246 				struct hns3_enet_ring *ring, int pull_len,
2247 				struct hns3_desc_cb *desc_cb)
2248 {
2249 	struct hns3_desc *desc;
2250 	u32 truesize;
2251 	int size;
2252 	int last_offset;
2253 	bool twobufs;
2254 
2255 	twobufs = ((PAGE_SIZE < 8192) &&
2256 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2257 
2258 	desc = &ring->desc[ring->next_to_clean];
2259 	size = le16_to_cpu(desc->rx.size);
2260 
2261 	truesize = hnae3_buf_size(ring);
2262 
2263 	if (!twobufs)
2264 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2265 
2266 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2267 			size - pull_len, truesize);
2268 
2269 	 /* Avoid re-using remote pages,flag default unreuse */
2270 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2271 		return;
2272 
2273 	if (twobufs) {
2274 		/* If we are only owner of page we can reuse it */
2275 		if (likely(page_count(desc_cb->priv) == 1)) {
2276 			/* Flip page offset to other buffer */
2277 			desc_cb->page_offset ^= truesize;
2278 
2279 			desc_cb->reuse_flag = 1;
2280 			/* bump ref count on page before it is given*/
2281 			get_page(desc_cb->priv);
2282 		}
2283 		return;
2284 	}
2285 
2286 	/* Move offset up to the next cache line */
2287 	desc_cb->page_offset += truesize;
2288 
2289 	if (desc_cb->page_offset <= last_offset) {
2290 		desc_cb->reuse_flag = 1;
2291 		/* Bump ref count on page before it is given*/
2292 		get_page(desc_cb->priv);
2293 	}
2294 }
2295 
2296 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2297 			     struct hns3_desc *desc)
2298 {
2299 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2300 	int l3_type, l4_type;
2301 	u32 bd_base_info;
2302 	int ol4_type;
2303 	u32 l234info;
2304 
2305 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2306 	l234info = le32_to_cpu(desc->rx.l234_info);
2307 
2308 	skb->ip_summed = CHECKSUM_NONE;
2309 
2310 	skb_checksum_none_assert(skb);
2311 
2312 	if (!(netdev->features & NETIF_F_RXCSUM))
2313 		return;
2314 
2315 	/* We MUST enable hardware checksum before enabling hardware GRO */
2316 	if (skb_shinfo(skb)->gso_size) {
2317 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2318 		return;
2319 	}
2320 
2321 	/* check if hardware has done checksum */
2322 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2323 		return;
2324 
2325 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2326 				 BIT(HNS3_RXD_OL3E_B) |
2327 				 BIT(HNS3_RXD_OL4E_B)))) {
2328 		u64_stats_update_begin(&ring->syncp);
2329 		ring->stats.l3l4_csum_err++;
2330 		u64_stats_update_end(&ring->syncp);
2331 
2332 		return;
2333 	}
2334 
2335 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2336 				   HNS3_RXD_OL4ID_S);
2337 	switch (ol4_type) {
2338 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2339 	case HNS3_OL4_TYPE_NVGRE:
2340 		skb->csum_level = 1;
2341 		/* fall through */
2342 	case HNS3_OL4_TYPE_NO_TUN:
2343 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2344 					  HNS3_RXD_L3ID_S);
2345 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2346 					  HNS3_RXD_L4ID_S);
2347 
2348 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2349 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2350 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2351 		    (l4_type == HNS3_L4_TYPE_UDP ||
2352 		     l4_type == HNS3_L4_TYPE_TCP ||
2353 		     l4_type == HNS3_L4_TYPE_SCTP))
2354 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2355 		break;
2356 	default:
2357 		break;
2358 	}
2359 }
2360 
2361 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2362 {
2363 	if (skb_has_frag_list(skb))
2364 		napi_gro_flush(&ring->tqp_vector->napi, false);
2365 
2366 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2367 }
2368 
2369 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2370 				struct hns3_desc *desc, u32 l234info,
2371 				u16 *vlan_tag)
2372 {
2373 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2374 
2375 	if (pdev->revision == 0x20) {
2376 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2377 		if (!(*vlan_tag & VLAN_VID_MASK))
2378 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2379 
2380 		return (*vlan_tag != 0);
2381 	}
2382 
2383 #define HNS3_STRP_OUTER_VLAN	0x1
2384 #define HNS3_STRP_INNER_VLAN	0x2
2385 
2386 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2387 				HNS3_RXD_STRP_TAGP_S)) {
2388 	case HNS3_STRP_OUTER_VLAN:
2389 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2390 		return true;
2391 	case HNS3_STRP_INNER_VLAN:
2392 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2393 		return true;
2394 	default:
2395 		return false;
2396 	}
2397 }
2398 
2399 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2400 			  unsigned char *va)
2401 {
2402 #define HNS3_NEED_ADD_FRAG	1
2403 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2404 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2405 	struct sk_buff *skb;
2406 
2407 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2408 	skb = ring->skb;
2409 	if (unlikely(!skb)) {
2410 		netdev_err(netdev, "alloc rx skb fail\n");
2411 
2412 		u64_stats_update_begin(&ring->syncp);
2413 		ring->stats.sw_err_cnt++;
2414 		u64_stats_update_end(&ring->syncp);
2415 
2416 		return -ENOMEM;
2417 	}
2418 
2419 	prefetchw(skb->data);
2420 
2421 	ring->pending_buf = 1;
2422 	ring->frag_num = 0;
2423 	ring->tail_skb = NULL;
2424 	if (length <= HNS3_RX_HEAD_SIZE) {
2425 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2426 
2427 		/* We can reuse buffer as-is, just make sure it is local */
2428 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2429 			desc_cb->reuse_flag = 1;
2430 		else /* This page cannot be reused so discard it */
2431 			put_page(desc_cb->priv);
2432 
2433 		ring_ptr_move_fw(ring, next_to_clean);
2434 		return 0;
2435 	}
2436 	u64_stats_update_begin(&ring->syncp);
2437 	ring->stats.seg_pkt_cnt++;
2438 	u64_stats_update_end(&ring->syncp);
2439 
2440 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2441 	__skb_put(skb, ring->pull_len);
2442 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2443 			    desc_cb);
2444 	ring_ptr_move_fw(ring, next_to_clean);
2445 
2446 	return HNS3_NEED_ADD_FRAG;
2447 }
2448 
2449 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2450 			 struct sk_buff **out_skb, bool pending)
2451 {
2452 	struct sk_buff *skb = *out_skb;
2453 	struct sk_buff *head_skb = *out_skb;
2454 	struct sk_buff *new_skb;
2455 	struct hns3_desc_cb *desc_cb;
2456 	struct hns3_desc *pre_desc;
2457 	u32 bd_base_info;
2458 	int pre_bd;
2459 
2460 	/* if there is pending bd, the SW param next_to_clean has moved
2461 	 * to next and the next is NULL
2462 	 */
2463 	if (pending) {
2464 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2465 			ring->desc_num;
2466 		pre_desc = &ring->desc[pre_bd];
2467 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2468 	} else {
2469 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2470 	}
2471 
2472 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2473 		desc = &ring->desc[ring->next_to_clean];
2474 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2475 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2476 		/* make sure HW write desc complete */
2477 		dma_rmb();
2478 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2479 			return -ENXIO;
2480 
2481 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2482 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2483 						 HNS3_RX_HEAD_SIZE);
2484 			if (unlikely(!new_skb)) {
2485 				netdev_err(ring->tqp->handle->kinfo.netdev,
2486 					   "alloc rx skb frag fail\n");
2487 				return -ENXIO;
2488 			}
2489 			ring->frag_num = 0;
2490 
2491 			if (ring->tail_skb) {
2492 				ring->tail_skb->next = new_skb;
2493 				ring->tail_skb = new_skb;
2494 			} else {
2495 				skb_shinfo(skb)->frag_list = new_skb;
2496 				ring->tail_skb = new_skb;
2497 			}
2498 		}
2499 
2500 		if (ring->tail_skb) {
2501 			head_skb->truesize += hnae3_buf_size(ring);
2502 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2503 			head_skb->len += le16_to_cpu(desc->rx.size);
2504 			skb = ring->tail_skb;
2505 		}
2506 
2507 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2508 		ring_ptr_move_fw(ring, next_to_clean);
2509 		ring->pending_buf++;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2516 			       u32 bd_base_info)
2517 {
2518 	u16 gro_count;
2519 	u32 l3_type;
2520 
2521 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2522 				    HNS3_RXD_GRO_COUNT_S);
2523 	/* if there is no HW GRO, do not set gro params */
2524 	if (!gro_count)
2525 		return;
2526 
2527 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2528 	 * to skb_shinfo(skb)->gso_segs
2529 	 */
2530 	NAPI_GRO_CB(skb)->count = gro_count;
2531 
2532 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2533 				  HNS3_RXD_L3ID_S);
2534 	if (l3_type == HNS3_L3_TYPE_IPV4)
2535 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2536 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2537 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2538 	else
2539 		return;
2540 
2541 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2542 						    HNS3_RXD_GRO_SIZE_M,
2543 						    HNS3_RXD_GRO_SIZE_S);
2544 	if (skb_shinfo(skb)->gso_size)
2545 		tcp_gro_complete(skb);
2546 }
2547 
2548 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2549 				     struct sk_buff *skb)
2550 {
2551 	struct hnae3_handle *handle = ring->tqp->handle;
2552 	enum pkt_hash_types rss_type;
2553 	struct hns3_desc *desc;
2554 	int last_bd;
2555 
2556 	/* When driver handle the rss type, ring->next_to_clean indicates the
2557 	 * first descriptor of next packet, need -1 here.
2558 	 */
2559 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2560 	desc = &ring->desc[last_bd];
2561 
2562 	if (le32_to_cpu(desc->rx.rss_hash))
2563 		rss_type = handle->kinfo.rss_type;
2564 	else
2565 		rss_type = PKT_HASH_TYPE_NONE;
2566 
2567 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2568 }
2569 
2570 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2571 			     struct sk_buff **out_skb)
2572 {
2573 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2574 	enum hns3_pkt_l2t_type l2_frame_type;
2575 	struct sk_buff *skb = ring->skb;
2576 	struct hns3_desc_cb *desc_cb;
2577 	struct hns3_desc *desc;
2578 	u32 bd_base_info;
2579 	u32 l234info;
2580 	int length;
2581 	int ret;
2582 
2583 	desc = &ring->desc[ring->next_to_clean];
2584 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2585 
2586 	prefetch(desc);
2587 
2588 	length = le16_to_cpu(desc->rx.size);
2589 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2590 
2591 	/* Check valid BD */
2592 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2593 		return -ENXIO;
2594 
2595 	if (!skb)
2596 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2597 
2598 	/* Prefetch first cache line of first page
2599 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2600 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2601 	 * actual we can have greater size of caches with 128B Level 1 cache
2602 	 * lines. In such a case, single fetch would suffice to cache in the
2603 	 * relevant part of the header.
2604 	 */
2605 	prefetch(ring->va);
2606 #if L1_CACHE_BYTES < 128
2607 	prefetch(ring->va + L1_CACHE_BYTES);
2608 #endif
2609 
2610 	if (!skb) {
2611 		ret = hns3_alloc_skb(ring, length, ring->va);
2612 		*out_skb = skb = ring->skb;
2613 
2614 		if (ret < 0) /* alloc buffer fail */
2615 			return ret;
2616 		if (ret > 0) { /* need add frag */
2617 			ret = hns3_add_frag(ring, desc, &skb, false);
2618 			if (ret)
2619 				return ret;
2620 
2621 			/* As the head data may be changed when GRO enable, copy
2622 			 * the head data in after other data rx completed
2623 			 */
2624 			memcpy(skb->data, ring->va,
2625 			       ALIGN(ring->pull_len, sizeof(long)));
2626 		}
2627 	} else {
2628 		ret = hns3_add_frag(ring, desc, &skb, true);
2629 		if (ret)
2630 			return ret;
2631 
2632 		/* As the head data may be changed when GRO enable, copy
2633 		 * the head data in after other data rx completed
2634 		 */
2635 		memcpy(skb->data, ring->va,
2636 		       ALIGN(ring->pull_len, sizeof(long)));
2637 	}
2638 
2639 	l234info = le32_to_cpu(desc->rx.l234_info);
2640 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2641 
2642 	/* Based on hw strategy, the tag offloaded will be stored at
2643 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2644 	 * in one layer tag case.
2645 	 */
2646 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2647 		u16 vlan_tag;
2648 
2649 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2650 			__vlan_hwaccel_put_tag(skb,
2651 					       htons(ETH_P_8021Q),
2652 					       vlan_tag);
2653 	}
2654 
2655 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2656 		u64_stats_update_begin(&ring->syncp);
2657 		ring->stats.non_vld_descs++;
2658 		u64_stats_update_end(&ring->syncp);
2659 
2660 		dev_kfree_skb_any(skb);
2661 		return -EINVAL;
2662 	}
2663 
2664 	if (unlikely((!desc->rx.pkt_len) ||
2665 		     (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2666 				  BIT(HNS3_RXD_L2E_B))))) {
2667 		u64_stats_update_begin(&ring->syncp);
2668 		if (l234info & BIT(HNS3_RXD_L2E_B))
2669 			ring->stats.l2_err++;
2670 		else
2671 			ring->stats.err_pkt_len++;
2672 		u64_stats_update_end(&ring->syncp);
2673 
2674 		dev_kfree_skb_any(skb);
2675 		return -EFAULT;
2676 	}
2677 
2678 
2679 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2680 					HNS3_RXD_DMAC_S);
2681 	u64_stats_update_begin(&ring->syncp);
2682 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2683 		ring->stats.rx_multicast++;
2684 
2685 	ring->stats.rx_pkts++;
2686 	ring->stats.rx_bytes += skb->len;
2687 	u64_stats_update_end(&ring->syncp);
2688 
2689 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2690 
2691 	/* This is needed in order to enable forwarding support */
2692 	hns3_set_gro_param(skb, l234info, bd_base_info);
2693 
2694 	hns3_rx_checksum(ring, skb, desc);
2695 	*out_skb = skb;
2696 	hns3_set_rx_skb_rss_type(ring, skb);
2697 
2698 	return 0;
2699 }
2700 
2701 int hns3_clean_rx_ring(
2702 		struct hns3_enet_ring *ring, int budget,
2703 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2704 {
2705 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2706 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2707 	int recv_pkts, recv_bds, clean_count, err;
2708 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2709 	struct sk_buff *skb = ring->skb;
2710 	int num;
2711 
2712 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2713 	rmb(); /* Make sure num taken effect before the other data is touched */
2714 
2715 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2716 	num -= unused_count;
2717 
2718 	while (recv_pkts < budget && recv_bds < num) {
2719 		/* Reuse or realloc buffers */
2720 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2721 			hns3_nic_alloc_rx_buffers(ring,
2722 						  clean_count + unused_count);
2723 			clean_count = 0;
2724 			unused_count = hns3_desc_unused(ring) -
2725 					ring->pending_buf;
2726 		}
2727 
2728 		/* Poll one pkt */
2729 		err = hns3_handle_rx_bd(ring, &skb);
2730 		if (unlikely(!skb)) /* This fault cannot be repaired */
2731 			goto out;
2732 
2733 		if (err == -ENXIO) { /* Do not get FE for the packet */
2734 			goto out;
2735 		} else if (unlikely(err)) {  /* Do jump the err */
2736 			recv_bds += ring->pending_buf;
2737 			clean_count += ring->pending_buf;
2738 			ring->skb = NULL;
2739 			ring->pending_buf = 0;
2740 			continue;
2741 		}
2742 
2743 		/* Do update ip stack process */
2744 		skb->protocol = eth_type_trans(skb, netdev);
2745 		rx_fn(ring, skb);
2746 		recv_bds += ring->pending_buf;
2747 		clean_count += ring->pending_buf;
2748 		ring->skb = NULL;
2749 		ring->pending_buf = 0;
2750 
2751 		recv_pkts++;
2752 	}
2753 
2754 out:
2755 	/* Make all data has been write before submit */
2756 	if (clean_count + unused_count > 0)
2757 		hns3_nic_alloc_rx_buffers(ring,
2758 					  clean_count + unused_count);
2759 
2760 	return recv_pkts;
2761 }
2762 
2763 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2764 {
2765 	struct hns3_enet_tqp_vector *tqp_vector =
2766 					ring_group->ring->tqp_vector;
2767 	enum hns3_flow_level_range new_flow_level;
2768 	int packets_per_msecs;
2769 	int bytes_per_msecs;
2770 	u32 time_passed_ms;
2771 	u16 new_int_gl;
2772 
2773 	if (!tqp_vector->last_jiffies)
2774 		return false;
2775 
2776 	if (ring_group->total_packets == 0) {
2777 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2778 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2779 		return true;
2780 	}
2781 
2782 	/* Simple throttlerate management
2783 	 * 0-10MB/s   lower     (50000 ints/s)
2784 	 * 10-20MB/s   middle    (20000 ints/s)
2785 	 * 20-1249MB/s high      (18000 ints/s)
2786 	 * > 40000pps  ultra     (8000 ints/s)
2787 	 */
2788 	new_flow_level = ring_group->coal.flow_level;
2789 	new_int_gl = ring_group->coal.int_gl;
2790 	time_passed_ms =
2791 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2792 
2793 	if (!time_passed_ms)
2794 		return false;
2795 
2796 	do_div(ring_group->total_packets, time_passed_ms);
2797 	packets_per_msecs = ring_group->total_packets;
2798 
2799 	do_div(ring_group->total_bytes, time_passed_ms);
2800 	bytes_per_msecs = ring_group->total_bytes;
2801 
2802 #define HNS3_RX_LOW_BYTE_RATE 10000
2803 #define HNS3_RX_MID_BYTE_RATE 20000
2804 
2805 	switch (new_flow_level) {
2806 	case HNS3_FLOW_LOW:
2807 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2808 			new_flow_level = HNS3_FLOW_MID;
2809 		break;
2810 	case HNS3_FLOW_MID:
2811 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2812 			new_flow_level = HNS3_FLOW_HIGH;
2813 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2814 			new_flow_level = HNS3_FLOW_LOW;
2815 		break;
2816 	case HNS3_FLOW_HIGH:
2817 	case HNS3_FLOW_ULTRA:
2818 	default:
2819 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2820 			new_flow_level = HNS3_FLOW_MID;
2821 		break;
2822 	}
2823 
2824 #define HNS3_RX_ULTRA_PACKET_RATE 40
2825 
2826 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2827 	    &tqp_vector->rx_group == ring_group)
2828 		new_flow_level = HNS3_FLOW_ULTRA;
2829 
2830 	switch (new_flow_level) {
2831 	case HNS3_FLOW_LOW:
2832 		new_int_gl = HNS3_INT_GL_50K;
2833 		break;
2834 	case HNS3_FLOW_MID:
2835 		new_int_gl = HNS3_INT_GL_20K;
2836 		break;
2837 	case HNS3_FLOW_HIGH:
2838 		new_int_gl = HNS3_INT_GL_18K;
2839 		break;
2840 	case HNS3_FLOW_ULTRA:
2841 		new_int_gl = HNS3_INT_GL_8K;
2842 		break;
2843 	default:
2844 		break;
2845 	}
2846 
2847 	ring_group->total_bytes = 0;
2848 	ring_group->total_packets = 0;
2849 	ring_group->coal.flow_level = new_flow_level;
2850 	if (new_int_gl != ring_group->coal.int_gl) {
2851 		ring_group->coal.int_gl = new_int_gl;
2852 		return true;
2853 	}
2854 	return false;
2855 }
2856 
2857 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2858 {
2859 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2860 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2861 	bool rx_update, tx_update;
2862 
2863 	/* update param every 1000ms */
2864 	if (time_before(jiffies,
2865 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2866 		return;
2867 
2868 	if (rx_group->coal.gl_adapt_enable) {
2869 		rx_update = hns3_get_new_int_gl(rx_group);
2870 		if (rx_update)
2871 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2872 						       rx_group->coal.int_gl);
2873 	}
2874 
2875 	if (tx_group->coal.gl_adapt_enable) {
2876 		tx_update = hns3_get_new_int_gl(tx_group);
2877 		if (tx_update)
2878 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2879 						       tx_group->coal.int_gl);
2880 	}
2881 
2882 	tqp_vector->last_jiffies = jiffies;
2883 }
2884 
2885 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2886 {
2887 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2888 	struct hns3_enet_ring *ring;
2889 	int rx_pkt_total = 0;
2890 
2891 	struct hns3_enet_tqp_vector *tqp_vector =
2892 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2893 	bool clean_complete = true;
2894 	int rx_budget;
2895 
2896 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2897 		napi_complete(napi);
2898 		return 0;
2899 	}
2900 
2901 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2902 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2903 	 */
2904 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2905 		hns3_clean_tx_ring(ring);
2906 
2907 	/* make sure rx ring budget not smaller than 1 */
2908 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2909 
2910 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2911 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2912 						    hns3_rx_skb);
2913 
2914 		if (rx_cleaned >= rx_budget)
2915 			clean_complete = false;
2916 
2917 		rx_pkt_total += rx_cleaned;
2918 	}
2919 
2920 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2921 
2922 	if (!clean_complete)
2923 		return budget;
2924 
2925 	if (napi_complete(napi) &&
2926 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2927 		hns3_update_new_int_gl(tqp_vector);
2928 		hns3_mask_vector_irq(tqp_vector, 1);
2929 	}
2930 
2931 	return rx_pkt_total;
2932 }
2933 
2934 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2935 				      struct hnae3_ring_chain_node *head)
2936 {
2937 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2938 	struct hnae3_ring_chain_node *cur_chain = head;
2939 	struct hnae3_ring_chain_node *chain;
2940 	struct hns3_enet_ring *tx_ring;
2941 	struct hns3_enet_ring *rx_ring;
2942 
2943 	tx_ring = tqp_vector->tx_group.ring;
2944 	if (tx_ring) {
2945 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2946 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2947 			      HNAE3_RING_TYPE_TX);
2948 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2949 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2950 
2951 		cur_chain->next = NULL;
2952 
2953 		while (tx_ring->next) {
2954 			tx_ring = tx_ring->next;
2955 
2956 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2957 					     GFP_KERNEL);
2958 			if (!chain)
2959 				goto err_free_chain;
2960 
2961 			cur_chain->next = chain;
2962 			chain->tqp_index = tx_ring->tqp->tqp_index;
2963 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2964 				      HNAE3_RING_TYPE_TX);
2965 			hnae3_set_field(chain->int_gl_idx,
2966 					HNAE3_RING_GL_IDX_M,
2967 					HNAE3_RING_GL_IDX_S,
2968 					HNAE3_RING_GL_TX);
2969 
2970 			cur_chain = chain;
2971 		}
2972 	}
2973 
2974 	rx_ring = tqp_vector->rx_group.ring;
2975 	if (!tx_ring && rx_ring) {
2976 		cur_chain->next = NULL;
2977 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2978 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2979 			      HNAE3_RING_TYPE_RX);
2980 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2981 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2982 
2983 		rx_ring = rx_ring->next;
2984 	}
2985 
2986 	while (rx_ring) {
2987 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2988 		if (!chain)
2989 			goto err_free_chain;
2990 
2991 		cur_chain->next = chain;
2992 		chain->tqp_index = rx_ring->tqp->tqp_index;
2993 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2994 			      HNAE3_RING_TYPE_RX);
2995 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2996 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2997 
2998 		cur_chain = chain;
2999 
3000 		rx_ring = rx_ring->next;
3001 	}
3002 
3003 	return 0;
3004 
3005 err_free_chain:
3006 	cur_chain = head->next;
3007 	while (cur_chain) {
3008 		chain = cur_chain->next;
3009 		devm_kfree(&pdev->dev, cur_chain);
3010 		cur_chain = chain;
3011 	}
3012 	head->next = NULL;
3013 
3014 	return -ENOMEM;
3015 }
3016 
3017 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3018 					struct hnae3_ring_chain_node *head)
3019 {
3020 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3021 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3022 
3023 	chain = head->next;
3024 
3025 	while (chain) {
3026 		chain_tmp = chain->next;
3027 		devm_kfree(&pdev->dev, chain);
3028 		chain = chain_tmp;
3029 	}
3030 }
3031 
3032 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3033 				   struct hns3_enet_ring *ring)
3034 {
3035 	ring->next = group->ring;
3036 	group->ring = ring;
3037 
3038 	group->count++;
3039 }
3040 
3041 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3042 {
3043 	struct pci_dev *pdev = priv->ae_handle->pdev;
3044 	struct hns3_enet_tqp_vector *tqp_vector;
3045 	int num_vectors = priv->vector_num;
3046 	int numa_node;
3047 	int vector_i;
3048 
3049 	numa_node = dev_to_node(&pdev->dev);
3050 
3051 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3052 		tqp_vector = &priv->tqp_vector[vector_i];
3053 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3054 				&tqp_vector->affinity_mask);
3055 	}
3056 }
3057 
3058 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3059 {
3060 	struct hnae3_ring_chain_node vector_ring_chain;
3061 	struct hnae3_handle *h = priv->ae_handle;
3062 	struct hns3_enet_tqp_vector *tqp_vector;
3063 	int ret = 0;
3064 	int i;
3065 
3066 	hns3_nic_set_cpumask(priv);
3067 
3068 	for (i = 0; i < priv->vector_num; i++) {
3069 		tqp_vector = &priv->tqp_vector[i];
3070 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3071 		tqp_vector->num_tqps = 0;
3072 	}
3073 
3074 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3075 		u16 vector_i = i % priv->vector_num;
3076 		u16 tqp_num = h->kinfo.num_tqps;
3077 
3078 		tqp_vector = &priv->tqp_vector[vector_i];
3079 
3080 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3081 				       priv->ring_data[i].ring);
3082 
3083 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3084 				       priv->ring_data[i + tqp_num].ring);
3085 
3086 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3087 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3088 		tqp_vector->num_tqps++;
3089 	}
3090 
3091 	for (i = 0; i < priv->vector_num; i++) {
3092 		tqp_vector = &priv->tqp_vector[i];
3093 
3094 		tqp_vector->rx_group.total_bytes = 0;
3095 		tqp_vector->rx_group.total_packets = 0;
3096 		tqp_vector->tx_group.total_bytes = 0;
3097 		tqp_vector->tx_group.total_packets = 0;
3098 		tqp_vector->handle = h;
3099 
3100 		ret = hns3_get_vector_ring_chain(tqp_vector,
3101 						 &vector_ring_chain);
3102 		if (ret)
3103 			goto map_ring_fail;
3104 
3105 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3106 			tqp_vector->vector_irq, &vector_ring_chain);
3107 
3108 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3109 
3110 		if (ret)
3111 			goto map_ring_fail;
3112 
3113 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3114 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3115 	}
3116 
3117 	return 0;
3118 
3119 map_ring_fail:
3120 	while (i--)
3121 		netif_napi_del(&priv->tqp_vector[i].napi);
3122 
3123 	return ret;
3124 }
3125 
3126 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3127 {
3128 #define HNS3_VECTOR_PF_MAX_NUM		64
3129 
3130 	struct hnae3_handle *h = priv->ae_handle;
3131 	struct hns3_enet_tqp_vector *tqp_vector;
3132 	struct hnae3_vector_info *vector;
3133 	struct pci_dev *pdev = h->pdev;
3134 	u16 tqp_num = h->kinfo.num_tqps;
3135 	u16 vector_num;
3136 	int ret = 0;
3137 	u16 i;
3138 
3139 	/* RSS size, cpu online and vector_num should be the same */
3140 	/* Should consider 2p/4p later */
3141 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3142 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3143 
3144 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3145 			      GFP_KERNEL);
3146 	if (!vector)
3147 		return -ENOMEM;
3148 
3149 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3150 
3151 	priv->vector_num = vector_num;
3152 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3153 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3154 			     GFP_KERNEL);
3155 	if (!priv->tqp_vector) {
3156 		ret = -ENOMEM;
3157 		goto out;
3158 	}
3159 
3160 	for (i = 0; i < priv->vector_num; i++) {
3161 		tqp_vector = &priv->tqp_vector[i];
3162 		tqp_vector->idx = i;
3163 		tqp_vector->mask_addr = vector[i].io_addr;
3164 		tqp_vector->vector_irq = vector[i].vector;
3165 		hns3_vector_gl_rl_init(tqp_vector, priv);
3166 	}
3167 
3168 out:
3169 	devm_kfree(&pdev->dev, vector);
3170 	return ret;
3171 }
3172 
3173 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3174 {
3175 	group->ring = NULL;
3176 	group->count = 0;
3177 }
3178 
3179 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3180 {
3181 	struct hnae3_ring_chain_node vector_ring_chain;
3182 	struct hnae3_handle *h = priv->ae_handle;
3183 	struct hns3_enet_tqp_vector *tqp_vector;
3184 	int i;
3185 
3186 	for (i = 0; i < priv->vector_num; i++) {
3187 		tqp_vector = &priv->tqp_vector[i];
3188 
3189 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3190 			continue;
3191 
3192 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3193 
3194 		h->ae_algo->ops->unmap_ring_from_vector(h,
3195 			tqp_vector->vector_irq, &vector_ring_chain);
3196 
3197 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3198 
3199 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3200 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3201 						  NULL);
3202 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3203 			free_irq(tqp_vector->vector_irq, tqp_vector);
3204 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3205 		}
3206 
3207 		hns3_clear_ring_group(&tqp_vector->rx_group);
3208 		hns3_clear_ring_group(&tqp_vector->tx_group);
3209 		netif_napi_del(&priv->tqp_vector[i].napi);
3210 	}
3211 }
3212 
3213 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3214 {
3215 	struct hnae3_handle *h = priv->ae_handle;
3216 	struct pci_dev *pdev = h->pdev;
3217 	int i, ret;
3218 
3219 	for (i = 0; i < priv->vector_num; i++) {
3220 		struct hns3_enet_tqp_vector *tqp_vector;
3221 
3222 		tqp_vector = &priv->tqp_vector[i];
3223 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3224 		if (ret)
3225 			return ret;
3226 	}
3227 
3228 	devm_kfree(&pdev->dev, priv->tqp_vector);
3229 	return 0;
3230 }
3231 
3232 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3233 			     int ring_type)
3234 {
3235 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3236 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3237 	struct pci_dev *pdev = priv->ae_handle->pdev;
3238 	struct hns3_enet_ring *ring;
3239 	int desc_num;
3240 
3241 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3242 	if (!ring)
3243 		return -ENOMEM;
3244 
3245 	if (ring_type == HNAE3_RING_TYPE_TX) {
3246 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3247 		ring_data[q->tqp_index].ring = ring;
3248 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3249 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3250 	} else {
3251 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3252 		ring_data[q->tqp_index + queue_num].ring = ring;
3253 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3254 		ring->io_base = q->io_base;
3255 	}
3256 
3257 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3258 
3259 	ring->tqp = q;
3260 	ring->desc = NULL;
3261 	ring->desc_cb = NULL;
3262 	ring->dev = priv->dev;
3263 	ring->desc_dma_addr = 0;
3264 	ring->buf_size = q->buf_size;
3265 	ring->desc_num = desc_num;
3266 	ring->next_to_use = 0;
3267 	ring->next_to_clean = 0;
3268 
3269 	return 0;
3270 }
3271 
3272 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3273 			      struct hns3_nic_priv *priv)
3274 {
3275 	int ret;
3276 
3277 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3278 	if (ret)
3279 		return ret;
3280 
3281 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3282 	if (ret) {
3283 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3284 		return ret;
3285 	}
3286 
3287 	return 0;
3288 }
3289 
3290 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3291 {
3292 	struct hnae3_handle *h = priv->ae_handle;
3293 	struct pci_dev *pdev = h->pdev;
3294 	int i, ret;
3295 
3296 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3297 					array3_size(h->kinfo.num_tqps,
3298 						    sizeof(*priv->ring_data),
3299 						    2),
3300 					GFP_KERNEL);
3301 	if (!priv->ring_data)
3302 		return -ENOMEM;
3303 
3304 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3305 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3306 		if (ret)
3307 			goto err;
3308 	}
3309 
3310 	return 0;
3311 err:
3312 	while (i--) {
3313 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3314 		devm_kfree(priv->dev,
3315 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3316 	}
3317 
3318 	devm_kfree(&pdev->dev, priv->ring_data);
3319 	return ret;
3320 }
3321 
3322 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3323 {
3324 	struct hnae3_handle *h = priv->ae_handle;
3325 	int i;
3326 
3327 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3328 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3329 		devm_kfree(priv->dev,
3330 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3331 	}
3332 	devm_kfree(priv->dev, priv->ring_data);
3333 }
3334 
3335 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3336 {
3337 	int ret;
3338 
3339 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3340 		return -EINVAL;
3341 
3342 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3343 				GFP_KERNEL);
3344 	if (!ring->desc_cb) {
3345 		ret = -ENOMEM;
3346 		goto out;
3347 	}
3348 
3349 	ret = hns3_alloc_desc(ring);
3350 	if (ret)
3351 		goto out_with_desc_cb;
3352 
3353 	if (!HNAE3_IS_TX_RING(ring)) {
3354 		ret = hns3_alloc_ring_buffers(ring);
3355 		if (ret)
3356 			goto out_with_desc;
3357 	}
3358 
3359 	return 0;
3360 
3361 out_with_desc:
3362 	hns3_free_desc(ring);
3363 out_with_desc_cb:
3364 	kfree(ring->desc_cb);
3365 	ring->desc_cb = NULL;
3366 out:
3367 	return ret;
3368 }
3369 
3370 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3371 {
3372 	hns3_free_desc(ring);
3373 	kfree(ring->desc_cb);
3374 	ring->desc_cb = NULL;
3375 	ring->next_to_clean = 0;
3376 	ring->next_to_use = 0;
3377 	ring->pending_buf = 0;
3378 	if (ring->skb) {
3379 		dev_kfree_skb_any(ring->skb);
3380 		ring->skb = NULL;
3381 	}
3382 }
3383 
3384 static int hns3_buf_size2type(u32 buf_size)
3385 {
3386 	int bd_size_type;
3387 
3388 	switch (buf_size) {
3389 	case 512:
3390 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3391 		break;
3392 	case 1024:
3393 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3394 		break;
3395 	case 2048:
3396 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3397 		break;
3398 	case 4096:
3399 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3400 		break;
3401 	default:
3402 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3403 	}
3404 
3405 	return bd_size_type;
3406 }
3407 
3408 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3409 {
3410 	dma_addr_t dma = ring->desc_dma_addr;
3411 	struct hnae3_queue *q = ring->tqp;
3412 
3413 	if (!HNAE3_IS_TX_RING(ring)) {
3414 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3415 			       (u32)dma);
3416 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3417 			       (u32)((dma >> 31) >> 1));
3418 
3419 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3420 			       hns3_buf_size2type(ring->buf_size));
3421 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3422 			       ring->desc_num / 8 - 1);
3423 
3424 	} else {
3425 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3426 			       (u32)dma);
3427 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3428 			       (u32)((dma >> 31) >> 1));
3429 
3430 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3431 			       ring->desc_num / 8 - 1);
3432 	}
3433 }
3434 
3435 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3436 {
3437 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3438 	int i;
3439 
3440 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3441 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3442 		int j;
3443 
3444 		if (!tc_info->enable)
3445 			continue;
3446 
3447 		for (j = 0; j < tc_info->tqp_count; j++) {
3448 			struct hnae3_queue *q;
3449 
3450 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3451 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3452 				       tc_info->tc);
3453 		}
3454 	}
3455 }
3456 
3457 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3458 {
3459 	struct hnae3_handle *h = priv->ae_handle;
3460 	int ring_num = h->kinfo.num_tqps * 2;
3461 	int i, j;
3462 	int ret;
3463 
3464 	for (i = 0; i < ring_num; i++) {
3465 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3466 		if (ret) {
3467 			dev_err(priv->dev,
3468 				"Alloc ring memory fail! ret=%d\n", ret);
3469 			goto out_when_alloc_ring_memory;
3470 		}
3471 
3472 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3473 	}
3474 
3475 	return 0;
3476 
3477 out_when_alloc_ring_memory:
3478 	for (j = i - 1; j >= 0; j--)
3479 		hns3_fini_ring(priv->ring_data[j].ring);
3480 
3481 	return -ENOMEM;
3482 }
3483 
3484 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3485 {
3486 	struct hnae3_handle *h = priv->ae_handle;
3487 	int i;
3488 
3489 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3490 		hns3_fini_ring(priv->ring_data[i].ring);
3491 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3492 	}
3493 	return 0;
3494 }
3495 
3496 /* Set mac addr if it is configured. or leave it to the AE driver */
3497 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3498 {
3499 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3500 	struct hnae3_handle *h = priv->ae_handle;
3501 	u8 mac_addr_temp[ETH_ALEN];
3502 	int ret = 0;
3503 
3504 	if (h->ae_algo->ops->get_mac_addr && init) {
3505 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3506 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3507 	}
3508 
3509 	/* Check if the MAC address is valid, if not get a random one */
3510 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3511 		eth_hw_addr_random(netdev);
3512 		dev_warn(priv->dev, "using random MAC address %pM\n",
3513 			 netdev->dev_addr);
3514 	}
3515 
3516 	if (h->ae_algo->ops->set_mac_addr)
3517 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3518 
3519 	return ret;
3520 }
3521 
3522 static int hns3_init_phy(struct net_device *netdev)
3523 {
3524 	struct hnae3_handle *h = hns3_get_handle(netdev);
3525 	int ret = 0;
3526 
3527 	if (h->ae_algo->ops->mac_connect_phy)
3528 		ret = h->ae_algo->ops->mac_connect_phy(h);
3529 
3530 	return ret;
3531 }
3532 
3533 static void hns3_uninit_phy(struct net_device *netdev)
3534 {
3535 	struct hnae3_handle *h = hns3_get_handle(netdev);
3536 
3537 	if (h->ae_algo->ops->mac_disconnect_phy)
3538 		h->ae_algo->ops->mac_disconnect_phy(h);
3539 }
3540 
3541 static int hns3_restore_fd_rules(struct net_device *netdev)
3542 {
3543 	struct hnae3_handle *h = hns3_get_handle(netdev);
3544 	int ret = 0;
3545 
3546 	if (h->ae_algo->ops->restore_fd_rules)
3547 		ret = h->ae_algo->ops->restore_fd_rules(h);
3548 
3549 	return ret;
3550 }
3551 
3552 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3553 {
3554 	struct hnae3_handle *h = hns3_get_handle(netdev);
3555 
3556 	if (h->ae_algo->ops->del_all_fd_entries)
3557 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3558 }
3559 
3560 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3561 {
3562 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3563 
3564 	if ((netdev->features & NETIF_F_TSO) ||
3565 	    (netdev->features & NETIF_F_TSO6))
3566 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3567 	else
3568 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3569 }
3570 
3571 static int hns3_client_start(struct hnae3_handle *handle)
3572 {
3573 	if (!handle->ae_algo->ops->client_start)
3574 		return 0;
3575 
3576 	return handle->ae_algo->ops->client_start(handle);
3577 }
3578 
3579 static void hns3_client_stop(struct hnae3_handle *handle)
3580 {
3581 	if (!handle->ae_algo->ops->client_stop)
3582 		return;
3583 
3584 	handle->ae_algo->ops->client_stop(handle);
3585 }
3586 
3587 static int hns3_client_init(struct hnae3_handle *handle)
3588 {
3589 	struct pci_dev *pdev = handle->pdev;
3590 	u16 alloc_tqps, max_rss_size;
3591 	struct hns3_nic_priv *priv;
3592 	struct net_device *netdev;
3593 	int ret;
3594 
3595 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3596 						    &max_rss_size);
3597 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3598 	if (!netdev)
3599 		return -ENOMEM;
3600 
3601 	priv = netdev_priv(netdev);
3602 	priv->dev = &pdev->dev;
3603 	priv->netdev = netdev;
3604 	priv->ae_handle = handle;
3605 	priv->tx_timeout_count = 0;
3606 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3607 
3608 	handle->kinfo.netdev = netdev;
3609 	handle->priv = (void *)priv;
3610 
3611 	hns3_init_mac_addr(netdev, true);
3612 
3613 	hns3_set_default_feature(netdev);
3614 
3615 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3616 	netdev->priv_flags |= IFF_UNICAST_FLT;
3617 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3618 	SET_NETDEV_DEV(netdev, &pdev->dev);
3619 	hns3_ethtool_set_ops(netdev);
3620 	hns3_nic_set_priv_ops(netdev);
3621 
3622 	/* Carrier off reporting is important to ethtool even BEFORE open */
3623 	netif_carrier_off(netdev);
3624 
3625 	ret = hns3_get_ring_config(priv);
3626 	if (ret) {
3627 		ret = -ENOMEM;
3628 		goto out_get_ring_cfg;
3629 	}
3630 
3631 	ret = hns3_nic_alloc_vector_data(priv);
3632 	if (ret) {
3633 		ret = -ENOMEM;
3634 		goto out_alloc_vector_data;
3635 	}
3636 
3637 	ret = hns3_nic_init_vector_data(priv);
3638 	if (ret) {
3639 		ret = -ENOMEM;
3640 		goto out_init_vector_data;
3641 	}
3642 
3643 	ret = hns3_init_all_ring(priv);
3644 	if (ret) {
3645 		ret = -ENOMEM;
3646 		goto out_init_ring_data;
3647 	}
3648 
3649 	ret = hns3_init_phy(netdev);
3650 	if (ret)
3651 		goto out_init_phy;
3652 
3653 	ret = register_netdev(netdev);
3654 	if (ret) {
3655 		dev_err(priv->dev, "probe register netdev fail!\n");
3656 		goto out_reg_netdev_fail;
3657 	}
3658 
3659 	ret = hns3_client_start(handle);
3660 	if (ret) {
3661 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3662 			goto out_client_start;
3663 	}
3664 
3665 	hns3_dcbnl_setup(handle);
3666 
3667 	hns3_dbg_init(handle);
3668 
3669 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3670 	netdev->max_mtu = HNS3_MAX_MTU;
3671 
3672 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3673 
3674 	return ret;
3675 
3676 out_client_start:
3677 	unregister_netdev(netdev);
3678 out_reg_netdev_fail:
3679 	hns3_uninit_phy(netdev);
3680 out_init_phy:
3681 	hns3_uninit_all_ring(priv);
3682 out_init_ring_data:
3683 	hns3_nic_uninit_vector_data(priv);
3684 out_init_vector_data:
3685 	hns3_nic_dealloc_vector_data(priv);
3686 out_alloc_vector_data:
3687 	priv->ring_data = NULL;
3688 out_get_ring_cfg:
3689 	priv->ae_handle = NULL;
3690 	free_netdev(netdev);
3691 	return ret;
3692 }
3693 
3694 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3695 {
3696 	struct net_device *netdev = handle->kinfo.netdev;
3697 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3698 	int ret;
3699 
3700 	hns3_client_stop(handle);
3701 
3702 	hns3_remove_hw_addr(netdev);
3703 
3704 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3705 		unregister_netdev(netdev);
3706 
3707 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3708 		netdev_warn(netdev, "already uninitialized\n");
3709 		goto out_netdev_free;
3710 	}
3711 
3712 	hns3_del_all_fd_rules(netdev, true);
3713 
3714 	hns3_force_clear_all_rx_ring(handle);
3715 
3716 	hns3_uninit_phy(netdev);
3717 
3718 	hns3_nic_uninit_vector_data(priv);
3719 
3720 	ret = hns3_nic_dealloc_vector_data(priv);
3721 	if (ret)
3722 		netdev_err(netdev, "dealloc vector error\n");
3723 
3724 	ret = hns3_uninit_all_ring(priv);
3725 	if (ret)
3726 		netdev_err(netdev, "uninit ring error\n");
3727 
3728 	hns3_put_ring_config(priv);
3729 
3730 	hns3_dbg_uninit(handle);
3731 
3732 	priv->ring_data = NULL;
3733 
3734 out_netdev_free:
3735 	free_netdev(netdev);
3736 }
3737 
3738 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3739 {
3740 	struct net_device *netdev = handle->kinfo.netdev;
3741 
3742 	if (!netdev)
3743 		return;
3744 
3745 	if (linkup) {
3746 		netif_carrier_on(netdev);
3747 		netif_tx_wake_all_queues(netdev);
3748 		netdev_info(netdev, "link up\n");
3749 	} else {
3750 		netif_carrier_off(netdev);
3751 		netif_tx_stop_all_queues(netdev);
3752 		netdev_info(netdev, "link down\n");
3753 	}
3754 }
3755 
3756 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3757 {
3758 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3759 	struct net_device *ndev = kinfo->netdev;
3760 
3761 	if (tc > HNAE3_MAX_TC)
3762 		return -EINVAL;
3763 
3764 	if (!ndev)
3765 		return -ENODEV;
3766 
3767 	return hns3_nic_set_real_num_queue(ndev);
3768 }
3769 
3770 static int hns3_recover_hw_addr(struct net_device *ndev)
3771 {
3772 	struct netdev_hw_addr_list *list;
3773 	struct netdev_hw_addr *ha, *tmp;
3774 	int ret = 0;
3775 
3776 	/* go through and sync uc_addr entries to the device */
3777 	list = &ndev->uc;
3778 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3779 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3780 		if (ret)
3781 			return ret;
3782 	}
3783 
3784 	/* go through and sync mc_addr entries to the device */
3785 	list = &ndev->mc;
3786 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3787 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3788 		if (ret)
3789 			return ret;
3790 	}
3791 
3792 	return ret;
3793 }
3794 
3795 static void hns3_remove_hw_addr(struct net_device *netdev)
3796 {
3797 	struct netdev_hw_addr_list *list;
3798 	struct netdev_hw_addr *ha, *tmp;
3799 
3800 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3801 
3802 	/* go through and unsync uc_addr entries to the device */
3803 	list = &netdev->uc;
3804 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3805 		hns3_nic_uc_unsync(netdev, ha->addr);
3806 
3807 	/* go through and unsync mc_addr entries to the device */
3808 	list = &netdev->mc;
3809 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3810 		if (ha->refcount > 1)
3811 			hns3_nic_mc_unsync(netdev, ha->addr);
3812 }
3813 
3814 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3815 {
3816 	while (ring->next_to_clean != ring->next_to_use) {
3817 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3818 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3819 		ring_ptr_move_fw(ring, next_to_clean);
3820 	}
3821 }
3822 
3823 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3824 {
3825 	struct hns3_desc_cb res_cbs;
3826 	int ret;
3827 
3828 	while (ring->next_to_use != ring->next_to_clean) {
3829 		/* When a buffer is not reused, it's memory has been
3830 		 * freed in hns3_handle_rx_bd or will be freed by
3831 		 * stack, so we need to replace the buffer here.
3832 		 */
3833 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3834 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3835 			if (ret) {
3836 				u64_stats_update_begin(&ring->syncp);
3837 				ring->stats.sw_err_cnt++;
3838 				u64_stats_update_end(&ring->syncp);
3839 				/* if alloc new buffer fail, exit directly
3840 				 * and reclear in up flow.
3841 				 */
3842 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3843 					    "reserve buffer map failed, ret = %d\n",
3844 					    ret);
3845 				return ret;
3846 			}
3847 			hns3_replace_buffer(ring, ring->next_to_use,
3848 					    &res_cbs);
3849 		}
3850 		ring_ptr_move_fw(ring, next_to_use);
3851 	}
3852 
3853 	return 0;
3854 }
3855 
3856 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3857 {
3858 	while (ring->next_to_use != ring->next_to_clean) {
3859 		/* When a buffer is not reused, it's memory has been
3860 		 * freed in hns3_handle_rx_bd or will be freed by
3861 		 * stack, so only need to unmap the buffer here.
3862 		 */
3863 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3864 			hns3_unmap_buffer(ring,
3865 					  &ring->desc_cb[ring->next_to_use]);
3866 			ring->desc_cb[ring->next_to_use].dma = 0;
3867 		}
3868 
3869 		ring_ptr_move_fw(ring, next_to_use);
3870 	}
3871 }
3872 
3873 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3874 {
3875 	struct net_device *ndev = h->kinfo.netdev;
3876 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3877 	struct hns3_enet_ring *ring;
3878 	u32 i;
3879 
3880 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3881 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3882 		hns3_force_clear_rx_ring(ring);
3883 	}
3884 }
3885 
3886 static void hns3_clear_all_ring(struct hnae3_handle *h)
3887 {
3888 	struct net_device *ndev = h->kinfo.netdev;
3889 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3890 	u32 i;
3891 
3892 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3893 		struct netdev_queue *dev_queue;
3894 		struct hns3_enet_ring *ring;
3895 
3896 		ring = priv->ring_data[i].ring;
3897 		hns3_clear_tx_ring(ring);
3898 		dev_queue = netdev_get_tx_queue(ndev,
3899 						priv->ring_data[i].queue_index);
3900 		netdev_tx_reset_queue(dev_queue);
3901 
3902 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3903 		/* Continue to clear other rings even if clearing some
3904 		 * rings failed.
3905 		 */
3906 		hns3_clear_rx_ring(ring);
3907 	}
3908 }
3909 
3910 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3911 {
3912 	struct net_device *ndev = h->kinfo.netdev;
3913 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3914 	struct hns3_enet_ring *rx_ring;
3915 	int i, j;
3916 	int ret;
3917 
3918 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3919 		ret = h->ae_algo->ops->reset_queue(h, i);
3920 		if (ret)
3921 			return ret;
3922 
3923 		hns3_init_ring_hw(priv->ring_data[i].ring);
3924 
3925 		/* We need to clear tx ring here because self test will
3926 		 * use the ring and will not run down before up
3927 		 */
3928 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3929 		priv->ring_data[i].ring->next_to_clean = 0;
3930 		priv->ring_data[i].ring->next_to_use = 0;
3931 
3932 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3933 		hns3_init_ring_hw(rx_ring);
3934 		ret = hns3_clear_rx_ring(rx_ring);
3935 		if (ret)
3936 			return ret;
3937 
3938 		/* We can not know the hardware head and tail when this
3939 		 * function is called in reset flow, so we reuse all desc.
3940 		 */
3941 		for (j = 0; j < rx_ring->desc_num; j++)
3942 			hns3_reuse_buffer(rx_ring, j);
3943 
3944 		rx_ring->next_to_clean = 0;
3945 		rx_ring->next_to_use = 0;
3946 	}
3947 
3948 	hns3_init_tx_ring_tc(priv);
3949 
3950 	return 0;
3951 }
3952 
3953 static void hns3_store_coal(struct hns3_nic_priv *priv)
3954 {
3955 	/* ethtool only support setting and querying one coal
3956 	 * configuation for now, so save the vector 0' coal
3957 	 * configuation here in order to restore it.
3958 	 */
3959 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3960 	       sizeof(struct hns3_enet_coalesce));
3961 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3962 	       sizeof(struct hns3_enet_coalesce));
3963 }
3964 
3965 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3966 {
3967 	u16 vector_num = priv->vector_num;
3968 	int i;
3969 
3970 	for (i = 0; i < vector_num; i++) {
3971 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3972 		       sizeof(struct hns3_enet_coalesce));
3973 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3974 		       sizeof(struct hns3_enet_coalesce));
3975 	}
3976 }
3977 
3978 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3979 {
3980 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3981 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3982 	struct net_device *ndev = kinfo->netdev;
3983 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3984 
3985 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3986 		return 0;
3987 
3988 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
3989 	 * from table space. Hence, for function reset software intervention is
3990 	 * required to delete the entries
3991 	 */
3992 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
3993 		hns3_remove_hw_addr(ndev);
3994 		hns3_del_all_fd_rules(ndev, false);
3995 	}
3996 
3997 	if (!netif_running(ndev))
3998 		return 0;
3999 
4000 	return hns3_nic_net_stop(ndev);
4001 }
4002 
4003 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4004 {
4005 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4006 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4007 	int ret = 0;
4008 
4009 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4010 
4011 	if (netif_running(kinfo->netdev)) {
4012 		ret = hns3_nic_net_open(kinfo->netdev);
4013 		if (ret) {
4014 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4015 			netdev_err(kinfo->netdev,
4016 				   "hns net up fail, ret=%d!\n", ret);
4017 			return ret;
4018 		}
4019 	}
4020 
4021 	return ret;
4022 }
4023 
4024 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4025 {
4026 	struct net_device *netdev = handle->kinfo.netdev;
4027 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4028 	int ret;
4029 
4030 	/* Carrier off reporting is important to ethtool even BEFORE open */
4031 	netif_carrier_off(netdev);
4032 
4033 	ret = hns3_get_ring_config(priv);
4034 	if (ret)
4035 		return ret;
4036 
4037 	ret = hns3_nic_alloc_vector_data(priv);
4038 	if (ret)
4039 		goto err_put_ring;
4040 
4041 	hns3_restore_coal(priv);
4042 
4043 	ret = hns3_nic_init_vector_data(priv);
4044 	if (ret)
4045 		goto err_dealloc_vector;
4046 
4047 	ret = hns3_init_all_ring(priv);
4048 	if (ret)
4049 		goto err_uninit_vector;
4050 
4051 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4052 
4053 	return ret;
4054 
4055 err_uninit_vector:
4056 	hns3_nic_uninit_vector_data(priv);
4057 	priv->ring_data = NULL;
4058 err_dealloc_vector:
4059 	hns3_nic_dealloc_vector_data(priv);
4060 err_put_ring:
4061 	hns3_put_ring_config(priv);
4062 	priv->ring_data = NULL;
4063 
4064 	return ret;
4065 }
4066 
4067 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4068 {
4069 	struct net_device *netdev = handle->kinfo.netdev;
4070 	bool vlan_filter_enable;
4071 	int ret;
4072 
4073 	ret = hns3_init_mac_addr(netdev, false);
4074 	if (ret)
4075 		return ret;
4076 
4077 	ret = hns3_recover_hw_addr(netdev);
4078 	if (ret)
4079 		return ret;
4080 
4081 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4082 	if (ret)
4083 		return ret;
4084 
4085 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4086 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4087 
4088 	/* Hardware table is only clear when pf resets */
4089 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4090 		ret = hns3_restore_vlan(netdev);
4091 		if (ret)
4092 			return ret;
4093 	}
4094 
4095 	return hns3_restore_fd_rules(netdev);
4096 }
4097 
4098 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4099 {
4100 	struct net_device *netdev = handle->kinfo.netdev;
4101 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4102 	int ret;
4103 
4104 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4105 		netdev_warn(netdev, "already uninitialized\n");
4106 		return 0;
4107 	}
4108 
4109 	hns3_force_clear_all_rx_ring(handle);
4110 
4111 	hns3_nic_uninit_vector_data(priv);
4112 
4113 	hns3_store_coal(priv);
4114 
4115 	ret = hns3_nic_dealloc_vector_data(priv);
4116 	if (ret)
4117 		netdev_err(netdev, "dealloc vector error\n");
4118 
4119 	ret = hns3_uninit_all_ring(priv);
4120 	if (ret)
4121 		netdev_err(netdev, "uninit ring error\n");
4122 
4123 	hns3_put_ring_config(priv);
4124 	priv->ring_data = NULL;
4125 
4126 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4127 
4128 	return ret;
4129 }
4130 
4131 static int hns3_reset_notify(struct hnae3_handle *handle,
4132 			     enum hnae3_reset_notify_type type)
4133 {
4134 	int ret = 0;
4135 
4136 	switch (type) {
4137 	case HNAE3_UP_CLIENT:
4138 		ret = hns3_reset_notify_up_enet(handle);
4139 		break;
4140 	case HNAE3_DOWN_CLIENT:
4141 		ret = hns3_reset_notify_down_enet(handle);
4142 		break;
4143 	case HNAE3_INIT_CLIENT:
4144 		ret = hns3_reset_notify_init_enet(handle);
4145 		break;
4146 	case HNAE3_UNINIT_CLIENT:
4147 		ret = hns3_reset_notify_uninit_enet(handle);
4148 		break;
4149 	case HNAE3_RESTORE_CLIENT:
4150 		ret = hns3_reset_notify_restore_enet(handle);
4151 		break;
4152 	default:
4153 		break;
4154 	}
4155 
4156 	return ret;
4157 }
4158 
4159 int hns3_set_channels(struct net_device *netdev,
4160 		      struct ethtool_channels *ch)
4161 {
4162 	struct hnae3_handle *h = hns3_get_handle(netdev);
4163 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4164 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4165 	u32 new_tqp_num = ch->combined_count;
4166 	u16 org_tqp_num;
4167 	int ret;
4168 
4169 	if (ch->rx_count || ch->tx_count)
4170 		return -EINVAL;
4171 
4172 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4173 	    new_tqp_num < 1) {
4174 		dev_err(&netdev->dev,
4175 			"Change tqps fail, the tqp range is from 1 to %d",
4176 			hns3_get_max_available_channels(h));
4177 		return -EINVAL;
4178 	}
4179 
4180 	if (kinfo->rss_size == new_tqp_num)
4181 		return 0;
4182 
4183 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4184 	if (ret)
4185 		return ret;
4186 
4187 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4188 	if (ret)
4189 		return ret;
4190 
4191 	org_tqp_num = h->kinfo.num_tqps;
4192 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4193 	if (ret) {
4194 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4195 						    rxfh_configured);
4196 		if (ret) {
4197 			/* If revert to old tqp failed, fatal error occurred */
4198 			dev_err(&netdev->dev,
4199 				"Revert to old tqp num fail, ret=%d", ret);
4200 			return ret;
4201 		}
4202 		dev_info(&netdev->dev,
4203 			 "Change tqp num fail, Revert to old tqp num");
4204 	}
4205 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4206 	if (ret)
4207 		return ret;
4208 
4209 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4210 }
4211 
4212 static const struct hnae3_client_ops client_ops = {
4213 	.init_instance = hns3_client_init,
4214 	.uninit_instance = hns3_client_uninit,
4215 	.link_status_change = hns3_link_status_change,
4216 	.setup_tc = hns3_client_setup_tc,
4217 	.reset_notify = hns3_reset_notify,
4218 };
4219 
4220 /* hns3_init_module - Driver registration routine
4221  * hns3_init_module is the first routine called when the driver is
4222  * loaded. All it does is register with the PCI subsystem.
4223  */
4224 static int __init hns3_init_module(void)
4225 {
4226 	int ret;
4227 
4228 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4229 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4230 
4231 	client.type = HNAE3_CLIENT_KNIC;
4232 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4233 		 hns3_driver_name);
4234 
4235 	client.ops = &client_ops;
4236 
4237 	INIT_LIST_HEAD(&client.node);
4238 
4239 	hns3_dbg_register_debugfs(hns3_driver_name);
4240 
4241 	ret = hnae3_register_client(&client);
4242 	if (ret)
4243 		goto err_reg_client;
4244 
4245 	ret = pci_register_driver(&hns3_driver);
4246 	if (ret)
4247 		goto err_reg_driver;
4248 
4249 	return ret;
4250 
4251 err_reg_driver:
4252 	hnae3_unregister_client(&client);
4253 err_reg_client:
4254 	hns3_dbg_unregister_debugfs();
4255 	return ret;
4256 }
4257 module_init(hns3_init_module);
4258 
4259 /* hns3_exit_module - Driver exit cleanup routine
4260  * hns3_exit_module is called just before the driver is removed
4261  * from memory.
4262  */
4263 static void __exit hns3_exit_module(void)
4264 {
4265 	pci_unregister_driver(&hns3_driver);
4266 	hnae3_unregister_client(&client);
4267 	hns3_dbg_unregister_debugfs();
4268 }
4269 module_exit(hns3_exit_module);
4270 
4271 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4272 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4273 MODULE_LICENSE("GPL");
4274 MODULE_ALIAS("pci:hns-nic");
4275 MODULE_VERSION(HNS3_MOD_VERSION);
4276