xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 40e79150c1686263e6a031d7702aec63aff31332)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/ip6_checksum.h>
20 #include <net/pkt_cls.h>
21 #include <net/tcp.h>
22 #include <net/vxlan.h>
23 
24 #include "hnae3.h"
25 #include "hns3_enet.h"
26 /* All hns3 tracepoints are defined by the include below, which
27  * must be included exactly once across the whole kernel with
28  * CREATE_TRACE_POINTS defined
29  */
30 #define CREATE_TRACE_POINTS
31 #include "hns3_trace.h"
32 
33 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
34 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
35 
36 #define hns3_rl_err(fmt, ...)						\
37 	do {								\
38 		if (net_ratelimit())					\
39 			netdev_err(fmt, ##__VA_ARGS__);			\
40 	} while (0)
41 
42 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
43 
44 static const char hns3_driver_name[] = "hns3";
45 static const char hns3_driver_string[] =
46 			"Hisilicon Ethernet Network Driver for Hip08 Family";
47 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
48 static struct hnae3_client client;
49 
50 static int debug = -1;
51 module_param(debug, int, 0);
52 MODULE_PARM_DESC(debug, " Network interface message level setting");
53 
54 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
55 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
56 
57 #define HNS3_INNER_VLAN_TAG	1
58 #define HNS3_OUTER_VLAN_TAG	2
59 
60 #define HNS3_MIN_TX_LEN		33U
61 
62 /* hns3_pci_tbl - PCI Device ID Table
63  *
64  * Last entry must be all 0s
65  *
66  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
67  *   Class, Class Mask, private data (not used) }
68  */
69 static const struct pci_device_id hns3_pci_tbl[] = {
70 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
73 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
84 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 	/* required last entry */
86 	{0, }
87 };
88 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
89 
90 static irqreturn_t hns3_irq_handle(int irq, void *vector)
91 {
92 	struct hns3_enet_tqp_vector *tqp_vector = vector;
93 
94 	napi_schedule_irqoff(&tqp_vector->napi);
95 
96 	return IRQ_HANDLED;
97 }
98 
99 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
100 {
101 	struct hns3_enet_tqp_vector *tqp_vectors;
102 	unsigned int i;
103 
104 	for (i = 0; i < priv->vector_num; i++) {
105 		tqp_vectors = &priv->tqp_vector[i];
106 
107 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
108 			continue;
109 
110 		/* clear the affinity mask */
111 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
112 
113 		/* release the irq resource */
114 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
115 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
116 	}
117 }
118 
119 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
120 {
121 	struct hns3_enet_tqp_vector *tqp_vectors;
122 	int txrx_int_idx = 0;
123 	int rx_int_idx = 0;
124 	int tx_int_idx = 0;
125 	unsigned int i;
126 	int ret;
127 
128 	for (i = 0; i < priv->vector_num; i++) {
129 		tqp_vectors = &priv->tqp_vector[i];
130 
131 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
132 			continue;
133 
134 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
136 				 "%s-%s-%s-%d", hns3_driver_name,
137 				 pci_name(priv->ae_handle->pdev),
138 				 "TxRx", txrx_int_idx++);
139 			txrx_int_idx++;
140 		} else if (tqp_vectors->rx_group.ring) {
141 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
142 				 "%s-%s-%s-%d", hns3_driver_name,
143 				 pci_name(priv->ae_handle->pdev),
144 				 "Rx", rx_int_idx++);
145 		} else if (tqp_vectors->tx_group.ring) {
146 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
147 				 "%s-%s-%s-%d", hns3_driver_name,
148 				 pci_name(priv->ae_handle->pdev),
149 				 "Tx", tx_int_idx++);
150 		} else {
151 			/* Skip this unused q_vector */
152 			continue;
153 		}
154 
155 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
156 
157 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
158 				  tqp_vectors->name, tqp_vectors);
159 		if (ret) {
160 			netdev_err(priv->netdev, "request irq(%d) fail\n",
161 				   tqp_vectors->vector_irq);
162 			hns3_nic_uninit_irq(priv);
163 			return ret;
164 		}
165 
166 		disable_irq(tqp_vectors->vector_irq);
167 
168 		irq_set_affinity_hint(tqp_vectors->vector_irq,
169 				      &tqp_vectors->affinity_mask);
170 
171 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172 	}
173 
174 	return 0;
175 }
176 
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178 				 u32 mask_en)
179 {
180 	writel(mask_en, tqp_vector->mask_addr);
181 }
182 
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	napi_enable(&tqp_vector->napi);
186 	enable_irq(tqp_vector->vector_irq);
187 
188 	/* enable vector */
189 	hns3_mask_vector_irq(tqp_vector, 1);
190 }
191 
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194 	/* disable vector */
195 	hns3_mask_vector_irq(tqp_vector, 0);
196 
197 	disable_irq(tqp_vector->vector_irq);
198 	napi_disable(&tqp_vector->napi);
199 }
200 
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202 				 u32 rl_value)
203 {
204 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205 
206 	/* this defines the configuration for RL (Interrupt Rate Limiter).
207 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
208 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209 	 */
210 
211 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
213 		/* According to the hardware, the range of rl_reg is
214 		 * 0-59 and the unit is 4.
215 		 */
216 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217 
218 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220 
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222 				    u32 gl_value)
223 {
224 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225 
226 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228 
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230 				    u32 gl_value)
231 {
232 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236 
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238 				   struct hns3_nic_priv *priv)
239 {
240 	/* initialize the configuration for interrupt coalescing.
241 	 * 1. GL (Interrupt Gap Limiter)
242 	 * 2. RL (Interrupt Rate Limiter)
243 	 *
244 	 * Default: enable interrupt coalescing self-adaptive and GL
245 	 */
246 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248 
249 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251 
252 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255 
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257 				      struct hns3_nic_priv *priv)
258 {
259 	struct hnae3_handle *h = priv->ae_handle;
260 
261 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
262 				       tqp_vector->tx_group.coal.int_gl);
263 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
264 				       tqp_vector->rx_group.coal.int_gl);
265 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267 
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270 	struct hnae3_handle *h = hns3_get_handle(netdev);
271 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
272 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273 	int i, ret;
274 
275 	if (kinfo->num_tc <= 1) {
276 		netdev_reset_tc(netdev);
277 	} else {
278 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279 		if (ret) {
280 			netdev_err(netdev,
281 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
282 			return ret;
283 		}
284 
285 		for (i = 0; i < HNAE3_MAX_TC; i++) {
286 			if (!kinfo->tc_info[i].enable)
287 				continue;
288 
289 			netdev_set_tc_queue(netdev,
290 					    kinfo->tc_info[i].tc,
291 					    kinfo->tc_info[i].tqp_count,
292 					    kinfo->tc_info[i].tqp_offset);
293 		}
294 	}
295 
296 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
297 	if (ret) {
298 		netdev_err(netdev,
299 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300 		return ret;
301 	}
302 
303 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
304 	if (ret) {
305 		netdev_err(netdev,
306 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307 		return ret;
308 	}
309 
310 	return 0;
311 }
312 
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315 	u16 alloc_tqps, max_rss_size, rss_size;
316 
317 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318 	rss_size = alloc_tqps / h->kinfo.num_tc;
319 
320 	return min_t(u16, rss_size, max_rss_size);
321 }
322 
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325 	u32 rcb_reg;
326 
327 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328 	rcb_reg |= BIT(HNS3_RING_EN_B);
329 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331 
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334 	u32 rcb_reg;
335 
336 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
338 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340 
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345 	netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348 
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352 	struct hns3_nic_priv *priv = netdev_priv(netdev);
353 	struct hns3_enet_tqp_vector *tqp_vector;
354 	int i, ret;
355 
356 	if (!netdev->rx_cpu_rmap) {
357 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358 		if (!netdev->rx_cpu_rmap)
359 			return -ENOMEM;
360 	}
361 
362 	for (i = 0; i < priv->vector_num; i++) {
363 		tqp_vector = &priv->tqp_vector[i];
364 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365 				       tqp_vector->vector_irq);
366 		if (ret) {
367 			hns3_free_rx_cpu_rmap(netdev);
368 			return ret;
369 		}
370 	}
371 #endif
372 	return 0;
373 }
374 
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
378 	struct hnae3_handle *h = priv->ae_handle;
379 	int i, j;
380 	int ret;
381 
382 	ret = hns3_nic_reset_all_ring(h);
383 	if (ret)
384 		return ret;
385 
386 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387 
388 	/* enable the vectors */
389 	for (i = 0; i < priv->vector_num; i++)
390 		hns3_vector_enable(&priv->tqp_vector[i]);
391 
392 	/* enable rcb */
393 	for (j = 0; j < h->kinfo.num_tqps; j++)
394 		hns3_tqp_enable(h->kinfo.tqp[j]);
395 
396 	/* start the ae_dev */
397 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398 	if (ret) {
399 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400 		while (j--)
401 			hns3_tqp_disable(h->kinfo.tqp[j]);
402 
403 		for (j = i - 1; j >= 0; j--)
404 			hns3_vector_disable(&priv->tqp_vector[j]);
405 	}
406 
407 	return ret;
408 }
409 
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->vector_num; i++) {
415 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417 
418 		while (ring) {
419 			int ret;
420 
421 			ret = netif_set_xps_queue(priv->netdev,
422 						  &tqp_vector->affinity_mask,
423 						  ring->tqp->tqp_index);
424 			if (ret)
425 				netdev_warn(priv->netdev,
426 					    "set xps queue failed: %d", ret);
427 
428 			ring = ring->next;
429 		}
430 	}
431 }
432 
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435 	struct hns3_nic_priv *priv = netdev_priv(netdev);
436 	struct hnae3_handle *h = hns3_get_handle(netdev);
437 	struct hnae3_knic_private_info *kinfo;
438 	int i, ret;
439 
440 	if (hns3_nic_resetting(netdev))
441 		return -EBUSY;
442 
443 	netif_carrier_off(netdev);
444 
445 	ret = hns3_nic_set_real_num_queue(netdev);
446 	if (ret)
447 		return ret;
448 
449 	ret = hns3_nic_net_up(netdev);
450 	if (ret) {
451 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452 		return ret;
453 	}
454 
455 	kinfo = &h->kinfo;
456 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458 
459 	if (h->ae_algo->ops->set_timer_task)
460 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461 
462 	hns3_config_xps(priv);
463 
464 	netif_dbg(h, drv, netdev, "net open\n");
465 
466 	return 0;
467 }
468 
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471 	struct net_device *ndev = h->kinfo.netdev;
472 	struct hns3_nic_priv *priv = netdev_priv(ndev);
473 	struct netdev_queue *dev_queue;
474 	u32 i;
475 
476 	for (i = 0; i < h->kinfo.num_tqps; i++) {
477 		dev_queue = netdev_get_tx_queue(ndev,
478 						priv->ring[i].queue_index);
479 		netdev_tx_reset_queue(dev_queue);
480 	}
481 }
482 
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485 	struct hns3_nic_priv *priv = netdev_priv(netdev);
486 	struct hnae3_handle *h = hns3_get_handle(netdev);
487 	const struct hnae3_ae_ops *ops;
488 	int i;
489 
490 	/* disable vectors */
491 	for (i = 0; i < priv->vector_num; i++)
492 		hns3_vector_disable(&priv->tqp_vector[i]);
493 
494 	/* disable rcb */
495 	for (i = 0; i < h->kinfo.num_tqps; i++)
496 		hns3_tqp_disable(h->kinfo.tqp[i]);
497 
498 	/* stop ae_dev */
499 	ops = priv->ae_handle->ae_algo->ops;
500 	if (ops->stop)
501 		ops->stop(priv->ae_handle);
502 
503 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504 	 * during reset process, because driver may not be able
505 	 * to disable the ring through firmware when downing the netdev.
506 	 */
507 	if (!hns3_nic_resetting(netdev))
508 		hns3_clear_all_ring(priv->ae_handle, false);
509 
510 	hns3_reset_tx_queue(priv->ae_handle);
511 }
512 
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515 	struct hns3_nic_priv *priv = netdev_priv(netdev);
516 	struct hnae3_handle *h = hns3_get_handle(netdev);
517 
518 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519 		return 0;
520 
521 	netif_dbg(h, drv, netdev, "net stop\n");
522 
523 	if (h->ae_algo->ops->set_timer_task)
524 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525 
526 	netif_tx_stop_all_queues(netdev);
527 	netif_carrier_off(netdev);
528 
529 	hns3_nic_net_down(netdev);
530 
531 	return 0;
532 }
533 
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535 			    const unsigned char *addr)
536 {
537 	struct hnae3_handle *h = hns3_get_handle(netdev);
538 
539 	if (h->ae_algo->ops->add_uc_addr)
540 		return h->ae_algo->ops->add_uc_addr(h, addr);
541 
542 	return 0;
543 }
544 
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546 			      const unsigned char *addr)
547 {
548 	struct hnae3_handle *h = hns3_get_handle(netdev);
549 
550 	/* need ignore the request of removing device address, because
551 	 * we store the device address and other addresses of uc list
552 	 * in the function's mac filter list.
553 	 */
554 	if (ether_addr_equal(addr, netdev->dev_addr))
555 		return 0;
556 
557 	if (h->ae_algo->ops->rm_uc_addr)
558 		return h->ae_algo->ops->rm_uc_addr(h, addr);
559 
560 	return 0;
561 }
562 
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564 			    const unsigned char *addr)
565 {
566 	struct hnae3_handle *h = hns3_get_handle(netdev);
567 
568 	if (h->ae_algo->ops->add_mc_addr)
569 		return h->ae_algo->ops->add_mc_addr(h, addr);
570 
571 	return 0;
572 }
573 
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575 			      const unsigned char *addr)
576 {
577 	struct hnae3_handle *h = hns3_get_handle(netdev);
578 
579 	if (h->ae_algo->ops->rm_mc_addr)
580 		return h->ae_algo->ops->rm_mc_addr(h, addr);
581 
582 	return 0;
583 }
584 
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587 	u8 flags = 0;
588 
589 	if (netdev->flags & IFF_PROMISC) {
590 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 	} else {
592 		flags |= HNAE3_VLAN_FLTR;
593 		if (netdev->flags & IFF_ALLMULTI)
594 			flags |= HNAE3_USER_MPE;
595 	}
596 
597 	return flags;
598 }
599 
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602 	struct hnae3_handle *h = hns3_get_handle(netdev);
603 	u8 new_flags;
604 
605 	new_flags = hns3_get_netdev_flags(netdev);
606 
607 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609 
610 	/* User mode Promisc mode enable and vlan filtering is disabled to
611 	 * let all packets in.
612 	 */
613 	h->netdev_flags = new_flags;
614 	hns3_request_update_promisc_mode(h);
615 }
616 
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620 
621 	if (ops->request_update_promisc_mode)
622 		ops->request_update_promisc_mode(handle);
623 }
624 
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627 	struct hns3_nic_priv *priv = netdev_priv(netdev);
628 	struct hnae3_handle *h = priv->ae_handle;
629 
630 	if (h->ae_algo->ops->set_promisc_mode) {
631 		return h->ae_algo->ops->set_promisc_mode(h,
632 						promisc_flags & HNAE3_UPE,
633 						promisc_flags & HNAE3_MPE);
634 	}
635 
636 	return 0;
637 }
638 
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641 	struct hns3_nic_priv *priv = netdev_priv(netdev);
642 	struct hnae3_handle *h = priv->ae_handle;
643 	bool last_state;
644 
645 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647 		if (enable != last_state) {
648 			netdev_info(netdev,
649 				    "%s vlan filter\n",
650 				    enable ? "enable" : "disable");
651 			h->ae_algo->ops->enable_vlan_filter(h, enable);
652 		}
653 	}
654 }
655 
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657 			u16 *mss, u32 *type_cs_vlan_tso)
658 {
659 	u32 l4_offset, hdr_len;
660 	union l3_hdr_info l3;
661 	union l4_hdr_info l4;
662 	u32 l4_paylen;
663 	int ret;
664 
665 	if (!skb_is_gso(skb))
666 		return 0;
667 
668 	ret = skb_cow_head(skb, 0);
669 	if (unlikely(ret < 0))
670 		return ret;
671 
672 	l3.hdr = skb_network_header(skb);
673 	l4.hdr = skb_transport_header(skb);
674 
675 	/* Software should clear the IPv4's checksum field when tso is
676 	 * needed.
677 	 */
678 	if (l3.v4->version == 4)
679 		l3.v4->check = 0;
680 
681 	/* tunnel packet */
682 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683 					 SKB_GSO_GRE_CSUM |
684 					 SKB_GSO_UDP_TUNNEL |
685 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
686 		if ((!(skb_shinfo(skb)->gso_type &
687 		    SKB_GSO_PARTIAL)) &&
688 		    (skb_shinfo(skb)->gso_type &
689 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
690 			/* Software should clear the udp's checksum
691 			 * field when tso is needed.
692 			 */
693 			l4.udp->check = 0;
694 		}
695 		/* reset l3&l4 pointers from outer to inner headers */
696 		l3.hdr = skb_inner_network_header(skb);
697 		l4.hdr = skb_inner_transport_header(skb);
698 
699 		/* Software should clear the IPv4's checksum field when
700 		 * tso is needed.
701 		 */
702 		if (l3.v4->version == 4)
703 			l3.v4->check = 0;
704 	}
705 
706 	/* normal or tunnel packet */
707 	l4_offset = l4.hdr - skb->data;
708 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
709 
710 	/* remove payload length from inner pseudo checksum when tso */
711 	l4_paylen = skb->len - l4_offset;
712 	csum_replace_by_diff(&l4.tcp->check,
713 			     (__force __wsum)htonl(l4_paylen));
714 
715 	/* find the txbd field values */
716 	*paylen = skb->len - hdr_len;
717 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718 
719 	/* get MSS for TSO */
720 	*mss = skb_shinfo(skb)->gso_size;
721 
722 	trace_hns3_tso(skb);
723 
724 	return 0;
725 }
726 
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728 				u8 *il4_proto)
729 {
730 	union l3_hdr_info l3;
731 	unsigned char *l4_hdr;
732 	unsigned char *exthdr;
733 	u8 l4_proto_tmp;
734 	__be16 frag_off;
735 
736 	/* find outer header point */
737 	l3.hdr = skb_network_header(skb);
738 	l4_hdr = skb_transport_header(skb);
739 
740 	if (skb->protocol == htons(ETH_P_IPV6)) {
741 		exthdr = l3.hdr + sizeof(*l3.v6);
742 		l4_proto_tmp = l3.v6->nexthdr;
743 		if (l4_hdr != exthdr)
744 			ipv6_skip_exthdr(skb, exthdr - skb->data,
745 					 &l4_proto_tmp, &frag_off);
746 	} else if (skb->protocol == htons(ETH_P_IP)) {
747 		l4_proto_tmp = l3.v4->protocol;
748 	} else {
749 		return -EINVAL;
750 	}
751 
752 	*ol4_proto = l4_proto_tmp;
753 
754 	/* tunnel packet */
755 	if (!skb->encapsulation) {
756 		*il4_proto = 0;
757 		return 0;
758 	}
759 
760 	/* find inner header point */
761 	l3.hdr = skb_inner_network_header(skb);
762 	l4_hdr = skb_inner_transport_header(skb);
763 
764 	if (l3.v6->version == 6) {
765 		exthdr = l3.hdr + sizeof(*l3.v6);
766 		l4_proto_tmp = l3.v6->nexthdr;
767 		if (l4_hdr != exthdr)
768 			ipv6_skip_exthdr(skb, exthdr - skb->data,
769 					 &l4_proto_tmp, &frag_off);
770 	} else if (l3.v4->version == 4) {
771 		l4_proto_tmp = l3.v4->protocol;
772 	}
773 
774 	*il4_proto = l4_proto_tmp;
775 
776 	return 0;
777 }
778 
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787 	union l4_hdr_info l4;
788 
789 	l4.hdr = skb_transport_header(skb);
790 
791 	if (!(!skb->encapsulation &&
792 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793 		return false;
794 
795 	skb_checksum_help(skb);
796 
797 	return true;
798 }
799 
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801 				  u32 *ol_type_vlan_len_msec)
802 {
803 	u32 l2_len, l3_len, l4_len;
804 	unsigned char *il2_hdr;
805 	union l3_hdr_info l3;
806 	union l4_hdr_info l4;
807 
808 	l3.hdr = skb_network_header(skb);
809 	l4.hdr = skb_transport_header(skb);
810 
811 	/* compute OL2 header size, defined in 2 Bytes */
812 	l2_len = l3.hdr - skb->data;
813 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814 
815 	/* compute OL3 header size, defined in 4 Bytes */
816 	l3_len = l4.hdr - l3.hdr;
817 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818 
819 	il2_hdr = skb_inner_mac_header(skb);
820 	/* compute OL4 header size, defined in 4 Bytes */
821 	l4_len = il2_hdr - l4.hdr;
822 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823 
824 	/* define outer network header type */
825 	if (skb->protocol == htons(ETH_P_IP)) {
826 		if (skb_is_gso(skb))
827 			hns3_set_field(*ol_type_vlan_len_msec,
828 				       HNS3_TXD_OL3T_S,
829 				       HNS3_OL3T_IPV4_CSUM);
830 		else
831 			hns3_set_field(*ol_type_vlan_len_msec,
832 				       HNS3_TXD_OL3T_S,
833 				       HNS3_OL3T_IPV4_NO_CSUM);
834 
835 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
836 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837 			       HNS3_OL3T_IPV6);
838 	}
839 
840 	if (ol4_proto == IPPROTO_UDP)
841 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842 			       HNS3_TUN_MAC_IN_UDP);
843 	else if (ol4_proto == IPPROTO_GRE)
844 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845 			       HNS3_TUN_NVGRE);
846 }
847 
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849 			   u8 il4_proto, u32 *type_cs_vlan_tso,
850 			   u32 *ol_type_vlan_len_msec)
851 {
852 	unsigned char *l2_hdr = skb->data;
853 	u32 l4_proto = ol4_proto;
854 	union l4_hdr_info l4;
855 	union l3_hdr_info l3;
856 	u32 l2_len, l3_len;
857 
858 	l4.hdr = skb_transport_header(skb);
859 	l3.hdr = skb_network_header(skb);
860 
861 	/* handle encapsulation skb */
862 	if (skb->encapsulation) {
863 		/* If this is a not UDP/GRE encapsulation skb */
864 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865 			/* drop the skb tunnel packet if hardware don't support,
866 			 * because hardware can't calculate csum when TSO.
867 			 */
868 			if (skb_is_gso(skb))
869 				return -EDOM;
870 
871 			/* the stack computes the IP header already,
872 			 * driver calculate l4 checksum when not TSO.
873 			 */
874 			skb_checksum_help(skb);
875 			return 0;
876 		}
877 
878 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879 
880 		/* switch to inner header */
881 		l2_hdr = skb_inner_mac_header(skb);
882 		l3.hdr = skb_inner_network_header(skb);
883 		l4.hdr = skb_inner_transport_header(skb);
884 		l4_proto = il4_proto;
885 	}
886 
887 	if (l3.v4->version == 4) {
888 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889 			       HNS3_L3T_IPV4);
890 
891 		/* the stack computes the IP header already, the only time we
892 		 * need the hardware to recompute it is in the case of TSO.
893 		 */
894 		if (skb_is_gso(skb))
895 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896 	} else if (l3.v6->version == 6) {
897 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898 			       HNS3_L3T_IPV6);
899 	}
900 
901 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
902 	l2_len = l3.hdr - l2_hdr;
903 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904 
905 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
906 	l3_len = l4.hdr - l3.hdr;
907 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908 
909 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
910 	switch (l4_proto) {
911 	case IPPROTO_TCP:
912 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914 			       HNS3_L4T_TCP);
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916 			       l4.tcp->doff);
917 		break;
918 	case IPPROTO_UDP:
919 		if (hns3_tunnel_csum_bug(skb))
920 			break;
921 
922 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924 			       HNS3_L4T_UDP);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926 			       (sizeof(struct udphdr) >> 2));
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933 			       (sizeof(struct sctphdr) >> 2));
934 		break;
935 	default:
936 		/* drop the skb tunnel packet if hardware don't support,
937 		 * because hardware can't calculate csum when TSO.
938 		 */
939 		if (skb_is_gso(skb))
940 			return -EDOM;
941 
942 		/* the stack computes the IP header already,
943 		 * driver calculate l4 checksum when not TSO.
944 		 */
945 		skb_checksum_help(skb);
946 		return 0;
947 	}
948 
949 	return 0;
950 }
951 
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953 			     struct sk_buff *skb)
954 {
955 	struct hnae3_handle *handle = tx_ring->tqp->handle;
956 	struct vlan_ethhdr *vhdr;
957 	int rc;
958 
959 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
960 	      skb_vlan_tag_present(skb)))
961 		return 0;
962 
963 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964 	 * header is allowed in skb, otherwise it will cause RAS error.
965 	 */
966 	if (unlikely(skb_vlan_tagged_multi(skb) &&
967 		     handle->port_base_vlan_state ==
968 		     HNAE3_PORT_BASE_VLAN_ENABLE))
969 		return -EINVAL;
970 
971 	if (skb->protocol == htons(ETH_P_8021Q) &&
972 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973 		/* When HW VLAN acceleration is turned off, and the stack
974 		 * sets the protocol to 802.1q, the driver just need to
975 		 * set the protocol to the encapsulated ethertype.
976 		 */
977 		skb->protocol = vlan_get_protocol(skb);
978 		return 0;
979 	}
980 
981 	if (skb_vlan_tag_present(skb)) {
982 		/* Based on hw strategy, use out_vtag in two layer tag case,
983 		 * and use inner_vtag in one tag case.
984 		 */
985 		if (skb->protocol == htons(ETH_P_8021Q) &&
986 		    handle->port_base_vlan_state ==
987 		    HNAE3_PORT_BASE_VLAN_DISABLE)
988 			rc = HNS3_OUTER_VLAN_TAG;
989 		else
990 			rc = HNS3_INNER_VLAN_TAG;
991 
992 		skb->protocol = vlan_get_protocol(skb);
993 		return rc;
994 	}
995 
996 	rc = skb_cow_head(skb, 0);
997 	if (unlikely(rc < 0))
998 		return rc;
999 
1000 	vhdr = (struct vlan_ethhdr *)skb->data;
1001 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002 					 & VLAN_PRIO_MASK);
1003 
1004 	skb->protocol = vlan_get_protocol(skb);
1005 	return 0;
1006 }
1007 
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009 			      struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011 	u32 ol_type_vlan_len_msec = 0;
1012 	u32 type_cs_vlan_tso = 0;
1013 	u32 paylen = skb->len;
1014 	u16 inner_vtag = 0;
1015 	u16 out_vtag = 0;
1016 	u16 mss = 0;
1017 	int ret;
1018 
1019 	ret = hns3_handle_vtags(ring, skb);
1020 	if (unlikely(ret < 0)) {
1021 		u64_stats_update_begin(&ring->syncp);
1022 		ring->stats.tx_vlan_err++;
1023 		u64_stats_update_end(&ring->syncp);
1024 		return ret;
1025 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1026 		inner_vtag = skb_vlan_tag_get(skb);
1027 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028 				VLAN_PRIO_MASK;
1029 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1031 		out_vtag = skb_vlan_tag_get(skb);
1032 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035 			       1);
1036 	}
1037 
1038 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039 		u8 ol4_proto, il4_proto;
1040 
1041 		skb_reset_mac_len(skb);
1042 
1043 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044 		if (unlikely(ret < 0)) {
1045 			u64_stats_update_begin(&ring->syncp);
1046 			ring->stats.tx_l4_proto_err++;
1047 			u64_stats_update_end(&ring->syncp);
1048 			return ret;
1049 		}
1050 
1051 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052 				      &type_cs_vlan_tso,
1053 				      &ol_type_vlan_len_msec);
1054 		if (unlikely(ret < 0)) {
1055 			u64_stats_update_begin(&ring->syncp);
1056 			ring->stats.tx_l2l3l4_err++;
1057 			u64_stats_update_end(&ring->syncp);
1058 			return ret;
1059 		}
1060 
1061 		ret = hns3_set_tso(skb, &paylen, &mss,
1062 				   &type_cs_vlan_tso);
1063 		if (unlikely(ret < 0)) {
1064 			u64_stats_update_begin(&ring->syncp);
1065 			ring->stats.tx_tso_err++;
1066 			u64_stats_update_end(&ring->syncp);
1067 			return ret;
1068 		}
1069 	}
1070 
1071 	/* Set txbd */
1072 	desc->tx.ol_type_vlan_len_msec =
1073 		cpu_to_le32(ol_type_vlan_len_msec);
1074 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075 	desc->tx.paylen = cpu_to_le32(paylen);
1076 	desc->tx.mss = cpu_to_le16(mss);
1077 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079 
1080 	return 0;
1081 }
1082 
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084 			  unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM	1
1087 
1088 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090 	struct device *dev = ring_to_dev(ring);
1091 	skb_frag_t *frag;
1092 	unsigned int frag_buf_num;
1093 	int k, sizeoflast;
1094 	dma_addr_t dma;
1095 
1096 	if (type == DESC_TYPE_SKB) {
1097 		struct sk_buff *skb = (struct sk_buff *)priv;
1098 		int ret;
1099 
1100 		ret = hns3_fill_skb_desc(ring, skb, desc);
1101 		if (unlikely(ret < 0))
1102 			return ret;
1103 
1104 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105 	} else if (type == DESC_TYPE_FRAGLIST_SKB) {
1106 		struct sk_buff *skb = (struct sk_buff *)priv;
1107 
1108 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1109 	} else {
1110 		frag = (skb_frag_t *)priv;
1111 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1112 	}
1113 
1114 	if (unlikely(dma_mapping_error(dev, dma))) {
1115 		u64_stats_update_begin(&ring->syncp);
1116 		ring->stats.sw_err_cnt++;
1117 		u64_stats_update_end(&ring->syncp);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	desc_cb->length = size;
1122 
1123 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124 		desc_cb->priv = priv;
1125 		desc_cb->dma = dma;
1126 		desc_cb->type = type;
1127 		desc->addr = cpu_to_le64(dma);
1128 		desc->tx.send_size = cpu_to_le16(size);
1129 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1130 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131 
1132 		trace_hns3_tx_desc(ring, ring->next_to_use);
1133 		ring_ptr_move_fw(ring, next_to_use);
1134 		return HNS3_LIKELY_BD_NUM;
1135 	}
1136 
1137 	frag_buf_num = hns3_tx_bd_count(size);
1138 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1139 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1140 
1141 	/* When frag size is bigger than hardware limit, split this frag */
1142 	for (k = 0; k < frag_buf_num; k++) {
1143 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1144 		desc_cb->priv = priv;
1145 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1146 		desc_cb->type = ((type == DESC_TYPE_FRAGLIST_SKB ||
1147 				  type == DESC_TYPE_SKB) && !k) ?
1148 				type : DESC_TYPE_PAGE;
1149 
1150 		/* now, fill the descriptor */
1151 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1152 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1153 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1154 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1155 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1156 
1157 		trace_hns3_tx_desc(ring, ring->next_to_use);
1158 		/* move ring pointer to next */
1159 		ring_ptr_move_fw(ring, next_to_use);
1160 
1161 		desc_cb = &ring->desc_cb[ring->next_to_use];
1162 		desc = &ring->desc[ring->next_to_use];
1163 	}
1164 
1165 	return frag_buf_num;
1166 }
1167 
1168 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1169 				    unsigned int bd_num)
1170 {
1171 	unsigned int size;
1172 	int i;
1173 
1174 	size = skb_headlen(skb);
1175 	while (size > HNS3_MAX_BD_SIZE) {
1176 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1177 		size -= HNS3_MAX_BD_SIZE;
1178 
1179 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1180 			return bd_num;
1181 	}
1182 
1183 	if (size) {
1184 		bd_size[bd_num++] = size;
1185 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186 			return bd_num;
1187 	}
1188 
1189 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1190 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191 		size = skb_frag_size(frag);
1192 		if (!size)
1193 			continue;
1194 
1195 		while (size > HNS3_MAX_BD_SIZE) {
1196 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1197 			size -= HNS3_MAX_BD_SIZE;
1198 
1199 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1200 				return bd_num;
1201 		}
1202 
1203 		bd_size[bd_num++] = size;
1204 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1205 			return bd_num;
1206 	}
1207 
1208 	return bd_num;
1209 }
1210 
1211 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1212 {
1213 	struct sk_buff *frag_skb;
1214 	unsigned int bd_num = 0;
1215 
1216 	/* If the total len is within the max bd limit */
1217 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1218 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1219 		return skb_shinfo(skb)->nr_frags + 1U;
1220 
1221 	/* The below case will always be linearized, return
1222 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1223 	 */
1224 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1225 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1226 		return HNS3_MAX_TSO_BD_NUM + 1U;
1227 
1228 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1229 
1230 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1231 		return bd_num;
1232 
1233 	skb_walk_frags(skb, frag_skb) {
1234 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1235 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1236 			return bd_num;
1237 	}
1238 
1239 	return bd_num;
1240 }
1241 
1242 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1243 {
1244 	if (!skb->encapsulation)
1245 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1246 
1247 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1248 }
1249 
1250 /* HW need every continuous 8 buffer data to be larger than MSS,
1251  * we simplify it by ensuring skb_headlen + the first continuous
1252  * 7 frags to to be larger than gso header len + mss, and the remaining
1253  * continuous 7 frags to be larger than MSS except the last 7 frags.
1254  */
1255 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1256 				     unsigned int bd_num)
1257 {
1258 	unsigned int tot_len = 0;
1259 	int i;
1260 
1261 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1262 		tot_len += bd_size[i];
1263 
1264 	/* ensure the first 8 frags is greater than mss + header */
1265 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1266 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1267 		return true;
1268 
1269 	/* ensure every continuous 7 buffer is greater than mss
1270 	 * except the last one.
1271 	 */
1272 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1273 		tot_len -= bd_size[i];
1274 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1275 
1276 		if (tot_len < skb_shinfo(skb)->gso_size)
1277 			return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1284 {
1285 	int i = 0;
1286 
1287 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1288 		size[i] = skb_frag_size(&shinfo->frags[i]);
1289 }
1290 
1291 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1292 				  struct net_device *netdev,
1293 				  struct sk_buff *skb)
1294 {
1295 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1296 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1297 	unsigned int bd_num;
1298 
1299 	bd_num = hns3_tx_bd_num(skb, bd_size);
1300 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1301 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1302 		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1303 			trace_hns3_over_8bd(skb);
1304 			goto out;
1305 		}
1306 
1307 		if (__skb_linearize(skb))
1308 			return -ENOMEM;
1309 
1310 		bd_num = hns3_tx_bd_count(skb->len);
1311 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1312 		    (!skb_is_gso(skb) &&
1313 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1314 			trace_hns3_over_8bd(skb);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		u64_stats_update_begin(&ring->syncp);
1319 		ring->stats.tx_copy++;
1320 		u64_stats_update_end(&ring->syncp);
1321 	}
1322 
1323 out:
1324 	if (likely(ring_space(ring) >= bd_num))
1325 		return bd_num;
1326 
1327 	netif_stop_subqueue(netdev, ring->queue_index);
1328 	smp_mb(); /* Memory barrier before checking ring_space */
1329 
1330 	/* Start queue in case hns3_clean_tx_ring has just made room
1331 	 * available and has not seen the queue stopped state performed
1332 	 * by netif_stop_subqueue above.
1333 	 */
1334 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1335 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1336 		netif_start_subqueue(netdev, ring->queue_index);
1337 		return bd_num;
1338 	}
1339 
1340 	return -EBUSY;
1341 }
1342 
1343 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1344 {
1345 	struct device *dev = ring_to_dev(ring);
1346 	unsigned int i;
1347 
1348 	for (i = 0; i < ring->desc_num; i++) {
1349 		/* check if this is where we started */
1350 		if (ring->next_to_use == next_to_use_orig)
1351 			break;
1352 
1353 		/* rollback one */
1354 		ring_ptr_move_bw(ring, next_to_use);
1355 
1356 		/* unmap the descriptor dma address */
1357 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1358 		    ring->desc_cb[ring->next_to_use].type ==
1359 		    DESC_TYPE_FRAGLIST_SKB)
1360 			dma_unmap_single(dev,
1361 					 ring->desc_cb[ring->next_to_use].dma,
1362 					ring->desc_cb[ring->next_to_use].length,
1363 					DMA_TO_DEVICE);
1364 		else if (ring->desc_cb[ring->next_to_use].length)
1365 			dma_unmap_page(dev,
1366 				       ring->desc_cb[ring->next_to_use].dma,
1367 				       ring->desc_cb[ring->next_to_use].length,
1368 				       DMA_TO_DEVICE);
1369 
1370 		ring->desc_cb[ring->next_to_use].length = 0;
1371 		ring->desc_cb[ring->next_to_use].dma = 0;
1372 	}
1373 }
1374 
1375 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1376 				 struct sk_buff *skb, enum hns_desc_type type)
1377 {
1378 	unsigned int size = skb_headlen(skb);
1379 	int i, ret, bd_num = 0;
1380 
1381 	if (size) {
1382 		ret = hns3_fill_desc(ring, skb, size, type);
1383 		if (unlikely(ret < 0))
1384 			return ret;
1385 
1386 		bd_num += ret;
1387 	}
1388 
1389 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1390 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1391 
1392 		size = skb_frag_size(frag);
1393 		if (!size)
1394 			continue;
1395 
1396 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1397 		if (unlikely(ret < 0))
1398 			return ret;
1399 
1400 		bd_num += ret;
1401 	}
1402 
1403 	return bd_num;
1404 }
1405 
1406 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1407 {
1408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1409 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1410 	struct netdev_queue *dev_queue;
1411 	int pre_ntu, next_to_use_head;
1412 	struct sk_buff *frag_skb;
1413 	int bd_num = 0;
1414 	int ret;
1415 
1416 	/* Hardware can only handle short frames above 32 bytes */
1417 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1418 		return NETDEV_TX_OK;
1419 
1420 	/* Prefetch the data used later */
1421 	prefetch(skb->data);
1422 
1423 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1424 	if (unlikely(ret <= 0)) {
1425 		if (ret == -EBUSY) {
1426 			u64_stats_update_begin(&ring->syncp);
1427 			ring->stats.tx_busy++;
1428 			u64_stats_update_end(&ring->syncp);
1429 			return NETDEV_TX_BUSY;
1430 		} else if (ret == -ENOMEM) {
1431 			u64_stats_update_begin(&ring->syncp);
1432 			ring->stats.sw_err_cnt++;
1433 			u64_stats_update_end(&ring->syncp);
1434 		}
1435 
1436 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1437 		goto out_err_tx_ok;
1438 	}
1439 
1440 	next_to_use_head = ring->next_to_use;
1441 
1442 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1443 	if (unlikely(ret < 0))
1444 		goto fill_err;
1445 
1446 	bd_num += ret;
1447 
1448 	if (!skb_has_frag_list(skb))
1449 		goto out;
1450 
1451 	skb_walk_frags(skb, frag_skb) {
1452 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1453 					    DESC_TYPE_FRAGLIST_SKB);
1454 		if (unlikely(ret < 0))
1455 			goto fill_err;
1456 
1457 		bd_num += ret;
1458 	}
1459 out:
1460 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1461 					(ring->desc_num - 1);
1462 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1463 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1464 	trace_hns3_tx_desc(ring, pre_ntu);
1465 
1466 	/* Complete translate all packets */
1467 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1468 	netdev_tx_sent_queue(dev_queue, skb->len);
1469 
1470 	wmb(); /* Commit all data before submit */
1471 
1472 	hnae3_queue_xmit(ring->tqp, bd_num);
1473 
1474 	return NETDEV_TX_OK;
1475 
1476 fill_err:
1477 	hns3_clear_desc(ring, next_to_use_head);
1478 
1479 out_err_tx_ok:
1480 	dev_kfree_skb_any(skb);
1481 	return NETDEV_TX_OK;
1482 }
1483 
1484 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1485 {
1486 	struct hnae3_handle *h = hns3_get_handle(netdev);
1487 	struct sockaddr *mac_addr = p;
1488 	int ret;
1489 
1490 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1491 		return -EADDRNOTAVAIL;
1492 
1493 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1494 		netdev_info(netdev, "already using mac address %pM\n",
1495 			    mac_addr->sa_data);
1496 		return 0;
1497 	}
1498 
1499 	/* For VF device, if there is a perm_addr, then the user will not
1500 	 * be allowed to change the address.
1501 	 */
1502 	if (!hns3_is_phys_func(h->pdev) &&
1503 	    !is_zero_ether_addr(netdev->perm_addr)) {
1504 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1505 			   netdev->perm_addr, mac_addr->sa_data);
1506 		return -EPERM;
1507 	}
1508 
1509 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1510 	if (ret) {
1511 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1512 		return ret;
1513 	}
1514 
1515 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1516 
1517 	return 0;
1518 }
1519 
1520 static int hns3_nic_do_ioctl(struct net_device *netdev,
1521 			     struct ifreq *ifr, int cmd)
1522 {
1523 	struct hnae3_handle *h = hns3_get_handle(netdev);
1524 
1525 	if (!netif_running(netdev))
1526 		return -EINVAL;
1527 
1528 	if (!h->ae_algo->ops->do_ioctl)
1529 		return -EOPNOTSUPP;
1530 
1531 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1532 }
1533 
1534 static int hns3_nic_set_features(struct net_device *netdev,
1535 				 netdev_features_t features)
1536 {
1537 	netdev_features_t changed = netdev->features ^ features;
1538 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1539 	struct hnae3_handle *h = priv->ae_handle;
1540 	bool enable;
1541 	int ret;
1542 
1543 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1544 		enable = !!(features & NETIF_F_GRO_HW);
1545 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1546 		if (ret)
1547 			return ret;
1548 	}
1549 
1550 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1551 	    h->ae_algo->ops->enable_vlan_filter) {
1552 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1553 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1554 	}
1555 
1556 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1557 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1558 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1559 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1560 		if (ret)
1561 			return ret;
1562 	}
1563 
1564 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1565 		enable = !!(features & NETIF_F_NTUPLE);
1566 		h->ae_algo->ops->enable_fd(h, enable);
1567 	}
1568 
1569 	netdev->features = features;
1570 	return 0;
1571 }
1572 
1573 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1574 					     struct net_device *dev,
1575 					     netdev_features_t features)
1576 {
1577 #define HNS3_MAX_HDR_LEN	480U
1578 #define HNS3_MAX_L4_HDR_LEN	60U
1579 
1580 	size_t len;
1581 
1582 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1583 		return features;
1584 
1585 	if (skb->encapsulation)
1586 		len = skb_inner_transport_header(skb) - skb->data;
1587 	else
1588 		len = skb_transport_header(skb) - skb->data;
1589 
1590 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1591 	 * a flexible value, and it's max len is 60 bytes.
1592 	 */
1593 	len += HNS3_MAX_L4_HDR_LEN;
1594 
1595 	/* Hardware only supports checksum on the skb with a max header
1596 	 * len of 480 bytes.
1597 	 */
1598 	if (len > HNS3_MAX_HDR_LEN)
1599 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1600 
1601 	return features;
1602 }
1603 
1604 static void hns3_nic_get_stats64(struct net_device *netdev,
1605 				 struct rtnl_link_stats64 *stats)
1606 {
1607 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1608 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1609 	struct hnae3_handle *handle = priv->ae_handle;
1610 	struct hns3_enet_ring *ring;
1611 	u64 rx_length_errors = 0;
1612 	u64 rx_crc_errors = 0;
1613 	u64 rx_multicast = 0;
1614 	unsigned int start;
1615 	u64 tx_errors = 0;
1616 	u64 rx_errors = 0;
1617 	unsigned int idx;
1618 	u64 tx_bytes = 0;
1619 	u64 rx_bytes = 0;
1620 	u64 tx_pkts = 0;
1621 	u64 rx_pkts = 0;
1622 	u64 tx_drop = 0;
1623 	u64 rx_drop = 0;
1624 
1625 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1626 		return;
1627 
1628 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1629 
1630 	for (idx = 0; idx < queue_num; idx++) {
1631 		/* fetch the tx stats */
1632 		ring = &priv->ring[idx];
1633 		do {
1634 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1635 			tx_bytes += ring->stats.tx_bytes;
1636 			tx_pkts += ring->stats.tx_pkts;
1637 			tx_drop += ring->stats.sw_err_cnt;
1638 			tx_drop += ring->stats.tx_vlan_err;
1639 			tx_drop += ring->stats.tx_l4_proto_err;
1640 			tx_drop += ring->stats.tx_l2l3l4_err;
1641 			tx_drop += ring->stats.tx_tso_err;
1642 			tx_errors += ring->stats.sw_err_cnt;
1643 			tx_errors += ring->stats.tx_vlan_err;
1644 			tx_errors += ring->stats.tx_l4_proto_err;
1645 			tx_errors += ring->stats.tx_l2l3l4_err;
1646 			tx_errors += ring->stats.tx_tso_err;
1647 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1648 
1649 		/* fetch the rx stats */
1650 		ring = &priv->ring[idx + queue_num];
1651 		do {
1652 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1653 			rx_bytes += ring->stats.rx_bytes;
1654 			rx_pkts += ring->stats.rx_pkts;
1655 			rx_drop += ring->stats.l2_err;
1656 			rx_errors += ring->stats.l2_err;
1657 			rx_errors += ring->stats.l3l4_csum_err;
1658 			rx_crc_errors += ring->stats.l2_err;
1659 			rx_multicast += ring->stats.rx_multicast;
1660 			rx_length_errors += ring->stats.err_pkt_len;
1661 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1662 	}
1663 
1664 	stats->tx_bytes = tx_bytes;
1665 	stats->tx_packets = tx_pkts;
1666 	stats->rx_bytes = rx_bytes;
1667 	stats->rx_packets = rx_pkts;
1668 
1669 	stats->rx_errors = rx_errors;
1670 	stats->multicast = rx_multicast;
1671 	stats->rx_length_errors = rx_length_errors;
1672 	stats->rx_crc_errors = rx_crc_errors;
1673 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1674 
1675 	stats->tx_errors = tx_errors;
1676 	stats->rx_dropped = rx_drop;
1677 	stats->tx_dropped = tx_drop;
1678 	stats->collisions = netdev->stats.collisions;
1679 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1680 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1681 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1682 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1683 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1684 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1685 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1686 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1687 	stats->rx_compressed = netdev->stats.rx_compressed;
1688 	stats->tx_compressed = netdev->stats.tx_compressed;
1689 }
1690 
1691 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1692 {
1693 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1694 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1695 	struct hnae3_knic_private_info *kinfo;
1696 	u8 tc = mqprio_qopt->qopt.num_tc;
1697 	u16 mode = mqprio_qopt->mode;
1698 	u8 hw = mqprio_qopt->qopt.hw;
1699 	struct hnae3_handle *h;
1700 
1701 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1702 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1703 		return -EOPNOTSUPP;
1704 
1705 	if (tc > HNAE3_MAX_TC)
1706 		return -EINVAL;
1707 
1708 	if (!netdev)
1709 		return -EINVAL;
1710 
1711 	h = hns3_get_handle(netdev);
1712 	kinfo = &h->kinfo;
1713 
1714 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1715 
1716 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1717 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1718 }
1719 
1720 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1721 			     void *type_data)
1722 {
1723 	if (type != TC_SETUP_QDISC_MQPRIO)
1724 		return -EOPNOTSUPP;
1725 
1726 	return hns3_setup_tc(dev, type_data);
1727 }
1728 
1729 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1730 				__be16 proto, u16 vid)
1731 {
1732 	struct hnae3_handle *h = hns3_get_handle(netdev);
1733 	int ret = -EIO;
1734 
1735 	if (h->ae_algo->ops->set_vlan_filter)
1736 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1737 
1738 	return ret;
1739 }
1740 
1741 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1742 				 __be16 proto, u16 vid)
1743 {
1744 	struct hnae3_handle *h = hns3_get_handle(netdev);
1745 	int ret = -EIO;
1746 
1747 	if (h->ae_algo->ops->set_vlan_filter)
1748 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1749 
1750 	return ret;
1751 }
1752 
1753 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1754 				u8 qos, __be16 vlan_proto)
1755 {
1756 	struct hnae3_handle *h = hns3_get_handle(netdev);
1757 	int ret = -EIO;
1758 
1759 	netif_dbg(h, drv, netdev,
1760 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1761 		  vf, vlan, qos, ntohs(vlan_proto));
1762 
1763 	if (h->ae_algo->ops->set_vf_vlan_filter)
1764 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1765 							  qos, vlan_proto);
1766 
1767 	return ret;
1768 }
1769 
1770 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1771 {
1772 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1773 
1774 	if (hns3_nic_resetting(netdev))
1775 		return -EBUSY;
1776 
1777 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1778 		return -EOPNOTSUPP;
1779 
1780 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1781 }
1782 
1783 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1784 {
1785 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1786 
1787 	if (!handle->ae_algo->ops->set_vf_trust)
1788 		return -EOPNOTSUPP;
1789 
1790 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1791 }
1792 
1793 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1794 {
1795 	struct hnae3_handle *h = hns3_get_handle(netdev);
1796 	int ret;
1797 
1798 	if (hns3_nic_resetting(netdev))
1799 		return -EBUSY;
1800 
1801 	if (!h->ae_algo->ops->set_mtu)
1802 		return -EOPNOTSUPP;
1803 
1804 	netif_dbg(h, drv, netdev,
1805 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1806 
1807 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1808 	if (ret)
1809 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1810 			   ret);
1811 	else
1812 		netdev->mtu = new_mtu;
1813 
1814 	return ret;
1815 }
1816 
1817 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1818 {
1819 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1820 	struct hnae3_handle *h = hns3_get_handle(ndev);
1821 	struct hns3_enet_ring *tx_ring;
1822 	struct napi_struct *napi;
1823 	int timeout_queue = 0;
1824 	int hw_head, hw_tail;
1825 	int fbd_num, fbd_oft;
1826 	int ebd_num, ebd_oft;
1827 	int bd_num, bd_err;
1828 	int ring_en, tc;
1829 	int i;
1830 
1831 	/* Find the stopped queue the same way the stack does */
1832 	for (i = 0; i < ndev->num_tx_queues; i++) {
1833 		struct netdev_queue *q;
1834 		unsigned long trans_start;
1835 
1836 		q = netdev_get_tx_queue(ndev, i);
1837 		trans_start = q->trans_start;
1838 		if (netif_xmit_stopped(q) &&
1839 		    time_after(jiffies,
1840 			       (trans_start + ndev->watchdog_timeo))) {
1841 			timeout_queue = i;
1842 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1843 				    q->state,
1844 				    jiffies_to_msecs(jiffies - trans_start));
1845 			break;
1846 		}
1847 	}
1848 
1849 	if (i == ndev->num_tx_queues) {
1850 		netdev_info(ndev,
1851 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1852 			    priv->tx_timeout_count);
1853 		return false;
1854 	}
1855 
1856 	priv->tx_timeout_count++;
1857 
1858 	tx_ring = &priv->ring[timeout_queue];
1859 	napi = &tx_ring->tqp_vector->napi;
1860 
1861 	netdev_info(ndev,
1862 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1863 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1864 		    tx_ring->next_to_clean, napi->state);
1865 
1866 	netdev_info(ndev,
1867 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1868 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1869 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1870 
1871 	netdev_info(ndev,
1872 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1873 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1874 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1875 
1876 	/* When mac received many pause frames continuous, it's unable to send
1877 	 * packets, which may cause tx timeout
1878 	 */
1879 	if (h->ae_algo->ops->get_mac_stats) {
1880 		struct hns3_mac_stats mac_stats;
1881 
1882 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1883 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1884 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1885 	}
1886 
1887 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1888 				HNS3_RING_TX_RING_HEAD_REG);
1889 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1890 				HNS3_RING_TX_RING_TAIL_REG);
1891 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1892 				HNS3_RING_TX_RING_FBDNUM_REG);
1893 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1894 				HNS3_RING_TX_RING_OFFSET_REG);
1895 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1896 				HNS3_RING_TX_RING_EBDNUM_REG);
1897 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1898 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1899 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1900 			       HNS3_RING_TX_RING_BD_NUM_REG);
1901 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1902 			       HNS3_RING_TX_RING_BD_ERR_REG);
1903 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1904 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1905 
1906 	netdev_info(ndev,
1907 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1908 		    bd_num, hw_head, hw_tail, bd_err,
1909 		    readl(tx_ring->tqp_vector->mask_addr));
1910 	netdev_info(ndev,
1911 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1912 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1913 
1914 	return true;
1915 }
1916 
1917 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1918 {
1919 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1920 	struct hnae3_handle *h = priv->ae_handle;
1921 
1922 	if (!hns3_get_tx_timeo_queue_info(ndev))
1923 		return;
1924 
1925 	/* request the reset, and let the hclge to determine
1926 	 * which reset level should be done
1927 	 */
1928 	if (h->ae_algo->ops->reset_event)
1929 		h->ae_algo->ops->reset_event(h->pdev, h);
1930 }
1931 
1932 #ifdef CONFIG_RFS_ACCEL
1933 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1934 			      u16 rxq_index, u32 flow_id)
1935 {
1936 	struct hnae3_handle *h = hns3_get_handle(dev);
1937 	struct flow_keys fkeys;
1938 
1939 	if (!h->ae_algo->ops->add_arfs_entry)
1940 		return -EOPNOTSUPP;
1941 
1942 	if (skb->encapsulation)
1943 		return -EPROTONOSUPPORT;
1944 
1945 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1946 		return -EPROTONOSUPPORT;
1947 
1948 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1949 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1950 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1951 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1952 		return -EPROTONOSUPPORT;
1953 
1954 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1955 }
1956 #endif
1957 
1958 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1959 				  struct ifla_vf_info *ivf)
1960 {
1961 	struct hnae3_handle *h = hns3_get_handle(ndev);
1962 
1963 	if (!h->ae_algo->ops->get_vf_config)
1964 		return -EOPNOTSUPP;
1965 
1966 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1967 }
1968 
1969 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1970 				      int link_state)
1971 {
1972 	struct hnae3_handle *h = hns3_get_handle(ndev);
1973 
1974 	if (!h->ae_algo->ops->set_vf_link_state)
1975 		return -EOPNOTSUPP;
1976 
1977 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1978 }
1979 
1980 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1981 				int min_tx_rate, int max_tx_rate)
1982 {
1983 	struct hnae3_handle *h = hns3_get_handle(ndev);
1984 
1985 	if (!h->ae_algo->ops->set_vf_rate)
1986 		return -EOPNOTSUPP;
1987 
1988 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1989 					    false);
1990 }
1991 
1992 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1993 {
1994 	struct hnae3_handle *h = hns3_get_handle(netdev);
1995 
1996 	if (!h->ae_algo->ops->set_vf_mac)
1997 		return -EOPNOTSUPP;
1998 
1999 	if (is_multicast_ether_addr(mac)) {
2000 		netdev_err(netdev,
2001 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2002 			   mac);
2003 		return -EINVAL;
2004 	}
2005 
2006 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2007 }
2008 
2009 static const struct net_device_ops hns3_nic_netdev_ops = {
2010 	.ndo_open		= hns3_nic_net_open,
2011 	.ndo_stop		= hns3_nic_net_stop,
2012 	.ndo_start_xmit		= hns3_nic_net_xmit,
2013 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2014 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2015 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2016 	.ndo_change_mtu		= hns3_nic_change_mtu,
2017 	.ndo_set_features	= hns3_nic_set_features,
2018 	.ndo_features_check	= hns3_features_check,
2019 	.ndo_get_stats64	= hns3_nic_get_stats64,
2020 	.ndo_setup_tc		= hns3_nic_setup_tc,
2021 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2022 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2023 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2024 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2025 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2026 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2027 #ifdef CONFIG_RFS_ACCEL
2028 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2029 #endif
2030 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2031 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2032 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2033 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2034 };
2035 
2036 bool hns3_is_phys_func(struct pci_dev *pdev)
2037 {
2038 	u32 dev_id = pdev->device;
2039 
2040 	switch (dev_id) {
2041 	case HNAE3_DEV_ID_GE:
2042 	case HNAE3_DEV_ID_25GE:
2043 	case HNAE3_DEV_ID_25GE_RDMA:
2044 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2045 	case HNAE3_DEV_ID_50GE_RDMA:
2046 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2047 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2048 		return true;
2049 	case HNAE3_DEV_ID_100G_VF:
2050 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2051 		return false;
2052 	default:
2053 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2054 			 dev_id);
2055 	}
2056 
2057 	return false;
2058 }
2059 
2060 static void hns3_disable_sriov(struct pci_dev *pdev)
2061 {
2062 	/* If our VFs are assigned we cannot shut down SR-IOV
2063 	 * without causing issues, so just leave the hardware
2064 	 * available but disabled
2065 	 */
2066 	if (pci_vfs_assigned(pdev)) {
2067 		dev_warn(&pdev->dev,
2068 			 "disabling driver while VFs are assigned\n");
2069 		return;
2070 	}
2071 
2072 	pci_disable_sriov(pdev);
2073 }
2074 
2075 static void hns3_get_dev_capability(struct pci_dev *pdev,
2076 				    struct hnae3_ae_dev *ae_dev)
2077 {
2078 	if (pdev->revision >= 0x21) {
2079 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2080 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2081 	}
2082 }
2083 
2084 /* hns3_probe - Device initialization routine
2085  * @pdev: PCI device information struct
2086  * @ent: entry in hns3_pci_tbl
2087  *
2088  * hns3_probe initializes a PF identified by a pci_dev structure.
2089  * The OS initialization, configuring of the PF private structure,
2090  * and a hardware reset occur.
2091  *
2092  * Returns 0 on success, negative on failure
2093  */
2094 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2095 {
2096 	struct hnae3_ae_dev *ae_dev;
2097 	int ret;
2098 
2099 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2100 	if (!ae_dev)
2101 		return -ENOMEM;
2102 
2103 	ae_dev->pdev = pdev;
2104 	ae_dev->flag = ent->driver_data;
2105 	hns3_get_dev_capability(pdev, ae_dev);
2106 	pci_set_drvdata(pdev, ae_dev);
2107 
2108 	ret = hnae3_register_ae_dev(ae_dev);
2109 	if (ret) {
2110 		devm_kfree(&pdev->dev, ae_dev);
2111 		pci_set_drvdata(pdev, NULL);
2112 	}
2113 
2114 	return ret;
2115 }
2116 
2117 /* hns3_remove - Device removal routine
2118  * @pdev: PCI device information struct
2119  */
2120 static void hns3_remove(struct pci_dev *pdev)
2121 {
2122 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2123 
2124 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2125 		hns3_disable_sriov(pdev);
2126 
2127 	hnae3_unregister_ae_dev(ae_dev);
2128 	pci_set_drvdata(pdev, NULL);
2129 }
2130 
2131 /**
2132  * hns3_pci_sriov_configure
2133  * @pdev: pointer to a pci_dev structure
2134  * @num_vfs: number of VFs to allocate
2135  *
2136  * Enable or change the number of VFs. Called when the user updates the number
2137  * of VFs in sysfs.
2138  **/
2139 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2140 {
2141 	int ret;
2142 
2143 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2144 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2145 		return -EINVAL;
2146 	}
2147 
2148 	if (num_vfs) {
2149 		ret = pci_enable_sriov(pdev, num_vfs);
2150 		if (ret)
2151 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2152 		else
2153 			return num_vfs;
2154 	} else if (!pci_vfs_assigned(pdev)) {
2155 		pci_disable_sriov(pdev);
2156 	} else {
2157 		dev_warn(&pdev->dev,
2158 			 "Unable to free VFs because some are assigned to VMs.\n");
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 static void hns3_shutdown(struct pci_dev *pdev)
2165 {
2166 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2167 
2168 	hnae3_unregister_ae_dev(ae_dev);
2169 	devm_kfree(&pdev->dev, ae_dev);
2170 	pci_set_drvdata(pdev, NULL);
2171 
2172 	if (system_state == SYSTEM_POWER_OFF)
2173 		pci_set_power_state(pdev, PCI_D3hot);
2174 }
2175 
2176 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2177 					    pci_channel_state_t state)
2178 {
2179 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2180 	pci_ers_result_t ret;
2181 
2182 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2183 
2184 	if (state == pci_channel_io_perm_failure)
2185 		return PCI_ERS_RESULT_DISCONNECT;
2186 
2187 	if (!ae_dev || !ae_dev->ops) {
2188 		dev_err(&pdev->dev,
2189 			"Can't recover - error happened before device initialized\n");
2190 		return PCI_ERS_RESULT_NONE;
2191 	}
2192 
2193 	if (ae_dev->ops->handle_hw_ras_error)
2194 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2195 	else
2196 		return PCI_ERS_RESULT_NONE;
2197 
2198 	return ret;
2199 }
2200 
2201 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2202 {
2203 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2204 	const struct hnae3_ae_ops *ops;
2205 	enum hnae3_reset_type reset_type;
2206 	struct device *dev = &pdev->dev;
2207 
2208 	if (!ae_dev || !ae_dev->ops)
2209 		return PCI_ERS_RESULT_NONE;
2210 
2211 	ops = ae_dev->ops;
2212 	/* request the reset */
2213 	if (ops->reset_event && ops->get_reset_level &&
2214 	    ops->set_default_reset_request) {
2215 		if (ae_dev->hw_err_reset_req) {
2216 			reset_type = ops->get_reset_level(ae_dev,
2217 						&ae_dev->hw_err_reset_req);
2218 			ops->set_default_reset_request(ae_dev, reset_type);
2219 			dev_info(dev, "requesting reset due to PCI error\n");
2220 			ops->reset_event(pdev, NULL);
2221 		}
2222 
2223 		return PCI_ERS_RESULT_RECOVERED;
2224 	}
2225 
2226 	return PCI_ERS_RESULT_DISCONNECT;
2227 }
2228 
2229 static void hns3_reset_prepare(struct pci_dev *pdev)
2230 {
2231 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2232 
2233 	dev_info(&pdev->dev, "FLR prepare\n");
2234 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2235 		ae_dev->ops->flr_prepare(ae_dev);
2236 }
2237 
2238 static void hns3_reset_done(struct pci_dev *pdev)
2239 {
2240 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2241 
2242 	dev_info(&pdev->dev, "FLR done\n");
2243 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2244 		ae_dev->ops->flr_done(ae_dev);
2245 }
2246 
2247 static const struct pci_error_handlers hns3_err_handler = {
2248 	.error_detected = hns3_error_detected,
2249 	.slot_reset     = hns3_slot_reset,
2250 	.reset_prepare	= hns3_reset_prepare,
2251 	.reset_done	= hns3_reset_done,
2252 };
2253 
2254 static struct pci_driver hns3_driver = {
2255 	.name     = hns3_driver_name,
2256 	.id_table = hns3_pci_tbl,
2257 	.probe    = hns3_probe,
2258 	.remove   = hns3_remove,
2259 	.shutdown = hns3_shutdown,
2260 	.sriov_configure = hns3_pci_sriov_configure,
2261 	.err_handler    = &hns3_err_handler,
2262 };
2263 
2264 /* set default feature to hns3 */
2265 static void hns3_set_default_feature(struct net_device *netdev)
2266 {
2267 	struct hnae3_handle *h = hns3_get_handle(netdev);
2268 	struct pci_dev *pdev = h->pdev;
2269 
2270 	netdev->priv_flags |= IFF_UNICAST_FLT;
2271 
2272 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2273 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2274 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2275 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2276 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2277 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2278 
2279 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2280 
2281 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2282 		NETIF_F_HW_VLAN_CTAG_FILTER |
2283 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2284 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2285 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2286 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2287 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2288 		NETIF_F_FRAGLIST;
2289 
2290 	netdev->vlan_features |=
2291 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2292 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2293 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2294 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2295 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2296 		NETIF_F_FRAGLIST;
2297 
2298 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2299 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2300 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2301 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2302 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2303 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2304 		NETIF_F_FRAGLIST;
2305 
2306 	if (pdev->revision >= 0x21) {
2307 		netdev->hw_features |= NETIF_F_GRO_HW;
2308 		netdev->features |= NETIF_F_GRO_HW;
2309 
2310 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2311 			netdev->hw_features |= NETIF_F_NTUPLE;
2312 			netdev->features |= NETIF_F_NTUPLE;
2313 		}
2314 	}
2315 }
2316 
2317 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2318 			     struct hns3_desc_cb *cb)
2319 {
2320 	unsigned int order = hns3_page_order(ring);
2321 	struct page *p;
2322 
2323 	p = dev_alloc_pages(order);
2324 	if (!p)
2325 		return -ENOMEM;
2326 
2327 	cb->priv = p;
2328 	cb->page_offset = 0;
2329 	cb->reuse_flag = 0;
2330 	cb->buf  = page_address(p);
2331 	cb->length = hns3_page_size(ring);
2332 	cb->type = DESC_TYPE_PAGE;
2333 
2334 	return 0;
2335 }
2336 
2337 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2338 			     struct hns3_desc_cb *cb)
2339 {
2340 	if (cb->type == DESC_TYPE_SKB)
2341 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2342 	else if (!HNAE3_IS_TX_RING(ring))
2343 		put_page((struct page *)cb->priv);
2344 	memset(cb, 0, sizeof(*cb));
2345 }
2346 
2347 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2348 {
2349 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2350 			       cb->length, ring_to_dma_dir(ring));
2351 
2352 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2353 		return -EIO;
2354 
2355 	return 0;
2356 }
2357 
2358 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2359 			      struct hns3_desc_cb *cb)
2360 {
2361 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2362 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2363 				 ring_to_dma_dir(ring));
2364 	else if (cb->length)
2365 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2366 			       ring_to_dma_dir(ring));
2367 }
2368 
2369 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2370 {
2371 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2372 	ring->desc[i].addr = 0;
2373 }
2374 
2375 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2376 {
2377 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2378 
2379 	if (!ring->desc_cb[i].dma)
2380 		return;
2381 
2382 	hns3_buffer_detach(ring, i);
2383 	hns3_free_buffer(ring, cb);
2384 }
2385 
2386 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2387 {
2388 	int i;
2389 
2390 	for (i = 0; i < ring->desc_num; i++)
2391 		hns3_free_buffer_detach(ring, i);
2392 }
2393 
2394 /* free desc along with its attached buffer */
2395 static void hns3_free_desc(struct hns3_enet_ring *ring)
2396 {
2397 	int size = ring->desc_num * sizeof(ring->desc[0]);
2398 
2399 	hns3_free_buffers(ring);
2400 
2401 	if (ring->desc) {
2402 		dma_free_coherent(ring_to_dev(ring), size,
2403 				  ring->desc, ring->desc_dma_addr);
2404 		ring->desc = NULL;
2405 	}
2406 }
2407 
2408 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2409 {
2410 	int size = ring->desc_num * sizeof(ring->desc[0]);
2411 
2412 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2413 					&ring->desc_dma_addr, GFP_KERNEL);
2414 	if (!ring->desc)
2415 		return -ENOMEM;
2416 
2417 	return 0;
2418 }
2419 
2420 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2421 				   struct hns3_desc_cb *cb)
2422 {
2423 	int ret;
2424 
2425 	ret = hns3_alloc_buffer(ring, cb);
2426 	if (ret)
2427 		goto out;
2428 
2429 	ret = hns3_map_buffer(ring, cb);
2430 	if (ret)
2431 		goto out_with_buf;
2432 
2433 	return 0;
2434 
2435 out_with_buf:
2436 	hns3_free_buffer(ring, cb);
2437 out:
2438 	return ret;
2439 }
2440 
2441 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2442 {
2443 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2444 
2445 	if (ret)
2446 		return ret;
2447 
2448 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2449 
2450 	return 0;
2451 }
2452 
2453 /* Allocate memory for raw pkg, and map with dma */
2454 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2455 {
2456 	int i, j, ret;
2457 
2458 	for (i = 0; i < ring->desc_num; i++) {
2459 		ret = hns3_alloc_buffer_attach(ring, i);
2460 		if (ret)
2461 			goto out_buffer_fail;
2462 	}
2463 
2464 	return 0;
2465 
2466 out_buffer_fail:
2467 	for (j = i - 1; j >= 0; j--)
2468 		hns3_free_buffer_detach(ring, j);
2469 	return ret;
2470 }
2471 
2472 /* detach a in-used buffer and replace with a reserved one */
2473 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2474 				struct hns3_desc_cb *res_cb)
2475 {
2476 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2477 	ring->desc_cb[i] = *res_cb;
2478 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2479 	ring->desc[i].rx.bd_base_info = 0;
2480 }
2481 
2482 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2483 {
2484 	ring->desc_cb[i].reuse_flag = 0;
2485 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2486 					 ring->desc_cb[i].page_offset);
2487 	ring->desc[i].rx.bd_base_info = 0;
2488 }
2489 
2490 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2491 				  int *bytes, int *pkts)
2492 {
2493 	int ntc = ring->next_to_clean;
2494 	struct hns3_desc_cb *desc_cb;
2495 
2496 	while (head != ntc) {
2497 		desc_cb = &ring->desc_cb[ntc];
2498 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2499 		(*bytes) += desc_cb->length;
2500 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2501 		hns3_free_buffer_detach(ring, ntc);
2502 
2503 		if (++ntc == ring->desc_num)
2504 			ntc = 0;
2505 
2506 		/* Issue prefetch for next Tx descriptor */
2507 		prefetch(&ring->desc_cb[ntc]);
2508 	}
2509 
2510 	/* This smp_store_release() pairs with smp_load_acquire() in
2511 	 * ring_space called by hns3_nic_net_xmit.
2512 	 */
2513 	smp_store_release(&ring->next_to_clean, ntc);
2514 }
2515 
2516 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2517 {
2518 	int u = ring->next_to_use;
2519 	int c = ring->next_to_clean;
2520 
2521 	if (unlikely(h > ring->desc_num))
2522 		return 0;
2523 
2524 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2525 }
2526 
2527 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2528 {
2529 	struct net_device *netdev = ring_to_netdev(ring);
2530 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2531 	struct netdev_queue *dev_queue;
2532 	int bytes, pkts;
2533 	int head;
2534 
2535 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2536 
2537 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2538 		return; /* no data to poll */
2539 
2540 	rmb(); /* Make sure head is ready before touch any data */
2541 
2542 	if (unlikely(!is_valid_clean_head(ring, head))) {
2543 		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2544 			    ring->next_to_use, ring->next_to_clean);
2545 
2546 		u64_stats_update_begin(&ring->syncp);
2547 		ring->stats.io_err_cnt++;
2548 		u64_stats_update_end(&ring->syncp);
2549 		return;
2550 	}
2551 
2552 	bytes = 0;
2553 	pkts = 0;
2554 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2555 
2556 	ring->tqp_vector->tx_group.total_bytes += bytes;
2557 	ring->tqp_vector->tx_group.total_packets += pkts;
2558 
2559 	u64_stats_update_begin(&ring->syncp);
2560 	ring->stats.tx_bytes += bytes;
2561 	ring->stats.tx_pkts += pkts;
2562 	u64_stats_update_end(&ring->syncp);
2563 
2564 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2565 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2566 
2567 	if (unlikely(netif_carrier_ok(netdev) &&
2568 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2569 		/* Make sure that anybody stopping the queue after this
2570 		 * sees the new next_to_clean.
2571 		 */
2572 		smp_mb();
2573 		if (netif_tx_queue_stopped(dev_queue) &&
2574 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2575 			netif_tx_wake_queue(dev_queue);
2576 			ring->stats.restart_queue++;
2577 		}
2578 	}
2579 }
2580 
2581 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2582 {
2583 	int ntc = ring->next_to_clean;
2584 	int ntu = ring->next_to_use;
2585 
2586 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2587 }
2588 
2589 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2590 				      int cleand_count)
2591 {
2592 	struct hns3_desc_cb *desc_cb;
2593 	struct hns3_desc_cb res_cbs;
2594 	int i, ret;
2595 
2596 	for (i = 0; i < cleand_count; i++) {
2597 		desc_cb = &ring->desc_cb[ring->next_to_use];
2598 		if (desc_cb->reuse_flag) {
2599 			u64_stats_update_begin(&ring->syncp);
2600 			ring->stats.reuse_pg_cnt++;
2601 			u64_stats_update_end(&ring->syncp);
2602 
2603 			hns3_reuse_buffer(ring, ring->next_to_use);
2604 		} else {
2605 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2606 			if (ret) {
2607 				u64_stats_update_begin(&ring->syncp);
2608 				ring->stats.sw_err_cnt++;
2609 				u64_stats_update_end(&ring->syncp);
2610 
2611 				hns3_rl_err(ring_to_netdev(ring),
2612 					    "alloc rx buffer failed: %d\n",
2613 					    ret);
2614 				break;
2615 			}
2616 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2617 
2618 			u64_stats_update_begin(&ring->syncp);
2619 			ring->stats.non_reuse_pg++;
2620 			u64_stats_update_end(&ring->syncp);
2621 		}
2622 
2623 		ring_ptr_move_fw(ring, next_to_use);
2624 	}
2625 
2626 	wmb(); /* Make all data has been write before submit */
2627 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2628 }
2629 
2630 static bool hns3_page_is_reusable(struct page *page)
2631 {
2632 	return page_to_nid(page) == numa_mem_id() &&
2633 		!page_is_pfmemalloc(page);
2634 }
2635 
2636 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2637 				struct hns3_enet_ring *ring, int pull_len,
2638 				struct hns3_desc_cb *desc_cb)
2639 {
2640 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2641 	int size = le16_to_cpu(desc->rx.size);
2642 	u32 truesize = hns3_buf_size(ring);
2643 
2644 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2645 			size - pull_len, truesize);
2646 
2647 	/* Avoid re-using remote pages, or the stack is still using the page
2648 	 * when page_offset rollback to zero, flag default unreuse
2649 	 */
2650 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2651 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2652 		return;
2653 
2654 	/* Move offset up to the next cache line */
2655 	desc_cb->page_offset += truesize;
2656 
2657 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2658 		desc_cb->reuse_flag = 1;
2659 		/* Bump ref count on page before it is given */
2660 		get_page(desc_cb->priv);
2661 	} else if (page_count(desc_cb->priv) == 1) {
2662 		desc_cb->reuse_flag = 1;
2663 		desc_cb->page_offset = 0;
2664 		get_page(desc_cb->priv);
2665 	}
2666 }
2667 
2668 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2669 {
2670 	__be16 type = skb->protocol;
2671 	struct tcphdr *th;
2672 	int depth = 0;
2673 
2674 	while (eth_type_vlan(type)) {
2675 		struct vlan_hdr *vh;
2676 
2677 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2678 			return -EFAULT;
2679 
2680 		vh = (struct vlan_hdr *)(skb->data + depth);
2681 		type = vh->h_vlan_encapsulated_proto;
2682 		depth += VLAN_HLEN;
2683 	}
2684 
2685 	skb_set_network_header(skb, depth);
2686 
2687 	if (type == htons(ETH_P_IP)) {
2688 		const struct iphdr *iph = ip_hdr(skb);
2689 
2690 		depth += sizeof(struct iphdr);
2691 		skb_set_transport_header(skb, depth);
2692 		th = tcp_hdr(skb);
2693 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2694 					  iph->daddr, 0);
2695 	} else if (type == htons(ETH_P_IPV6)) {
2696 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2697 
2698 		depth += sizeof(struct ipv6hdr);
2699 		skb_set_transport_header(skb, depth);
2700 		th = tcp_hdr(skb);
2701 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2702 					  &iph->daddr, 0);
2703 	} else {
2704 		hns3_rl_err(skb->dev,
2705 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2706 			    be16_to_cpu(type), depth);
2707 		return -EFAULT;
2708 	}
2709 
2710 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2711 	if (th->cwr)
2712 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2713 
2714 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2715 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2716 
2717 	skb->csum_start = (unsigned char *)th - skb->head;
2718 	skb->csum_offset = offsetof(struct tcphdr, check);
2719 	skb->ip_summed = CHECKSUM_PARTIAL;
2720 
2721 	trace_hns3_gro(skb);
2722 
2723 	return 0;
2724 }
2725 
2726 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2727 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2728 {
2729 	struct net_device *netdev = ring_to_netdev(ring);
2730 	int l3_type, l4_type;
2731 	int ol4_type;
2732 
2733 	skb->ip_summed = CHECKSUM_NONE;
2734 
2735 	skb_checksum_none_assert(skb);
2736 
2737 	if (!(netdev->features & NETIF_F_RXCSUM))
2738 		return;
2739 
2740 	/* check if hardware has done checksum */
2741 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2742 		return;
2743 
2744 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2745 				 BIT(HNS3_RXD_OL3E_B) |
2746 				 BIT(HNS3_RXD_OL4E_B)))) {
2747 		u64_stats_update_begin(&ring->syncp);
2748 		ring->stats.l3l4_csum_err++;
2749 		u64_stats_update_end(&ring->syncp);
2750 
2751 		return;
2752 	}
2753 
2754 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2755 				   HNS3_RXD_OL4ID_S);
2756 	switch (ol4_type) {
2757 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2758 	case HNS3_OL4_TYPE_NVGRE:
2759 		skb->csum_level = 1;
2760 		/* fall through */
2761 	case HNS3_OL4_TYPE_NO_TUN:
2762 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2763 					  HNS3_RXD_L3ID_S);
2764 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2765 					  HNS3_RXD_L4ID_S);
2766 
2767 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2768 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2769 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2770 		    (l4_type == HNS3_L4_TYPE_UDP ||
2771 		     l4_type == HNS3_L4_TYPE_TCP ||
2772 		     l4_type == HNS3_L4_TYPE_SCTP))
2773 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2774 		break;
2775 	default:
2776 		break;
2777 	}
2778 }
2779 
2780 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2781 {
2782 	if (skb_has_frag_list(skb))
2783 		napi_gro_flush(&ring->tqp_vector->napi, false);
2784 
2785 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2786 }
2787 
2788 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2789 				struct hns3_desc *desc, u32 l234info,
2790 				u16 *vlan_tag)
2791 {
2792 	struct hnae3_handle *handle = ring->tqp->handle;
2793 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2794 
2795 	if (pdev->revision == 0x20) {
2796 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2797 		if (!(*vlan_tag & VLAN_VID_MASK))
2798 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2799 
2800 		return (*vlan_tag != 0);
2801 	}
2802 
2803 #define HNS3_STRP_OUTER_VLAN	0x1
2804 #define HNS3_STRP_INNER_VLAN	0x2
2805 #define HNS3_STRP_BOTH		0x3
2806 
2807 	/* Hardware always insert VLAN tag into RX descriptor when
2808 	 * remove the tag from packet, driver needs to determine
2809 	 * reporting which tag to stack.
2810 	 */
2811 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2812 				HNS3_RXD_STRP_TAGP_S)) {
2813 	case HNS3_STRP_OUTER_VLAN:
2814 		if (handle->port_base_vlan_state !=
2815 				HNAE3_PORT_BASE_VLAN_DISABLE)
2816 			return false;
2817 
2818 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2819 		return true;
2820 	case HNS3_STRP_INNER_VLAN:
2821 		if (handle->port_base_vlan_state !=
2822 				HNAE3_PORT_BASE_VLAN_DISABLE)
2823 			return false;
2824 
2825 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2826 		return true;
2827 	case HNS3_STRP_BOTH:
2828 		if (handle->port_base_vlan_state ==
2829 				HNAE3_PORT_BASE_VLAN_DISABLE)
2830 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2831 		else
2832 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2833 
2834 		return true;
2835 	default:
2836 		return false;
2837 	}
2838 }
2839 
2840 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2841 			  unsigned char *va)
2842 {
2843 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2844 	struct net_device *netdev = ring_to_netdev(ring);
2845 	struct sk_buff *skb;
2846 
2847 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2848 	skb = ring->skb;
2849 	if (unlikely(!skb)) {
2850 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2851 
2852 		u64_stats_update_begin(&ring->syncp);
2853 		ring->stats.sw_err_cnt++;
2854 		u64_stats_update_end(&ring->syncp);
2855 
2856 		return -ENOMEM;
2857 	}
2858 
2859 	trace_hns3_rx_desc(ring);
2860 	prefetchw(skb->data);
2861 
2862 	ring->pending_buf = 1;
2863 	ring->frag_num = 0;
2864 	ring->tail_skb = NULL;
2865 	if (length <= HNS3_RX_HEAD_SIZE) {
2866 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2867 
2868 		/* We can reuse buffer as-is, just make sure it is local */
2869 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2870 			desc_cb->reuse_flag = 1;
2871 		else /* This page cannot be reused so discard it */
2872 			put_page(desc_cb->priv);
2873 
2874 		ring_ptr_move_fw(ring, next_to_clean);
2875 		return 0;
2876 	}
2877 	u64_stats_update_begin(&ring->syncp);
2878 	ring->stats.seg_pkt_cnt++;
2879 	u64_stats_update_end(&ring->syncp);
2880 
2881 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2882 	__skb_put(skb, ring->pull_len);
2883 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2884 			    desc_cb);
2885 	ring_ptr_move_fw(ring, next_to_clean);
2886 
2887 	return 0;
2888 }
2889 
2890 static int hns3_add_frag(struct hns3_enet_ring *ring)
2891 {
2892 	struct sk_buff *skb = ring->skb;
2893 	struct sk_buff *head_skb = skb;
2894 	struct sk_buff *new_skb;
2895 	struct hns3_desc_cb *desc_cb;
2896 	struct hns3_desc *desc;
2897 	u32 bd_base_info;
2898 
2899 	do {
2900 		desc = &ring->desc[ring->next_to_clean];
2901 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2902 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2903 		/* make sure HW write desc complete */
2904 		dma_rmb();
2905 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2906 			return -ENXIO;
2907 
2908 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2909 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2910 			if (unlikely(!new_skb)) {
2911 				hns3_rl_err(ring_to_netdev(ring),
2912 					    "alloc rx fraglist skb fail\n");
2913 				return -ENXIO;
2914 			}
2915 			ring->frag_num = 0;
2916 
2917 			if (ring->tail_skb) {
2918 				ring->tail_skb->next = new_skb;
2919 				ring->tail_skb = new_skb;
2920 			} else {
2921 				skb_shinfo(skb)->frag_list = new_skb;
2922 				ring->tail_skb = new_skb;
2923 			}
2924 		}
2925 
2926 		if (ring->tail_skb) {
2927 			head_skb->truesize += hns3_buf_size(ring);
2928 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2929 			head_skb->len += le16_to_cpu(desc->rx.size);
2930 			skb = ring->tail_skb;
2931 		}
2932 
2933 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2934 		trace_hns3_rx_desc(ring);
2935 		ring_ptr_move_fw(ring, next_to_clean);
2936 		ring->pending_buf++;
2937 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2938 
2939 	return 0;
2940 }
2941 
2942 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2943 				     struct sk_buff *skb, u32 l234info,
2944 				     u32 bd_base_info, u32 ol_info)
2945 {
2946 	u32 l3_type;
2947 
2948 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2949 						    HNS3_RXD_GRO_SIZE_M,
2950 						    HNS3_RXD_GRO_SIZE_S);
2951 	/* if there is no HW GRO, do not set gro params */
2952 	if (!skb_shinfo(skb)->gso_size) {
2953 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2954 		return 0;
2955 	}
2956 
2957 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2958 						  HNS3_RXD_GRO_COUNT_M,
2959 						  HNS3_RXD_GRO_COUNT_S);
2960 
2961 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2962 	if (l3_type == HNS3_L3_TYPE_IPV4)
2963 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2964 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2965 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2966 	else
2967 		return -EFAULT;
2968 
2969 	return  hns3_gro_complete(skb, l234info);
2970 }
2971 
2972 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2973 				     struct sk_buff *skb, u32 rss_hash)
2974 {
2975 	struct hnae3_handle *handle = ring->tqp->handle;
2976 	enum pkt_hash_types rss_type;
2977 
2978 	if (rss_hash)
2979 		rss_type = handle->kinfo.rss_type;
2980 	else
2981 		rss_type = PKT_HASH_TYPE_NONE;
2982 
2983 	skb_set_hash(skb, rss_hash, rss_type);
2984 }
2985 
2986 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2987 {
2988 	struct net_device *netdev = ring_to_netdev(ring);
2989 	enum hns3_pkt_l2t_type l2_frame_type;
2990 	u32 bd_base_info, l234info, ol_info;
2991 	struct hns3_desc *desc;
2992 	unsigned int len;
2993 	int pre_ntc, ret;
2994 
2995 	/* bdinfo handled below is only valid on the last BD of the
2996 	 * current packet, and ring->next_to_clean indicates the first
2997 	 * descriptor of next packet, so need - 1 below.
2998 	 */
2999 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3000 					(ring->desc_num - 1);
3001 	desc = &ring->desc[pre_ntc];
3002 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3003 	l234info = le32_to_cpu(desc->rx.l234_info);
3004 	ol_info = le32_to_cpu(desc->rx.ol_info);
3005 
3006 	/* Based on hw strategy, the tag offloaded will be stored at
3007 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3008 	 * in one layer tag case.
3009 	 */
3010 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3011 		u16 vlan_tag;
3012 
3013 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3014 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3015 					       vlan_tag);
3016 	}
3017 
3018 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3019 				  BIT(HNS3_RXD_L2E_B))))) {
3020 		u64_stats_update_begin(&ring->syncp);
3021 		if (l234info & BIT(HNS3_RXD_L2E_B))
3022 			ring->stats.l2_err++;
3023 		else
3024 			ring->stats.err_pkt_len++;
3025 		u64_stats_update_end(&ring->syncp);
3026 
3027 		return -EFAULT;
3028 	}
3029 
3030 	len = skb->len;
3031 
3032 	/* Do update ip stack process */
3033 	skb->protocol = eth_type_trans(skb, netdev);
3034 
3035 	/* This is needed in order to enable forwarding support */
3036 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3037 					bd_base_info, ol_info);
3038 	if (unlikely(ret)) {
3039 		u64_stats_update_begin(&ring->syncp);
3040 		ring->stats.rx_err_cnt++;
3041 		u64_stats_update_end(&ring->syncp);
3042 		return ret;
3043 	}
3044 
3045 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3046 					HNS3_RXD_DMAC_S);
3047 
3048 	u64_stats_update_begin(&ring->syncp);
3049 	ring->stats.rx_pkts++;
3050 	ring->stats.rx_bytes += len;
3051 
3052 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3053 		ring->stats.rx_multicast++;
3054 
3055 	u64_stats_update_end(&ring->syncp);
3056 
3057 	ring->tqp_vector->rx_group.total_bytes += len;
3058 
3059 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3060 	return 0;
3061 }
3062 
3063 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3064 {
3065 	struct sk_buff *skb = ring->skb;
3066 	struct hns3_desc_cb *desc_cb;
3067 	struct hns3_desc *desc;
3068 	unsigned int length;
3069 	u32 bd_base_info;
3070 	int ret;
3071 
3072 	desc = &ring->desc[ring->next_to_clean];
3073 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3074 
3075 	prefetch(desc);
3076 
3077 	length = le16_to_cpu(desc->rx.size);
3078 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3079 
3080 	/* Check valid BD */
3081 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3082 		return -ENXIO;
3083 
3084 	if (!skb)
3085 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3086 
3087 	/* Prefetch first cache line of first page
3088 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3089 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3090 	 * actual we can have greater size of caches with 128B Level 1 cache
3091 	 * lines. In such a case, single fetch would suffice to cache in the
3092 	 * relevant part of the header.
3093 	 */
3094 	prefetch(ring->va);
3095 #if L1_CACHE_BYTES < 128
3096 	prefetch(ring->va + L1_CACHE_BYTES);
3097 #endif
3098 
3099 	if (!skb) {
3100 		ret = hns3_alloc_skb(ring, length, ring->va);
3101 		skb = ring->skb;
3102 
3103 		if (ret < 0) /* alloc buffer fail */
3104 			return ret;
3105 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3106 			ret = hns3_add_frag(ring);
3107 			if (ret)
3108 				return ret;
3109 		}
3110 	} else {
3111 		ret = hns3_add_frag(ring);
3112 		if (ret)
3113 			return ret;
3114 	}
3115 
3116 	/* As the head data may be changed when GRO enable, copy
3117 	 * the head data in after other data rx completed
3118 	 */
3119 	if (skb->len > HNS3_RX_HEAD_SIZE)
3120 		memcpy(skb->data, ring->va,
3121 		       ALIGN(ring->pull_len, sizeof(long)));
3122 
3123 	ret = hns3_handle_bdinfo(ring, skb);
3124 	if (unlikely(ret)) {
3125 		dev_kfree_skb_any(skb);
3126 		return ret;
3127 	}
3128 
3129 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3130 	return 0;
3131 }
3132 
3133 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3134 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3135 {
3136 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3137 	int unused_count = hns3_desc_unused(ring);
3138 	int recv_pkts = 0;
3139 	int recv_bds = 0;
3140 	int err, num;
3141 
3142 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3143 	num -= unused_count;
3144 	unused_count -= ring->pending_buf;
3145 
3146 	if (num <= 0)
3147 		goto out;
3148 
3149 	rmb(); /* Make sure num taken effect before the other data is touched */
3150 
3151 	while (recv_pkts < budget && recv_bds < num) {
3152 		/* Reuse or realloc buffers */
3153 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3154 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3155 			unused_count = hns3_desc_unused(ring) -
3156 					ring->pending_buf;
3157 		}
3158 
3159 		/* Poll one pkt */
3160 		err = hns3_handle_rx_bd(ring);
3161 		/* Do not get FE for the packet or failed to alloc skb */
3162 		if (unlikely(!ring->skb || err == -ENXIO)) {
3163 			goto out;
3164 		} else if (likely(!err)) {
3165 			rx_fn(ring, ring->skb);
3166 			recv_pkts++;
3167 		}
3168 
3169 		recv_bds += ring->pending_buf;
3170 		unused_count += ring->pending_buf;
3171 		ring->skb = NULL;
3172 		ring->pending_buf = 0;
3173 	}
3174 
3175 out:
3176 	/* Make all data has been write before submit */
3177 	if (unused_count > 0)
3178 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3179 
3180 	return recv_pkts;
3181 }
3182 
3183 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3184 {
3185 #define HNS3_RX_LOW_BYTE_RATE 10000
3186 #define HNS3_RX_MID_BYTE_RATE 20000
3187 #define HNS3_RX_ULTRA_PACKET_RATE 40
3188 
3189 	enum hns3_flow_level_range new_flow_level;
3190 	struct hns3_enet_tqp_vector *tqp_vector;
3191 	int packets_per_msecs, bytes_per_msecs;
3192 	u32 time_passed_ms;
3193 
3194 	tqp_vector = ring_group->ring->tqp_vector;
3195 	time_passed_ms =
3196 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3197 	if (!time_passed_ms)
3198 		return false;
3199 
3200 	do_div(ring_group->total_packets, time_passed_ms);
3201 	packets_per_msecs = ring_group->total_packets;
3202 
3203 	do_div(ring_group->total_bytes, time_passed_ms);
3204 	bytes_per_msecs = ring_group->total_bytes;
3205 
3206 	new_flow_level = ring_group->coal.flow_level;
3207 
3208 	/* Simple throttlerate management
3209 	 * 0-10MB/s   lower     (50000 ints/s)
3210 	 * 10-20MB/s   middle    (20000 ints/s)
3211 	 * 20-1249MB/s high      (18000 ints/s)
3212 	 * > 40000pps  ultra     (8000 ints/s)
3213 	 */
3214 	switch (new_flow_level) {
3215 	case HNS3_FLOW_LOW:
3216 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3217 			new_flow_level = HNS3_FLOW_MID;
3218 		break;
3219 	case HNS3_FLOW_MID:
3220 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3221 			new_flow_level = HNS3_FLOW_HIGH;
3222 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3223 			new_flow_level = HNS3_FLOW_LOW;
3224 		break;
3225 	case HNS3_FLOW_HIGH:
3226 	case HNS3_FLOW_ULTRA:
3227 	default:
3228 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3229 			new_flow_level = HNS3_FLOW_MID;
3230 		break;
3231 	}
3232 
3233 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3234 	    &tqp_vector->rx_group == ring_group)
3235 		new_flow_level = HNS3_FLOW_ULTRA;
3236 
3237 	ring_group->total_bytes = 0;
3238 	ring_group->total_packets = 0;
3239 	ring_group->coal.flow_level = new_flow_level;
3240 
3241 	return true;
3242 }
3243 
3244 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3245 {
3246 	struct hns3_enet_tqp_vector *tqp_vector;
3247 	u16 new_int_gl;
3248 
3249 	if (!ring_group->ring)
3250 		return false;
3251 
3252 	tqp_vector = ring_group->ring->tqp_vector;
3253 	if (!tqp_vector->last_jiffies)
3254 		return false;
3255 
3256 	if (ring_group->total_packets == 0) {
3257 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3258 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3259 		return true;
3260 	}
3261 
3262 	if (!hns3_get_new_flow_lvl(ring_group))
3263 		return false;
3264 
3265 	new_int_gl = ring_group->coal.int_gl;
3266 	switch (ring_group->coal.flow_level) {
3267 	case HNS3_FLOW_LOW:
3268 		new_int_gl = HNS3_INT_GL_50K;
3269 		break;
3270 	case HNS3_FLOW_MID:
3271 		new_int_gl = HNS3_INT_GL_20K;
3272 		break;
3273 	case HNS3_FLOW_HIGH:
3274 		new_int_gl = HNS3_INT_GL_18K;
3275 		break;
3276 	case HNS3_FLOW_ULTRA:
3277 		new_int_gl = HNS3_INT_GL_8K;
3278 		break;
3279 	default:
3280 		break;
3281 	}
3282 
3283 	if (new_int_gl != ring_group->coal.int_gl) {
3284 		ring_group->coal.int_gl = new_int_gl;
3285 		return true;
3286 	}
3287 	return false;
3288 }
3289 
3290 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3291 {
3292 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3293 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3294 	bool rx_update, tx_update;
3295 
3296 	/* update param every 1000ms */
3297 	if (time_before(jiffies,
3298 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3299 		return;
3300 
3301 	if (rx_group->coal.gl_adapt_enable) {
3302 		rx_update = hns3_get_new_int_gl(rx_group);
3303 		if (rx_update)
3304 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3305 						       rx_group->coal.int_gl);
3306 	}
3307 
3308 	if (tx_group->coal.gl_adapt_enable) {
3309 		tx_update = hns3_get_new_int_gl(tx_group);
3310 		if (tx_update)
3311 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3312 						       tx_group->coal.int_gl);
3313 	}
3314 
3315 	tqp_vector->last_jiffies = jiffies;
3316 }
3317 
3318 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3319 {
3320 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3321 	struct hns3_enet_ring *ring;
3322 	int rx_pkt_total = 0;
3323 
3324 	struct hns3_enet_tqp_vector *tqp_vector =
3325 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3326 	bool clean_complete = true;
3327 	int rx_budget = budget;
3328 
3329 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3330 		napi_complete(napi);
3331 		return 0;
3332 	}
3333 
3334 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3335 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3336 	 */
3337 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3338 		hns3_clean_tx_ring(ring);
3339 
3340 	/* make sure rx ring budget not smaller than 1 */
3341 	if (tqp_vector->num_tqps > 1)
3342 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3343 
3344 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3345 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3346 						    hns3_rx_skb);
3347 
3348 		if (rx_cleaned >= rx_budget)
3349 			clean_complete = false;
3350 
3351 		rx_pkt_total += rx_cleaned;
3352 	}
3353 
3354 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3355 
3356 	if (!clean_complete)
3357 		return budget;
3358 
3359 	if (napi_complete(napi) &&
3360 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3361 		hns3_update_new_int_gl(tqp_vector);
3362 		hns3_mask_vector_irq(tqp_vector, 1);
3363 	}
3364 
3365 	return rx_pkt_total;
3366 }
3367 
3368 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3369 				      struct hnae3_ring_chain_node *head)
3370 {
3371 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3372 	struct hnae3_ring_chain_node *cur_chain = head;
3373 	struct hnae3_ring_chain_node *chain;
3374 	struct hns3_enet_ring *tx_ring;
3375 	struct hns3_enet_ring *rx_ring;
3376 
3377 	tx_ring = tqp_vector->tx_group.ring;
3378 	if (tx_ring) {
3379 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3380 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3381 			      HNAE3_RING_TYPE_TX);
3382 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3383 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3384 
3385 		cur_chain->next = NULL;
3386 
3387 		while (tx_ring->next) {
3388 			tx_ring = tx_ring->next;
3389 
3390 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3391 					     GFP_KERNEL);
3392 			if (!chain)
3393 				goto err_free_chain;
3394 
3395 			cur_chain->next = chain;
3396 			chain->tqp_index = tx_ring->tqp->tqp_index;
3397 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3398 				      HNAE3_RING_TYPE_TX);
3399 			hnae3_set_field(chain->int_gl_idx,
3400 					HNAE3_RING_GL_IDX_M,
3401 					HNAE3_RING_GL_IDX_S,
3402 					HNAE3_RING_GL_TX);
3403 
3404 			cur_chain = chain;
3405 		}
3406 	}
3407 
3408 	rx_ring = tqp_vector->rx_group.ring;
3409 	if (!tx_ring && rx_ring) {
3410 		cur_chain->next = NULL;
3411 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3412 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3413 			      HNAE3_RING_TYPE_RX);
3414 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3415 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3416 
3417 		rx_ring = rx_ring->next;
3418 	}
3419 
3420 	while (rx_ring) {
3421 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3422 		if (!chain)
3423 			goto err_free_chain;
3424 
3425 		cur_chain->next = chain;
3426 		chain->tqp_index = rx_ring->tqp->tqp_index;
3427 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3428 			      HNAE3_RING_TYPE_RX);
3429 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3430 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3431 
3432 		cur_chain = chain;
3433 
3434 		rx_ring = rx_ring->next;
3435 	}
3436 
3437 	return 0;
3438 
3439 err_free_chain:
3440 	cur_chain = head->next;
3441 	while (cur_chain) {
3442 		chain = cur_chain->next;
3443 		devm_kfree(&pdev->dev, cur_chain);
3444 		cur_chain = chain;
3445 	}
3446 	head->next = NULL;
3447 
3448 	return -ENOMEM;
3449 }
3450 
3451 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3452 					struct hnae3_ring_chain_node *head)
3453 {
3454 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3455 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3456 
3457 	chain = head->next;
3458 
3459 	while (chain) {
3460 		chain_tmp = chain->next;
3461 		devm_kfree(&pdev->dev, chain);
3462 		chain = chain_tmp;
3463 	}
3464 }
3465 
3466 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3467 				   struct hns3_enet_ring *ring)
3468 {
3469 	ring->next = group->ring;
3470 	group->ring = ring;
3471 
3472 	group->count++;
3473 }
3474 
3475 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3476 {
3477 	struct pci_dev *pdev = priv->ae_handle->pdev;
3478 	struct hns3_enet_tqp_vector *tqp_vector;
3479 	int num_vectors = priv->vector_num;
3480 	int numa_node;
3481 	int vector_i;
3482 
3483 	numa_node = dev_to_node(&pdev->dev);
3484 
3485 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3486 		tqp_vector = &priv->tqp_vector[vector_i];
3487 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3488 				&tqp_vector->affinity_mask);
3489 	}
3490 }
3491 
3492 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3493 {
3494 	struct hnae3_ring_chain_node vector_ring_chain;
3495 	struct hnae3_handle *h = priv->ae_handle;
3496 	struct hns3_enet_tqp_vector *tqp_vector;
3497 	int ret = 0;
3498 	int i;
3499 
3500 	hns3_nic_set_cpumask(priv);
3501 
3502 	for (i = 0; i < priv->vector_num; i++) {
3503 		tqp_vector = &priv->tqp_vector[i];
3504 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3505 		tqp_vector->num_tqps = 0;
3506 	}
3507 
3508 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3509 		u16 vector_i = i % priv->vector_num;
3510 		u16 tqp_num = h->kinfo.num_tqps;
3511 
3512 		tqp_vector = &priv->tqp_vector[vector_i];
3513 
3514 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3515 				       &priv->ring[i]);
3516 
3517 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3518 				       &priv->ring[i + tqp_num]);
3519 
3520 		priv->ring[i].tqp_vector = tqp_vector;
3521 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3522 		tqp_vector->num_tqps++;
3523 	}
3524 
3525 	for (i = 0; i < priv->vector_num; i++) {
3526 		tqp_vector = &priv->tqp_vector[i];
3527 
3528 		tqp_vector->rx_group.total_bytes = 0;
3529 		tqp_vector->rx_group.total_packets = 0;
3530 		tqp_vector->tx_group.total_bytes = 0;
3531 		tqp_vector->tx_group.total_packets = 0;
3532 		tqp_vector->handle = h;
3533 
3534 		ret = hns3_get_vector_ring_chain(tqp_vector,
3535 						 &vector_ring_chain);
3536 		if (ret)
3537 			goto map_ring_fail;
3538 
3539 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3540 			tqp_vector->vector_irq, &vector_ring_chain);
3541 
3542 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3543 
3544 		if (ret)
3545 			goto map_ring_fail;
3546 
3547 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3548 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3549 	}
3550 
3551 	return 0;
3552 
3553 map_ring_fail:
3554 	while (i--)
3555 		netif_napi_del(&priv->tqp_vector[i].napi);
3556 
3557 	return ret;
3558 }
3559 
3560 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3561 {
3562 #define HNS3_VECTOR_PF_MAX_NUM		64
3563 
3564 	struct hnae3_handle *h = priv->ae_handle;
3565 	struct hns3_enet_tqp_vector *tqp_vector;
3566 	struct hnae3_vector_info *vector;
3567 	struct pci_dev *pdev = h->pdev;
3568 	u16 tqp_num = h->kinfo.num_tqps;
3569 	u16 vector_num;
3570 	int ret = 0;
3571 	u16 i;
3572 
3573 	/* RSS size, cpu online and vector_num should be the same */
3574 	/* Should consider 2p/4p later */
3575 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3576 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3577 
3578 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3579 			      GFP_KERNEL);
3580 	if (!vector)
3581 		return -ENOMEM;
3582 
3583 	/* save the actual available vector number */
3584 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3585 
3586 	priv->vector_num = vector_num;
3587 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3588 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3589 			     GFP_KERNEL);
3590 	if (!priv->tqp_vector) {
3591 		ret = -ENOMEM;
3592 		goto out;
3593 	}
3594 
3595 	for (i = 0; i < priv->vector_num; i++) {
3596 		tqp_vector = &priv->tqp_vector[i];
3597 		tqp_vector->idx = i;
3598 		tqp_vector->mask_addr = vector[i].io_addr;
3599 		tqp_vector->vector_irq = vector[i].vector;
3600 		hns3_vector_gl_rl_init(tqp_vector, priv);
3601 	}
3602 
3603 out:
3604 	devm_kfree(&pdev->dev, vector);
3605 	return ret;
3606 }
3607 
3608 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3609 {
3610 	group->ring = NULL;
3611 	group->count = 0;
3612 }
3613 
3614 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3615 {
3616 	struct hnae3_ring_chain_node vector_ring_chain;
3617 	struct hnae3_handle *h = priv->ae_handle;
3618 	struct hns3_enet_tqp_vector *tqp_vector;
3619 	int i;
3620 
3621 	for (i = 0; i < priv->vector_num; i++) {
3622 		tqp_vector = &priv->tqp_vector[i];
3623 
3624 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3625 			continue;
3626 
3627 		/* Since the mapping can be overwritten, when fail to get the
3628 		 * chain between vector and ring, we should go on to deal with
3629 		 * the remaining options.
3630 		 */
3631 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3632 			dev_warn(priv->dev, "failed to get ring chain\n");
3633 
3634 		h->ae_algo->ops->unmap_ring_from_vector(h,
3635 			tqp_vector->vector_irq, &vector_ring_chain);
3636 
3637 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3638 
3639 		hns3_clear_ring_group(&tqp_vector->rx_group);
3640 		hns3_clear_ring_group(&tqp_vector->tx_group);
3641 		netif_napi_del(&priv->tqp_vector[i].napi);
3642 	}
3643 }
3644 
3645 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3646 {
3647 	struct hnae3_handle *h = priv->ae_handle;
3648 	struct pci_dev *pdev = h->pdev;
3649 	int i, ret;
3650 
3651 	for (i = 0; i < priv->vector_num; i++) {
3652 		struct hns3_enet_tqp_vector *tqp_vector;
3653 
3654 		tqp_vector = &priv->tqp_vector[i];
3655 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3656 		if (ret)
3657 			return;
3658 	}
3659 
3660 	devm_kfree(&pdev->dev, priv->tqp_vector);
3661 }
3662 
3663 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3664 			      unsigned int ring_type)
3665 {
3666 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3667 	struct hns3_enet_ring *ring;
3668 	int desc_num;
3669 
3670 	if (ring_type == HNAE3_RING_TYPE_TX) {
3671 		ring = &priv->ring[q->tqp_index];
3672 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3673 		ring->queue_index = q->tqp_index;
3674 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3675 	} else {
3676 		ring = &priv->ring[q->tqp_index + queue_num];
3677 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3678 		ring->queue_index = q->tqp_index;
3679 		ring->io_base = q->io_base;
3680 	}
3681 
3682 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3683 
3684 	ring->tqp = q;
3685 	ring->desc = NULL;
3686 	ring->desc_cb = NULL;
3687 	ring->dev = priv->dev;
3688 	ring->desc_dma_addr = 0;
3689 	ring->buf_size = q->buf_size;
3690 	ring->desc_num = desc_num;
3691 	ring->next_to_use = 0;
3692 	ring->next_to_clean = 0;
3693 }
3694 
3695 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3696 			       struct hns3_nic_priv *priv)
3697 {
3698 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3699 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3700 }
3701 
3702 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3703 {
3704 	struct hnae3_handle *h = priv->ae_handle;
3705 	struct pci_dev *pdev = h->pdev;
3706 	int i;
3707 
3708 	priv->ring = devm_kzalloc(&pdev->dev,
3709 				  array3_size(h->kinfo.num_tqps,
3710 					      sizeof(*priv->ring), 2),
3711 				  GFP_KERNEL);
3712 	if (!priv->ring)
3713 		return -ENOMEM;
3714 
3715 	for (i = 0; i < h->kinfo.num_tqps; i++)
3716 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3717 
3718 	return 0;
3719 }
3720 
3721 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3722 {
3723 	if (!priv->ring)
3724 		return;
3725 
3726 	devm_kfree(priv->dev, priv->ring);
3727 	priv->ring = NULL;
3728 }
3729 
3730 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3731 {
3732 	int ret;
3733 
3734 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3735 		return -EINVAL;
3736 
3737 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3738 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3739 	if (!ring->desc_cb) {
3740 		ret = -ENOMEM;
3741 		goto out;
3742 	}
3743 
3744 	ret = hns3_alloc_desc(ring);
3745 	if (ret)
3746 		goto out_with_desc_cb;
3747 
3748 	if (!HNAE3_IS_TX_RING(ring)) {
3749 		ret = hns3_alloc_ring_buffers(ring);
3750 		if (ret)
3751 			goto out_with_desc;
3752 	}
3753 
3754 	return 0;
3755 
3756 out_with_desc:
3757 	hns3_free_desc(ring);
3758 out_with_desc_cb:
3759 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3760 	ring->desc_cb = NULL;
3761 out:
3762 	return ret;
3763 }
3764 
3765 void hns3_fini_ring(struct hns3_enet_ring *ring)
3766 {
3767 	hns3_free_desc(ring);
3768 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3769 	ring->desc_cb = NULL;
3770 	ring->next_to_clean = 0;
3771 	ring->next_to_use = 0;
3772 	ring->pending_buf = 0;
3773 	if (ring->skb) {
3774 		dev_kfree_skb_any(ring->skb);
3775 		ring->skb = NULL;
3776 	}
3777 }
3778 
3779 static int hns3_buf_size2type(u32 buf_size)
3780 {
3781 	int bd_size_type;
3782 
3783 	switch (buf_size) {
3784 	case 512:
3785 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3786 		break;
3787 	case 1024:
3788 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3789 		break;
3790 	case 2048:
3791 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3792 		break;
3793 	case 4096:
3794 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3795 		break;
3796 	default:
3797 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3798 	}
3799 
3800 	return bd_size_type;
3801 }
3802 
3803 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3804 {
3805 	dma_addr_t dma = ring->desc_dma_addr;
3806 	struct hnae3_queue *q = ring->tqp;
3807 
3808 	if (!HNAE3_IS_TX_RING(ring)) {
3809 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3810 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3811 			       (u32)((dma >> 31) >> 1));
3812 
3813 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3814 			       hns3_buf_size2type(ring->buf_size));
3815 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3816 			       ring->desc_num / 8 - 1);
3817 
3818 	} else {
3819 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3820 			       (u32)dma);
3821 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3822 			       (u32)((dma >> 31) >> 1));
3823 
3824 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3825 			       ring->desc_num / 8 - 1);
3826 	}
3827 }
3828 
3829 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3830 {
3831 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3832 	int i;
3833 
3834 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3835 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3836 		int j;
3837 
3838 		if (!tc_info->enable)
3839 			continue;
3840 
3841 		for (j = 0; j < tc_info->tqp_count; j++) {
3842 			struct hnae3_queue *q;
3843 
3844 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3845 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3846 				       tc_info->tc);
3847 		}
3848 	}
3849 }
3850 
3851 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3852 {
3853 	struct hnae3_handle *h = priv->ae_handle;
3854 	int ring_num = h->kinfo.num_tqps * 2;
3855 	int i, j;
3856 	int ret;
3857 
3858 	for (i = 0; i < ring_num; i++) {
3859 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3860 		if (ret) {
3861 			dev_err(priv->dev,
3862 				"Alloc ring memory fail! ret=%d\n", ret);
3863 			goto out_when_alloc_ring_memory;
3864 		}
3865 
3866 		u64_stats_init(&priv->ring[i].syncp);
3867 	}
3868 
3869 	return 0;
3870 
3871 out_when_alloc_ring_memory:
3872 	for (j = i - 1; j >= 0; j--)
3873 		hns3_fini_ring(&priv->ring[j]);
3874 
3875 	return -ENOMEM;
3876 }
3877 
3878 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3879 {
3880 	struct hnae3_handle *h = priv->ae_handle;
3881 	int i;
3882 
3883 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3884 		hns3_fini_ring(&priv->ring[i]);
3885 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3886 	}
3887 	return 0;
3888 }
3889 
3890 /* Set mac addr if it is configured. or leave it to the AE driver */
3891 static int hns3_init_mac_addr(struct net_device *netdev)
3892 {
3893 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3894 	struct hnae3_handle *h = priv->ae_handle;
3895 	u8 mac_addr_temp[ETH_ALEN];
3896 	int ret = 0;
3897 
3898 	if (h->ae_algo->ops->get_mac_addr)
3899 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3900 
3901 	/* Check if the MAC address is valid, if not get a random one */
3902 	if (!is_valid_ether_addr(mac_addr_temp)) {
3903 		eth_hw_addr_random(netdev);
3904 		dev_warn(priv->dev, "using random MAC address %pM\n",
3905 			 netdev->dev_addr);
3906 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3907 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3908 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3909 	} else {
3910 		return 0;
3911 	}
3912 
3913 	if (h->ae_algo->ops->set_mac_addr)
3914 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3915 
3916 	return ret;
3917 }
3918 
3919 static int hns3_init_phy(struct net_device *netdev)
3920 {
3921 	struct hnae3_handle *h = hns3_get_handle(netdev);
3922 	int ret = 0;
3923 
3924 	if (h->ae_algo->ops->mac_connect_phy)
3925 		ret = h->ae_algo->ops->mac_connect_phy(h);
3926 
3927 	return ret;
3928 }
3929 
3930 static void hns3_uninit_phy(struct net_device *netdev)
3931 {
3932 	struct hnae3_handle *h = hns3_get_handle(netdev);
3933 
3934 	if (h->ae_algo->ops->mac_disconnect_phy)
3935 		h->ae_algo->ops->mac_disconnect_phy(h);
3936 }
3937 
3938 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3939 {
3940 	struct hnae3_handle *h = hns3_get_handle(netdev);
3941 
3942 	if (h->ae_algo->ops->del_all_fd_entries)
3943 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3944 }
3945 
3946 static int hns3_client_start(struct hnae3_handle *handle)
3947 {
3948 	if (!handle->ae_algo->ops->client_start)
3949 		return 0;
3950 
3951 	return handle->ae_algo->ops->client_start(handle);
3952 }
3953 
3954 static void hns3_client_stop(struct hnae3_handle *handle)
3955 {
3956 	if (!handle->ae_algo->ops->client_stop)
3957 		return;
3958 
3959 	handle->ae_algo->ops->client_stop(handle);
3960 }
3961 
3962 static void hns3_info_show(struct hns3_nic_priv *priv)
3963 {
3964 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3965 
3966 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3967 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3968 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3969 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3970 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3971 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3972 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3973 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3974 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3975 }
3976 
3977 static int hns3_client_init(struct hnae3_handle *handle)
3978 {
3979 	struct pci_dev *pdev = handle->pdev;
3980 	u16 alloc_tqps, max_rss_size;
3981 	struct hns3_nic_priv *priv;
3982 	struct net_device *netdev;
3983 	int ret;
3984 
3985 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3986 						    &max_rss_size);
3987 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3988 	if (!netdev)
3989 		return -ENOMEM;
3990 
3991 	priv = netdev_priv(netdev);
3992 	priv->dev = &pdev->dev;
3993 	priv->netdev = netdev;
3994 	priv->ae_handle = handle;
3995 	priv->tx_timeout_count = 0;
3996 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3997 
3998 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3999 
4000 	handle->kinfo.netdev = netdev;
4001 	handle->priv = (void *)priv;
4002 
4003 	hns3_init_mac_addr(netdev);
4004 
4005 	hns3_set_default_feature(netdev);
4006 
4007 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4008 	netdev->priv_flags |= IFF_UNICAST_FLT;
4009 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4010 	SET_NETDEV_DEV(netdev, &pdev->dev);
4011 	hns3_ethtool_set_ops(netdev);
4012 
4013 	/* Carrier off reporting is important to ethtool even BEFORE open */
4014 	netif_carrier_off(netdev);
4015 
4016 	ret = hns3_get_ring_config(priv);
4017 	if (ret) {
4018 		ret = -ENOMEM;
4019 		goto out_get_ring_cfg;
4020 	}
4021 
4022 	ret = hns3_nic_alloc_vector_data(priv);
4023 	if (ret) {
4024 		ret = -ENOMEM;
4025 		goto out_alloc_vector_data;
4026 	}
4027 
4028 	ret = hns3_nic_init_vector_data(priv);
4029 	if (ret) {
4030 		ret = -ENOMEM;
4031 		goto out_init_vector_data;
4032 	}
4033 
4034 	ret = hns3_init_all_ring(priv);
4035 	if (ret) {
4036 		ret = -ENOMEM;
4037 		goto out_init_ring;
4038 	}
4039 
4040 	ret = hns3_init_phy(netdev);
4041 	if (ret)
4042 		goto out_init_phy;
4043 
4044 	ret = register_netdev(netdev);
4045 	if (ret) {
4046 		dev_err(priv->dev, "probe register netdev fail!\n");
4047 		goto out_reg_netdev_fail;
4048 	}
4049 
4050 	/* the device can work without cpu rmap, only aRFS needs it */
4051 	ret = hns3_set_rx_cpu_rmap(netdev);
4052 	if (ret)
4053 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4054 
4055 	ret = hns3_nic_init_irq(priv);
4056 	if (ret) {
4057 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4058 		hns3_free_rx_cpu_rmap(netdev);
4059 		goto out_init_irq_fail;
4060 	}
4061 
4062 	ret = hns3_client_start(handle);
4063 	if (ret) {
4064 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4065 		goto out_client_start;
4066 	}
4067 
4068 	hns3_dcbnl_setup(handle);
4069 
4070 	hns3_dbg_init(handle);
4071 
4072 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4073 	netdev->max_mtu = HNS3_MAX_MTU;
4074 
4075 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4076 
4077 	if (netif_msg_drv(handle))
4078 		hns3_info_show(priv);
4079 
4080 	return ret;
4081 
4082 out_client_start:
4083 	hns3_free_rx_cpu_rmap(netdev);
4084 	hns3_nic_uninit_irq(priv);
4085 out_init_irq_fail:
4086 	unregister_netdev(netdev);
4087 out_reg_netdev_fail:
4088 	hns3_uninit_phy(netdev);
4089 out_init_phy:
4090 	hns3_uninit_all_ring(priv);
4091 out_init_ring:
4092 	hns3_nic_uninit_vector_data(priv);
4093 out_init_vector_data:
4094 	hns3_nic_dealloc_vector_data(priv);
4095 out_alloc_vector_data:
4096 	priv->ring = NULL;
4097 out_get_ring_cfg:
4098 	priv->ae_handle = NULL;
4099 	free_netdev(netdev);
4100 	return ret;
4101 }
4102 
4103 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4104 {
4105 	struct net_device *netdev = handle->kinfo.netdev;
4106 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4107 	int ret;
4108 
4109 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4110 		unregister_netdev(netdev);
4111 
4112 	hns3_client_stop(handle);
4113 
4114 	hns3_uninit_phy(netdev);
4115 
4116 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4117 		netdev_warn(netdev, "already uninitialized\n");
4118 		goto out_netdev_free;
4119 	}
4120 
4121 	hns3_free_rx_cpu_rmap(netdev);
4122 
4123 	hns3_nic_uninit_irq(priv);
4124 
4125 	hns3_del_all_fd_rules(netdev, true);
4126 
4127 	hns3_clear_all_ring(handle, true);
4128 
4129 	hns3_nic_uninit_vector_data(priv);
4130 
4131 	hns3_nic_dealloc_vector_data(priv);
4132 
4133 	ret = hns3_uninit_all_ring(priv);
4134 	if (ret)
4135 		netdev_err(netdev, "uninit ring error\n");
4136 
4137 	hns3_put_ring_config(priv);
4138 
4139 	hns3_dbg_uninit(handle);
4140 
4141 out_netdev_free:
4142 	free_netdev(netdev);
4143 }
4144 
4145 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4146 {
4147 	struct net_device *netdev = handle->kinfo.netdev;
4148 
4149 	if (!netdev)
4150 		return;
4151 
4152 	if (linkup) {
4153 		netif_carrier_on(netdev);
4154 		netif_tx_wake_all_queues(netdev);
4155 		if (netif_msg_link(handle))
4156 			netdev_info(netdev, "link up\n");
4157 	} else {
4158 		netif_carrier_off(netdev);
4159 		netif_tx_stop_all_queues(netdev);
4160 		if (netif_msg_link(handle))
4161 			netdev_info(netdev, "link down\n");
4162 	}
4163 }
4164 
4165 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4166 {
4167 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4168 	struct net_device *ndev = kinfo->netdev;
4169 
4170 	if (tc > HNAE3_MAX_TC)
4171 		return -EINVAL;
4172 
4173 	if (!ndev)
4174 		return -ENODEV;
4175 
4176 	return hns3_nic_set_real_num_queue(ndev);
4177 }
4178 
4179 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4180 {
4181 	while (ring->next_to_clean != ring->next_to_use) {
4182 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4183 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4184 		ring_ptr_move_fw(ring, next_to_clean);
4185 	}
4186 }
4187 
4188 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4189 {
4190 	struct hns3_desc_cb res_cbs;
4191 	int ret;
4192 
4193 	while (ring->next_to_use != ring->next_to_clean) {
4194 		/* When a buffer is not reused, it's memory has been
4195 		 * freed in hns3_handle_rx_bd or will be freed by
4196 		 * stack, so we need to replace the buffer here.
4197 		 */
4198 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4199 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
4200 			if (ret) {
4201 				u64_stats_update_begin(&ring->syncp);
4202 				ring->stats.sw_err_cnt++;
4203 				u64_stats_update_end(&ring->syncp);
4204 				/* if alloc new buffer fail, exit directly
4205 				 * and reclear in up flow.
4206 				 */
4207 				netdev_warn(ring_to_netdev(ring),
4208 					    "reserve buffer map failed, ret = %d\n",
4209 					    ret);
4210 				return ret;
4211 			}
4212 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4213 		}
4214 		ring_ptr_move_fw(ring, next_to_use);
4215 	}
4216 
4217 	/* Free the pending skb in rx ring */
4218 	if (ring->skb) {
4219 		dev_kfree_skb_any(ring->skb);
4220 		ring->skb = NULL;
4221 		ring->pending_buf = 0;
4222 	}
4223 
4224 	return 0;
4225 }
4226 
4227 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4228 {
4229 	while (ring->next_to_use != ring->next_to_clean) {
4230 		/* When a buffer is not reused, it's memory has been
4231 		 * freed in hns3_handle_rx_bd or will be freed by
4232 		 * stack, so only need to unmap the buffer here.
4233 		 */
4234 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4235 			hns3_unmap_buffer(ring,
4236 					  &ring->desc_cb[ring->next_to_use]);
4237 			ring->desc_cb[ring->next_to_use].dma = 0;
4238 		}
4239 
4240 		ring_ptr_move_fw(ring, next_to_use);
4241 	}
4242 }
4243 
4244 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4245 {
4246 	struct net_device *ndev = h->kinfo.netdev;
4247 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4248 	u32 i;
4249 
4250 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4251 		struct hns3_enet_ring *ring;
4252 
4253 		ring = &priv->ring[i];
4254 		hns3_clear_tx_ring(ring);
4255 
4256 		ring = &priv->ring[i + h->kinfo.num_tqps];
4257 		/* Continue to clear other rings even if clearing some
4258 		 * rings failed.
4259 		 */
4260 		if (force)
4261 			hns3_force_clear_rx_ring(ring);
4262 		else
4263 			hns3_clear_rx_ring(ring);
4264 	}
4265 }
4266 
4267 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4268 {
4269 	struct net_device *ndev = h->kinfo.netdev;
4270 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4271 	struct hns3_enet_ring *rx_ring;
4272 	int i, j;
4273 	int ret;
4274 
4275 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4276 		ret = h->ae_algo->ops->reset_queue(h, i);
4277 		if (ret)
4278 			return ret;
4279 
4280 		hns3_init_ring_hw(&priv->ring[i]);
4281 
4282 		/* We need to clear tx ring here because self test will
4283 		 * use the ring and will not run down before up
4284 		 */
4285 		hns3_clear_tx_ring(&priv->ring[i]);
4286 		priv->ring[i].next_to_clean = 0;
4287 		priv->ring[i].next_to_use = 0;
4288 
4289 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4290 		hns3_init_ring_hw(rx_ring);
4291 		ret = hns3_clear_rx_ring(rx_ring);
4292 		if (ret)
4293 			return ret;
4294 
4295 		/* We can not know the hardware head and tail when this
4296 		 * function is called in reset flow, so we reuse all desc.
4297 		 */
4298 		for (j = 0; j < rx_ring->desc_num; j++)
4299 			hns3_reuse_buffer(rx_ring, j);
4300 
4301 		rx_ring->next_to_clean = 0;
4302 		rx_ring->next_to_use = 0;
4303 	}
4304 
4305 	hns3_init_tx_ring_tc(priv);
4306 
4307 	return 0;
4308 }
4309 
4310 static void hns3_store_coal(struct hns3_nic_priv *priv)
4311 {
4312 	/* ethtool only support setting and querying one coal
4313 	 * configuration for now, so save the vector 0' coal
4314 	 * configuration here in order to restore it.
4315 	 */
4316 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4317 	       sizeof(struct hns3_enet_coalesce));
4318 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4319 	       sizeof(struct hns3_enet_coalesce));
4320 }
4321 
4322 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4323 {
4324 	u16 vector_num = priv->vector_num;
4325 	int i;
4326 
4327 	for (i = 0; i < vector_num; i++) {
4328 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4329 		       sizeof(struct hns3_enet_coalesce));
4330 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4331 		       sizeof(struct hns3_enet_coalesce));
4332 	}
4333 }
4334 
4335 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4336 {
4337 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4338 	struct net_device *ndev = kinfo->netdev;
4339 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4340 
4341 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4342 		return 0;
4343 
4344 	if (!netif_running(ndev))
4345 		return 0;
4346 
4347 	return hns3_nic_net_stop(ndev);
4348 }
4349 
4350 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4351 {
4352 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4353 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4354 	int ret = 0;
4355 
4356 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4357 
4358 	if (netif_running(kinfo->netdev)) {
4359 		ret = hns3_nic_net_open(kinfo->netdev);
4360 		if (ret) {
4361 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4362 			netdev_err(kinfo->netdev,
4363 				   "net up fail, ret=%d!\n", ret);
4364 			return ret;
4365 		}
4366 	}
4367 
4368 	return ret;
4369 }
4370 
4371 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4372 {
4373 	struct net_device *netdev = handle->kinfo.netdev;
4374 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4375 	int ret;
4376 
4377 	/* Carrier off reporting is important to ethtool even BEFORE open */
4378 	netif_carrier_off(netdev);
4379 
4380 	ret = hns3_get_ring_config(priv);
4381 	if (ret)
4382 		return ret;
4383 
4384 	ret = hns3_nic_alloc_vector_data(priv);
4385 	if (ret)
4386 		goto err_put_ring;
4387 
4388 	hns3_restore_coal(priv);
4389 
4390 	ret = hns3_nic_init_vector_data(priv);
4391 	if (ret)
4392 		goto err_dealloc_vector;
4393 
4394 	ret = hns3_init_all_ring(priv);
4395 	if (ret)
4396 		goto err_uninit_vector;
4397 
4398 	/* the device can work without cpu rmap, only aRFS needs it */
4399 	ret = hns3_set_rx_cpu_rmap(netdev);
4400 	if (ret)
4401 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4402 
4403 	ret = hns3_nic_init_irq(priv);
4404 	if (ret) {
4405 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4406 		hns3_free_rx_cpu_rmap(netdev);
4407 		goto err_init_irq_fail;
4408 	}
4409 
4410 	if (!hns3_is_phys_func(handle->pdev))
4411 		hns3_init_mac_addr(netdev);
4412 
4413 	ret = hns3_client_start(handle);
4414 	if (ret) {
4415 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4416 		goto err_client_start_fail;
4417 	}
4418 
4419 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4420 
4421 	return ret;
4422 
4423 err_client_start_fail:
4424 	hns3_free_rx_cpu_rmap(netdev);
4425 	hns3_nic_uninit_irq(priv);
4426 err_init_irq_fail:
4427 	hns3_uninit_all_ring(priv);
4428 err_uninit_vector:
4429 	hns3_nic_uninit_vector_data(priv);
4430 err_dealloc_vector:
4431 	hns3_nic_dealloc_vector_data(priv);
4432 err_put_ring:
4433 	hns3_put_ring_config(priv);
4434 
4435 	return ret;
4436 }
4437 
4438 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4439 {
4440 	struct net_device *netdev = handle->kinfo.netdev;
4441 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4442 	int ret;
4443 
4444 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4445 		netdev_warn(netdev, "already uninitialized\n");
4446 		return 0;
4447 	}
4448 
4449 	hns3_free_rx_cpu_rmap(netdev);
4450 	hns3_nic_uninit_irq(priv);
4451 	hns3_clear_all_ring(handle, true);
4452 	hns3_reset_tx_queue(priv->ae_handle);
4453 
4454 	hns3_nic_uninit_vector_data(priv);
4455 
4456 	hns3_store_coal(priv);
4457 
4458 	hns3_nic_dealloc_vector_data(priv);
4459 
4460 	ret = hns3_uninit_all_ring(priv);
4461 	if (ret)
4462 		netdev_err(netdev, "uninit ring error\n");
4463 
4464 	hns3_put_ring_config(priv);
4465 
4466 	return ret;
4467 }
4468 
4469 static int hns3_reset_notify(struct hnae3_handle *handle,
4470 			     enum hnae3_reset_notify_type type)
4471 {
4472 	int ret = 0;
4473 
4474 	switch (type) {
4475 	case HNAE3_UP_CLIENT:
4476 		ret = hns3_reset_notify_up_enet(handle);
4477 		break;
4478 	case HNAE3_DOWN_CLIENT:
4479 		ret = hns3_reset_notify_down_enet(handle);
4480 		break;
4481 	case HNAE3_INIT_CLIENT:
4482 		ret = hns3_reset_notify_init_enet(handle);
4483 		break;
4484 	case HNAE3_UNINIT_CLIENT:
4485 		ret = hns3_reset_notify_uninit_enet(handle);
4486 		break;
4487 	default:
4488 		break;
4489 	}
4490 
4491 	return ret;
4492 }
4493 
4494 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4495 				bool rxfh_configured)
4496 {
4497 	int ret;
4498 
4499 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4500 						 rxfh_configured);
4501 	if (ret) {
4502 		dev_err(&handle->pdev->dev,
4503 			"Change tqp num(%u) fail.\n", new_tqp_num);
4504 		return ret;
4505 	}
4506 
4507 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4508 	if (ret)
4509 		return ret;
4510 
4511 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4512 	if (ret)
4513 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4514 
4515 	return ret;
4516 }
4517 
4518 int hns3_set_channels(struct net_device *netdev,
4519 		      struct ethtool_channels *ch)
4520 {
4521 	struct hnae3_handle *h = hns3_get_handle(netdev);
4522 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4523 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4524 	u32 new_tqp_num = ch->combined_count;
4525 	u16 org_tqp_num;
4526 	int ret;
4527 
4528 	if (hns3_nic_resetting(netdev))
4529 		return -EBUSY;
4530 
4531 	if (ch->rx_count || ch->tx_count)
4532 		return -EINVAL;
4533 
4534 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4535 	    new_tqp_num < 1) {
4536 		dev_err(&netdev->dev,
4537 			"Change tqps fail, the tqp range is from 1 to %u",
4538 			hns3_get_max_available_channels(h));
4539 		return -EINVAL;
4540 	}
4541 
4542 	if (kinfo->rss_size == new_tqp_num)
4543 		return 0;
4544 
4545 	netif_dbg(h, drv, netdev,
4546 		  "set channels: tqp_num=%u, rxfh=%d\n",
4547 		  new_tqp_num, rxfh_configured);
4548 
4549 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4550 	if (ret)
4551 		return ret;
4552 
4553 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4554 	if (ret)
4555 		return ret;
4556 
4557 	org_tqp_num = h->kinfo.num_tqps;
4558 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4559 	if (ret) {
4560 		int ret1;
4561 
4562 		netdev_warn(netdev,
4563 			    "Change channels fail, revert to old value\n");
4564 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4565 		if (ret1) {
4566 			netdev_err(netdev,
4567 				   "revert to old channel fail\n");
4568 			return ret1;
4569 		}
4570 
4571 		return ret;
4572 	}
4573 
4574 	return 0;
4575 }
4576 
4577 static const struct hns3_hw_error_info hns3_hw_err[] = {
4578 	{ .type = HNAE3_PPU_POISON_ERROR,
4579 	  .msg = "PPU poison" },
4580 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4581 	  .msg = "IMP CMDQ error" },
4582 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4583 	  .msg = "IMP RD poison" },
4584 };
4585 
4586 static void hns3_process_hw_error(struct hnae3_handle *handle,
4587 				  enum hnae3_hw_error_type type)
4588 {
4589 	int i;
4590 
4591 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4592 		if (hns3_hw_err[i].type == type) {
4593 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4594 				hns3_hw_err[i].msg);
4595 			break;
4596 		}
4597 	}
4598 }
4599 
4600 static const struct hnae3_client_ops client_ops = {
4601 	.init_instance = hns3_client_init,
4602 	.uninit_instance = hns3_client_uninit,
4603 	.link_status_change = hns3_link_status_change,
4604 	.setup_tc = hns3_client_setup_tc,
4605 	.reset_notify = hns3_reset_notify,
4606 	.process_hw_error = hns3_process_hw_error,
4607 };
4608 
4609 /* hns3_init_module - Driver registration routine
4610  * hns3_init_module is the first routine called when the driver is
4611  * loaded. All it does is register with the PCI subsystem.
4612  */
4613 static int __init hns3_init_module(void)
4614 {
4615 	int ret;
4616 
4617 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4618 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4619 
4620 	client.type = HNAE3_CLIENT_KNIC;
4621 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4622 		 hns3_driver_name);
4623 
4624 	client.ops = &client_ops;
4625 
4626 	INIT_LIST_HEAD(&client.node);
4627 
4628 	hns3_dbg_register_debugfs(hns3_driver_name);
4629 
4630 	ret = hnae3_register_client(&client);
4631 	if (ret)
4632 		goto err_reg_client;
4633 
4634 	ret = pci_register_driver(&hns3_driver);
4635 	if (ret)
4636 		goto err_reg_driver;
4637 
4638 	return ret;
4639 
4640 err_reg_driver:
4641 	hnae3_unregister_client(&client);
4642 err_reg_client:
4643 	hns3_dbg_unregister_debugfs();
4644 	return ret;
4645 }
4646 module_init(hns3_init_module);
4647 
4648 /* hns3_exit_module - Driver exit cleanup routine
4649  * hns3_exit_module is called just before the driver is removed
4650  * from memory.
4651  */
4652 static void __exit hns3_exit_module(void)
4653 {
4654 	pci_unregister_driver(&hns3_driver);
4655 	hnae3_unregister_client(&client);
4656 	hns3_dbg_unregister_debugfs();
4657 }
4658 module_exit(hns3_exit_module);
4659 
4660 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4661 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4662 MODULE_LICENSE("GPL");
4663 MODULE_ALIAS("pci:hns-nic");
4664