xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vector = vector;
97 
98 	napi_schedule_irqoff(&tqp_vector->napi);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105 	struct hns3_enet_tqp_vector *tqp_vectors;
106 	unsigned int i;
107 
108 	for (i = 0; i < priv->vector_num; i++) {
109 		tqp_vectors = &priv->tqp_vector[i];
110 
111 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112 			continue;
113 
114 		/* clear the affinity mask */
115 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116 
117 		/* release the irq resource */
118 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
119 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120 	}
121 }
122 
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125 	struct hns3_enet_tqp_vector *tqp_vectors;
126 	int txrx_int_idx = 0;
127 	int rx_int_idx = 0;
128 	int tx_int_idx = 0;
129 	unsigned int i;
130 	int ret;
131 
132 	for (i = 0; i < priv->vector_num; i++) {
133 		tqp_vectors = &priv->tqp_vector[i];
134 
135 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136 			continue;
137 
138 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140 				 "%s-%s-%s-%d", hns3_driver_name,
141 				 pci_name(priv->ae_handle->pdev),
142 				 "TxRx", txrx_int_idx++);
143 			txrx_int_idx++;
144 		} else if (tqp_vectors->rx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146 				 "%s-%s-%s-%d", hns3_driver_name,
147 				 pci_name(priv->ae_handle->pdev),
148 				 "Rx", rx_int_idx++);
149 		} else if (tqp_vectors->tx_group.ring) {
150 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151 				 "%s-%s-%s-%d", hns3_driver_name,
152 				 pci_name(priv->ae_handle->pdev),
153 				 "Tx", tx_int_idx++);
154 		} else {
155 			/* Skip this unused q_vector */
156 			continue;
157 		}
158 
159 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160 
161 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163 				  tqp_vectors->name, tqp_vectors);
164 		if (ret) {
165 			netdev_err(priv->netdev, "request irq(%d) fail\n",
166 				   tqp_vectors->vector_irq);
167 			hns3_nic_uninit_irq(priv);
168 			return ret;
169 		}
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
214 	    !tqp_vector->rx_group.coal.adapt_enable)
215 		/* According to the hardware, the range of rl_reg is
216 		 * 0-59 and the unit is 4.
217 		 */
218 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
219 
220 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
221 }
222 
223 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224 				    u32 gl_value)
225 {
226 	u32 new_val;
227 
228 	if (tqp_vector->rx_group.coal.unit_1us)
229 		new_val = gl_value | HNS3_INT_GL_1US;
230 	else
231 		new_val = hns3_gl_usec_to_reg(gl_value);
232 
233 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
234 }
235 
236 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
237 				    u32 gl_value)
238 {
239 	u32 new_val;
240 
241 	if (tqp_vector->tx_group.coal.unit_1us)
242 		new_val = gl_value | HNS3_INT_GL_1US;
243 	else
244 		new_val = hns3_gl_usec_to_reg(gl_value);
245 
246 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
247 }
248 
249 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
250 				    u32 ql_value)
251 {
252 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
253 }
254 
255 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
256 				    u32 ql_value)
257 {
258 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
259 }
260 
261 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
262 				      struct hns3_nic_priv *priv)
263 {
264 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
265 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
266 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
267 
268 	/* initialize the configuration for interrupt coalescing.
269 	 * 1. GL (Interrupt Gap Limiter)
270 	 * 2. RL (Interrupt Rate Limiter)
271 	 * 3. QL (Interrupt Quantity Limiter)
272 	 *
273 	 * Default: enable interrupt coalescing self-adaptive and GL
274 	 */
275 	tx_coal->adapt_enable = 1;
276 	rx_coal->adapt_enable = 1;
277 
278 	tx_coal->int_gl = HNS3_INT_GL_50K;
279 	rx_coal->int_gl = HNS3_INT_GL_50K;
280 
281 	rx_coal->flow_level = HNS3_FLOW_LOW;
282 	tx_coal->flow_level = HNS3_FLOW_LOW;
283 
284 	/* device version above V3(include V3), GL can configure 1us
285 	 * unit, so uses 1us unit.
286 	 */
287 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
288 		tx_coal->unit_1us = 1;
289 		rx_coal->unit_1us = 1;
290 	}
291 
292 	if (ae_dev->dev_specs.int_ql_max) {
293 		tx_coal->ql_enable = 1;
294 		rx_coal->ql_enable = 1;
295 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
296 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
298 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299 	}
300 }
301 
302 static void
303 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
304 			     struct hns3_nic_priv *priv)
305 {
306 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
307 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
308 	struct hnae3_handle *h = priv->ae_handle;
309 
310 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
311 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
312 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
313 
314 	if (tx_coal->ql_enable)
315 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
316 
317 	if (rx_coal->ql_enable)
318 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
319 }
320 
321 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
322 {
323 	struct hnae3_handle *h = hns3_get_handle(netdev);
324 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
325 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
326 	unsigned int queue_size = kinfo->num_tqps;
327 	int i, ret;
328 
329 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
330 		netdev_reset_tc(netdev);
331 	} else {
332 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
333 		if (ret) {
334 			netdev_err(netdev,
335 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
336 			return ret;
337 		}
338 
339 		for (i = 0; i < HNAE3_MAX_TC; i++) {
340 			if (!test_bit(i, &tc_info->tc_en))
341 				continue;
342 
343 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
344 					    tc_info->tqp_offset[i]);
345 		}
346 	}
347 
348 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
349 	if (ret) {
350 		netdev_err(netdev,
351 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
352 		return ret;
353 	}
354 
355 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
356 	if (ret) {
357 		netdev_err(netdev,
358 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
359 		return ret;
360 	}
361 
362 	return 0;
363 }
364 
365 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
366 {
367 	u16 alloc_tqps, max_rss_size, rss_size;
368 
369 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
370 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
371 
372 	return min_t(u16, rss_size, max_rss_size);
373 }
374 
375 static void hns3_tqp_enable(struct hnae3_queue *tqp)
376 {
377 	u32 rcb_reg;
378 
379 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
380 	rcb_reg |= BIT(HNS3_RING_EN_B);
381 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
382 }
383 
384 static void hns3_tqp_disable(struct hnae3_queue *tqp)
385 {
386 	u32 rcb_reg;
387 
388 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
389 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
390 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
391 }
392 
393 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
394 {
395 #ifdef CONFIG_RFS_ACCEL
396 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
397 	netdev->rx_cpu_rmap = NULL;
398 #endif
399 }
400 
401 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
402 {
403 #ifdef CONFIG_RFS_ACCEL
404 	struct hns3_nic_priv *priv = netdev_priv(netdev);
405 	struct hns3_enet_tqp_vector *tqp_vector;
406 	int i, ret;
407 
408 	if (!netdev->rx_cpu_rmap) {
409 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
410 		if (!netdev->rx_cpu_rmap)
411 			return -ENOMEM;
412 	}
413 
414 	for (i = 0; i < priv->vector_num; i++) {
415 		tqp_vector = &priv->tqp_vector[i];
416 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
417 				       tqp_vector->vector_irq);
418 		if (ret) {
419 			hns3_free_rx_cpu_rmap(netdev);
420 			return ret;
421 		}
422 	}
423 #endif
424 	return 0;
425 }
426 
427 static int hns3_nic_net_up(struct net_device *netdev)
428 {
429 	struct hns3_nic_priv *priv = netdev_priv(netdev);
430 	struct hnae3_handle *h = priv->ae_handle;
431 	int i, j;
432 	int ret;
433 
434 	ret = hns3_nic_reset_all_ring(h);
435 	if (ret)
436 		return ret;
437 
438 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
439 
440 	/* enable the vectors */
441 	for (i = 0; i < priv->vector_num; i++)
442 		hns3_vector_enable(&priv->tqp_vector[i]);
443 
444 	/* enable rcb */
445 	for (j = 0; j < h->kinfo.num_tqps; j++)
446 		hns3_tqp_enable(h->kinfo.tqp[j]);
447 
448 	/* start the ae_dev */
449 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
450 	if (ret) {
451 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
452 		while (j--)
453 			hns3_tqp_disable(h->kinfo.tqp[j]);
454 
455 		for (j = i - 1; j >= 0; j--)
456 			hns3_vector_disable(&priv->tqp_vector[j]);
457 	}
458 
459 	return ret;
460 }
461 
462 static void hns3_config_xps(struct hns3_nic_priv *priv)
463 {
464 	int i;
465 
466 	for (i = 0; i < priv->vector_num; i++) {
467 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
468 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
469 
470 		while (ring) {
471 			int ret;
472 
473 			ret = netif_set_xps_queue(priv->netdev,
474 						  &tqp_vector->affinity_mask,
475 						  ring->tqp->tqp_index);
476 			if (ret)
477 				netdev_warn(priv->netdev,
478 					    "set xps queue failed: %d", ret);
479 
480 			ring = ring->next;
481 		}
482 	}
483 }
484 
485 static int hns3_nic_net_open(struct net_device *netdev)
486 {
487 	struct hns3_nic_priv *priv = netdev_priv(netdev);
488 	struct hnae3_handle *h = hns3_get_handle(netdev);
489 	struct hnae3_knic_private_info *kinfo;
490 	int i, ret;
491 
492 	if (hns3_nic_resetting(netdev))
493 		return -EBUSY;
494 
495 	netif_carrier_off(netdev);
496 
497 	ret = hns3_nic_set_real_num_queue(netdev);
498 	if (ret)
499 		return ret;
500 
501 	ret = hns3_nic_net_up(netdev);
502 	if (ret) {
503 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
504 		return ret;
505 	}
506 
507 	kinfo = &h->kinfo;
508 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
509 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
510 
511 	if (h->ae_algo->ops->set_timer_task)
512 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
513 
514 	hns3_config_xps(priv);
515 
516 	netif_dbg(h, drv, netdev, "net open\n");
517 
518 	return 0;
519 }
520 
521 static void hns3_reset_tx_queue(struct hnae3_handle *h)
522 {
523 	struct net_device *ndev = h->kinfo.netdev;
524 	struct hns3_nic_priv *priv = netdev_priv(ndev);
525 	struct netdev_queue *dev_queue;
526 	u32 i;
527 
528 	for (i = 0; i < h->kinfo.num_tqps; i++) {
529 		dev_queue = netdev_get_tx_queue(ndev,
530 						priv->ring[i].queue_index);
531 		netdev_tx_reset_queue(dev_queue);
532 	}
533 }
534 
535 static void hns3_nic_net_down(struct net_device *netdev)
536 {
537 	struct hns3_nic_priv *priv = netdev_priv(netdev);
538 	struct hnae3_handle *h = hns3_get_handle(netdev);
539 	const struct hnae3_ae_ops *ops;
540 	int i;
541 
542 	/* disable vectors */
543 	for (i = 0; i < priv->vector_num; i++)
544 		hns3_vector_disable(&priv->tqp_vector[i]);
545 
546 	/* disable rcb */
547 	for (i = 0; i < h->kinfo.num_tqps; i++)
548 		hns3_tqp_disable(h->kinfo.tqp[i]);
549 
550 	/* stop ae_dev */
551 	ops = priv->ae_handle->ae_algo->ops;
552 	if (ops->stop)
553 		ops->stop(priv->ae_handle);
554 
555 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
556 	 * during reset process, because driver may not be able
557 	 * to disable the ring through firmware when downing the netdev.
558 	 */
559 	if (!hns3_nic_resetting(netdev))
560 		hns3_clear_all_ring(priv->ae_handle, false);
561 
562 	hns3_reset_tx_queue(priv->ae_handle);
563 }
564 
565 static int hns3_nic_net_stop(struct net_device *netdev)
566 {
567 	struct hns3_nic_priv *priv = netdev_priv(netdev);
568 	struct hnae3_handle *h = hns3_get_handle(netdev);
569 
570 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
571 		return 0;
572 
573 	netif_dbg(h, drv, netdev, "net stop\n");
574 
575 	if (h->ae_algo->ops->set_timer_task)
576 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
577 
578 	netif_carrier_off(netdev);
579 	netif_tx_disable(netdev);
580 
581 	hns3_nic_net_down(netdev);
582 
583 	return 0;
584 }
585 
586 static int hns3_nic_uc_sync(struct net_device *netdev,
587 			    const unsigned char *addr)
588 {
589 	struct hnae3_handle *h = hns3_get_handle(netdev);
590 
591 	if (h->ae_algo->ops->add_uc_addr)
592 		return h->ae_algo->ops->add_uc_addr(h, addr);
593 
594 	return 0;
595 }
596 
597 static int hns3_nic_uc_unsync(struct net_device *netdev,
598 			      const unsigned char *addr)
599 {
600 	struct hnae3_handle *h = hns3_get_handle(netdev);
601 
602 	/* need ignore the request of removing device address, because
603 	 * we store the device address and other addresses of uc list
604 	 * in the function's mac filter list.
605 	 */
606 	if (ether_addr_equal(addr, netdev->dev_addr))
607 		return 0;
608 
609 	if (h->ae_algo->ops->rm_uc_addr)
610 		return h->ae_algo->ops->rm_uc_addr(h, addr);
611 
612 	return 0;
613 }
614 
615 static int hns3_nic_mc_sync(struct net_device *netdev,
616 			    const unsigned char *addr)
617 {
618 	struct hnae3_handle *h = hns3_get_handle(netdev);
619 
620 	if (h->ae_algo->ops->add_mc_addr)
621 		return h->ae_algo->ops->add_mc_addr(h, addr);
622 
623 	return 0;
624 }
625 
626 static int hns3_nic_mc_unsync(struct net_device *netdev,
627 			      const unsigned char *addr)
628 {
629 	struct hnae3_handle *h = hns3_get_handle(netdev);
630 
631 	if (h->ae_algo->ops->rm_mc_addr)
632 		return h->ae_algo->ops->rm_mc_addr(h, addr);
633 
634 	return 0;
635 }
636 
637 static u8 hns3_get_netdev_flags(struct net_device *netdev)
638 {
639 	u8 flags = 0;
640 
641 	if (netdev->flags & IFF_PROMISC) {
642 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
643 	} else {
644 		flags |= HNAE3_VLAN_FLTR;
645 		if (netdev->flags & IFF_ALLMULTI)
646 			flags |= HNAE3_USER_MPE;
647 	}
648 
649 	return flags;
650 }
651 
652 static void hns3_nic_set_rx_mode(struct net_device *netdev)
653 {
654 	struct hnae3_handle *h = hns3_get_handle(netdev);
655 	u8 new_flags;
656 
657 	new_flags = hns3_get_netdev_flags(netdev);
658 
659 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
660 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
661 
662 	/* User mode Promisc mode enable and vlan filtering is disabled to
663 	 * let all packets in.
664 	 */
665 	h->netdev_flags = new_flags;
666 	hns3_request_update_promisc_mode(h);
667 }
668 
669 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
670 {
671 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
672 
673 	if (ops->request_update_promisc_mode)
674 		ops->request_update_promisc_mode(handle);
675 }
676 
677 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
678 {
679 	struct hns3_nic_priv *priv = netdev_priv(netdev);
680 	struct hnae3_handle *h = priv->ae_handle;
681 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
682 	bool last_state;
683 
684 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
685 	    h->ae_algo->ops->enable_vlan_filter) {
686 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
687 		if (enable != last_state) {
688 			netdev_info(netdev,
689 				    "%s vlan filter\n",
690 				    enable ? "enable" : "disable");
691 			h->ae_algo->ops->enable_vlan_filter(h, enable);
692 		}
693 	}
694 }
695 
696 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
697 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
698 {
699 	u32 l4_offset, hdr_len;
700 	union l3_hdr_info l3;
701 	union l4_hdr_info l4;
702 	u32 l4_paylen;
703 	int ret;
704 
705 	if (!skb_is_gso(skb))
706 		return 0;
707 
708 	ret = skb_cow_head(skb, 0);
709 	if (unlikely(ret < 0))
710 		return ret;
711 
712 	l3.hdr = skb_network_header(skb);
713 	l4.hdr = skb_transport_header(skb);
714 
715 	/* Software should clear the IPv4's checksum field when tso is
716 	 * needed.
717 	 */
718 	if (l3.v4->version == 4)
719 		l3.v4->check = 0;
720 
721 	/* tunnel packet */
722 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
723 					 SKB_GSO_GRE_CSUM |
724 					 SKB_GSO_UDP_TUNNEL |
725 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
726 		/* reset l3&l4 pointers from outer to inner headers */
727 		l3.hdr = skb_inner_network_header(skb);
728 		l4.hdr = skb_inner_transport_header(skb);
729 
730 		/* Software should clear the IPv4's checksum field when
731 		 * tso is needed.
732 		 */
733 		if (l3.v4->version == 4)
734 			l3.v4->check = 0;
735 	}
736 
737 	/* normal or tunnel packet */
738 	l4_offset = l4.hdr - skb->data;
739 
740 	/* remove payload length from inner pseudo checksum when tso */
741 	l4_paylen = skb->len - l4_offset;
742 
743 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
744 		hdr_len = sizeof(*l4.udp) + l4_offset;
745 		csum_replace_by_diff(&l4.udp->check,
746 				     (__force __wsum)htonl(l4_paylen));
747 	} else {
748 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
749 		csum_replace_by_diff(&l4.tcp->check,
750 				     (__force __wsum)htonl(l4_paylen));
751 	}
752 
753 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
754 
755 	/* find the txbd field values */
756 	*paylen_fdop_ol4cs = skb->len - hdr_len;
757 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
758 
759 	/* offload outer UDP header checksum */
760 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
761 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
762 
763 	/* get MSS for TSO */
764 	*mss = skb_shinfo(skb)->gso_size;
765 
766 	trace_hns3_tso(skb);
767 
768 	return 0;
769 }
770 
771 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
772 				u8 *il4_proto)
773 {
774 	union l3_hdr_info l3;
775 	unsigned char *l4_hdr;
776 	unsigned char *exthdr;
777 	u8 l4_proto_tmp;
778 	__be16 frag_off;
779 
780 	/* find outer header point */
781 	l3.hdr = skb_network_header(skb);
782 	l4_hdr = skb_transport_header(skb);
783 
784 	if (skb->protocol == htons(ETH_P_IPV6)) {
785 		exthdr = l3.hdr + sizeof(*l3.v6);
786 		l4_proto_tmp = l3.v6->nexthdr;
787 		if (l4_hdr != exthdr)
788 			ipv6_skip_exthdr(skb, exthdr - skb->data,
789 					 &l4_proto_tmp, &frag_off);
790 	} else if (skb->protocol == htons(ETH_P_IP)) {
791 		l4_proto_tmp = l3.v4->protocol;
792 	} else {
793 		return -EINVAL;
794 	}
795 
796 	*ol4_proto = l4_proto_tmp;
797 
798 	/* tunnel packet */
799 	if (!skb->encapsulation) {
800 		*il4_proto = 0;
801 		return 0;
802 	}
803 
804 	/* find inner header point */
805 	l3.hdr = skb_inner_network_header(skb);
806 	l4_hdr = skb_inner_transport_header(skb);
807 
808 	if (l3.v6->version == 6) {
809 		exthdr = l3.hdr + sizeof(*l3.v6);
810 		l4_proto_tmp = l3.v6->nexthdr;
811 		if (l4_hdr != exthdr)
812 			ipv6_skip_exthdr(skb, exthdr - skb->data,
813 					 &l4_proto_tmp, &frag_off);
814 	} else if (l3.v4->version == 4) {
815 		l4_proto_tmp = l3.v4->protocol;
816 	}
817 
818 	*il4_proto = l4_proto_tmp;
819 
820 	return 0;
821 }
822 
823 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
824  * and it is udp packet, which has a dest port as the IANA assigned.
825  * the hardware is expected to do the checksum offload, but the
826  * hardware will not do the checksum offload when udp dest port is
827  * 4789, 4790 or 6081.
828  */
829 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
830 {
831 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
832 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
833 	union l4_hdr_info l4;
834 
835 	/* device version above V3(include V3), the hardware can
836 	 * do this checksum offload.
837 	 */
838 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
839 		return false;
840 
841 	l4.hdr = skb_transport_header(skb);
842 
843 	if (!(!skb->encapsulation &&
844 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
845 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
846 	      l4.udp->dest == htons(4790))))
847 		return false;
848 
849 	skb_checksum_help(skb);
850 
851 	return true;
852 }
853 
854 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
855 				  u32 *ol_type_vlan_len_msec)
856 {
857 	u32 l2_len, l3_len, l4_len;
858 	unsigned char *il2_hdr;
859 	union l3_hdr_info l3;
860 	union l4_hdr_info l4;
861 
862 	l3.hdr = skb_network_header(skb);
863 	l4.hdr = skb_transport_header(skb);
864 
865 	/* compute OL2 header size, defined in 2 Bytes */
866 	l2_len = l3.hdr - skb->data;
867 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
868 
869 	/* compute OL3 header size, defined in 4 Bytes */
870 	l3_len = l4.hdr - l3.hdr;
871 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
872 
873 	il2_hdr = skb_inner_mac_header(skb);
874 	/* compute OL4 header size, defined in 4 Bytes */
875 	l4_len = il2_hdr - l4.hdr;
876 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
877 
878 	/* define outer network header type */
879 	if (skb->protocol == htons(ETH_P_IP)) {
880 		if (skb_is_gso(skb))
881 			hns3_set_field(*ol_type_vlan_len_msec,
882 				       HNS3_TXD_OL3T_S,
883 				       HNS3_OL3T_IPV4_CSUM);
884 		else
885 			hns3_set_field(*ol_type_vlan_len_msec,
886 				       HNS3_TXD_OL3T_S,
887 				       HNS3_OL3T_IPV4_NO_CSUM);
888 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
889 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
890 			       HNS3_OL3T_IPV6);
891 	}
892 
893 	if (ol4_proto == IPPROTO_UDP)
894 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
895 			       HNS3_TUN_MAC_IN_UDP);
896 	else if (ol4_proto == IPPROTO_GRE)
897 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
898 			       HNS3_TUN_NVGRE);
899 }
900 
901 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
902 			   u8 il4_proto, u32 *type_cs_vlan_tso,
903 			   u32 *ol_type_vlan_len_msec)
904 {
905 	unsigned char *l2_hdr = skb->data;
906 	u32 l4_proto = ol4_proto;
907 	union l4_hdr_info l4;
908 	union l3_hdr_info l3;
909 	u32 l2_len, l3_len;
910 
911 	l4.hdr = skb_transport_header(skb);
912 	l3.hdr = skb_network_header(skb);
913 
914 	/* handle encapsulation skb */
915 	if (skb->encapsulation) {
916 		/* If this is a not UDP/GRE encapsulation skb */
917 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
918 			/* drop the skb tunnel packet if hardware don't support,
919 			 * because hardware can't calculate csum when TSO.
920 			 */
921 			if (skb_is_gso(skb))
922 				return -EDOM;
923 
924 			/* the stack computes the IP header already,
925 			 * driver calculate l4 checksum when not TSO.
926 			 */
927 			skb_checksum_help(skb);
928 			return 0;
929 		}
930 
931 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
932 
933 		/* switch to inner header */
934 		l2_hdr = skb_inner_mac_header(skb);
935 		l3.hdr = skb_inner_network_header(skb);
936 		l4.hdr = skb_inner_transport_header(skb);
937 		l4_proto = il4_proto;
938 	}
939 
940 	if (l3.v4->version == 4) {
941 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
942 			       HNS3_L3T_IPV4);
943 
944 		/* the stack computes the IP header already, the only time we
945 		 * need the hardware to recompute it is in the case of TSO.
946 		 */
947 		if (skb_is_gso(skb))
948 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
949 	} else if (l3.v6->version == 6) {
950 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
951 			       HNS3_L3T_IPV6);
952 	}
953 
954 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
955 	l2_len = l3.hdr - l2_hdr;
956 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
957 
958 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
959 	l3_len = l4.hdr - l3.hdr;
960 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
961 
962 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
963 	switch (l4_proto) {
964 	case IPPROTO_TCP:
965 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
966 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
967 			       HNS3_L4T_TCP);
968 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
969 			       l4.tcp->doff);
970 		break;
971 	case IPPROTO_UDP:
972 		if (hns3_tunnel_csum_bug(skb))
973 			break;
974 
975 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
976 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
977 			       HNS3_L4T_UDP);
978 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
979 			       (sizeof(struct udphdr) >> 2));
980 		break;
981 	case IPPROTO_SCTP:
982 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
983 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
984 			       HNS3_L4T_SCTP);
985 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
986 			       (sizeof(struct sctphdr) >> 2));
987 		break;
988 	default:
989 		/* drop the skb tunnel packet if hardware don't support,
990 		 * because hardware can't calculate csum when TSO.
991 		 */
992 		if (skb_is_gso(skb))
993 			return -EDOM;
994 
995 		/* the stack computes the IP header already,
996 		 * driver calculate l4 checksum when not TSO.
997 		 */
998 		skb_checksum_help(skb);
999 		return 0;
1000 	}
1001 
1002 	return 0;
1003 }
1004 
1005 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1006 			     struct sk_buff *skb)
1007 {
1008 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1009 	struct hnae3_ae_dev *ae_dev;
1010 	struct vlan_ethhdr *vhdr;
1011 	int rc;
1012 
1013 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1014 	      skb_vlan_tag_present(skb)))
1015 		return 0;
1016 
1017 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1018 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1019 	 * will cause RAS error.
1020 	 */
1021 	ae_dev = pci_get_drvdata(handle->pdev);
1022 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1023 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1024 		     handle->port_base_vlan_state ==
1025 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1026 		return -EINVAL;
1027 
1028 	if (skb->protocol == htons(ETH_P_8021Q) &&
1029 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1030 		/* When HW VLAN acceleration is turned off, and the stack
1031 		 * sets the protocol to 802.1q, the driver just need to
1032 		 * set the protocol to the encapsulated ethertype.
1033 		 */
1034 		skb->protocol = vlan_get_protocol(skb);
1035 		return 0;
1036 	}
1037 
1038 	if (skb_vlan_tag_present(skb)) {
1039 		/* Based on hw strategy, use out_vtag in two layer tag case,
1040 		 * and use inner_vtag in one tag case.
1041 		 */
1042 		if (skb->protocol == htons(ETH_P_8021Q) &&
1043 		    handle->port_base_vlan_state ==
1044 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1045 			rc = HNS3_OUTER_VLAN_TAG;
1046 		else
1047 			rc = HNS3_INNER_VLAN_TAG;
1048 
1049 		skb->protocol = vlan_get_protocol(skb);
1050 		return rc;
1051 	}
1052 
1053 	rc = skb_cow_head(skb, 0);
1054 	if (unlikely(rc < 0))
1055 		return rc;
1056 
1057 	vhdr = (struct vlan_ethhdr *)skb->data;
1058 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1059 					 & VLAN_PRIO_MASK);
1060 
1061 	skb->protocol = vlan_get_protocol(skb);
1062 	return 0;
1063 }
1064 
1065 /* check if the hardware is capable of checksum offloading */
1066 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1067 {
1068 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1069 
1070 	/* Kindly note, due to backward compatibility of the TX descriptor,
1071 	 * HW checksum of the non-IP packets and GSO packets is handled at
1072 	 * different place in the following code
1073 	 */
1074 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1075 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1076 		return false;
1077 
1078 	return true;
1079 }
1080 
1081 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1082 			      struct sk_buff *skb, struct hns3_desc *desc,
1083 			      struct hns3_desc_cb *desc_cb)
1084 {
1085 	u32 ol_type_vlan_len_msec = 0;
1086 	u32 paylen_ol4cs = skb->len;
1087 	u32 type_cs_vlan_tso = 0;
1088 	u16 mss_hw_csum = 0;
1089 	u16 inner_vtag = 0;
1090 	u16 out_vtag = 0;
1091 	int ret;
1092 
1093 	ret = hns3_handle_vtags(ring, skb);
1094 	if (unlikely(ret < 0)) {
1095 		u64_stats_update_begin(&ring->syncp);
1096 		ring->stats.tx_vlan_err++;
1097 		u64_stats_update_end(&ring->syncp);
1098 		return ret;
1099 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1100 		inner_vtag = skb_vlan_tag_get(skb);
1101 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1102 				VLAN_PRIO_MASK;
1103 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1104 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1105 		out_vtag = skb_vlan_tag_get(skb);
1106 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1107 				VLAN_PRIO_MASK;
1108 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1109 			       1);
1110 	}
1111 
1112 	desc_cb->send_bytes = skb->len;
1113 
1114 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1115 		u8 ol4_proto, il4_proto;
1116 
1117 		if (hns3_check_hw_tx_csum(skb)) {
1118 			/* set checksum start and offset, defined in 2 Bytes */
1119 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1120 				       skb_checksum_start_offset(skb) >> 1);
1121 			hns3_set_field(ol_type_vlan_len_msec,
1122 				       HNS3_TXD_CSUM_OFFSET_S,
1123 				       skb->csum_offset >> 1);
1124 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1125 			goto out_hw_tx_csum;
1126 		}
1127 
1128 		skb_reset_mac_len(skb);
1129 
1130 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1131 		if (unlikely(ret < 0)) {
1132 			u64_stats_update_begin(&ring->syncp);
1133 			ring->stats.tx_l4_proto_err++;
1134 			u64_stats_update_end(&ring->syncp);
1135 			return ret;
1136 		}
1137 
1138 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1139 				      &type_cs_vlan_tso,
1140 				      &ol_type_vlan_len_msec);
1141 		if (unlikely(ret < 0)) {
1142 			u64_stats_update_begin(&ring->syncp);
1143 			ring->stats.tx_l2l3l4_err++;
1144 			u64_stats_update_end(&ring->syncp);
1145 			return ret;
1146 		}
1147 
1148 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1149 				   &type_cs_vlan_tso, &desc_cb->send_bytes);
1150 		if (unlikely(ret < 0)) {
1151 			u64_stats_update_begin(&ring->syncp);
1152 			ring->stats.tx_tso_err++;
1153 			u64_stats_update_end(&ring->syncp);
1154 			return ret;
1155 		}
1156 	}
1157 
1158 out_hw_tx_csum:
1159 	/* Set txbd */
1160 	desc->tx.ol_type_vlan_len_msec =
1161 		cpu_to_le32(ol_type_vlan_len_msec);
1162 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1163 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1164 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1165 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1166 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1167 
1168 	return 0;
1169 }
1170 
1171 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1172 			  unsigned int size, enum hns_desc_type type)
1173 {
1174 #define HNS3_LIKELY_BD_NUM	1
1175 
1176 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1177 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1178 	struct device *dev = ring_to_dev(ring);
1179 	skb_frag_t *frag;
1180 	unsigned int frag_buf_num;
1181 	int k, sizeoflast;
1182 	dma_addr_t dma;
1183 
1184 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1185 	    type == DESC_TYPE_SKB) {
1186 		struct sk_buff *skb = (struct sk_buff *)priv;
1187 
1188 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1189 	} else {
1190 		frag = (skb_frag_t *)priv;
1191 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1192 	}
1193 
1194 	if (unlikely(dma_mapping_error(dev, dma))) {
1195 		u64_stats_update_begin(&ring->syncp);
1196 		ring->stats.sw_err_cnt++;
1197 		u64_stats_update_end(&ring->syncp);
1198 		return -ENOMEM;
1199 	}
1200 
1201 	desc_cb->priv = priv;
1202 	desc_cb->length = size;
1203 	desc_cb->dma = dma;
1204 	desc_cb->type = type;
1205 
1206 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1207 		desc->addr = cpu_to_le64(dma);
1208 		desc->tx.send_size = cpu_to_le16(size);
1209 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1210 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1211 
1212 		trace_hns3_tx_desc(ring, ring->next_to_use);
1213 		ring_ptr_move_fw(ring, next_to_use);
1214 		return HNS3_LIKELY_BD_NUM;
1215 	}
1216 
1217 	frag_buf_num = hns3_tx_bd_count(size);
1218 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1219 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1220 
1221 	/* When frag size is bigger than hardware limit, split this frag */
1222 	for (k = 0; k < frag_buf_num; k++) {
1223 		/* now, fill the descriptor */
1224 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1225 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1226 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1227 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1228 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1229 
1230 		trace_hns3_tx_desc(ring, ring->next_to_use);
1231 		/* move ring pointer to next */
1232 		ring_ptr_move_fw(ring, next_to_use);
1233 
1234 		desc = &ring->desc[ring->next_to_use];
1235 	}
1236 
1237 	return frag_buf_num;
1238 }
1239 
1240 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1241 				    unsigned int bd_num)
1242 {
1243 	unsigned int size;
1244 	int i;
1245 
1246 	size = skb_headlen(skb);
1247 	while (size > HNS3_MAX_BD_SIZE) {
1248 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1249 		size -= HNS3_MAX_BD_SIZE;
1250 
1251 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1252 			return bd_num;
1253 	}
1254 
1255 	if (size) {
1256 		bd_size[bd_num++] = size;
1257 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1258 			return bd_num;
1259 	}
1260 
1261 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1262 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1263 		size = skb_frag_size(frag);
1264 		if (!size)
1265 			continue;
1266 
1267 		while (size > HNS3_MAX_BD_SIZE) {
1268 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1269 			size -= HNS3_MAX_BD_SIZE;
1270 
1271 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1272 				return bd_num;
1273 		}
1274 
1275 		bd_size[bd_num++] = size;
1276 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1277 			return bd_num;
1278 	}
1279 
1280 	return bd_num;
1281 }
1282 
1283 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1284 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1285 				   unsigned int recursion_level)
1286 {
1287 #define HNS3_MAX_RECURSION_LEVEL	24
1288 
1289 	struct sk_buff *frag_skb;
1290 
1291 	/* If the total len is within the max bd limit */
1292 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1293 		   !skb_has_frag_list(skb) &&
1294 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1295 		return skb_shinfo(skb)->nr_frags + 1U;
1296 
1297 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1298 		return UINT_MAX;
1299 
1300 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1301 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1302 		return bd_num;
1303 
1304 	skb_walk_frags(skb, frag_skb) {
1305 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1306 					bd_num, recursion_level + 1);
1307 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1308 			return bd_num;
1309 	}
1310 
1311 	return bd_num;
1312 }
1313 
1314 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1315 {
1316 	if (!skb->encapsulation)
1317 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1318 
1319 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1320 }
1321 
1322 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1323  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1324  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1325  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1326  * than MSS except the last max_non_tso_bd_num - 1 frags.
1327  */
1328 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1329 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1330 {
1331 	unsigned int tot_len = 0;
1332 	int i;
1333 
1334 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1335 		tot_len += bd_size[i];
1336 
1337 	/* ensure the first max_non_tso_bd_num frags is greater than
1338 	 * mss + header
1339 	 */
1340 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1341 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1342 		return true;
1343 
1344 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1345 	 * than mss except the last one.
1346 	 */
1347 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1348 		tot_len -= bd_size[i];
1349 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1350 
1351 		if (tot_len < skb_shinfo(skb)->gso_size)
1352 			return true;
1353 	}
1354 
1355 	return false;
1356 }
1357 
1358 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1359 {
1360 	int i;
1361 
1362 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1363 		size[i] = skb_frag_size(&shinfo->frags[i]);
1364 }
1365 
1366 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1367 			      struct sk_buff *skb,
1368 			      u8 max_non_tso_bd_num,
1369 			      unsigned int bd_num)
1370 {
1371 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1372 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1373 	 */
1374 	if (bd_num == UINT_MAX) {
1375 		u64_stats_update_begin(&ring->syncp);
1376 		ring->stats.over_max_recursion++;
1377 		u64_stats_update_end(&ring->syncp);
1378 		return -ENOMEM;
1379 	}
1380 
1381 	/* The skb->len has exceeded the hw limitation, linearization
1382 	 * will not help.
1383 	 */
1384 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1385 	    (!skb_is_gso(skb) && skb->len >
1386 	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1387 		u64_stats_update_begin(&ring->syncp);
1388 		ring->stats.hw_limitation++;
1389 		u64_stats_update_end(&ring->syncp);
1390 		return -ENOMEM;
1391 	}
1392 
1393 	if (__skb_linearize(skb)) {
1394 		u64_stats_update_begin(&ring->syncp);
1395 		ring->stats.sw_err_cnt++;
1396 		u64_stats_update_end(&ring->syncp);
1397 		return -ENOMEM;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1404 				  struct net_device *netdev,
1405 				  struct sk_buff *skb)
1406 {
1407 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1408 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1409 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1410 	unsigned int bd_num;
1411 
1412 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1413 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1414 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1415 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1416 					      max_non_tso_bd_num)) {
1417 			trace_hns3_over_max_bd(skb);
1418 			goto out;
1419 		}
1420 
1421 		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1422 				       bd_num))
1423 			return -ENOMEM;
1424 
1425 		bd_num = hns3_tx_bd_count(skb->len);
1426 
1427 		u64_stats_update_begin(&ring->syncp);
1428 		ring->stats.tx_copy++;
1429 		u64_stats_update_end(&ring->syncp);
1430 	}
1431 
1432 out:
1433 	if (likely(ring_space(ring) >= bd_num))
1434 		return bd_num;
1435 
1436 	netif_stop_subqueue(netdev, ring->queue_index);
1437 	smp_mb(); /* Memory barrier before checking ring_space */
1438 
1439 	/* Start queue in case hns3_clean_tx_ring has just made room
1440 	 * available and has not seen the queue stopped state performed
1441 	 * by netif_stop_subqueue above.
1442 	 */
1443 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1444 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1445 		netif_start_subqueue(netdev, ring->queue_index);
1446 		return bd_num;
1447 	}
1448 
1449 	u64_stats_update_begin(&ring->syncp);
1450 	ring->stats.tx_busy++;
1451 	u64_stats_update_end(&ring->syncp);
1452 
1453 	return -EBUSY;
1454 }
1455 
1456 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1457 {
1458 	struct device *dev = ring_to_dev(ring);
1459 	unsigned int i;
1460 
1461 	for (i = 0; i < ring->desc_num; i++) {
1462 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1463 
1464 		memset(desc, 0, sizeof(*desc));
1465 
1466 		/* check if this is where we started */
1467 		if (ring->next_to_use == next_to_use_orig)
1468 			break;
1469 
1470 		/* rollback one */
1471 		ring_ptr_move_bw(ring, next_to_use);
1472 
1473 		if (!ring->desc_cb[ring->next_to_use].dma)
1474 			continue;
1475 
1476 		/* unmap the descriptor dma address */
1477 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1478 		    ring->desc_cb[ring->next_to_use].type ==
1479 		    DESC_TYPE_FRAGLIST_SKB)
1480 			dma_unmap_single(dev,
1481 					 ring->desc_cb[ring->next_to_use].dma,
1482 					ring->desc_cb[ring->next_to_use].length,
1483 					DMA_TO_DEVICE);
1484 		else if (ring->desc_cb[ring->next_to_use].length)
1485 			dma_unmap_page(dev,
1486 				       ring->desc_cb[ring->next_to_use].dma,
1487 				       ring->desc_cb[ring->next_to_use].length,
1488 				       DMA_TO_DEVICE);
1489 
1490 		ring->desc_cb[ring->next_to_use].length = 0;
1491 		ring->desc_cb[ring->next_to_use].dma = 0;
1492 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1493 	}
1494 }
1495 
1496 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1497 				 struct sk_buff *skb, enum hns_desc_type type)
1498 {
1499 	unsigned int size = skb_headlen(skb);
1500 	struct sk_buff *frag_skb;
1501 	int i, ret, bd_num = 0;
1502 
1503 	if (size) {
1504 		ret = hns3_fill_desc(ring, skb, size, type);
1505 		if (unlikely(ret < 0))
1506 			return ret;
1507 
1508 		bd_num += ret;
1509 	}
1510 
1511 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1512 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1513 
1514 		size = skb_frag_size(frag);
1515 		if (!size)
1516 			continue;
1517 
1518 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1519 		if (unlikely(ret < 0))
1520 			return ret;
1521 
1522 		bd_num += ret;
1523 	}
1524 
1525 	skb_walk_frags(skb, frag_skb) {
1526 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1527 					    DESC_TYPE_FRAGLIST_SKB);
1528 		if (unlikely(ret < 0))
1529 			return ret;
1530 
1531 		bd_num += ret;
1532 	}
1533 
1534 	return bd_num;
1535 }
1536 
1537 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1538 			     bool doorbell)
1539 {
1540 	ring->pending_buf += num;
1541 
1542 	if (!doorbell) {
1543 		u64_stats_update_begin(&ring->syncp);
1544 		ring->stats.tx_more++;
1545 		u64_stats_update_end(&ring->syncp);
1546 		return;
1547 	}
1548 
1549 	if (!ring->pending_buf)
1550 		return;
1551 
1552 	writel(ring->pending_buf,
1553 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1554 	ring->pending_buf = 0;
1555 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1556 }
1557 
1558 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1559 {
1560 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1561 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1562 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1563 	struct netdev_queue *dev_queue;
1564 	int pre_ntu, next_to_use_head;
1565 	bool doorbell;
1566 	int ret;
1567 
1568 	/* Hardware can only handle short frames above 32 bytes */
1569 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1570 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1571 
1572 		u64_stats_update_begin(&ring->syncp);
1573 		ring->stats.sw_err_cnt++;
1574 		u64_stats_update_end(&ring->syncp);
1575 
1576 		return NETDEV_TX_OK;
1577 	}
1578 
1579 	/* Prefetch the data used later */
1580 	prefetch(skb->data);
1581 
1582 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1583 	if (unlikely(ret <= 0)) {
1584 		if (ret == -EBUSY) {
1585 			hns3_tx_doorbell(ring, 0, true);
1586 			return NETDEV_TX_BUSY;
1587 		}
1588 
1589 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1590 		goto out_err_tx_ok;
1591 	}
1592 
1593 	next_to_use_head = ring->next_to_use;
1594 
1595 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
1596 				 desc_cb);
1597 	if (unlikely(ret < 0))
1598 		goto fill_err;
1599 
1600 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
1601 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
1602 	 * need to be notified to the hw.
1603 	 */
1604 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1605 	if (unlikely(ret <= 0))
1606 		goto fill_err;
1607 
1608 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1609 					(ring->desc_num - 1);
1610 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1611 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1612 	trace_hns3_tx_desc(ring, pre_ntu);
1613 
1614 	/* Complete translate all packets */
1615 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1616 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
1617 					  netdev_xmit_more());
1618 	hns3_tx_doorbell(ring, ret, doorbell);
1619 
1620 	return NETDEV_TX_OK;
1621 
1622 fill_err:
1623 	hns3_clear_desc(ring, next_to_use_head);
1624 
1625 out_err_tx_ok:
1626 	dev_kfree_skb_any(skb);
1627 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1628 	return NETDEV_TX_OK;
1629 }
1630 
1631 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1632 {
1633 	struct hnae3_handle *h = hns3_get_handle(netdev);
1634 	struct sockaddr *mac_addr = p;
1635 	int ret;
1636 
1637 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1638 		return -EADDRNOTAVAIL;
1639 
1640 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1641 		netdev_info(netdev, "already using mac address %pM\n",
1642 			    mac_addr->sa_data);
1643 		return 0;
1644 	}
1645 
1646 	/* For VF device, if there is a perm_addr, then the user will not
1647 	 * be allowed to change the address.
1648 	 */
1649 	if (!hns3_is_phys_func(h->pdev) &&
1650 	    !is_zero_ether_addr(netdev->perm_addr)) {
1651 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1652 			   netdev->perm_addr, mac_addr->sa_data);
1653 		return -EPERM;
1654 	}
1655 
1656 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1657 	if (ret) {
1658 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1659 		return ret;
1660 	}
1661 
1662 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1663 
1664 	return 0;
1665 }
1666 
1667 static int hns3_nic_do_ioctl(struct net_device *netdev,
1668 			     struct ifreq *ifr, int cmd)
1669 {
1670 	struct hnae3_handle *h = hns3_get_handle(netdev);
1671 
1672 	if (!netif_running(netdev))
1673 		return -EINVAL;
1674 
1675 	if (!h->ae_algo->ops->do_ioctl)
1676 		return -EOPNOTSUPP;
1677 
1678 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1679 }
1680 
1681 static int hns3_nic_set_features(struct net_device *netdev,
1682 				 netdev_features_t features)
1683 {
1684 	netdev_features_t changed = netdev->features ^ features;
1685 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1686 	struct hnae3_handle *h = priv->ae_handle;
1687 	bool enable;
1688 	int ret;
1689 
1690 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1691 		enable = !!(features & NETIF_F_GRO_HW);
1692 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1693 		if (ret)
1694 			return ret;
1695 	}
1696 
1697 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1698 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1699 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1700 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1701 		if (ret)
1702 			return ret;
1703 	}
1704 
1705 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1706 		enable = !!(features & NETIF_F_NTUPLE);
1707 		h->ae_algo->ops->enable_fd(h, enable);
1708 	}
1709 
1710 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1711 	    h->ae_algo->ops->cls_flower_active(h)) {
1712 		netdev_err(netdev,
1713 			   "there are offloaded TC filters active, cannot disable HW TC offload");
1714 		return -EINVAL;
1715 	}
1716 
1717 	netdev->features = features;
1718 	return 0;
1719 }
1720 
1721 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1722 					     struct net_device *dev,
1723 					     netdev_features_t features)
1724 {
1725 #define HNS3_MAX_HDR_LEN	480U
1726 #define HNS3_MAX_L4_HDR_LEN	60U
1727 
1728 	size_t len;
1729 
1730 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1731 		return features;
1732 
1733 	if (skb->encapsulation)
1734 		len = skb_inner_transport_header(skb) - skb->data;
1735 	else
1736 		len = skb_transport_header(skb) - skb->data;
1737 
1738 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1739 	 * a flexible value, and it's max len is 60 bytes.
1740 	 */
1741 	len += HNS3_MAX_L4_HDR_LEN;
1742 
1743 	/* Hardware only supports checksum on the skb with a max header
1744 	 * len of 480 bytes.
1745 	 */
1746 	if (len > HNS3_MAX_HDR_LEN)
1747 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1748 
1749 	return features;
1750 }
1751 
1752 static void hns3_nic_get_stats64(struct net_device *netdev,
1753 				 struct rtnl_link_stats64 *stats)
1754 {
1755 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1756 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1757 	struct hnae3_handle *handle = priv->ae_handle;
1758 	struct hns3_enet_ring *ring;
1759 	u64 rx_length_errors = 0;
1760 	u64 rx_crc_errors = 0;
1761 	u64 rx_multicast = 0;
1762 	unsigned int start;
1763 	u64 tx_errors = 0;
1764 	u64 rx_errors = 0;
1765 	unsigned int idx;
1766 	u64 tx_bytes = 0;
1767 	u64 rx_bytes = 0;
1768 	u64 tx_pkts = 0;
1769 	u64 rx_pkts = 0;
1770 	u64 tx_drop = 0;
1771 	u64 rx_drop = 0;
1772 
1773 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1774 		return;
1775 
1776 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1777 
1778 	for (idx = 0; idx < queue_num; idx++) {
1779 		/* fetch the tx stats */
1780 		ring = &priv->ring[idx];
1781 		do {
1782 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1783 			tx_bytes += ring->stats.tx_bytes;
1784 			tx_pkts += ring->stats.tx_pkts;
1785 			tx_drop += ring->stats.sw_err_cnt;
1786 			tx_drop += ring->stats.tx_vlan_err;
1787 			tx_drop += ring->stats.tx_l4_proto_err;
1788 			tx_drop += ring->stats.tx_l2l3l4_err;
1789 			tx_drop += ring->stats.tx_tso_err;
1790 			tx_drop += ring->stats.over_max_recursion;
1791 			tx_drop += ring->stats.hw_limitation;
1792 			tx_errors += ring->stats.sw_err_cnt;
1793 			tx_errors += ring->stats.tx_vlan_err;
1794 			tx_errors += ring->stats.tx_l4_proto_err;
1795 			tx_errors += ring->stats.tx_l2l3l4_err;
1796 			tx_errors += ring->stats.tx_tso_err;
1797 			tx_errors += ring->stats.over_max_recursion;
1798 			tx_errors += ring->stats.hw_limitation;
1799 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1800 
1801 		/* fetch the rx stats */
1802 		ring = &priv->ring[idx + queue_num];
1803 		do {
1804 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1805 			rx_bytes += ring->stats.rx_bytes;
1806 			rx_pkts += ring->stats.rx_pkts;
1807 			rx_drop += ring->stats.l2_err;
1808 			rx_errors += ring->stats.l2_err;
1809 			rx_errors += ring->stats.l3l4_csum_err;
1810 			rx_crc_errors += ring->stats.l2_err;
1811 			rx_multicast += ring->stats.rx_multicast;
1812 			rx_length_errors += ring->stats.err_pkt_len;
1813 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1814 	}
1815 
1816 	stats->tx_bytes = tx_bytes;
1817 	stats->tx_packets = tx_pkts;
1818 	stats->rx_bytes = rx_bytes;
1819 	stats->rx_packets = rx_pkts;
1820 
1821 	stats->rx_errors = rx_errors;
1822 	stats->multicast = rx_multicast;
1823 	stats->rx_length_errors = rx_length_errors;
1824 	stats->rx_crc_errors = rx_crc_errors;
1825 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1826 
1827 	stats->tx_errors = tx_errors;
1828 	stats->rx_dropped = rx_drop;
1829 	stats->tx_dropped = tx_drop;
1830 	stats->collisions = netdev->stats.collisions;
1831 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1832 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1833 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1834 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1835 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1836 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1837 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1838 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1839 	stats->rx_compressed = netdev->stats.rx_compressed;
1840 	stats->tx_compressed = netdev->stats.tx_compressed;
1841 }
1842 
1843 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1844 {
1845 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1846 	struct hnae3_knic_private_info *kinfo;
1847 	u8 tc = mqprio_qopt->qopt.num_tc;
1848 	u16 mode = mqprio_qopt->mode;
1849 	u8 hw = mqprio_qopt->qopt.hw;
1850 	struct hnae3_handle *h;
1851 
1852 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1853 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1854 		return -EOPNOTSUPP;
1855 
1856 	if (tc > HNAE3_MAX_TC)
1857 		return -EINVAL;
1858 
1859 	if (!netdev)
1860 		return -EINVAL;
1861 
1862 	h = hns3_get_handle(netdev);
1863 	kinfo = &h->kinfo;
1864 
1865 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1866 
1867 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1868 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1869 }
1870 
1871 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1872 				    struct flow_cls_offload *flow)
1873 {
1874 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1875 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1876 
1877 	switch (flow->command) {
1878 	case FLOW_CLS_REPLACE:
1879 		if (h->ae_algo->ops->add_cls_flower)
1880 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1881 		break;
1882 	case FLOW_CLS_DESTROY:
1883 		if (h->ae_algo->ops->del_cls_flower)
1884 			return h->ae_algo->ops->del_cls_flower(h, flow);
1885 		break;
1886 	default:
1887 		break;
1888 	}
1889 
1890 	return -EOPNOTSUPP;
1891 }
1892 
1893 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1894 				  void *cb_priv)
1895 {
1896 	struct hns3_nic_priv *priv = cb_priv;
1897 
1898 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1899 		return -EOPNOTSUPP;
1900 
1901 	switch (type) {
1902 	case TC_SETUP_CLSFLOWER:
1903 		return hns3_setup_tc_cls_flower(priv, type_data);
1904 	default:
1905 		return -EOPNOTSUPP;
1906 	}
1907 }
1908 
1909 static LIST_HEAD(hns3_block_cb_list);
1910 
1911 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1912 			     void *type_data)
1913 {
1914 	struct hns3_nic_priv *priv = netdev_priv(dev);
1915 	int ret;
1916 
1917 	switch (type) {
1918 	case TC_SETUP_QDISC_MQPRIO:
1919 		ret = hns3_setup_tc(dev, type_data);
1920 		break;
1921 	case TC_SETUP_BLOCK:
1922 		ret = flow_block_cb_setup_simple(type_data,
1923 						 &hns3_block_cb_list,
1924 						 hns3_setup_tc_block_cb,
1925 						 priv, priv, true);
1926 		break;
1927 	default:
1928 		return -EOPNOTSUPP;
1929 	}
1930 
1931 	return ret;
1932 }
1933 
1934 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1935 				__be16 proto, u16 vid)
1936 {
1937 	struct hnae3_handle *h = hns3_get_handle(netdev);
1938 	int ret = -EIO;
1939 
1940 	if (h->ae_algo->ops->set_vlan_filter)
1941 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1942 
1943 	return ret;
1944 }
1945 
1946 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1947 				 __be16 proto, u16 vid)
1948 {
1949 	struct hnae3_handle *h = hns3_get_handle(netdev);
1950 	int ret = -EIO;
1951 
1952 	if (h->ae_algo->ops->set_vlan_filter)
1953 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1954 
1955 	return ret;
1956 }
1957 
1958 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1959 				u8 qos, __be16 vlan_proto)
1960 {
1961 	struct hnae3_handle *h = hns3_get_handle(netdev);
1962 	int ret = -EIO;
1963 
1964 	netif_dbg(h, drv, netdev,
1965 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1966 		  vf, vlan, qos, ntohs(vlan_proto));
1967 
1968 	if (h->ae_algo->ops->set_vf_vlan_filter)
1969 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1970 							  qos, vlan_proto);
1971 
1972 	return ret;
1973 }
1974 
1975 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1976 {
1977 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1978 
1979 	if (hns3_nic_resetting(netdev))
1980 		return -EBUSY;
1981 
1982 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1983 		return -EOPNOTSUPP;
1984 
1985 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1986 }
1987 
1988 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1989 {
1990 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1991 
1992 	if (!handle->ae_algo->ops->set_vf_trust)
1993 		return -EOPNOTSUPP;
1994 
1995 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1996 }
1997 
1998 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1999 {
2000 	struct hnae3_handle *h = hns3_get_handle(netdev);
2001 	int ret;
2002 
2003 	if (hns3_nic_resetting(netdev))
2004 		return -EBUSY;
2005 
2006 	if (!h->ae_algo->ops->set_mtu)
2007 		return -EOPNOTSUPP;
2008 
2009 	netif_dbg(h, drv, netdev,
2010 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2011 
2012 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2013 	if (ret)
2014 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2015 			   ret);
2016 	else
2017 		netdev->mtu = new_mtu;
2018 
2019 	return ret;
2020 }
2021 
2022 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2023 {
2024 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2025 	struct hnae3_handle *h = hns3_get_handle(ndev);
2026 	struct hns3_enet_ring *tx_ring;
2027 	struct napi_struct *napi;
2028 	int timeout_queue = 0;
2029 	int hw_head, hw_tail;
2030 	int fbd_num, fbd_oft;
2031 	int ebd_num, ebd_oft;
2032 	int bd_num, bd_err;
2033 	int ring_en, tc;
2034 	int i;
2035 
2036 	/* Find the stopped queue the same way the stack does */
2037 	for (i = 0; i < ndev->num_tx_queues; i++) {
2038 		struct netdev_queue *q;
2039 		unsigned long trans_start;
2040 
2041 		q = netdev_get_tx_queue(ndev, i);
2042 		trans_start = q->trans_start;
2043 		if (netif_xmit_stopped(q) &&
2044 		    time_after(jiffies,
2045 			       (trans_start + ndev->watchdog_timeo))) {
2046 			timeout_queue = i;
2047 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2048 				    q->state,
2049 				    jiffies_to_msecs(jiffies - trans_start));
2050 			break;
2051 		}
2052 	}
2053 
2054 	if (i == ndev->num_tx_queues) {
2055 		netdev_info(ndev,
2056 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2057 			    priv->tx_timeout_count);
2058 		return false;
2059 	}
2060 
2061 	priv->tx_timeout_count++;
2062 
2063 	tx_ring = &priv->ring[timeout_queue];
2064 	napi = &tx_ring->tqp_vector->napi;
2065 
2066 	netdev_info(ndev,
2067 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2068 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2069 		    tx_ring->next_to_clean, napi->state);
2070 
2071 	netdev_info(ndev,
2072 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2073 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2074 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2075 
2076 	netdev_info(ndev,
2077 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2078 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2079 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2080 
2081 	/* When mac received many pause frames continuous, it's unable to send
2082 	 * packets, which may cause tx timeout
2083 	 */
2084 	if (h->ae_algo->ops->get_mac_stats) {
2085 		struct hns3_mac_stats mac_stats;
2086 
2087 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2088 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2089 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2090 	}
2091 
2092 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2093 				HNS3_RING_TX_RING_HEAD_REG);
2094 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2095 				HNS3_RING_TX_RING_TAIL_REG);
2096 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2097 				HNS3_RING_TX_RING_FBDNUM_REG);
2098 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2099 				HNS3_RING_TX_RING_OFFSET_REG);
2100 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2101 				HNS3_RING_TX_RING_EBDNUM_REG);
2102 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2103 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2104 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2105 			       HNS3_RING_TX_RING_BD_NUM_REG);
2106 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2107 			       HNS3_RING_TX_RING_BD_ERR_REG);
2108 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2109 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2110 
2111 	netdev_info(ndev,
2112 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2113 		    bd_num, hw_head, hw_tail, bd_err,
2114 		    readl(tx_ring->tqp_vector->mask_addr));
2115 	netdev_info(ndev,
2116 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2117 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2118 
2119 	return true;
2120 }
2121 
2122 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2123 {
2124 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2125 	struct hnae3_handle *h = priv->ae_handle;
2126 
2127 	if (!hns3_get_tx_timeo_queue_info(ndev))
2128 		return;
2129 
2130 	/* request the reset, and let the hclge to determine
2131 	 * which reset level should be done
2132 	 */
2133 	if (h->ae_algo->ops->reset_event)
2134 		h->ae_algo->ops->reset_event(h->pdev, h);
2135 }
2136 
2137 #ifdef CONFIG_RFS_ACCEL
2138 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2139 			      u16 rxq_index, u32 flow_id)
2140 {
2141 	struct hnae3_handle *h = hns3_get_handle(dev);
2142 	struct flow_keys fkeys;
2143 
2144 	if (!h->ae_algo->ops->add_arfs_entry)
2145 		return -EOPNOTSUPP;
2146 
2147 	if (skb->encapsulation)
2148 		return -EPROTONOSUPPORT;
2149 
2150 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2151 		return -EPROTONOSUPPORT;
2152 
2153 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2154 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2155 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2156 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2157 		return -EPROTONOSUPPORT;
2158 
2159 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2160 }
2161 #endif
2162 
2163 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2164 				  struct ifla_vf_info *ivf)
2165 {
2166 	struct hnae3_handle *h = hns3_get_handle(ndev);
2167 
2168 	if (!h->ae_algo->ops->get_vf_config)
2169 		return -EOPNOTSUPP;
2170 
2171 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2172 }
2173 
2174 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2175 				      int link_state)
2176 {
2177 	struct hnae3_handle *h = hns3_get_handle(ndev);
2178 
2179 	if (!h->ae_algo->ops->set_vf_link_state)
2180 		return -EOPNOTSUPP;
2181 
2182 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2183 }
2184 
2185 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2186 				int min_tx_rate, int max_tx_rate)
2187 {
2188 	struct hnae3_handle *h = hns3_get_handle(ndev);
2189 
2190 	if (!h->ae_algo->ops->set_vf_rate)
2191 		return -EOPNOTSUPP;
2192 
2193 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2194 					    false);
2195 }
2196 
2197 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2198 {
2199 	struct hnae3_handle *h = hns3_get_handle(netdev);
2200 
2201 	if (!h->ae_algo->ops->set_vf_mac)
2202 		return -EOPNOTSUPP;
2203 
2204 	if (is_multicast_ether_addr(mac)) {
2205 		netdev_err(netdev,
2206 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2207 			   mac);
2208 		return -EINVAL;
2209 	}
2210 
2211 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2212 }
2213 
2214 static const struct net_device_ops hns3_nic_netdev_ops = {
2215 	.ndo_open		= hns3_nic_net_open,
2216 	.ndo_stop		= hns3_nic_net_stop,
2217 	.ndo_start_xmit		= hns3_nic_net_xmit,
2218 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2219 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2220 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2221 	.ndo_change_mtu		= hns3_nic_change_mtu,
2222 	.ndo_set_features	= hns3_nic_set_features,
2223 	.ndo_features_check	= hns3_features_check,
2224 	.ndo_get_stats64	= hns3_nic_get_stats64,
2225 	.ndo_setup_tc		= hns3_nic_setup_tc,
2226 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2227 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2228 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2229 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2230 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2231 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2232 #ifdef CONFIG_RFS_ACCEL
2233 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2234 #endif
2235 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2236 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2237 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2238 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2239 };
2240 
2241 bool hns3_is_phys_func(struct pci_dev *pdev)
2242 {
2243 	u32 dev_id = pdev->device;
2244 
2245 	switch (dev_id) {
2246 	case HNAE3_DEV_ID_GE:
2247 	case HNAE3_DEV_ID_25GE:
2248 	case HNAE3_DEV_ID_25GE_RDMA:
2249 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2250 	case HNAE3_DEV_ID_50GE_RDMA:
2251 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2252 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2253 	case HNAE3_DEV_ID_200G_RDMA:
2254 		return true;
2255 	case HNAE3_DEV_ID_VF:
2256 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2257 		return false;
2258 	default:
2259 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2260 			 dev_id);
2261 	}
2262 
2263 	return false;
2264 }
2265 
2266 static void hns3_disable_sriov(struct pci_dev *pdev)
2267 {
2268 	/* If our VFs are assigned we cannot shut down SR-IOV
2269 	 * without causing issues, so just leave the hardware
2270 	 * available but disabled
2271 	 */
2272 	if (pci_vfs_assigned(pdev)) {
2273 		dev_warn(&pdev->dev,
2274 			 "disabling driver while VFs are assigned\n");
2275 		return;
2276 	}
2277 
2278 	pci_disable_sriov(pdev);
2279 }
2280 
2281 /* hns3_probe - Device initialization routine
2282  * @pdev: PCI device information struct
2283  * @ent: entry in hns3_pci_tbl
2284  *
2285  * hns3_probe initializes a PF identified by a pci_dev structure.
2286  * The OS initialization, configuring of the PF private structure,
2287  * and a hardware reset occur.
2288  *
2289  * Returns 0 on success, negative on failure
2290  */
2291 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2292 {
2293 	struct hnae3_ae_dev *ae_dev;
2294 	int ret;
2295 
2296 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2297 	if (!ae_dev)
2298 		return -ENOMEM;
2299 
2300 	ae_dev->pdev = pdev;
2301 	ae_dev->flag = ent->driver_data;
2302 	pci_set_drvdata(pdev, ae_dev);
2303 
2304 	ret = hnae3_register_ae_dev(ae_dev);
2305 	if (ret)
2306 		pci_set_drvdata(pdev, NULL);
2307 
2308 	return ret;
2309 }
2310 
2311 /* hns3_remove - Device removal routine
2312  * @pdev: PCI device information struct
2313  */
2314 static void hns3_remove(struct pci_dev *pdev)
2315 {
2316 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2317 
2318 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2319 		hns3_disable_sriov(pdev);
2320 
2321 	hnae3_unregister_ae_dev(ae_dev);
2322 	pci_set_drvdata(pdev, NULL);
2323 }
2324 
2325 /**
2326  * hns3_pci_sriov_configure
2327  * @pdev: pointer to a pci_dev structure
2328  * @num_vfs: number of VFs to allocate
2329  *
2330  * Enable or change the number of VFs. Called when the user updates the number
2331  * of VFs in sysfs.
2332  **/
2333 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2334 {
2335 	int ret;
2336 
2337 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2338 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2339 		return -EINVAL;
2340 	}
2341 
2342 	if (num_vfs) {
2343 		ret = pci_enable_sriov(pdev, num_vfs);
2344 		if (ret)
2345 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2346 		else
2347 			return num_vfs;
2348 	} else if (!pci_vfs_assigned(pdev)) {
2349 		pci_disable_sriov(pdev);
2350 	} else {
2351 		dev_warn(&pdev->dev,
2352 			 "Unable to free VFs because some are assigned to VMs.\n");
2353 	}
2354 
2355 	return 0;
2356 }
2357 
2358 static void hns3_shutdown(struct pci_dev *pdev)
2359 {
2360 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2361 
2362 	hnae3_unregister_ae_dev(ae_dev);
2363 	pci_set_drvdata(pdev, NULL);
2364 
2365 	if (system_state == SYSTEM_POWER_OFF)
2366 		pci_set_power_state(pdev, PCI_D3hot);
2367 }
2368 
2369 static int __maybe_unused hns3_suspend(struct device *dev)
2370 {
2371 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2372 
2373 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2374 		dev_info(dev, "Begin to suspend.\n");
2375 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
2376 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int __maybe_unused hns3_resume(struct device *dev)
2383 {
2384 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
2385 
2386 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
2387 		dev_info(dev, "Begin to resume.\n");
2388 		if (ae_dev->ops && ae_dev->ops->reset_done)
2389 			ae_dev->ops->reset_done(ae_dev);
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2396 					    pci_channel_state_t state)
2397 {
2398 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2399 	pci_ers_result_t ret;
2400 
2401 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
2402 
2403 	if (state == pci_channel_io_perm_failure)
2404 		return PCI_ERS_RESULT_DISCONNECT;
2405 
2406 	if (!ae_dev || !ae_dev->ops) {
2407 		dev_err(&pdev->dev,
2408 			"Can't recover - error happened before device initialized\n");
2409 		return PCI_ERS_RESULT_NONE;
2410 	}
2411 
2412 	if (ae_dev->ops->handle_hw_ras_error)
2413 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2414 	else
2415 		return PCI_ERS_RESULT_NONE;
2416 
2417 	return ret;
2418 }
2419 
2420 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2421 {
2422 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2423 	const struct hnae3_ae_ops *ops;
2424 	enum hnae3_reset_type reset_type;
2425 	struct device *dev = &pdev->dev;
2426 
2427 	if (!ae_dev || !ae_dev->ops)
2428 		return PCI_ERS_RESULT_NONE;
2429 
2430 	ops = ae_dev->ops;
2431 	/* request the reset */
2432 	if (ops->reset_event && ops->get_reset_level &&
2433 	    ops->set_default_reset_request) {
2434 		if (ae_dev->hw_err_reset_req) {
2435 			reset_type = ops->get_reset_level(ae_dev,
2436 						&ae_dev->hw_err_reset_req);
2437 			ops->set_default_reset_request(ae_dev, reset_type);
2438 			dev_info(dev, "requesting reset due to PCI error\n");
2439 			ops->reset_event(pdev, NULL);
2440 		}
2441 
2442 		return PCI_ERS_RESULT_RECOVERED;
2443 	}
2444 
2445 	return PCI_ERS_RESULT_DISCONNECT;
2446 }
2447 
2448 static void hns3_reset_prepare(struct pci_dev *pdev)
2449 {
2450 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2451 
2452 	dev_info(&pdev->dev, "FLR prepare\n");
2453 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
2454 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
2455 }
2456 
2457 static void hns3_reset_done(struct pci_dev *pdev)
2458 {
2459 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2460 
2461 	dev_info(&pdev->dev, "FLR done\n");
2462 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
2463 		ae_dev->ops->reset_done(ae_dev);
2464 }
2465 
2466 static const struct pci_error_handlers hns3_err_handler = {
2467 	.error_detected = hns3_error_detected,
2468 	.slot_reset     = hns3_slot_reset,
2469 	.reset_prepare	= hns3_reset_prepare,
2470 	.reset_done	= hns3_reset_done,
2471 };
2472 
2473 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
2474 
2475 static struct pci_driver hns3_driver = {
2476 	.name     = hns3_driver_name,
2477 	.id_table = hns3_pci_tbl,
2478 	.probe    = hns3_probe,
2479 	.remove   = hns3_remove,
2480 	.shutdown = hns3_shutdown,
2481 	.driver.pm  = &hns3_pm_ops,
2482 	.sriov_configure = hns3_pci_sriov_configure,
2483 	.err_handler    = &hns3_err_handler,
2484 };
2485 
2486 /* set default feature to hns3 */
2487 static void hns3_set_default_feature(struct net_device *netdev)
2488 {
2489 	struct hnae3_handle *h = hns3_get_handle(netdev);
2490 	struct pci_dev *pdev = h->pdev;
2491 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2492 
2493 	netdev->priv_flags |= IFF_UNICAST_FLT;
2494 
2495 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2496 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2497 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2498 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2499 
2500 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2501 
2502 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2503 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2504 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2505 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2506 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2507 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2508 
2509 	netdev->vlan_features |= NETIF_F_RXCSUM |
2510 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2511 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2512 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2513 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2514 
2515 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2516 		NETIF_F_HW_VLAN_CTAG_RX |
2517 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2518 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2519 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2520 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2521 
2522 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2523 		netdev->hw_features |= NETIF_F_GRO_HW;
2524 		netdev->features |= NETIF_F_GRO_HW;
2525 
2526 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2527 			netdev->hw_features |= NETIF_F_NTUPLE;
2528 			netdev->features |= NETIF_F_NTUPLE;
2529 		}
2530 	}
2531 
2532 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2533 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2534 		netdev->features |= NETIF_F_GSO_UDP_L4;
2535 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2536 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2537 	}
2538 
2539 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2540 		netdev->hw_features |= NETIF_F_HW_CSUM;
2541 		netdev->features |= NETIF_F_HW_CSUM;
2542 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2543 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2544 	} else {
2545 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2546 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2547 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2548 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2549 	}
2550 
2551 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2552 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2553 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2554 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2555 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2556 	}
2557 
2558 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2559 		netdev->hw_features |= NETIF_F_HW_TC;
2560 		netdev->features |= NETIF_F_HW_TC;
2561 	}
2562 }
2563 
2564 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2565 			     struct hns3_desc_cb *cb)
2566 {
2567 	unsigned int order = hns3_page_order(ring);
2568 	struct page *p;
2569 
2570 	p = dev_alloc_pages(order);
2571 	if (!p)
2572 		return -ENOMEM;
2573 
2574 	cb->priv = p;
2575 	cb->page_offset = 0;
2576 	cb->reuse_flag = 0;
2577 	cb->buf  = page_address(p);
2578 	cb->length = hns3_page_size(ring);
2579 	cb->type = DESC_TYPE_PAGE;
2580 	page_ref_add(p, USHRT_MAX - 1);
2581 	cb->pagecnt_bias = USHRT_MAX;
2582 
2583 	return 0;
2584 }
2585 
2586 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2587 			     struct hns3_desc_cb *cb, int budget)
2588 {
2589 	if (cb->type == DESC_TYPE_SKB)
2590 		napi_consume_skb(cb->priv, budget);
2591 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2592 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2593 	memset(cb, 0, sizeof(*cb));
2594 }
2595 
2596 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2597 {
2598 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2599 			       cb->length, ring_to_dma_dir(ring));
2600 
2601 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2602 		return -EIO;
2603 
2604 	return 0;
2605 }
2606 
2607 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2608 			      struct hns3_desc_cb *cb)
2609 {
2610 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2611 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2612 				 ring_to_dma_dir(ring));
2613 	else if (cb->length)
2614 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2615 			       ring_to_dma_dir(ring));
2616 }
2617 
2618 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2619 {
2620 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2621 	ring->desc[i].addr = 0;
2622 }
2623 
2624 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2625 				    int budget)
2626 {
2627 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2628 
2629 	if (!ring->desc_cb[i].dma)
2630 		return;
2631 
2632 	hns3_buffer_detach(ring, i);
2633 	hns3_free_buffer(ring, cb, budget);
2634 }
2635 
2636 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2637 {
2638 	int i;
2639 
2640 	for (i = 0; i < ring->desc_num; i++)
2641 		hns3_free_buffer_detach(ring, i, 0);
2642 }
2643 
2644 /* free desc along with its attached buffer */
2645 static void hns3_free_desc(struct hns3_enet_ring *ring)
2646 {
2647 	int size = ring->desc_num * sizeof(ring->desc[0]);
2648 
2649 	hns3_free_buffers(ring);
2650 
2651 	if (ring->desc) {
2652 		dma_free_coherent(ring_to_dev(ring), size,
2653 				  ring->desc, ring->desc_dma_addr);
2654 		ring->desc = NULL;
2655 	}
2656 }
2657 
2658 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2659 {
2660 	int size = ring->desc_num * sizeof(ring->desc[0]);
2661 
2662 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2663 					&ring->desc_dma_addr, GFP_KERNEL);
2664 	if (!ring->desc)
2665 		return -ENOMEM;
2666 
2667 	return 0;
2668 }
2669 
2670 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2671 				   struct hns3_desc_cb *cb)
2672 {
2673 	int ret;
2674 
2675 	ret = hns3_alloc_buffer(ring, cb);
2676 	if (ret)
2677 		goto out;
2678 
2679 	ret = hns3_map_buffer(ring, cb);
2680 	if (ret)
2681 		goto out_with_buf;
2682 
2683 	return 0;
2684 
2685 out_with_buf:
2686 	hns3_free_buffer(ring, cb, 0);
2687 out:
2688 	return ret;
2689 }
2690 
2691 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2692 {
2693 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2694 
2695 	if (ret)
2696 		return ret;
2697 
2698 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2699 
2700 	return 0;
2701 }
2702 
2703 /* Allocate memory for raw pkg, and map with dma */
2704 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2705 {
2706 	int i, j, ret;
2707 
2708 	for (i = 0; i < ring->desc_num; i++) {
2709 		ret = hns3_alloc_and_attach_buffer(ring, i);
2710 		if (ret)
2711 			goto out_buffer_fail;
2712 	}
2713 
2714 	return 0;
2715 
2716 out_buffer_fail:
2717 	for (j = i - 1; j >= 0; j--)
2718 		hns3_free_buffer_detach(ring, j, 0);
2719 	return ret;
2720 }
2721 
2722 /* detach a in-used buffer and replace with a reserved one */
2723 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2724 				struct hns3_desc_cb *res_cb)
2725 {
2726 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2727 	ring->desc_cb[i] = *res_cb;
2728 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2729 	ring->desc[i].rx.bd_base_info = 0;
2730 }
2731 
2732 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2733 {
2734 	ring->desc_cb[i].reuse_flag = 0;
2735 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2736 					 ring->desc_cb[i].page_offset);
2737 	ring->desc[i].rx.bd_base_info = 0;
2738 
2739 	dma_sync_single_for_device(ring_to_dev(ring),
2740 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2741 			hns3_buf_size(ring),
2742 			DMA_FROM_DEVICE);
2743 }
2744 
2745 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2746 				  int *bytes, int *pkts, int budget)
2747 {
2748 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2749 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2750 	 * the doorbell operation already have the needed barrier operation.
2751 	 */
2752 	int ltu = smp_load_acquire(&ring->last_to_use);
2753 	int ntc = ring->next_to_clean;
2754 	struct hns3_desc_cb *desc_cb;
2755 	bool reclaimed = false;
2756 	struct hns3_desc *desc;
2757 
2758 	while (ltu != ntc) {
2759 		desc = &ring->desc[ntc];
2760 
2761 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2762 				BIT(HNS3_TXD_VLD_B))
2763 			break;
2764 
2765 		desc_cb = &ring->desc_cb[ntc];
2766 
2767 		if (desc_cb->type == DESC_TYPE_SKB) {
2768 			(*pkts)++;
2769 			(*bytes) += desc_cb->send_bytes;
2770 		}
2771 
2772 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2773 		hns3_free_buffer_detach(ring, ntc, budget);
2774 
2775 		if (++ntc == ring->desc_num)
2776 			ntc = 0;
2777 
2778 		/* Issue prefetch for next Tx descriptor */
2779 		prefetch(&ring->desc_cb[ntc]);
2780 		reclaimed = true;
2781 	}
2782 
2783 	if (unlikely(!reclaimed))
2784 		return false;
2785 
2786 	/* This smp_store_release() pairs with smp_load_acquire() in
2787 	 * ring_space called by hns3_nic_net_xmit.
2788 	 */
2789 	smp_store_release(&ring->next_to_clean, ntc);
2790 	return true;
2791 }
2792 
2793 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2794 {
2795 	struct net_device *netdev = ring_to_netdev(ring);
2796 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2797 	struct netdev_queue *dev_queue;
2798 	int bytes, pkts;
2799 
2800 	bytes = 0;
2801 	pkts = 0;
2802 
2803 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2804 		return;
2805 
2806 	ring->tqp_vector->tx_group.total_bytes += bytes;
2807 	ring->tqp_vector->tx_group.total_packets += pkts;
2808 
2809 	u64_stats_update_begin(&ring->syncp);
2810 	ring->stats.tx_bytes += bytes;
2811 	ring->stats.tx_pkts += pkts;
2812 	u64_stats_update_end(&ring->syncp);
2813 
2814 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2815 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2816 
2817 	if (unlikely(netif_carrier_ok(netdev) &&
2818 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2819 		/* Make sure that anybody stopping the queue after this
2820 		 * sees the new next_to_clean.
2821 		 */
2822 		smp_mb();
2823 		if (netif_tx_queue_stopped(dev_queue) &&
2824 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2825 			netif_tx_wake_queue(dev_queue);
2826 			ring->stats.restart_queue++;
2827 		}
2828 	}
2829 }
2830 
2831 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2832 {
2833 	int ntc = ring->next_to_clean;
2834 	int ntu = ring->next_to_use;
2835 
2836 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2837 }
2838 
2839 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2840 				      int cleand_count)
2841 {
2842 	struct hns3_desc_cb *desc_cb;
2843 	struct hns3_desc_cb res_cbs;
2844 	int i, ret;
2845 
2846 	for (i = 0; i < cleand_count; i++) {
2847 		desc_cb = &ring->desc_cb[ring->next_to_use];
2848 		if (desc_cb->reuse_flag) {
2849 			u64_stats_update_begin(&ring->syncp);
2850 			ring->stats.reuse_pg_cnt++;
2851 			u64_stats_update_end(&ring->syncp);
2852 
2853 			hns3_reuse_buffer(ring, ring->next_to_use);
2854 		} else {
2855 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2856 			if (ret) {
2857 				u64_stats_update_begin(&ring->syncp);
2858 				ring->stats.sw_err_cnt++;
2859 				u64_stats_update_end(&ring->syncp);
2860 
2861 				hns3_rl_err(ring_to_netdev(ring),
2862 					    "alloc rx buffer failed: %d\n",
2863 					    ret);
2864 				break;
2865 			}
2866 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2867 
2868 			u64_stats_update_begin(&ring->syncp);
2869 			ring->stats.non_reuse_pg++;
2870 			u64_stats_update_end(&ring->syncp);
2871 		}
2872 
2873 		ring_ptr_move_fw(ring, next_to_use);
2874 	}
2875 
2876 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2877 }
2878 
2879 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2880 {
2881 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2882 }
2883 
2884 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2885 				struct hns3_enet_ring *ring, int pull_len,
2886 				struct hns3_desc_cb *desc_cb)
2887 {
2888 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2889 	int size = le16_to_cpu(desc->rx.size);
2890 	u32 truesize = hns3_buf_size(ring);
2891 
2892 	desc_cb->pagecnt_bias--;
2893 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2894 			size - pull_len, truesize);
2895 
2896 	/* Avoid re-using remote and pfmemalloc pages, or the stack is still
2897 	 * using the page when page_offset rollback to zero, flag default
2898 	 * unreuse
2899 	 */
2900 	if (!dev_page_is_reusable(desc_cb->priv) ||
2901 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2902 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2903 		return;
2904 	}
2905 
2906 	/* Move offset up to the next cache line */
2907 	desc_cb->page_offset += truesize;
2908 
2909 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2910 		desc_cb->reuse_flag = 1;
2911 	} else if (hns3_can_reuse_page(desc_cb)) {
2912 		desc_cb->reuse_flag = 1;
2913 		desc_cb->page_offset = 0;
2914 	} else if (desc_cb->pagecnt_bias) {
2915 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2916 		return;
2917 	}
2918 
2919 	if (unlikely(!desc_cb->pagecnt_bias)) {
2920 		page_ref_add(desc_cb->priv, USHRT_MAX);
2921 		desc_cb->pagecnt_bias = USHRT_MAX;
2922 	}
2923 }
2924 
2925 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2926 {
2927 	__be16 type = skb->protocol;
2928 	struct tcphdr *th;
2929 	int depth = 0;
2930 
2931 	while (eth_type_vlan(type)) {
2932 		struct vlan_hdr *vh;
2933 
2934 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2935 			return -EFAULT;
2936 
2937 		vh = (struct vlan_hdr *)(skb->data + depth);
2938 		type = vh->h_vlan_encapsulated_proto;
2939 		depth += VLAN_HLEN;
2940 	}
2941 
2942 	skb_set_network_header(skb, depth);
2943 
2944 	if (type == htons(ETH_P_IP)) {
2945 		const struct iphdr *iph = ip_hdr(skb);
2946 
2947 		depth += sizeof(struct iphdr);
2948 		skb_set_transport_header(skb, depth);
2949 		th = tcp_hdr(skb);
2950 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2951 					  iph->daddr, 0);
2952 	} else if (type == htons(ETH_P_IPV6)) {
2953 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2954 
2955 		depth += sizeof(struct ipv6hdr);
2956 		skb_set_transport_header(skb, depth);
2957 		th = tcp_hdr(skb);
2958 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2959 					  &iph->daddr, 0);
2960 	} else {
2961 		hns3_rl_err(skb->dev,
2962 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2963 			    be16_to_cpu(type), depth);
2964 		return -EFAULT;
2965 	}
2966 
2967 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2968 	if (th->cwr)
2969 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2970 
2971 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2972 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2973 
2974 	skb->csum_start = (unsigned char *)th - skb->head;
2975 	skb->csum_offset = offsetof(struct tcphdr, check);
2976 	skb->ip_summed = CHECKSUM_PARTIAL;
2977 
2978 	trace_hns3_gro(skb);
2979 
2980 	return 0;
2981 }
2982 
2983 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2984 				   struct sk_buff *skb, u32 l234info)
2985 {
2986 	u32 lo, hi;
2987 
2988 	u64_stats_update_begin(&ring->syncp);
2989 	ring->stats.csum_complete++;
2990 	u64_stats_update_end(&ring->syncp);
2991 	skb->ip_summed = CHECKSUM_COMPLETE;
2992 	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2993 			     HNS3_RXD_L2_CSUM_L_S);
2994 	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2995 			     HNS3_RXD_L2_CSUM_H_S);
2996 	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2997 }
2998 
2999 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3000 			     u32 l234info, u32 bd_base_info, u32 ol_info)
3001 {
3002 	struct net_device *netdev = ring_to_netdev(ring);
3003 	int l3_type, l4_type;
3004 	int ol4_type;
3005 
3006 	skb->ip_summed = CHECKSUM_NONE;
3007 
3008 	skb_checksum_none_assert(skb);
3009 
3010 	if (!(netdev->features & NETIF_F_RXCSUM))
3011 		return;
3012 
3013 	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
3014 		hns3_checksum_complete(ring, skb, l234info);
3015 		return;
3016 	}
3017 
3018 	/* check if hardware has done checksum */
3019 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3020 		return;
3021 
3022 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3023 				 BIT(HNS3_RXD_OL3E_B) |
3024 				 BIT(HNS3_RXD_OL4E_B)))) {
3025 		u64_stats_update_begin(&ring->syncp);
3026 		ring->stats.l3l4_csum_err++;
3027 		u64_stats_update_end(&ring->syncp);
3028 
3029 		return;
3030 	}
3031 
3032 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3033 				   HNS3_RXD_OL4ID_S);
3034 	switch (ol4_type) {
3035 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3036 	case HNS3_OL4_TYPE_NVGRE:
3037 		skb->csum_level = 1;
3038 		fallthrough;
3039 	case HNS3_OL4_TYPE_NO_TUN:
3040 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3041 					  HNS3_RXD_L3ID_S);
3042 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3043 					  HNS3_RXD_L4ID_S);
3044 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3045 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3046 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3047 		    (l4_type == HNS3_L4_TYPE_UDP ||
3048 		     l4_type == HNS3_L4_TYPE_TCP ||
3049 		     l4_type == HNS3_L4_TYPE_SCTP))
3050 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3051 		break;
3052 	default:
3053 		break;
3054 	}
3055 }
3056 
3057 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3058 {
3059 	if (skb_has_frag_list(skb))
3060 		napi_gro_flush(&ring->tqp_vector->napi, false);
3061 
3062 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3063 }
3064 
3065 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3066 				struct hns3_desc *desc, u32 l234info,
3067 				u16 *vlan_tag)
3068 {
3069 	struct hnae3_handle *handle = ring->tqp->handle;
3070 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3071 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3072 
3073 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3074 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3075 		if (!(*vlan_tag & VLAN_VID_MASK))
3076 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3077 
3078 		return (*vlan_tag != 0);
3079 	}
3080 
3081 #define HNS3_STRP_OUTER_VLAN	0x1
3082 #define HNS3_STRP_INNER_VLAN	0x2
3083 #define HNS3_STRP_BOTH		0x3
3084 
3085 	/* Hardware always insert VLAN tag into RX descriptor when
3086 	 * remove the tag from packet, driver needs to determine
3087 	 * reporting which tag to stack.
3088 	 */
3089 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3090 				HNS3_RXD_STRP_TAGP_S)) {
3091 	case HNS3_STRP_OUTER_VLAN:
3092 		if (handle->port_base_vlan_state !=
3093 				HNAE3_PORT_BASE_VLAN_DISABLE)
3094 			return false;
3095 
3096 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3097 		return true;
3098 	case HNS3_STRP_INNER_VLAN:
3099 		if (handle->port_base_vlan_state !=
3100 				HNAE3_PORT_BASE_VLAN_DISABLE)
3101 			return false;
3102 
3103 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3104 		return true;
3105 	case HNS3_STRP_BOTH:
3106 		if (handle->port_base_vlan_state ==
3107 				HNAE3_PORT_BASE_VLAN_DISABLE)
3108 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3109 		else
3110 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3111 
3112 		return true;
3113 	default:
3114 		return false;
3115 	}
3116 }
3117 
3118 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3119 {
3120 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3121 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3122 	ring->next_to_clean += 1;
3123 
3124 	if (unlikely(ring->next_to_clean == ring->desc_num))
3125 		ring->next_to_clean = 0;
3126 }
3127 
3128 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3129 			  unsigned char *va)
3130 {
3131 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3132 	struct net_device *netdev = ring_to_netdev(ring);
3133 	struct sk_buff *skb;
3134 
3135 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3136 	skb = ring->skb;
3137 	if (unlikely(!skb)) {
3138 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3139 
3140 		u64_stats_update_begin(&ring->syncp);
3141 		ring->stats.sw_err_cnt++;
3142 		u64_stats_update_end(&ring->syncp);
3143 
3144 		return -ENOMEM;
3145 	}
3146 
3147 	trace_hns3_rx_desc(ring);
3148 	prefetchw(skb->data);
3149 
3150 	ring->pending_buf = 1;
3151 	ring->frag_num = 0;
3152 	ring->tail_skb = NULL;
3153 	if (length <= HNS3_RX_HEAD_SIZE) {
3154 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3155 
3156 		/* We can reuse buffer as-is, just make sure it is reusable */
3157 		if (dev_page_is_reusable(desc_cb->priv))
3158 			desc_cb->reuse_flag = 1;
3159 		else /* This page cannot be reused so discard it */
3160 			__page_frag_cache_drain(desc_cb->priv,
3161 						desc_cb->pagecnt_bias);
3162 
3163 		hns3_rx_ring_move_fw(ring);
3164 		return 0;
3165 	}
3166 	u64_stats_update_begin(&ring->syncp);
3167 	ring->stats.seg_pkt_cnt++;
3168 	u64_stats_update_end(&ring->syncp);
3169 
3170 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3171 	__skb_put(skb, ring->pull_len);
3172 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3173 			    desc_cb);
3174 	hns3_rx_ring_move_fw(ring);
3175 
3176 	return 0;
3177 }
3178 
3179 static int hns3_add_frag(struct hns3_enet_ring *ring)
3180 {
3181 	struct sk_buff *skb = ring->skb;
3182 	struct sk_buff *head_skb = skb;
3183 	struct sk_buff *new_skb;
3184 	struct hns3_desc_cb *desc_cb;
3185 	struct hns3_desc *desc;
3186 	u32 bd_base_info;
3187 
3188 	do {
3189 		desc = &ring->desc[ring->next_to_clean];
3190 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3191 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3192 		/* make sure HW write desc complete */
3193 		dma_rmb();
3194 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3195 			return -ENXIO;
3196 
3197 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3198 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3199 			if (unlikely(!new_skb)) {
3200 				hns3_rl_err(ring_to_netdev(ring),
3201 					    "alloc rx fraglist skb fail\n");
3202 				return -ENXIO;
3203 			}
3204 			ring->frag_num = 0;
3205 
3206 			if (ring->tail_skb) {
3207 				ring->tail_skb->next = new_skb;
3208 				ring->tail_skb = new_skb;
3209 			} else {
3210 				skb_shinfo(skb)->frag_list = new_skb;
3211 				ring->tail_skb = new_skb;
3212 			}
3213 		}
3214 
3215 		if (ring->tail_skb) {
3216 			head_skb->truesize += hns3_buf_size(ring);
3217 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3218 			head_skb->len += le16_to_cpu(desc->rx.size);
3219 			skb = ring->tail_skb;
3220 		}
3221 
3222 		dma_sync_single_for_cpu(ring_to_dev(ring),
3223 				desc_cb->dma + desc_cb->page_offset,
3224 				hns3_buf_size(ring),
3225 				DMA_FROM_DEVICE);
3226 
3227 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3228 		trace_hns3_rx_desc(ring);
3229 		hns3_rx_ring_move_fw(ring);
3230 		ring->pending_buf++;
3231 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3232 
3233 	return 0;
3234 }
3235 
3236 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3237 				     struct sk_buff *skb, u32 l234info,
3238 				     u32 bd_base_info, u32 ol_info)
3239 {
3240 	u32 l3_type;
3241 
3242 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3243 						    HNS3_RXD_GRO_SIZE_M,
3244 						    HNS3_RXD_GRO_SIZE_S);
3245 	/* if there is no HW GRO, do not set gro params */
3246 	if (!skb_shinfo(skb)->gso_size) {
3247 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3248 		return 0;
3249 	}
3250 
3251 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3252 						  HNS3_RXD_GRO_COUNT_M,
3253 						  HNS3_RXD_GRO_COUNT_S);
3254 
3255 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3256 	if (l3_type == HNS3_L3_TYPE_IPV4)
3257 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3258 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3259 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3260 	else
3261 		return -EFAULT;
3262 
3263 	return  hns3_gro_complete(skb, l234info);
3264 }
3265 
3266 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3267 				     struct sk_buff *skb, u32 rss_hash)
3268 {
3269 	struct hnae3_handle *handle = ring->tqp->handle;
3270 	enum pkt_hash_types rss_type;
3271 
3272 	if (rss_hash)
3273 		rss_type = handle->kinfo.rss_type;
3274 	else
3275 		rss_type = PKT_HASH_TYPE_NONE;
3276 
3277 	skb_set_hash(skb, rss_hash, rss_type);
3278 }
3279 
3280 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3281 {
3282 	struct net_device *netdev = ring_to_netdev(ring);
3283 	enum hns3_pkt_l2t_type l2_frame_type;
3284 	u32 bd_base_info, l234info, ol_info;
3285 	struct hns3_desc *desc;
3286 	unsigned int len;
3287 	int pre_ntc, ret;
3288 
3289 	/* bdinfo handled below is only valid on the last BD of the
3290 	 * current packet, and ring->next_to_clean indicates the first
3291 	 * descriptor of next packet, so need - 1 below.
3292 	 */
3293 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3294 					(ring->desc_num - 1);
3295 	desc = &ring->desc[pre_ntc];
3296 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3297 	l234info = le32_to_cpu(desc->rx.l234_info);
3298 	ol_info = le32_to_cpu(desc->rx.ol_info);
3299 
3300 	/* Based on hw strategy, the tag offloaded will be stored at
3301 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3302 	 * in one layer tag case.
3303 	 */
3304 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3305 		u16 vlan_tag;
3306 
3307 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3308 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3309 					       vlan_tag);
3310 	}
3311 
3312 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3313 				  BIT(HNS3_RXD_L2E_B))))) {
3314 		u64_stats_update_begin(&ring->syncp);
3315 		if (l234info & BIT(HNS3_RXD_L2E_B))
3316 			ring->stats.l2_err++;
3317 		else
3318 			ring->stats.err_pkt_len++;
3319 		u64_stats_update_end(&ring->syncp);
3320 
3321 		return -EFAULT;
3322 	}
3323 
3324 	len = skb->len;
3325 
3326 	/* Do update ip stack process */
3327 	skb->protocol = eth_type_trans(skb, netdev);
3328 
3329 	/* This is needed in order to enable forwarding support */
3330 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3331 					bd_base_info, ol_info);
3332 	if (unlikely(ret)) {
3333 		u64_stats_update_begin(&ring->syncp);
3334 		ring->stats.rx_err_cnt++;
3335 		u64_stats_update_end(&ring->syncp);
3336 		return ret;
3337 	}
3338 
3339 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3340 					HNS3_RXD_DMAC_S);
3341 
3342 	u64_stats_update_begin(&ring->syncp);
3343 	ring->stats.rx_pkts++;
3344 	ring->stats.rx_bytes += len;
3345 
3346 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3347 		ring->stats.rx_multicast++;
3348 
3349 	u64_stats_update_end(&ring->syncp);
3350 
3351 	ring->tqp_vector->rx_group.total_bytes += len;
3352 
3353 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3354 	return 0;
3355 }
3356 
3357 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3358 {
3359 	struct sk_buff *skb = ring->skb;
3360 	struct hns3_desc_cb *desc_cb;
3361 	struct hns3_desc *desc;
3362 	unsigned int length;
3363 	u32 bd_base_info;
3364 	int ret;
3365 
3366 	desc = &ring->desc[ring->next_to_clean];
3367 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3368 
3369 	prefetch(desc);
3370 
3371 	if (!skb) {
3372 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3373 		/* Check valid BD */
3374 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3375 			return -ENXIO;
3376 
3377 		dma_rmb();
3378 		length = le16_to_cpu(desc->rx.size);
3379 
3380 		ring->va = desc_cb->buf + desc_cb->page_offset;
3381 
3382 		dma_sync_single_for_cpu(ring_to_dev(ring),
3383 				desc_cb->dma + desc_cb->page_offset,
3384 				hns3_buf_size(ring),
3385 				DMA_FROM_DEVICE);
3386 
3387 		/* Prefetch first cache line of first page.
3388 		 * Idea is to cache few bytes of the header of the packet.
3389 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3390 		 * it 128B. But in actual we can have greater size of caches with
3391 		 * 128B Level 1 cache lines. In such a case, single fetch would
3392 		 * suffice to cache in the relevant part of the header.
3393 		 */
3394 		net_prefetch(ring->va);
3395 
3396 		ret = hns3_alloc_skb(ring, length, ring->va);
3397 		skb = ring->skb;
3398 
3399 		if (ret < 0) /* alloc buffer fail */
3400 			return ret;
3401 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3402 			ret = hns3_add_frag(ring);
3403 			if (ret)
3404 				return ret;
3405 		}
3406 	} else {
3407 		ret = hns3_add_frag(ring);
3408 		if (ret)
3409 			return ret;
3410 	}
3411 
3412 	/* As the head data may be changed when GRO enable, copy
3413 	 * the head data in after other data rx completed
3414 	 */
3415 	if (skb->len > HNS3_RX_HEAD_SIZE)
3416 		memcpy(skb->data, ring->va,
3417 		       ALIGN(ring->pull_len, sizeof(long)));
3418 
3419 	ret = hns3_handle_bdinfo(ring, skb);
3420 	if (unlikely(ret)) {
3421 		dev_kfree_skb_any(skb);
3422 		return ret;
3423 	}
3424 
3425 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3426 	return 0;
3427 }
3428 
3429 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3430 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3431 {
3432 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3433 	int unused_count = hns3_desc_unused(ring);
3434 	int recv_pkts = 0;
3435 	int err;
3436 
3437 	unused_count -= ring->pending_buf;
3438 
3439 	while (recv_pkts < budget) {
3440 		/* Reuse or realloc buffers */
3441 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3442 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3443 			unused_count = hns3_desc_unused(ring) -
3444 					ring->pending_buf;
3445 		}
3446 
3447 		/* Poll one pkt */
3448 		err = hns3_handle_rx_bd(ring);
3449 		/* Do not get FE for the packet or failed to alloc skb */
3450 		if (unlikely(!ring->skb || err == -ENXIO)) {
3451 			goto out;
3452 		} else if (likely(!err)) {
3453 			rx_fn(ring, ring->skb);
3454 			recv_pkts++;
3455 		}
3456 
3457 		unused_count += ring->pending_buf;
3458 		ring->skb = NULL;
3459 		ring->pending_buf = 0;
3460 	}
3461 
3462 out:
3463 	/* Make all data has been write before submit */
3464 	if (unused_count > 0)
3465 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3466 
3467 	return recv_pkts;
3468 }
3469 
3470 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3471 {
3472 #define HNS3_RX_LOW_BYTE_RATE 10000
3473 #define HNS3_RX_MID_BYTE_RATE 20000
3474 #define HNS3_RX_ULTRA_PACKET_RATE 40
3475 
3476 	enum hns3_flow_level_range new_flow_level;
3477 	struct hns3_enet_tqp_vector *tqp_vector;
3478 	int packets_per_msecs, bytes_per_msecs;
3479 	u32 time_passed_ms;
3480 
3481 	tqp_vector = ring_group->ring->tqp_vector;
3482 	time_passed_ms =
3483 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3484 	if (!time_passed_ms)
3485 		return false;
3486 
3487 	do_div(ring_group->total_packets, time_passed_ms);
3488 	packets_per_msecs = ring_group->total_packets;
3489 
3490 	do_div(ring_group->total_bytes, time_passed_ms);
3491 	bytes_per_msecs = ring_group->total_bytes;
3492 
3493 	new_flow_level = ring_group->coal.flow_level;
3494 
3495 	/* Simple throttlerate management
3496 	 * 0-10MB/s   lower     (50000 ints/s)
3497 	 * 10-20MB/s   middle    (20000 ints/s)
3498 	 * 20-1249MB/s high      (18000 ints/s)
3499 	 * > 40000pps  ultra     (8000 ints/s)
3500 	 */
3501 	switch (new_flow_level) {
3502 	case HNS3_FLOW_LOW:
3503 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3504 			new_flow_level = HNS3_FLOW_MID;
3505 		break;
3506 	case HNS3_FLOW_MID:
3507 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3508 			new_flow_level = HNS3_FLOW_HIGH;
3509 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3510 			new_flow_level = HNS3_FLOW_LOW;
3511 		break;
3512 	case HNS3_FLOW_HIGH:
3513 	case HNS3_FLOW_ULTRA:
3514 	default:
3515 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3516 			new_flow_level = HNS3_FLOW_MID;
3517 		break;
3518 	}
3519 
3520 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3521 	    &tqp_vector->rx_group == ring_group)
3522 		new_flow_level = HNS3_FLOW_ULTRA;
3523 
3524 	ring_group->total_bytes = 0;
3525 	ring_group->total_packets = 0;
3526 	ring_group->coal.flow_level = new_flow_level;
3527 
3528 	return true;
3529 }
3530 
3531 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3532 {
3533 	struct hns3_enet_tqp_vector *tqp_vector;
3534 	u16 new_int_gl;
3535 
3536 	if (!ring_group->ring)
3537 		return false;
3538 
3539 	tqp_vector = ring_group->ring->tqp_vector;
3540 	if (!tqp_vector->last_jiffies)
3541 		return false;
3542 
3543 	if (ring_group->total_packets == 0) {
3544 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3545 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3546 		return true;
3547 	}
3548 
3549 	if (!hns3_get_new_flow_lvl(ring_group))
3550 		return false;
3551 
3552 	new_int_gl = ring_group->coal.int_gl;
3553 	switch (ring_group->coal.flow_level) {
3554 	case HNS3_FLOW_LOW:
3555 		new_int_gl = HNS3_INT_GL_50K;
3556 		break;
3557 	case HNS3_FLOW_MID:
3558 		new_int_gl = HNS3_INT_GL_20K;
3559 		break;
3560 	case HNS3_FLOW_HIGH:
3561 		new_int_gl = HNS3_INT_GL_18K;
3562 		break;
3563 	case HNS3_FLOW_ULTRA:
3564 		new_int_gl = HNS3_INT_GL_8K;
3565 		break;
3566 	default:
3567 		break;
3568 	}
3569 
3570 	if (new_int_gl != ring_group->coal.int_gl) {
3571 		ring_group->coal.int_gl = new_int_gl;
3572 		return true;
3573 	}
3574 	return false;
3575 }
3576 
3577 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3578 {
3579 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3580 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3581 	bool rx_update, tx_update;
3582 
3583 	/* update param every 1000ms */
3584 	if (time_before(jiffies,
3585 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3586 		return;
3587 
3588 	if (rx_group->coal.adapt_enable) {
3589 		rx_update = hns3_get_new_int_gl(rx_group);
3590 		if (rx_update)
3591 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3592 						       rx_group->coal.int_gl);
3593 	}
3594 
3595 	if (tx_group->coal.adapt_enable) {
3596 		tx_update = hns3_get_new_int_gl(tx_group);
3597 		if (tx_update)
3598 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3599 						       tx_group->coal.int_gl);
3600 	}
3601 
3602 	tqp_vector->last_jiffies = jiffies;
3603 }
3604 
3605 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3606 {
3607 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3608 	struct hns3_enet_ring *ring;
3609 	int rx_pkt_total = 0;
3610 
3611 	struct hns3_enet_tqp_vector *tqp_vector =
3612 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3613 	bool clean_complete = true;
3614 	int rx_budget = budget;
3615 
3616 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3617 		napi_complete(napi);
3618 		return 0;
3619 	}
3620 
3621 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3622 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3623 	 */
3624 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3625 		hns3_clean_tx_ring(ring, budget);
3626 
3627 	/* make sure rx ring budget not smaller than 1 */
3628 	if (tqp_vector->num_tqps > 1)
3629 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3630 
3631 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3632 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3633 						    hns3_rx_skb);
3634 		if (rx_cleaned >= rx_budget)
3635 			clean_complete = false;
3636 
3637 		rx_pkt_total += rx_cleaned;
3638 	}
3639 
3640 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3641 
3642 	if (!clean_complete)
3643 		return budget;
3644 
3645 	if (napi_complete(napi) &&
3646 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3647 		hns3_update_new_int_gl(tqp_vector);
3648 		hns3_mask_vector_irq(tqp_vector, 1);
3649 	}
3650 
3651 	return rx_pkt_total;
3652 }
3653 
3654 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3655 				      struct hnae3_ring_chain_node *head)
3656 {
3657 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3658 	struct hnae3_ring_chain_node *cur_chain = head;
3659 	struct hnae3_ring_chain_node *chain;
3660 	struct hns3_enet_ring *tx_ring;
3661 	struct hns3_enet_ring *rx_ring;
3662 
3663 	tx_ring = tqp_vector->tx_group.ring;
3664 	if (tx_ring) {
3665 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3666 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3667 			      HNAE3_RING_TYPE_TX);
3668 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3669 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3670 
3671 		cur_chain->next = NULL;
3672 
3673 		while (tx_ring->next) {
3674 			tx_ring = tx_ring->next;
3675 
3676 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3677 					     GFP_KERNEL);
3678 			if (!chain)
3679 				goto err_free_chain;
3680 
3681 			cur_chain->next = chain;
3682 			chain->tqp_index = tx_ring->tqp->tqp_index;
3683 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3684 				      HNAE3_RING_TYPE_TX);
3685 			hnae3_set_field(chain->int_gl_idx,
3686 					HNAE3_RING_GL_IDX_M,
3687 					HNAE3_RING_GL_IDX_S,
3688 					HNAE3_RING_GL_TX);
3689 
3690 			cur_chain = chain;
3691 		}
3692 	}
3693 
3694 	rx_ring = tqp_vector->rx_group.ring;
3695 	if (!tx_ring && rx_ring) {
3696 		cur_chain->next = NULL;
3697 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3698 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3699 			      HNAE3_RING_TYPE_RX);
3700 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3701 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3702 
3703 		rx_ring = rx_ring->next;
3704 	}
3705 
3706 	while (rx_ring) {
3707 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3708 		if (!chain)
3709 			goto err_free_chain;
3710 
3711 		cur_chain->next = chain;
3712 		chain->tqp_index = rx_ring->tqp->tqp_index;
3713 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3714 			      HNAE3_RING_TYPE_RX);
3715 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3716 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3717 
3718 		cur_chain = chain;
3719 
3720 		rx_ring = rx_ring->next;
3721 	}
3722 
3723 	return 0;
3724 
3725 err_free_chain:
3726 	cur_chain = head->next;
3727 	while (cur_chain) {
3728 		chain = cur_chain->next;
3729 		devm_kfree(&pdev->dev, cur_chain);
3730 		cur_chain = chain;
3731 	}
3732 	head->next = NULL;
3733 
3734 	return -ENOMEM;
3735 }
3736 
3737 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3738 					struct hnae3_ring_chain_node *head)
3739 {
3740 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3741 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3742 
3743 	chain = head->next;
3744 
3745 	while (chain) {
3746 		chain_tmp = chain->next;
3747 		devm_kfree(&pdev->dev, chain);
3748 		chain = chain_tmp;
3749 	}
3750 }
3751 
3752 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3753 				   struct hns3_enet_ring *ring)
3754 {
3755 	ring->next = group->ring;
3756 	group->ring = ring;
3757 
3758 	group->count++;
3759 }
3760 
3761 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3762 {
3763 	struct pci_dev *pdev = priv->ae_handle->pdev;
3764 	struct hns3_enet_tqp_vector *tqp_vector;
3765 	int num_vectors = priv->vector_num;
3766 	int numa_node;
3767 	int vector_i;
3768 
3769 	numa_node = dev_to_node(&pdev->dev);
3770 
3771 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3772 		tqp_vector = &priv->tqp_vector[vector_i];
3773 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3774 				&tqp_vector->affinity_mask);
3775 	}
3776 }
3777 
3778 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3779 {
3780 	struct hnae3_handle *h = priv->ae_handle;
3781 	struct hns3_enet_tqp_vector *tqp_vector;
3782 	int ret;
3783 	int i;
3784 
3785 	hns3_nic_set_cpumask(priv);
3786 
3787 	for (i = 0; i < priv->vector_num; i++) {
3788 		tqp_vector = &priv->tqp_vector[i];
3789 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3790 		tqp_vector->num_tqps = 0;
3791 	}
3792 
3793 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3794 		u16 vector_i = i % priv->vector_num;
3795 		u16 tqp_num = h->kinfo.num_tqps;
3796 
3797 		tqp_vector = &priv->tqp_vector[vector_i];
3798 
3799 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3800 				       &priv->ring[i]);
3801 
3802 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3803 				       &priv->ring[i + tqp_num]);
3804 
3805 		priv->ring[i].tqp_vector = tqp_vector;
3806 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3807 		tqp_vector->num_tqps++;
3808 	}
3809 
3810 	for (i = 0; i < priv->vector_num; i++) {
3811 		struct hnae3_ring_chain_node vector_ring_chain;
3812 
3813 		tqp_vector = &priv->tqp_vector[i];
3814 
3815 		tqp_vector->rx_group.total_bytes = 0;
3816 		tqp_vector->rx_group.total_packets = 0;
3817 		tqp_vector->tx_group.total_bytes = 0;
3818 		tqp_vector->tx_group.total_packets = 0;
3819 		tqp_vector->handle = h;
3820 
3821 		ret = hns3_get_vector_ring_chain(tqp_vector,
3822 						 &vector_ring_chain);
3823 		if (ret)
3824 			goto map_ring_fail;
3825 
3826 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3827 			tqp_vector->vector_irq, &vector_ring_chain);
3828 
3829 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3830 
3831 		if (ret)
3832 			goto map_ring_fail;
3833 
3834 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3835 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3836 	}
3837 
3838 	return 0;
3839 
3840 map_ring_fail:
3841 	while (i--)
3842 		netif_napi_del(&priv->tqp_vector[i].napi);
3843 
3844 	return ret;
3845 }
3846 
3847 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3848 {
3849 	struct hnae3_handle *h = priv->ae_handle;
3850 	struct hns3_enet_tqp_vector *tqp_vector;
3851 	struct hnae3_vector_info *vector;
3852 	struct pci_dev *pdev = h->pdev;
3853 	u16 tqp_num = h->kinfo.num_tqps;
3854 	u16 vector_num;
3855 	int ret = 0;
3856 	u16 i;
3857 
3858 	/* RSS size, cpu online and vector_num should be the same */
3859 	/* Should consider 2p/4p later */
3860 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3861 
3862 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3863 			      GFP_KERNEL);
3864 	if (!vector)
3865 		return -ENOMEM;
3866 
3867 	/* save the actual available vector number */
3868 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3869 
3870 	priv->vector_num = vector_num;
3871 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3872 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3873 			     GFP_KERNEL);
3874 	if (!priv->tqp_vector) {
3875 		ret = -ENOMEM;
3876 		goto out;
3877 	}
3878 
3879 	for (i = 0; i < priv->vector_num; i++) {
3880 		tqp_vector = &priv->tqp_vector[i];
3881 		tqp_vector->idx = i;
3882 		tqp_vector->mask_addr = vector[i].io_addr;
3883 		tqp_vector->vector_irq = vector[i].vector;
3884 		hns3_vector_coalesce_init(tqp_vector, priv);
3885 	}
3886 
3887 out:
3888 	devm_kfree(&pdev->dev, vector);
3889 	return ret;
3890 }
3891 
3892 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3893 {
3894 	group->ring = NULL;
3895 	group->count = 0;
3896 }
3897 
3898 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3899 {
3900 	struct hnae3_ring_chain_node vector_ring_chain;
3901 	struct hnae3_handle *h = priv->ae_handle;
3902 	struct hns3_enet_tqp_vector *tqp_vector;
3903 	int i;
3904 
3905 	for (i = 0; i < priv->vector_num; i++) {
3906 		tqp_vector = &priv->tqp_vector[i];
3907 
3908 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3909 			continue;
3910 
3911 		/* Since the mapping can be overwritten, when fail to get the
3912 		 * chain between vector and ring, we should go on to deal with
3913 		 * the remaining options.
3914 		 */
3915 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3916 			dev_warn(priv->dev, "failed to get ring chain\n");
3917 
3918 		h->ae_algo->ops->unmap_ring_from_vector(h,
3919 			tqp_vector->vector_irq, &vector_ring_chain);
3920 
3921 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3922 
3923 		hns3_clear_ring_group(&tqp_vector->rx_group);
3924 		hns3_clear_ring_group(&tqp_vector->tx_group);
3925 		netif_napi_del(&priv->tqp_vector[i].napi);
3926 	}
3927 }
3928 
3929 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3930 {
3931 	struct hnae3_handle *h = priv->ae_handle;
3932 	struct pci_dev *pdev = h->pdev;
3933 	int i, ret;
3934 
3935 	for (i = 0; i < priv->vector_num; i++) {
3936 		struct hns3_enet_tqp_vector *tqp_vector;
3937 
3938 		tqp_vector = &priv->tqp_vector[i];
3939 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3940 		if (ret)
3941 			return;
3942 	}
3943 
3944 	devm_kfree(&pdev->dev, priv->tqp_vector);
3945 }
3946 
3947 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3948 			      unsigned int ring_type)
3949 {
3950 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3951 	struct hns3_enet_ring *ring;
3952 	int desc_num;
3953 
3954 	if (ring_type == HNAE3_RING_TYPE_TX) {
3955 		ring = &priv->ring[q->tqp_index];
3956 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3957 		ring->queue_index = q->tqp_index;
3958 	} else {
3959 		ring = &priv->ring[q->tqp_index + queue_num];
3960 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3961 		ring->queue_index = q->tqp_index;
3962 	}
3963 
3964 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3965 
3966 	ring->tqp = q;
3967 	ring->desc = NULL;
3968 	ring->desc_cb = NULL;
3969 	ring->dev = priv->dev;
3970 	ring->desc_dma_addr = 0;
3971 	ring->buf_size = q->buf_size;
3972 	ring->desc_num = desc_num;
3973 	ring->next_to_use = 0;
3974 	ring->next_to_clean = 0;
3975 	ring->last_to_use = 0;
3976 }
3977 
3978 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3979 			       struct hns3_nic_priv *priv)
3980 {
3981 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3982 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3983 }
3984 
3985 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3986 {
3987 	struct hnae3_handle *h = priv->ae_handle;
3988 	struct pci_dev *pdev = h->pdev;
3989 	int i;
3990 
3991 	priv->ring = devm_kzalloc(&pdev->dev,
3992 				  array3_size(h->kinfo.num_tqps,
3993 					      sizeof(*priv->ring), 2),
3994 				  GFP_KERNEL);
3995 	if (!priv->ring)
3996 		return -ENOMEM;
3997 
3998 	for (i = 0; i < h->kinfo.num_tqps; i++)
3999 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4000 
4001 	return 0;
4002 }
4003 
4004 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4005 {
4006 	if (!priv->ring)
4007 		return;
4008 
4009 	devm_kfree(priv->dev, priv->ring);
4010 	priv->ring = NULL;
4011 }
4012 
4013 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4014 {
4015 	int ret;
4016 
4017 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4018 		return -EINVAL;
4019 
4020 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4021 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4022 	if (!ring->desc_cb) {
4023 		ret = -ENOMEM;
4024 		goto out;
4025 	}
4026 
4027 	ret = hns3_alloc_desc(ring);
4028 	if (ret)
4029 		goto out_with_desc_cb;
4030 
4031 	if (!HNAE3_IS_TX_RING(ring)) {
4032 		ret = hns3_alloc_ring_buffers(ring);
4033 		if (ret)
4034 			goto out_with_desc;
4035 	}
4036 
4037 	return 0;
4038 
4039 out_with_desc:
4040 	hns3_free_desc(ring);
4041 out_with_desc_cb:
4042 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4043 	ring->desc_cb = NULL;
4044 out:
4045 	return ret;
4046 }
4047 
4048 void hns3_fini_ring(struct hns3_enet_ring *ring)
4049 {
4050 	hns3_free_desc(ring);
4051 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4052 	ring->desc_cb = NULL;
4053 	ring->next_to_clean = 0;
4054 	ring->next_to_use = 0;
4055 	ring->last_to_use = 0;
4056 	ring->pending_buf = 0;
4057 	if (ring->skb) {
4058 		dev_kfree_skb_any(ring->skb);
4059 		ring->skb = NULL;
4060 	}
4061 }
4062 
4063 static int hns3_buf_size2type(u32 buf_size)
4064 {
4065 	int bd_size_type;
4066 
4067 	switch (buf_size) {
4068 	case 512:
4069 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4070 		break;
4071 	case 1024:
4072 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4073 		break;
4074 	case 2048:
4075 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4076 		break;
4077 	case 4096:
4078 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4079 		break;
4080 	default:
4081 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4082 	}
4083 
4084 	return bd_size_type;
4085 }
4086 
4087 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4088 {
4089 	dma_addr_t dma = ring->desc_dma_addr;
4090 	struct hnae3_queue *q = ring->tqp;
4091 
4092 	if (!HNAE3_IS_TX_RING(ring)) {
4093 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4094 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4095 			       (u32)((dma >> 31) >> 1));
4096 
4097 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4098 			       hns3_buf_size2type(ring->buf_size));
4099 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4100 			       ring->desc_num / 8 - 1);
4101 	} else {
4102 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4103 			       (u32)dma);
4104 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4105 			       (u32)((dma >> 31) >> 1));
4106 
4107 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4108 			       ring->desc_num / 8 - 1);
4109 	}
4110 }
4111 
4112 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4113 {
4114 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4115 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4116 	int i;
4117 
4118 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4119 		int j;
4120 
4121 		if (!test_bit(i, &tc_info->tc_en))
4122 			continue;
4123 
4124 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4125 			struct hnae3_queue *q;
4126 
4127 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4128 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4129 		}
4130 	}
4131 }
4132 
4133 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4134 {
4135 	struct hnae3_handle *h = priv->ae_handle;
4136 	int ring_num = h->kinfo.num_tqps * 2;
4137 	int i, j;
4138 	int ret;
4139 
4140 	for (i = 0; i < ring_num; i++) {
4141 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4142 		if (ret) {
4143 			dev_err(priv->dev,
4144 				"Alloc ring memory fail! ret=%d\n", ret);
4145 			goto out_when_alloc_ring_memory;
4146 		}
4147 
4148 		u64_stats_init(&priv->ring[i].syncp);
4149 	}
4150 
4151 	return 0;
4152 
4153 out_when_alloc_ring_memory:
4154 	for (j = i - 1; j >= 0; j--)
4155 		hns3_fini_ring(&priv->ring[j]);
4156 
4157 	return -ENOMEM;
4158 }
4159 
4160 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4161 {
4162 	struct hnae3_handle *h = priv->ae_handle;
4163 	int i;
4164 
4165 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4166 		hns3_fini_ring(&priv->ring[i]);
4167 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4168 	}
4169 }
4170 
4171 /* Set mac addr if it is configured. or leave it to the AE driver */
4172 static int hns3_init_mac_addr(struct net_device *netdev)
4173 {
4174 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4175 	struct hnae3_handle *h = priv->ae_handle;
4176 	u8 mac_addr_temp[ETH_ALEN];
4177 	int ret = 0;
4178 
4179 	if (h->ae_algo->ops->get_mac_addr)
4180 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4181 
4182 	/* Check if the MAC address is valid, if not get a random one */
4183 	if (!is_valid_ether_addr(mac_addr_temp)) {
4184 		eth_hw_addr_random(netdev);
4185 		dev_warn(priv->dev, "using random MAC address %pM\n",
4186 			 netdev->dev_addr);
4187 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4188 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4189 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4190 	} else {
4191 		return 0;
4192 	}
4193 
4194 	if (h->ae_algo->ops->set_mac_addr)
4195 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4196 
4197 	return ret;
4198 }
4199 
4200 static int hns3_init_phy(struct net_device *netdev)
4201 {
4202 	struct hnae3_handle *h = hns3_get_handle(netdev);
4203 	int ret = 0;
4204 
4205 	if (h->ae_algo->ops->mac_connect_phy)
4206 		ret = h->ae_algo->ops->mac_connect_phy(h);
4207 
4208 	return ret;
4209 }
4210 
4211 static void hns3_uninit_phy(struct net_device *netdev)
4212 {
4213 	struct hnae3_handle *h = hns3_get_handle(netdev);
4214 
4215 	if (h->ae_algo->ops->mac_disconnect_phy)
4216 		h->ae_algo->ops->mac_disconnect_phy(h);
4217 }
4218 
4219 static int hns3_client_start(struct hnae3_handle *handle)
4220 {
4221 	if (!handle->ae_algo->ops->client_start)
4222 		return 0;
4223 
4224 	return handle->ae_algo->ops->client_start(handle);
4225 }
4226 
4227 static void hns3_client_stop(struct hnae3_handle *handle)
4228 {
4229 	if (!handle->ae_algo->ops->client_stop)
4230 		return;
4231 
4232 	handle->ae_algo->ops->client_stop(handle);
4233 }
4234 
4235 static void hns3_info_show(struct hns3_nic_priv *priv)
4236 {
4237 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4238 
4239 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4240 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4241 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4242 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4243 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4244 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4245 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4246 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4247 		 kinfo->tc_info.num_tc);
4248 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4249 }
4250 
4251 static int hns3_client_init(struct hnae3_handle *handle)
4252 {
4253 	struct pci_dev *pdev = handle->pdev;
4254 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4255 	u16 alloc_tqps, max_rss_size;
4256 	struct hns3_nic_priv *priv;
4257 	struct net_device *netdev;
4258 	int ret;
4259 
4260 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4261 						    &max_rss_size);
4262 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4263 	if (!netdev)
4264 		return -ENOMEM;
4265 
4266 	priv = netdev_priv(netdev);
4267 	priv->dev = &pdev->dev;
4268 	priv->netdev = netdev;
4269 	priv->ae_handle = handle;
4270 	priv->tx_timeout_count = 0;
4271 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4272 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4273 
4274 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4275 
4276 	handle->kinfo.netdev = netdev;
4277 	handle->priv = (void *)priv;
4278 
4279 	hns3_init_mac_addr(netdev);
4280 
4281 	hns3_set_default_feature(netdev);
4282 
4283 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4284 	netdev->priv_flags |= IFF_UNICAST_FLT;
4285 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4286 	SET_NETDEV_DEV(netdev, &pdev->dev);
4287 	hns3_ethtool_set_ops(netdev);
4288 
4289 	/* Carrier off reporting is important to ethtool even BEFORE open */
4290 	netif_carrier_off(netdev);
4291 
4292 	ret = hns3_get_ring_config(priv);
4293 	if (ret) {
4294 		ret = -ENOMEM;
4295 		goto out_get_ring_cfg;
4296 	}
4297 
4298 	ret = hns3_nic_alloc_vector_data(priv);
4299 	if (ret) {
4300 		ret = -ENOMEM;
4301 		goto out_alloc_vector_data;
4302 	}
4303 
4304 	ret = hns3_nic_init_vector_data(priv);
4305 	if (ret) {
4306 		ret = -ENOMEM;
4307 		goto out_init_vector_data;
4308 	}
4309 
4310 	ret = hns3_init_all_ring(priv);
4311 	if (ret) {
4312 		ret = -ENOMEM;
4313 		goto out_init_ring;
4314 	}
4315 
4316 	ret = hns3_init_phy(netdev);
4317 	if (ret)
4318 		goto out_init_phy;
4319 
4320 	ret = register_netdev(netdev);
4321 	if (ret) {
4322 		dev_err(priv->dev, "probe register netdev fail!\n");
4323 		goto out_reg_netdev_fail;
4324 	}
4325 
4326 	/* the device can work without cpu rmap, only aRFS needs it */
4327 	ret = hns3_set_rx_cpu_rmap(netdev);
4328 	if (ret)
4329 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4330 
4331 	ret = hns3_nic_init_irq(priv);
4332 	if (ret) {
4333 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4334 		hns3_free_rx_cpu_rmap(netdev);
4335 		goto out_init_irq_fail;
4336 	}
4337 
4338 	ret = hns3_client_start(handle);
4339 	if (ret) {
4340 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4341 		goto out_client_start;
4342 	}
4343 
4344 	hns3_dcbnl_setup(handle);
4345 
4346 	hns3_dbg_init(handle);
4347 
4348 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
4349 
4350 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4351 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4352 
4353 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4354 
4355 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4356 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4357 
4358 	if (netif_msg_drv(handle))
4359 		hns3_info_show(priv);
4360 
4361 	return ret;
4362 
4363 out_client_start:
4364 	hns3_free_rx_cpu_rmap(netdev);
4365 	hns3_nic_uninit_irq(priv);
4366 out_init_irq_fail:
4367 	unregister_netdev(netdev);
4368 out_reg_netdev_fail:
4369 	hns3_uninit_phy(netdev);
4370 out_init_phy:
4371 	hns3_uninit_all_ring(priv);
4372 out_init_ring:
4373 	hns3_nic_uninit_vector_data(priv);
4374 out_init_vector_data:
4375 	hns3_nic_dealloc_vector_data(priv);
4376 out_alloc_vector_data:
4377 	priv->ring = NULL;
4378 out_get_ring_cfg:
4379 	priv->ae_handle = NULL;
4380 	free_netdev(netdev);
4381 	return ret;
4382 }
4383 
4384 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4385 {
4386 	struct net_device *netdev = handle->kinfo.netdev;
4387 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4388 
4389 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4390 		unregister_netdev(netdev);
4391 
4392 	hns3_client_stop(handle);
4393 
4394 	hns3_uninit_phy(netdev);
4395 
4396 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4397 		netdev_warn(netdev, "already uninitialized\n");
4398 		goto out_netdev_free;
4399 	}
4400 
4401 	hns3_free_rx_cpu_rmap(netdev);
4402 
4403 	hns3_nic_uninit_irq(priv);
4404 
4405 	hns3_clear_all_ring(handle, true);
4406 
4407 	hns3_nic_uninit_vector_data(priv);
4408 
4409 	hns3_nic_dealloc_vector_data(priv);
4410 
4411 	hns3_uninit_all_ring(priv);
4412 
4413 	hns3_put_ring_config(priv);
4414 
4415 out_netdev_free:
4416 	hns3_dbg_uninit(handle);
4417 	free_netdev(netdev);
4418 }
4419 
4420 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4421 {
4422 	struct net_device *netdev = handle->kinfo.netdev;
4423 
4424 	if (!netdev)
4425 		return;
4426 
4427 	if (linkup) {
4428 		netif_tx_wake_all_queues(netdev);
4429 		netif_carrier_on(netdev);
4430 		if (netif_msg_link(handle))
4431 			netdev_info(netdev, "link up\n");
4432 	} else {
4433 		netif_carrier_off(netdev);
4434 		netif_tx_stop_all_queues(netdev);
4435 		if (netif_msg_link(handle))
4436 			netdev_info(netdev, "link down\n");
4437 	}
4438 }
4439 
4440 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4441 {
4442 	while (ring->next_to_clean != ring->next_to_use) {
4443 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4444 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4445 		ring_ptr_move_fw(ring, next_to_clean);
4446 	}
4447 
4448 	ring->pending_buf = 0;
4449 }
4450 
4451 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4452 {
4453 	struct hns3_desc_cb res_cbs;
4454 	int ret;
4455 
4456 	while (ring->next_to_use != ring->next_to_clean) {
4457 		/* When a buffer is not reused, it's memory has been
4458 		 * freed in hns3_handle_rx_bd or will be freed by
4459 		 * stack, so we need to replace the buffer here.
4460 		 */
4461 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4462 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4463 			if (ret) {
4464 				u64_stats_update_begin(&ring->syncp);
4465 				ring->stats.sw_err_cnt++;
4466 				u64_stats_update_end(&ring->syncp);
4467 				/* if alloc new buffer fail, exit directly
4468 				 * and reclear in up flow.
4469 				 */
4470 				netdev_warn(ring_to_netdev(ring),
4471 					    "reserve buffer map failed, ret = %d\n",
4472 					    ret);
4473 				return ret;
4474 			}
4475 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4476 		}
4477 		ring_ptr_move_fw(ring, next_to_use);
4478 	}
4479 
4480 	/* Free the pending skb in rx ring */
4481 	if (ring->skb) {
4482 		dev_kfree_skb_any(ring->skb);
4483 		ring->skb = NULL;
4484 		ring->pending_buf = 0;
4485 	}
4486 
4487 	return 0;
4488 }
4489 
4490 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4491 {
4492 	while (ring->next_to_use != ring->next_to_clean) {
4493 		/* When a buffer is not reused, it's memory has been
4494 		 * freed in hns3_handle_rx_bd or will be freed by
4495 		 * stack, so only need to unmap the buffer here.
4496 		 */
4497 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4498 			hns3_unmap_buffer(ring,
4499 					  &ring->desc_cb[ring->next_to_use]);
4500 			ring->desc_cb[ring->next_to_use].dma = 0;
4501 		}
4502 
4503 		ring_ptr_move_fw(ring, next_to_use);
4504 	}
4505 }
4506 
4507 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4508 {
4509 	struct net_device *ndev = h->kinfo.netdev;
4510 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4511 	u32 i;
4512 
4513 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4514 		struct hns3_enet_ring *ring;
4515 
4516 		ring = &priv->ring[i];
4517 		hns3_clear_tx_ring(ring);
4518 
4519 		ring = &priv->ring[i + h->kinfo.num_tqps];
4520 		/* Continue to clear other rings even if clearing some
4521 		 * rings failed.
4522 		 */
4523 		if (force)
4524 			hns3_force_clear_rx_ring(ring);
4525 		else
4526 			hns3_clear_rx_ring(ring);
4527 	}
4528 }
4529 
4530 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4531 {
4532 	struct net_device *ndev = h->kinfo.netdev;
4533 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4534 	struct hns3_enet_ring *rx_ring;
4535 	int i, j;
4536 	int ret;
4537 
4538 	ret = h->ae_algo->ops->reset_queue(h);
4539 	if (ret)
4540 		return ret;
4541 
4542 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4543 		hns3_init_ring_hw(&priv->ring[i]);
4544 
4545 		/* We need to clear tx ring here because self test will
4546 		 * use the ring and will not run down before up
4547 		 */
4548 		hns3_clear_tx_ring(&priv->ring[i]);
4549 		priv->ring[i].next_to_clean = 0;
4550 		priv->ring[i].next_to_use = 0;
4551 		priv->ring[i].last_to_use = 0;
4552 
4553 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4554 		hns3_init_ring_hw(rx_ring);
4555 		ret = hns3_clear_rx_ring(rx_ring);
4556 		if (ret)
4557 			return ret;
4558 
4559 		/* We can not know the hardware head and tail when this
4560 		 * function is called in reset flow, so we reuse all desc.
4561 		 */
4562 		for (j = 0; j < rx_ring->desc_num; j++)
4563 			hns3_reuse_buffer(rx_ring, j);
4564 
4565 		rx_ring->next_to_clean = 0;
4566 		rx_ring->next_to_use = 0;
4567 	}
4568 
4569 	hns3_init_tx_ring_tc(priv);
4570 
4571 	return 0;
4572 }
4573 
4574 static void hns3_store_coal(struct hns3_nic_priv *priv)
4575 {
4576 	/* ethtool only support setting and querying one coal
4577 	 * configuration for now, so save the vector 0' coal
4578 	 * configuration here in order to restore it.
4579 	 */
4580 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4581 	       sizeof(struct hns3_enet_coalesce));
4582 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4583 	       sizeof(struct hns3_enet_coalesce));
4584 }
4585 
4586 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4587 {
4588 	u16 vector_num = priv->vector_num;
4589 	int i;
4590 
4591 	for (i = 0; i < vector_num; i++) {
4592 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4593 		       sizeof(struct hns3_enet_coalesce));
4594 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4595 		       sizeof(struct hns3_enet_coalesce));
4596 	}
4597 }
4598 
4599 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4600 {
4601 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4602 	struct net_device *ndev = kinfo->netdev;
4603 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4604 
4605 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4606 		return 0;
4607 
4608 	if (!netif_running(ndev))
4609 		return 0;
4610 
4611 	return hns3_nic_net_stop(ndev);
4612 }
4613 
4614 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4615 {
4616 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4617 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4618 	int ret = 0;
4619 
4620 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4621 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
4622 		return -EFAULT;
4623 	}
4624 
4625 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4626 
4627 	if (netif_running(kinfo->netdev)) {
4628 		ret = hns3_nic_net_open(kinfo->netdev);
4629 		if (ret) {
4630 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4631 			netdev_err(kinfo->netdev,
4632 				   "net up fail, ret=%d!\n", ret);
4633 			return ret;
4634 		}
4635 	}
4636 
4637 	return ret;
4638 }
4639 
4640 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4641 {
4642 	struct net_device *netdev = handle->kinfo.netdev;
4643 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4644 	int ret;
4645 
4646 	/* Carrier off reporting is important to ethtool even BEFORE open */
4647 	netif_carrier_off(netdev);
4648 
4649 	ret = hns3_get_ring_config(priv);
4650 	if (ret)
4651 		return ret;
4652 
4653 	ret = hns3_nic_alloc_vector_data(priv);
4654 	if (ret)
4655 		goto err_put_ring;
4656 
4657 	hns3_restore_coal(priv);
4658 
4659 	ret = hns3_nic_init_vector_data(priv);
4660 	if (ret)
4661 		goto err_dealloc_vector;
4662 
4663 	ret = hns3_init_all_ring(priv);
4664 	if (ret)
4665 		goto err_uninit_vector;
4666 
4667 	/* the device can work without cpu rmap, only aRFS needs it */
4668 	ret = hns3_set_rx_cpu_rmap(netdev);
4669 	if (ret)
4670 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4671 
4672 	ret = hns3_nic_init_irq(priv);
4673 	if (ret) {
4674 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4675 		hns3_free_rx_cpu_rmap(netdev);
4676 		goto err_init_irq_fail;
4677 	}
4678 
4679 	if (!hns3_is_phys_func(handle->pdev))
4680 		hns3_init_mac_addr(netdev);
4681 
4682 	ret = hns3_client_start(handle);
4683 	if (ret) {
4684 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4685 		goto err_client_start_fail;
4686 	}
4687 
4688 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4689 
4690 	return ret;
4691 
4692 err_client_start_fail:
4693 	hns3_free_rx_cpu_rmap(netdev);
4694 	hns3_nic_uninit_irq(priv);
4695 err_init_irq_fail:
4696 	hns3_uninit_all_ring(priv);
4697 err_uninit_vector:
4698 	hns3_nic_uninit_vector_data(priv);
4699 err_dealloc_vector:
4700 	hns3_nic_dealloc_vector_data(priv);
4701 err_put_ring:
4702 	hns3_put_ring_config(priv);
4703 
4704 	return ret;
4705 }
4706 
4707 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4708 {
4709 	struct net_device *netdev = handle->kinfo.netdev;
4710 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4711 
4712 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4713 		netdev_warn(netdev, "already uninitialized\n");
4714 		return 0;
4715 	}
4716 
4717 	hns3_free_rx_cpu_rmap(netdev);
4718 	hns3_nic_uninit_irq(priv);
4719 	hns3_clear_all_ring(handle, true);
4720 	hns3_reset_tx_queue(priv->ae_handle);
4721 
4722 	hns3_nic_uninit_vector_data(priv);
4723 
4724 	hns3_store_coal(priv);
4725 
4726 	hns3_nic_dealloc_vector_data(priv);
4727 
4728 	hns3_uninit_all_ring(priv);
4729 
4730 	hns3_put_ring_config(priv);
4731 
4732 	return 0;
4733 }
4734 
4735 static int hns3_reset_notify(struct hnae3_handle *handle,
4736 			     enum hnae3_reset_notify_type type)
4737 {
4738 	int ret = 0;
4739 
4740 	switch (type) {
4741 	case HNAE3_UP_CLIENT:
4742 		ret = hns3_reset_notify_up_enet(handle);
4743 		break;
4744 	case HNAE3_DOWN_CLIENT:
4745 		ret = hns3_reset_notify_down_enet(handle);
4746 		break;
4747 	case HNAE3_INIT_CLIENT:
4748 		ret = hns3_reset_notify_init_enet(handle);
4749 		break;
4750 	case HNAE3_UNINIT_CLIENT:
4751 		ret = hns3_reset_notify_uninit_enet(handle);
4752 		break;
4753 	default:
4754 		break;
4755 	}
4756 
4757 	return ret;
4758 }
4759 
4760 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4761 				bool rxfh_configured)
4762 {
4763 	int ret;
4764 
4765 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4766 						 rxfh_configured);
4767 	if (ret) {
4768 		dev_err(&handle->pdev->dev,
4769 			"Change tqp num(%u) fail.\n", new_tqp_num);
4770 		return ret;
4771 	}
4772 
4773 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4774 	if (ret)
4775 		return ret;
4776 
4777 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4778 	if (ret)
4779 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4780 
4781 	return ret;
4782 }
4783 
4784 int hns3_set_channels(struct net_device *netdev,
4785 		      struct ethtool_channels *ch)
4786 {
4787 	struct hnae3_handle *h = hns3_get_handle(netdev);
4788 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4789 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4790 	u32 new_tqp_num = ch->combined_count;
4791 	u16 org_tqp_num;
4792 	int ret;
4793 
4794 	if (hns3_nic_resetting(netdev))
4795 		return -EBUSY;
4796 
4797 	if (ch->rx_count || ch->tx_count)
4798 		return -EINVAL;
4799 
4800 	if (kinfo->tc_info.mqprio_active) {
4801 		dev_err(&netdev->dev,
4802 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4803 		return -EINVAL;
4804 	}
4805 
4806 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4807 	    new_tqp_num < 1) {
4808 		dev_err(&netdev->dev,
4809 			"Change tqps fail, the tqp range is from 1 to %u",
4810 			hns3_get_max_available_channels(h));
4811 		return -EINVAL;
4812 	}
4813 
4814 	if (kinfo->rss_size == new_tqp_num)
4815 		return 0;
4816 
4817 	netif_dbg(h, drv, netdev,
4818 		  "set channels: tqp_num=%u, rxfh=%d\n",
4819 		  new_tqp_num, rxfh_configured);
4820 
4821 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4822 	if (ret)
4823 		return ret;
4824 
4825 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4826 	if (ret)
4827 		return ret;
4828 
4829 	org_tqp_num = h->kinfo.num_tqps;
4830 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4831 	if (ret) {
4832 		int ret1;
4833 
4834 		netdev_warn(netdev,
4835 			    "Change channels fail, revert to old value\n");
4836 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4837 		if (ret1) {
4838 			netdev_err(netdev,
4839 				   "revert to old channel fail\n");
4840 			return ret1;
4841 		}
4842 
4843 		return ret;
4844 	}
4845 
4846 	return 0;
4847 }
4848 
4849 static const struct hns3_hw_error_info hns3_hw_err[] = {
4850 	{ .type = HNAE3_PPU_POISON_ERROR,
4851 	  .msg = "PPU poison" },
4852 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4853 	  .msg = "IMP CMDQ error" },
4854 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4855 	  .msg = "IMP RD poison" },
4856 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4857 	  .msg = "ROCEE AXI RESP error" },
4858 };
4859 
4860 static void hns3_process_hw_error(struct hnae3_handle *handle,
4861 				  enum hnae3_hw_error_type type)
4862 {
4863 	int i;
4864 
4865 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4866 		if (hns3_hw_err[i].type == type) {
4867 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4868 				hns3_hw_err[i].msg);
4869 			break;
4870 		}
4871 	}
4872 }
4873 
4874 static const struct hnae3_client_ops client_ops = {
4875 	.init_instance = hns3_client_init,
4876 	.uninit_instance = hns3_client_uninit,
4877 	.link_status_change = hns3_link_status_change,
4878 	.reset_notify = hns3_reset_notify,
4879 	.process_hw_error = hns3_process_hw_error,
4880 };
4881 
4882 /* hns3_init_module - Driver registration routine
4883  * hns3_init_module is the first routine called when the driver is
4884  * loaded. All it does is register with the PCI subsystem.
4885  */
4886 static int __init hns3_init_module(void)
4887 {
4888 	int ret;
4889 
4890 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4891 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4892 
4893 	client.type = HNAE3_CLIENT_KNIC;
4894 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4895 		 hns3_driver_name);
4896 
4897 	client.ops = &client_ops;
4898 
4899 	INIT_LIST_HEAD(&client.node);
4900 
4901 	hns3_dbg_register_debugfs(hns3_driver_name);
4902 
4903 	ret = hnae3_register_client(&client);
4904 	if (ret)
4905 		goto err_reg_client;
4906 
4907 	ret = pci_register_driver(&hns3_driver);
4908 	if (ret)
4909 		goto err_reg_driver;
4910 
4911 	return ret;
4912 
4913 err_reg_driver:
4914 	hnae3_unregister_client(&client);
4915 err_reg_client:
4916 	hns3_dbg_unregister_debugfs();
4917 	return ret;
4918 }
4919 module_init(hns3_init_module);
4920 
4921 /* hns3_exit_module - Driver exit cleanup routine
4922  * hns3_exit_module is called just before the driver is removed
4923  * from memory.
4924  */
4925 static void __exit hns3_exit_module(void)
4926 {
4927 	pci_unregister_driver(&hns3_driver);
4928 	hnae3_unregister_client(&client);
4929 	hns3_dbg_unregister_debugfs();
4930 }
4931 module_exit(hns3_exit_module);
4932 
4933 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4934 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4935 MODULE_LICENSE("GPL");
4936 MODULE_ALIAS("pci:hns-nic");
4937