1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/dma-mapping.h> 5 #include <linux/etherdevice.h> 6 #include <linux/interrupt.h> 7 #ifdef CONFIG_RFS_ACCEL 8 #include <linux/cpu_rmap.h> 9 #endif 10 #include <linux/if_vlan.h> 11 #include <linux/irq.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/pci.h> 16 #include <linux/aer.h> 17 #include <linux/skbuff.h> 18 #include <linux/sctp.h> 19 #include <net/gre.h> 20 #include <net/gro.h> 21 #include <net/ip6_checksum.h> 22 #include <net/pkt_cls.h> 23 #include <net/tcp.h> 24 #include <net/vxlan.h> 25 #include <net/geneve.h> 26 27 #include "hnae3.h" 28 #include "hns3_enet.h" 29 /* All hns3 tracepoints are defined by the include below, which 30 * must be included exactly once across the whole kernel with 31 * CREATE_TRACE_POINTS defined 32 */ 33 #define CREATE_TRACE_POINTS 34 #include "hns3_trace.h" 35 36 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) 37 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) 38 39 #define hns3_rl_err(fmt, ...) \ 40 do { \ 41 if (net_ratelimit()) \ 42 netdev_err(fmt, ##__VA_ARGS__); \ 43 } while (0) 44 45 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); 46 47 static const char hns3_driver_name[] = "hns3"; 48 static const char hns3_driver_string[] = 49 "Hisilicon Ethernet Network Driver for Hip08 Family"; 50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; 51 static struct hnae3_client client; 52 53 static int debug = -1; 54 module_param(debug, int, 0); 55 MODULE_PARM_DESC(debug, " Network interface message level setting"); 56 57 static unsigned int tx_sgl = 1; 58 module_param(tx_sgl, uint, 0600); 59 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); 60 61 static bool page_pool_enabled = true; 62 module_param(page_pool_enabled, bool, 0400); 63 64 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ 65 sizeof(struct sg_table)) 66 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ 67 dma_get_cache_alignment()) 68 69 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) 71 72 #define HNS3_INNER_VLAN_TAG 1 73 #define HNS3_OUTER_VLAN_TAG 2 74 75 #define HNS3_MIN_TX_LEN 33U 76 #define HNS3_MIN_TUN_PKT_LEN 65U 77 78 /* hns3_pci_tbl - PCI Device ID Table 79 * 80 * Last entry must be all 0s 81 * 82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 83 * Class, Class Mask, private data (not used) } 84 */ 85 static const struct pci_device_id hns3_pci_tbl[] = { 86 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 89 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 90 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 91 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 92 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 93 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 94 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 95 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 96 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 97 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 98 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 99 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 100 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 102 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 103 /* required last entry */ 104 {0,} 105 }; 106 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); 107 108 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \ 109 { ptype, \ 110 l, \ 111 CHECKSUM_##s, \ 112 HNS3_L3_TYPE_##t, \ 113 1 } 114 115 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ 116 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 } 117 118 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { 119 HNS3_RX_PTYPE_UNUSED_ENTRY(0), 120 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP), 121 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP), 122 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP), 123 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL), 124 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL), 125 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL), 126 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM), 127 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL), 128 HNS3_RX_PTYPE_UNUSED_ENTRY(9), 129 HNS3_RX_PTYPE_UNUSED_ENTRY(10), 130 HNS3_RX_PTYPE_UNUSED_ENTRY(11), 131 HNS3_RX_PTYPE_UNUSED_ENTRY(12), 132 HNS3_RX_PTYPE_UNUSED_ENTRY(13), 133 HNS3_RX_PTYPE_UNUSED_ENTRY(14), 134 HNS3_RX_PTYPE_UNUSED_ENTRY(15), 135 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL), 136 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4), 137 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4), 138 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4), 139 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4), 140 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4), 141 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4), 142 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4), 143 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4), 144 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4), 145 HNS3_RX_PTYPE_UNUSED_ENTRY(26), 146 HNS3_RX_PTYPE_UNUSED_ENTRY(27), 147 HNS3_RX_PTYPE_UNUSED_ENTRY(28), 148 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL), 149 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL), 150 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4), 151 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4), 152 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4), 153 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4), 154 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4), 155 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4), 156 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4), 157 HNS3_RX_PTYPE_UNUSED_ENTRY(38), 158 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6), 159 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6), 160 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6), 161 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6), 162 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6), 163 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6), 164 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6), 165 HNS3_RX_PTYPE_UNUSED_ENTRY(46), 166 HNS3_RX_PTYPE_UNUSED_ENTRY(47), 167 HNS3_RX_PTYPE_UNUSED_ENTRY(48), 168 HNS3_RX_PTYPE_UNUSED_ENTRY(49), 169 HNS3_RX_PTYPE_UNUSED_ENTRY(50), 170 HNS3_RX_PTYPE_UNUSED_ENTRY(51), 171 HNS3_RX_PTYPE_UNUSED_ENTRY(52), 172 HNS3_RX_PTYPE_UNUSED_ENTRY(53), 173 HNS3_RX_PTYPE_UNUSED_ENTRY(54), 174 HNS3_RX_PTYPE_UNUSED_ENTRY(55), 175 HNS3_RX_PTYPE_UNUSED_ENTRY(56), 176 HNS3_RX_PTYPE_UNUSED_ENTRY(57), 177 HNS3_RX_PTYPE_UNUSED_ENTRY(58), 178 HNS3_RX_PTYPE_UNUSED_ENTRY(59), 179 HNS3_RX_PTYPE_UNUSED_ENTRY(60), 180 HNS3_RX_PTYPE_UNUSED_ENTRY(61), 181 HNS3_RX_PTYPE_UNUSED_ENTRY(62), 182 HNS3_RX_PTYPE_UNUSED_ENTRY(63), 183 HNS3_RX_PTYPE_UNUSED_ENTRY(64), 184 HNS3_RX_PTYPE_UNUSED_ENTRY(65), 185 HNS3_RX_PTYPE_UNUSED_ENTRY(66), 186 HNS3_RX_PTYPE_UNUSED_ENTRY(67), 187 HNS3_RX_PTYPE_UNUSED_ENTRY(68), 188 HNS3_RX_PTYPE_UNUSED_ENTRY(69), 189 HNS3_RX_PTYPE_UNUSED_ENTRY(70), 190 HNS3_RX_PTYPE_UNUSED_ENTRY(71), 191 HNS3_RX_PTYPE_UNUSED_ENTRY(72), 192 HNS3_RX_PTYPE_UNUSED_ENTRY(73), 193 HNS3_RX_PTYPE_UNUSED_ENTRY(74), 194 HNS3_RX_PTYPE_UNUSED_ENTRY(75), 195 HNS3_RX_PTYPE_UNUSED_ENTRY(76), 196 HNS3_RX_PTYPE_UNUSED_ENTRY(77), 197 HNS3_RX_PTYPE_UNUSED_ENTRY(78), 198 HNS3_RX_PTYPE_UNUSED_ENTRY(79), 199 HNS3_RX_PTYPE_UNUSED_ENTRY(80), 200 HNS3_RX_PTYPE_UNUSED_ENTRY(81), 201 HNS3_RX_PTYPE_UNUSED_ENTRY(82), 202 HNS3_RX_PTYPE_UNUSED_ENTRY(83), 203 HNS3_RX_PTYPE_UNUSED_ENTRY(84), 204 HNS3_RX_PTYPE_UNUSED_ENTRY(85), 205 HNS3_RX_PTYPE_UNUSED_ENTRY(86), 206 HNS3_RX_PTYPE_UNUSED_ENTRY(87), 207 HNS3_RX_PTYPE_UNUSED_ENTRY(88), 208 HNS3_RX_PTYPE_UNUSED_ENTRY(89), 209 HNS3_RX_PTYPE_UNUSED_ENTRY(90), 210 HNS3_RX_PTYPE_UNUSED_ENTRY(91), 211 HNS3_RX_PTYPE_UNUSED_ENTRY(92), 212 HNS3_RX_PTYPE_UNUSED_ENTRY(93), 213 HNS3_RX_PTYPE_UNUSED_ENTRY(94), 214 HNS3_RX_PTYPE_UNUSED_ENTRY(95), 215 HNS3_RX_PTYPE_UNUSED_ENTRY(96), 216 HNS3_RX_PTYPE_UNUSED_ENTRY(97), 217 HNS3_RX_PTYPE_UNUSED_ENTRY(98), 218 HNS3_RX_PTYPE_UNUSED_ENTRY(99), 219 HNS3_RX_PTYPE_UNUSED_ENTRY(100), 220 HNS3_RX_PTYPE_UNUSED_ENTRY(101), 221 HNS3_RX_PTYPE_UNUSED_ENTRY(102), 222 HNS3_RX_PTYPE_UNUSED_ENTRY(103), 223 HNS3_RX_PTYPE_UNUSED_ENTRY(104), 224 HNS3_RX_PTYPE_UNUSED_ENTRY(105), 225 HNS3_RX_PTYPE_UNUSED_ENTRY(106), 226 HNS3_RX_PTYPE_UNUSED_ENTRY(107), 227 HNS3_RX_PTYPE_UNUSED_ENTRY(108), 228 HNS3_RX_PTYPE_UNUSED_ENTRY(109), 229 HNS3_RX_PTYPE_UNUSED_ENTRY(110), 230 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6), 231 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6), 232 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6), 233 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6), 234 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6), 235 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6), 236 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6), 237 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6), 238 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6), 239 HNS3_RX_PTYPE_UNUSED_ENTRY(120), 240 HNS3_RX_PTYPE_UNUSED_ENTRY(121), 241 HNS3_RX_PTYPE_UNUSED_ENTRY(122), 242 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL), 243 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL), 244 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4), 245 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4), 246 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4), 247 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4), 248 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4), 249 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4), 250 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4), 251 HNS3_RX_PTYPE_UNUSED_ENTRY(132), 252 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6), 253 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6), 254 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6), 255 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6), 256 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6), 257 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6), 258 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6), 259 HNS3_RX_PTYPE_UNUSED_ENTRY(140), 260 HNS3_RX_PTYPE_UNUSED_ENTRY(141), 261 HNS3_RX_PTYPE_UNUSED_ENTRY(142), 262 HNS3_RX_PTYPE_UNUSED_ENTRY(143), 263 HNS3_RX_PTYPE_UNUSED_ENTRY(144), 264 HNS3_RX_PTYPE_UNUSED_ENTRY(145), 265 HNS3_RX_PTYPE_UNUSED_ENTRY(146), 266 HNS3_RX_PTYPE_UNUSED_ENTRY(147), 267 HNS3_RX_PTYPE_UNUSED_ENTRY(148), 268 HNS3_RX_PTYPE_UNUSED_ENTRY(149), 269 HNS3_RX_PTYPE_UNUSED_ENTRY(150), 270 HNS3_RX_PTYPE_UNUSED_ENTRY(151), 271 HNS3_RX_PTYPE_UNUSED_ENTRY(152), 272 HNS3_RX_PTYPE_UNUSED_ENTRY(153), 273 HNS3_RX_PTYPE_UNUSED_ENTRY(154), 274 HNS3_RX_PTYPE_UNUSED_ENTRY(155), 275 HNS3_RX_PTYPE_UNUSED_ENTRY(156), 276 HNS3_RX_PTYPE_UNUSED_ENTRY(157), 277 HNS3_RX_PTYPE_UNUSED_ENTRY(158), 278 HNS3_RX_PTYPE_UNUSED_ENTRY(159), 279 HNS3_RX_PTYPE_UNUSED_ENTRY(160), 280 HNS3_RX_PTYPE_UNUSED_ENTRY(161), 281 HNS3_RX_PTYPE_UNUSED_ENTRY(162), 282 HNS3_RX_PTYPE_UNUSED_ENTRY(163), 283 HNS3_RX_PTYPE_UNUSED_ENTRY(164), 284 HNS3_RX_PTYPE_UNUSED_ENTRY(165), 285 HNS3_RX_PTYPE_UNUSED_ENTRY(166), 286 HNS3_RX_PTYPE_UNUSED_ENTRY(167), 287 HNS3_RX_PTYPE_UNUSED_ENTRY(168), 288 HNS3_RX_PTYPE_UNUSED_ENTRY(169), 289 HNS3_RX_PTYPE_UNUSED_ENTRY(170), 290 HNS3_RX_PTYPE_UNUSED_ENTRY(171), 291 HNS3_RX_PTYPE_UNUSED_ENTRY(172), 292 HNS3_RX_PTYPE_UNUSED_ENTRY(173), 293 HNS3_RX_PTYPE_UNUSED_ENTRY(174), 294 HNS3_RX_PTYPE_UNUSED_ENTRY(175), 295 HNS3_RX_PTYPE_UNUSED_ENTRY(176), 296 HNS3_RX_PTYPE_UNUSED_ENTRY(177), 297 HNS3_RX_PTYPE_UNUSED_ENTRY(178), 298 HNS3_RX_PTYPE_UNUSED_ENTRY(179), 299 HNS3_RX_PTYPE_UNUSED_ENTRY(180), 300 HNS3_RX_PTYPE_UNUSED_ENTRY(181), 301 HNS3_RX_PTYPE_UNUSED_ENTRY(182), 302 HNS3_RX_PTYPE_UNUSED_ENTRY(183), 303 HNS3_RX_PTYPE_UNUSED_ENTRY(184), 304 HNS3_RX_PTYPE_UNUSED_ENTRY(185), 305 HNS3_RX_PTYPE_UNUSED_ENTRY(186), 306 HNS3_RX_PTYPE_UNUSED_ENTRY(187), 307 HNS3_RX_PTYPE_UNUSED_ENTRY(188), 308 HNS3_RX_PTYPE_UNUSED_ENTRY(189), 309 HNS3_RX_PTYPE_UNUSED_ENTRY(190), 310 HNS3_RX_PTYPE_UNUSED_ENTRY(191), 311 HNS3_RX_PTYPE_UNUSED_ENTRY(192), 312 HNS3_RX_PTYPE_UNUSED_ENTRY(193), 313 HNS3_RX_PTYPE_UNUSED_ENTRY(194), 314 HNS3_RX_PTYPE_UNUSED_ENTRY(195), 315 HNS3_RX_PTYPE_UNUSED_ENTRY(196), 316 HNS3_RX_PTYPE_UNUSED_ENTRY(197), 317 HNS3_RX_PTYPE_UNUSED_ENTRY(198), 318 HNS3_RX_PTYPE_UNUSED_ENTRY(199), 319 HNS3_RX_PTYPE_UNUSED_ENTRY(200), 320 HNS3_RX_PTYPE_UNUSED_ENTRY(201), 321 HNS3_RX_PTYPE_UNUSED_ENTRY(202), 322 HNS3_RX_PTYPE_UNUSED_ENTRY(203), 323 HNS3_RX_PTYPE_UNUSED_ENTRY(204), 324 HNS3_RX_PTYPE_UNUSED_ENTRY(205), 325 HNS3_RX_PTYPE_UNUSED_ENTRY(206), 326 HNS3_RX_PTYPE_UNUSED_ENTRY(207), 327 HNS3_RX_PTYPE_UNUSED_ENTRY(208), 328 HNS3_RX_PTYPE_UNUSED_ENTRY(209), 329 HNS3_RX_PTYPE_UNUSED_ENTRY(210), 330 HNS3_RX_PTYPE_UNUSED_ENTRY(211), 331 HNS3_RX_PTYPE_UNUSED_ENTRY(212), 332 HNS3_RX_PTYPE_UNUSED_ENTRY(213), 333 HNS3_RX_PTYPE_UNUSED_ENTRY(214), 334 HNS3_RX_PTYPE_UNUSED_ENTRY(215), 335 HNS3_RX_PTYPE_UNUSED_ENTRY(216), 336 HNS3_RX_PTYPE_UNUSED_ENTRY(217), 337 HNS3_RX_PTYPE_UNUSED_ENTRY(218), 338 HNS3_RX_PTYPE_UNUSED_ENTRY(219), 339 HNS3_RX_PTYPE_UNUSED_ENTRY(220), 340 HNS3_RX_PTYPE_UNUSED_ENTRY(221), 341 HNS3_RX_PTYPE_UNUSED_ENTRY(222), 342 HNS3_RX_PTYPE_UNUSED_ENTRY(223), 343 HNS3_RX_PTYPE_UNUSED_ENTRY(224), 344 HNS3_RX_PTYPE_UNUSED_ENTRY(225), 345 HNS3_RX_PTYPE_UNUSED_ENTRY(226), 346 HNS3_RX_PTYPE_UNUSED_ENTRY(227), 347 HNS3_RX_PTYPE_UNUSED_ENTRY(228), 348 HNS3_RX_PTYPE_UNUSED_ENTRY(229), 349 HNS3_RX_PTYPE_UNUSED_ENTRY(230), 350 HNS3_RX_PTYPE_UNUSED_ENTRY(231), 351 HNS3_RX_PTYPE_UNUSED_ENTRY(232), 352 HNS3_RX_PTYPE_UNUSED_ENTRY(233), 353 HNS3_RX_PTYPE_UNUSED_ENTRY(234), 354 HNS3_RX_PTYPE_UNUSED_ENTRY(235), 355 HNS3_RX_PTYPE_UNUSED_ENTRY(236), 356 HNS3_RX_PTYPE_UNUSED_ENTRY(237), 357 HNS3_RX_PTYPE_UNUSED_ENTRY(238), 358 HNS3_RX_PTYPE_UNUSED_ENTRY(239), 359 HNS3_RX_PTYPE_UNUSED_ENTRY(240), 360 HNS3_RX_PTYPE_UNUSED_ENTRY(241), 361 HNS3_RX_PTYPE_UNUSED_ENTRY(242), 362 HNS3_RX_PTYPE_UNUSED_ENTRY(243), 363 HNS3_RX_PTYPE_UNUSED_ENTRY(244), 364 HNS3_RX_PTYPE_UNUSED_ENTRY(245), 365 HNS3_RX_PTYPE_UNUSED_ENTRY(246), 366 HNS3_RX_PTYPE_UNUSED_ENTRY(247), 367 HNS3_RX_PTYPE_UNUSED_ENTRY(248), 368 HNS3_RX_PTYPE_UNUSED_ENTRY(249), 369 HNS3_RX_PTYPE_UNUSED_ENTRY(250), 370 HNS3_RX_PTYPE_UNUSED_ENTRY(251), 371 HNS3_RX_PTYPE_UNUSED_ENTRY(252), 372 HNS3_RX_PTYPE_UNUSED_ENTRY(253), 373 HNS3_RX_PTYPE_UNUSED_ENTRY(254), 374 HNS3_RX_PTYPE_UNUSED_ENTRY(255), 375 }; 376 377 #define HNS3_INVALID_PTYPE \ 378 ARRAY_SIZE(hns3_rx_ptype_tbl) 379 380 static irqreturn_t hns3_irq_handle(int irq, void *vector) 381 { 382 struct hns3_enet_tqp_vector *tqp_vector = vector; 383 384 napi_schedule_irqoff(&tqp_vector->napi); 385 tqp_vector->event_cnt++; 386 387 return IRQ_HANDLED; 388 } 389 390 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) 391 { 392 struct hns3_enet_tqp_vector *tqp_vectors; 393 unsigned int i; 394 395 for (i = 0; i < priv->vector_num; i++) { 396 tqp_vectors = &priv->tqp_vector[i]; 397 398 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) 399 continue; 400 401 /* clear the affinity mask */ 402 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); 403 404 /* release the irq resource */ 405 free_irq(tqp_vectors->vector_irq, tqp_vectors); 406 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; 407 } 408 } 409 410 static int hns3_nic_init_irq(struct hns3_nic_priv *priv) 411 { 412 struct hns3_enet_tqp_vector *tqp_vectors; 413 int txrx_int_idx = 0; 414 int rx_int_idx = 0; 415 int tx_int_idx = 0; 416 unsigned int i; 417 int ret; 418 419 for (i = 0; i < priv->vector_num; i++) { 420 tqp_vectors = &priv->tqp_vector[i]; 421 422 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) 423 continue; 424 425 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { 426 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 427 "%s-%s-%s-%d", hns3_driver_name, 428 pci_name(priv->ae_handle->pdev), 429 "TxRx", txrx_int_idx++); 430 txrx_int_idx++; 431 } else if (tqp_vectors->rx_group.ring) { 432 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 433 "%s-%s-%s-%d", hns3_driver_name, 434 pci_name(priv->ae_handle->pdev), 435 "Rx", rx_int_idx++); 436 } else if (tqp_vectors->tx_group.ring) { 437 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 438 "%s-%s-%s-%d", hns3_driver_name, 439 pci_name(priv->ae_handle->pdev), 440 "Tx", tx_int_idx++); 441 } else { 442 /* Skip this unused q_vector */ 443 continue; 444 } 445 446 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; 447 448 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); 449 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, 450 tqp_vectors->name, tqp_vectors); 451 if (ret) { 452 netdev_err(priv->netdev, "request irq(%d) fail\n", 453 tqp_vectors->vector_irq); 454 hns3_nic_uninit_irq(priv); 455 return ret; 456 } 457 458 irq_set_affinity_hint(tqp_vectors->vector_irq, 459 &tqp_vectors->affinity_mask); 460 461 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; 462 } 463 464 return 0; 465 } 466 467 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, 468 u32 mask_en) 469 { 470 writel(mask_en, tqp_vector->mask_addr); 471 } 472 473 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) 474 { 475 napi_enable(&tqp_vector->napi); 476 enable_irq(tqp_vector->vector_irq); 477 478 /* enable vector */ 479 hns3_mask_vector_irq(tqp_vector, 1); 480 } 481 482 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) 483 { 484 /* disable vector */ 485 hns3_mask_vector_irq(tqp_vector, 0); 486 487 disable_irq(tqp_vector->vector_irq); 488 napi_disable(&tqp_vector->napi); 489 cancel_work_sync(&tqp_vector->rx_group.dim.work); 490 cancel_work_sync(&tqp_vector->tx_group.dim.work); 491 } 492 493 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, 494 u32 rl_value) 495 { 496 u32 rl_reg = hns3_rl_usec_to_reg(rl_value); 497 498 /* this defines the configuration for RL (Interrupt Rate Limiter). 499 * Rl defines rate of interrupts i.e. number of interrupts-per-second 500 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing 501 */ 502 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && 503 !tqp_vector->rx_group.coal.adapt_enable) 504 /* According to the hardware, the range of rl_reg is 505 * 0-59 and the unit is 4. 506 */ 507 rl_reg |= HNS3_INT_RL_ENABLE_MASK; 508 509 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); 510 } 511 512 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, 513 u32 gl_value) 514 { 515 u32 new_val; 516 517 if (tqp_vector->rx_group.coal.unit_1us) 518 new_val = gl_value | HNS3_INT_GL_1US; 519 else 520 new_val = hns3_gl_usec_to_reg(gl_value); 521 522 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); 523 } 524 525 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, 526 u32 gl_value) 527 { 528 u32 new_val; 529 530 if (tqp_vector->tx_group.coal.unit_1us) 531 new_val = gl_value | HNS3_INT_GL_1US; 532 else 533 new_val = hns3_gl_usec_to_reg(gl_value); 534 535 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); 536 } 537 538 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, 539 u32 ql_value) 540 { 541 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); 542 } 543 544 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, 545 u32 ql_value) 546 { 547 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); 548 } 549 550 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, 551 struct hns3_nic_priv *priv) 552 { 553 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 554 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 555 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 556 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; 557 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; 558 559 tx_coal->adapt_enable = ptx_coal->adapt_enable; 560 rx_coal->adapt_enable = prx_coal->adapt_enable; 561 562 tx_coal->int_gl = ptx_coal->int_gl; 563 rx_coal->int_gl = prx_coal->int_gl; 564 565 rx_coal->flow_level = prx_coal->flow_level; 566 tx_coal->flow_level = ptx_coal->flow_level; 567 568 /* device version above V3(include V3), GL can configure 1us 569 * unit, so uses 1us unit. 570 */ 571 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { 572 tx_coal->unit_1us = 1; 573 rx_coal->unit_1us = 1; 574 } 575 576 if (ae_dev->dev_specs.int_ql_max) { 577 tx_coal->ql_enable = 1; 578 rx_coal->ql_enable = 1; 579 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 580 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 581 tx_coal->int_ql = ptx_coal->int_ql; 582 rx_coal->int_ql = prx_coal->int_ql; 583 } 584 } 585 586 static void 587 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, 588 struct hns3_nic_priv *priv) 589 { 590 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 591 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 592 struct hnae3_handle *h = priv->ae_handle; 593 594 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); 595 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); 596 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); 597 598 if (tx_coal->ql_enable) 599 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); 600 601 if (rx_coal->ql_enable) 602 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); 603 } 604 605 static int hns3_nic_set_real_num_queue(struct net_device *netdev) 606 { 607 struct hnae3_handle *h = hns3_get_handle(netdev); 608 struct hnae3_knic_private_info *kinfo = &h->kinfo; 609 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 610 unsigned int queue_size = kinfo->num_tqps; 611 int i, ret; 612 613 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { 614 netdev_reset_tc(netdev); 615 } else { 616 ret = netdev_set_num_tc(netdev, tc_info->num_tc); 617 if (ret) { 618 netdev_err(netdev, 619 "netdev_set_num_tc fail, ret=%d!\n", ret); 620 return ret; 621 } 622 623 for (i = 0; i < tc_info->num_tc; i++) 624 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], 625 tc_info->tqp_offset[i]); 626 } 627 628 ret = netif_set_real_num_tx_queues(netdev, queue_size); 629 if (ret) { 630 netdev_err(netdev, 631 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); 632 return ret; 633 } 634 635 ret = netif_set_real_num_rx_queues(netdev, queue_size); 636 if (ret) { 637 netdev_err(netdev, 638 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 639 return ret; 640 } 641 642 return 0; 643 } 644 645 u16 hns3_get_max_available_channels(struct hnae3_handle *h) 646 { 647 u16 alloc_tqps, max_rss_size, rss_size; 648 649 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); 650 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; 651 652 return min_t(u16, rss_size, max_rss_size); 653 } 654 655 static void hns3_tqp_enable(struct hnae3_queue *tqp) 656 { 657 u32 rcb_reg; 658 659 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 660 rcb_reg |= BIT(HNS3_RING_EN_B); 661 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 662 } 663 664 static void hns3_tqp_disable(struct hnae3_queue *tqp) 665 { 666 u32 rcb_reg; 667 668 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 669 rcb_reg &= ~BIT(HNS3_RING_EN_B); 670 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 671 } 672 673 static void hns3_free_rx_cpu_rmap(struct net_device *netdev) 674 { 675 #ifdef CONFIG_RFS_ACCEL 676 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 677 netdev->rx_cpu_rmap = NULL; 678 #endif 679 } 680 681 static int hns3_set_rx_cpu_rmap(struct net_device *netdev) 682 { 683 #ifdef CONFIG_RFS_ACCEL 684 struct hns3_nic_priv *priv = netdev_priv(netdev); 685 struct hns3_enet_tqp_vector *tqp_vector; 686 int i, ret; 687 688 if (!netdev->rx_cpu_rmap) { 689 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); 690 if (!netdev->rx_cpu_rmap) 691 return -ENOMEM; 692 } 693 694 for (i = 0; i < priv->vector_num; i++) { 695 tqp_vector = &priv->tqp_vector[i]; 696 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, 697 tqp_vector->vector_irq); 698 if (ret) { 699 hns3_free_rx_cpu_rmap(netdev); 700 return ret; 701 } 702 } 703 #endif 704 return 0; 705 } 706 707 static int hns3_nic_net_up(struct net_device *netdev) 708 { 709 struct hns3_nic_priv *priv = netdev_priv(netdev); 710 struct hnae3_handle *h = priv->ae_handle; 711 int i, j; 712 int ret; 713 714 ret = hns3_nic_reset_all_ring(h); 715 if (ret) 716 return ret; 717 718 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); 719 720 /* enable the vectors */ 721 for (i = 0; i < priv->vector_num; i++) 722 hns3_vector_enable(&priv->tqp_vector[i]); 723 724 /* enable rcb */ 725 for (j = 0; j < h->kinfo.num_tqps; j++) 726 hns3_tqp_enable(h->kinfo.tqp[j]); 727 728 /* start the ae_dev */ 729 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; 730 if (ret) { 731 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 732 while (j--) 733 hns3_tqp_disable(h->kinfo.tqp[j]); 734 735 for (j = i - 1; j >= 0; j--) 736 hns3_vector_disable(&priv->tqp_vector[j]); 737 } 738 739 return ret; 740 } 741 742 static void hns3_config_xps(struct hns3_nic_priv *priv) 743 { 744 int i; 745 746 for (i = 0; i < priv->vector_num; i++) { 747 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; 748 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; 749 750 while (ring) { 751 int ret; 752 753 ret = netif_set_xps_queue(priv->netdev, 754 &tqp_vector->affinity_mask, 755 ring->tqp->tqp_index); 756 if (ret) 757 netdev_warn(priv->netdev, 758 "set xps queue failed: %d", ret); 759 760 ring = ring->next; 761 } 762 } 763 } 764 765 static int hns3_nic_net_open(struct net_device *netdev) 766 { 767 struct hns3_nic_priv *priv = netdev_priv(netdev); 768 struct hnae3_handle *h = hns3_get_handle(netdev); 769 struct hnae3_knic_private_info *kinfo; 770 int i, ret; 771 772 if (hns3_nic_resetting(netdev)) 773 return -EBUSY; 774 775 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 776 netdev_warn(netdev, "net open repeatedly!\n"); 777 return 0; 778 } 779 780 netif_carrier_off(netdev); 781 782 ret = hns3_nic_set_real_num_queue(netdev); 783 if (ret) 784 return ret; 785 786 ret = hns3_nic_net_up(netdev); 787 if (ret) { 788 netdev_err(netdev, "net up fail, ret=%d!\n", ret); 789 return ret; 790 } 791 792 kinfo = &h->kinfo; 793 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) 794 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); 795 796 if (h->ae_algo->ops->set_timer_task) 797 h->ae_algo->ops->set_timer_task(priv->ae_handle, true); 798 799 hns3_config_xps(priv); 800 801 netif_dbg(h, drv, netdev, "net open\n"); 802 803 return 0; 804 } 805 806 static void hns3_reset_tx_queue(struct hnae3_handle *h) 807 { 808 struct net_device *ndev = h->kinfo.netdev; 809 struct hns3_nic_priv *priv = netdev_priv(ndev); 810 struct netdev_queue *dev_queue; 811 u32 i; 812 813 for (i = 0; i < h->kinfo.num_tqps; i++) { 814 dev_queue = netdev_get_tx_queue(ndev, 815 priv->ring[i].queue_index); 816 netdev_tx_reset_queue(dev_queue); 817 } 818 } 819 820 static void hns3_nic_net_down(struct net_device *netdev) 821 { 822 struct hns3_nic_priv *priv = netdev_priv(netdev); 823 struct hnae3_handle *h = hns3_get_handle(netdev); 824 const struct hnae3_ae_ops *ops; 825 int i; 826 827 /* disable vectors */ 828 for (i = 0; i < priv->vector_num; i++) 829 hns3_vector_disable(&priv->tqp_vector[i]); 830 831 /* disable rcb */ 832 for (i = 0; i < h->kinfo.num_tqps; i++) 833 hns3_tqp_disable(h->kinfo.tqp[i]); 834 835 /* stop ae_dev */ 836 ops = priv->ae_handle->ae_algo->ops; 837 if (ops->stop) 838 ops->stop(priv->ae_handle); 839 840 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet 841 * during reset process, because driver may not be able 842 * to disable the ring through firmware when downing the netdev. 843 */ 844 if (!hns3_nic_resetting(netdev)) 845 hns3_clear_all_ring(priv->ae_handle, false); 846 847 hns3_reset_tx_queue(priv->ae_handle); 848 } 849 850 static int hns3_nic_net_stop(struct net_device *netdev) 851 { 852 struct hns3_nic_priv *priv = netdev_priv(netdev); 853 struct hnae3_handle *h = hns3_get_handle(netdev); 854 855 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 856 return 0; 857 858 netif_dbg(h, drv, netdev, "net stop\n"); 859 860 if (h->ae_algo->ops->set_timer_task) 861 h->ae_algo->ops->set_timer_task(priv->ae_handle, false); 862 863 netif_carrier_off(netdev); 864 netif_tx_disable(netdev); 865 866 hns3_nic_net_down(netdev); 867 868 return 0; 869 } 870 871 static int hns3_nic_uc_sync(struct net_device *netdev, 872 const unsigned char *addr) 873 { 874 struct hnae3_handle *h = hns3_get_handle(netdev); 875 876 if (h->ae_algo->ops->add_uc_addr) 877 return h->ae_algo->ops->add_uc_addr(h, addr); 878 879 return 0; 880 } 881 882 static int hns3_nic_uc_unsync(struct net_device *netdev, 883 const unsigned char *addr) 884 { 885 struct hnae3_handle *h = hns3_get_handle(netdev); 886 887 /* need ignore the request of removing device address, because 888 * we store the device address and other addresses of uc list 889 * in the function's mac filter list. 890 */ 891 if (ether_addr_equal(addr, netdev->dev_addr)) 892 return 0; 893 894 if (h->ae_algo->ops->rm_uc_addr) 895 return h->ae_algo->ops->rm_uc_addr(h, addr); 896 897 return 0; 898 } 899 900 static int hns3_nic_mc_sync(struct net_device *netdev, 901 const unsigned char *addr) 902 { 903 struct hnae3_handle *h = hns3_get_handle(netdev); 904 905 if (h->ae_algo->ops->add_mc_addr) 906 return h->ae_algo->ops->add_mc_addr(h, addr); 907 908 return 0; 909 } 910 911 static int hns3_nic_mc_unsync(struct net_device *netdev, 912 const unsigned char *addr) 913 { 914 struct hnae3_handle *h = hns3_get_handle(netdev); 915 916 if (h->ae_algo->ops->rm_mc_addr) 917 return h->ae_algo->ops->rm_mc_addr(h, addr); 918 919 return 0; 920 } 921 922 static u8 hns3_get_netdev_flags(struct net_device *netdev) 923 { 924 u8 flags = 0; 925 926 if (netdev->flags & IFF_PROMISC) 927 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; 928 else if (netdev->flags & IFF_ALLMULTI) 929 flags = HNAE3_USER_MPE; 930 931 return flags; 932 } 933 934 static void hns3_nic_set_rx_mode(struct net_device *netdev) 935 { 936 struct hnae3_handle *h = hns3_get_handle(netdev); 937 u8 new_flags; 938 939 new_flags = hns3_get_netdev_flags(netdev); 940 941 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); 942 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); 943 944 /* User mode Promisc mode enable and vlan filtering is disabled to 945 * let all packets in. 946 */ 947 h->netdev_flags = new_flags; 948 hns3_request_update_promisc_mode(h); 949 } 950 951 void hns3_request_update_promisc_mode(struct hnae3_handle *handle) 952 { 953 const struct hnae3_ae_ops *ops = handle->ae_algo->ops; 954 955 if (ops->request_update_promisc_mode) 956 ops->request_update_promisc_mode(handle); 957 } 958 959 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) 960 { 961 struct hns3_tx_spare *tx_spare = ring->tx_spare; 962 u32 ntc, ntu; 963 964 /* This smp_load_acquire() pairs with smp_store_release() in 965 * hns3_tx_spare_update() called in tx desc cleaning process. 966 */ 967 ntc = smp_load_acquire(&tx_spare->last_to_clean); 968 ntu = tx_spare->next_to_use; 969 970 if (ntc > ntu) 971 return ntc - ntu - 1; 972 973 /* The free tx buffer is divided into two part, so pick the 974 * larger one. 975 */ 976 return max(ntc, tx_spare->len - ntu) - 1; 977 } 978 979 static void hns3_tx_spare_update(struct hns3_enet_ring *ring) 980 { 981 struct hns3_tx_spare *tx_spare = ring->tx_spare; 982 983 if (!tx_spare || 984 tx_spare->last_to_clean == tx_spare->next_to_clean) 985 return; 986 987 /* This smp_store_release() pairs with smp_load_acquire() in 988 * hns3_tx_spare_space() called in xmit process. 989 */ 990 smp_store_release(&tx_spare->last_to_clean, 991 tx_spare->next_to_clean); 992 } 993 994 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, 995 struct sk_buff *skb, 996 u32 space) 997 { 998 u32 len = skb->len <= ring->tx_copybreak ? skb->len : 999 skb_headlen(skb); 1000 1001 if (len > ring->tx_copybreak) 1002 return false; 1003 1004 if (ALIGN(len, dma_get_cache_alignment()) > space) { 1005 hns3_ring_stats_update(ring, tx_spare_full); 1006 return false; 1007 } 1008 1009 return true; 1010 } 1011 1012 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, 1013 struct sk_buff *skb, 1014 u32 space) 1015 { 1016 if (skb->len <= ring->tx_copybreak || !tx_sgl || 1017 (!skb_has_frag_list(skb) && 1018 skb_shinfo(skb)->nr_frags < tx_sgl)) 1019 return false; 1020 1021 if (space < HNS3_MAX_SGL_SIZE) { 1022 hns3_ring_stats_update(ring, tx_spare_full); 1023 return false; 1024 } 1025 1026 return true; 1027 } 1028 1029 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) 1030 { 1031 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size; 1032 struct hns3_tx_spare *tx_spare; 1033 struct page *page; 1034 dma_addr_t dma; 1035 int order; 1036 1037 if (!alloc_size) 1038 return; 1039 1040 order = get_order(alloc_size); 1041 if (order >= MAX_ORDER) { 1042 if (net_ratelimit()) 1043 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n"); 1044 return; 1045 } 1046 1047 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), 1048 GFP_KERNEL); 1049 if (!tx_spare) { 1050 /* The driver still work without the tx spare buffer */ 1051 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); 1052 goto devm_kzalloc_error; 1053 } 1054 1055 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), 1056 GFP_KERNEL, order); 1057 if (!page) { 1058 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); 1059 goto alloc_pages_error; 1060 } 1061 1062 dma = dma_map_page(ring_to_dev(ring), page, 0, 1063 PAGE_SIZE << order, DMA_TO_DEVICE); 1064 if (dma_mapping_error(ring_to_dev(ring), dma)) { 1065 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); 1066 goto dma_mapping_error; 1067 } 1068 1069 tx_spare->dma = dma; 1070 tx_spare->buf = page_address(page); 1071 tx_spare->len = PAGE_SIZE << order; 1072 ring->tx_spare = tx_spare; 1073 return; 1074 1075 dma_mapping_error: 1076 put_page(page); 1077 alloc_pages_error: 1078 devm_kfree(ring_to_dev(ring), tx_spare); 1079 devm_kzalloc_error: 1080 ring->tqp->handle->kinfo.tx_spare_buf_size = 0; 1081 } 1082 1083 /* Use hns3_tx_spare_space() to make sure there is enough buffer 1084 * before calling below function to allocate tx buffer. 1085 */ 1086 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, 1087 unsigned int size, dma_addr_t *dma, 1088 u32 *cb_len) 1089 { 1090 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1091 u32 ntu = tx_spare->next_to_use; 1092 1093 size = ALIGN(size, dma_get_cache_alignment()); 1094 *cb_len = size; 1095 1096 /* Tx spare buffer wraps back here because the end of 1097 * freed tx buffer is not enough. 1098 */ 1099 if (ntu + size > tx_spare->len) { 1100 *cb_len += (tx_spare->len - ntu); 1101 ntu = 0; 1102 } 1103 1104 tx_spare->next_to_use = ntu + size; 1105 if (tx_spare->next_to_use == tx_spare->len) 1106 tx_spare->next_to_use = 0; 1107 1108 *dma = tx_spare->dma + ntu; 1109 1110 return tx_spare->buf + ntu; 1111 } 1112 1113 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) 1114 { 1115 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1116 1117 if (len > tx_spare->next_to_use) { 1118 len -= tx_spare->next_to_use; 1119 tx_spare->next_to_use = tx_spare->len - len; 1120 } else { 1121 tx_spare->next_to_use -= len; 1122 } 1123 } 1124 1125 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, 1126 struct hns3_desc_cb *cb) 1127 { 1128 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1129 u32 ntc = tx_spare->next_to_clean; 1130 u32 len = cb->length; 1131 1132 tx_spare->next_to_clean += len; 1133 1134 if (tx_spare->next_to_clean >= tx_spare->len) { 1135 tx_spare->next_to_clean -= tx_spare->len; 1136 1137 if (tx_spare->next_to_clean) { 1138 ntc = 0; 1139 len = tx_spare->next_to_clean; 1140 } 1141 } 1142 1143 /* This tx spare buffer is only really reclaimed after calling 1144 * hns3_tx_spare_update(), so it is still safe to use the info in 1145 * the tx buffer to do the dma sync or sg unmapping after 1146 * tx_spare->next_to_clean is moved forword. 1147 */ 1148 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { 1149 dma_addr_t dma = tx_spare->dma + ntc; 1150 1151 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, 1152 DMA_TO_DEVICE); 1153 } else { 1154 struct sg_table *sgt = tx_spare->buf + ntc; 1155 1156 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 1157 DMA_TO_DEVICE); 1158 } 1159 } 1160 1161 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, 1162 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) 1163 { 1164 u32 l4_offset, hdr_len; 1165 union l3_hdr_info l3; 1166 union l4_hdr_info l4; 1167 u32 l4_paylen; 1168 int ret; 1169 1170 if (!skb_is_gso(skb)) 1171 return 0; 1172 1173 ret = skb_cow_head(skb, 0); 1174 if (unlikely(ret < 0)) 1175 return ret; 1176 1177 l3.hdr = skb_network_header(skb); 1178 l4.hdr = skb_transport_header(skb); 1179 1180 /* Software should clear the IPv4's checksum field when tso is 1181 * needed. 1182 */ 1183 if (l3.v4->version == 4) 1184 l3.v4->check = 0; 1185 1186 /* tunnel packet */ 1187 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1188 SKB_GSO_GRE_CSUM | 1189 SKB_GSO_UDP_TUNNEL | 1190 SKB_GSO_UDP_TUNNEL_CSUM)) { 1191 /* reset l3&l4 pointers from outer to inner headers */ 1192 l3.hdr = skb_inner_network_header(skb); 1193 l4.hdr = skb_inner_transport_header(skb); 1194 1195 /* Software should clear the IPv4's checksum field when 1196 * tso is needed. 1197 */ 1198 if (l3.v4->version == 4) 1199 l3.v4->check = 0; 1200 } 1201 1202 /* normal or tunnel packet */ 1203 l4_offset = l4.hdr - skb->data; 1204 1205 /* remove payload length from inner pseudo checksum when tso */ 1206 l4_paylen = skb->len - l4_offset; 1207 1208 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1209 hdr_len = sizeof(*l4.udp) + l4_offset; 1210 csum_replace_by_diff(&l4.udp->check, 1211 (__force __wsum)htonl(l4_paylen)); 1212 } else { 1213 hdr_len = (l4.tcp->doff << 2) + l4_offset; 1214 csum_replace_by_diff(&l4.tcp->check, 1215 (__force __wsum)htonl(l4_paylen)); 1216 } 1217 1218 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; 1219 1220 /* find the txbd field values */ 1221 *paylen_fdop_ol4cs = skb->len - hdr_len; 1222 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); 1223 1224 /* offload outer UDP header checksum */ 1225 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) 1226 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); 1227 1228 /* get MSS for TSO */ 1229 *mss = skb_shinfo(skb)->gso_size; 1230 1231 trace_hns3_tso(skb); 1232 1233 return 0; 1234 } 1235 1236 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, 1237 u8 *il4_proto) 1238 { 1239 union l3_hdr_info l3; 1240 unsigned char *l4_hdr; 1241 unsigned char *exthdr; 1242 u8 l4_proto_tmp; 1243 __be16 frag_off; 1244 1245 /* find outer header point */ 1246 l3.hdr = skb_network_header(skb); 1247 l4_hdr = skb_transport_header(skb); 1248 1249 if (skb->protocol == htons(ETH_P_IPV6)) { 1250 exthdr = l3.hdr + sizeof(*l3.v6); 1251 l4_proto_tmp = l3.v6->nexthdr; 1252 if (l4_hdr != exthdr) 1253 ipv6_skip_exthdr(skb, exthdr - skb->data, 1254 &l4_proto_tmp, &frag_off); 1255 } else if (skb->protocol == htons(ETH_P_IP)) { 1256 l4_proto_tmp = l3.v4->protocol; 1257 } else { 1258 return -EINVAL; 1259 } 1260 1261 *ol4_proto = l4_proto_tmp; 1262 1263 /* tunnel packet */ 1264 if (!skb->encapsulation) { 1265 *il4_proto = 0; 1266 return 0; 1267 } 1268 1269 /* find inner header point */ 1270 l3.hdr = skb_inner_network_header(skb); 1271 l4_hdr = skb_inner_transport_header(skb); 1272 1273 if (l3.v6->version == 6) { 1274 exthdr = l3.hdr + sizeof(*l3.v6); 1275 l4_proto_tmp = l3.v6->nexthdr; 1276 if (l4_hdr != exthdr) 1277 ipv6_skip_exthdr(skb, exthdr - skb->data, 1278 &l4_proto_tmp, &frag_off); 1279 } else if (l3.v4->version == 4) { 1280 l4_proto_tmp = l3.v4->protocol; 1281 } 1282 1283 *il4_proto = l4_proto_tmp; 1284 1285 return 0; 1286 } 1287 1288 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL 1289 * and it is udp packet, which has a dest port as the IANA assigned. 1290 * the hardware is expected to do the checksum offload, but the 1291 * hardware will not do the checksum offload when udp dest port is 1292 * 4789, 4790 or 6081. 1293 */ 1294 static bool hns3_tunnel_csum_bug(struct sk_buff *skb) 1295 { 1296 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1297 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 1298 union l4_hdr_info l4; 1299 1300 /* device version above V3(include V3), the hardware can 1301 * do this checksum offload. 1302 */ 1303 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 1304 return false; 1305 1306 l4.hdr = skb_transport_header(skb); 1307 1308 if (!(!skb->encapsulation && 1309 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || 1310 l4.udp->dest == htons(GENEVE_UDP_PORT) || 1311 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT)))) 1312 return false; 1313 1314 return true; 1315 } 1316 1317 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1318 u32 *ol_type_vlan_len_msec) 1319 { 1320 u32 l2_len, l3_len, l4_len; 1321 unsigned char *il2_hdr; 1322 union l3_hdr_info l3; 1323 union l4_hdr_info l4; 1324 1325 l3.hdr = skb_network_header(skb); 1326 l4.hdr = skb_transport_header(skb); 1327 1328 /* compute OL2 header size, defined in 2 Bytes */ 1329 l2_len = l3.hdr - skb->data; 1330 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); 1331 1332 /* compute OL3 header size, defined in 4 Bytes */ 1333 l3_len = l4.hdr - l3.hdr; 1334 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); 1335 1336 il2_hdr = skb_inner_mac_header(skb); 1337 /* compute OL4 header size, defined in 4 Bytes */ 1338 l4_len = il2_hdr - l4.hdr; 1339 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); 1340 1341 /* define outer network header type */ 1342 if (skb->protocol == htons(ETH_P_IP)) { 1343 if (skb_is_gso(skb)) 1344 hns3_set_field(*ol_type_vlan_len_msec, 1345 HNS3_TXD_OL3T_S, 1346 HNS3_OL3T_IPV4_CSUM); 1347 else 1348 hns3_set_field(*ol_type_vlan_len_msec, 1349 HNS3_TXD_OL3T_S, 1350 HNS3_OL3T_IPV4_NO_CSUM); 1351 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1352 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, 1353 HNS3_OL3T_IPV6); 1354 } 1355 1356 if (ol4_proto == IPPROTO_UDP) 1357 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1358 HNS3_TUN_MAC_IN_UDP); 1359 else if (ol4_proto == IPPROTO_GRE) 1360 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1361 HNS3_TUN_NVGRE); 1362 } 1363 1364 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3, 1365 u32 *type_cs_vlan_tso) 1366 { 1367 if (l3.v4->version == 4) { 1368 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1369 HNS3_L3T_IPV4); 1370 1371 /* the stack computes the IP header already, the only time we 1372 * need the hardware to recompute it is in the case of TSO. 1373 */ 1374 if (skb_is_gso(skb)) 1375 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); 1376 } else if (l3.v6->version == 6) { 1377 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1378 HNS3_L3T_IPV6); 1379 } 1380 } 1381 1382 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4, 1383 u32 l4_proto, u32 *type_cs_vlan_tso) 1384 { 1385 /* compute inner(/normal) L4 header size, defined in 4 Bytes */ 1386 switch (l4_proto) { 1387 case IPPROTO_TCP: 1388 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1389 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1390 HNS3_L4T_TCP); 1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1392 l4.tcp->doff); 1393 break; 1394 case IPPROTO_UDP: 1395 if (hns3_tunnel_csum_bug(skb)) { 1396 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); 1397 1398 return ret ? ret : skb_checksum_help(skb); 1399 } 1400 1401 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1402 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1403 HNS3_L4T_UDP); 1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1405 (sizeof(struct udphdr) >> 2)); 1406 break; 1407 case IPPROTO_SCTP: 1408 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1409 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1410 HNS3_L4T_SCTP); 1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1412 (sizeof(struct sctphdr) >> 2)); 1413 break; 1414 default: 1415 /* drop the skb tunnel packet if hardware don't support, 1416 * because hardware can't calculate csum when TSO. 1417 */ 1418 if (skb_is_gso(skb)) 1419 return -EDOM; 1420 1421 /* the stack computes the IP header already, 1422 * driver calculate l4 checksum when not TSO. 1423 */ 1424 return skb_checksum_help(skb); 1425 } 1426 1427 return 0; 1428 } 1429 1430 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1431 u8 il4_proto, u32 *type_cs_vlan_tso, 1432 u32 *ol_type_vlan_len_msec) 1433 { 1434 unsigned char *l2_hdr = skb->data; 1435 u32 l4_proto = ol4_proto; 1436 union l4_hdr_info l4; 1437 union l3_hdr_info l3; 1438 u32 l2_len, l3_len; 1439 1440 l4.hdr = skb_transport_header(skb); 1441 l3.hdr = skb_network_header(skb); 1442 1443 /* handle encapsulation skb */ 1444 if (skb->encapsulation) { 1445 /* If this is a not UDP/GRE encapsulation skb */ 1446 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { 1447 /* drop the skb tunnel packet if hardware don't support, 1448 * because hardware can't calculate csum when TSO. 1449 */ 1450 if (skb_is_gso(skb)) 1451 return -EDOM; 1452 1453 /* the stack computes the IP header already, 1454 * driver calculate l4 checksum when not TSO. 1455 */ 1456 return skb_checksum_help(skb); 1457 } 1458 1459 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); 1460 1461 /* switch to inner header */ 1462 l2_hdr = skb_inner_mac_header(skb); 1463 l3.hdr = skb_inner_network_header(skb); 1464 l4.hdr = skb_inner_transport_header(skb); 1465 l4_proto = il4_proto; 1466 } 1467 1468 hns3_set_l3_type(skb, l3, type_cs_vlan_tso); 1469 1470 /* compute inner(/normal) L2 header size, defined in 2 Bytes */ 1471 l2_len = l3.hdr - l2_hdr; 1472 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); 1473 1474 /* compute inner(/normal) L3 header size, defined in 4 Bytes */ 1475 l3_len = l4.hdr - l3.hdr; 1476 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); 1477 1478 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso); 1479 } 1480 1481 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, 1482 struct sk_buff *skb) 1483 { 1484 struct hnae3_handle *handle = tx_ring->tqp->handle; 1485 struct hnae3_ae_dev *ae_dev; 1486 struct vlan_ethhdr *vhdr; 1487 int rc; 1488 1489 if (!(skb->protocol == htons(ETH_P_8021Q) || 1490 skb_vlan_tag_present(skb))) 1491 return 0; 1492 1493 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert 1494 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it 1495 * will cause RAS error. 1496 */ 1497 ae_dev = pci_get_drvdata(handle->pdev); 1498 if (unlikely(skb_vlan_tagged_multi(skb) && 1499 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && 1500 handle->port_base_vlan_state == 1501 HNAE3_PORT_BASE_VLAN_ENABLE)) 1502 return -EINVAL; 1503 1504 if (skb->protocol == htons(ETH_P_8021Q) && 1505 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1506 /* When HW VLAN acceleration is turned off, and the stack 1507 * sets the protocol to 802.1q, the driver just need to 1508 * set the protocol to the encapsulated ethertype. 1509 */ 1510 skb->protocol = vlan_get_protocol(skb); 1511 return 0; 1512 } 1513 1514 if (skb_vlan_tag_present(skb)) { 1515 /* Based on hw strategy, use out_vtag in two layer tag case, 1516 * and use inner_vtag in one tag case. 1517 */ 1518 if (skb->protocol == htons(ETH_P_8021Q) && 1519 handle->port_base_vlan_state == 1520 HNAE3_PORT_BASE_VLAN_DISABLE) 1521 rc = HNS3_OUTER_VLAN_TAG; 1522 else 1523 rc = HNS3_INNER_VLAN_TAG; 1524 1525 skb->protocol = vlan_get_protocol(skb); 1526 return rc; 1527 } 1528 1529 rc = skb_cow_head(skb, 0); 1530 if (unlikely(rc < 0)) 1531 return rc; 1532 1533 vhdr = (struct vlan_ethhdr *)skb->data; 1534 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) 1535 & VLAN_PRIO_MASK); 1536 1537 skb->protocol = vlan_get_protocol(skb); 1538 return 0; 1539 } 1540 1541 /* check if the hardware is capable of checksum offloading */ 1542 static bool hns3_check_hw_tx_csum(struct sk_buff *skb) 1543 { 1544 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1545 1546 /* Kindly note, due to backward compatibility of the TX descriptor, 1547 * HW checksum of the non-IP packets and GSO packets is handled at 1548 * different place in the following code 1549 */ 1550 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || 1551 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) 1552 return false; 1553 1554 return true; 1555 } 1556 1557 struct hns3_desc_param { 1558 u32 paylen_ol4cs; 1559 u32 ol_type_vlan_len_msec; 1560 u32 type_cs_vlan_tso; 1561 u16 mss_hw_csum; 1562 u16 inner_vtag; 1563 u16 out_vtag; 1564 }; 1565 1566 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa) 1567 { 1568 pa->paylen_ol4cs = skb->len; 1569 pa->ol_type_vlan_len_msec = 0; 1570 pa->type_cs_vlan_tso = 0; 1571 pa->mss_hw_csum = 0; 1572 pa->inner_vtag = 0; 1573 pa->out_vtag = 0; 1574 } 1575 1576 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring, 1577 struct sk_buff *skb, 1578 struct hns3_desc_param *param) 1579 { 1580 int ret; 1581 1582 ret = hns3_handle_vtags(ring, skb); 1583 if (unlikely(ret < 0)) { 1584 hns3_ring_stats_update(ring, tx_vlan_err); 1585 return ret; 1586 } else if (ret == HNS3_INNER_VLAN_TAG) { 1587 param->inner_vtag = skb_vlan_tag_get(skb); 1588 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1589 VLAN_PRIO_MASK; 1590 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); 1591 } else if (ret == HNS3_OUTER_VLAN_TAG) { 1592 param->out_vtag = skb_vlan_tag_get(skb); 1593 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1594 VLAN_PRIO_MASK; 1595 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, 1596 1); 1597 } 1598 return 0; 1599 } 1600 1601 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring, 1602 struct sk_buff *skb, 1603 struct hns3_desc_cb *desc_cb, 1604 struct hns3_desc_param *param) 1605 { 1606 u8 ol4_proto, il4_proto; 1607 int ret; 1608 1609 if (hns3_check_hw_tx_csum(skb)) { 1610 /* set checksum start and offset, defined in 2 Bytes */ 1611 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, 1612 skb_checksum_start_offset(skb) >> 1); 1613 hns3_set_field(param->ol_type_vlan_len_msec, 1614 HNS3_TXD_CSUM_OFFSET_S, 1615 skb->csum_offset >> 1); 1616 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); 1617 return 0; 1618 } 1619 1620 skb_reset_mac_len(skb); 1621 1622 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); 1623 if (unlikely(ret < 0)) { 1624 hns3_ring_stats_update(ring, tx_l4_proto_err); 1625 return ret; 1626 } 1627 1628 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, 1629 ¶m->type_cs_vlan_tso, 1630 ¶m->ol_type_vlan_len_msec); 1631 if (unlikely(ret < 0)) { 1632 hns3_ring_stats_update(ring, tx_l2l3l4_err); 1633 return ret; 1634 } 1635 1636 ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum, 1637 ¶m->type_cs_vlan_tso, &desc_cb->send_bytes); 1638 if (unlikely(ret < 0)) { 1639 hns3_ring_stats_update(ring, tx_tso_err); 1640 return ret; 1641 } 1642 return 0; 1643 } 1644 1645 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, 1646 struct sk_buff *skb, struct hns3_desc *desc, 1647 struct hns3_desc_cb *desc_cb) 1648 { 1649 struct hns3_desc_param param; 1650 int ret; 1651 1652 hns3_init_desc_data(skb, ¶m); 1653 ret = hns3_handle_vlan_info(ring, skb, ¶m); 1654 if (unlikely(ret < 0)) 1655 return ret; 1656 1657 desc_cb->send_bytes = skb->len; 1658 1659 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1660 ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m); 1661 if (ret) 1662 return ret; 1663 } 1664 1665 /* Set txbd */ 1666 desc->tx.ol_type_vlan_len_msec = 1667 cpu_to_le32(param.ol_type_vlan_len_msec); 1668 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso); 1669 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs); 1670 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum); 1671 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag); 1672 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag); 1673 1674 return 0; 1675 } 1676 1677 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, 1678 unsigned int size) 1679 { 1680 #define HNS3_LIKELY_BD_NUM 1 1681 1682 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1683 unsigned int frag_buf_num; 1684 int k, sizeoflast; 1685 1686 if (likely(size <= HNS3_MAX_BD_SIZE)) { 1687 desc->addr = cpu_to_le64(dma); 1688 desc->tx.send_size = cpu_to_le16(size); 1689 desc->tx.bdtp_fe_sc_vld_ra_ri = 1690 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1691 1692 trace_hns3_tx_desc(ring, ring->next_to_use); 1693 ring_ptr_move_fw(ring, next_to_use); 1694 return HNS3_LIKELY_BD_NUM; 1695 } 1696 1697 frag_buf_num = hns3_tx_bd_count(size); 1698 sizeoflast = size % HNS3_MAX_BD_SIZE; 1699 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; 1700 1701 /* When frag size is bigger than hardware limit, split this frag */ 1702 for (k = 0; k < frag_buf_num; k++) { 1703 /* now, fill the descriptor */ 1704 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); 1705 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? 1706 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); 1707 desc->tx.bdtp_fe_sc_vld_ra_ri = 1708 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1709 1710 trace_hns3_tx_desc(ring, ring->next_to_use); 1711 /* move ring pointer to next */ 1712 ring_ptr_move_fw(ring, next_to_use); 1713 1714 desc = &ring->desc[ring->next_to_use]; 1715 } 1716 1717 return frag_buf_num; 1718 } 1719 1720 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, 1721 unsigned int type) 1722 { 1723 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 1724 struct device *dev = ring_to_dev(ring); 1725 unsigned int size; 1726 dma_addr_t dma; 1727 1728 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { 1729 struct sk_buff *skb = (struct sk_buff *)priv; 1730 1731 size = skb_headlen(skb); 1732 if (!size) 1733 return 0; 1734 1735 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 1736 } else if (type & DESC_TYPE_BOUNCE_HEAD) { 1737 /* Head data has been filled in hns3_handle_tx_bounce(), 1738 * just return 0 here. 1739 */ 1740 return 0; 1741 } else { 1742 skb_frag_t *frag = (skb_frag_t *)priv; 1743 1744 size = skb_frag_size(frag); 1745 if (!size) 1746 return 0; 1747 1748 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 1749 } 1750 1751 if (unlikely(dma_mapping_error(dev, dma))) { 1752 hns3_ring_stats_update(ring, sw_err_cnt); 1753 return -ENOMEM; 1754 } 1755 1756 desc_cb->priv = priv; 1757 desc_cb->length = size; 1758 desc_cb->dma = dma; 1759 desc_cb->type = type; 1760 1761 return hns3_fill_desc(ring, dma, size); 1762 } 1763 1764 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1765 unsigned int bd_num) 1766 { 1767 unsigned int size; 1768 int i; 1769 1770 size = skb_headlen(skb); 1771 while (size > HNS3_MAX_BD_SIZE) { 1772 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1773 size -= HNS3_MAX_BD_SIZE; 1774 1775 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1776 return bd_num; 1777 } 1778 1779 if (size) { 1780 bd_size[bd_num++] = size; 1781 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1782 return bd_num; 1783 } 1784 1785 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1786 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1787 size = skb_frag_size(frag); 1788 if (!size) 1789 continue; 1790 1791 while (size > HNS3_MAX_BD_SIZE) { 1792 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1793 size -= HNS3_MAX_BD_SIZE; 1794 1795 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1796 return bd_num; 1797 } 1798 1799 bd_size[bd_num++] = size; 1800 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1801 return bd_num; 1802 } 1803 1804 return bd_num; 1805 } 1806 1807 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1808 u8 max_non_tso_bd_num, unsigned int bd_num, 1809 unsigned int recursion_level) 1810 { 1811 #define HNS3_MAX_RECURSION_LEVEL 24 1812 1813 struct sk_buff *frag_skb; 1814 1815 /* If the total len is within the max bd limit */ 1816 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && 1817 !skb_has_frag_list(skb) && 1818 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) 1819 return skb_shinfo(skb)->nr_frags + 1U; 1820 1821 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) 1822 return UINT_MAX; 1823 1824 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); 1825 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) 1826 return bd_num; 1827 1828 skb_walk_frags(skb, frag_skb) { 1829 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, 1830 bd_num, recursion_level + 1); 1831 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1832 return bd_num; 1833 } 1834 1835 return bd_num; 1836 } 1837 1838 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) 1839 { 1840 if (!skb->encapsulation) 1841 return skb_tcp_all_headers(skb); 1842 1843 return skb_inner_tcp_all_headers(skb); 1844 } 1845 1846 /* HW need every continuous max_non_tso_bd_num buffer data to be larger 1847 * than MSS, we simplify it by ensuring skb_headlen + the first continuous 1848 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, 1849 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger 1850 * than MSS except the last max_non_tso_bd_num - 1 frags. 1851 */ 1852 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, 1853 unsigned int bd_num, u8 max_non_tso_bd_num) 1854 { 1855 unsigned int tot_len = 0; 1856 int i; 1857 1858 for (i = 0; i < max_non_tso_bd_num - 1U; i++) 1859 tot_len += bd_size[i]; 1860 1861 /* ensure the first max_non_tso_bd_num frags is greater than 1862 * mss + header 1863 */ 1864 if (tot_len + bd_size[max_non_tso_bd_num - 1U] < 1865 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) 1866 return true; 1867 1868 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater 1869 * than mss except the last one. 1870 */ 1871 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { 1872 tot_len -= bd_size[i]; 1873 tot_len += bd_size[i + max_non_tso_bd_num - 1U]; 1874 1875 if (tot_len < skb_shinfo(skb)->gso_size) 1876 return true; 1877 } 1878 1879 return false; 1880 } 1881 1882 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) 1883 { 1884 int i; 1885 1886 for (i = 0; i < MAX_SKB_FRAGS; i++) 1887 size[i] = skb_frag_size(&shinfo->frags[i]); 1888 } 1889 1890 static int hns3_skb_linearize(struct hns3_enet_ring *ring, 1891 struct sk_buff *skb, 1892 unsigned int bd_num) 1893 { 1894 /* 'bd_num == UINT_MAX' means the skb' fraglist has a 1895 * recursion level of over HNS3_MAX_RECURSION_LEVEL. 1896 */ 1897 if (bd_num == UINT_MAX) { 1898 hns3_ring_stats_update(ring, over_max_recursion); 1899 return -ENOMEM; 1900 } 1901 1902 /* The skb->len has exceeded the hw limitation, linearization 1903 * will not help. 1904 */ 1905 if (skb->len > HNS3_MAX_TSO_SIZE || 1906 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) { 1907 hns3_ring_stats_update(ring, hw_limitation); 1908 return -ENOMEM; 1909 } 1910 1911 if (__skb_linearize(skb)) { 1912 hns3_ring_stats_update(ring, sw_err_cnt); 1913 return -ENOMEM; 1914 } 1915 1916 return 0; 1917 } 1918 1919 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, 1920 struct net_device *netdev, 1921 struct sk_buff *skb) 1922 { 1923 struct hns3_nic_priv *priv = netdev_priv(netdev); 1924 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; 1925 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; 1926 unsigned int bd_num; 1927 1928 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); 1929 if (unlikely(bd_num > max_non_tso_bd_num)) { 1930 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && 1931 !hns3_skb_need_linearized(skb, bd_size, bd_num, 1932 max_non_tso_bd_num)) { 1933 trace_hns3_over_max_bd(skb); 1934 goto out; 1935 } 1936 1937 if (hns3_skb_linearize(ring, skb, bd_num)) 1938 return -ENOMEM; 1939 1940 bd_num = hns3_tx_bd_count(skb->len); 1941 1942 hns3_ring_stats_update(ring, tx_copy); 1943 } 1944 1945 out: 1946 if (likely(ring_space(ring) >= bd_num)) 1947 return bd_num; 1948 1949 netif_stop_subqueue(netdev, ring->queue_index); 1950 smp_mb(); /* Memory barrier before checking ring_space */ 1951 1952 /* Start queue in case hns3_clean_tx_ring has just made room 1953 * available and has not seen the queue stopped state performed 1954 * by netif_stop_subqueue above. 1955 */ 1956 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && 1957 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 1958 netif_start_subqueue(netdev, ring->queue_index); 1959 return bd_num; 1960 } 1961 1962 hns3_ring_stats_update(ring, tx_busy); 1963 1964 return -EBUSY; 1965 } 1966 1967 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) 1968 { 1969 struct device *dev = ring_to_dev(ring); 1970 unsigned int i; 1971 1972 for (i = 0; i < ring->desc_num; i++) { 1973 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1974 struct hns3_desc_cb *desc_cb; 1975 1976 memset(desc, 0, sizeof(*desc)); 1977 1978 /* check if this is where we started */ 1979 if (ring->next_to_use == next_to_use_orig) 1980 break; 1981 1982 /* rollback one */ 1983 ring_ptr_move_bw(ring, next_to_use); 1984 1985 desc_cb = &ring->desc_cb[ring->next_to_use]; 1986 1987 if (!desc_cb->dma) 1988 continue; 1989 1990 /* unmap the descriptor dma address */ 1991 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 1992 dma_unmap_single(dev, desc_cb->dma, desc_cb->length, 1993 DMA_TO_DEVICE); 1994 else if (desc_cb->type & 1995 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) 1996 hns3_tx_spare_rollback(ring, desc_cb->length); 1997 else if (desc_cb->length) 1998 dma_unmap_page(dev, desc_cb->dma, desc_cb->length, 1999 DMA_TO_DEVICE); 2000 2001 desc_cb->length = 0; 2002 desc_cb->dma = 0; 2003 desc_cb->type = DESC_TYPE_UNKNOWN; 2004 } 2005 } 2006 2007 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, 2008 struct sk_buff *skb, unsigned int type) 2009 { 2010 struct sk_buff *frag_skb; 2011 int i, ret, bd_num = 0; 2012 2013 ret = hns3_map_and_fill_desc(ring, skb, type); 2014 if (unlikely(ret < 0)) 2015 return ret; 2016 2017 bd_num += ret; 2018 2019 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2020 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2021 2022 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); 2023 if (unlikely(ret < 0)) 2024 return ret; 2025 2026 bd_num += ret; 2027 } 2028 2029 skb_walk_frags(skb, frag_skb) { 2030 ret = hns3_fill_skb_to_desc(ring, frag_skb, 2031 DESC_TYPE_FRAGLIST_SKB); 2032 if (unlikely(ret < 0)) 2033 return ret; 2034 2035 bd_num += ret; 2036 } 2037 2038 return bd_num; 2039 } 2040 2041 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num) 2042 { 2043 #define HNS3_BYTES_PER_64BIT 8 2044 2045 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {}; 2046 int offset = 0; 2047 2048 /* make sure everything is visible to device before 2049 * excuting tx push or updating doorbell 2050 */ 2051 dma_wmb(); 2052 2053 do { 2054 int idx = (ring->next_to_use - num + ring->desc_num) % 2055 ring->desc_num; 2056 2057 u64_stats_update_begin(&ring->syncp); 2058 ring->stats.tx_push++; 2059 u64_stats_update_end(&ring->syncp); 2060 memcpy(&desc[offset], &ring->desc[idx], 2061 sizeof(struct hns3_desc)); 2062 offset++; 2063 } while (--num); 2064 2065 __iowrite64_copy(ring->tqp->mem_base, desc, 2066 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) / 2067 HNS3_BYTES_PER_64BIT); 2068 2069 io_stop_wc(); 2070 } 2071 2072 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring) 2073 { 2074 #define HNS3_MEM_DOORBELL_OFFSET 64 2075 2076 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf); 2077 2078 /* make sure everything is visible to device before 2079 * excuting tx push or updating doorbell 2080 */ 2081 dma_wmb(); 2082 2083 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET, 2084 &bd_num, 1); 2085 u64_stats_update_begin(&ring->syncp); 2086 ring->stats.tx_mem_doorbell += ring->pending_buf; 2087 u64_stats_update_end(&ring->syncp); 2088 2089 io_stop_wc(); 2090 } 2091 2092 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, 2093 bool doorbell) 2094 { 2095 struct net_device *netdev = ring_to_netdev(ring); 2096 struct hns3_nic_priv *priv = netdev_priv(netdev); 2097 2098 /* when tx push is enabled, the packet whose number of BD below 2099 * HNS3_MAX_PUSH_BD_NUM can be pushed directly. 2100 */ 2101 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num && 2102 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) { 2103 hns3_tx_push_bd(ring, num); 2104 WRITE_ONCE(ring->last_to_use, ring->next_to_use); 2105 return; 2106 } 2107 2108 ring->pending_buf += num; 2109 2110 if (!doorbell) { 2111 hns3_ring_stats_update(ring, tx_more); 2112 return; 2113 } 2114 2115 if (ring->tqp->mem_base) 2116 hns3_tx_mem_doorbell(ring); 2117 else 2118 writel(ring->pending_buf, 2119 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); 2120 2121 ring->pending_buf = 0; 2122 WRITE_ONCE(ring->last_to_use, ring->next_to_use); 2123 } 2124 2125 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, 2126 struct hns3_desc *desc) 2127 { 2128 struct hnae3_handle *h = hns3_get_handle(netdev); 2129 2130 if (!(h->ae_algo->ops->set_tx_hwts_info && 2131 h->ae_algo->ops->set_tx_hwts_info(h, skb))) 2132 return; 2133 2134 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); 2135 } 2136 2137 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, 2138 struct sk_buff *skb) 2139 { 2140 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2141 unsigned int type = DESC_TYPE_BOUNCE_HEAD; 2142 unsigned int size = skb_headlen(skb); 2143 dma_addr_t dma; 2144 int bd_num = 0; 2145 u32 cb_len; 2146 void *buf; 2147 int ret; 2148 2149 if (skb->len <= ring->tx_copybreak) { 2150 size = skb->len; 2151 type = DESC_TYPE_BOUNCE_ALL; 2152 } 2153 2154 /* hns3_can_use_tx_bounce() is called to ensure the below 2155 * function can always return the tx buffer. 2156 */ 2157 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); 2158 2159 ret = skb_copy_bits(skb, 0, buf, size); 2160 if (unlikely(ret < 0)) { 2161 hns3_tx_spare_rollback(ring, cb_len); 2162 hns3_ring_stats_update(ring, copy_bits_err); 2163 return ret; 2164 } 2165 2166 desc_cb->priv = skb; 2167 desc_cb->length = cb_len; 2168 desc_cb->dma = dma; 2169 desc_cb->type = type; 2170 2171 bd_num += hns3_fill_desc(ring, dma, size); 2172 2173 if (type == DESC_TYPE_BOUNCE_HEAD) { 2174 ret = hns3_fill_skb_to_desc(ring, skb, 2175 DESC_TYPE_BOUNCE_HEAD); 2176 if (unlikely(ret < 0)) 2177 return ret; 2178 2179 bd_num += ret; 2180 } 2181 2182 dma_sync_single_for_device(ring_to_dev(ring), dma, size, 2183 DMA_TO_DEVICE); 2184 2185 hns3_ring_stats_update(ring, tx_bounce); 2186 2187 return bd_num; 2188 } 2189 2190 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, 2191 struct sk_buff *skb) 2192 { 2193 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2194 u32 nfrag = skb_shinfo(skb)->nr_frags + 1; 2195 struct sg_table *sgt; 2196 int i, bd_num = 0; 2197 dma_addr_t dma; 2198 u32 cb_len; 2199 int nents; 2200 2201 if (skb_has_frag_list(skb)) 2202 nfrag = HNS3_MAX_TSO_BD_NUM; 2203 2204 /* hns3_can_use_tx_sgl() is called to ensure the below 2205 * function can always return the tx buffer. 2206 */ 2207 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), 2208 &dma, &cb_len); 2209 2210 /* scatterlist follows by the sg table */ 2211 sgt->sgl = (struct scatterlist *)(sgt + 1); 2212 sg_init_table(sgt->sgl, nfrag); 2213 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); 2214 if (unlikely(nents < 0)) { 2215 hns3_tx_spare_rollback(ring, cb_len); 2216 hns3_ring_stats_update(ring, skb2sgl_err); 2217 return -ENOMEM; 2218 } 2219 2220 sgt->orig_nents = nents; 2221 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 2222 DMA_TO_DEVICE); 2223 if (unlikely(!sgt->nents)) { 2224 hns3_tx_spare_rollback(ring, cb_len); 2225 hns3_ring_stats_update(ring, map_sg_err); 2226 return -ENOMEM; 2227 } 2228 2229 desc_cb->priv = skb; 2230 desc_cb->length = cb_len; 2231 desc_cb->dma = dma; 2232 desc_cb->type = DESC_TYPE_SGL_SKB; 2233 2234 for (i = 0; i < sgt->nents; i++) 2235 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), 2236 sg_dma_len(sgt->sgl + i)); 2237 hns3_ring_stats_update(ring, tx_sgl); 2238 2239 return bd_num; 2240 } 2241 2242 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, 2243 struct sk_buff *skb) 2244 { 2245 u32 space; 2246 2247 if (!ring->tx_spare) 2248 goto out; 2249 2250 space = hns3_tx_spare_space(ring); 2251 2252 if (hns3_can_use_tx_sgl(ring, skb, space)) 2253 return hns3_handle_tx_sgl(ring, skb); 2254 2255 if (hns3_can_use_tx_bounce(ring, skb, space)) 2256 return hns3_handle_tx_bounce(ring, skb); 2257 2258 out: 2259 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); 2260 } 2261 2262 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring, 2263 struct sk_buff *skb, 2264 struct hns3_desc_cb *desc_cb, 2265 int next_to_use_head) 2266 { 2267 int ret; 2268 2269 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], 2270 desc_cb); 2271 if (unlikely(ret < 0)) 2272 goto fill_err; 2273 2274 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is 2275 * zero, which is unlikely, and 'ret > 0' means how many tx desc 2276 * need to be notified to the hw. 2277 */ 2278 ret = hns3_handle_desc_filling(ring, skb); 2279 if (likely(ret > 0)) 2280 return ret; 2281 2282 fill_err: 2283 hns3_clear_desc(ring, next_to_use_head); 2284 return ret; 2285 } 2286 2287 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) 2288 { 2289 struct hns3_nic_priv *priv = netdev_priv(netdev); 2290 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; 2291 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2292 struct netdev_queue *dev_queue; 2293 int pre_ntu, ret; 2294 bool doorbell; 2295 2296 /* Hardware can only handle short frames above 32 bytes */ 2297 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { 2298 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2299 2300 hns3_ring_stats_update(ring, sw_err_cnt); 2301 2302 return NETDEV_TX_OK; 2303 } 2304 2305 /* Prefetch the data used later */ 2306 prefetch(skb->data); 2307 2308 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); 2309 if (unlikely(ret <= 0)) { 2310 if (ret == -EBUSY) { 2311 hns3_tx_doorbell(ring, 0, true); 2312 return NETDEV_TX_BUSY; 2313 } 2314 2315 hns3_rl_err(netdev, "xmit error: %d!\n", ret); 2316 goto out_err_tx_ok; 2317 } 2318 2319 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use); 2320 if (unlikely(ret <= 0)) 2321 goto out_err_tx_ok; 2322 2323 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : 2324 (ring->desc_num - 1); 2325 2326 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 2327 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); 2328 2329 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= 2330 cpu_to_le16(BIT(HNS3_TXD_FE_B)); 2331 trace_hns3_tx_desc(ring, pre_ntu); 2332 2333 skb_tx_timestamp(skb); 2334 2335 /* Complete translate all packets */ 2336 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); 2337 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, 2338 netdev_xmit_more()); 2339 hns3_tx_doorbell(ring, ret, doorbell); 2340 2341 return NETDEV_TX_OK; 2342 2343 out_err_tx_ok: 2344 dev_kfree_skb_any(skb); 2345 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2346 return NETDEV_TX_OK; 2347 } 2348 2349 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) 2350 { 2351 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN]; 2352 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN]; 2353 struct hnae3_handle *h = hns3_get_handle(netdev); 2354 struct sockaddr *mac_addr = p; 2355 int ret; 2356 2357 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 2358 return -EADDRNOTAVAIL; 2359 2360 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { 2361 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2362 netdev_info(netdev, "already using mac address %s\n", 2363 format_mac_addr_sa); 2364 return 0; 2365 } 2366 2367 /* For VF device, if there is a perm_addr, then the user will not 2368 * be allowed to change the address. 2369 */ 2370 if (!hns3_is_phys_func(h->pdev) && 2371 !is_zero_ether_addr(netdev->perm_addr)) { 2372 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr); 2373 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2374 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n", 2375 format_mac_addr_perm, format_mac_addr_sa); 2376 return -EPERM; 2377 } 2378 2379 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); 2380 if (ret) { 2381 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); 2382 return ret; 2383 } 2384 2385 eth_hw_addr_set(netdev, mac_addr->sa_data); 2386 2387 return 0; 2388 } 2389 2390 static int hns3_nic_do_ioctl(struct net_device *netdev, 2391 struct ifreq *ifr, int cmd) 2392 { 2393 struct hnae3_handle *h = hns3_get_handle(netdev); 2394 2395 if (!netif_running(netdev)) 2396 return -EINVAL; 2397 2398 if (!h->ae_algo->ops->do_ioctl) 2399 return -EOPNOTSUPP; 2400 2401 return h->ae_algo->ops->do_ioctl(h, ifr, cmd); 2402 } 2403 2404 static int hns3_nic_set_features(struct net_device *netdev, 2405 netdev_features_t features) 2406 { 2407 netdev_features_t changed = netdev->features ^ features; 2408 struct hns3_nic_priv *priv = netdev_priv(netdev); 2409 struct hnae3_handle *h = priv->ae_handle; 2410 bool enable; 2411 int ret; 2412 2413 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { 2414 enable = !!(features & NETIF_F_GRO_HW); 2415 ret = h->ae_algo->ops->set_gro_en(h, enable); 2416 if (ret) 2417 return ret; 2418 } 2419 2420 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && 2421 h->ae_algo->ops->enable_hw_strip_rxvtag) { 2422 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 2423 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); 2424 if (ret) 2425 return ret; 2426 } 2427 2428 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { 2429 enable = !!(features & NETIF_F_NTUPLE); 2430 h->ae_algo->ops->enable_fd(h, enable); 2431 } 2432 2433 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && 2434 h->ae_algo->ops->cls_flower_active(h)) { 2435 netdev_err(netdev, 2436 "there are offloaded TC filters active, cannot disable HW TC offload"); 2437 return -EINVAL; 2438 } 2439 2440 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && 2441 h->ae_algo->ops->enable_vlan_filter) { 2442 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2443 ret = h->ae_algo->ops->enable_vlan_filter(h, enable); 2444 if (ret) 2445 return ret; 2446 } 2447 2448 netdev->features = features; 2449 return 0; 2450 } 2451 2452 static netdev_features_t hns3_features_check(struct sk_buff *skb, 2453 struct net_device *dev, 2454 netdev_features_t features) 2455 { 2456 #define HNS3_MAX_HDR_LEN 480U 2457 #define HNS3_MAX_L4_HDR_LEN 60U 2458 2459 size_t len; 2460 2461 if (skb->ip_summed != CHECKSUM_PARTIAL) 2462 return features; 2463 2464 if (skb->encapsulation) 2465 len = skb_inner_transport_header(skb) - skb->data; 2466 else 2467 len = skb_transport_header(skb) - skb->data; 2468 2469 /* Assume L4 is 60 byte as TCP is the only protocol with a 2470 * a flexible value, and it's max len is 60 bytes. 2471 */ 2472 len += HNS3_MAX_L4_HDR_LEN; 2473 2474 /* Hardware only supports checksum on the skb with a max header 2475 * len of 480 bytes. 2476 */ 2477 if (len > HNS3_MAX_HDR_LEN) 2478 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2479 2480 return features; 2481 } 2482 2483 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats, 2484 struct hns3_enet_ring *ring, bool is_tx) 2485 { 2486 unsigned int start; 2487 2488 do { 2489 start = u64_stats_fetch_begin_irq(&ring->syncp); 2490 if (is_tx) { 2491 stats->tx_bytes += ring->stats.tx_bytes; 2492 stats->tx_packets += ring->stats.tx_pkts; 2493 stats->tx_dropped += ring->stats.sw_err_cnt; 2494 stats->tx_dropped += ring->stats.tx_vlan_err; 2495 stats->tx_dropped += ring->stats.tx_l4_proto_err; 2496 stats->tx_dropped += ring->stats.tx_l2l3l4_err; 2497 stats->tx_dropped += ring->stats.tx_tso_err; 2498 stats->tx_dropped += ring->stats.over_max_recursion; 2499 stats->tx_dropped += ring->stats.hw_limitation; 2500 stats->tx_dropped += ring->stats.copy_bits_err; 2501 stats->tx_dropped += ring->stats.skb2sgl_err; 2502 stats->tx_dropped += ring->stats.map_sg_err; 2503 stats->tx_errors += ring->stats.sw_err_cnt; 2504 stats->tx_errors += ring->stats.tx_vlan_err; 2505 stats->tx_errors += ring->stats.tx_l4_proto_err; 2506 stats->tx_errors += ring->stats.tx_l2l3l4_err; 2507 stats->tx_errors += ring->stats.tx_tso_err; 2508 stats->tx_errors += ring->stats.over_max_recursion; 2509 stats->tx_errors += ring->stats.hw_limitation; 2510 stats->tx_errors += ring->stats.copy_bits_err; 2511 stats->tx_errors += ring->stats.skb2sgl_err; 2512 stats->tx_errors += ring->stats.map_sg_err; 2513 } else { 2514 stats->rx_bytes += ring->stats.rx_bytes; 2515 stats->rx_packets += ring->stats.rx_pkts; 2516 stats->rx_dropped += ring->stats.l2_err; 2517 stats->rx_errors += ring->stats.l2_err; 2518 stats->rx_errors += ring->stats.l3l4_csum_err; 2519 stats->rx_crc_errors += ring->stats.l2_err; 2520 stats->multicast += ring->stats.rx_multicast; 2521 stats->rx_length_errors += ring->stats.err_pkt_len; 2522 } 2523 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 2524 } 2525 2526 static void hns3_nic_get_stats64(struct net_device *netdev, 2527 struct rtnl_link_stats64 *stats) 2528 { 2529 struct hns3_nic_priv *priv = netdev_priv(netdev); 2530 int queue_num = priv->ae_handle->kinfo.num_tqps; 2531 struct hnae3_handle *handle = priv->ae_handle; 2532 struct rtnl_link_stats64 ring_total_stats; 2533 struct hns3_enet_ring *ring; 2534 unsigned int idx; 2535 2536 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 2537 return; 2538 2539 handle->ae_algo->ops->update_stats(handle, &netdev->stats); 2540 2541 memset(&ring_total_stats, 0, sizeof(ring_total_stats)); 2542 for (idx = 0; idx < queue_num; idx++) { 2543 /* fetch the tx stats */ 2544 ring = &priv->ring[idx]; 2545 hns3_fetch_stats(&ring_total_stats, ring, true); 2546 2547 /* fetch the rx stats */ 2548 ring = &priv->ring[idx + queue_num]; 2549 hns3_fetch_stats(&ring_total_stats, ring, false); 2550 } 2551 2552 stats->tx_bytes = ring_total_stats.tx_bytes; 2553 stats->tx_packets = ring_total_stats.tx_packets; 2554 stats->rx_bytes = ring_total_stats.rx_bytes; 2555 stats->rx_packets = ring_total_stats.rx_packets; 2556 2557 stats->rx_errors = ring_total_stats.rx_errors; 2558 stats->multicast = ring_total_stats.multicast; 2559 stats->rx_length_errors = ring_total_stats.rx_length_errors; 2560 stats->rx_crc_errors = ring_total_stats.rx_crc_errors; 2561 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 2562 2563 stats->tx_errors = ring_total_stats.tx_errors; 2564 stats->rx_dropped = ring_total_stats.rx_dropped; 2565 stats->tx_dropped = ring_total_stats.tx_dropped; 2566 stats->collisions = netdev->stats.collisions; 2567 stats->rx_over_errors = netdev->stats.rx_over_errors; 2568 stats->rx_frame_errors = netdev->stats.rx_frame_errors; 2569 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; 2570 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; 2571 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; 2572 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; 2573 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; 2574 stats->tx_window_errors = netdev->stats.tx_window_errors; 2575 stats->rx_compressed = netdev->stats.rx_compressed; 2576 stats->tx_compressed = netdev->stats.tx_compressed; 2577 } 2578 2579 static int hns3_setup_tc(struct net_device *netdev, void *type_data) 2580 { 2581 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2582 struct hnae3_knic_private_info *kinfo; 2583 u8 tc = mqprio_qopt->qopt.num_tc; 2584 u16 mode = mqprio_qopt->mode; 2585 u8 hw = mqprio_qopt->qopt.hw; 2586 struct hnae3_handle *h; 2587 2588 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && 2589 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) 2590 return -EOPNOTSUPP; 2591 2592 if (tc > HNAE3_MAX_TC) 2593 return -EINVAL; 2594 2595 if (!netdev) 2596 return -EINVAL; 2597 2598 h = hns3_get_handle(netdev); 2599 kinfo = &h->kinfo; 2600 2601 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); 2602 2603 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? 2604 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; 2605 } 2606 2607 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, 2608 struct flow_cls_offload *flow) 2609 { 2610 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); 2611 struct hnae3_handle *h = hns3_get_handle(priv->netdev); 2612 2613 switch (flow->command) { 2614 case FLOW_CLS_REPLACE: 2615 if (h->ae_algo->ops->add_cls_flower) 2616 return h->ae_algo->ops->add_cls_flower(h, flow, tc); 2617 break; 2618 case FLOW_CLS_DESTROY: 2619 if (h->ae_algo->ops->del_cls_flower) 2620 return h->ae_algo->ops->del_cls_flower(h, flow); 2621 break; 2622 default: 2623 break; 2624 } 2625 2626 return -EOPNOTSUPP; 2627 } 2628 2629 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2630 void *cb_priv) 2631 { 2632 struct hns3_nic_priv *priv = cb_priv; 2633 2634 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) 2635 return -EOPNOTSUPP; 2636 2637 switch (type) { 2638 case TC_SETUP_CLSFLOWER: 2639 return hns3_setup_tc_cls_flower(priv, type_data); 2640 default: 2641 return -EOPNOTSUPP; 2642 } 2643 } 2644 2645 static LIST_HEAD(hns3_block_cb_list); 2646 2647 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, 2648 void *type_data) 2649 { 2650 struct hns3_nic_priv *priv = netdev_priv(dev); 2651 int ret; 2652 2653 switch (type) { 2654 case TC_SETUP_QDISC_MQPRIO: 2655 ret = hns3_setup_tc(dev, type_data); 2656 break; 2657 case TC_SETUP_BLOCK: 2658 ret = flow_block_cb_setup_simple(type_data, 2659 &hns3_block_cb_list, 2660 hns3_setup_tc_block_cb, 2661 priv, priv, true); 2662 break; 2663 default: 2664 return -EOPNOTSUPP; 2665 } 2666 2667 return ret; 2668 } 2669 2670 static int hns3_vlan_rx_add_vid(struct net_device *netdev, 2671 __be16 proto, u16 vid) 2672 { 2673 struct hnae3_handle *h = hns3_get_handle(netdev); 2674 int ret = -EIO; 2675 2676 if (h->ae_algo->ops->set_vlan_filter) 2677 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); 2678 2679 return ret; 2680 } 2681 2682 static int hns3_vlan_rx_kill_vid(struct net_device *netdev, 2683 __be16 proto, u16 vid) 2684 { 2685 struct hnae3_handle *h = hns3_get_handle(netdev); 2686 int ret = -EIO; 2687 2688 if (h->ae_algo->ops->set_vlan_filter) 2689 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); 2690 2691 return ret; 2692 } 2693 2694 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, 2695 u8 qos, __be16 vlan_proto) 2696 { 2697 struct hnae3_handle *h = hns3_get_handle(netdev); 2698 int ret = -EIO; 2699 2700 netif_dbg(h, drv, netdev, 2701 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", 2702 vf, vlan, qos, ntohs(vlan_proto)); 2703 2704 if (h->ae_algo->ops->set_vf_vlan_filter) 2705 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, 2706 qos, vlan_proto); 2707 2708 return ret; 2709 } 2710 2711 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) 2712 { 2713 struct hnae3_handle *handle = hns3_get_handle(netdev); 2714 2715 if (hns3_nic_resetting(netdev)) 2716 return -EBUSY; 2717 2718 if (!handle->ae_algo->ops->set_vf_spoofchk) 2719 return -EOPNOTSUPP; 2720 2721 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); 2722 } 2723 2724 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) 2725 { 2726 struct hnae3_handle *handle = hns3_get_handle(netdev); 2727 2728 if (!handle->ae_algo->ops->set_vf_trust) 2729 return -EOPNOTSUPP; 2730 2731 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); 2732 } 2733 2734 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) 2735 { 2736 struct hnae3_handle *h = hns3_get_handle(netdev); 2737 int ret; 2738 2739 if (hns3_nic_resetting(netdev)) 2740 return -EBUSY; 2741 2742 if (!h->ae_algo->ops->set_mtu) 2743 return -EOPNOTSUPP; 2744 2745 netif_dbg(h, drv, netdev, 2746 "change mtu from %u to %d\n", netdev->mtu, new_mtu); 2747 2748 ret = h->ae_algo->ops->set_mtu(h, new_mtu); 2749 if (ret) 2750 netdev_err(netdev, "failed to change MTU in hardware %d\n", 2751 ret); 2752 else 2753 netdev->mtu = new_mtu; 2754 2755 return ret; 2756 } 2757 2758 static int hns3_get_timeout_queue(struct net_device *ndev) 2759 { 2760 int i; 2761 2762 /* Find the stopped queue the same way the stack does */ 2763 for (i = 0; i < ndev->num_tx_queues; i++) { 2764 struct netdev_queue *q; 2765 unsigned long trans_start; 2766 2767 q = netdev_get_tx_queue(ndev, i); 2768 trans_start = READ_ONCE(q->trans_start); 2769 if (netif_xmit_stopped(q) && 2770 time_after(jiffies, 2771 (trans_start + ndev->watchdog_timeo))) { 2772 #ifdef CONFIG_BQL 2773 struct dql *dql = &q->dql; 2774 2775 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n", 2776 dql->last_obj_cnt, dql->num_queued, 2777 dql->adj_limit, dql->num_completed); 2778 #endif 2779 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", 2780 q->state, 2781 jiffies_to_msecs(jiffies - trans_start)); 2782 break; 2783 } 2784 } 2785 2786 return i; 2787 } 2788 2789 static void hns3_dump_queue_stats(struct net_device *ndev, 2790 struct hns3_enet_ring *tx_ring, 2791 int timeout_queue) 2792 { 2793 struct napi_struct *napi = &tx_ring->tqp_vector->napi; 2794 struct hns3_nic_priv *priv = netdev_priv(ndev); 2795 2796 netdev_info(ndev, 2797 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", 2798 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, 2799 tx_ring->next_to_clean, napi->state); 2800 2801 netdev_info(ndev, 2802 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", 2803 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, 2804 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); 2805 2806 netdev_info(ndev, 2807 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", 2808 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, 2809 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); 2810 2811 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n", 2812 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell); 2813 } 2814 2815 static void hns3_dump_queue_reg(struct net_device *ndev, 2816 struct hns3_enet_ring *tx_ring) 2817 { 2818 netdev_info(ndev, 2819 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", 2820 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG), 2821 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG), 2822 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG), 2823 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG), 2824 readl(tx_ring->tqp_vector->mask_addr)); 2825 netdev_info(ndev, 2826 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", 2827 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG), 2828 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG), 2829 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG), 2830 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG), 2831 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG), 2832 hns3_tqp_read_reg(tx_ring, 2833 HNS3_RING_TX_RING_EBD_OFFSET_REG)); 2834 } 2835 2836 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) 2837 { 2838 struct hns3_nic_priv *priv = netdev_priv(ndev); 2839 struct hnae3_handle *h = hns3_get_handle(ndev); 2840 struct hns3_enet_ring *tx_ring; 2841 int timeout_queue; 2842 2843 timeout_queue = hns3_get_timeout_queue(ndev); 2844 if (timeout_queue >= ndev->num_tx_queues) { 2845 netdev_info(ndev, 2846 "no netdev TX timeout queue found, timeout count: %llu\n", 2847 priv->tx_timeout_count); 2848 return false; 2849 } 2850 2851 priv->tx_timeout_count++; 2852 2853 tx_ring = &priv->ring[timeout_queue]; 2854 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue); 2855 2856 /* When mac received many pause frames continuous, it's unable to send 2857 * packets, which may cause tx timeout 2858 */ 2859 if (h->ae_algo->ops->get_mac_stats) { 2860 struct hns3_mac_stats mac_stats; 2861 2862 h->ae_algo->ops->get_mac_stats(h, &mac_stats); 2863 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", 2864 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); 2865 } 2866 2867 hns3_dump_queue_reg(ndev, tx_ring); 2868 2869 return true; 2870 } 2871 2872 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 2873 { 2874 struct hns3_nic_priv *priv = netdev_priv(ndev); 2875 struct hnae3_handle *h = priv->ae_handle; 2876 2877 if (!hns3_get_tx_timeo_queue_info(ndev)) 2878 return; 2879 2880 /* request the reset, and let the hclge to determine 2881 * which reset level should be done 2882 */ 2883 if (h->ae_algo->ops->reset_event) 2884 h->ae_algo->ops->reset_event(h->pdev, h); 2885 } 2886 2887 #ifdef CONFIG_RFS_ACCEL 2888 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 2889 u16 rxq_index, u32 flow_id) 2890 { 2891 struct hnae3_handle *h = hns3_get_handle(dev); 2892 struct flow_keys fkeys; 2893 2894 if (!h->ae_algo->ops->add_arfs_entry) 2895 return -EOPNOTSUPP; 2896 2897 if (skb->encapsulation) 2898 return -EPROTONOSUPPORT; 2899 2900 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) 2901 return -EPROTONOSUPPORT; 2902 2903 if ((fkeys.basic.n_proto != htons(ETH_P_IP) && 2904 fkeys.basic.n_proto != htons(ETH_P_IPV6)) || 2905 (fkeys.basic.ip_proto != IPPROTO_TCP && 2906 fkeys.basic.ip_proto != IPPROTO_UDP)) 2907 return -EPROTONOSUPPORT; 2908 2909 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); 2910 } 2911 #endif 2912 2913 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, 2914 struct ifla_vf_info *ivf) 2915 { 2916 struct hnae3_handle *h = hns3_get_handle(ndev); 2917 2918 if (!h->ae_algo->ops->get_vf_config) 2919 return -EOPNOTSUPP; 2920 2921 return h->ae_algo->ops->get_vf_config(h, vf, ivf); 2922 } 2923 2924 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, 2925 int link_state) 2926 { 2927 struct hnae3_handle *h = hns3_get_handle(ndev); 2928 2929 if (!h->ae_algo->ops->set_vf_link_state) 2930 return -EOPNOTSUPP; 2931 2932 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); 2933 } 2934 2935 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, 2936 int min_tx_rate, int max_tx_rate) 2937 { 2938 struct hnae3_handle *h = hns3_get_handle(ndev); 2939 2940 if (!h->ae_algo->ops->set_vf_rate) 2941 return -EOPNOTSUPP; 2942 2943 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, 2944 false); 2945 } 2946 2947 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 2948 { 2949 struct hnae3_handle *h = hns3_get_handle(netdev); 2950 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 2951 2952 if (!h->ae_algo->ops->set_vf_mac) 2953 return -EOPNOTSUPP; 2954 2955 if (is_multicast_ether_addr(mac)) { 2956 hnae3_format_mac_addr(format_mac_addr, mac); 2957 netdev_err(netdev, 2958 "Invalid MAC:%s specified. Could not set MAC\n", 2959 format_mac_addr); 2960 return -EINVAL; 2961 } 2962 2963 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); 2964 } 2965 2966 static const struct net_device_ops hns3_nic_netdev_ops = { 2967 .ndo_open = hns3_nic_net_open, 2968 .ndo_stop = hns3_nic_net_stop, 2969 .ndo_start_xmit = hns3_nic_net_xmit, 2970 .ndo_tx_timeout = hns3_nic_net_timeout, 2971 .ndo_set_mac_address = hns3_nic_net_set_mac_address, 2972 .ndo_eth_ioctl = hns3_nic_do_ioctl, 2973 .ndo_change_mtu = hns3_nic_change_mtu, 2974 .ndo_set_features = hns3_nic_set_features, 2975 .ndo_features_check = hns3_features_check, 2976 .ndo_get_stats64 = hns3_nic_get_stats64, 2977 .ndo_setup_tc = hns3_nic_setup_tc, 2978 .ndo_set_rx_mode = hns3_nic_set_rx_mode, 2979 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, 2980 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, 2981 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, 2982 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, 2983 .ndo_set_vf_trust = hns3_set_vf_trust, 2984 #ifdef CONFIG_RFS_ACCEL 2985 .ndo_rx_flow_steer = hns3_rx_flow_steer, 2986 #endif 2987 .ndo_get_vf_config = hns3_nic_get_vf_config, 2988 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, 2989 .ndo_set_vf_rate = hns3_nic_set_vf_rate, 2990 .ndo_set_vf_mac = hns3_nic_set_vf_mac, 2991 }; 2992 2993 bool hns3_is_phys_func(struct pci_dev *pdev) 2994 { 2995 u32 dev_id = pdev->device; 2996 2997 switch (dev_id) { 2998 case HNAE3_DEV_ID_GE: 2999 case HNAE3_DEV_ID_25GE: 3000 case HNAE3_DEV_ID_25GE_RDMA: 3001 case HNAE3_DEV_ID_25GE_RDMA_MACSEC: 3002 case HNAE3_DEV_ID_50GE_RDMA: 3003 case HNAE3_DEV_ID_50GE_RDMA_MACSEC: 3004 case HNAE3_DEV_ID_100G_RDMA_MACSEC: 3005 case HNAE3_DEV_ID_200G_RDMA: 3006 return true; 3007 case HNAE3_DEV_ID_VF: 3008 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: 3009 return false; 3010 default: 3011 dev_warn(&pdev->dev, "un-recognized pci device-id %u", 3012 dev_id); 3013 } 3014 3015 return false; 3016 } 3017 3018 static void hns3_disable_sriov(struct pci_dev *pdev) 3019 { 3020 /* If our VFs are assigned we cannot shut down SR-IOV 3021 * without causing issues, so just leave the hardware 3022 * available but disabled 3023 */ 3024 if (pci_vfs_assigned(pdev)) { 3025 dev_warn(&pdev->dev, 3026 "disabling driver while VFs are assigned\n"); 3027 return; 3028 } 3029 3030 pci_disable_sriov(pdev); 3031 } 3032 3033 /* hns3_probe - Device initialization routine 3034 * @pdev: PCI device information struct 3035 * @ent: entry in hns3_pci_tbl 3036 * 3037 * hns3_probe initializes a PF identified by a pci_dev structure. 3038 * The OS initialization, configuring of the PF private structure, 3039 * and a hardware reset occur. 3040 * 3041 * Returns 0 on success, negative on failure 3042 */ 3043 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3044 { 3045 struct hnae3_ae_dev *ae_dev; 3046 int ret; 3047 3048 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); 3049 if (!ae_dev) 3050 return -ENOMEM; 3051 3052 ae_dev->pdev = pdev; 3053 ae_dev->flag = ent->driver_data; 3054 pci_set_drvdata(pdev, ae_dev); 3055 3056 ret = hnae3_register_ae_dev(ae_dev); 3057 if (ret) 3058 pci_set_drvdata(pdev, NULL); 3059 3060 return ret; 3061 } 3062 3063 /** 3064 * hns3_clean_vf_config 3065 * @pdev: pointer to a pci_dev structure 3066 * @num_vfs: number of VFs allocated 3067 * 3068 * Clean residual vf config after disable sriov 3069 **/ 3070 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs) 3071 { 3072 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3073 3074 if (ae_dev->ops->clean_vf_config) 3075 ae_dev->ops->clean_vf_config(ae_dev, num_vfs); 3076 } 3077 3078 /* hns3_remove - Device removal routine 3079 * @pdev: PCI device information struct 3080 */ 3081 static void hns3_remove(struct pci_dev *pdev) 3082 { 3083 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3084 3085 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) 3086 hns3_disable_sriov(pdev); 3087 3088 hnae3_unregister_ae_dev(ae_dev); 3089 pci_set_drvdata(pdev, NULL); 3090 } 3091 3092 /** 3093 * hns3_pci_sriov_configure 3094 * @pdev: pointer to a pci_dev structure 3095 * @num_vfs: number of VFs to allocate 3096 * 3097 * Enable or change the number of VFs. Called when the user updates the number 3098 * of VFs in sysfs. 3099 **/ 3100 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) 3101 { 3102 int ret; 3103 3104 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { 3105 dev_warn(&pdev->dev, "Can not config SRIOV\n"); 3106 return -EINVAL; 3107 } 3108 3109 if (num_vfs) { 3110 ret = pci_enable_sriov(pdev, num_vfs); 3111 if (ret) 3112 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); 3113 else 3114 return num_vfs; 3115 } else if (!pci_vfs_assigned(pdev)) { 3116 int num_vfs_pre = pci_num_vf(pdev); 3117 3118 pci_disable_sriov(pdev); 3119 hns3_clean_vf_config(pdev, num_vfs_pre); 3120 } else { 3121 dev_warn(&pdev->dev, 3122 "Unable to free VFs because some are assigned to VMs.\n"); 3123 } 3124 3125 return 0; 3126 } 3127 3128 static void hns3_shutdown(struct pci_dev *pdev) 3129 { 3130 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3131 3132 hnae3_unregister_ae_dev(ae_dev); 3133 pci_set_drvdata(pdev, NULL); 3134 3135 if (system_state == SYSTEM_POWER_OFF) 3136 pci_set_power_state(pdev, PCI_D3hot); 3137 } 3138 3139 static int __maybe_unused hns3_suspend(struct device *dev) 3140 { 3141 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3142 3143 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3144 dev_info(dev, "Begin to suspend.\n"); 3145 if (ae_dev->ops && ae_dev->ops->reset_prepare) 3146 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET); 3147 } 3148 3149 return 0; 3150 } 3151 3152 static int __maybe_unused hns3_resume(struct device *dev) 3153 { 3154 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3155 3156 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3157 dev_info(dev, "Begin to resume.\n"); 3158 if (ae_dev->ops && ae_dev->ops->reset_done) 3159 ae_dev->ops->reset_done(ae_dev); 3160 } 3161 3162 return 0; 3163 } 3164 3165 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, 3166 pci_channel_state_t state) 3167 { 3168 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3169 pci_ers_result_t ret; 3170 3171 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state); 3172 3173 if (state == pci_channel_io_perm_failure) 3174 return PCI_ERS_RESULT_DISCONNECT; 3175 3176 if (!ae_dev || !ae_dev->ops) { 3177 dev_err(&pdev->dev, 3178 "Can't recover - error happened before device initialized\n"); 3179 return PCI_ERS_RESULT_NONE; 3180 } 3181 3182 if (ae_dev->ops->handle_hw_ras_error) 3183 ret = ae_dev->ops->handle_hw_ras_error(ae_dev); 3184 else 3185 return PCI_ERS_RESULT_NONE; 3186 3187 return ret; 3188 } 3189 3190 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) 3191 { 3192 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3193 const struct hnae3_ae_ops *ops; 3194 enum hnae3_reset_type reset_type; 3195 struct device *dev = &pdev->dev; 3196 3197 if (!ae_dev || !ae_dev->ops) 3198 return PCI_ERS_RESULT_NONE; 3199 3200 ops = ae_dev->ops; 3201 /* request the reset */ 3202 if (ops->reset_event && ops->get_reset_level && 3203 ops->set_default_reset_request) { 3204 if (ae_dev->hw_err_reset_req) { 3205 reset_type = ops->get_reset_level(ae_dev, 3206 &ae_dev->hw_err_reset_req); 3207 ops->set_default_reset_request(ae_dev, reset_type); 3208 dev_info(dev, "requesting reset due to PCI error\n"); 3209 ops->reset_event(pdev, NULL); 3210 } 3211 3212 return PCI_ERS_RESULT_RECOVERED; 3213 } 3214 3215 return PCI_ERS_RESULT_DISCONNECT; 3216 } 3217 3218 static void hns3_reset_prepare(struct pci_dev *pdev) 3219 { 3220 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3221 3222 dev_info(&pdev->dev, "FLR prepare\n"); 3223 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare) 3224 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET); 3225 } 3226 3227 static void hns3_reset_done(struct pci_dev *pdev) 3228 { 3229 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3230 3231 dev_info(&pdev->dev, "FLR done\n"); 3232 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done) 3233 ae_dev->ops->reset_done(ae_dev); 3234 } 3235 3236 static const struct pci_error_handlers hns3_err_handler = { 3237 .error_detected = hns3_error_detected, 3238 .slot_reset = hns3_slot_reset, 3239 .reset_prepare = hns3_reset_prepare, 3240 .reset_done = hns3_reset_done, 3241 }; 3242 3243 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume); 3244 3245 static struct pci_driver hns3_driver = { 3246 .name = hns3_driver_name, 3247 .id_table = hns3_pci_tbl, 3248 .probe = hns3_probe, 3249 .remove = hns3_remove, 3250 .shutdown = hns3_shutdown, 3251 .driver.pm = &hns3_pm_ops, 3252 .sriov_configure = hns3_pci_sriov_configure, 3253 .err_handler = &hns3_err_handler, 3254 }; 3255 3256 /* set default feature to hns3 */ 3257 static void hns3_set_default_feature(struct net_device *netdev) 3258 { 3259 struct hnae3_handle *h = hns3_get_handle(netdev); 3260 struct pci_dev *pdev = h->pdev; 3261 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3262 3263 netdev->priv_flags |= IFF_UNICAST_FLT; 3264 3265 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3266 3267 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3268 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 3269 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 3270 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | 3271 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | 3272 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; 3273 3274 if (hnae3_ae_dev_gro_supported(ae_dev)) 3275 netdev->features |= NETIF_F_GRO_HW; 3276 3277 if (hnae3_ae_dev_fd_supported(ae_dev)) 3278 netdev->features |= NETIF_F_NTUPLE; 3279 3280 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) 3281 netdev->features |= NETIF_F_GSO_UDP_L4; 3282 3283 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 3284 netdev->features |= NETIF_F_HW_CSUM; 3285 else 3286 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3287 3288 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) 3289 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 3290 3291 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) 3292 netdev->features |= NETIF_F_HW_TC; 3293 3294 netdev->hw_features |= netdev->features; 3295 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 3296 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3297 3298 netdev->vlan_features |= netdev->features & 3299 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | 3300 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE | 3301 NETIF_F_HW_TC); 3302 3303 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID; 3304 } 3305 3306 static int hns3_alloc_buffer(struct hns3_enet_ring *ring, 3307 struct hns3_desc_cb *cb) 3308 { 3309 unsigned int order = hns3_page_order(ring); 3310 struct page *p; 3311 3312 if (ring->page_pool) { 3313 p = page_pool_dev_alloc_frag(ring->page_pool, 3314 &cb->page_offset, 3315 hns3_buf_size(ring)); 3316 if (unlikely(!p)) 3317 return -ENOMEM; 3318 3319 cb->priv = p; 3320 cb->buf = page_address(p); 3321 cb->dma = page_pool_get_dma_addr(p); 3322 cb->type = DESC_TYPE_PP_FRAG; 3323 cb->reuse_flag = 0; 3324 return 0; 3325 } 3326 3327 p = dev_alloc_pages(order); 3328 if (!p) 3329 return -ENOMEM; 3330 3331 cb->priv = p; 3332 cb->page_offset = 0; 3333 cb->reuse_flag = 0; 3334 cb->buf = page_address(p); 3335 cb->length = hns3_page_size(ring); 3336 cb->type = DESC_TYPE_PAGE; 3337 page_ref_add(p, USHRT_MAX - 1); 3338 cb->pagecnt_bias = USHRT_MAX; 3339 3340 return 0; 3341 } 3342 3343 static void hns3_free_buffer(struct hns3_enet_ring *ring, 3344 struct hns3_desc_cb *cb, int budget) 3345 { 3346 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD | 3347 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB)) 3348 napi_consume_skb(cb->priv, budget); 3349 else if (!HNAE3_IS_TX_RING(ring)) { 3350 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias) 3351 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias); 3352 else if (cb->type & DESC_TYPE_PP_FRAG) 3353 page_pool_put_full_page(ring->page_pool, cb->priv, 3354 false); 3355 } 3356 memset(cb, 0, sizeof(*cb)); 3357 } 3358 3359 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) 3360 { 3361 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, 3362 cb->length, ring_to_dma_dir(ring)); 3363 3364 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) 3365 return -EIO; 3366 3367 return 0; 3368 } 3369 3370 static void hns3_unmap_buffer(struct hns3_enet_ring *ring, 3371 struct hns3_desc_cb *cb) 3372 { 3373 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 3374 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, 3375 ring_to_dma_dir(ring)); 3376 else if ((cb->type & DESC_TYPE_PAGE) && cb->length) 3377 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, 3378 ring_to_dma_dir(ring)); 3379 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | 3380 DESC_TYPE_SGL_SKB)) 3381 hns3_tx_spare_reclaim_cb(ring, cb); 3382 } 3383 3384 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) 3385 { 3386 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3387 ring->desc[i].addr = 0; 3388 ring->desc_cb[i].refill = 0; 3389 } 3390 3391 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i, 3392 int budget) 3393 { 3394 struct hns3_desc_cb *cb = &ring->desc_cb[i]; 3395 3396 if (!ring->desc_cb[i].dma) 3397 return; 3398 3399 hns3_buffer_detach(ring, i); 3400 hns3_free_buffer(ring, cb, budget); 3401 } 3402 3403 static void hns3_free_buffers(struct hns3_enet_ring *ring) 3404 { 3405 int i; 3406 3407 for (i = 0; i < ring->desc_num; i++) 3408 hns3_free_buffer_detach(ring, i, 0); 3409 } 3410 3411 /* free desc along with its attached buffer */ 3412 static void hns3_free_desc(struct hns3_enet_ring *ring) 3413 { 3414 int size = ring->desc_num * sizeof(ring->desc[0]); 3415 3416 hns3_free_buffers(ring); 3417 3418 if (ring->desc) { 3419 dma_free_coherent(ring_to_dev(ring), size, 3420 ring->desc, ring->desc_dma_addr); 3421 ring->desc = NULL; 3422 } 3423 } 3424 3425 static int hns3_alloc_desc(struct hns3_enet_ring *ring) 3426 { 3427 int size = ring->desc_num * sizeof(ring->desc[0]); 3428 3429 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, 3430 &ring->desc_dma_addr, GFP_KERNEL); 3431 if (!ring->desc) 3432 return -ENOMEM; 3433 3434 return 0; 3435 } 3436 3437 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring, 3438 struct hns3_desc_cb *cb) 3439 { 3440 int ret; 3441 3442 ret = hns3_alloc_buffer(ring, cb); 3443 if (ret || ring->page_pool) 3444 goto out; 3445 3446 ret = hns3_map_buffer(ring, cb); 3447 if (ret) 3448 goto out_with_buf; 3449 3450 return 0; 3451 3452 out_with_buf: 3453 hns3_free_buffer(ring, cb, 0); 3454 out: 3455 return ret; 3456 } 3457 3458 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i) 3459 { 3460 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]); 3461 3462 if (ret) 3463 return ret; 3464 3465 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3466 ring->desc_cb[i].page_offset); 3467 ring->desc_cb[i].refill = 1; 3468 3469 return 0; 3470 } 3471 3472 /* Allocate memory for raw pkg, and map with dma */ 3473 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) 3474 { 3475 int i, j, ret; 3476 3477 for (i = 0; i < ring->desc_num; i++) { 3478 ret = hns3_alloc_and_attach_buffer(ring, i); 3479 if (ret) 3480 goto out_buffer_fail; 3481 } 3482 3483 return 0; 3484 3485 out_buffer_fail: 3486 for (j = i - 1; j >= 0; j--) 3487 hns3_free_buffer_detach(ring, j, 0); 3488 return ret; 3489 } 3490 3491 /* detach a in-used buffer and replace with a reserved one */ 3492 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, 3493 struct hns3_desc_cb *res_cb) 3494 { 3495 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3496 ring->desc_cb[i] = *res_cb; 3497 ring->desc_cb[i].refill = 1; 3498 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3499 ring->desc_cb[i].page_offset); 3500 ring->desc[i].rx.bd_base_info = 0; 3501 } 3502 3503 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) 3504 { 3505 ring->desc_cb[i].reuse_flag = 0; 3506 ring->desc_cb[i].refill = 1; 3507 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3508 ring->desc_cb[i].page_offset); 3509 ring->desc[i].rx.bd_base_info = 0; 3510 3511 dma_sync_single_for_device(ring_to_dev(ring), 3512 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset, 3513 hns3_buf_size(ring), 3514 DMA_FROM_DEVICE); 3515 } 3516 3517 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, 3518 int *bytes, int *pkts, int budget) 3519 { 3520 /* pair with ring->last_to_use update in hns3_tx_doorbell(), 3521 * smp_store_release() is not used in hns3_tx_doorbell() because 3522 * the doorbell operation already have the needed barrier operation. 3523 */ 3524 int ltu = smp_load_acquire(&ring->last_to_use); 3525 int ntc = ring->next_to_clean; 3526 struct hns3_desc_cb *desc_cb; 3527 bool reclaimed = false; 3528 struct hns3_desc *desc; 3529 3530 while (ltu != ntc) { 3531 desc = &ring->desc[ntc]; 3532 3533 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) & 3534 BIT(HNS3_TXD_VLD_B)) 3535 break; 3536 3537 desc_cb = &ring->desc_cb[ntc]; 3538 3539 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL | 3540 DESC_TYPE_BOUNCE_HEAD | 3541 DESC_TYPE_SGL_SKB)) { 3542 (*pkts)++; 3543 (*bytes) += desc_cb->send_bytes; 3544 } 3545 3546 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ 3547 hns3_free_buffer_detach(ring, ntc, budget); 3548 3549 if (++ntc == ring->desc_num) 3550 ntc = 0; 3551 3552 /* Issue prefetch for next Tx descriptor */ 3553 prefetch(&ring->desc_cb[ntc]); 3554 reclaimed = true; 3555 } 3556 3557 if (unlikely(!reclaimed)) 3558 return false; 3559 3560 /* This smp_store_release() pairs with smp_load_acquire() in 3561 * ring_space called by hns3_nic_net_xmit. 3562 */ 3563 smp_store_release(&ring->next_to_clean, ntc); 3564 3565 hns3_tx_spare_update(ring); 3566 3567 return true; 3568 } 3569 3570 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget) 3571 { 3572 struct net_device *netdev = ring_to_netdev(ring); 3573 struct hns3_nic_priv *priv = netdev_priv(netdev); 3574 struct netdev_queue *dev_queue; 3575 int bytes, pkts; 3576 3577 bytes = 0; 3578 pkts = 0; 3579 3580 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget))) 3581 return; 3582 3583 ring->tqp_vector->tx_group.total_bytes += bytes; 3584 ring->tqp_vector->tx_group.total_packets += pkts; 3585 3586 u64_stats_update_begin(&ring->syncp); 3587 ring->stats.tx_bytes += bytes; 3588 ring->stats.tx_pkts += pkts; 3589 u64_stats_update_end(&ring->syncp); 3590 3591 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); 3592 netdev_tx_completed_queue(dev_queue, pkts, bytes); 3593 3594 if (unlikely(netif_carrier_ok(netdev) && 3595 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { 3596 /* Make sure that anybody stopping the queue after this 3597 * sees the new next_to_clean. 3598 */ 3599 smp_mb(); 3600 if (netif_tx_queue_stopped(dev_queue) && 3601 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 3602 netif_tx_wake_queue(dev_queue); 3603 ring->stats.restart_queue++; 3604 } 3605 } 3606 } 3607 3608 static int hns3_desc_unused(struct hns3_enet_ring *ring) 3609 { 3610 int ntc = ring->next_to_clean; 3611 int ntu = ring->next_to_use; 3612 3613 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill)) 3614 return ring->desc_num; 3615 3616 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 3617 } 3618 3619 /* Return true if there is any allocation failure */ 3620 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, 3621 int cleand_count) 3622 { 3623 struct hns3_desc_cb *desc_cb; 3624 struct hns3_desc_cb res_cbs; 3625 int i, ret; 3626 3627 for (i = 0; i < cleand_count; i++) { 3628 desc_cb = &ring->desc_cb[ring->next_to_use]; 3629 if (desc_cb->reuse_flag) { 3630 hns3_ring_stats_update(ring, reuse_pg_cnt); 3631 3632 hns3_reuse_buffer(ring, ring->next_to_use); 3633 } else { 3634 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 3635 if (ret) { 3636 hns3_ring_stats_update(ring, sw_err_cnt); 3637 3638 hns3_rl_err(ring_to_netdev(ring), 3639 "alloc rx buffer failed: %d\n", 3640 ret); 3641 3642 writel(i, ring->tqp->io_base + 3643 HNS3_RING_RX_RING_HEAD_REG); 3644 return true; 3645 } 3646 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 3647 3648 hns3_ring_stats_update(ring, non_reuse_pg); 3649 } 3650 3651 ring_ptr_move_fw(ring, next_to_use); 3652 } 3653 3654 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); 3655 return false; 3656 } 3657 3658 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb) 3659 { 3660 return page_count(cb->priv) == cb->pagecnt_bias; 3661 } 3662 3663 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i, 3664 struct hns3_enet_ring *ring, 3665 int pull_len, 3666 struct hns3_desc_cb *desc_cb) 3667 { 3668 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3669 u32 frag_offset = desc_cb->page_offset + pull_len; 3670 int size = le16_to_cpu(desc->rx.size); 3671 u32 frag_size = size - pull_len; 3672 void *frag = napi_alloc_frag(frag_size); 3673 3674 if (unlikely(!frag)) { 3675 hns3_ring_stats_update(ring, frag_alloc_err); 3676 3677 hns3_rl_err(ring_to_netdev(ring), 3678 "failed to allocate rx frag\n"); 3679 return -ENOMEM; 3680 } 3681 3682 desc_cb->reuse_flag = 1; 3683 memcpy(frag, desc_cb->buf + frag_offset, frag_size); 3684 skb_add_rx_frag(skb, i, virt_to_page(frag), 3685 offset_in_page(frag), frag_size, frag_size); 3686 3687 hns3_ring_stats_update(ring, frag_alloc); 3688 return 0; 3689 } 3690 3691 static void hns3_nic_reuse_page(struct sk_buff *skb, int i, 3692 struct hns3_enet_ring *ring, int pull_len, 3693 struct hns3_desc_cb *desc_cb) 3694 { 3695 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3696 u32 frag_offset = desc_cb->page_offset + pull_len; 3697 int size = le16_to_cpu(desc->rx.size); 3698 u32 truesize = hns3_buf_size(ring); 3699 u32 frag_size = size - pull_len; 3700 int ret = 0; 3701 bool reused; 3702 3703 if (ring->page_pool) { 3704 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3705 frag_size, truesize); 3706 return; 3707 } 3708 3709 /* Avoid re-using remote or pfmem page */ 3710 if (unlikely(!dev_page_is_reusable(desc_cb->priv))) 3711 goto out; 3712 3713 reused = hns3_can_reuse_page(desc_cb); 3714 3715 /* Rx page can be reused when: 3716 * 1. Rx page is only owned by the driver when page_offset 3717 * is zero, which means 0 @ truesize will be used by 3718 * stack after skb_add_rx_frag() is called, and the rest 3719 * of rx page can be reused by driver. 3720 * Or 3721 * 2. Rx page is only owned by the driver when page_offset 3722 * is non-zero, which means page_offset @ truesize will 3723 * be used by stack after skb_add_rx_frag() is called, 3724 * and 0 @ truesize can be reused by driver. 3725 */ 3726 if ((!desc_cb->page_offset && reused) || 3727 ((desc_cb->page_offset + truesize + truesize) <= 3728 hns3_page_size(ring) && desc_cb->page_offset)) { 3729 desc_cb->page_offset += truesize; 3730 desc_cb->reuse_flag = 1; 3731 } else if (desc_cb->page_offset && reused) { 3732 desc_cb->page_offset = 0; 3733 desc_cb->reuse_flag = 1; 3734 } else if (frag_size <= ring->rx_copybreak) { 3735 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb); 3736 if (ret) 3737 goto out; 3738 } 3739 3740 out: 3741 desc_cb->pagecnt_bias--; 3742 3743 if (unlikely(!desc_cb->pagecnt_bias)) { 3744 page_ref_add(desc_cb->priv, USHRT_MAX); 3745 desc_cb->pagecnt_bias = USHRT_MAX; 3746 } 3747 3748 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3749 frag_size, truesize); 3750 3751 if (unlikely(!desc_cb->reuse_flag)) 3752 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); 3753 } 3754 3755 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) 3756 { 3757 __be16 type = skb->protocol; 3758 struct tcphdr *th; 3759 int depth = 0; 3760 3761 while (eth_type_vlan(type)) { 3762 struct vlan_hdr *vh; 3763 3764 if ((depth + VLAN_HLEN) > skb_headlen(skb)) 3765 return -EFAULT; 3766 3767 vh = (struct vlan_hdr *)(skb->data + depth); 3768 type = vh->h_vlan_encapsulated_proto; 3769 depth += VLAN_HLEN; 3770 } 3771 3772 skb_set_network_header(skb, depth); 3773 3774 if (type == htons(ETH_P_IP)) { 3775 const struct iphdr *iph = ip_hdr(skb); 3776 3777 depth += sizeof(struct iphdr); 3778 skb_set_transport_header(skb, depth); 3779 th = tcp_hdr(skb); 3780 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, 3781 iph->daddr, 0); 3782 } else if (type == htons(ETH_P_IPV6)) { 3783 const struct ipv6hdr *iph = ipv6_hdr(skb); 3784 3785 depth += sizeof(struct ipv6hdr); 3786 skb_set_transport_header(skb, depth); 3787 th = tcp_hdr(skb); 3788 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, 3789 &iph->daddr, 0); 3790 } else { 3791 hns3_rl_err(skb->dev, 3792 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", 3793 be16_to_cpu(type), depth); 3794 return -EFAULT; 3795 } 3796 3797 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3798 if (th->cwr) 3799 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3800 3801 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) 3802 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; 3803 3804 skb->csum_start = (unsigned char *)th - skb->head; 3805 skb->csum_offset = offsetof(struct tcphdr, check); 3806 skb->ip_summed = CHECKSUM_PARTIAL; 3807 3808 trace_hns3_gro(skb); 3809 3810 return 0; 3811 } 3812 3813 static bool hns3_checksum_complete(struct hns3_enet_ring *ring, 3814 struct sk_buff *skb, u32 ptype, u16 csum) 3815 { 3816 if (ptype == HNS3_INVALID_PTYPE || 3817 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE) 3818 return false; 3819 3820 hns3_ring_stats_update(ring, csum_complete); 3821 skb->ip_summed = CHECKSUM_COMPLETE; 3822 skb->csum = csum_unfold((__force __sum16)csum); 3823 3824 return true; 3825 } 3826 3827 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info, 3828 u32 ol_info, u32 ptype) 3829 { 3830 int l3_type, l4_type; 3831 int ol4_type; 3832 3833 if (ptype != HNS3_INVALID_PTYPE) { 3834 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level; 3835 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed; 3836 3837 return; 3838 } 3839 3840 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, 3841 HNS3_RXD_OL4ID_S); 3842 switch (ol4_type) { 3843 case HNS3_OL4_TYPE_MAC_IN_UDP: 3844 case HNS3_OL4_TYPE_NVGRE: 3845 skb->csum_level = 1; 3846 fallthrough; 3847 case HNS3_OL4_TYPE_NO_TUN: 3848 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 3849 HNS3_RXD_L3ID_S); 3850 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, 3851 HNS3_RXD_L4ID_S); 3852 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ 3853 if ((l3_type == HNS3_L3_TYPE_IPV4 || 3854 l3_type == HNS3_L3_TYPE_IPV6) && 3855 (l4_type == HNS3_L4_TYPE_UDP || 3856 l4_type == HNS3_L4_TYPE_TCP || 3857 l4_type == HNS3_L4_TYPE_SCTP)) 3858 skb->ip_summed = CHECKSUM_UNNECESSARY; 3859 break; 3860 default: 3861 break; 3862 } 3863 } 3864 3865 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, 3866 u32 l234info, u32 bd_base_info, u32 ol_info, 3867 u16 csum) 3868 { 3869 struct net_device *netdev = ring_to_netdev(ring); 3870 struct hns3_nic_priv *priv = netdev_priv(netdev); 3871 u32 ptype = HNS3_INVALID_PTYPE; 3872 3873 skb->ip_summed = CHECKSUM_NONE; 3874 3875 skb_checksum_none_assert(skb); 3876 3877 if (!(netdev->features & NETIF_F_RXCSUM)) 3878 return; 3879 3880 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) 3881 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 3882 HNS3_RXD_PTYPE_S); 3883 3884 if (hns3_checksum_complete(ring, skb, ptype, csum)) 3885 return; 3886 3887 /* check if hardware has done checksum */ 3888 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) 3889 return; 3890 3891 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | 3892 BIT(HNS3_RXD_OL3E_B) | 3893 BIT(HNS3_RXD_OL4E_B)))) { 3894 hns3_ring_stats_update(ring, l3l4_csum_err); 3895 3896 return; 3897 } 3898 3899 hns3_rx_handle_csum(skb, l234info, ol_info, ptype); 3900 } 3901 3902 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) 3903 { 3904 if (skb_has_frag_list(skb)) 3905 napi_gro_flush(&ring->tqp_vector->napi, false); 3906 3907 napi_gro_receive(&ring->tqp_vector->napi, skb); 3908 } 3909 3910 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, 3911 struct hns3_desc *desc, u32 l234info, 3912 u16 *vlan_tag) 3913 { 3914 struct hnae3_handle *handle = ring->tqp->handle; 3915 struct pci_dev *pdev = ring->tqp->handle->pdev; 3916 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3917 3918 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) { 3919 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3920 if (!(*vlan_tag & VLAN_VID_MASK)) 3921 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3922 3923 return (*vlan_tag != 0); 3924 } 3925 3926 #define HNS3_STRP_OUTER_VLAN 0x1 3927 #define HNS3_STRP_INNER_VLAN 0x2 3928 #define HNS3_STRP_BOTH 0x3 3929 3930 /* Hardware always insert VLAN tag into RX descriptor when 3931 * remove the tag from packet, driver needs to determine 3932 * reporting which tag to stack. 3933 */ 3934 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, 3935 HNS3_RXD_STRP_TAGP_S)) { 3936 case HNS3_STRP_OUTER_VLAN: 3937 if (handle->port_base_vlan_state != 3938 HNAE3_PORT_BASE_VLAN_DISABLE) 3939 return false; 3940 3941 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3942 return true; 3943 case HNS3_STRP_INNER_VLAN: 3944 if (handle->port_base_vlan_state != 3945 HNAE3_PORT_BASE_VLAN_DISABLE) 3946 return false; 3947 3948 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3949 return true; 3950 case HNS3_STRP_BOTH: 3951 if (handle->port_base_vlan_state == 3952 HNAE3_PORT_BASE_VLAN_DISABLE) 3953 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3954 else 3955 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3956 3957 return true; 3958 default: 3959 return false; 3960 } 3961 } 3962 3963 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring) 3964 { 3965 ring->desc[ring->next_to_clean].rx.bd_base_info &= 3966 cpu_to_le32(~BIT(HNS3_RXD_VLD_B)); 3967 ring->desc_cb[ring->next_to_clean].refill = 0; 3968 ring->next_to_clean += 1; 3969 3970 if (unlikely(ring->next_to_clean == ring->desc_num)) 3971 ring->next_to_clean = 0; 3972 } 3973 3974 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, 3975 unsigned char *va) 3976 { 3977 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 3978 struct net_device *netdev = ring_to_netdev(ring); 3979 struct sk_buff *skb; 3980 3981 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); 3982 skb = ring->skb; 3983 if (unlikely(!skb)) { 3984 hns3_rl_err(netdev, "alloc rx skb fail\n"); 3985 hns3_ring_stats_update(ring, sw_err_cnt); 3986 3987 return -ENOMEM; 3988 } 3989 3990 trace_hns3_rx_desc(ring); 3991 prefetchw(skb->data); 3992 3993 ring->pending_buf = 1; 3994 ring->frag_num = 0; 3995 ring->tail_skb = NULL; 3996 if (length <= HNS3_RX_HEAD_SIZE) { 3997 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 3998 3999 /* We can reuse buffer as-is, just make sure it is reusable */ 4000 if (dev_page_is_reusable(desc_cb->priv)) 4001 desc_cb->reuse_flag = 1; 4002 else if (desc_cb->type & DESC_TYPE_PP_FRAG) 4003 page_pool_put_full_page(ring->page_pool, desc_cb->priv, 4004 false); 4005 else /* This page cannot be reused so discard it */ 4006 __page_frag_cache_drain(desc_cb->priv, 4007 desc_cb->pagecnt_bias); 4008 4009 hns3_rx_ring_move_fw(ring); 4010 return 0; 4011 } 4012 4013 if (ring->page_pool) 4014 skb_mark_for_recycle(skb); 4015 4016 hns3_ring_stats_update(ring, seg_pkt_cnt); 4017 4018 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); 4019 __skb_put(skb, ring->pull_len); 4020 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, 4021 desc_cb); 4022 hns3_rx_ring_move_fw(ring); 4023 4024 return 0; 4025 } 4026 4027 static int hns3_add_frag(struct hns3_enet_ring *ring) 4028 { 4029 struct sk_buff *skb = ring->skb; 4030 struct sk_buff *head_skb = skb; 4031 struct sk_buff *new_skb; 4032 struct hns3_desc_cb *desc_cb; 4033 struct hns3_desc *desc; 4034 u32 bd_base_info; 4035 4036 do { 4037 desc = &ring->desc[ring->next_to_clean]; 4038 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4039 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4040 /* make sure HW write desc complete */ 4041 dma_rmb(); 4042 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) 4043 return -ENXIO; 4044 4045 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { 4046 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0); 4047 if (unlikely(!new_skb)) { 4048 hns3_rl_err(ring_to_netdev(ring), 4049 "alloc rx fraglist skb fail\n"); 4050 return -ENXIO; 4051 } 4052 4053 if (ring->page_pool) 4054 skb_mark_for_recycle(new_skb); 4055 4056 ring->frag_num = 0; 4057 4058 if (ring->tail_skb) { 4059 ring->tail_skb->next = new_skb; 4060 ring->tail_skb = new_skb; 4061 } else { 4062 skb_shinfo(skb)->frag_list = new_skb; 4063 ring->tail_skb = new_skb; 4064 } 4065 } 4066 4067 if (ring->tail_skb) { 4068 head_skb->truesize += hns3_buf_size(ring); 4069 head_skb->data_len += le16_to_cpu(desc->rx.size); 4070 head_skb->len += le16_to_cpu(desc->rx.size); 4071 skb = ring->tail_skb; 4072 } 4073 4074 dma_sync_single_for_cpu(ring_to_dev(ring), 4075 desc_cb->dma + desc_cb->page_offset, 4076 hns3_buf_size(ring), 4077 DMA_FROM_DEVICE); 4078 4079 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); 4080 trace_hns3_rx_desc(ring); 4081 hns3_rx_ring_move_fw(ring); 4082 ring->pending_buf++; 4083 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))); 4084 4085 return 0; 4086 } 4087 4088 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, 4089 struct sk_buff *skb, u32 l234info, 4090 u32 bd_base_info, u32 ol_info, u16 csum) 4091 { 4092 struct net_device *netdev = ring_to_netdev(ring); 4093 struct hns3_nic_priv *priv = netdev_priv(netdev); 4094 u32 l3_type; 4095 4096 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, 4097 HNS3_RXD_GRO_SIZE_M, 4098 HNS3_RXD_GRO_SIZE_S); 4099 /* if there is no HW GRO, do not set gro params */ 4100 if (!skb_shinfo(skb)->gso_size) { 4101 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info, 4102 csum); 4103 return 0; 4104 } 4105 4106 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, 4107 HNS3_RXD_GRO_COUNT_M, 4108 HNS3_RXD_GRO_COUNT_S); 4109 4110 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { 4111 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 4112 HNS3_RXD_PTYPE_S); 4113 4114 l3_type = hns3_rx_ptype_tbl[ptype].l3_type; 4115 } else { 4116 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 4117 HNS3_RXD_L3ID_S); 4118 } 4119 4120 if (l3_type == HNS3_L3_TYPE_IPV4) 4121 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 4122 else if (l3_type == HNS3_L3_TYPE_IPV6) 4123 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 4124 else 4125 return -EFAULT; 4126 4127 return hns3_gro_complete(skb, l234info); 4128 } 4129 4130 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, 4131 struct sk_buff *skb, u32 rss_hash) 4132 { 4133 struct hnae3_handle *handle = ring->tqp->handle; 4134 enum pkt_hash_types rss_type; 4135 4136 if (rss_hash) 4137 rss_type = handle->kinfo.rss_type; 4138 else 4139 rss_type = PKT_HASH_TYPE_NONE; 4140 4141 skb_set_hash(skb, rss_hash, rss_type); 4142 } 4143 4144 static void hns3_handle_rx_ts_info(struct net_device *netdev, 4145 struct hns3_desc *desc, struct sk_buff *skb, 4146 u32 bd_base_info) 4147 { 4148 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) { 4149 struct hnae3_handle *h = hns3_get_handle(netdev); 4150 u32 nsec = le32_to_cpu(desc->ts_nsec); 4151 u32 sec = le32_to_cpu(desc->ts_sec); 4152 4153 if (h->ae_algo->ops->get_rx_hwts) 4154 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec); 4155 } 4156 } 4157 4158 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring, 4159 struct hns3_desc *desc, struct sk_buff *skb, 4160 u32 l234info) 4161 { 4162 struct net_device *netdev = ring_to_netdev(ring); 4163 4164 /* Based on hw strategy, the tag offloaded will be stored at 4165 * ot_vlan_tag in two layer tag case, and stored at vlan_tag 4166 * in one layer tag case. 4167 */ 4168 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 4169 u16 vlan_tag; 4170 4171 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) 4172 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 4173 vlan_tag); 4174 } 4175 } 4176 4177 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) 4178 { 4179 struct net_device *netdev = ring_to_netdev(ring); 4180 enum hns3_pkt_l2t_type l2_frame_type; 4181 u32 bd_base_info, l234info, ol_info; 4182 struct hns3_desc *desc; 4183 unsigned int len; 4184 int pre_ntc, ret; 4185 u16 csum; 4186 4187 /* bdinfo handled below is only valid on the last BD of the 4188 * current packet, and ring->next_to_clean indicates the first 4189 * descriptor of next packet, so need - 1 below. 4190 */ 4191 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : 4192 (ring->desc_num - 1); 4193 desc = &ring->desc[pre_ntc]; 4194 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4195 l234info = le32_to_cpu(desc->rx.l234_info); 4196 ol_info = le32_to_cpu(desc->rx.ol_info); 4197 csum = le16_to_cpu(desc->csum); 4198 4199 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info); 4200 4201 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info); 4202 4203 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | 4204 BIT(HNS3_RXD_L2E_B))))) { 4205 u64_stats_update_begin(&ring->syncp); 4206 if (l234info & BIT(HNS3_RXD_L2E_B)) 4207 ring->stats.l2_err++; 4208 else 4209 ring->stats.err_pkt_len++; 4210 u64_stats_update_end(&ring->syncp); 4211 4212 return -EFAULT; 4213 } 4214 4215 len = skb->len; 4216 4217 /* Do update ip stack process */ 4218 skb->protocol = eth_type_trans(skb, netdev); 4219 4220 /* This is needed in order to enable forwarding support */ 4221 ret = hns3_set_gro_and_checksum(ring, skb, l234info, 4222 bd_base_info, ol_info, csum); 4223 if (unlikely(ret)) { 4224 hns3_ring_stats_update(ring, rx_err_cnt); 4225 return ret; 4226 } 4227 4228 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, 4229 HNS3_RXD_DMAC_S); 4230 4231 u64_stats_update_begin(&ring->syncp); 4232 ring->stats.rx_pkts++; 4233 ring->stats.rx_bytes += len; 4234 4235 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) 4236 ring->stats.rx_multicast++; 4237 4238 u64_stats_update_end(&ring->syncp); 4239 4240 ring->tqp_vector->rx_group.total_bytes += len; 4241 4242 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash)); 4243 return 0; 4244 } 4245 4246 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring) 4247 { 4248 struct sk_buff *skb = ring->skb; 4249 struct hns3_desc_cb *desc_cb; 4250 struct hns3_desc *desc; 4251 unsigned int length; 4252 u32 bd_base_info; 4253 int ret; 4254 4255 desc = &ring->desc[ring->next_to_clean]; 4256 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4257 4258 prefetch(desc); 4259 4260 if (!skb) { 4261 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4262 /* Check valid BD */ 4263 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 4264 return -ENXIO; 4265 4266 dma_rmb(); 4267 length = le16_to_cpu(desc->rx.size); 4268 4269 ring->va = desc_cb->buf + desc_cb->page_offset; 4270 4271 dma_sync_single_for_cpu(ring_to_dev(ring), 4272 desc_cb->dma + desc_cb->page_offset, 4273 hns3_buf_size(ring), 4274 DMA_FROM_DEVICE); 4275 4276 /* Prefetch first cache line of first page. 4277 * Idea is to cache few bytes of the header of the packet. 4278 * Our L1 Cache line size is 64B so need to prefetch twice to make 4279 * it 128B. But in actual we can have greater size of caches with 4280 * 128B Level 1 cache lines. In such a case, single fetch would 4281 * suffice to cache in the relevant part of the header. 4282 */ 4283 net_prefetch(ring->va); 4284 4285 ret = hns3_alloc_skb(ring, length, ring->va); 4286 skb = ring->skb; 4287 4288 if (ret < 0) /* alloc buffer fail */ 4289 return ret; 4290 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */ 4291 ret = hns3_add_frag(ring); 4292 if (ret) 4293 return ret; 4294 } 4295 } else { 4296 ret = hns3_add_frag(ring); 4297 if (ret) 4298 return ret; 4299 } 4300 4301 /* As the head data may be changed when GRO enable, copy 4302 * the head data in after other data rx completed 4303 */ 4304 if (skb->len > HNS3_RX_HEAD_SIZE) 4305 memcpy(skb->data, ring->va, 4306 ALIGN(ring->pull_len, sizeof(long))); 4307 4308 ret = hns3_handle_bdinfo(ring, skb); 4309 if (unlikely(ret)) { 4310 dev_kfree_skb_any(skb); 4311 return ret; 4312 } 4313 4314 skb_record_rx_queue(skb, ring->tqp->tqp_index); 4315 return 0; 4316 } 4317 4318 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, 4319 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) 4320 { 4321 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 4322 int unused_count = hns3_desc_unused(ring); 4323 bool failure = false; 4324 int recv_pkts = 0; 4325 int err; 4326 4327 unused_count -= ring->pending_buf; 4328 4329 while (recv_pkts < budget) { 4330 /* Reuse or realloc buffers */ 4331 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 4332 failure = failure || 4333 hns3_nic_alloc_rx_buffers(ring, unused_count); 4334 unused_count = 0; 4335 } 4336 4337 /* Poll one pkt */ 4338 err = hns3_handle_rx_bd(ring); 4339 /* Do not get FE for the packet or failed to alloc skb */ 4340 if (unlikely(!ring->skb || err == -ENXIO)) { 4341 goto out; 4342 } else if (likely(!err)) { 4343 rx_fn(ring, ring->skb); 4344 recv_pkts++; 4345 } 4346 4347 unused_count += ring->pending_buf; 4348 ring->skb = NULL; 4349 ring->pending_buf = 0; 4350 } 4351 4352 out: 4353 /* sync head pointer before exiting, since hardware will calculate 4354 * FBD number with head pointer 4355 */ 4356 if (unused_count > 0) 4357 failure = failure || 4358 hns3_nic_alloc_rx_buffers(ring, unused_count); 4359 4360 return failure ? budget : recv_pkts; 4361 } 4362 4363 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4364 { 4365 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; 4366 struct dim_sample sample = {}; 4367 4368 if (!rx_group->coal.adapt_enable) 4369 return; 4370 4371 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets, 4372 rx_group->total_bytes, &sample); 4373 net_dim(&rx_group->dim, sample); 4374 } 4375 4376 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4377 { 4378 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; 4379 struct dim_sample sample = {}; 4380 4381 if (!tx_group->coal.adapt_enable) 4382 return; 4383 4384 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets, 4385 tx_group->total_bytes, &sample); 4386 net_dim(&tx_group->dim, sample); 4387 } 4388 4389 static int hns3_nic_common_poll(struct napi_struct *napi, int budget) 4390 { 4391 struct hns3_nic_priv *priv = netdev_priv(napi->dev); 4392 struct hns3_enet_ring *ring; 4393 int rx_pkt_total = 0; 4394 4395 struct hns3_enet_tqp_vector *tqp_vector = 4396 container_of(napi, struct hns3_enet_tqp_vector, napi); 4397 bool clean_complete = true; 4398 int rx_budget = budget; 4399 4400 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4401 napi_complete(napi); 4402 return 0; 4403 } 4404 4405 /* Since the actual Tx work is minimal, we can give the Tx a larger 4406 * budget and be more aggressive about cleaning up the Tx descriptors. 4407 */ 4408 hns3_for_each_ring(ring, tqp_vector->tx_group) 4409 hns3_clean_tx_ring(ring, budget); 4410 4411 /* make sure rx ring budget not smaller than 1 */ 4412 if (tqp_vector->num_tqps > 1) 4413 rx_budget = max(budget / tqp_vector->num_tqps, 1); 4414 4415 hns3_for_each_ring(ring, tqp_vector->rx_group) { 4416 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, 4417 hns3_rx_skb); 4418 if (rx_cleaned >= rx_budget) 4419 clean_complete = false; 4420 4421 rx_pkt_total += rx_cleaned; 4422 } 4423 4424 tqp_vector->rx_group.total_packets += rx_pkt_total; 4425 4426 if (!clean_complete) 4427 return budget; 4428 4429 if (napi_complete(napi) && 4430 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4431 hns3_update_rx_int_coalesce(tqp_vector); 4432 hns3_update_tx_int_coalesce(tqp_vector); 4433 4434 hns3_mask_vector_irq(tqp_vector, 1); 4435 } 4436 4437 return rx_pkt_total; 4438 } 4439 4440 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4441 struct hnae3_ring_chain_node **head, 4442 bool is_tx) 4443 { 4444 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX; 4445 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX; 4446 struct hnae3_ring_chain_node *cur_chain = *head; 4447 struct pci_dev *pdev = tqp_vector->handle->pdev; 4448 struct hnae3_ring_chain_node *chain; 4449 struct hns3_enet_ring *ring; 4450 4451 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring; 4452 4453 if (cur_chain) { 4454 while (cur_chain->next) 4455 cur_chain = cur_chain->next; 4456 } 4457 4458 while (ring) { 4459 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); 4460 if (!chain) 4461 return -ENOMEM; 4462 if (cur_chain) 4463 cur_chain->next = chain; 4464 else 4465 *head = chain; 4466 chain->tqp_index = ring->tqp->tqp_index; 4467 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, 4468 bit_value); 4469 hnae3_set_field(chain->int_gl_idx, 4470 HNAE3_RING_GL_IDX_M, 4471 HNAE3_RING_GL_IDX_S, field_value); 4472 4473 cur_chain = chain; 4474 4475 ring = ring->next; 4476 } 4477 4478 return 0; 4479 } 4480 4481 static struct hnae3_ring_chain_node * 4482 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector) 4483 { 4484 struct pci_dev *pdev = tqp_vector->handle->pdev; 4485 struct hnae3_ring_chain_node *cur_chain = NULL; 4486 struct hnae3_ring_chain_node *chain; 4487 4488 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true)) 4489 goto err_free_chain; 4490 4491 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false)) 4492 goto err_free_chain; 4493 4494 return cur_chain; 4495 4496 err_free_chain: 4497 while (cur_chain) { 4498 chain = cur_chain->next; 4499 devm_kfree(&pdev->dev, cur_chain); 4500 cur_chain = chain; 4501 } 4502 4503 return NULL; 4504 } 4505 4506 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4507 struct hnae3_ring_chain_node *head) 4508 { 4509 struct pci_dev *pdev = tqp_vector->handle->pdev; 4510 struct hnae3_ring_chain_node *chain_tmp, *chain; 4511 4512 chain = head; 4513 4514 while (chain) { 4515 chain_tmp = chain->next; 4516 devm_kfree(&pdev->dev, chain); 4517 chain = chain_tmp; 4518 } 4519 } 4520 4521 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, 4522 struct hns3_enet_ring *ring) 4523 { 4524 ring->next = group->ring; 4525 group->ring = ring; 4526 4527 group->count++; 4528 } 4529 4530 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) 4531 { 4532 struct pci_dev *pdev = priv->ae_handle->pdev; 4533 struct hns3_enet_tqp_vector *tqp_vector; 4534 int num_vectors = priv->vector_num; 4535 int numa_node; 4536 int vector_i; 4537 4538 numa_node = dev_to_node(&pdev->dev); 4539 4540 for (vector_i = 0; vector_i < num_vectors; vector_i++) { 4541 tqp_vector = &priv->tqp_vector[vector_i]; 4542 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), 4543 &tqp_vector->affinity_mask); 4544 } 4545 } 4546 4547 static void hns3_rx_dim_work(struct work_struct *work) 4548 { 4549 struct dim *dim = container_of(work, struct dim, work); 4550 struct hns3_enet_ring_group *group = container_of(dim, 4551 struct hns3_enet_ring_group, dim); 4552 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4553 struct dim_cq_moder cur_moder = 4554 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 4555 4556 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec); 4557 tqp_vector->rx_group.coal.int_gl = cur_moder.usec; 4558 4559 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) { 4560 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts); 4561 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts; 4562 } 4563 4564 dim->state = DIM_START_MEASURE; 4565 } 4566 4567 static void hns3_tx_dim_work(struct work_struct *work) 4568 { 4569 struct dim *dim = container_of(work, struct dim, work); 4570 struct hns3_enet_ring_group *group = container_of(dim, 4571 struct hns3_enet_ring_group, dim); 4572 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4573 struct dim_cq_moder cur_moder = 4574 net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 4575 4576 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec); 4577 tqp_vector->tx_group.coal.int_gl = cur_moder.usec; 4578 4579 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) { 4580 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts); 4581 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts; 4582 } 4583 4584 dim->state = DIM_START_MEASURE; 4585 } 4586 4587 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector) 4588 { 4589 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work); 4590 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work); 4591 } 4592 4593 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) 4594 { 4595 struct hnae3_handle *h = priv->ae_handle; 4596 struct hns3_enet_tqp_vector *tqp_vector; 4597 int ret; 4598 int i; 4599 4600 hns3_nic_set_cpumask(priv); 4601 4602 for (i = 0; i < priv->vector_num; i++) { 4603 tqp_vector = &priv->tqp_vector[i]; 4604 hns3_vector_coalesce_init_hw(tqp_vector, priv); 4605 tqp_vector->num_tqps = 0; 4606 hns3_nic_init_dim(tqp_vector); 4607 } 4608 4609 for (i = 0; i < h->kinfo.num_tqps; i++) { 4610 u16 vector_i = i % priv->vector_num; 4611 u16 tqp_num = h->kinfo.num_tqps; 4612 4613 tqp_vector = &priv->tqp_vector[vector_i]; 4614 4615 hns3_add_ring_to_group(&tqp_vector->tx_group, 4616 &priv->ring[i]); 4617 4618 hns3_add_ring_to_group(&tqp_vector->rx_group, 4619 &priv->ring[i + tqp_num]); 4620 4621 priv->ring[i].tqp_vector = tqp_vector; 4622 priv->ring[i + tqp_num].tqp_vector = tqp_vector; 4623 tqp_vector->num_tqps++; 4624 } 4625 4626 for (i = 0; i < priv->vector_num; i++) { 4627 struct hnae3_ring_chain_node *vector_ring_chain; 4628 4629 tqp_vector = &priv->tqp_vector[i]; 4630 4631 tqp_vector->rx_group.total_bytes = 0; 4632 tqp_vector->rx_group.total_packets = 0; 4633 tqp_vector->tx_group.total_bytes = 0; 4634 tqp_vector->tx_group.total_packets = 0; 4635 tqp_vector->handle = h; 4636 4637 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4638 if (!vector_ring_chain) { 4639 ret = -ENOMEM; 4640 goto map_ring_fail; 4641 } 4642 4643 ret = h->ae_algo->ops->map_ring_to_vector(h, 4644 tqp_vector->vector_irq, vector_ring_chain); 4645 4646 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4647 4648 if (ret) 4649 goto map_ring_fail; 4650 4651 netif_napi_add(priv->netdev, &tqp_vector->napi, 4652 hns3_nic_common_poll, NAPI_POLL_WEIGHT); 4653 } 4654 4655 return 0; 4656 4657 map_ring_fail: 4658 while (i--) 4659 netif_napi_del(&priv->tqp_vector[i].napi); 4660 4661 return ret; 4662 } 4663 4664 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv) 4665 { 4666 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 4667 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal; 4668 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal; 4669 4670 /* initialize the configuration for interrupt coalescing. 4671 * 1. GL (Interrupt Gap Limiter) 4672 * 2. RL (Interrupt Rate Limiter) 4673 * 3. QL (Interrupt Quantity Limiter) 4674 * 4675 * Default: enable interrupt coalescing self-adaptive and GL 4676 */ 4677 tx_coal->adapt_enable = 1; 4678 rx_coal->adapt_enable = 1; 4679 4680 tx_coal->int_gl = HNS3_INT_GL_50K; 4681 rx_coal->int_gl = HNS3_INT_GL_50K; 4682 4683 rx_coal->flow_level = HNS3_FLOW_LOW; 4684 tx_coal->flow_level = HNS3_FLOW_LOW; 4685 4686 if (ae_dev->dev_specs.int_ql_max) { 4687 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4688 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4689 } 4690 } 4691 4692 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) 4693 { 4694 struct hnae3_handle *h = priv->ae_handle; 4695 struct hns3_enet_tqp_vector *tqp_vector; 4696 struct hnae3_vector_info *vector; 4697 struct pci_dev *pdev = h->pdev; 4698 u16 tqp_num = h->kinfo.num_tqps; 4699 u16 vector_num; 4700 int ret = 0; 4701 u16 i; 4702 4703 /* RSS size, cpu online and vector_num should be the same */ 4704 /* Should consider 2p/4p later */ 4705 vector_num = min_t(u16, num_online_cpus(), tqp_num); 4706 4707 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), 4708 GFP_KERNEL); 4709 if (!vector) 4710 return -ENOMEM; 4711 4712 /* save the actual available vector number */ 4713 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); 4714 4715 priv->vector_num = vector_num; 4716 priv->tqp_vector = (struct hns3_enet_tqp_vector *) 4717 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), 4718 GFP_KERNEL); 4719 if (!priv->tqp_vector) { 4720 ret = -ENOMEM; 4721 goto out; 4722 } 4723 4724 for (i = 0; i < priv->vector_num; i++) { 4725 tqp_vector = &priv->tqp_vector[i]; 4726 tqp_vector->idx = i; 4727 tqp_vector->mask_addr = vector[i].io_addr; 4728 tqp_vector->vector_irq = vector[i].vector; 4729 hns3_vector_coalesce_init(tqp_vector, priv); 4730 } 4731 4732 out: 4733 devm_kfree(&pdev->dev, vector); 4734 return ret; 4735 } 4736 4737 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) 4738 { 4739 group->ring = NULL; 4740 group->count = 0; 4741 } 4742 4743 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) 4744 { 4745 struct hnae3_ring_chain_node *vector_ring_chain; 4746 struct hnae3_handle *h = priv->ae_handle; 4747 struct hns3_enet_tqp_vector *tqp_vector; 4748 int i; 4749 4750 for (i = 0; i < priv->vector_num; i++) { 4751 tqp_vector = &priv->tqp_vector[i]; 4752 4753 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) 4754 continue; 4755 4756 /* Since the mapping can be overwritten, when fail to get the 4757 * chain between vector and ring, we should go on to deal with 4758 * the remaining options. 4759 */ 4760 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4761 if (!vector_ring_chain) 4762 dev_warn(priv->dev, "failed to get ring chain\n"); 4763 4764 h->ae_algo->ops->unmap_ring_from_vector(h, 4765 tqp_vector->vector_irq, vector_ring_chain); 4766 4767 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4768 4769 hns3_clear_ring_group(&tqp_vector->rx_group); 4770 hns3_clear_ring_group(&tqp_vector->tx_group); 4771 netif_napi_del(&priv->tqp_vector[i].napi); 4772 } 4773 } 4774 4775 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) 4776 { 4777 struct hnae3_handle *h = priv->ae_handle; 4778 struct pci_dev *pdev = h->pdev; 4779 int i, ret; 4780 4781 for (i = 0; i < priv->vector_num; i++) { 4782 struct hns3_enet_tqp_vector *tqp_vector; 4783 4784 tqp_vector = &priv->tqp_vector[i]; 4785 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); 4786 if (ret) 4787 return; 4788 } 4789 4790 devm_kfree(&pdev->dev, priv->tqp_vector); 4791 } 4792 4793 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, 4794 unsigned int ring_type) 4795 { 4796 int queue_num = priv->ae_handle->kinfo.num_tqps; 4797 struct hns3_enet_ring *ring; 4798 int desc_num; 4799 4800 if (ring_type == HNAE3_RING_TYPE_TX) { 4801 ring = &priv->ring[q->tqp_index]; 4802 desc_num = priv->ae_handle->kinfo.num_tx_desc; 4803 ring->queue_index = q->tqp_index; 4804 ring->tx_copybreak = priv->tx_copybreak; 4805 ring->last_to_use = 0; 4806 } else { 4807 ring = &priv->ring[q->tqp_index + queue_num]; 4808 desc_num = priv->ae_handle->kinfo.num_rx_desc; 4809 ring->queue_index = q->tqp_index; 4810 ring->rx_copybreak = priv->rx_copybreak; 4811 } 4812 4813 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); 4814 4815 ring->tqp = q; 4816 ring->desc = NULL; 4817 ring->desc_cb = NULL; 4818 ring->dev = priv->dev; 4819 ring->desc_dma_addr = 0; 4820 ring->buf_size = q->buf_size; 4821 ring->desc_num = desc_num; 4822 ring->next_to_use = 0; 4823 ring->next_to_clean = 0; 4824 } 4825 4826 static void hns3_queue_to_ring(struct hnae3_queue *tqp, 4827 struct hns3_nic_priv *priv) 4828 { 4829 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); 4830 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); 4831 } 4832 4833 static int hns3_get_ring_config(struct hns3_nic_priv *priv) 4834 { 4835 struct hnae3_handle *h = priv->ae_handle; 4836 struct pci_dev *pdev = h->pdev; 4837 int i; 4838 4839 priv->ring = devm_kzalloc(&pdev->dev, 4840 array3_size(h->kinfo.num_tqps, 4841 sizeof(*priv->ring), 2), 4842 GFP_KERNEL); 4843 if (!priv->ring) 4844 return -ENOMEM; 4845 4846 for (i = 0; i < h->kinfo.num_tqps; i++) 4847 hns3_queue_to_ring(h->kinfo.tqp[i], priv); 4848 4849 return 0; 4850 } 4851 4852 static void hns3_put_ring_config(struct hns3_nic_priv *priv) 4853 { 4854 if (!priv->ring) 4855 return; 4856 4857 devm_kfree(priv->dev, priv->ring); 4858 priv->ring = NULL; 4859 } 4860 4861 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring) 4862 { 4863 struct page_pool_params pp_params = { 4864 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG | 4865 PP_FLAG_DMA_SYNC_DEV, 4866 .order = hns3_page_order(ring), 4867 .pool_size = ring->desc_num * hns3_buf_size(ring) / 4868 (PAGE_SIZE << hns3_page_order(ring)), 4869 .nid = dev_to_node(ring_to_dev(ring)), 4870 .dev = ring_to_dev(ring), 4871 .dma_dir = DMA_FROM_DEVICE, 4872 .offset = 0, 4873 .max_len = PAGE_SIZE << hns3_page_order(ring), 4874 }; 4875 4876 ring->page_pool = page_pool_create(&pp_params); 4877 if (IS_ERR(ring->page_pool)) { 4878 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n", 4879 PTR_ERR(ring->page_pool)); 4880 ring->page_pool = NULL; 4881 } 4882 } 4883 4884 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) 4885 { 4886 int ret; 4887 4888 if (ring->desc_num <= 0 || ring->buf_size <= 0) 4889 return -EINVAL; 4890 4891 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, 4892 sizeof(ring->desc_cb[0]), GFP_KERNEL); 4893 if (!ring->desc_cb) { 4894 ret = -ENOMEM; 4895 goto out; 4896 } 4897 4898 ret = hns3_alloc_desc(ring); 4899 if (ret) 4900 goto out_with_desc_cb; 4901 4902 if (!HNAE3_IS_TX_RING(ring)) { 4903 if (page_pool_enabled) 4904 hns3_alloc_page_pool(ring); 4905 4906 ret = hns3_alloc_ring_buffers(ring); 4907 if (ret) 4908 goto out_with_desc; 4909 } else { 4910 hns3_init_tx_spare_buffer(ring); 4911 } 4912 4913 return 0; 4914 4915 out_with_desc: 4916 hns3_free_desc(ring); 4917 out_with_desc_cb: 4918 devm_kfree(ring_to_dev(ring), ring->desc_cb); 4919 ring->desc_cb = NULL; 4920 out: 4921 return ret; 4922 } 4923 4924 void hns3_fini_ring(struct hns3_enet_ring *ring) 4925 { 4926 hns3_free_desc(ring); 4927 devm_kfree(ring_to_dev(ring), ring->desc_cb); 4928 ring->desc_cb = NULL; 4929 ring->next_to_clean = 0; 4930 ring->next_to_use = 0; 4931 ring->last_to_use = 0; 4932 ring->pending_buf = 0; 4933 if (!HNAE3_IS_TX_RING(ring) && ring->skb) { 4934 dev_kfree_skb_any(ring->skb); 4935 ring->skb = NULL; 4936 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) { 4937 struct hns3_tx_spare *tx_spare = ring->tx_spare; 4938 4939 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len, 4940 DMA_TO_DEVICE); 4941 free_pages((unsigned long)tx_spare->buf, 4942 get_order(tx_spare->len)); 4943 devm_kfree(ring_to_dev(ring), tx_spare); 4944 ring->tx_spare = NULL; 4945 } 4946 4947 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) { 4948 page_pool_destroy(ring->page_pool); 4949 ring->page_pool = NULL; 4950 } 4951 } 4952 4953 static int hns3_buf_size2type(u32 buf_size) 4954 { 4955 int bd_size_type; 4956 4957 switch (buf_size) { 4958 case 512: 4959 bd_size_type = HNS3_BD_SIZE_512_TYPE; 4960 break; 4961 case 1024: 4962 bd_size_type = HNS3_BD_SIZE_1024_TYPE; 4963 break; 4964 case 2048: 4965 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 4966 break; 4967 case 4096: 4968 bd_size_type = HNS3_BD_SIZE_4096_TYPE; 4969 break; 4970 default: 4971 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 4972 } 4973 4974 return bd_size_type; 4975 } 4976 4977 static void hns3_init_ring_hw(struct hns3_enet_ring *ring) 4978 { 4979 dma_addr_t dma = ring->desc_dma_addr; 4980 struct hnae3_queue *q = ring->tqp; 4981 4982 if (!HNAE3_IS_TX_RING(ring)) { 4983 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); 4984 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, 4985 (u32)((dma >> 31) >> 1)); 4986 4987 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, 4988 hns3_buf_size2type(ring->buf_size)); 4989 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, 4990 ring->desc_num / 8 - 1); 4991 } else { 4992 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, 4993 (u32)dma); 4994 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, 4995 (u32)((dma >> 31) >> 1)); 4996 4997 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, 4998 ring->desc_num / 8 - 1); 4999 } 5000 } 5001 5002 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) 5003 { 5004 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5005 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 5006 int i; 5007 5008 for (i = 0; i < tc_info->num_tc; i++) { 5009 int j; 5010 5011 for (j = 0; j < tc_info->tqp_count[i]; j++) { 5012 struct hnae3_queue *q; 5013 5014 q = priv->ring[tc_info->tqp_offset[i] + j].tqp; 5015 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i); 5016 } 5017 } 5018 } 5019 5020 int hns3_init_all_ring(struct hns3_nic_priv *priv) 5021 { 5022 struct hnae3_handle *h = priv->ae_handle; 5023 int ring_num = h->kinfo.num_tqps * 2; 5024 int i, j; 5025 int ret; 5026 5027 for (i = 0; i < ring_num; i++) { 5028 ret = hns3_alloc_ring_memory(&priv->ring[i]); 5029 if (ret) { 5030 dev_err(priv->dev, 5031 "Alloc ring memory fail! ret=%d\n", ret); 5032 goto out_when_alloc_ring_memory; 5033 } 5034 5035 u64_stats_init(&priv->ring[i].syncp); 5036 } 5037 5038 return 0; 5039 5040 out_when_alloc_ring_memory: 5041 for (j = i - 1; j >= 0; j--) 5042 hns3_fini_ring(&priv->ring[j]); 5043 5044 return -ENOMEM; 5045 } 5046 5047 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv) 5048 { 5049 struct hnae3_handle *h = priv->ae_handle; 5050 int i; 5051 5052 for (i = 0; i < h->kinfo.num_tqps; i++) { 5053 hns3_fini_ring(&priv->ring[i]); 5054 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); 5055 } 5056 } 5057 5058 /* Set mac addr if it is configured. or leave it to the AE driver */ 5059 static int hns3_init_mac_addr(struct net_device *netdev) 5060 { 5061 struct hns3_nic_priv *priv = netdev_priv(netdev); 5062 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5063 struct hnae3_handle *h = priv->ae_handle; 5064 u8 mac_addr_temp[ETH_ALEN]; 5065 int ret = 0; 5066 5067 if (h->ae_algo->ops->get_mac_addr) 5068 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); 5069 5070 /* Check if the MAC address is valid, if not get a random one */ 5071 if (!is_valid_ether_addr(mac_addr_temp)) { 5072 eth_hw_addr_random(netdev); 5073 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr); 5074 dev_warn(priv->dev, "using random MAC address %s\n", 5075 format_mac_addr); 5076 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) { 5077 eth_hw_addr_set(netdev, mac_addr_temp); 5078 ether_addr_copy(netdev->perm_addr, mac_addr_temp); 5079 } else { 5080 return 0; 5081 } 5082 5083 if (h->ae_algo->ops->set_mac_addr) 5084 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); 5085 5086 return ret; 5087 } 5088 5089 static int hns3_init_phy(struct net_device *netdev) 5090 { 5091 struct hnae3_handle *h = hns3_get_handle(netdev); 5092 int ret = 0; 5093 5094 if (h->ae_algo->ops->mac_connect_phy) 5095 ret = h->ae_algo->ops->mac_connect_phy(h); 5096 5097 return ret; 5098 } 5099 5100 static void hns3_uninit_phy(struct net_device *netdev) 5101 { 5102 struct hnae3_handle *h = hns3_get_handle(netdev); 5103 5104 if (h->ae_algo->ops->mac_disconnect_phy) 5105 h->ae_algo->ops->mac_disconnect_phy(h); 5106 } 5107 5108 static int hns3_client_start(struct hnae3_handle *handle) 5109 { 5110 if (!handle->ae_algo->ops->client_start) 5111 return 0; 5112 5113 return handle->ae_algo->ops->client_start(handle); 5114 } 5115 5116 static void hns3_client_stop(struct hnae3_handle *handle) 5117 { 5118 if (!handle->ae_algo->ops->client_stop) 5119 return; 5120 5121 handle->ae_algo->ops->client_stop(handle); 5122 } 5123 5124 static void hns3_info_show(struct hns3_nic_priv *priv) 5125 { 5126 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5127 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5128 5129 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr); 5130 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr); 5131 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps); 5132 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size); 5133 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size); 5134 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len); 5135 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc); 5136 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc); 5137 dev_info(priv->dev, "Total number of enabled TCs: %u\n", 5138 kinfo->tc_info.num_tc); 5139 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu); 5140 } 5141 5142 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv, 5143 enum dim_cq_period_mode mode, bool is_tx) 5144 { 5145 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 5146 struct hnae3_handle *handle = priv->ae_handle; 5147 int i; 5148 5149 if (is_tx) { 5150 priv->tx_cqe_mode = mode; 5151 5152 for (i = 0; i < priv->vector_num; i++) 5153 priv->tqp_vector[i].tx_group.dim.mode = mode; 5154 } else { 5155 priv->rx_cqe_mode = mode; 5156 5157 for (i = 0; i < priv->vector_num; i++) 5158 priv->tqp_vector[i].rx_group.dim.mode = mode; 5159 } 5160 5161 if (hnae3_ae_dev_cq_supported(ae_dev)) { 5162 u32 new_mode; 5163 u64 reg; 5164 5165 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ? 5166 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE; 5167 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG; 5168 5169 writel(new_mode, handle->kinfo.io_base + reg); 5170 } 5171 } 5172 5173 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv, 5174 enum dim_cq_period_mode tx_mode, 5175 enum dim_cq_period_mode rx_mode) 5176 { 5177 hns3_set_cq_period_mode(priv, tx_mode, true); 5178 hns3_set_cq_period_mode(priv, rx_mode, false); 5179 } 5180 5181 static void hns3_state_init(struct hnae3_handle *handle) 5182 { 5183 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 5184 struct net_device *netdev = handle->kinfo.netdev; 5185 struct hns3_nic_priv *priv = netdev_priv(netdev); 5186 5187 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5188 5189 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 5190 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state); 5191 5192 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5193 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags); 5194 5195 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 5196 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state); 5197 5198 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev)) 5199 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state); 5200 } 5201 5202 static void hns3_state_uninit(struct hnae3_handle *handle) 5203 { 5204 struct hns3_nic_priv *priv = handle->priv; 5205 5206 clear_bit(HNS3_NIC_STATE_INITED, &priv->state); 5207 } 5208 5209 static int hns3_client_init(struct hnae3_handle *handle) 5210 { 5211 struct pci_dev *pdev = handle->pdev; 5212 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 5213 u16 alloc_tqps, max_rss_size; 5214 struct hns3_nic_priv *priv; 5215 struct net_device *netdev; 5216 int ret; 5217 5218 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, 5219 &max_rss_size); 5220 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); 5221 if (!netdev) 5222 return -ENOMEM; 5223 5224 priv = netdev_priv(netdev); 5225 priv->dev = &pdev->dev; 5226 priv->netdev = netdev; 5227 priv->ae_handle = handle; 5228 priv->tx_timeout_count = 0; 5229 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num; 5230 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 5231 5232 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); 5233 5234 handle->kinfo.netdev = netdev; 5235 handle->priv = (void *)priv; 5236 5237 hns3_init_mac_addr(netdev); 5238 5239 hns3_set_default_feature(netdev); 5240 5241 netdev->watchdog_timeo = HNS3_TX_TIMEOUT; 5242 netdev->priv_flags |= IFF_UNICAST_FLT; 5243 netdev->netdev_ops = &hns3_nic_netdev_ops; 5244 SET_NETDEV_DEV(netdev, &pdev->dev); 5245 hns3_ethtool_set_ops(netdev); 5246 5247 /* Carrier off reporting is important to ethtool even BEFORE open */ 5248 netif_carrier_off(netdev); 5249 5250 ret = hns3_get_ring_config(priv); 5251 if (ret) { 5252 ret = -ENOMEM; 5253 goto out_get_ring_cfg; 5254 } 5255 5256 hns3_nic_init_coal_cfg(priv); 5257 5258 ret = hns3_nic_alloc_vector_data(priv); 5259 if (ret) { 5260 ret = -ENOMEM; 5261 goto out_alloc_vector_data; 5262 } 5263 5264 ret = hns3_nic_init_vector_data(priv); 5265 if (ret) { 5266 ret = -ENOMEM; 5267 goto out_init_vector_data; 5268 } 5269 5270 ret = hns3_init_all_ring(priv); 5271 if (ret) { 5272 ret = -ENOMEM; 5273 goto out_init_ring; 5274 } 5275 5276 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE, 5277 DIM_CQ_PERIOD_MODE_START_FROM_EQE); 5278 5279 ret = hns3_init_phy(netdev); 5280 if (ret) 5281 goto out_init_phy; 5282 5283 /* the device can work without cpu rmap, only aRFS needs it */ 5284 ret = hns3_set_rx_cpu_rmap(netdev); 5285 if (ret) 5286 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5287 5288 ret = hns3_nic_init_irq(priv); 5289 if (ret) { 5290 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5291 hns3_free_rx_cpu_rmap(netdev); 5292 goto out_init_irq_fail; 5293 } 5294 5295 ret = hns3_client_start(handle); 5296 if (ret) { 5297 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5298 goto out_client_start; 5299 } 5300 5301 hns3_dcbnl_setup(handle); 5302 5303 ret = hns3_dbg_init(handle); 5304 if (ret) { 5305 dev_err(priv->dev, "failed to init debugfs, ret = %d\n", 5306 ret); 5307 goto out_client_start; 5308 } 5309 5310 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size); 5311 5312 hns3_state_init(handle); 5313 5314 ret = register_netdev(netdev); 5315 if (ret) { 5316 dev_err(priv->dev, "probe register netdev fail!\n"); 5317 goto out_reg_netdev_fail; 5318 } 5319 5320 if (netif_msg_drv(handle)) 5321 hns3_info_show(priv); 5322 5323 return ret; 5324 5325 out_reg_netdev_fail: 5326 hns3_state_uninit(handle); 5327 hns3_dbg_uninit(handle); 5328 hns3_client_stop(handle); 5329 out_client_start: 5330 hns3_free_rx_cpu_rmap(netdev); 5331 hns3_nic_uninit_irq(priv); 5332 out_init_irq_fail: 5333 hns3_uninit_phy(netdev); 5334 out_init_phy: 5335 hns3_uninit_all_ring(priv); 5336 out_init_ring: 5337 hns3_nic_uninit_vector_data(priv); 5338 out_init_vector_data: 5339 hns3_nic_dealloc_vector_data(priv); 5340 out_alloc_vector_data: 5341 priv->ring = NULL; 5342 out_get_ring_cfg: 5343 priv->ae_handle = NULL; 5344 free_netdev(netdev); 5345 return ret; 5346 } 5347 5348 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) 5349 { 5350 struct net_device *netdev = handle->kinfo.netdev; 5351 struct hns3_nic_priv *priv = netdev_priv(netdev); 5352 5353 if (netdev->reg_state != NETREG_UNINITIALIZED) 5354 unregister_netdev(netdev); 5355 5356 hns3_client_stop(handle); 5357 5358 hns3_uninit_phy(netdev); 5359 5360 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5361 netdev_warn(netdev, "already uninitialized\n"); 5362 goto out_netdev_free; 5363 } 5364 5365 hns3_free_rx_cpu_rmap(netdev); 5366 5367 hns3_nic_uninit_irq(priv); 5368 5369 hns3_clear_all_ring(handle, true); 5370 5371 hns3_nic_uninit_vector_data(priv); 5372 5373 hns3_nic_dealloc_vector_data(priv); 5374 5375 hns3_uninit_all_ring(priv); 5376 5377 hns3_put_ring_config(priv); 5378 5379 out_netdev_free: 5380 hns3_dbg_uninit(handle); 5381 free_netdev(netdev); 5382 } 5383 5384 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) 5385 { 5386 struct net_device *netdev = handle->kinfo.netdev; 5387 5388 if (!netdev) 5389 return; 5390 5391 if (linkup) { 5392 netif_tx_wake_all_queues(netdev); 5393 netif_carrier_on(netdev); 5394 if (netif_msg_link(handle)) 5395 netdev_info(netdev, "link up\n"); 5396 } else { 5397 netif_carrier_off(netdev); 5398 netif_tx_stop_all_queues(netdev); 5399 if (netif_msg_link(handle)) 5400 netdev_info(netdev, "link down\n"); 5401 } 5402 } 5403 5404 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) 5405 { 5406 while (ring->next_to_clean != ring->next_to_use) { 5407 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; 5408 hns3_free_buffer_detach(ring, ring->next_to_clean, 0); 5409 ring_ptr_move_fw(ring, next_to_clean); 5410 } 5411 5412 ring->pending_buf = 0; 5413 } 5414 5415 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) 5416 { 5417 struct hns3_desc_cb res_cbs; 5418 int ret; 5419 5420 while (ring->next_to_use != ring->next_to_clean) { 5421 /* When a buffer is not reused, it's memory has been 5422 * freed in hns3_handle_rx_bd or will be freed by 5423 * stack, so we need to replace the buffer here. 5424 */ 5425 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5426 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 5427 if (ret) { 5428 hns3_ring_stats_update(ring, sw_err_cnt); 5429 /* if alloc new buffer fail, exit directly 5430 * and reclear in up flow. 5431 */ 5432 netdev_warn(ring_to_netdev(ring), 5433 "reserve buffer map failed, ret = %d\n", 5434 ret); 5435 return ret; 5436 } 5437 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 5438 } 5439 ring_ptr_move_fw(ring, next_to_use); 5440 } 5441 5442 /* Free the pending skb in rx ring */ 5443 if (ring->skb) { 5444 dev_kfree_skb_any(ring->skb); 5445 ring->skb = NULL; 5446 ring->pending_buf = 0; 5447 } 5448 5449 return 0; 5450 } 5451 5452 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) 5453 { 5454 while (ring->next_to_use != ring->next_to_clean) { 5455 /* When a buffer is not reused, it's memory has been 5456 * freed in hns3_handle_rx_bd or will be freed by 5457 * stack, so only need to unmap the buffer here. 5458 */ 5459 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5460 hns3_unmap_buffer(ring, 5461 &ring->desc_cb[ring->next_to_use]); 5462 ring->desc_cb[ring->next_to_use].dma = 0; 5463 } 5464 5465 ring_ptr_move_fw(ring, next_to_use); 5466 } 5467 } 5468 5469 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) 5470 { 5471 struct net_device *ndev = h->kinfo.netdev; 5472 struct hns3_nic_priv *priv = netdev_priv(ndev); 5473 u32 i; 5474 5475 for (i = 0; i < h->kinfo.num_tqps; i++) { 5476 struct hns3_enet_ring *ring; 5477 5478 ring = &priv->ring[i]; 5479 hns3_clear_tx_ring(ring); 5480 5481 ring = &priv->ring[i + h->kinfo.num_tqps]; 5482 /* Continue to clear other rings even if clearing some 5483 * rings failed. 5484 */ 5485 if (force) 5486 hns3_force_clear_rx_ring(ring); 5487 else 5488 hns3_clear_rx_ring(ring); 5489 } 5490 } 5491 5492 int hns3_nic_reset_all_ring(struct hnae3_handle *h) 5493 { 5494 struct net_device *ndev = h->kinfo.netdev; 5495 struct hns3_nic_priv *priv = netdev_priv(ndev); 5496 struct hns3_enet_ring *rx_ring; 5497 int i, j; 5498 int ret; 5499 5500 ret = h->ae_algo->ops->reset_queue(h); 5501 if (ret) 5502 return ret; 5503 5504 for (i = 0; i < h->kinfo.num_tqps; i++) { 5505 hns3_init_ring_hw(&priv->ring[i]); 5506 5507 /* We need to clear tx ring here because self test will 5508 * use the ring and will not run down before up 5509 */ 5510 hns3_clear_tx_ring(&priv->ring[i]); 5511 priv->ring[i].next_to_clean = 0; 5512 priv->ring[i].next_to_use = 0; 5513 priv->ring[i].last_to_use = 0; 5514 5515 rx_ring = &priv->ring[i + h->kinfo.num_tqps]; 5516 hns3_init_ring_hw(rx_ring); 5517 ret = hns3_clear_rx_ring(rx_ring); 5518 if (ret) 5519 return ret; 5520 5521 /* We can not know the hardware head and tail when this 5522 * function is called in reset flow, so we reuse all desc. 5523 */ 5524 for (j = 0; j < rx_ring->desc_num; j++) 5525 hns3_reuse_buffer(rx_ring, j); 5526 5527 rx_ring->next_to_clean = 0; 5528 rx_ring->next_to_use = 0; 5529 } 5530 5531 hns3_init_tx_ring_tc(priv); 5532 5533 return 0; 5534 } 5535 5536 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) 5537 { 5538 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5539 struct net_device *ndev = kinfo->netdev; 5540 struct hns3_nic_priv *priv = netdev_priv(ndev); 5541 5542 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) 5543 return 0; 5544 5545 if (!netif_running(ndev)) 5546 return 0; 5547 5548 return hns3_nic_net_stop(ndev); 5549 } 5550 5551 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) 5552 { 5553 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5554 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); 5555 int ret = 0; 5556 5557 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5558 netdev_err(kinfo->netdev, "device is not initialized yet\n"); 5559 return -EFAULT; 5560 } 5561 5562 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5563 5564 if (netif_running(kinfo->netdev)) { 5565 ret = hns3_nic_net_open(kinfo->netdev); 5566 if (ret) { 5567 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5568 netdev_err(kinfo->netdev, 5569 "net up fail, ret=%d!\n", ret); 5570 return ret; 5571 } 5572 } 5573 5574 return ret; 5575 } 5576 5577 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) 5578 { 5579 struct net_device *netdev = handle->kinfo.netdev; 5580 struct hns3_nic_priv *priv = netdev_priv(netdev); 5581 int ret; 5582 5583 /* Carrier off reporting is important to ethtool even BEFORE open */ 5584 netif_carrier_off(netdev); 5585 5586 ret = hns3_get_ring_config(priv); 5587 if (ret) 5588 return ret; 5589 5590 ret = hns3_nic_alloc_vector_data(priv); 5591 if (ret) 5592 goto err_put_ring; 5593 5594 ret = hns3_nic_init_vector_data(priv); 5595 if (ret) 5596 goto err_dealloc_vector; 5597 5598 ret = hns3_init_all_ring(priv); 5599 if (ret) 5600 goto err_uninit_vector; 5601 5602 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode); 5603 5604 /* the device can work without cpu rmap, only aRFS needs it */ 5605 ret = hns3_set_rx_cpu_rmap(netdev); 5606 if (ret) 5607 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5608 5609 ret = hns3_nic_init_irq(priv); 5610 if (ret) { 5611 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5612 hns3_free_rx_cpu_rmap(netdev); 5613 goto err_init_irq_fail; 5614 } 5615 5616 if (!hns3_is_phys_func(handle->pdev)) 5617 hns3_init_mac_addr(netdev); 5618 5619 ret = hns3_client_start(handle); 5620 if (ret) { 5621 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5622 goto err_client_start_fail; 5623 } 5624 5625 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5626 5627 return ret; 5628 5629 err_client_start_fail: 5630 hns3_free_rx_cpu_rmap(netdev); 5631 hns3_nic_uninit_irq(priv); 5632 err_init_irq_fail: 5633 hns3_uninit_all_ring(priv); 5634 err_uninit_vector: 5635 hns3_nic_uninit_vector_data(priv); 5636 err_dealloc_vector: 5637 hns3_nic_dealloc_vector_data(priv); 5638 err_put_ring: 5639 hns3_put_ring_config(priv); 5640 5641 return ret; 5642 } 5643 5644 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) 5645 { 5646 struct net_device *netdev = handle->kinfo.netdev; 5647 struct hns3_nic_priv *priv = netdev_priv(netdev); 5648 5649 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5650 netdev_warn(netdev, "already uninitialized\n"); 5651 return 0; 5652 } 5653 5654 hns3_free_rx_cpu_rmap(netdev); 5655 hns3_nic_uninit_irq(priv); 5656 hns3_clear_all_ring(handle, true); 5657 hns3_reset_tx_queue(priv->ae_handle); 5658 5659 hns3_nic_uninit_vector_data(priv); 5660 5661 hns3_nic_dealloc_vector_data(priv); 5662 5663 hns3_uninit_all_ring(priv); 5664 5665 hns3_put_ring_config(priv); 5666 5667 return 0; 5668 } 5669 5670 int hns3_reset_notify(struct hnae3_handle *handle, 5671 enum hnae3_reset_notify_type type) 5672 { 5673 int ret = 0; 5674 5675 switch (type) { 5676 case HNAE3_UP_CLIENT: 5677 ret = hns3_reset_notify_up_enet(handle); 5678 break; 5679 case HNAE3_DOWN_CLIENT: 5680 ret = hns3_reset_notify_down_enet(handle); 5681 break; 5682 case HNAE3_INIT_CLIENT: 5683 ret = hns3_reset_notify_init_enet(handle); 5684 break; 5685 case HNAE3_UNINIT_CLIENT: 5686 ret = hns3_reset_notify_uninit_enet(handle); 5687 break; 5688 default: 5689 break; 5690 } 5691 5692 return ret; 5693 } 5694 5695 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, 5696 bool rxfh_configured) 5697 { 5698 int ret; 5699 5700 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, 5701 rxfh_configured); 5702 if (ret) { 5703 dev_err(&handle->pdev->dev, 5704 "Change tqp num(%u) fail.\n", new_tqp_num); 5705 return ret; 5706 } 5707 5708 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); 5709 if (ret) 5710 return ret; 5711 5712 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); 5713 if (ret) 5714 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); 5715 5716 return ret; 5717 } 5718 5719 int hns3_set_channels(struct net_device *netdev, 5720 struct ethtool_channels *ch) 5721 { 5722 struct hnae3_handle *h = hns3_get_handle(netdev); 5723 struct hnae3_knic_private_info *kinfo = &h->kinfo; 5724 bool rxfh_configured = netif_is_rxfh_configured(netdev); 5725 u32 new_tqp_num = ch->combined_count; 5726 u16 org_tqp_num; 5727 int ret; 5728 5729 if (hns3_nic_resetting(netdev)) 5730 return -EBUSY; 5731 5732 if (ch->rx_count || ch->tx_count) 5733 return -EINVAL; 5734 5735 if (kinfo->tc_info.mqprio_active) { 5736 dev_err(&netdev->dev, 5737 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n"); 5738 return -EINVAL; 5739 } 5740 5741 if (new_tqp_num > hns3_get_max_available_channels(h) || 5742 new_tqp_num < 1) { 5743 dev_err(&netdev->dev, 5744 "Change tqps fail, the tqp range is from 1 to %u", 5745 hns3_get_max_available_channels(h)); 5746 return -EINVAL; 5747 } 5748 5749 if (kinfo->rss_size == new_tqp_num) 5750 return 0; 5751 5752 netif_dbg(h, drv, netdev, 5753 "set channels: tqp_num=%u, rxfh=%d\n", 5754 new_tqp_num, rxfh_configured); 5755 5756 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); 5757 if (ret) 5758 return ret; 5759 5760 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); 5761 if (ret) 5762 return ret; 5763 5764 org_tqp_num = h->kinfo.num_tqps; 5765 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); 5766 if (ret) { 5767 int ret1; 5768 5769 netdev_warn(netdev, 5770 "Change channels fail, revert to old value\n"); 5771 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); 5772 if (ret1) { 5773 netdev_err(netdev, 5774 "revert to old channel fail\n"); 5775 return ret1; 5776 } 5777 5778 return ret; 5779 } 5780 5781 return 0; 5782 } 5783 5784 static const struct hns3_hw_error_info hns3_hw_err[] = { 5785 { .type = HNAE3_PPU_POISON_ERROR, 5786 .msg = "PPU poison" }, 5787 { .type = HNAE3_CMDQ_ECC_ERROR, 5788 .msg = "IMP CMDQ error" }, 5789 { .type = HNAE3_IMP_RD_POISON_ERROR, 5790 .msg = "IMP RD poison" }, 5791 { .type = HNAE3_ROCEE_AXI_RESP_ERROR, 5792 .msg = "ROCEE AXI RESP error" }, 5793 }; 5794 5795 static void hns3_process_hw_error(struct hnae3_handle *handle, 5796 enum hnae3_hw_error_type type) 5797 { 5798 int i; 5799 5800 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { 5801 if (hns3_hw_err[i].type == type) { 5802 dev_err(&handle->pdev->dev, "Detected %s!\n", 5803 hns3_hw_err[i].msg); 5804 break; 5805 } 5806 } 5807 } 5808 5809 static const struct hnae3_client_ops client_ops = { 5810 .init_instance = hns3_client_init, 5811 .uninit_instance = hns3_client_uninit, 5812 .link_status_change = hns3_link_status_change, 5813 .reset_notify = hns3_reset_notify, 5814 .process_hw_error = hns3_process_hw_error, 5815 }; 5816 5817 /* hns3_init_module - Driver registration routine 5818 * hns3_init_module is the first routine called when the driver is 5819 * loaded. All it does is register with the PCI subsystem. 5820 */ 5821 static int __init hns3_init_module(void) 5822 { 5823 int ret; 5824 5825 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); 5826 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); 5827 5828 client.type = HNAE3_CLIENT_KNIC; 5829 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s", 5830 hns3_driver_name); 5831 5832 client.ops = &client_ops; 5833 5834 INIT_LIST_HEAD(&client.node); 5835 5836 hns3_dbg_register_debugfs(hns3_driver_name); 5837 5838 ret = hnae3_register_client(&client); 5839 if (ret) 5840 goto err_reg_client; 5841 5842 ret = pci_register_driver(&hns3_driver); 5843 if (ret) 5844 goto err_reg_driver; 5845 5846 return ret; 5847 5848 err_reg_driver: 5849 hnae3_unregister_client(&client); 5850 err_reg_client: 5851 hns3_dbg_unregister_debugfs(); 5852 return ret; 5853 } 5854 module_init(hns3_init_module); 5855 5856 /* hns3_exit_module - Driver exit cleanup routine 5857 * hns3_exit_module is called just before the driver is removed 5858 * from memory. 5859 */ 5860 static void __exit hns3_exit_module(void) 5861 { 5862 pci_unregister_driver(&hns3_driver); 5863 hnae3_unregister_client(&client); 5864 hns3_dbg_unregister_debugfs(); 5865 } 5866 module_exit(hns3_exit_module); 5867 5868 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); 5869 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 5870 MODULE_LICENSE("GPL"); 5871 MODULE_ALIAS("pci:hns-nic"); 5872