xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 05ee19c18c2bb3dea69e29219017367c4a77e65a)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <net/gre.h>
19 #include <net/ip6_checksum.h>
20 #include <net/pkt_cls.h>
21 #include <net/tcp.h>
22 #include <net/vxlan.h>
23 
24 #include "hnae3.h"
25 #include "hns3_enet.h"
26 /* All hns3 tracepoints are defined by the include below, which
27  * must be included exactly once across the whole kernel with
28  * CREATE_TRACE_POINTS defined
29  */
30 #define CREATE_TRACE_POINTS
31 #include "hns3_trace.h"
32 
33 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
34 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
35 
36 #define hns3_rl_err(fmt, ...)						\
37 	do {								\
38 		if (net_ratelimit())					\
39 			netdev_err(fmt, ##__VA_ARGS__);			\
40 	} while (0)
41 
42 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
43 
44 static const char hns3_driver_name[] = "hns3";
45 static const char hns3_driver_string[] =
46 			"Hisilicon Ethernet Network Driver for Hip08 Family";
47 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
48 static struct hnae3_client client;
49 
50 static int debug = -1;
51 module_param(debug, int, 0);
52 MODULE_PARM_DESC(debug, " Network interface message level setting");
53 
54 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
55 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
56 
57 #define HNS3_INNER_VLAN_TAG	1
58 #define HNS3_OUTER_VLAN_TAG	2
59 
60 #define HNS3_MIN_TX_LEN		33U
61 
62 /* hns3_pci_tbl - PCI Device ID Table
63  *
64  * Last entry must be all 0s
65  *
66  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
67  *   Class, Class Mask, private data (not used) }
68  */
69 static const struct pci_device_id hns3_pci_tbl[] = {
70 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
73 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
84 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
85 	/* required last entry */
86 	{0, }
87 };
88 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
89 
90 static irqreturn_t hns3_irq_handle(int irq, void *vector)
91 {
92 	struct hns3_enet_tqp_vector *tqp_vector = vector;
93 
94 	napi_schedule_irqoff(&tqp_vector->napi);
95 
96 	return IRQ_HANDLED;
97 }
98 
99 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
100 {
101 	struct hns3_enet_tqp_vector *tqp_vectors;
102 	unsigned int i;
103 
104 	for (i = 0; i < priv->vector_num; i++) {
105 		tqp_vectors = &priv->tqp_vector[i];
106 
107 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
108 			continue;
109 
110 		/* clear the affinity mask */
111 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
112 
113 		/* release the irq resource */
114 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
115 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
116 	}
117 }
118 
119 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
120 {
121 	struct hns3_enet_tqp_vector *tqp_vectors;
122 	int txrx_int_idx = 0;
123 	int rx_int_idx = 0;
124 	int tx_int_idx = 0;
125 	unsigned int i;
126 	int ret;
127 
128 	for (i = 0; i < priv->vector_num; i++) {
129 		tqp_vectors = &priv->tqp_vector[i];
130 
131 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
132 			continue;
133 
134 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
136 				 "%s-%s-%s-%d", hns3_driver_name,
137 				 pci_name(priv->ae_handle->pdev),
138 				 "TxRx", txrx_int_idx++);
139 			txrx_int_idx++;
140 		} else if (tqp_vectors->rx_group.ring) {
141 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
142 				 "%s-%s-%s-%d", hns3_driver_name,
143 				 pci_name(priv->ae_handle->pdev),
144 				 "Rx", rx_int_idx++);
145 		} else if (tqp_vectors->tx_group.ring) {
146 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
147 				 "%s-%s-%s-%d", hns3_driver_name,
148 				 pci_name(priv->ae_handle->pdev),
149 				 "Tx", tx_int_idx++);
150 		} else {
151 			/* Skip this unused q_vector */
152 			continue;
153 		}
154 
155 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
156 
157 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
158 				  tqp_vectors->name, tqp_vectors);
159 		if (ret) {
160 			netdev_err(priv->netdev, "request irq(%d) fail\n",
161 				   tqp_vectors->vector_irq);
162 			hns3_nic_uninit_irq(priv);
163 			return ret;
164 		}
165 
166 		disable_irq(tqp_vectors->vector_irq);
167 
168 		irq_set_affinity_hint(tqp_vectors->vector_irq,
169 				      &tqp_vectors->affinity_mask);
170 
171 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172 	}
173 
174 	return 0;
175 }
176 
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178 				 u32 mask_en)
179 {
180 	writel(mask_en, tqp_vector->mask_addr);
181 }
182 
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	napi_enable(&tqp_vector->napi);
186 	enable_irq(tqp_vector->vector_irq);
187 
188 	/* enable vector */
189 	hns3_mask_vector_irq(tqp_vector, 1);
190 }
191 
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194 	/* disable vector */
195 	hns3_mask_vector_irq(tqp_vector, 0);
196 
197 	disable_irq(tqp_vector->vector_irq);
198 	napi_disable(&tqp_vector->napi);
199 }
200 
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202 				 u32 rl_value)
203 {
204 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205 
206 	/* this defines the configuration for RL (Interrupt Rate Limiter).
207 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
208 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209 	 */
210 
211 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
213 		/* According to the hardware, the range of rl_reg is
214 		 * 0-59 and the unit is 4.
215 		 */
216 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217 
218 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220 
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222 				    u32 gl_value)
223 {
224 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225 
226 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228 
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230 				    u32 gl_value)
231 {
232 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236 
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238 				   struct hns3_nic_priv *priv)
239 {
240 	/* initialize the configuration for interrupt coalescing.
241 	 * 1. GL (Interrupt Gap Limiter)
242 	 * 2. RL (Interrupt Rate Limiter)
243 	 *
244 	 * Default: enable interrupt coalescing self-adaptive and GL
245 	 */
246 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248 
249 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251 
252 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255 
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257 				      struct hns3_nic_priv *priv)
258 {
259 	struct hnae3_handle *h = priv->ae_handle;
260 
261 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
262 				       tqp_vector->tx_group.coal.int_gl);
263 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
264 				       tqp_vector->rx_group.coal.int_gl);
265 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267 
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270 	struct hnae3_handle *h = hns3_get_handle(netdev);
271 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
272 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273 	int i, ret;
274 
275 	if (kinfo->num_tc <= 1) {
276 		netdev_reset_tc(netdev);
277 	} else {
278 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279 		if (ret) {
280 			netdev_err(netdev,
281 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
282 			return ret;
283 		}
284 
285 		for (i = 0; i < HNAE3_MAX_TC; i++) {
286 			if (!kinfo->tc_info[i].enable)
287 				continue;
288 
289 			netdev_set_tc_queue(netdev,
290 					    kinfo->tc_info[i].tc,
291 					    kinfo->tc_info[i].tqp_count,
292 					    kinfo->tc_info[i].tqp_offset);
293 		}
294 	}
295 
296 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
297 	if (ret) {
298 		netdev_err(netdev,
299 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300 		return ret;
301 	}
302 
303 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
304 	if (ret) {
305 		netdev_err(netdev,
306 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307 		return ret;
308 	}
309 
310 	return 0;
311 }
312 
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315 	u16 alloc_tqps, max_rss_size, rss_size;
316 
317 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318 	rss_size = alloc_tqps / h->kinfo.num_tc;
319 
320 	return min_t(u16, rss_size, max_rss_size);
321 }
322 
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325 	u32 rcb_reg;
326 
327 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328 	rcb_reg |= BIT(HNS3_RING_EN_B);
329 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331 
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334 	u32 rcb_reg;
335 
336 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
338 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340 
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345 	netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348 
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352 	struct hns3_nic_priv *priv = netdev_priv(netdev);
353 	struct hns3_enet_tqp_vector *tqp_vector;
354 	int i, ret;
355 
356 	if (!netdev->rx_cpu_rmap) {
357 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358 		if (!netdev->rx_cpu_rmap)
359 			return -ENOMEM;
360 	}
361 
362 	for (i = 0; i < priv->vector_num; i++) {
363 		tqp_vector = &priv->tqp_vector[i];
364 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365 				       tqp_vector->vector_irq);
366 		if (ret) {
367 			hns3_free_rx_cpu_rmap(netdev);
368 			return ret;
369 		}
370 	}
371 #endif
372 	return 0;
373 }
374 
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
378 	struct hnae3_handle *h = priv->ae_handle;
379 	int i, j;
380 	int ret;
381 
382 	ret = hns3_nic_reset_all_ring(h);
383 	if (ret)
384 		return ret;
385 
386 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387 
388 	/* enable the vectors */
389 	for (i = 0; i < priv->vector_num; i++)
390 		hns3_vector_enable(&priv->tqp_vector[i]);
391 
392 	/* enable rcb */
393 	for (j = 0; j < h->kinfo.num_tqps; j++)
394 		hns3_tqp_enable(h->kinfo.tqp[j]);
395 
396 	/* start the ae_dev */
397 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398 	if (ret) {
399 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400 		while (j--)
401 			hns3_tqp_disable(h->kinfo.tqp[j]);
402 
403 		for (j = i - 1; j >= 0; j--)
404 			hns3_vector_disable(&priv->tqp_vector[j]);
405 	}
406 
407 	return ret;
408 }
409 
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->vector_num; i++) {
415 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417 
418 		while (ring) {
419 			int ret;
420 
421 			ret = netif_set_xps_queue(priv->netdev,
422 						  &tqp_vector->affinity_mask,
423 						  ring->tqp->tqp_index);
424 			if (ret)
425 				netdev_warn(priv->netdev,
426 					    "set xps queue failed: %d", ret);
427 
428 			ring = ring->next;
429 		}
430 	}
431 }
432 
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435 	struct hns3_nic_priv *priv = netdev_priv(netdev);
436 	struct hnae3_handle *h = hns3_get_handle(netdev);
437 	struct hnae3_knic_private_info *kinfo;
438 	int i, ret;
439 
440 	if (hns3_nic_resetting(netdev))
441 		return -EBUSY;
442 
443 	netif_carrier_off(netdev);
444 
445 	ret = hns3_nic_set_real_num_queue(netdev);
446 	if (ret)
447 		return ret;
448 
449 	ret = hns3_nic_net_up(netdev);
450 	if (ret) {
451 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452 		return ret;
453 	}
454 
455 	kinfo = &h->kinfo;
456 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458 
459 	if (h->ae_algo->ops->set_timer_task)
460 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461 
462 	hns3_config_xps(priv);
463 
464 	netif_dbg(h, drv, netdev, "net open\n");
465 
466 	return 0;
467 }
468 
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471 	struct net_device *ndev = h->kinfo.netdev;
472 	struct hns3_nic_priv *priv = netdev_priv(ndev);
473 	struct netdev_queue *dev_queue;
474 	u32 i;
475 
476 	for (i = 0; i < h->kinfo.num_tqps; i++) {
477 		dev_queue = netdev_get_tx_queue(ndev,
478 						priv->ring[i].queue_index);
479 		netdev_tx_reset_queue(dev_queue);
480 	}
481 }
482 
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485 	struct hns3_nic_priv *priv = netdev_priv(netdev);
486 	struct hnae3_handle *h = hns3_get_handle(netdev);
487 	const struct hnae3_ae_ops *ops;
488 	int i;
489 
490 	/* disable vectors */
491 	for (i = 0; i < priv->vector_num; i++)
492 		hns3_vector_disable(&priv->tqp_vector[i]);
493 
494 	/* disable rcb */
495 	for (i = 0; i < h->kinfo.num_tqps; i++)
496 		hns3_tqp_disable(h->kinfo.tqp[i]);
497 
498 	/* stop ae_dev */
499 	ops = priv->ae_handle->ae_algo->ops;
500 	if (ops->stop)
501 		ops->stop(priv->ae_handle);
502 
503 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504 	 * during reset process, because driver may not be able
505 	 * to disable the ring through firmware when downing the netdev.
506 	 */
507 	if (!hns3_nic_resetting(netdev))
508 		hns3_clear_all_ring(priv->ae_handle, false);
509 
510 	hns3_reset_tx_queue(priv->ae_handle);
511 }
512 
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515 	struct hns3_nic_priv *priv = netdev_priv(netdev);
516 	struct hnae3_handle *h = hns3_get_handle(netdev);
517 
518 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519 		return 0;
520 
521 	netif_dbg(h, drv, netdev, "net stop\n");
522 
523 	if (h->ae_algo->ops->set_timer_task)
524 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525 
526 	netif_tx_stop_all_queues(netdev);
527 	netif_carrier_off(netdev);
528 
529 	hns3_nic_net_down(netdev);
530 
531 	return 0;
532 }
533 
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535 			    const unsigned char *addr)
536 {
537 	struct hnae3_handle *h = hns3_get_handle(netdev);
538 
539 	if (h->ae_algo->ops->add_uc_addr)
540 		return h->ae_algo->ops->add_uc_addr(h, addr);
541 
542 	return 0;
543 }
544 
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546 			      const unsigned char *addr)
547 {
548 	struct hnae3_handle *h = hns3_get_handle(netdev);
549 
550 	/* need ignore the request of removing device address, because
551 	 * we store the device address and other addresses of uc list
552 	 * in the function's mac filter list.
553 	 */
554 	if (ether_addr_equal(addr, netdev->dev_addr))
555 		return 0;
556 
557 	if (h->ae_algo->ops->rm_uc_addr)
558 		return h->ae_algo->ops->rm_uc_addr(h, addr);
559 
560 	return 0;
561 }
562 
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564 			    const unsigned char *addr)
565 {
566 	struct hnae3_handle *h = hns3_get_handle(netdev);
567 
568 	if (h->ae_algo->ops->add_mc_addr)
569 		return h->ae_algo->ops->add_mc_addr(h, addr);
570 
571 	return 0;
572 }
573 
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575 			      const unsigned char *addr)
576 {
577 	struct hnae3_handle *h = hns3_get_handle(netdev);
578 
579 	if (h->ae_algo->ops->rm_mc_addr)
580 		return h->ae_algo->ops->rm_mc_addr(h, addr);
581 
582 	return 0;
583 }
584 
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587 	u8 flags = 0;
588 
589 	if (netdev->flags & IFF_PROMISC) {
590 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 	} else {
592 		flags |= HNAE3_VLAN_FLTR;
593 		if (netdev->flags & IFF_ALLMULTI)
594 			flags |= HNAE3_USER_MPE;
595 	}
596 
597 	return flags;
598 }
599 
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602 	struct hnae3_handle *h = hns3_get_handle(netdev);
603 	u8 new_flags;
604 
605 	new_flags = hns3_get_netdev_flags(netdev);
606 
607 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609 
610 	/* User mode Promisc mode enable and vlan filtering is disabled to
611 	 * let all packets in.
612 	 */
613 	h->netdev_flags = new_flags;
614 	hns3_request_update_promisc_mode(h);
615 }
616 
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620 
621 	if (ops->request_update_promisc_mode)
622 		ops->request_update_promisc_mode(handle);
623 }
624 
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627 	struct hns3_nic_priv *priv = netdev_priv(netdev);
628 	struct hnae3_handle *h = priv->ae_handle;
629 
630 	if (h->ae_algo->ops->set_promisc_mode) {
631 		return h->ae_algo->ops->set_promisc_mode(h,
632 						promisc_flags & HNAE3_UPE,
633 						promisc_flags & HNAE3_MPE);
634 	}
635 
636 	return 0;
637 }
638 
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641 	struct hns3_nic_priv *priv = netdev_priv(netdev);
642 	struct hnae3_handle *h = priv->ae_handle;
643 	bool last_state;
644 
645 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647 		if (enable != last_state) {
648 			netdev_info(netdev,
649 				    "%s vlan filter\n",
650 				    enable ? "enable" : "disable");
651 			h->ae_algo->ops->enable_vlan_filter(h, enable);
652 		}
653 	}
654 }
655 
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657 			u16 *mss, u32 *type_cs_vlan_tso)
658 {
659 	u32 l4_offset, hdr_len;
660 	union l3_hdr_info l3;
661 	union l4_hdr_info l4;
662 	u32 l4_paylen;
663 	int ret;
664 
665 	if (!skb_is_gso(skb))
666 		return 0;
667 
668 	ret = skb_cow_head(skb, 0);
669 	if (unlikely(ret < 0))
670 		return ret;
671 
672 	l3.hdr = skb_network_header(skb);
673 	l4.hdr = skb_transport_header(skb);
674 
675 	/* Software should clear the IPv4's checksum field when tso is
676 	 * needed.
677 	 */
678 	if (l3.v4->version == 4)
679 		l3.v4->check = 0;
680 
681 	/* tunnel packet */
682 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683 					 SKB_GSO_GRE_CSUM |
684 					 SKB_GSO_UDP_TUNNEL |
685 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
686 		if ((!(skb_shinfo(skb)->gso_type &
687 		    SKB_GSO_PARTIAL)) &&
688 		    (skb_shinfo(skb)->gso_type &
689 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
690 			/* Software should clear the udp's checksum
691 			 * field when tso is needed.
692 			 */
693 			l4.udp->check = 0;
694 		}
695 		/* reset l3&l4 pointers from outer to inner headers */
696 		l3.hdr = skb_inner_network_header(skb);
697 		l4.hdr = skb_inner_transport_header(skb);
698 
699 		/* Software should clear the IPv4's checksum field when
700 		 * tso is needed.
701 		 */
702 		if (l3.v4->version == 4)
703 			l3.v4->check = 0;
704 	}
705 
706 	/* normal or tunnel packet */
707 	l4_offset = l4.hdr - skb->data;
708 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
709 
710 	/* remove payload length from inner pseudo checksum when tso */
711 	l4_paylen = skb->len - l4_offset;
712 	csum_replace_by_diff(&l4.tcp->check,
713 			     (__force __wsum)htonl(l4_paylen));
714 
715 	/* find the txbd field values */
716 	*paylen = skb->len - hdr_len;
717 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718 
719 	/* get MSS for TSO */
720 	*mss = skb_shinfo(skb)->gso_size;
721 
722 	trace_hns3_tso(skb);
723 
724 	return 0;
725 }
726 
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728 				u8 *il4_proto)
729 {
730 	union l3_hdr_info l3;
731 	unsigned char *l4_hdr;
732 	unsigned char *exthdr;
733 	u8 l4_proto_tmp;
734 	__be16 frag_off;
735 
736 	/* find outer header point */
737 	l3.hdr = skb_network_header(skb);
738 	l4_hdr = skb_transport_header(skb);
739 
740 	if (skb->protocol == htons(ETH_P_IPV6)) {
741 		exthdr = l3.hdr + sizeof(*l3.v6);
742 		l4_proto_tmp = l3.v6->nexthdr;
743 		if (l4_hdr != exthdr)
744 			ipv6_skip_exthdr(skb, exthdr - skb->data,
745 					 &l4_proto_tmp, &frag_off);
746 	} else if (skb->protocol == htons(ETH_P_IP)) {
747 		l4_proto_tmp = l3.v4->protocol;
748 	} else {
749 		return -EINVAL;
750 	}
751 
752 	*ol4_proto = l4_proto_tmp;
753 
754 	/* tunnel packet */
755 	if (!skb->encapsulation) {
756 		*il4_proto = 0;
757 		return 0;
758 	}
759 
760 	/* find inner header point */
761 	l3.hdr = skb_inner_network_header(skb);
762 	l4_hdr = skb_inner_transport_header(skb);
763 
764 	if (l3.v6->version == 6) {
765 		exthdr = l3.hdr + sizeof(*l3.v6);
766 		l4_proto_tmp = l3.v6->nexthdr;
767 		if (l4_hdr != exthdr)
768 			ipv6_skip_exthdr(skb, exthdr - skb->data,
769 					 &l4_proto_tmp, &frag_off);
770 	} else if (l3.v4->version == 4) {
771 		l4_proto_tmp = l3.v4->protocol;
772 	}
773 
774 	*il4_proto = l4_proto_tmp;
775 
776 	return 0;
777 }
778 
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787 	union l4_hdr_info l4;
788 
789 	l4.hdr = skb_transport_header(skb);
790 
791 	if (!(!skb->encapsulation &&
792 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793 		return false;
794 
795 	skb_checksum_help(skb);
796 
797 	return true;
798 }
799 
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801 				  u32 *ol_type_vlan_len_msec)
802 {
803 	u32 l2_len, l3_len, l4_len;
804 	unsigned char *il2_hdr;
805 	union l3_hdr_info l3;
806 	union l4_hdr_info l4;
807 
808 	l3.hdr = skb_network_header(skb);
809 	l4.hdr = skb_transport_header(skb);
810 
811 	/* compute OL2 header size, defined in 2 Bytes */
812 	l2_len = l3.hdr - skb->data;
813 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814 
815 	/* compute OL3 header size, defined in 4 Bytes */
816 	l3_len = l4.hdr - l3.hdr;
817 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818 
819 	il2_hdr = skb_inner_mac_header(skb);
820 	/* compute OL4 header size, defined in 4 Bytes */
821 	l4_len = il2_hdr - l4.hdr;
822 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823 
824 	/* define outer network header type */
825 	if (skb->protocol == htons(ETH_P_IP)) {
826 		if (skb_is_gso(skb))
827 			hns3_set_field(*ol_type_vlan_len_msec,
828 				       HNS3_TXD_OL3T_S,
829 				       HNS3_OL3T_IPV4_CSUM);
830 		else
831 			hns3_set_field(*ol_type_vlan_len_msec,
832 				       HNS3_TXD_OL3T_S,
833 				       HNS3_OL3T_IPV4_NO_CSUM);
834 
835 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
836 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837 			       HNS3_OL3T_IPV6);
838 	}
839 
840 	if (ol4_proto == IPPROTO_UDP)
841 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842 			       HNS3_TUN_MAC_IN_UDP);
843 	else if (ol4_proto == IPPROTO_GRE)
844 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845 			       HNS3_TUN_NVGRE);
846 }
847 
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849 			   u8 il4_proto, u32 *type_cs_vlan_tso,
850 			   u32 *ol_type_vlan_len_msec)
851 {
852 	unsigned char *l2_hdr = skb->data;
853 	u32 l4_proto = ol4_proto;
854 	union l4_hdr_info l4;
855 	union l3_hdr_info l3;
856 	u32 l2_len, l3_len;
857 
858 	l4.hdr = skb_transport_header(skb);
859 	l3.hdr = skb_network_header(skb);
860 
861 	/* handle encapsulation skb */
862 	if (skb->encapsulation) {
863 		/* If this is a not UDP/GRE encapsulation skb */
864 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865 			/* drop the skb tunnel packet if hardware don't support,
866 			 * because hardware can't calculate csum when TSO.
867 			 */
868 			if (skb_is_gso(skb))
869 				return -EDOM;
870 
871 			/* the stack computes the IP header already,
872 			 * driver calculate l4 checksum when not TSO.
873 			 */
874 			skb_checksum_help(skb);
875 			return 0;
876 		}
877 
878 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879 
880 		/* switch to inner header */
881 		l2_hdr = skb_inner_mac_header(skb);
882 		l3.hdr = skb_inner_network_header(skb);
883 		l4.hdr = skb_inner_transport_header(skb);
884 		l4_proto = il4_proto;
885 	}
886 
887 	if (l3.v4->version == 4) {
888 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889 			       HNS3_L3T_IPV4);
890 
891 		/* the stack computes the IP header already, the only time we
892 		 * need the hardware to recompute it is in the case of TSO.
893 		 */
894 		if (skb_is_gso(skb))
895 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896 	} else if (l3.v6->version == 6) {
897 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898 			       HNS3_L3T_IPV6);
899 	}
900 
901 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
902 	l2_len = l3.hdr - l2_hdr;
903 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904 
905 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
906 	l3_len = l4.hdr - l3.hdr;
907 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908 
909 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
910 	switch (l4_proto) {
911 	case IPPROTO_TCP:
912 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914 			       HNS3_L4T_TCP);
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916 			       l4.tcp->doff);
917 		break;
918 	case IPPROTO_UDP:
919 		if (hns3_tunnel_csum_bug(skb))
920 			break;
921 
922 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924 			       HNS3_L4T_UDP);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926 			       (sizeof(struct udphdr) >> 2));
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933 			       (sizeof(struct sctphdr) >> 2));
934 		break;
935 	default:
936 		/* drop the skb tunnel packet if hardware don't support,
937 		 * because hardware can't calculate csum when TSO.
938 		 */
939 		if (skb_is_gso(skb))
940 			return -EDOM;
941 
942 		/* the stack computes the IP header already,
943 		 * driver calculate l4 checksum when not TSO.
944 		 */
945 		skb_checksum_help(skb);
946 		return 0;
947 	}
948 
949 	return 0;
950 }
951 
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953 			     struct sk_buff *skb)
954 {
955 	struct hnae3_handle *handle = tx_ring->tqp->handle;
956 	struct vlan_ethhdr *vhdr;
957 	int rc;
958 
959 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
960 	      skb_vlan_tag_present(skb)))
961 		return 0;
962 
963 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964 	 * header is allowed in skb, otherwise it will cause RAS error.
965 	 */
966 	if (unlikely(skb_vlan_tagged_multi(skb) &&
967 		     handle->port_base_vlan_state ==
968 		     HNAE3_PORT_BASE_VLAN_ENABLE))
969 		return -EINVAL;
970 
971 	if (skb->protocol == htons(ETH_P_8021Q) &&
972 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973 		/* When HW VLAN acceleration is turned off, and the stack
974 		 * sets the protocol to 802.1q, the driver just need to
975 		 * set the protocol to the encapsulated ethertype.
976 		 */
977 		skb->protocol = vlan_get_protocol(skb);
978 		return 0;
979 	}
980 
981 	if (skb_vlan_tag_present(skb)) {
982 		/* Based on hw strategy, use out_vtag in two layer tag case,
983 		 * and use inner_vtag in one tag case.
984 		 */
985 		if (skb->protocol == htons(ETH_P_8021Q) &&
986 		    handle->port_base_vlan_state ==
987 		    HNAE3_PORT_BASE_VLAN_DISABLE)
988 			rc = HNS3_OUTER_VLAN_TAG;
989 		else
990 			rc = HNS3_INNER_VLAN_TAG;
991 
992 		skb->protocol = vlan_get_protocol(skb);
993 		return rc;
994 	}
995 
996 	rc = skb_cow_head(skb, 0);
997 	if (unlikely(rc < 0))
998 		return rc;
999 
1000 	vhdr = (struct vlan_ethhdr *)skb->data;
1001 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002 					 & VLAN_PRIO_MASK);
1003 
1004 	skb->protocol = vlan_get_protocol(skb);
1005 	return 0;
1006 }
1007 
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009 			      struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011 	u32 ol_type_vlan_len_msec = 0;
1012 	u32 type_cs_vlan_tso = 0;
1013 	u32 paylen = skb->len;
1014 	u16 inner_vtag = 0;
1015 	u16 out_vtag = 0;
1016 	u16 mss = 0;
1017 	int ret;
1018 
1019 	ret = hns3_handle_vtags(ring, skb);
1020 	if (unlikely(ret < 0)) {
1021 		u64_stats_update_begin(&ring->syncp);
1022 		ring->stats.tx_vlan_err++;
1023 		u64_stats_update_end(&ring->syncp);
1024 		return ret;
1025 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1026 		inner_vtag = skb_vlan_tag_get(skb);
1027 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028 				VLAN_PRIO_MASK;
1029 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1031 		out_vtag = skb_vlan_tag_get(skb);
1032 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035 			       1);
1036 	}
1037 
1038 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039 		u8 ol4_proto, il4_proto;
1040 
1041 		skb_reset_mac_len(skb);
1042 
1043 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044 		if (unlikely(ret < 0)) {
1045 			u64_stats_update_begin(&ring->syncp);
1046 			ring->stats.tx_l4_proto_err++;
1047 			u64_stats_update_end(&ring->syncp);
1048 			return ret;
1049 		}
1050 
1051 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052 				      &type_cs_vlan_tso,
1053 				      &ol_type_vlan_len_msec);
1054 		if (unlikely(ret < 0)) {
1055 			u64_stats_update_begin(&ring->syncp);
1056 			ring->stats.tx_l2l3l4_err++;
1057 			u64_stats_update_end(&ring->syncp);
1058 			return ret;
1059 		}
1060 
1061 		ret = hns3_set_tso(skb, &paylen, &mss,
1062 				   &type_cs_vlan_tso);
1063 		if (unlikely(ret < 0)) {
1064 			u64_stats_update_begin(&ring->syncp);
1065 			ring->stats.tx_tso_err++;
1066 			u64_stats_update_end(&ring->syncp);
1067 			return ret;
1068 		}
1069 	}
1070 
1071 	/* Set txbd */
1072 	desc->tx.ol_type_vlan_len_msec =
1073 		cpu_to_le32(ol_type_vlan_len_msec);
1074 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075 	desc->tx.paylen = cpu_to_le32(paylen);
1076 	desc->tx.mss = cpu_to_le16(mss);
1077 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079 
1080 	return 0;
1081 }
1082 
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084 			  unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM	1
1087 
1088 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090 	struct device *dev = ring_to_dev(ring);
1091 	skb_frag_t *frag;
1092 	unsigned int frag_buf_num;
1093 	int k, sizeoflast;
1094 	dma_addr_t dma;
1095 
1096 	if (type == DESC_TYPE_SKB) {
1097 		struct sk_buff *skb = (struct sk_buff *)priv;
1098 		int ret;
1099 
1100 		ret = hns3_fill_skb_desc(ring, skb, desc);
1101 		if (unlikely(ret < 0))
1102 			return ret;
1103 
1104 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105 	} else if (type == DESC_TYPE_FRAGLIST_SKB) {
1106 		struct sk_buff *skb = (struct sk_buff *)priv;
1107 
1108 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1109 	} else {
1110 		frag = (skb_frag_t *)priv;
1111 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1112 	}
1113 
1114 	if (unlikely(dma_mapping_error(dev, dma))) {
1115 		u64_stats_update_begin(&ring->syncp);
1116 		ring->stats.sw_err_cnt++;
1117 		u64_stats_update_end(&ring->syncp);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	desc_cb->length = size;
1122 
1123 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1124 		desc_cb->priv = priv;
1125 		desc_cb->dma = dma;
1126 		desc_cb->type = type;
1127 		desc->addr = cpu_to_le64(dma);
1128 		desc->tx.send_size = cpu_to_le16(size);
1129 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1130 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131 
1132 		trace_hns3_tx_desc(ring, ring->next_to_use);
1133 		ring_ptr_move_fw(ring, next_to_use);
1134 		return HNS3_LIKELY_BD_NUM;
1135 	}
1136 
1137 	frag_buf_num = hns3_tx_bd_count(size);
1138 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1139 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1140 
1141 	/* When frag size is bigger than hardware limit, split this frag */
1142 	for (k = 0; k < frag_buf_num; k++) {
1143 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1144 		desc_cb->priv = priv;
1145 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1146 		desc_cb->type = ((type == DESC_TYPE_FRAGLIST_SKB ||
1147 				  type == DESC_TYPE_SKB) && !k) ?
1148 				type : DESC_TYPE_PAGE;
1149 
1150 		/* now, fill the descriptor */
1151 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1152 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1153 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1154 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1155 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1156 
1157 		trace_hns3_tx_desc(ring, ring->next_to_use);
1158 		/* move ring pointer to next */
1159 		ring_ptr_move_fw(ring, next_to_use);
1160 
1161 		desc_cb = &ring->desc_cb[ring->next_to_use];
1162 		desc = &ring->desc[ring->next_to_use];
1163 	}
1164 
1165 	return frag_buf_num;
1166 }
1167 
1168 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1169 				    unsigned int bd_num)
1170 {
1171 	unsigned int size;
1172 	int i;
1173 
1174 	size = skb_headlen(skb);
1175 	while (size > HNS3_MAX_BD_SIZE) {
1176 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1177 		size -= HNS3_MAX_BD_SIZE;
1178 
1179 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1180 			return bd_num;
1181 	}
1182 
1183 	if (size) {
1184 		bd_size[bd_num++] = size;
1185 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186 			return bd_num;
1187 	}
1188 
1189 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1190 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1191 		size = skb_frag_size(frag);
1192 		if (!size)
1193 			continue;
1194 
1195 		while (size > HNS3_MAX_BD_SIZE) {
1196 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1197 			size -= HNS3_MAX_BD_SIZE;
1198 
1199 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1200 				return bd_num;
1201 		}
1202 
1203 		bd_size[bd_num++] = size;
1204 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1205 			return bd_num;
1206 	}
1207 
1208 	return bd_num;
1209 }
1210 
1211 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1212 {
1213 	struct sk_buff *frag_skb;
1214 	unsigned int bd_num = 0;
1215 
1216 	/* If the total len is within the max bd limit */
1217 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1218 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1219 		return skb_shinfo(skb)->nr_frags + 1U;
1220 
1221 	/* The below case will always be linearized, return
1222 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1223 	 */
1224 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1225 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1226 		return HNS3_MAX_TSO_BD_NUM + 1U;
1227 
1228 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1229 
1230 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1231 		return bd_num;
1232 
1233 	skb_walk_frags(skb, frag_skb) {
1234 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1235 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1236 			return bd_num;
1237 	}
1238 
1239 	return bd_num;
1240 }
1241 
1242 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1243 {
1244 	if (!skb->encapsulation)
1245 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1246 
1247 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1248 }
1249 
1250 /* HW need every continuous 8 buffer data to be larger than MSS,
1251  * we simplify it by ensuring skb_headlen + the first continuous
1252  * 7 frags to to be larger than gso header len + mss, and the remaining
1253  * continuous 7 frags to be larger than MSS except the last 7 frags.
1254  */
1255 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1256 				     unsigned int bd_num)
1257 {
1258 	unsigned int tot_len = 0;
1259 	int i;
1260 
1261 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1262 		tot_len += bd_size[i];
1263 
1264 	/* ensure the first 8 frags is greater than mss + header */
1265 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1266 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1267 		return true;
1268 
1269 	/* ensure every continuous 7 buffer is greater than mss
1270 	 * except the last one.
1271 	 */
1272 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1273 		tot_len -= bd_size[i];
1274 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1275 
1276 		if (tot_len < skb_shinfo(skb)->gso_size)
1277 			return true;
1278 	}
1279 
1280 	return false;
1281 }
1282 
1283 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1284 {
1285 	int i = 0;
1286 
1287 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1288 		size[i] = skb_frag_size(&shinfo->frags[i]);
1289 }
1290 
1291 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1292 				  struct net_device *netdev,
1293 				  struct sk_buff *skb)
1294 {
1295 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1296 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1297 	unsigned int bd_num;
1298 
1299 	bd_num = hns3_tx_bd_num(skb, bd_size);
1300 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1301 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1302 		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1303 			trace_hns3_over_8bd(skb);
1304 			goto out;
1305 		}
1306 
1307 		if (__skb_linearize(skb))
1308 			return -ENOMEM;
1309 
1310 		bd_num = hns3_tx_bd_count(skb->len);
1311 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1312 		    (!skb_is_gso(skb) &&
1313 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1314 			trace_hns3_over_8bd(skb);
1315 			return -ENOMEM;
1316 		}
1317 
1318 		u64_stats_update_begin(&ring->syncp);
1319 		ring->stats.tx_copy++;
1320 		u64_stats_update_end(&ring->syncp);
1321 	}
1322 
1323 out:
1324 	if (likely(ring_space(ring) >= bd_num))
1325 		return bd_num;
1326 
1327 	netif_stop_subqueue(netdev, ring->queue_index);
1328 	smp_mb(); /* Memory barrier before checking ring_space */
1329 
1330 	/* Start queue in case hns3_clean_tx_ring has just made room
1331 	 * available and has not seen the queue stopped state performed
1332 	 * by netif_stop_subqueue above.
1333 	 */
1334 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1335 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1336 		netif_start_subqueue(netdev, ring->queue_index);
1337 		return bd_num;
1338 	}
1339 
1340 	return -EBUSY;
1341 }
1342 
1343 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1344 {
1345 	struct device *dev = ring_to_dev(ring);
1346 	unsigned int i;
1347 
1348 	for (i = 0; i < ring->desc_num; i++) {
1349 		/* check if this is where we started */
1350 		if (ring->next_to_use == next_to_use_orig)
1351 			break;
1352 
1353 		/* rollback one */
1354 		ring_ptr_move_bw(ring, next_to_use);
1355 
1356 		/* unmap the descriptor dma address */
1357 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1358 		    ring->desc_cb[ring->next_to_use].type ==
1359 		    DESC_TYPE_FRAGLIST_SKB)
1360 			dma_unmap_single(dev,
1361 					 ring->desc_cb[ring->next_to_use].dma,
1362 					ring->desc_cb[ring->next_to_use].length,
1363 					DMA_TO_DEVICE);
1364 		else if (ring->desc_cb[ring->next_to_use].length)
1365 			dma_unmap_page(dev,
1366 				       ring->desc_cb[ring->next_to_use].dma,
1367 				       ring->desc_cb[ring->next_to_use].length,
1368 				       DMA_TO_DEVICE);
1369 
1370 		ring->desc_cb[ring->next_to_use].length = 0;
1371 		ring->desc_cb[ring->next_to_use].dma = 0;
1372 	}
1373 }
1374 
1375 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1376 				 struct sk_buff *skb, enum hns_desc_type type)
1377 {
1378 	unsigned int size = skb_headlen(skb);
1379 	int i, ret, bd_num = 0;
1380 
1381 	if (size) {
1382 		ret = hns3_fill_desc(ring, skb, size, type);
1383 		if (unlikely(ret < 0))
1384 			return ret;
1385 
1386 		bd_num += ret;
1387 	}
1388 
1389 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1390 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1391 
1392 		size = skb_frag_size(frag);
1393 		if (!size)
1394 			continue;
1395 
1396 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1397 		if (unlikely(ret < 0))
1398 			return ret;
1399 
1400 		bd_num += ret;
1401 	}
1402 
1403 	return bd_num;
1404 }
1405 
1406 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1407 {
1408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1409 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1410 	struct netdev_queue *dev_queue;
1411 	int pre_ntu, next_to_use_head;
1412 	struct sk_buff *frag_skb;
1413 	int bd_num = 0;
1414 	int ret;
1415 
1416 	/* Hardware can only handle short frames above 32 bytes */
1417 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1418 		return NETDEV_TX_OK;
1419 
1420 	/* Prefetch the data used later */
1421 	prefetch(skb->data);
1422 
1423 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1424 	if (unlikely(ret <= 0)) {
1425 		if (ret == -EBUSY) {
1426 			u64_stats_update_begin(&ring->syncp);
1427 			ring->stats.tx_busy++;
1428 			u64_stats_update_end(&ring->syncp);
1429 			return NETDEV_TX_BUSY;
1430 		} else if (ret == -ENOMEM) {
1431 			u64_stats_update_begin(&ring->syncp);
1432 			ring->stats.sw_err_cnt++;
1433 			u64_stats_update_end(&ring->syncp);
1434 		}
1435 
1436 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1437 		goto out_err_tx_ok;
1438 	}
1439 
1440 	next_to_use_head = ring->next_to_use;
1441 
1442 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1443 	if (unlikely(ret < 0))
1444 		goto fill_err;
1445 
1446 	bd_num += ret;
1447 
1448 	skb_walk_frags(skb, frag_skb) {
1449 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1450 					    DESC_TYPE_FRAGLIST_SKB);
1451 		if (unlikely(ret < 0))
1452 			goto fill_err;
1453 
1454 		bd_num += ret;
1455 	}
1456 
1457 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1458 					(ring->desc_num - 1);
1459 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1460 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1461 	trace_hns3_tx_desc(ring, pre_ntu);
1462 
1463 	/* Complete translate all packets */
1464 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1465 	netdev_tx_sent_queue(dev_queue, skb->len);
1466 
1467 	wmb(); /* Commit all data before submit */
1468 
1469 	hnae3_queue_xmit(ring->tqp, bd_num);
1470 
1471 	return NETDEV_TX_OK;
1472 
1473 fill_err:
1474 	hns3_clear_desc(ring, next_to_use_head);
1475 
1476 out_err_tx_ok:
1477 	dev_kfree_skb_any(skb);
1478 	return NETDEV_TX_OK;
1479 }
1480 
1481 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1482 {
1483 	struct hnae3_handle *h = hns3_get_handle(netdev);
1484 	struct sockaddr *mac_addr = p;
1485 	int ret;
1486 
1487 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1488 		return -EADDRNOTAVAIL;
1489 
1490 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1491 		netdev_info(netdev, "already using mac address %pM\n",
1492 			    mac_addr->sa_data);
1493 		return 0;
1494 	}
1495 
1496 	/* For VF device, if there is a perm_addr, then the user will not
1497 	 * be allowed to change the address.
1498 	 */
1499 	if (!hns3_is_phys_func(h->pdev) &&
1500 	    !is_zero_ether_addr(netdev->perm_addr)) {
1501 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1502 			   netdev->perm_addr, mac_addr->sa_data);
1503 		return -EPERM;
1504 	}
1505 
1506 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1507 	if (ret) {
1508 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1509 		return ret;
1510 	}
1511 
1512 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1513 
1514 	return 0;
1515 }
1516 
1517 static int hns3_nic_do_ioctl(struct net_device *netdev,
1518 			     struct ifreq *ifr, int cmd)
1519 {
1520 	struct hnae3_handle *h = hns3_get_handle(netdev);
1521 
1522 	if (!netif_running(netdev))
1523 		return -EINVAL;
1524 
1525 	if (!h->ae_algo->ops->do_ioctl)
1526 		return -EOPNOTSUPP;
1527 
1528 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1529 }
1530 
1531 static int hns3_nic_set_features(struct net_device *netdev,
1532 				 netdev_features_t features)
1533 {
1534 	netdev_features_t changed = netdev->features ^ features;
1535 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1536 	struct hnae3_handle *h = priv->ae_handle;
1537 	bool enable;
1538 	int ret;
1539 
1540 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1541 		enable = !!(features & NETIF_F_GRO_HW);
1542 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1543 		if (ret)
1544 			return ret;
1545 	}
1546 
1547 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1548 	    h->ae_algo->ops->enable_vlan_filter) {
1549 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1550 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1551 	}
1552 
1553 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1554 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1555 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1556 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1557 		if (ret)
1558 			return ret;
1559 	}
1560 
1561 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1562 		enable = !!(features & NETIF_F_NTUPLE);
1563 		h->ae_algo->ops->enable_fd(h, enable);
1564 	}
1565 
1566 	netdev->features = features;
1567 	return 0;
1568 }
1569 
1570 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1571 					     struct net_device *dev,
1572 					     netdev_features_t features)
1573 {
1574 #define HNS3_MAX_HDR_LEN	480U
1575 #define HNS3_MAX_L4_HDR_LEN	60U
1576 
1577 	size_t len;
1578 
1579 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1580 		return features;
1581 
1582 	if (skb->encapsulation)
1583 		len = skb_inner_transport_header(skb) - skb->data;
1584 	else
1585 		len = skb_transport_header(skb) - skb->data;
1586 
1587 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1588 	 * a flexible value, and it's max len is 60 bytes.
1589 	 */
1590 	len += HNS3_MAX_L4_HDR_LEN;
1591 
1592 	/* Hardware only supports checksum on the skb with a max header
1593 	 * len of 480 bytes.
1594 	 */
1595 	if (len > HNS3_MAX_HDR_LEN)
1596 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1597 
1598 	return features;
1599 }
1600 
1601 static void hns3_nic_get_stats64(struct net_device *netdev,
1602 				 struct rtnl_link_stats64 *stats)
1603 {
1604 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1605 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1606 	struct hnae3_handle *handle = priv->ae_handle;
1607 	struct hns3_enet_ring *ring;
1608 	u64 rx_length_errors = 0;
1609 	u64 rx_crc_errors = 0;
1610 	u64 rx_multicast = 0;
1611 	unsigned int start;
1612 	u64 tx_errors = 0;
1613 	u64 rx_errors = 0;
1614 	unsigned int idx;
1615 	u64 tx_bytes = 0;
1616 	u64 rx_bytes = 0;
1617 	u64 tx_pkts = 0;
1618 	u64 rx_pkts = 0;
1619 	u64 tx_drop = 0;
1620 	u64 rx_drop = 0;
1621 
1622 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1623 		return;
1624 
1625 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1626 
1627 	for (idx = 0; idx < queue_num; idx++) {
1628 		/* fetch the tx stats */
1629 		ring = &priv->ring[idx];
1630 		do {
1631 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1632 			tx_bytes += ring->stats.tx_bytes;
1633 			tx_pkts += ring->stats.tx_pkts;
1634 			tx_drop += ring->stats.sw_err_cnt;
1635 			tx_drop += ring->stats.tx_vlan_err;
1636 			tx_drop += ring->stats.tx_l4_proto_err;
1637 			tx_drop += ring->stats.tx_l2l3l4_err;
1638 			tx_drop += ring->stats.tx_tso_err;
1639 			tx_errors += ring->stats.sw_err_cnt;
1640 			tx_errors += ring->stats.tx_vlan_err;
1641 			tx_errors += ring->stats.tx_l4_proto_err;
1642 			tx_errors += ring->stats.tx_l2l3l4_err;
1643 			tx_errors += ring->stats.tx_tso_err;
1644 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1645 
1646 		/* fetch the rx stats */
1647 		ring = &priv->ring[idx + queue_num];
1648 		do {
1649 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1650 			rx_bytes += ring->stats.rx_bytes;
1651 			rx_pkts += ring->stats.rx_pkts;
1652 			rx_drop += ring->stats.l2_err;
1653 			rx_errors += ring->stats.l2_err;
1654 			rx_errors += ring->stats.l3l4_csum_err;
1655 			rx_crc_errors += ring->stats.l2_err;
1656 			rx_multicast += ring->stats.rx_multicast;
1657 			rx_length_errors += ring->stats.err_pkt_len;
1658 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1659 	}
1660 
1661 	stats->tx_bytes = tx_bytes;
1662 	stats->tx_packets = tx_pkts;
1663 	stats->rx_bytes = rx_bytes;
1664 	stats->rx_packets = rx_pkts;
1665 
1666 	stats->rx_errors = rx_errors;
1667 	stats->multicast = rx_multicast;
1668 	stats->rx_length_errors = rx_length_errors;
1669 	stats->rx_crc_errors = rx_crc_errors;
1670 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1671 
1672 	stats->tx_errors = tx_errors;
1673 	stats->rx_dropped = rx_drop;
1674 	stats->tx_dropped = tx_drop;
1675 	stats->collisions = netdev->stats.collisions;
1676 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1677 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1678 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1679 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1680 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1681 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1682 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1683 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1684 	stats->rx_compressed = netdev->stats.rx_compressed;
1685 	stats->tx_compressed = netdev->stats.tx_compressed;
1686 }
1687 
1688 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1689 {
1690 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1691 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1692 	struct hnae3_knic_private_info *kinfo;
1693 	u8 tc = mqprio_qopt->qopt.num_tc;
1694 	u16 mode = mqprio_qopt->mode;
1695 	u8 hw = mqprio_qopt->qopt.hw;
1696 	struct hnae3_handle *h;
1697 
1698 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1699 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1700 		return -EOPNOTSUPP;
1701 
1702 	if (tc > HNAE3_MAX_TC)
1703 		return -EINVAL;
1704 
1705 	if (!netdev)
1706 		return -EINVAL;
1707 
1708 	h = hns3_get_handle(netdev);
1709 	kinfo = &h->kinfo;
1710 
1711 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1712 
1713 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1714 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1715 }
1716 
1717 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1718 			     void *type_data)
1719 {
1720 	if (type != TC_SETUP_QDISC_MQPRIO)
1721 		return -EOPNOTSUPP;
1722 
1723 	return hns3_setup_tc(dev, type_data);
1724 }
1725 
1726 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1727 				__be16 proto, u16 vid)
1728 {
1729 	struct hnae3_handle *h = hns3_get_handle(netdev);
1730 	int ret = -EIO;
1731 
1732 	if (h->ae_algo->ops->set_vlan_filter)
1733 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1734 
1735 	return ret;
1736 }
1737 
1738 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1739 				 __be16 proto, u16 vid)
1740 {
1741 	struct hnae3_handle *h = hns3_get_handle(netdev);
1742 	int ret = -EIO;
1743 
1744 	if (h->ae_algo->ops->set_vlan_filter)
1745 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1746 
1747 	return ret;
1748 }
1749 
1750 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1751 				u8 qos, __be16 vlan_proto)
1752 {
1753 	struct hnae3_handle *h = hns3_get_handle(netdev);
1754 	int ret = -EIO;
1755 
1756 	netif_dbg(h, drv, netdev,
1757 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1758 		  vf, vlan, qos, ntohs(vlan_proto));
1759 
1760 	if (h->ae_algo->ops->set_vf_vlan_filter)
1761 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1762 							  qos, vlan_proto);
1763 
1764 	return ret;
1765 }
1766 
1767 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1768 {
1769 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1770 
1771 	if (hns3_nic_resetting(netdev))
1772 		return -EBUSY;
1773 
1774 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1775 		return -EOPNOTSUPP;
1776 
1777 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1778 }
1779 
1780 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1781 {
1782 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1783 
1784 	if (!handle->ae_algo->ops->set_vf_trust)
1785 		return -EOPNOTSUPP;
1786 
1787 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1788 }
1789 
1790 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1791 {
1792 	struct hnae3_handle *h = hns3_get_handle(netdev);
1793 	int ret;
1794 
1795 	if (hns3_nic_resetting(netdev))
1796 		return -EBUSY;
1797 
1798 	if (!h->ae_algo->ops->set_mtu)
1799 		return -EOPNOTSUPP;
1800 
1801 	netif_dbg(h, drv, netdev,
1802 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1803 
1804 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1805 	if (ret)
1806 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1807 			   ret);
1808 	else
1809 		netdev->mtu = new_mtu;
1810 
1811 	return ret;
1812 }
1813 
1814 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1815 {
1816 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1817 	struct hnae3_handle *h = hns3_get_handle(ndev);
1818 	struct hns3_enet_ring *tx_ring;
1819 	struct napi_struct *napi;
1820 	int timeout_queue = 0;
1821 	int hw_head, hw_tail;
1822 	int fbd_num, fbd_oft;
1823 	int ebd_num, ebd_oft;
1824 	int bd_num, bd_err;
1825 	int ring_en, tc;
1826 	int i;
1827 
1828 	/* Find the stopped queue the same way the stack does */
1829 	for (i = 0; i < ndev->num_tx_queues; i++) {
1830 		struct netdev_queue *q;
1831 		unsigned long trans_start;
1832 
1833 		q = netdev_get_tx_queue(ndev, i);
1834 		trans_start = q->trans_start;
1835 		if (netif_xmit_stopped(q) &&
1836 		    time_after(jiffies,
1837 			       (trans_start + ndev->watchdog_timeo))) {
1838 			timeout_queue = i;
1839 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1840 				    q->state,
1841 				    jiffies_to_msecs(jiffies - trans_start));
1842 			break;
1843 		}
1844 	}
1845 
1846 	if (i == ndev->num_tx_queues) {
1847 		netdev_info(ndev,
1848 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1849 			    priv->tx_timeout_count);
1850 		return false;
1851 	}
1852 
1853 	priv->tx_timeout_count++;
1854 
1855 	tx_ring = &priv->ring[timeout_queue];
1856 	napi = &tx_ring->tqp_vector->napi;
1857 
1858 	netdev_info(ndev,
1859 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1860 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1861 		    tx_ring->next_to_clean, napi->state);
1862 
1863 	netdev_info(ndev,
1864 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1865 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1866 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1867 
1868 	netdev_info(ndev,
1869 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1870 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1871 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1872 
1873 	/* When mac received many pause frames continuous, it's unable to send
1874 	 * packets, which may cause tx timeout
1875 	 */
1876 	if (h->ae_algo->ops->get_mac_stats) {
1877 		struct hns3_mac_stats mac_stats;
1878 
1879 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1880 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1881 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1882 	}
1883 
1884 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1885 				HNS3_RING_TX_RING_HEAD_REG);
1886 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1887 				HNS3_RING_TX_RING_TAIL_REG);
1888 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1889 				HNS3_RING_TX_RING_FBDNUM_REG);
1890 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1891 				HNS3_RING_TX_RING_OFFSET_REG);
1892 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1893 				HNS3_RING_TX_RING_EBDNUM_REG);
1894 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1895 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1896 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1897 			       HNS3_RING_TX_RING_BD_NUM_REG);
1898 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1899 			       HNS3_RING_TX_RING_BD_ERR_REG);
1900 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1901 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1902 
1903 	netdev_info(ndev,
1904 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1905 		    bd_num, hw_head, hw_tail, bd_err,
1906 		    readl(tx_ring->tqp_vector->mask_addr));
1907 	netdev_info(ndev,
1908 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1909 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1910 
1911 	return true;
1912 }
1913 
1914 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1915 {
1916 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1917 	struct hnae3_handle *h = priv->ae_handle;
1918 
1919 	if (!hns3_get_tx_timeo_queue_info(ndev))
1920 		return;
1921 
1922 	/* request the reset, and let the hclge to determine
1923 	 * which reset level should be done
1924 	 */
1925 	if (h->ae_algo->ops->reset_event)
1926 		h->ae_algo->ops->reset_event(h->pdev, h);
1927 }
1928 
1929 #ifdef CONFIG_RFS_ACCEL
1930 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1931 			      u16 rxq_index, u32 flow_id)
1932 {
1933 	struct hnae3_handle *h = hns3_get_handle(dev);
1934 	struct flow_keys fkeys;
1935 
1936 	if (!h->ae_algo->ops->add_arfs_entry)
1937 		return -EOPNOTSUPP;
1938 
1939 	if (skb->encapsulation)
1940 		return -EPROTONOSUPPORT;
1941 
1942 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1943 		return -EPROTONOSUPPORT;
1944 
1945 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1946 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1947 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1948 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1949 		return -EPROTONOSUPPORT;
1950 
1951 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1952 }
1953 #endif
1954 
1955 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1956 				  struct ifla_vf_info *ivf)
1957 {
1958 	struct hnae3_handle *h = hns3_get_handle(ndev);
1959 
1960 	if (!h->ae_algo->ops->get_vf_config)
1961 		return -EOPNOTSUPP;
1962 
1963 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1964 }
1965 
1966 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1967 				      int link_state)
1968 {
1969 	struct hnae3_handle *h = hns3_get_handle(ndev);
1970 
1971 	if (!h->ae_algo->ops->set_vf_link_state)
1972 		return -EOPNOTSUPP;
1973 
1974 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1975 }
1976 
1977 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1978 				int min_tx_rate, int max_tx_rate)
1979 {
1980 	struct hnae3_handle *h = hns3_get_handle(ndev);
1981 
1982 	if (!h->ae_algo->ops->set_vf_rate)
1983 		return -EOPNOTSUPP;
1984 
1985 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1986 					    false);
1987 }
1988 
1989 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1990 {
1991 	struct hnae3_handle *h = hns3_get_handle(netdev);
1992 
1993 	if (!h->ae_algo->ops->set_vf_mac)
1994 		return -EOPNOTSUPP;
1995 
1996 	if (is_multicast_ether_addr(mac)) {
1997 		netdev_err(netdev,
1998 			   "Invalid MAC:%pM specified. Could not set MAC\n",
1999 			   mac);
2000 		return -EINVAL;
2001 	}
2002 
2003 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2004 }
2005 
2006 static const struct net_device_ops hns3_nic_netdev_ops = {
2007 	.ndo_open		= hns3_nic_net_open,
2008 	.ndo_stop		= hns3_nic_net_stop,
2009 	.ndo_start_xmit		= hns3_nic_net_xmit,
2010 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2011 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2012 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2013 	.ndo_change_mtu		= hns3_nic_change_mtu,
2014 	.ndo_set_features	= hns3_nic_set_features,
2015 	.ndo_features_check	= hns3_features_check,
2016 	.ndo_get_stats64	= hns3_nic_get_stats64,
2017 	.ndo_setup_tc		= hns3_nic_setup_tc,
2018 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2019 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2020 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2021 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2022 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2023 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2024 #ifdef CONFIG_RFS_ACCEL
2025 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2026 #endif
2027 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2028 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2029 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2030 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2031 };
2032 
2033 bool hns3_is_phys_func(struct pci_dev *pdev)
2034 {
2035 	u32 dev_id = pdev->device;
2036 
2037 	switch (dev_id) {
2038 	case HNAE3_DEV_ID_GE:
2039 	case HNAE3_DEV_ID_25GE:
2040 	case HNAE3_DEV_ID_25GE_RDMA:
2041 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2042 	case HNAE3_DEV_ID_50GE_RDMA:
2043 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2044 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2045 		return true;
2046 	case HNAE3_DEV_ID_100G_VF:
2047 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2048 		return false;
2049 	default:
2050 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2051 			 dev_id);
2052 	}
2053 
2054 	return false;
2055 }
2056 
2057 static void hns3_disable_sriov(struct pci_dev *pdev)
2058 {
2059 	/* If our VFs are assigned we cannot shut down SR-IOV
2060 	 * without causing issues, so just leave the hardware
2061 	 * available but disabled
2062 	 */
2063 	if (pci_vfs_assigned(pdev)) {
2064 		dev_warn(&pdev->dev,
2065 			 "disabling driver while VFs are assigned\n");
2066 		return;
2067 	}
2068 
2069 	pci_disable_sriov(pdev);
2070 }
2071 
2072 static void hns3_get_dev_capability(struct pci_dev *pdev,
2073 				    struct hnae3_ae_dev *ae_dev)
2074 {
2075 	if (pdev->revision >= 0x21) {
2076 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2077 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2078 	}
2079 }
2080 
2081 /* hns3_probe - Device initialization routine
2082  * @pdev: PCI device information struct
2083  * @ent: entry in hns3_pci_tbl
2084  *
2085  * hns3_probe initializes a PF identified by a pci_dev structure.
2086  * The OS initialization, configuring of the PF private structure,
2087  * and a hardware reset occur.
2088  *
2089  * Returns 0 on success, negative on failure
2090  */
2091 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2092 {
2093 	struct hnae3_ae_dev *ae_dev;
2094 	int ret;
2095 
2096 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2097 	if (!ae_dev)
2098 		return -ENOMEM;
2099 
2100 	ae_dev->pdev = pdev;
2101 	ae_dev->flag = ent->driver_data;
2102 	hns3_get_dev_capability(pdev, ae_dev);
2103 	pci_set_drvdata(pdev, ae_dev);
2104 
2105 	ret = hnae3_register_ae_dev(ae_dev);
2106 	if (ret) {
2107 		devm_kfree(&pdev->dev, ae_dev);
2108 		pci_set_drvdata(pdev, NULL);
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 /* hns3_remove - Device removal routine
2115  * @pdev: PCI device information struct
2116  */
2117 static void hns3_remove(struct pci_dev *pdev)
2118 {
2119 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2120 
2121 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2122 		hns3_disable_sriov(pdev);
2123 
2124 	hnae3_unregister_ae_dev(ae_dev);
2125 	pci_set_drvdata(pdev, NULL);
2126 }
2127 
2128 /**
2129  * hns3_pci_sriov_configure
2130  * @pdev: pointer to a pci_dev structure
2131  * @num_vfs: number of VFs to allocate
2132  *
2133  * Enable or change the number of VFs. Called when the user updates the number
2134  * of VFs in sysfs.
2135  **/
2136 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2137 {
2138 	int ret;
2139 
2140 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2141 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2142 		return -EINVAL;
2143 	}
2144 
2145 	if (num_vfs) {
2146 		ret = pci_enable_sriov(pdev, num_vfs);
2147 		if (ret)
2148 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2149 		else
2150 			return num_vfs;
2151 	} else if (!pci_vfs_assigned(pdev)) {
2152 		pci_disable_sriov(pdev);
2153 	} else {
2154 		dev_warn(&pdev->dev,
2155 			 "Unable to free VFs because some are assigned to VMs.\n");
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static void hns3_shutdown(struct pci_dev *pdev)
2162 {
2163 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2164 
2165 	hnae3_unregister_ae_dev(ae_dev);
2166 	devm_kfree(&pdev->dev, ae_dev);
2167 	pci_set_drvdata(pdev, NULL);
2168 
2169 	if (system_state == SYSTEM_POWER_OFF)
2170 		pci_set_power_state(pdev, PCI_D3hot);
2171 }
2172 
2173 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2174 					    pci_channel_state_t state)
2175 {
2176 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2177 	pci_ers_result_t ret;
2178 
2179 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2180 
2181 	if (state == pci_channel_io_perm_failure)
2182 		return PCI_ERS_RESULT_DISCONNECT;
2183 
2184 	if (!ae_dev || !ae_dev->ops) {
2185 		dev_err(&pdev->dev,
2186 			"Can't recover - error happened before device initialized\n");
2187 		return PCI_ERS_RESULT_NONE;
2188 	}
2189 
2190 	if (ae_dev->ops->handle_hw_ras_error)
2191 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2192 	else
2193 		return PCI_ERS_RESULT_NONE;
2194 
2195 	return ret;
2196 }
2197 
2198 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2199 {
2200 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2201 	const struct hnae3_ae_ops *ops;
2202 	enum hnae3_reset_type reset_type;
2203 	struct device *dev = &pdev->dev;
2204 
2205 	if (!ae_dev || !ae_dev->ops)
2206 		return PCI_ERS_RESULT_NONE;
2207 
2208 	ops = ae_dev->ops;
2209 	/* request the reset */
2210 	if (ops->reset_event && ops->get_reset_level &&
2211 	    ops->set_default_reset_request) {
2212 		if (ae_dev->hw_err_reset_req) {
2213 			reset_type = ops->get_reset_level(ae_dev,
2214 						&ae_dev->hw_err_reset_req);
2215 			ops->set_default_reset_request(ae_dev, reset_type);
2216 			dev_info(dev, "requesting reset due to PCI error\n");
2217 			ops->reset_event(pdev, NULL);
2218 		}
2219 
2220 		return PCI_ERS_RESULT_RECOVERED;
2221 	}
2222 
2223 	return PCI_ERS_RESULT_DISCONNECT;
2224 }
2225 
2226 static void hns3_reset_prepare(struct pci_dev *pdev)
2227 {
2228 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2229 
2230 	dev_info(&pdev->dev, "FLR prepare\n");
2231 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2232 		ae_dev->ops->flr_prepare(ae_dev);
2233 }
2234 
2235 static void hns3_reset_done(struct pci_dev *pdev)
2236 {
2237 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2238 
2239 	dev_info(&pdev->dev, "FLR done\n");
2240 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2241 		ae_dev->ops->flr_done(ae_dev);
2242 }
2243 
2244 static const struct pci_error_handlers hns3_err_handler = {
2245 	.error_detected = hns3_error_detected,
2246 	.slot_reset     = hns3_slot_reset,
2247 	.reset_prepare	= hns3_reset_prepare,
2248 	.reset_done	= hns3_reset_done,
2249 };
2250 
2251 static struct pci_driver hns3_driver = {
2252 	.name     = hns3_driver_name,
2253 	.id_table = hns3_pci_tbl,
2254 	.probe    = hns3_probe,
2255 	.remove   = hns3_remove,
2256 	.shutdown = hns3_shutdown,
2257 	.sriov_configure = hns3_pci_sriov_configure,
2258 	.err_handler    = &hns3_err_handler,
2259 };
2260 
2261 /* set default feature to hns3 */
2262 static void hns3_set_default_feature(struct net_device *netdev)
2263 {
2264 	struct hnae3_handle *h = hns3_get_handle(netdev);
2265 	struct pci_dev *pdev = h->pdev;
2266 
2267 	netdev->priv_flags |= IFF_UNICAST_FLT;
2268 
2269 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2270 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2271 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2272 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2273 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2274 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2275 
2276 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2277 
2278 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2279 		NETIF_F_HW_VLAN_CTAG_FILTER |
2280 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2281 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2282 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2283 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2284 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2285 		NETIF_F_FRAGLIST;
2286 
2287 	netdev->vlan_features |=
2288 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2289 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2290 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2291 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2292 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2293 		NETIF_F_FRAGLIST;
2294 
2295 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2296 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2297 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2298 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2299 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2300 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2301 		NETIF_F_FRAGLIST;
2302 
2303 	if (pdev->revision >= 0x21) {
2304 		netdev->hw_features |= NETIF_F_GRO_HW;
2305 		netdev->features |= NETIF_F_GRO_HW;
2306 
2307 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2308 			netdev->hw_features |= NETIF_F_NTUPLE;
2309 			netdev->features |= NETIF_F_NTUPLE;
2310 		}
2311 	}
2312 }
2313 
2314 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2315 			     struct hns3_desc_cb *cb)
2316 {
2317 	unsigned int order = hns3_page_order(ring);
2318 	struct page *p;
2319 
2320 	p = dev_alloc_pages(order);
2321 	if (!p)
2322 		return -ENOMEM;
2323 
2324 	cb->priv = p;
2325 	cb->page_offset = 0;
2326 	cb->reuse_flag = 0;
2327 	cb->buf  = page_address(p);
2328 	cb->length = hns3_page_size(ring);
2329 	cb->type = DESC_TYPE_PAGE;
2330 
2331 	return 0;
2332 }
2333 
2334 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2335 			     struct hns3_desc_cb *cb)
2336 {
2337 	if (cb->type == DESC_TYPE_SKB)
2338 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2339 	else if (!HNAE3_IS_TX_RING(ring))
2340 		put_page((struct page *)cb->priv);
2341 	memset(cb, 0, sizeof(*cb));
2342 }
2343 
2344 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2345 {
2346 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2347 			       cb->length, ring_to_dma_dir(ring));
2348 
2349 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2350 		return -EIO;
2351 
2352 	return 0;
2353 }
2354 
2355 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2356 			      struct hns3_desc_cb *cb)
2357 {
2358 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2359 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2360 				 ring_to_dma_dir(ring));
2361 	else if (cb->length)
2362 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2363 			       ring_to_dma_dir(ring));
2364 }
2365 
2366 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2367 {
2368 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2369 	ring->desc[i].addr = 0;
2370 }
2371 
2372 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2373 {
2374 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2375 
2376 	if (!ring->desc_cb[i].dma)
2377 		return;
2378 
2379 	hns3_buffer_detach(ring, i);
2380 	hns3_free_buffer(ring, cb);
2381 }
2382 
2383 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2384 {
2385 	int i;
2386 
2387 	for (i = 0; i < ring->desc_num; i++)
2388 		hns3_free_buffer_detach(ring, i);
2389 }
2390 
2391 /* free desc along with its attached buffer */
2392 static void hns3_free_desc(struct hns3_enet_ring *ring)
2393 {
2394 	int size = ring->desc_num * sizeof(ring->desc[0]);
2395 
2396 	hns3_free_buffers(ring);
2397 
2398 	if (ring->desc) {
2399 		dma_free_coherent(ring_to_dev(ring), size,
2400 				  ring->desc, ring->desc_dma_addr);
2401 		ring->desc = NULL;
2402 	}
2403 }
2404 
2405 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2406 {
2407 	int size = ring->desc_num * sizeof(ring->desc[0]);
2408 
2409 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2410 					&ring->desc_dma_addr, GFP_KERNEL);
2411 	if (!ring->desc)
2412 		return -ENOMEM;
2413 
2414 	return 0;
2415 }
2416 
2417 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2418 				   struct hns3_desc_cb *cb)
2419 {
2420 	int ret;
2421 
2422 	ret = hns3_alloc_buffer(ring, cb);
2423 	if (ret)
2424 		goto out;
2425 
2426 	ret = hns3_map_buffer(ring, cb);
2427 	if (ret)
2428 		goto out_with_buf;
2429 
2430 	return 0;
2431 
2432 out_with_buf:
2433 	hns3_free_buffer(ring, cb);
2434 out:
2435 	return ret;
2436 }
2437 
2438 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2439 {
2440 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2441 
2442 	if (ret)
2443 		return ret;
2444 
2445 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2446 
2447 	return 0;
2448 }
2449 
2450 /* Allocate memory for raw pkg, and map with dma */
2451 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2452 {
2453 	int i, j, ret;
2454 
2455 	for (i = 0; i < ring->desc_num; i++) {
2456 		ret = hns3_alloc_buffer_attach(ring, i);
2457 		if (ret)
2458 			goto out_buffer_fail;
2459 	}
2460 
2461 	return 0;
2462 
2463 out_buffer_fail:
2464 	for (j = i - 1; j >= 0; j--)
2465 		hns3_free_buffer_detach(ring, j);
2466 	return ret;
2467 }
2468 
2469 /* detach a in-used buffer and replace with a reserved one */
2470 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2471 				struct hns3_desc_cb *res_cb)
2472 {
2473 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2474 	ring->desc_cb[i] = *res_cb;
2475 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2476 	ring->desc[i].rx.bd_base_info = 0;
2477 }
2478 
2479 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2480 {
2481 	ring->desc_cb[i].reuse_flag = 0;
2482 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2483 					 ring->desc_cb[i].page_offset);
2484 	ring->desc[i].rx.bd_base_info = 0;
2485 }
2486 
2487 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2488 				  int *bytes, int *pkts)
2489 {
2490 	int ntc = ring->next_to_clean;
2491 	struct hns3_desc_cb *desc_cb;
2492 
2493 	while (head != ntc) {
2494 		desc_cb = &ring->desc_cb[ntc];
2495 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2496 		(*bytes) += desc_cb->length;
2497 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2498 		hns3_free_buffer_detach(ring, ntc);
2499 
2500 		if (++ntc == ring->desc_num)
2501 			ntc = 0;
2502 
2503 		/* Issue prefetch for next Tx descriptor */
2504 		prefetch(&ring->desc_cb[ntc]);
2505 	}
2506 
2507 	/* This smp_store_release() pairs with smp_load_acquire() in
2508 	 * ring_space called by hns3_nic_net_xmit.
2509 	 */
2510 	smp_store_release(&ring->next_to_clean, ntc);
2511 }
2512 
2513 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2514 {
2515 	int u = ring->next_to_use;
2516 	int c = ring->next_to_clean;
2517 
2518 	if (unlikely(h > ring->desc_num))
2519 		return 0;
2520 
2521 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2522 }
2523 
2524 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2525 {
2526 	struct net_device *netdev = ring_to_netdev(ring);
2527 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2528 	struct netdev_queue *dev_queue;
2529 	int bytes, pkts;
2530 	int head;
2531 
2532 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2533 
2534 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2535 		return; /* no data to poll */
2536 
2537 	rmb(); /* Make sure head is ready before touch any data */
2538 
2539 	if (unlikely(!is_valid_clean_head(ring, head))) {
2540 		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2541 			    ring->next_to_use, ring->next_to_clean);
2542 
2543 		u64_stats_update_begin(&ring->syncp);
2544 		ring->stats.io_err_cnt++;
2545 		u64_stats_update_end(&ring->syncp);
2546 		return;
2547 	}
2548 
2549 	bytes = 0;
2550 	pkts = 0;
2551 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2552 
2553 	ring->tqp_vector->tx_group.total_bytes += bytes;
2554 	ring->tqp_vector->tx_group.total_packets += pkts;
2555 
2556 	u64_stats_update_begin(&ring->syncp);
2557 	ring->stats.tx_bytes += bytes;
2558 	ring->stats.tx_pkts += pkts;
2559 	u64_stats_update_end(&ring->syncp);
2560 
2561 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2562 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2563 
2564 	if (unlikely(netif_carrier_ok(netdev) &&
2565 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2566 		/* Make sure that anybody stopping the queue after this
2567 		 * sees the new next_to_clean.
2568 		 */
2569 		smp_mb();
2570 		if (netif_tx_queue_stopped(dev_queue) &&
2571 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2572 			netif_tx_wake_queue(dev_queue);
2573 			ring->stats.restart_queue++;
2574 		}
2575 	}
2576 }
2577 
2578 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2579 {
2580 	int ntc = ring->next_to_clean;
2581 	int ntu = ring->next_to_use;
2582 
2583 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2584 }
2585 
2586 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2587 				      int cleand_count)
2588 {
2589 	struct hns3_desc_cb *desc_cb;
2590 	struct hns3_desc_cb res_cbs;
2591 	int i, ret;
2592 
2593 	for (i = 0; i < cleand_count; i++) {
2594 		desc_cb = &ring->desc_cb[ring->next_to_use];
2595 		if (desc_cb->reuse_flag) {
2596 			u64_stats_update_begin(&ring->syncp);
2597 			ring->stats.reuse_pg_cnt++;
2598 			u64_stats_update_end(&ring->syncp);
2599 
2600 			hns3_reuse_buffer(ring, ring->next_to_use);
2601 		} else {
2602 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2603 			if (ret) {
2604 				u64_stats_update_begin(&ring->syncp);
2605 				ring->stats.sw_err_cnt++;
2606 				u64_stats_update_end(&ring->syncp);
2607 
2608 				hns3_rl_err(ring_to_netdev(ring),
2609 					    "alloc rx buffer failed: %d\n",
2610 					    ret);
2611 				break;
2612 			}
2613 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2614 
2615 			u64_stats_update_begin(&ring->syncp);
2616 			ring->stats.non_reuse_pg++;
2617 			u64_stats_update_end(&ring->syncp);
2618 		}
2619 
2620 		ring_ptr_move_fw(ring, next_to_use);
2621 	}
2622 
2623 	wmb(); /* Make all data has been write before submit */
2624 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2625 }
2626 
2627 static bool hns3_page_is_reusable(struct page *page)
2628 {
2629 	return page_to_nid(page) == numa_mem_id() &&
2630 		!page_is_pfmemalloc(page);
2631 }
2632 
2633 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2634 				struct hns3_enet_ring *ring, int pull_len,
2635 				struct hns3_desc_cb *desc_cb)
2636 {
2637 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2638 	int size = le16_to_cpu(desc->rx.size);
2639 	u32 truesize = hns3_buf_size(ring);
2640 
2641 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2642 			size - pull_len, truesize);
2643 
2644 	/* Avoid re-using remote pages, or the stack is still using the page
2645 	 * when page_offset rollback to zero, flag default unreuse
2646 	 */
2647 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2648 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2649 		return;
2650 
2651 	/* Move offset up to the next cache line */
2652 	desc_cb->page_offset += truesize;
2653 
2654 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2655 		desc_cb->reuse_flag = 1;
2656 		/* Bump ref count on page before it is given */
2657 		get_page(desc_cb->priv);
2658 	} else if (page_count(desc_cb->priv) == 1) {
2659 		desc_cb->reuse_flag = 1;
2660 		desc_cb->page_offset = 0;
2661 		get_page(desc_cb->priv);
2662 	}
2663 }
2664 
2665 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2666 {
2667 	__be16 type = skb->protocol;
2668 	struct tcphdr *th;
2669 	int depth = 0;
2670 
2671 	while (eth_type_vlan(type)) {
2672 		struct vlan_hdr *vh;
2673 
2674 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2675 			return -EFAULT;
2676 
2677 		vh = (struct vlan_hdr *)(skb->data + depth);
2678 		type = vh->h_vlan_encapsulated_proto;
2679 		depth += VLAN_HLEN;
2680 	}
2681 
2682 	skb_set_network_header(skb, depth);
2683 
2684 	if (type == htons(ETH_P_IP)) {
2685 		const struct iphdr *iph = ip_hdr(skb);
2686 
2687 		depth += sizeof(struct iphdr);
2688 		skb_set_transport_header(skb, depth);
2689 		th = tcp_hdr(skb);
2690 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2691 					  iph->daddr, 0);
2692 	} else if (type == htons(ETH_P_IPV6)) {
2693 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2694 
2695 		depth += sizeof(struct ipv6hdr);
2696 		skb_set_transport_header(skb, depth);
2697 		th = tcp_hdr(skb);
2698 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2699 					  &iph->daddr, 0);
2700 	} else {
2701 		hns3_rl_err(skb->dev,
2702 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2703 			    be16_to_cpu(type), depth);
2704 		return -EFAULT;
2705 	}
2706 
2707 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2708 	if (th->cwr)
2709 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2710 
2711 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2712 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2713 
2714 	skb->csum_start = (unsigned char *)th - skb->head;
2715 	skb->csum_offset = offsetof(struct tcphdr, check);
2716 	skb->ip_summed = CHECKSUM_PARTIAL;
2717 
2718 	trace_hns3_gro(skb);
2719 
2720 	return 0;
2721 }
2722 
2723 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2724 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2725 {
2726 	struct net_device *netdev = ring_to_netdev(ring);
2727 	int l3_type, l4_type;
2728 	int ol4_type;
2729 
2730 	skb->ip_summed = CHECKSUM_NONE;
2731 
2732 	skb_checksum_none_assert(skb);
2733 
2734 	if (!(netdev->features & NETIF_F_RXCSUM))
2735 		return;
2736 
2737 	/* check if hardware has done checksum */
2738 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2739 		return;
2740 
2741 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2742 				 BIT(HNS3_RXD_OL3E_B) |
2743 				 BIT(HNS3_RXD_OL4E_B)))) {
2744 		u64_stats_update_begin(&ring->syncp);
2745 		ring->stats.l3l4_csum_err++;
2746 		u64_stats_update_end(&ring->syncp);
2747 
2748 		return;
2749 	}
2750 
2751 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2752 				   HNS3_RXD_OL4ID_S);
2753 	switch (ol4_type) {
2754 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2755 	case HNS3_OL4_TYPE_NVGRE:
2756 		skb->csum_level = 1;
2757 		/* fall through */
2758 	case HNS3_OL4_TYPE_NO_TUN:
2759 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2760 					  HNS3_RXD_L3ID_S);
2761 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2762 					  HNS3_RXD_L4ID_S);
2763 
2764 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2765 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2766 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2767 		    (l4_type == HNS3_L4_TYPE_UDP ||
2768 		     l4_type == HNS3_L4_TYPE_TCP ||
2769 		     l4_type == HNS3_L4_TYPE_SCTP))
2770 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2771 		break;
2772 	default:
2773 		break;
2774 	}
2775 }
2776 
2777 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2778 {
2779 	if (skb_has_frag_list(skb))
2780 		napi_gro_flush(&ring->tqp_vector->napi, false);
2781 
2782 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2783 }
2784 
2785 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2786 				struct hns3_desc *desc, u32 l234info,
2787 				u16 *vlan_tag)
2788 {
2789 	struct hnae3_handle *handle = ring->tqp->handle;
2790 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2791 
2792 	if (pdev->revision == 0x20) {
2793 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2794 		if (!(*vlan_tag & VLAN_VID_MASK))
2795 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2796 
2797 		return (*vlan_tag != 0);
2798 	}
2799 
2800 #define HNS3_STRP_OUTER_VLAN	0x1
2801 #define HNS3_STRP_INNER_VLAN	0x2
2802 #define HNS3_STRP_BOTH		0x3
2803 
2804 	/* Hardware always insert VLAN tag into RX descriptor when
2805 	 * remove the tag from packet, driver needs to determine
2806 	 * reporting which tag to stack.
2807 	 */
2808 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2809 				HNS3_RXD_STRP_TAGP_S)) {
2810 	case HNS3_STRP_OUTER_VLAN:
2811 		if (handle->port_base_vlan_state !=
2812 				HNAE3_PORT_BASE_VLAN_DISABLE)
2813 			return false;
2814 
2815 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2816 		return true;
2817 	case HNS3_STRP_INNER_VLAN:
2818 		if (handle->port_base_vlan_state !=
2819 				HNAE3_PORT_BASE_VLAN_DISABLE)
2820 			return false;
2821 
2822 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2823 		return true;
2824 	case HNS3_STRP_BOTH:
2825 		if (handle->port_base_vlan_state ==
2826 				HNAE3_PORT_BASE_VLAN_DISABLE)
2827 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2828 		else
2829 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2830 
2831 		return true;
2832 	default:
2833 		return false;
2834 	}
2835 }
2836 
2837 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2838 			  unsigned char *va)
2839 {
2840 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2841 	struct net_device *netdev = ring_to_netdev(ring);
2842 	struct sk_buff *skb;
2843 
2844 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2845 	skb = ring->skb;
2846 	if (unlikely(!skb)) {
2847 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2848 
2849 		u64_stats_update_begin(&ring->syncp);
2850 		ring->stats.sw_err_cnt++;
2851 		u64_stats_update_end(&ring->syncp);
2852 
2853 		return -ENOMEM;
2854 	}
2855 
2856 	trace_hns3_rx_desc(ring);
2857 	prefetchw(skb->data);
2858 
2859 	ring->pending_buf = 1;
2860 	ring->frag_num = 0;
2861 	ring->tail_skb = NULL;
2862 	if (length <= HNS3_RX_HEAD_SIZE) {
2863 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2864 
2865 		/* We can reuse buffer as-is, just make sure it is local */
2866 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2867 			desc_cb->reuse_flag = 1;
2868 		else /* This page cannot be reused so discard it */
2869 			put_page(desc_cb->priv);
2870 
2871 		ring_ptr_move_fw(ring, next_to_clean);
2872 		return 0;
2873 	}
2874 	u64_stats_update_begin(&ring->syncp);
2875 	ring->stats.seg_pkt_cnt++;
2876 	u64_stats_update_end(&ring->syncp);
2877 
2878 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2879 	__skb_put(skb, ring->pull_len);
2880 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2881 			    desc_cb);
2882 	ring_ptr_move_fw(ring, next_to_clean);
2883 
2884 	return 0;
2885 }
2886 
2887 static int hns3_add_frag(struct hns3_enet_ring *ring)
2888 {
2889 	struct sk_buff *skb = ring->skb;
2890 	struct sk_buff *head_skb = skb;
2891 	struct sk_buff *new_skb;
2892 	struct hns3_desc_cb *desc_cb;
2893 	struct hns3_desc *desc;
2894 	u32 bd_base_info;
2895 
2896 	do {
2897 		desc = &ring->desc[ring->next_to_clean];
2898 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2899 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2900 		/* make sure HW write desc complete */
2901 		dma_rmb();
2902 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2903 			return -ENXIO;
2904 
2905 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2906 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2907 			if (unlikely(!new_skb)) {
2908 				hns3_rl_err(ring_to_netdev(ring),
2909 					    "alloc rx fraglist skb fail\n");
2910 				return -ENXIO;
2911 			}
2912 			ring->frag_num = 0;
2913 
2914 			if (ring->tail_skb) {
2915 				ring->tail_skb->next = new_skb;
2916 				ring->tail_skb = new_skb;
2917 			} else {
2918 				skb_shinfo(skb)->frag_list = new_skb;
2919 				ring->tail_skb = new_skb;
2920 			}
2921 		}
2922 
2923 		if (ring->tail_skb) {
2924 			head_skb->truesize += hns3_buf_size(ring);
2925 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2926 			head_skb->len += le16_to_cpu(desc->rx.size);
2927 			skb = ring->tail_skb;
2928 		}
2929 
2930 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2931 		trace_hns3_rx_desc(ring);
2932 		ring_ptr_move_fw(ring, next_to_clean);
2933 		ring->pending_buf++;
2934 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2935 
2936 	return 0;
2937 }
2938 
2939 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2940 				     struct sk_buff *skb, u32 l234info,
2941 				     u32 bd_base_info, u32 ol_info)
2942 {
2943 	u32 l3_type;
2944 
2945 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2946 						    HNS3_RXD_GRO_SIZE_M,
2947 						    HNS3_RXD_GRO_SIZE_S);
2948 	/* if there is no HW GRO, do not set gro params */
2949 	if (!skb_shinfo(skb)->gso_size) {
2950 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2951 		return 0;
2952 	}
2953 
2954 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2955 						  HNS3_RXD_GRO_COUNT_M,
2956 						  HNS3_RXD_GRO_COUNT_S);
2957 
2958 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2959 	if (l3_type == HNS3_L3_TYPE_IPV4)
2960 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2961 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2962 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2963 	else
2964 		return -EFAULT;
2965 
2966 	return  hns3_gro_complete(skb, l234info);
2967 }
2968 
2969 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2970 				     struct sk_buff *skb, u32 rss_hash)
2971 {
2972 	struct hnae3_handle *handle = ring->tqp->handle;
2973 	enum pkt_hash_types rss_type;
2974 
2975 	if (rss_hash)
2976 		rss_type = handle->kinfo.rss_type;
2977 	else
2978 		rss_type = PKT_HASH_TYPE_NONE;
2979 
2980 	skb_set_hash(skb, rss_hash, rss_type);
2981 }
2982 
2983 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2984 {
2985 	struct net_device *netdev = ring_to_netdev(ring);
2986 	enum hns3_pkt_l2t_type l2_frame_type;
2987 	u32 bd_base_info, l234info, ol_info;
2988 	struct hns3_desc *desc;
2989 	unsigned int len;
2990 	int pre_ntc, ret;
2991 
2992 	/* bdinfo handled below is only valid on the last BD of the
2993 	 * current packet, and ring->next_to_clean indicates the first
2994 	 * descriptor of next packet, so need - 1 below.
2995 	 */
2996 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2997 					(ring->desc_num - 1);
2998 	desc = &ring->desc[pre_ntc];
2999 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3000 	l234info = le32_to_cpu(desc->rx.l234_info);
3001 	ol_info = le32_to_cpu(desc->rx.ol_info);
3002 
3003 	/* Based on hw strategy, the tag offloaded will be stored at
3004 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3005 	 * in one layer tag case.
3006 	 */
3007 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3008 		u16 vlan_tag;
3009 
3010 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3011 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3012 					       vlan_tag);
3013 	}
3014 
3015 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3016 				  BIT(HNS3_RXD_L2E_B))))) {
3017 		u64_stats_update_begin(&ring->syncp);
3018 		if (l234info & BIT(HNS3_RXD_L2E_B))
3019 			ring->stats.l2_err++;
3020 		else
3021 			ring->stats.err_pkt_len++;
3022 		u64_stats_update_end(&ring->syncp);
3023 
3024 		return -EFAULT;
3025 	}
3026 
3027 	len = skb->len;
3028 
3029 	/* Do update ip stack process */
3030 	skb->protocol = eth_type_trans(skb, netdev);
3031 
3032 	/* This is needed in order to enable forwarding support */
3033 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3034 					bd_base_info, ol_info);
3035 	if (unlikely(ret)) {
3036 		u64_stats_update_begin(&ring->syncp);
3037 		ring->stats.rx_err_cnt++;
3038 		u64_stats_update_end(&ring->syncp);
3039 		return ret;
3040 	}
3041 
3042 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3043 					HNS3_RXD_DMAC_S);
3044 
3045 	u64_stats_update_begin(&ring->syncp);
3046 	ring->stats.rx_pkts++;
3047 	ring->stats.rx_bytes += len;
3048 
3049 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3050 		ring->stats.rx_multicast++;
3051 
3052 	u64_stats_update_end(&ring->syncp);
3053 
3054 	ring->tqp_vector->rx_group.total_bytes += len;
3055 
3056 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3057 	return 0;
3058 }
3059 
3060 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3061 {
3062 	struct sk_buff *skb = ring->skb;
3063 	struct hns3_desc_cb *desc_cb;
3064 	struct hns3_desc *desc;
3065 	unsigned int length;
3066 	u32 bd_base_info;
3067 	int ret;
3068 
3069 	desc = &ring->desc[ring->next_to_clean];
3070 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3071 
3072 	prefetch(desc);
3073 
3074 	length = le16_to_cpu(desc->rx.size);
3075 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3076 
3077 	/* Check valid BD */
3078 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3079 		return -ENXIO;
3080 
3081 	if (!skb)
3082 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3083 
3084 	/* Prefetch first cache line of first page
3085 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3086 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3087 	 * actual we can have greater size of caches with 128B Level 1 cache
3088 	 * lines. In such a case, single fetch would suffice to cache in the
3089 	 * relevant part of the header.
3090 	 */
3091 	prefetch(ring->va);
3092 #if L1_CACHE_BYTES < 128
3093 	prefetch(ring->va + L1_CACHE_BYTES);
3094 #endif
3095 
3096 	if (!skb) {
3097 		ret = hns3_alloc_skb(ring, length, ring->va);
3098 		skb = ring->skb;
3099 
3100 		if (ret < 0) /* alloc buffer fail */
3101 			return ret;
3102 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3103 			ret = hns3_add_frag(ring);
3104 			if (ret)
3105 				return ret;
3106 		}
3107 	} else {
3108 		ret = hns3_add_frag(ring);
3109 		if (ret)
3110 			return ret;
3111 	}
3112 
3113 	/* As the head data may be changed when GRO enable, copy
3114 	 * the head data in after other data rx completed
3115 	 */
3116 	if (skb->len > HNS3_RX_HEAD_SIZE)
3117 		memcpy(skb->data, ring->va,
3118 		       ALIGN(ring->pull_len, sizeof(long)));
3119 
3120 	ret = hns3_handle_bdinfo(ring, skb);
3121 	if (unlikely(ret)) {
3122 		dev_kfree_skb_any(skb);
3123 		return ret;
3124 	}
3125 
3126 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3127 	return 0;
3128 }
3129 
3130 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3131 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3132 {
3133 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3134 	int unused_count = hns3_desc_unused(ring);
3135 	int recv_pkts = 0;
3136 	int recv_bds = 0;
3137 	int err, num;
3138 
3139 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3140 	num -= unused_count;
3141 	unused_count -= ring->pending_buf;
3142 
3143 	if (num <= 0)
3144 		goto out;
3145 
3146 	rmb(); /* Make sure num taken effect before the other data is touched */
3147 
3148 	while (recv_pkts < budget && recv_bds < num) {
3149 		/* Reuse or realloc buffers */
3150 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3151 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3152 			unused_count = hns3_desc_unused(ring) -
3153 					ring->pending_buf;
3154 		}
3155 
3156 		/* Poll one pkt */
3157 		err = hns3_handle_rx_bd(ring);
3158 		/* Do not get FE for the packet or failed to alloc skb */
3159 		if (unlikely(!ring->skb || err == -ENXIO)) {
3160 			goto out;
3161 		} else if (likely(!err)) {
3162 			rx_fn(ring, ring->skb);
3163 			recv_pkts++;
3164 		}
3165 
3166 		recv_bds += ring->pending_buf;
3167 		unused_count += ring->pending_buf;
3168 		ring->skb = NULL;
3169 		ring->pending_buf = 0;
3170 	}
3171 
3172 out:
3173 	/* Make all data has been write before submit */
3174 	if (unused_count > 0)
3175 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3176 
3177 	return recv_pkts;
3178 }
3179 
3180 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3181 {
3182 #define HNS3_RX_LOW_BYTE_RATE 10000
3183 #define HNS3_RX_MID_BYTE_RATE 20000
3184 #define HNS3_RX_ULTRA_PACKET_RATE 40
3185 
3186 	enum hns3_flow_level_range new_flow_level;
3187 	struct hns3_enet_tqp_vector *tqp_vector;
3188 	int packets_per_msecs, bytes_per_msecs;
3189 	u32 time_passed_ms;
3190 
3191 	tqp_vector = ring_group->ring->tqp_vector;
3192 	time_passed_ms =
3193 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3194 	if (!time_passed_ms)
3195 		return false;
3196 
3197 	do_div(ring_group->total_packets, time_passed_ms);
3198 	packets_per_msecs = ring_group->total_packets;
3199 
3200 	do_div(ring_group->total_bytes, time_passed_ms);
3201 	bytes_per_msecs = ring_group->total_bytes;
3202 
3203 	new_flow_level = ring_group->coal.flow_level;
3204 
3205 	/* Simple throttlerate management
3206 	 * 0-10MB/s   lower     (50000 ints/s)
3207 	 * 10-20MB/s   middle    (20000 ints/s)
3208 	 * 20-1249MB/s high      (18000 ints/s)
3209 	 * > 40000pps  ultra     (8000 ints/s)
3210 	 */
3211 	switch (new_flow_level) {
3212 	case HNS3_FLOW_LOW:
3213 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3214 			new_flow_level = HNS3_FLOW_MID;
3215 		break;
3216 	case HNS3_FLOW_MID:
3217 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3218 			new_flow_level = HNS3_FLOW_HIGH;
3219 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3220 			new_flow_level = HNS3_FLOW_LOW;
3221 		break;
3222 	case HNS3_FLOW_HIGH:
3223 	case HNS3_FLOW_ULTRA:
3224 	default:
3225 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3226 			new_flow_level = HNS3_FLOW_MID;
3227 		break;
3228 	}
3229 
3230 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3231 	    &tqp_vector->rx_group == ring_group)
3232 		new_flow_level = HNS3_FLOW_ULTRA;
3233 
3234 	ring_group->total_bytes = 0;
3235 	ring_group->total_packets = 0;
3236 	ring_group->coal.flow_level = new_flow_level;
3237 
3238 	return true;
3239 }
3240 
3241 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3242 {
3243 	struct hns3_enet_tqp_vector *tqp_vector;
3244 	u16 new_int_gl;
3245 
3246 	if (!ring_group->ring)
3247 		return false;
3248 
3249 	tqp_vector = ring_group->ring->tqp_vector;
3250 	if (!tqp_vector->last_jiffies)
3251 		return false;
3252 
3253 	if (ring_group->total_packets == 0) {
3254 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3255 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3256 		return true;
3257 	}
3258 
3259 	if (!hns3_get_new_flow_lvl(ring_group))
3260 		return false;
3261 
3262 	new_int_gl = ring_group->coal.int_gl;
3263 	switch (ring_group->coal.flow_level) {
3264 	case HNS3_FLOW_LOW:
3265 		new_int_gl = HNS3_INT_GL_50K;
3266 		break;
3267 	case HNS3_FLOW_MID:
3268 		new_int_gl = HNS3_INT_GL_20K;
3269 		break;
3270 	case HNS3_FLOW_HIGH:
3271 		new_int_gl = HNS3_INT_GL_18K;
3272 		break;
3273 	case HNS3_FLOW_ULTRA:
3274 		new_int_gl = HNS3_INT_GL_8K;
3275 		break;
3276 	default:
3277 		break;
3278 	}
3279 
3280 	if (new_int_gl != ring_group->coal.int_gl) {
3281 		ring_group->coal.int_gl = new_int_gl;
3282 		return true;
3283 	}
3284 	return false;
3285 }
3286 
3287 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3288 {
3289 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3290 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3291 	bool rx_update, tx_update;
3292 
3293 	/* update param every 1000ms */
3294 	if (time_before(jiffies,
3295 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3296 		return;
3297 
3298 	if (rx_group->coal.gl_adapt_enable) {
3299 		rx_update = hns3_get_new_int_gl(rx_group);
3300 		if (rx_update)
3301 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3302 						       rx_group->coal.int_gl);
3303 	}
3304 
3305 	if (tx_group->coal.gl_adapt_enable) {
3306 		tx_update = hns3_get_new_int_gl(tx_group);
3307 		if (tx_update)
3308 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3309 						       tx_group->coal.int_gl);
3310 	}
3311 
3312 	tqp_vector->last_jiffies = jiffies;
3313 }
3314 
3315 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3316 {
3317 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3318 	struct hns3_enet_ring *ring;
3319 	int rx_pkt_total = 0;
3320 
3321 	struct hns3_enet_tqp_vector *tqp_vector =
3322 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3323 	bool clean_complete = true;
3324 	int rx_budget = budget;
3325 
3326 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3327 		napi_complete(napi);
3328 		return 0;
3329 	}
3330 
3331 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3332 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3333 	 */
3334 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3335 		hns3_clean_tx_ring(ring);
3336 
3337 	/* make sure rx ring budget not smaller than 1 */
3338 	if (tqp_vector->num_tqps > 1)
3339 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3340 
3341 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3342 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3343 						    hns3_rx_skb);
3344 
3345 		if (rx_cleaned >= rx_budget)
3346 			clean_complete = false;
3347 
3348 		rx_pkt_total += rx_cleaned;
3349 	}
3350 
3351 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3352 
3353 	if (!clean_complete)
3354 		return budget;
3355 
3356 	if (napi_complete(napi) &&
3357 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3358 		hns3_update_new_int_gl(tqp_vector);
3359 		hns3_mask_vector_irq(tqp_vector, 1);
3360 	}
3361 
3362 	return rx_pkt_total;
3363 }
3364 
3365 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3366 				      struct hnae3_ring_chain_node *head)
3367 {
3368 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3369 	struct hnae3_ring_chain_node *cur_chain = head;
3370 	struct hnae3_ring_chain_node *chain;
3371 	struct hns3_enet_ring *tx_ring;
3372 	struct hns3_enet_ring *rx_ring;
3373 
3374 	tx_ring = tqp_vector->tx_group.ring;
3375 	if (tx_ring) {
3376 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3377 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3378 			      HNAE3_RING_TYPE_TX);
3379 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3380 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3381 
3382 		cur_chain->next = NULL;
3383 
3384 		while (tx_ring->next) {
3385 			tx_ring = tx_ring->next;
3386 
3387 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3388 					     GFP_KERNEL);
3389 			if (!chain)
3390 				goto err_free_chain;
3391 
3392 			cur_chain->next = chain;
3393 			chain->tqp_index = tx_ring->tqp->tqp_index;
3394 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3395 				      HNAE3_RING_TYPE_TX);
3396 			hnae3_set_field(chain->int_gl_idx,
3397 					HNAE3_RING_GL_IDX_M,
3398 					HNAE3_RING_GL_IDX_S,
3399 					HNAE3_RING_GL_TX);
3400 
3401 			cur_chain = chain;
3402 		}
3403 	}
3404 
3405 	rx_ring = tqp_vector->rx_group.ring;
3406 	if (!tx_ring && rx_ring) {
3407 		cur_chain->next = NULL;
3408 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3409 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3410 			      HNAE3_RING_TYPE_RX);
3411 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3412 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3413 
3414 		rx_ring = rx_ring->next;
3415 	}
3416 
3417 	while (rx_ring) {
3418 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3419 		if (!chain)
3420 			goto err_free_chain;
3421 
3422 		cur_chain->next = chain;
3423 		chain->tqp_index = rx_ring->tqp->tqp_index;
3424 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3425 			      HNAE3_RING_TYPE_RX);
3426 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3427 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3428 
3429 		cur_chain = chain;
3430 
3431 		rx_ring = rx_ring->next;
3432 	}
3433 
3434 	return 0;
3435 
3436 err_free_chain:
3437 	cur_chain = head->next;
3438 	while (cur_chain) {
3439 		chain = cur_chain->next;
3440 		devm_kfree(&pdev->dev, cur_chain);
3441 		cur_chain = chain;
3442 	}
3443 	head->next = NULL;
3444 
3445 	return -ENOMEM;
3446 }
3447 
3448 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3449 					struct hnae3_ring_chain_node *head)
3450 {
3451 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3452 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3453 
3454 	chain = head->next;
3455 
3456 	while (chain) {
3457 		chain_tmp = chain->next;
3458 		devm_kfree(&pdev->dev, chain);
3459 		chain = chain_tmp;
3460 	}
3461 }
3462 
3463 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3464 				   struct hns3_enet_ring *ring)
3465 {
3466 	ring->next = group->ring;
3467 	group->ring = ring;
3468 
3469 	group->count++;
3470 }
3471 
3472 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3473 {
3474 	struct pci_dev *pdev = priv->ae_handle->pdev;
3475 	struct hns3_enet_tqp_vector *tqp_vector;
3476 	int num_vectors = priv->vector_num;
3477 	int numa_node;
3478 	int vector_i;
3479 
3480 	numa_node = dev_to_node(&pdev->dev);
3481 
3482 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3483 		tqp_vector = &priv->tqp_vector[vector_i];
3484 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3485 				&tqp_vector->affinity_mask);
3486 	}
3487 }
3488 
3489 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3490 {
3491 	struct hnae3_ring_chain_node vector_ring_chain;
3492 	struct hnae3_handle *h = priv->ae_handle;
3493 	struct hns3_enet_tqp_vector *tqp_vector;
3494 	int ret = 0;
3495 	int i;
3496 
3497 	hns3_nic_set_cpumask(priv);
3498 
3499 	for (i = 0; i < priv->vector_num; i++) {
3500 		tqp_vector = &priv->tqp_vector[i];
3501 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3502 		tqp_vector->num_tqps = 0;
3503 	}
3504 
3505 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3506 		u16 vector_i = i % priv->vector_num;
3507 		u16 tqp_num = h->kinfo.num_tqps;
3508 
3509 		tqp_vector = &priv->tqp_vector[vector_i];
3510 
3511 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3512 				       &priv->ring[i]);
3513 
3514 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3515 				       &priv->ring[i + tqp_num]);
3516 
3517 		priv->ring[i].tqp_vector = tqp_vector;
3518 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3519 		tqp_vector->num_tqps++;
3520 	}
3521 
3522 	for (i = 0; i < priv->vector_num; i++) {
3523 		tqp_vector = &priv->tqp_vector[i];
3524 
3525 		tqp_vector->rx_group.total_bytes = 0;
3526 		tqp_vector->rx_group.total_packets = 0;
3527 		tqp_vector->tx_group.total_bytes = 0;
3528 		tqp_vector->tx_group.total_packets = 0;
3529 		tqp_vector->handle = h;
3530 
3531 		ret = hns3_get_vector_ring_chain(tqp_vector,
3532 						 &vector_ring_chain);
3533 		if (ret)
3534 			goto map_ring_fail;
3535 
3536 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3537 			tqp_vector->vector_irq, &vector_ring_chain);
3538 
3539 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3540 
3541 		if (ret)
3542 			goto map_ring_fail;
3543 
3544 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3545 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3546 	}
3547 
3548 	return 0;
3549 
3550 map_ring_fail:
3551 	while (i--)
3552 		netif_napi_del(&priv->tqp_vector[i].napi);
3553 
3554 	return ret;
3555 }
3556 
3557 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3558 {
3559 #define HNS3_VECTOR_PF_MAX_NUM		64
3560 
3561 	struct hnae3_handle *h = priv->ae_handle;
3562 	struct hns3_enet_tqp_vector *tqp_vector;
3563 	struct hnae3_vector_info *vector;
3564 	struct pci_dev *pdev = h->pdev;
3565 	u16 tqp_num = h->kinfo.num_tqps;
3566 	u16 vector_num;
3567 	int ret = 0;
3568 	u16 i;
3569 
3570 	/* RSS size, cpu online and vector_num should be the same */
3571 	/* Should consider 2p/4p later */
3572 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3573 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3574 
3575 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3576 			      GFP_KERNEL);
3577 	if (!vector)
3578 		return -ENOMEM;
3579 
3580 	/* save the actual available vector number */
3581 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3582 
3583 	priv->vector_num = vector_num;
3584 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3585 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3586 			     GFP_KERNEL);
3587 	if (!priv->tqp_vector) {
3588 		ret = -ENOMEM;
3589 		goto out;
3590 	}
3591 
3592 	for (i = 0; i < priv->vector_num; i++) {
3593 		tqp_vector = &priv->tqp_vector[i];
3594 		tqp_vector->idx = i;
3595 		tqp_vector->mask_addr = vector[i].io_addr;
3596 		tqp_vector->vector_irq = vector[i].vector;
3597 		hns3_vector_gl_rl_init(tqp_vector, priv);
3598 	}
3599 
3600 out:
3601 	devm_kfree(&pdev->dev, vector);
3602 	return ret;
3603 }
3604 
3605 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3606 {
3607 	group->ring = NULL;
3608 	group->count = 0;
3609 }
3610 
3611 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3612 {
3613 	struct hnae3_ring_chain_node vector_ring_chain;
3614 	struct hnae3_handle *h = priv->ae_handle;
3615 	struct hns3_enet_tqp_vector *tqp_vector;
3616 	int i;
3617 
3618 	for (i = 0; i < priv->vector_num; i++) {
3619 		tqp_vector = &priv->tqp_vector[i];
3620 
3621 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3622 			continue;
3623 
3624 		/* Since the mapping can be overwritten, when fail to get the
3625 		 * chain between vector and ring, we should go on to deal with
3626 		 * the remaining options.
3627 		 */
3628 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3629 			dev_warn(priv->dev, "failed to get ring chain\n");
3630 
3631 		h->ae_algo->ops->unmap_ring_from_vector(h,
3632 			tqp_vector->vector_irq, &vector_ring_chain);
3633 
3634 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3635 
3636 		hns3_clear_ring_group(&tqp_vector->rx_group);
3637 		hns3_clear_ring_group(&tqp_vector->tx_group);
3638 		netif_napi_del(&priv->tqp_vector[i].napi);
3639 	}
3640 }
3641 
3642 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3643 {
3644 	struct hnae3_handle *h = priv->ae_handle;
3645 	struct pci_dev *pdev = h->pdev;
3646 	int i, ret;
3647 
3648 	for (i = 0; i < priv->vector_num; i++) {
3649 		struct hns3_enet_tqp_vector *tqp_vector;
3650 
3651 		tqp_vector = &priv->tqp_vector[i];
3652 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3653 		if (ret)
3654 			return;
3655 	}
3656 
3657 	devm_kfree(&pdev->dev, priv->tqp_vector);
3658 }
3659 
3660 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3661 			      unsigned int ring_type)
3662 {
3663 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3664 	struct hns3_enet_ring *ring;
3665 	int desc_num;
3666 
3667 	if (ring_type == HNAE3_RING_TYPE_TX) {
3668 		ring = &priv->ring[q->tqp_index];
3669 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3670 		ring->queue_index = q->tqp_index;
3671 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3672 	} else {
3673 		ring = &priv->ring[q->tqp_index + queue_num];
3674 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3675 		ring->queue_index = q->tqp_index;
3676 		ring->io_base = q->io_base;
3677 	}
3678 
3679 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3680 
3681 	ring->tqp = q;
3682 	ring->desc = NULL;
3683 	ring->desc_cb = NULL;
3684 	ring->dev = priv->dev;
3685 	ring->desc_dma_addr = 0;
3686 	ring->buf_size = q->buf_size;
3687 	ring->desc_num = desc_num;
3688 	ring->next_to_use = 0;
3689 	ring->next_to_clean = 0;
3690 }
3691 
3692 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3693 			       struct hns3_nic_priv *priv)
3694 {
3695 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3696 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3697 }
3698 
3699 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3700 {
3701 	struct hnae3_handle *h = priv->ae_handle;
3702 	struct pci_dev *pdev = h->pdev;
3703 	int i;
3704 
3705 	priv->ring = devm_kzalloc(&pdev->dev,
3706 				  array3_size(h->kinfo.num_tqps,
3707 					      sizeof(*priv->ring), 2),
3708 				  GFP_KERNEL);
3709 	if (!priv->ring)
3710 		return -ENOMEM;
3711 
3712 	for (i = 0; i < h->kinfo.num_tqps; i++)
3713 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3714 
3715 	return 0;
3716 }
3717 
3718 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3719 {
3720 	if (!priv->ring)
3721 		return;
3722 
3723 	devm_kfree(priv->dev, priv->ring);
3724 	priv->ring = NULL;
3725 }
3726 
3727 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3728 {
3729 	int ret;
3730 
3731 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3732 		return -EINVAL;
3733 
3734 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3735 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3736 	if (!ring->desc_cb) {
3737 		ret = -ENOMEM;
3738 		goto out;
3739 	}
3740 
3741 	ret = hns3_alloc_desc(ring);
3742 	if (ret)
3743 		goto out_with_desc_cb;
3744 
3745 	if (!HNAE3_IS_TX_RING(ring)) {
3746 		ret = hns3_alloc_ring_buffers(ring);
3747 		if (ret)
3748 			goto out_with_desc;
3749 	}
3750 
3751 	return 0;
3752 
3753 out_with_desc:
3754 	hns3_free_desc(ring);
3755 out_with_desc_cb:
3756 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3757 	ring->desc_cb = NULL;
3758 out:
3759 	return ret;
3760 }
3761 
3762 void hns3_fini_ring(struct hns3_enet_ring *ring)
3763 {
3764 	hns3_free_desc(ring);
3765 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3766 	ring->desc_cb = NULL;
3767 	ring->next_to_clean = 0;
3768 	ring->next_to_use = 0;
3769 	ring->pending_buf = 0;
3770 	if (ring->skb) {
3771 		dev_kfree_skb_any(ring->skb);
3772 		ring->skb = NULL;
3773 	}
3774 }
3775 
3776 static int hns3_buf_size2type(u32 buf_size)
3777 {
3778 	int bd_size_type;
3779 
3780 	switch (buf_size) {
3781 	case 512:
3782 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3783 		break;
3784 	case 1024:
3785 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3786 		break;
3787 	case 2048:
3788 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3789 		break;
3790 	case 4096:
3791 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3792 		break;
3793 	default:
3794 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3795 	}
3796 
3797 	return bd_size_type;
3798 }
3799 
3800 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3801 {
3802 	dma_addr_t dma = ring->desc_dma_addr;
3803 	struct hnae3_queue *q = ring->tqp;
3804 
3805 	if (!HNAE3_IS_TX_RING(ring)) {
3806 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3807 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3808 			       (u32)((dma >> 31) >> 1));
3809 
3810 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3811 			       hns3_buf_size2type(ring->buf_size));
3812 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3813 			       ring->desc_num / 8 - 1);
3814 
3815 	} else {
3816 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3817 			       (u32)dma);
3818 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3819 			       (u32)((dma >> 31) >> 1));
3820 
3821 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3822 			       ring->desc_num / 8 - 1);
3823 	}
3824 }
3825 
3826 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3827 {
3828 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3829 	int i;
3830 
3831 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3832 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3833 		int j;
3834 
3835 		if (!tc_info->enable)
3836 			continue;
3837 
3838 		for (j = 0; j < tc_info->tqp_count; j++) {
3839 			struct hnae3_queue *q;
3840 
3841 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3842 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3843 				       tc_info->tc);
3844 		}
3845 	}
3846 }
3847 
3848 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3849 {
3850 	struct hnae3_handle *h = priv->ae_handle;
3851 	int ring_num = h->kinfo.num_tqps * 2;
3852 	int i, j;
3853 	int ret;
3854 
3855 	for (i = 0; i < ring_num; i++) {
3856 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3857 		if (ret) {
3858 			dev_err(priv->dev,
3859 				"Alloc ring memory fail! ret=%d\n", ret);
3860 			goto out_when_alloc_ring_memory;
3861 		}
3862 
3863 		u64_stats_init(&priv->ring[i].syncp);
3864 	}
3865 
3866 	return 0;
3867 
3868 out_when_alloc_ring_memory:
3869 	for (j = i - 1; j >= 0; j--)
3870 		hns3_fini_ring(&priv->ring[j]);
3871 
3872 	return -ENOMEM;
3873 }
3874 
3875 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3876 {
3877 	struct hnae3_handle *h = priv->ae_handle;
3878 	int i;
3879 
3880 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3881 		hns3_fini_ring(&priv->ring[i]);
3882 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3883 	}
3884 	return 0;
3885 }
3886 
3887 /* Set mac addr if it is configured. or leave it to the AE driver */
3888 static int hns3_init_mac_addr(struct net_device *netdev)
3889 {
3890 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3891 	struct hnae3_handle *h = priv->ae_handle;
3892 	u8 mac_addr_temp[ETH_ALEN];
3893 	int ret = 0;
3894 
3895 	if (h->ae_algo->ops->get_mac_addr)
3896 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3897 
3898 	/* Check if the MAC address is valid, if not get a random one */
3899 	if (!is_valid_ether_addr(mac_addr_temp)) {
3900 		eth_hw_addr_random(netdev);
3901 		dev_warn(priv->dev, "using random MAC address %pM\n",
3902 			 netdev->dev_addr);
3903 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3904 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3905 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3906 	} else {
3907 		return 0;
3908 	}
3909 
3910 	if (h->ae_algo->ops->set_mac_addr)
3911 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3912 
3913 	return ret;
3914 }
3915 
3916 static int hns3_init_phy(struct net_device *netdev)
3917 {
3918 	struct hnae3_handle *h = hns3_get_handle(netdev);
3919 	int ret = 0;
3920 
3921 	if (h->ae_algo->ops->mac_connect_phy)
3922 		ret = h->ae_algo->ops->mac_connect_phy(h);
3923 
3924 	return ret;
3925 }
3926 
3927 static void hns3_uninit_phy(struct net_device *netdev)
3928 {
3929 	struct hnae3_handle *h = hns3_get_handle(netdev);
3930 
3931 	if (h->ae_algo->ops->mac_disconnect_phy)
3932 		h->ae_algo->ops->mac_disconnect_phy(h);
3933 }
3934 
3935 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3936 {
3937 	struct hnae3_handle *h = hns3_get_handle(netdev);
3938 
3939 	if (h->ae_algo->ops->del_all_fd_entries)
3940 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3941 }
3942 
3943 static int hns3_client_start(struct hnae3_handle *handle)
3944 {
3945 	if (!handle->ae_algo->ops->client_start)
3946 		return 0;
3947 
3948 	return handle->ae_algo->ops->client_start(handle);
3949 }
3950 
3951 static void hns3_client_stop(struct hnae3_handle *handle)
3952 {
3953 	if (!handle->ae_algo->ops->client_stop)
3954 		return;
3955 
3956 	handle->ae_algo->ops->client_stop(handle);
3957 }
3958 
3959 static void hns3_info_show(struct hns3_nic_priv *priv)
3960 {
3961 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3962 
3963 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3964 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3965 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3966 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3967 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3968 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3969 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3970 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3971 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3972 }
3973 
3974 static int hns3_client_init(struct hnae3_handle *handle)
3975 {
3976 	struct pci_dev *pdev = handle->pdev;
3977 	u16 alloc_tqps, max_rss_size;
3978 	struct hns3_nic_priv *priv;
3979 	struct net_device *netdev;
3980 	int ret;
3981 
3982 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3983 						    &max_rss_size);
3984 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3985 	if (!netdev)
3986 		return -ENOMEM;
3987 
3988 	priv = netdev_priv(netdev);
3989 	priv->dev = &pdev->dev;
3990 	priv->netdev = netdev;
3991 	priv->ae_handle = handle;
3992 	priv->tx_timeout_count = 0;
3993 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3994 
3995 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3996 
3997 	handle->kinfo.netdev = netdev;
3998 	handle->priv = (void *)priv;
3999 
4000 	hns3_init_mac_addr(netdev);
4001 
4002 	hns3_set_default_feature(netdev);
4003 
4004 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4005 	netdev->priv_flags |= IFF_UNICAST_FLT;
4006 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4007 	SET_NETDEV_DEV(netdev, &pdev->dev);
4008 	hns3_ethtool_set_ops(netdev);
4009 
4010 	/* Carrier off reporting is important to ethtool even BEFORE open */
4011 	netif_carrier_off(netdev);
4012 
4013 	ret = hns3_get_ring_config(priv);
4014 	if (ret) {
4015 		ret = -ENOMEM;
4016 		goto out_get_ring_cfg;
4017 	}
4018 
4019 	ret = hns3_nic_alloc_vector_data(priv);
4020 	if (ret) {
4021 		ret = -ENOMEM;
4022 		goto out_alloc_vector_data;
4023 	}
4024 
4025 	ret = hns3_nic_init_vector_data(priv);
4026 	if (ret) {
4027 		ret = -ENOMEM;
4028 		goto out_init_vector_data;
4029 	}
4030 
4031 	ret = hns3_init_all_ring(priv);
4032 	if (ret) {
4033 		ret = -ENOMEM;
4034 		goto out_init_ring;
4035 	}
4036 
4037 	ret = hns3_init_phy(netdev);
4038 	if (ret)
4039 		goto out_init_phy;
4040 
4041 	ret = register_netdev(netdev);
4042 	if (ret) {
4043 		dev_err(priv->dev, "probe register netdev fail!\n");
4044 		goto out_reg_netdev_fail;
4045 	}
4046 
4047 	/* the device can work without cpu rmap, only aRFS needs it */
4048 	ret = hns3_set_rx_cpu_rmap(netdev);
4049 	if (ret)
4050 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4051 
4052 	ret = hns3_nic_init_irq(priv);
4053 	if (ret) {
4054 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4055 		hns3_free_rx_cpu_rmap(netdev);
4056 		goto out_init_irq_fail;
4057 	}
4058 
4059 	ret = hns3_client_start(handle);
4060 	if (ret) {
4061 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4062 		goto out_client_start;
4063 	}
4064 
4065 	hns3_dcbnl_setup(handle);
4066 
4067 	hns3_dbg_init(handle);
4068 
4069 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4070 	netdev->max_mtu = HNS3_MAX_MTU;
4071 
4072 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4073 
4074 	if (netif_msg_drv(handle))
4075 		hns3_info_show(priv);
4076 
4077 	return ret;
4078 
4079 out_client_start:
4080 	hns3_free_rx_cpu_rmap(netdev);
4081 	hns3_nic_uninit_irq(priv);
4082 out_init_irq_fail:
4083 	unregister_netdev(netdev);
4084 out_reg_netdev_fail:
4085 	hns3_uninit_phy(netdev);
4086 out_init_phy:
4087 	hns3_uninit_all_ring(priv);
4088 out_init_ring:
4089 	hns3_nic_uninit_vector_data(priv);
4090 out_init_vector_data:
4091 	hns3_nic_dealloc_vector_data(priv);
4092 out_alloc_vector_data:
4093 	priv->ring = NULL;
4094 out_get_ring_cfg:
4095 	priv->ae_handle = NULL;
4096 	free_netdev(netdev);
4097 	return ret;
4098 }
4099 
4100 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4101 {
4102 	struct net_device *netdev = handle->kinfo.netdev;
4103 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4104 	int ret;
4105 
4106 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4107 		unregister_netdev(netdev);
4108 
4109 	hns3_client_stop(handle);
4110 
4111 	hns3_uninit_phy(netdev);
4112 
4113 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4114 		netdev_warn(netdev, "already uninitialized\n");
4115 		goto out_netdev_free;
4116 	}
4117 
4118 	hns3_free_rx_cpu_rmap(netdev);
4119 
4120 	hns3_nic_uninit_irq(priv);
4121 
4122 	hns3_del_all_fd_rules(netdev, true);
4123 
4124 	hns3_clear_all_ring(handle, true);
4125 
4126 	hns3_nic_uninit_vector_data(priv);
4127 
4128 	hns3_nic_dealloc_vector_data(priv);
4129 
4130 	ret = hns3_uninit_all_ring(priv);
4131 	if (ret)
4132 		netdev_err(netdev, "uninit ring error\n");
4133 
4134 	hns3_put_ring_config(priv);
4135 
4136 	hns3_dbg_uninit(handle);
4137 
4138 out_netdev_free:
4139 	free_netdev(netdev);
4140 }
4141 
4142 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4143 {
4144 	struct net_device *netdev = handle->kinfo.netdev;
4145 
4146 	if (!netdev)
4147 		return;
4148 
4149 	if (linkup) {
4150 		netif_carrier_on(netdev);
4151 		netif_tx_wake_all_queues(netdev);
4152 		if (netif_msg_link(handle))
4153 			netdev_info(netdev, "link up\n");
4154 	} else {
4155 		netif_carrier_off(netdev);
4156 		netif_tx_stop_all_queues(netdev);
4157 		if (netif_msg_link(handle))
4158 			netdev_info(netdev, "link down\n");
4159 	}
4160 }
4161 
4162 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4163 {
4164 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4165 	struct net_device *ndev = kinfo->netdev;
4166 
4167 	if (tc > HNAE3_MAX_TC)
4168 		return -EINVAL;
4169 
4170 	if (!ndev)
4171 		return -ENODEV;
4172 
4173 	return hns3_nic_set_real_num_queue(ndev);
4174 }
4175 
4176 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4177 {
4178 	while (ring->next_to_clean != ring->next_to_use) {
4179 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4180 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4181 		ring_ptr_move_fw(ring, next_to_clean);
4182 	}
4183 }
4184 
4185 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4186 {
4187 	struct hns3_desc_cb res_cbs;
4188 	int ret;
4189 
4190 	while (ring->next_to_use != ring->next_to_clean) {
4191 		/* When a buffer is not reused, it's memory has been
4192 		 * freed in hns3_handle_rx_bd or will be freed by
4193 		 * stack, so we need to replace the buffer here.
4194 		 */
4195 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4196 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
4197 			if (ret) {
4198 				u64_stats_update_begin(&ring->syncp);
4199 				ring->stats.sw_err_cnt++;
4200 				u64_stats_update_end(&ring->syncp);
4201 				/* if alloc new buffer fail, exit directly
4202 				 * and reclear in up flow.
4203 				 */
4204 				netdev_warn(ring_to_netdev(ring),
4205 					    "reserve buffer map failed, ret = %d\n",
4206 					    ret);
4207 				return ret;
4208 			}
4209 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4210 		}
4211 		ring_ptr_move_fw(ring, next_to_use);
4212 	}
4213 
4214 	/* Free the pending skb in rx ring */
4215 	if (ring->skb) {
4216 		dev_kfree_skb_any(ring->skb);
4217 		ring->skb = NULL;
4218 		ring->pending_buf = 0;
4219 	}
4220 
4221 	return 0;
4222 }
4223 
4224 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4225 {
4226 	while (ring->next_to_use != ring->next_to_clean) {
4227 		/* When a buffer is not reused, it's memory has been
4228 		 * freed in hns3_handle_rx_bd or will be freed by
4229 		 * stack, so only need to unmap the buffer here.
4230 		 */
4231 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4232 			hns3_unmap_buffer(ring,
4233 					  &ring->desc_cb[ring->next_to_use]);
4234 			ring->desc_cb[ring->next_to_use].dma = 0;
4235 		}
4236 
4237 		ring_ptr_move_fw(ring, next_to_use);
4238 	}
4239 }
4240 
4241 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4242 {
4243 	struct net_device *ndev = h->kinfo.netdev;
4244 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4245 	u32 i;
4246 
4247 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4248 		struct hns3_enet_ring *ring;
4249 
4250 		ring = &priv->ring[i];
4251 		hns3_clear_tx_ring(ring);
4252 
4253 		ring = &priv->ring[i + h->kinfo.num_tqps];
4254 		/* Continue to clear other rings even if clearing some
4255 		 * rings failed.
4256 		 */
4257 		if (force)
4258 			hns3_force_clear_rx_ring(ring);
4259 		else
4260 			hns3_clear_rx_ring(ring);
4261 	}
4262 }
4263 
4264 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4265 {
4266 	struct net_device *ndev = h->kinfo.netdev;
4267 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4268 	struct hns3_enet_ring *rx_ring;
4269 	int i, j;
4270 	int ret;
4271 
4272 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4273 		ret = h->ae_algo->ops->reset_queue(h, i);
4274 		if (ret)
4275 			return ret;
4276 
4277 		hns3_init_ring_hw(&priv->ring[i]);
4278 
4279 		/* We need to clear tx ring here because self test will
4280 		 * use the ring and will not run down before up
4281 		 */
4282 		hns3_clear_tx_ring(&priv->ring[i]);
4283 		priv->ring[i].next_to_clean = 0;
4284 		priv->ring[i].next_to_use = 0;
4285 
4286 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4287 		hns3_init_ring_hw(rx_ring);
4288 		ret = hns3_clear_rx_ring(rx_ring);
4289 		if (ret)
4290 			return ret;
4291 
4292 		/* We can not know the hardware head and tail when this
4293 		 * function is called in reset flow, so we reuse all desc.
4294 		 */
4295 		for (j = 0; j < rx_ring->desc_num; j++)
4296 			hns3_reuse_buffer(rx_ring, j);
4297 
4298 		rx_ring->next_to_clean = 0;
4299 		rx_ring->next_to_use = 0;
4300 	}
4301 
4302 	hns3_init_tx_ring_tc(priv);
4303 
4304 	return 0;
4305 }
4306 
4307 static void hns3_store_coal(struct hns3_nic_priv *priv)
4308 {
4309 	/* ethtool only support setting and querying one coal
4310 	 * configuration for now, so save the vector 0' coal
4311 	 * configuration here in order to restore it.
4312 	 */
4313 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4314 	       sizeof(struct hns3_enet_coalesce));
4315 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4316 	       sizeof(struct hns3_enet_coalesce));
4317 }
4318 
4319 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4320 {
4321 	u16 vector_num = priv->vector_num;
4322 	int i;
4323 
4324 	for (i = 0; i < vector_num; i++) {
4325 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4326 		       sizeof(struct hns3_enet_coalesce));
4327 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4328 		       sizeof(struct hns3_enet_coalesce));
4329 	}
4330 }
4331 
4332 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4333 {
4334 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4335 	struct net_device *ndev = kinfo->netdev;
4336 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4337 
4338 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4339 		return 0;
4340 
4341 	if (!netif_running(ndev))
4342 		return 0;
4343 
4344 	return hns3_nic_net_stop(ndev);
4345 }
4346 
4347 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4348 {
4349 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4350 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4351 	int ret = 0;
4352 
4353 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4354 
4355 	if (netif_running(kinfo->netdev)) {
4356 		ret = hns3_nic_net_open(kinfo->netdev);
4357 		if (ret) {
4358 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4359 			netdev_err(kinfo->netdev,
4360 				   "net up fail, ret=%d!\n", ret);
4361 			return ret;
4362 		}
4363 	}
4364 
4365 	return ret;
4366 }
4367 
4368 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4369 {
4370 	struct net_device *netdev = handle->kinfo.netdev;
4371 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4372 	int ret;
4373 
4374 	/* Carrier off reporting is important to ethtool even BEFORE open */
4375 	netif_carrier_off(netdev);
4376 
4377 	ret = hns3_get_ring_config(priv);
4378 	if (ret)
4379 		return ret;
4380 
4381 	ret = hns3_nic_alloc_vector_data(priv);
4382 	if (ret)
4383 		goto err_put_ring;
4384 
4385 	hns3_restore_coal(priv);
4386 
4387 	ret = hns3_nic_init_vector_data(priv);
4388 	if (ret)
4389 		goto err_dealloc_vector;
4390 
4391 	ret = hns3_init_all_ring(priv);
4392 	if (ret)
4393 		goto err_uninit_vector;
4394 
4395 	/* the device can work without cpu rmap, only aRFS needs it */
4396 	ret = hns3_set_rx_cpu_rmap(netdev);
4397 	if (ret)
4398 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4399 
4400 	ret = hns3_nic_init_irq(priv);
4401 	if (ret) {
4402 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4403 		hns3_free_rx_cpu_rmap(netdev);
4404 		goto err_init_irq_fail;
4405 	}
4406 
4407 	if (!hns3_is_phys_func(handle->pdev))
4408 		hns3_init_mac_addr(netdev);
4409 
4410 	ret = hns3_client_start(handle);
4411 	if (ret) {
4412 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4413 		goto err_client_start_fail;
4414 	}
4415 
4416 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4417 
4418 	return ret;
4419 
4420 err_client_start_fail:
4421 	hns3_free_rx_cpu_rmap(netdev);
4422 	hns3_nic_uninit_irq(priv);
4423 err_init_irq_fail:
4424 	hns3_uninit_all_ring(priv);
4425 err_uninit_vector:
4426 	hns3_nic_uninit_vector_data(priv);
4427 err_dealloc_vector:
4428 	hns3_nic_dealloc_vector_data(priv);
4429 err_put_ring:
4430 	hns3_put_ring_config(priv);
4431 
4432 	return ret;
4433 }
4434 
4435 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4436 {
4437 	struct net_device *netdev = handle->kinfo.netdev;
4438 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4439 	int ret;
4440 
4441 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4442 		netdev_warn(netdev, "already uninitialized\n");
4443 		return 0;
4444 	}
4445 
4446 	hns3_free_rx_cpu_rmap(netdev);
4447 	hns3_nic_uninit_irq(priv);
4448 	hns3_clear_all_ring(handle, true);
4449 	hns3_reset_tx_queue(priv->ae_handle);
4450 
4451 	hns3_nic_uninit_vector_data(priv);
4452 
4453 	hns3_store_coal(priv);
4454 
4455 	hns3_nic_dealloc_vector_data(priv);
4456 
4457 	ret = hns3_uninit_all_ring(priv);
4458 	if (ret)
4459 		netdev_err(netdev, "uninit ring error\n");
4460 
4461 	hns3_put_ring_config(priv);
4462 
4463 	return ret;
4464 }
4465 
4466 static int hns3_reset_notify(struct hnae3_handle *handle,
4467 			     enum hnae3_reset_notify_type type)
4468 {
4469 	int ret = 0;
4470 
4471 	switch (type) {
4472 	case HNAE3_UP_CLIENT:
4473 		ret = hns3_reset_notify_up_enet(handle);
4474 		break;
4475 	case HNAE3_DOWN_CLIENT:
4476 		ret = hns3_reset_notify_down_enet(handle);
4477 		break;
4478 	case HNAE3_INIT_CLIENT:
4479 		ret = hns3_reset_notify_init_enet(handle);
4480 		break;
4481 	case HNAE3_UNINIT_CLIENT:
4482 		ret = hns3_reset_notify_uninit_enet(handle);
4483 		break;
4484 	default:
4485 		break;
4486 	}
4487 
4488 	return ret;
4489 }
4490 
4491 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4492 				bool rxfh_configured)
4493 {
4494 	int ret;
4495 
4496 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4497 						 rxfh_configured);
4498 	if (ret) {
4499 		dev_err(&handle->pdev->dev,
4500 			"Change tqp num(%u) fail.\n", new_tqp_num);
4501 		return ret;
4502 	}
4503 
4504 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4505 	if (ret)
4506 		return ret;
4507 
4508 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4509 	if (ret)
4510 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4511 
4512 	return ret;
4513 }
4514 
4515 int hns3_set_channels(struct net_device *netdev,
4516 		      struct ethtool_channels *ch)
4517 {
4518 	struct hnae3_handle *h = hns3_get_handle(netdev);
4519 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4520 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4521 	u32 new_tqp_num = ch->combined_count;
4522 	u16 org_tqp_num;
4523 	int ret;
4524 
4525 	if (hns3_nic_resetting(netdev))
4526 		return -EBUSY;
4527 
4528 	if (ch->rx_count || ch->tx_count)
4529 		return -EINVAL;
4530 
4531 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4532 	    new_tqp_num < 1) {
4533 		dev_err(&netdev->dev,
4534 			"Change tqps fail, the tqp range is from 1 to %u",
4535 			hns3_get_max_available_channels(h));
4536 		return -EINVAL;
4537 	}
4538 
4539 	if (kinfo->rss_size == new_tqp_num)
4540 		return 0;
4541 
4542 	netif_dbg(h, drv, netdev,
4543 		  "set channels: tqp_num=%u, rxfh=%d\n",
4544 		  new_tqp_num, rxfh_configured);
4545 
4546 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4547 	if (ret)
4548 		return ret;
4549 
4550 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4551 	if (ret)
4552 		return ret;
4553 
4554 	org_tqp_num = h->kinfo.num_tqps;
4555 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4556 	if (ret) {
4557 		int ret1;
4558 
4559 		netdev_warn(netdev,
4560 			    "Change channels fail, revert to old value\n");
4561 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4562 		if (ret1) {
4563 			netdev_err(netdev,
4564 				   "revert to old channel fail\n");
4565 			return ret1;
4566 		}
4567 
4568 		return ret;
4569 	}
4570 
4571 	return 0;
4572 }
4573 
4574 static const struct hns3_hw_error_info hns3_hw_err[] = {
4575 	{ .type = HNAE3_PPU_POISON_ERROR,
4576 	  .msg = "PPU poison" },
4577 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4578 	  .msg = "IMP CMDQ error" },
4579 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4580 	  .msg = "IMP RD poison" },
4581 };
4582 
4583 static void hns3_process_hw_error(struct hnae3_handle *handle,
4584 				  enum hnae3_hw_error_type type)
4585 {
4586 	int i;
4587 
4588 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4589 		if (hns3_hw_err[i].type == type) {
4590 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4591 				hns3_hw_err[i].msg);
4592 			break;
4593 		}
4594 	}
4595 }
4596 
4597 static const struct hnae3_client_ops client_ops = {
4598 	.init_instance = hns3_client_init,
4599 	.uninit_instance = hns3_client_uninit,
4600 	.link_status_change = hns3_link_status_change,
4601 	.setup_tc = hns3_client_setup_tc,
4602 	.reset_notify = hns3_reset_notify,
4603 	.process_hw_error = hns3_process_hw_error,
4604 };
4605 
4606 /* hns3_init_module - Driver registration routine
4607  * hns3_init_module is the first routine called when the driver is
4608  * loaded. All it does is register with the PCI subsystem.
4609  */
4610 static int __init hns3_init_module(void)
4611 {
4612 	int ret;
4613 
4614 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4615 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4616 
4617 	client.type = HNAE3_CLIENT_KNIC;
4618 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4619 		 hns3_driver_name);
4620 
4621 	client.ops = &client_ops;
4622 
4623 	INIT_LIST_HEAD(&client.node);
4624 
4625 	hns3_dbg_register_debugfs(hns3_driver_name);
4626 
4627 	ret = hnae3_register_client(&client);
4628 	if (ret)
4629 		goto err_reg_client;
4630 
4631 	ret = pci_register_driver(&hns3_driver);
4632 	if (ret)
4633 		goto err_reg_driver;
4634 
4635 	return ret;
4636 
4637 err_reg_driver:
4638 	hnae3_unregister_client(&client);
4639 err_reg_client:
4640 	hns3_dbg_unregister_debugfs();
4641 	return ret;
4642 }
4643 module_init(hns3_init_module);
4644 
4645 /* hns3_exit_module - Driver exit cleanup routine
4646  * hns3_exit_module is called just before the driver is removed
4647  * from memory.
4648  */
4649 static void __exit hns3_exit_module(void)
4650 {
4651 	pci_unregister_driver(&hns3_driver);
4652 	hnae3_unregister_client(&client);
4653 	hns3_dbg_unregister_debugfs();
4654 }
4655 module_exit(hns3_exit_module);
4656 
4657 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4658 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4659 MODULE_LICENSE("GPL");
4660 MODULE_ALIAS("pci:hns-nic");
4661