xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision 02000b55850deeadffe433e4b4930a8831f477de)
1 /*
2  * Copyright (c) 2016~2017 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/interrupt.h>
13 #include <linux/if_vlan.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/skbuff.h>
19 #include <linux/sctp.h>
20 #include <linux/vermagic.h>
21 #include <net/gre.h>
22 #include <net/pkt_cls.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 static void hns3_clear_all_ring(struct hnae3_handle *h);
29 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
60 	/* required last entry */
61 	{0, }
62 };
63 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
64 
65 static irqreturn_t hns3_irq_handle(int irq, void *dev)
66 {
67 	struct hns3_enet_tqp_vector *tqp_vector = dev;
68 
69 	napi_schedule(&tqp_vector->napi);
70 
71 	return IRQ_HANDLED;
72 }
73 
74 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
75 {
76 	struct hns3_enet_tqp_vector *tqp_vectors;
77 	unsigned int i;
78 
79 	for (i = 0; i < priv->vector_num; i++) {
80 		tqp_vectors = &priv->tqp_vector[i];
81 
82 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
83 			continue;
84 
85 		/* release the irq resource */
86 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
87 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
88 	}
89 }
90 
91 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
92 {
93 	struct hns3_enet_tqp_vector *tqp_vectors;
94 	int txrx_int_idx = 0;
95 	int rx_int_idx = 0;
96 	int tx_int_idx = 0;
97 	unsigned int i;
98 	int ret;
99 
100 	for (i = 0; i < priv->vector_num; i++) {
101 		tqp_vectors = &priv->tqp_vector[i];
102 
103 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
104 			continue;
105 
106 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
107 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
108 				 "%s-%s-%d", priv->netdev->name, "TxRx",
109 				 txrx_int_idx++);
110 			txrx_int_idx++;
111 		} else if (tqp_vectors->rx_group.ring) {
112 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
113 				 "%s-%s-%d", priv->netdev->name, "Rx",
114 				 rx_int_idx++);
115 		} else if (tqp_vectors->tx_group.ring) {
116 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
117 				 "%s-%s-%d", priv->netdev->name, "Tx",
118 				 tx_int_idx++);
119 		} else {
120 			/* Skip this unused q_vector */
121 			continue;
122 		}
123 
124 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
125 
126 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
127 				  tqp_vectors->name,
128 				       tqp_vectors);
129 		if (ret) {
130 			netdev_err(priv->netdev, "request irq(%d) fail\n",
131 				   tqp_vectors->vector_irq);
132 			return ret;
133 		}
134 
135 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
136 	}
137 
138 	return 0;
139 }
140 
141 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
142 				 u32 mask_en)
143 {
144 	writel(mask_en, tqp_vector->mask_addr);
145 }
146 
147 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
148 {
149 	napi_enable(&tqp_vector->napi);
150 
151 	/* enable vector */
152 	hns3_mask_vector_irq(tqp_vector, 1);
153 }
154 
155 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
156 {
157 	/* disable vector */
158 	hns3_mask_vector_irq(tqp_vector, 0);
159 
160 	disable_irq(tqp_vector->vector_irq);
161 	napi_disable(&tqp_vector->napi);
162 }
163 
164 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
165 				 u32 rl_value)
166 {
167 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
168 
169 	/* this defines the configuration for RL (Interrupt Rate Limiter).
170 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
171 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
172 	 */
173 
174 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
175 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
176 		/* According to the hardware, the range of rl_reg is
177 		 * 0-59 and the unit is 4.
178 		 */
179 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
180 
181 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
182 }
183 
184 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
185 				    u32 gl_value)
186 {
187 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
188 
189 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
190 }
191 
192 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
193 				    u32 gl_value)
194 {
195 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
196 
197 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
198 }
199 
200 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
201 				   struct hns3_nic_priv *priv)
202 {
203 	struct hnae3_handle *h = priv->ae_handle;
204 
205 	/* initialize the configuration for interrupt coalescing.
206 	 * 1. GL (Interrupt Gap Limiter)
207 	 * 2. RL (Interrupt Rate Limiter)
208 	 */
209 
210 	/* Default: enable interrupt coalescing self-adaptive and GL */
211 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
212 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
213 
214 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
215 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
216 
217 	/* Default: disable RL */
218 	h->kinfo.int_rl_setting = 0;
219 
220 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
221 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
222 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
223 }
224 
225 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
226 				      struct hns3_nic_priv *priv)
227 {
228 	struct hnae3_handle *h = priv->ae_handle;
229 
230 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
231 				       tqp_vector->tx_group.coal.int_gl);
232 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
233 				       tqp_vector->rx_group.coal.int_gl);
234 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
235 }
236 
237 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
238 {
239 	struct hnae3_handle *h = hns3_get_handle(netdev);
240 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
241 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
242 	int ret;
243 
244 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
245 	if (ret) {
246 		netdev_err(netdev,
247 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
248 			   ret);
249 		return ret;
250 	}
251 
252 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
253 	if (ret) {
254 		netdev_err(netdev,
255 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
256 		return ret;
257 	}
258 
259 	return 0;
260 }
261 
262 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
263 {
264 	u16 free_tqps, max_rss_size, max_tqps;
265 
266 	h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
267 	max_tqps = h->kinfo.num_tc * max_rss_size;
268 
269 	return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
270 }
271 
272 static int hns3_nic_net_up(struct net_device *netdev)
273 {
274 	struct hns3_nic_priv *priv = netdev_priv(netdev);
275 	struct hnae3_handle *h = priv->ae_handle;
276 	int i, j;
277 	int ret;
278 
279 	ret = hns3_nic_reset_all_ring(h);
280 	if (ret)
281 		return ret;
282 
283 	/* get irq resource for all vectors */
284 	ret = hns3_nic_init_irq(priv);
285 	if (ret) {
286 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
287 		return ret;
288 	}
289 
290 	/* enable the vectors */
291 	for (i = 0; i < priv->vector_num; i++)
292 		hns3_vector_enable(&priv->tqp_vector[i]);
293 
294 	/* start the ae_dev */
295 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
296 	if (ret)
297 		goto out_start_err;
298 
299 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
300 
301 	return 0;
302 
303 out_start_err:
304 	for (j = i - 1; j >= 0; j--)
305 		hns3_vector_disable(&priv->tqp_vector[j]);
306 
307 	hns3_nic_uninit_irq(priv);
308 
309 	return ret;
310 }
311 
312 static int hns3_nic_net_open(struct net_device *netdev)
313 {
314 	struct hns3_nic_priv *priv = netdev_priv(netdev);
315 	int ret;
316 
317 	netif_carrier_off(netdev);
318 
319 	ret = hns3_nic_set_real_num_queue(netdev);
320 	if (ret)
321 		return ret;
322 
323 	ret = hns3_nic_net_up(netdev);
324 	if (ret) {
325 		netdev_err(netdev,
326 			   "hns net up fail, ret=%d!\n", ret);
327 		return ret;
328 	}
329 
330 	priv->ae_handle->last_reset_time = jiffies;
331 	return 0;
332 }
333 
334 static void hns3_nic_net_down(struct net_device *netdev)
335 {
336 	struct hns3_nic_priv *priv = netdev_priv(netdev);
337 	const struct hnae3_ae_ops *ops;
338 	int i;
339 
340 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
341 		return;
342 
343 	/* disable vectors */
344 	for (i = 0; i < priv->vector_num; i++)
345 		hns3_vector_disable(&priv->tqp_vector[i]);
346 
347 	/* stop ae_dev */
348 	ops = priv->ae_handle->ae_algo->ops;
349 	if (ops->stop)
350 		ops->stop(priv->ae_handle);
351 
352 	/* free irq resources */
353 	hns3_nic_uninit_irq(priv);
354 
355 	hns3_clear_all_ring(priv->ae_handle);
356 }
357 
358 static int hns3_nic_net_stop(struct net_device *netdev)
359 {
360 	netif_tx_stop_all_queues(netdev);
361 	netif_carrier_off(netdev);
362 
363 	hns3_nic_net_down(netdev);
364 
365 	return 0;
366 }
367 
368 static int hns3_nic_uc_sync(struct net_device *netdev,
369 			    const unsigned char *addr)
370 {
371 	struct hnae3_handle *h = hns3_get_handle(netdev);
372 
373 	if (h->ae_algo->ops->add_uc_addr)
374 		return h->ae_algo->ops->add_uc_addr(h, addr);
375 
376 	return 0;
377 }
378 
379 static int hns3_nic_uc_unsync(struct net_device *netdev,
380 			      const unsigned char *addr)
381 {
382 	struct hnae3_handle *h = hns3_get_handle(netdev);
383 
384 	if (h->ae_algo->ops->rm_uc_addr)
385 		return h->ae_algo->ops->rm_uc_addr(h, addr);
386 
387 	return 0;
388 }
389 
390 static int hns3_nic_mc_sync(struct net_device *netdev,
391 			    const unsigned char *addr)
392 {
393 	struct hnae3_handle *h = hns3_get_handle(netdev);
394 
395 	if (h->ae_algo->ops->add_mc_addr)
396 		return h->ae_algo->ops->add_mc_addr(h, addr);
397 
398 	return 0;
399 }
400 
401 static int hns3_nic_mc_unsync(struct net_device *netdev,
402 			      const unsigned char *addr)
403 {
404 	struct hnae3_handle *h = hns3_get_handle(netdev);
405 
406 	if (h->ae_algo->ops->rm_mc_addr)
407 		return h->ae_algo->ops->rm_mc_addr(h, addr);
408 
409 	return 0;
410 }
411 
412 static void hns3_nic_set_rx_mode(struct net_device *netdev)
413 {
414 	struct hnae3_handle *h = hns3_get_handle(netdev);
415 
416 	if (h->ae_algo->ops->set_promisc_mode) {
417 		if (netdev->flags & IFF_PROMISC)
418 			h->ae_algo->ops->set_promisc_mode(h, true, true);
419 		else if (netdev->flags & IFF_ALLMULTI)
420 			h->ae_algo->ops->set_promisc_mode(h, false, true);
421 		else
422 			h->ae_algo->ops->set_promisc_mode(h, false, false);
423 	}
424 	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
425 		netdev_err(netdev, "sync uc address fail\n");
426 	if (netdev->flags & IFF_MULTICAST) {
427 		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
428 			netdev_err(netdev, "sync mc address fail\n");
429 
430 		if (h->ae_algo->ops->update_mta_status)
431 			h->ae_algo->ops->update_mta_status(h);
432 	}
433 }
434 
435 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
436 			u16 *mss, u32 *type_cs_vlan_tso)
437 {
438 	u32 l4_offset, hdr_len;
439 	union l3_hdr_info l3;
440 	union l4_hdr_info l4;
441 	u32 l4_paylen;
442 	int ret;
443 
444 	if (!skb_is_gso(skb))
445 		return 0;
446 
447 	ret = skb_cow_head(skb, 0);
448 	if (ret)
449 		return ret;
450 
451 	l3.hdr = skb_network_header(skb);
452 	l4.hdr = skb_transport_header(skb);
453 
454 	/* Software should clear the IPv4's checksum field when tso is
455 	 * needed.
456 	 */
457 	if (l3.v4->version == 4)
458 		l3.v4->check = 0;
459 
460 	/* tunnel packet.*/
461 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
462 					 SKB_GSO_GRE_CSUM |
463 					 SKB_GSO_UDP_TUNNEL |
464 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
465 		if ((!(skb_shinfo(skb)->gso_type &
466 		    SKB_GSO_PARTIAL)) &&
467 		    (skb_shinfo(skb)->gso_type &
468 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
469 			/* Software should clear the udp's checksum
470 			 * field when tso is needed.
471 			 */
472 			l4.udp->check = 0;
473 		}
474 		/* reset l3&l4 pointers from outer to inner headers */
475 		l3.hdr = skb_inner_network_header(skb);
476 		l4.hdr = skb_inner_transport_header(skb);
477 
478 		/* Software should clear the IPv4's checksum field when
479 		 * tso is needed.
480 		 */
481 		if (l3.v4->version == 4)
482 			l3.v4->check = 0;
483 	}
484 
485 	/* normal or tunnel packet*/
486 	l4_offset = l4.hdr - skb->data;
487 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
488 
489 	/* remove payload length from inner pseudo checksum when tso*/
490 	l4_paylen = skb->len - l4_offset;
491 	csum_replace_by_diff(&l4.tcp->check,
492 			     (__force __wsum)htonl(l4_paylen));
493 
494 	/* find the txbd field values */
495 	*paylen = skb->len - hdr_len;
496 	hnae3_set_bit(*type_cs_vlan_tso,
497 		      HNS3_TXD_TSO_B, 1);
498 
499 	/* get MSS for TSO */
500 	*mss = skb_shinfo(skb)->gso_size;
501 
502 	return 0;
503 }
504 
505 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
506 				u8 *il4_proto)
507 {
508 	union {
509 		struct iphdr *v4;
510 		struct ipv6hdr *v6;
511 		unsigned char *hdr;
512 	} l3;
513 	unsigned char *l4_hdr;
514 	unsigned char *exthdr;
515 	u8 l4_proto_tmp;
516 	__be16 frag_off;
517 
518 	/* find outer header point */
519 	l3.hdr = skb_network_header(skb);
520 	l4_hdr = skb_transport_header(skb);
521 
522 	if (skb->protocol == htons(ETH_P_IPV6)) {
523 		exthdr = l3.hdr + sizeof(*l3.v6);
524 		l4_proto_tmp = l3.v6->nexthdr;
525 		if (l4_hdr != exthdr)
526 			ipv6_skip_exthdr(skb, exthdr - skb->data,
527 					 &l4_proto_tmp, &frag_off);
528 	} else if (skb->protocol == htons(ETH_P_IP)) {
529 		l4_proto_tmp = l3.v4->protocol;
530 	} else {
531 		return -EINVAL;
532 	}
533 
534 	*ol4_proto = l4_proto_tmp;
535 
536 	/* tunnel packet */
537 	if (!skb->encapsulation) {
538 		*il4_proto = 0;
539 		return 0;
540 	}
541 
542 	/* find inner header point */
543 	l3.hdr = skb_inner_network_header(skb);
544 	l4_hdr = skb_inner_transport_header(skb);
545 
546 	if (l3.v6->version == 6) {
547 		exthdr = l3.hdr + sizeof(*l3.v6);
548 		l4_proto_tmp = l3.v6->nexthdr;
549 		if (l4_hdr != exthdr)
550 			ipv6_skip_exthdr(skb, exthdr - skb->data,
551 					 &l4_proto_tmp, &frag_off);
552 	} else if (l3.v4->version == 4) {
553 		l4_proto_tmp = l3.v4->protocol;
554 	}
555 
556 	*il4_proto = l4_proto_tmp;
557 
558 	return 0;
559 }
560 
561 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
562 				u8 il4_proto, u32 *type_cs_vlan_tso,
563 				u32 *ol_type_vlan_len_msec)
564 {
565 	union {
566 		struct iphdr *v4;
567 		struct ipv6hdr *v6;
568 		unsigned char *hdr;
569 	} l3;
570 	union {
571 		struct tcphdr *tcp;
572 		struct udphdr *udp;
573 		struct gre_base_hdr *gre;
574 		unsigned char *hdr;
575 	} l4;
576 	unsigned char *l2_hdr;
577 	u8 l4_proto = ol4_proto;
578 	u32 ol2_len;
579 	u32 ol3_len;
580 	u32 ol4_len;
581 	u32 l2_len;
582 	u32 l3_len;
583 
584 	l3.hdr = skb_network_header(skb);
585 	l4.hdr = skb_transport_header(skb);
586 
587 	/* compute L2 header size for normal packet, defined in 2 Bytes */
588 	l2_len = l3.hdr - skb->data;
589 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
590 			HNS3_TXD_L2LEN_S, l2_len >> 1);
591 
592 	/* tunnel packet*/
593 	if (skb->encapsulation) {
594 		/* compute OL2 header size, defined in 2 Bytes */
595 		ol2_len = l2_len;
596 		hnae3_set_field(*ol_type_vlan_len_msec,
597 				HNS3_TXD_L2LEN_M,
598 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
599 
600 		/* compute OL3 header size, defined in 4 Bytes */
601 		ol3_len = l4.hdr - l3.hdr;
602 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
603 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
604 
605 		/* MAC in UDP, MAC in GRE (0x6558)*/
606 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
607 			/* switch MAC header ptr from outer to inner header.*/
608 			l2_hdr = skb_inner_mac_header(skb);
609 
610 			/* compute OL4 header size, defined in 4 Bytes. */
611 			ol4_len = l2_hdr - l4.hdr;
612 			hnae3_set_field(*ol_type_vlan_len_msec,
613 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
614 					ol4_len >> 2);
615 
616 			/* switch IP header ptr from outer to inner header */
617 			l3.hdr = skb_inner_network_header(skb);
618 
619 			/* compute inner l2 header size, defined in 2 Bytes. */
620 			l2_len = l3.hdr - l2_hdr;
621 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
622 					HNS3_TXD_L2LEN_S, l2_len >> 1);
623 		} else {
624 			/* skb packet types not supported by hardware,
625 			 * txbd len fild doesn't be filled.
626 			 */
627 			return;
628 		}
629 
630 		/* switch L4 header pointer from outer to inner */
631 		l4.hdr = skb_inner_transport_header(skb);
632 
633 		l4_proto = il4_proto;
634 	}
635 
636 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
637 	l3_len = l4.hdr - l3.hdr;
638 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
639 			HNS3_TXD_L3LEN_S, l3_len >> 2);
640 
641 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
642 	switch (l4_proto) {
643 	case IPPROTO_TCP:
644 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
645 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
646 		break;
647 	case IPPROTO_SCTP:
648 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
649 				HNS3_TXD_L4LEN_S,
650 				(sizeof(struct sctphdr) >> 2));
651 		break;
652 	case IPPROTO_UDP:
653 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
654 				HNS3_TXD_L4LEN_S,
655 				(sizeof(struct udphdr) >> 2));
656 		break;
657 	default:
658 		/* skb packet types not supported by hardware,
659 		 * txbd len fild doesn't be filled.
660 		 */
661 		return;
662 	}
663 }
664 
665 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
666  * and it is udp packet, which has a dest port as the IANA assigned.
667  * the hardware is expected to do the checksum offload, but the
668  * hardware will not do the checksum offload when udp dest port is
669  * 4789.
670  */
671 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
672 {
673 #define IANA_VXLAN_PORT	4789
674 	union {
675 		struct tcphdr *tcp;
676 		struct udphdr *udp;
677 		struct gre_base_hdr *gre;
678 		unsigned char *hdr;
679 	} l4;
680 
681 	l4.hdr = skb_transport_header(skb);
682 
683 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
684 		return false;
685 
686 	skb_checksum_help(skb);
687 
688 	return true;
689 }
690 
691 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
692 				   u8 il4_proto, u32 *type_cs_vlan_tso,
693 				   u32 *ol_type_vlan_len_msec)
694 {
695 	union {
696 		struct iphdr *v4;
697 		struct ipv6hdr *v6;
698 		unsigned char *hdr;
699 	} l3;
700 	u32 l4_proto = ol4_proto;
701 
702 	l3.hdr = skb_network_header(skb);
703 
704 	/* define OL3 type and tunnel type(OL4).*/
705 	if (skb->encapsulation) {
706 		/* define outer network header type.*/
707 		if (skb->protocol == htons(ETH_P_IP)) {
708 			if (skb_is_gso(skb))
709 				hnae3_set_field(*ol_type_vlan_len_msec,
710 						HNS3_TXD_OL3T_M,
711 						HNS3_TXD_OL3T_S,
712 						HNS3_OL3T_IPV4_CSUM);
713 			else
714 				hnae3_set_field(*ol_type_vlan_len_msec,
715 						HNS3_TXD_OL3T_M,
716 						HNS3_TXD_OL3T_S,
717 						HNS3_OL3T_IPV4_NO_CSUM);
718 
719 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
720 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
721 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
722 		}
723 
724 		/* define tunnel type(OL4).*/
725 		switch (l4_proto) {
726 		case IPPROTO_UDP:
727 			hnae3_set_field(*ol_type_vlan_len_msec,
728 					HNS3_TXD_TUNTYPE_M,
729 					HNS3_TXD_TUNTYPE_S,
730 					HNS3_TUN_MAC_IN_UDP);
731 			break;
732 		case IPPROTO_GRE:
733 			hnae3_set_field(*ol_type_vlan_len_msec,
734 					HNS3_TXD_TUNTYPE_M,
735 					HNS3_TXD_TUNTYPE_S,
736 					HNS3_TUN_NVGRE);
737 			break;
738 		default:
739 			/* drop the skb tunnel packet if hardware don't support,
740 			 * because hardware can't calculate csum when TSO.
741 			 */
742 			if (skb_is_gso(skb))
743 				return -EDOM;
744 
745 			/* the stack computes the IP header already,
746 			 * driver calculate l4 checksum when not TSO.
747 			 */
748 			skb_checksum_help(skb);
749 			return 0;
750 		}
751 
752 		l3.hdr = skb_inner_network_header(skb);
753 		l4_proto = il4_proto;
754 	}
755 
756 	if (l3.v4->version == 4) {
757 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
758 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
759 
760 		/* the stack computes the IP header already, the only time we
761 		 * need the hardware to recompute it is in the case of TSO.
762 		 */
763 		if (skb_is_gso(skb))
764 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
765 
766 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
767 	} else if (l3.v6->version == 6) {
768 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
769 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
770 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
771 	}
772 
773 	switch (l4_proto) {
774 	case IPPROTO_TCP:
775 		hnae3_set_field(*type_cs_vlan_tso,
776 				HNS3_TXD_L4T_M,
777 				HNS3_TXD_L4T_S,
778 				HNS3_L4T_TCP);
779 		break;
780 	case IPPROTO_UDP:
781 		if (hns3_tunnel_csum_bug(skb))
782 			break;
783 
784 		hnae3_set_field(*type_cs_vlan_tso,
785 				HNS3_TXD_L4T_M,
786 				HNS3_TXD_L4T_S,
787 				HNS3_L4T_UDP);
788 		break;
789 	case IPPROTO_SCTP:
790 		hnae3_set_field(*type_cs_vlan_tso,
791 				HNS3_TXD_L4T_M,
792 				HNS3_TXD_L4T_S,
793 				HNS3_L4T_SCTP);
794 		break;
795 	default:
796 		/* drop the skb tunnel packet if hardware don't support,
797 		 * because hardware can't calculate csum when TSO.
798 		 */
799 		if (skb_is_gso(skb))
800 			return -EDOM;
801 
802 		/* the stack computes the IP header already,
803 		 * driver calculate l4 checksum when not TSO.
804 		 */
805 		skb_checksum_help(skb);
806 		return 0;
807 	}
808 
809 	return 0;
810 }
811 
812 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
813 {
814 	/* Config bd buffer end */
815 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
816 			HNS3_TXD_BDTYPE_S, 0);
817 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
818 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
819 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
820 }
821 
822 static int hns3_fill_desc_vtags(struct sk_buff *skb,
823 				struct hns3_enet_ring *tx_ring,
824 				u32 *inner_vlan_flag,
825 				u32 *out_vlan_flag,
826 				u16 *inner_vtag,
827 				u16 *out_vtag)
828 {
829 #define HNS3_TX_VLAN_PRIO_SHIFT 13
830 
831 	if (skb->protocol == htons(ETH_P_8021Q) &&
832 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
833 	    NETIF_F_HW_VLAN_CTAG_TX)) {
834 		/* When HW VLAN acceleration is turned off, and the stack
835 		 * sets the protocol to 802.1q, the driver just need to
836 		 * set the protocol to the encapsulated ethertype.
837 		 */
838 		skb->protocol = vlan_get_protocol(skb);
839 		return 0;
840 	}
841 
842 	if (skb_vlan_tag_present(skb)) {
843 		u16 vlan_tag;
844 
845 		vlan_tag = skb_vlan_tag_get(skb);
846 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
847 
848 		/* Based on hw strategy, use out_vtag in two layer tag case,
849 		 * and use inner_vtag in one tag case.
850 		 */
851 		if (skb->protocol == htons(ETH_P_8021Q)) {
852 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
853 			*out_vtag = vlan_tag;
854 		} else {
855 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
856 			*inner_vtag = vlan_tag;
857 		}
858 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
859 		struct vlan_ethhdr *vhdr;
860 		int rc;
861 
862 		rc = skb_cow_head(skb, 0);
863 		if (rc < 0)
864 			return rc;
865 		vhdr = (struct vlan_ethhdr *)skb->data;
866 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
867 					<< HNS3_TX_VLAN_PRIO_SHIFT);
868 	}
869 
870 	skb->protocol = vlan_get_protocol(skb);
871 	return 0;
872 }
873 
874 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
875 			  int size, dma_addr_t dma, int frag_end,
876 			  enum hns_desc_type type)
877 {
878 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
879 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
880 	u32 ol_type_vlan_len_msec = 0;
881 	u16 bdtp_fe_sc_vld_ra_ri = 0;
882 	u32 type_cs_vlan_tso = 0;
883 	struct sk_buff *skb;
884 	u16 inner_vtag = 0;
885 	u16 out_vtag = 0;
886 	u32 paylen = 0;
887 	u16 mss = 0;
888 	u8 ol4_proto;
889 	u8 il4_proto;
890 	int ret;
891 
892 	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
893 	desc_cb->priv = priv;
894 	desc_cb->length = size;
895 	desc_cb->dma = dma;
896 	desc_cb->type = type;
897 
898 	/* now, fill the descriptor */
899 	desc->addr = cpu_to_le64(dma);
900 	desc->tx.send_size = cpu_to_le16((u16)size);
901 	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
902 	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
903 
904 	if (type == DESC_TYPE_SKB) {
905 		skb = (struct sk_buff *)priv;
906 		paylen = skb->len;
907 
908 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
909 					   &ol_type_vlan_len_msec,
910 					   &inner_vtag, &out_vtag);
911 		if (unlikely(ret))
912 			return ret;
913 
914 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
915 			skb_reset_mac_len(skb);
916 
917 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
918 			if (ret)
919 				return ret;
920 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
921 					    &type_cs_vlan_tso,
922 					    &ol_type_vlan_len_msec);
923 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
924 						      &type_cs_vlan_tso,
925 						      &ol_type_vlan_len_msec);
926 			if (ret)
927 				return ret;
928 
929 			ret = hns3_set_tso(skb, &paylen, &mss,
930 					   &type_cs_vlan_tso);
931 			if (ret)
932 				return ret;
933 		}
934 
935 		/* Set txbd */
936 		desc->tx.ol_type_vlan_len_msec =
937 			cpu_to_le32(ol_type_vlan_len_msec);
938 		desc->tx.type_cs_vlan_tso_len =
939 			cpu_to_le32(type_cs_vlan_tso);
940 		desc->tx.paylen = cpu_to_le32(paylen);
941 		desc->tx.mss = cpu_to_le16(mss);
942 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
943 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
944 	}
945 
946 	/* move ring pointer to next.*/
947 	ring_ptr_move_fw(ring, next_to_use);
948 
949 	return 0;
950 }
951 
952 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
953 			      int size, dma_addr_t dma, int frag_end,
954 			      enum hns_desc_type type)
955 {
956 	unsigned int frag_buf_num;
957 	unsigned int k;
958 	int sizeoflast;
959 	int ret;
960 
961 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
962 	sizeoflast = size % HNS3_MAX_BD_SIZE;
963 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
964 
965 	/* When the frag size is bigger than hardware, split this frag */
966 	for (k = 0; k < frag_buf_num; k++) {
967 		ret = hns3_fill_desc(ring, priv,
968 				     (k == frag_buf_num - 1) ?
969 				sizeoflast : HNS3_MAX_BD_SIZE,
970 				dma + HNS3_MAX_BD_SIZE * k,
971 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
972 				(type == DESC_TYPE_SKB && !k) ?
973 					DESC_TYPE_SKB : DESC_TYPE_PAGE);
974 		if (ret)
975 			return ret;
976 	}
977 
978 	return 0;
979 }
980 
981 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
982 				   struct hns3_enet_ring *ring)
983 {
984 	struct sk_buff *skb = *out_skb;
985 	struct skb_frag_struct *frag;
986 	int bdnum_for_frag;
987 	int frag_num;
988 	int buf_num;
989 	int size;
990 	int i;
991 
992 	size = skb_headlen(skb);
993 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
994 
995 	frag_num = skb_shinfo(skb)->nr_frags;
996 	for (i = 0; i < frag_num; i++) {
997 		frag = &skb_shinfo(skb)->frags[i];
998 		size = skb_frag_size(frag);
999 		bdnum_for_frag =
1000 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1001 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1002 			return -ENOMEM;
1003 
1004 		buf_num += bdnum_for_frag;
1005 	}
1006 
1007 	if (buf_num > ring_space(ring))
1008 		return -EBUSY;
1009 
1010 	*bnum = buf_num;
1011 	return 0;
1012 }
1013 
1014 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1015 				  struct hns3_enet_ring *ring)
1016 {
1017 	struct sk_buff *skb = *out_skb;
1018 	int buf_num;
1019 
1020 	/* No. of segments (plus a header) */
1021 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1022 
1023 	if (buf_num > ring_space(ring))
1024 		return -EBUSY;
1025 
1026 	*bnum = buf_num;
1027 
1028 	return 0;
1029 }
1030 
1031 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
1032 {
1033 	struct device *dev = ring_to_dev(ring);
1034 	unsigned int i;
1035 
1036 	for (i = 0; i < ring->desc_num; i++) {
1037 		/* check if this is where we started */
1038 		if (ring->next_to_use == next_to_use_orig)
1039 			break;
1040 
1041 		/* unmap the descriptor dma address */
1042 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1043 			dma_unmap_single(dev,
1044 					 ring->desc_cb[ring->next_to_use].dma,
1045 					ring->desc_cb[ring->next_to_use].length,
1046 					DMA_TO_DEVICE);
1047 		else
1048 			dma_unmap_page(dev,
1049 				       ring->desc_cb[ring->next_to_use].dma,
1050 				       ring->desc_cb[ring->next_to_use].length,
1051 				       DMA_TO_DEVICE);
1052 
1053 		/* rollback one */
1054 		ring_ptr_move_bw(ring, next_to_use);
1055 	}
1056 }
1057 
1058 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1059 {
1060 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1061 	struct hns3_nic_ring_data *ring_data =
1062 		&tx_ring_data(priv, skb->queue_mapping);
1063 	struct hns3_enet_ring *ring = ring_data->ring;
1064 	struct device *dev = priv->dev;
1065 	struct netdev_queue *dev_queue;
1066 	struct skb_frag_struct *frag;
1067 	int next_to_use_head;
1068 	int next_to_use_frag;
1069 	dma_addr_t dma;
1070 	int buf_num;
1071 	int seg_num;
1072 	int size;
1073 	int ret;
1074 	int i;
1075 
1076 	/* Prefetch the data used later */
1077 	prefetch(skb->data);
1078 
1079 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1080 	case -EBUSY:
1081 		u64_stats_update_begin(&ring->syncp);
1082 		ring->stats.tx_busy++;
1083 		u64_stats_update_end(&ring->syncp);
1084 
1085 		goto out_net_tx_busy;
1086 	case -ENOMEM:
1087 		u64_stats_update_begin(&ring->syncp);
1088 		ring->stats.sw_err_cnt++;
1089 		u64_stats_update_end(&ring->syncp);
1090 		netdev_err(netdev, "no memory to xmit!\n");
1091 
1092 		goto out_err_tx_ok;
1093 	default:
1094 		break;
1095 	}
1096 
1097 	/* No. of segments (plus a header) */
1098 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1099 	/* Fill the first part */
1100 	size = skb_headlen(skb);
1101 
1102 	next_to_use_head = ring->next_to_use;
1103 
1104 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105 	if (dma_mapping_error(dev, dma)) {
1106 		netdev_err(netdev, "TX head DMA map failed\n");
1107 		ring->stats.sw_err_cnt++;
1108 		goto out_err_tx_ok;
1109 	}
1110 
1111 	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1112 			   DESC_TYPE_SKB);
1113 	if (ret)
1114 		goto head_dma_map_err;
1115 
1116 	next_to_use_frag = ring->next_to_use;
1117 	/* Fill the fragments */
1118 	for (i = 1; i < seg_num; i++) {
1119 		frag = &skb_shinfo(skb)->frags[i - 1];
1120 		size = skb_frag_size(frag);
1121 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1122 		if (dma_mapping_error(dev, dma)) {
1123 			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1124 			ring->stats.sw_err_cnt++;
1125 			goto frag_dma_map_err;
1126 		}
1127 		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1128 				    seg_num - 1 == i ? 1 : 0,
1129 				    DESC_TYPE_PAGE);
1130 
1131 		if (ret)
1132 			goto frag_dma_map_err;
1133 	}
1134 
1135 	/* Complete translate all packets */
1136 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1137 	netdev_tx_sent_queue(dev_queue, skb->len);
1138 
1139 	wmb(); /* Commit all data before submit */
1140 
1141 	hnae3_queue_xmit(ring->tqp, buf_num);
1142 
1143 	return NETDEV_TX_OK;
1144 
1145 frag_dma_map_err:
1146 	hns_nic_dma_unmap(ring, next_to_use_frag);
1147 
1148 head_dma_map_err:
1149 	hns_nic_dma_unmap(ring, next_to_use_head);
1150 
1151 out_err_tx_ok:
1152 	dev_kfree_skb_any(skb);
1153 	return NETDEV_TX_OK;
1154 
1155 out_net_tx_busy:
1156 	netif_stop_subqueue(netdev, ring_data->queue_index);
1157 	smp_mb(); /* Commit all data before submit */
1158 
1159 	return NETDEV_TX_BUSY;
1160 }
1161 
1162 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1163 {
1164 	struct hnae3_handle *h = hns3_get_handle(netdev);
1165 	struct sockaddr *mac_addr = p;
1166 	int ret;
1167 
1168 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1169 		return -EADDRNOTAVAIL;
1170 
1171 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1172 		netdev_info(netdev, "already using mac address %pM\n",
1173 			    mac_addr->sa_data);
1174 		return 0;
1175 	}
1176 
1177 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1178 	if (ret) {
1179 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1180 		return ret;
1181 	}
1182 
1183 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1184 
1185 	return 0;
1186 }
1187 
1188 static int hns3_nic_set_features(struct net_device *netdev,
1189 				 netdev_features_t features)
1190 {
1191 	netdev_features_t changed = netdev->features ^ features;
1192 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1193 	struct hnae3_handle *h = priv->ae_handle;
1194 	int ret;
1195 
1196 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1197 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1198 			priv->ops.fill_desc = hns3_fill_desc_tso;
1199 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1200 		} else {
1201 			priv->ops.fill_desc = hns3_fill_desc;
1202 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1203 		}
1204 	}
1205 
1206 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1207 	    h->ae_algo->ops->enable_vlan_filter) {
1208 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1209 			h->ae_algo->ops->enable_vlan_filter(h, true);
1210 		else
1211 			h->ae_algo->ops->enable_vlan_filter(h, false);
1212 	}
1213 
1214 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1215 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1216 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1217 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1218 		else
1219 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1220 
1221 		if (ret)
1222 			return ret;
1223 	}
1224 
1225 	netdev->features = features;
1226 	return 0;
1227 }
1228 
1229 static void hns3_nic_get_stats64(struct net_device *netdev,
1230 				 struct rtnl_link_stats64 *stats)
1231 {
1232 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1233 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1234 	struct hnae3_handle *handle = priv->ae_handle;
1235 	struct hns3_enet_ring *ring;
1236 	unsigned int start;
1237 	unsigned int idx;
1238 	u64 tx_bytes = 0;
1239 	u64 rx_bytes = 0;
1240 	u64 tx_pkts = 0;
1241 	u64 rx_pkts = 0;
1242 	u64 tx_drop = 0;
1243 	u64 rx_drop = 0;
1244 
1245 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1246 		return;
1247 
1248 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1249 
1250 	for (idx = 0; idx < queue_num; idx++) {
1251 		/* fetch the tx stats */
1252 		ring = priv->ring_data[idx].ring;
1253 		do {
1254 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1255 			tx_bytes += ring->stats.tx_bytes;
1256 			tx_pkts += ring->stats.tx_pkts;
1257 			tx_drop += ring->stats.tx_busy;
1258 			tx_drop += ring->stats.sw_err_cnt;
1259 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1260 
1261 		/* fetch the rx stats */
1262 		ring = priv->ring_data[idx + queue_num].ring;
1263 		do {
1264 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1265 			rx_bytes += ring->stats.rx_bytes;
1266 			rx_pkts += ring->stats.rx_pkts;
1267 			rx_drop += ring->stats.non_vld_descs;
1268 			rx_drop += ring->stats.err_pkt_len;
1269 			rx_drop += ring->stats.l2_err;
1270 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1271 	}
1272 
1273 	stats->tx_bytes = tx_bytes;
1274 	stats->tx_packets = tx_pkts;
1275 	stats->rx_bytes = rx_bytes;
1276 	stats->rx_packets = rx_pkts;
1277 
1278 	stats->rx_errors = netdev->stats.rx_errors;
1279 	stats->multicast = netdev->stats.multicast;
1280 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1281 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1282 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1283 
1284 	stats->tx_errors = netdev->stats.tx_errors;
1285 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1286 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1287 	stats->collisions = netdev->stats.collisions;
1288 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1289 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1290 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1291 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1292 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1293 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1294 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1295 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1296 	stats->rx_compressed = netdev->stats.rx_compressed;
1297 	stats->tx_compressed = netdev->stats.tx_compressed;
1298 }
1299 
1300 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1301 {
1302 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1303 	struct hnae3_handle *h = hns3_get_handle(netdev);
1304 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1305 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1306 	u8 tc = mqprio_qopt->qopt.num_tc;
1307 	u16 mode = mqprio_qopt->mode;
1308 	u8 hw = mqprio_qopt->qopt.hw;
1309 	bool if_running;
1310 	unsigned int i;
1311 	int ret;
1312 
1313 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1314 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1315 		return -EOPNOTSUPP;
1316 
1317 	if (tc > HNAE3_MAX_TC)
1318 		return -EINVAL;
1319 
1320 	if (!netdev)
1321 		return -EINVAL;
1322 
1323 	if_running = netif_running(netdev);
1324 	if (if_running) {
1325 		hns3_nic_net_stop(netdev);
1326 		msleep(100);
1327 	}
1328 
1329 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1330 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1331 	if (ret)
1332 		goto out;
1333 
1334 	if (tc <= 1) {
1335 		netdev_reset_tc(netdev);
1336 	} else {
1337 		ret = netdev_set_num_tc(netdev, tc);
1338 		if (ret)
1339 			goto out;
1340 
1341 		for (i = 0; i < HNAE3_MAX_TC; i++) {
1342 			if (!kinfo->tc_info[i].enable)
1343 				continue;
1344 
1345 			netdev_set_tc_queue(netdev,
1346 					    kinfo->tc_info[i].tc,
1347 					    kinfo->tc_info[i].tqp_count,
1348 					    kinfo->tc_info[i].tqp_offset);
1349 		}
1350 	}
1351 
1352 	ret = hns3_nic_set_real_num_queue(netdev);
1353 
1354 out:
1355 	if (if_running)
1356 		hns3_nic_net_open(netdev);
1357 
1358 	return ret;
1359 }
1360 
1361 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1362 			     void *type_data)
1363 {
1364 	if (type != TC_SETUP_QDISC_MQPRIO)
1365 		return -EOPNOTSUPP;
1366 
1367 	return hns3_setup_tc(dev, type_data);
1368 }
1369 
1370 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1371 				__be16 proto, u16 vid)
1372 {
1373 	struct hnae3_handle *h = hns3_get_handle(netdev);
1374 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1375 	int ret = -EIO;
1376 
1377 	if (h->ae_algo->ops->set_vlan_filter)
1378 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1379 
1380 	if (!ret)
1381 		set_bit(vid, priv->active_vlans);
1382 
1383 	return ret;
1384 }
1385 
1386 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1387 				 __be16 proto, u16 vid)
1388 {
1389 	struct hnae3_handle *h = hns3_get_handle(netdev);
1390 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1391 	int ret = -EIO;
1392 
1393 	if (h->ae_algo->ops->set_vlan_filter)
1394 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1395 
1396 	if (!ret)
1397 		clear_bit(vid, priv->active_vlans);
1398 
1399 	return ret;
1400 }
1401 
1402 static void hns3_restore_vlan(struct net_device *netdev)
1403 {
1404 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1405 	u16 vid;
1406 	int ret;
1407 
1408 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1409 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1410 		if (ret)
1411 			netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1412 				    vid, ret);
1413 	}
1414 }
1415 
1416 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1417 				u8 qos, __be16 vlan_proto)
1418 {
1419 	struct hnae3_handle *h = hns3_get_handle(netdev);
1420 	int ret = -EIO;
1421 
1422 	if (h->ae_algo->ops->set_vf_vlan_filter)
1423 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1424 						   qos, vlan_proto);
1425 
1426 	return ret;
1427 }
1428 
1429 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1430 {
1431 	struct hnae3_handle *h = hns3_get_handle(netdev);
1432 	bool if_running = netif_running(netdev);
1433 	int ret;
1434 
1435 	if (!h->ae_algo->ops->set_mtu)
1436 		return -EOPNOTSUPP;
1437 
1438 	/* if this was called with netdev up then bring netdevice down */
1439 	if (if_running) {
1440 		(void)hns3_nic_net_stop(netdev);
1441 		msleep(100);
1442 	}
1443 
1444 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1445 	if (ret) {
1446 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1447 			   ret);
1448 		return ret;
1449 	}
1450 
1451 	netdev->mtu = new_mtu;
1452 
1453 	/* if the netdev was running earlier, bring it up again */
1454 	if (if_running && hns3_nic_net_open(netdev))
1455 		ret = -EINVAL;
1456 
1457 	return ret;
1458 }
1459 
1460 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1461 {
1462 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1463 	struct hns3_enet_ring *tx_ring = NULL;
1464 	int timeout_queue = 0;
1465 	int hw_head, hw_tail;
1466 	int i;
1467 
1468 	/* Find the stopped queue the same way the stack does */
1469 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1470 		struct netdev_queue *q;
1471 		unsigned long trans_start;
1472 
1473 		q = netdev_get_tx_queue(ndev, i);
1474 		trans_start = q->trans_start;
1475 		if (netif_xmit_stopped(q) &&
1476 		    time_after(jiffies,
1477 			       (trans_start + ndev->watchdog_timeo))) {
1478 			timeout_queue = i;
1479 			break;
1480 		}
1481 	}
1482 
1483 	if (i == ndev->num_tx_queues) {
1484 		netdev_info(ndev,
1485 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1486 			    priv->tx_timeout_count);
1487 		return false;
1488 	}
1489 
1490 	tx_ring = priv->ring_data[timeout_queue].ring;
1491 
1492 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1493 				HNS3_RING_TX_RING_HEAD_REG);
1494 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1495 				HNS3_RING_TX_RING_TAIL_REG);
1496 	netdev_info(ndev,
1497 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1498 		    priv->tx_timeout_count,
1499 		    timeout_queue,
1500 		    tx_ring->next_to_use,
1501 		    tx_ring->next_to_clean,
1502 		    hw_head,
1503 		    hw_tail,
1504 		    readl(tx_ring->tqp_vector->mask_addr));
1505 
1506 	return true;
1507 }
1508 
1509 static void hns3_nic_net_timeout(struct net_device *ndev)
1510 {
1511 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1512 	struct hnae3_handle *h = priv->ae_handle;
1513 
1514 	if (!hns3_get_tx_timeo_queue_info(ndev))
1515 		return;
1516 
1517 	priv->tx_timeout_count++;
1518 
1519 	if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1520 		return;
1521 
1522 	/* request the reset */
1523 	if (h->ae_algo->ops->reset_event)
1524 		h->ae_algo->ops->reset_event(h);
1525 }
1526 
1527 static const struct net_device_ops hns3_nic_netdev_ops = {
1528 	.ndo_open		= hns3_nic_net_open,
1529 	.ndo_stop		= hns3_nic_net_stop,
1530 	.ndo_start_xmit		= hns3_nic_net_xmit,
1531 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1532 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1533 	.ndo_change_mtu		= hns3_nic_change_mtu,
1534 	.ndo_set_features	= hns3_nic_set_features,
1535 	.ndo_get_stats64	= hns3_nic_get_stats64,
1536 	.ndo_setup_tc		= hns3_nic_setup_tc,
1537 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1538 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1539 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1540 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1541 };
1542 
1543 static bool hns3_is_phys_func(struct pci_dev *pdev)
1544 {
1545 	u32 dev_id = pdev->device;
1546 
1547 	switch (dev_id) {
1548 	case HNAE3_DEV_ID_GE:
1549 	case HNAE3_DEV_ID_25GE:
1550 	case HNAE3_DEV_ID_25GE_RDMA:
1551 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1552 	case HNAE3_DEV_ID_50GE_RDMA:
1553 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1554 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1555 		return true;
1556 	case HNAE3_DEV_ID_100G_VF:
1557 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1558 		return false;
1559 	default:
1560 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1561 			 dev_id);
1562 	}
1563 
1564 	return false;
1565 }
1566 
1567 static void hns3_disable_sriov(struct pci_dev *pdev)
1568 {
1569 	/* If our VFs are assigned we cannot shut down SR-IOV
1570 	 * without causing issues, so just leave the hardware
1571 	 * available but disabled
1572 	 */
1573 	if (pci_vfs_assigned(pdev)) {
1574 		dev_warn(&pdev->dev,
1575 			 "disabling driver while VFs are assigned\n");
1576 		return;
1577 	}
1578 
1579 	pci_disable_sriov(pdev);
1580 }
1581 
1582 /* hns3_probe - Device initialization routine
1583  * @pdev: PCI device information struct
1584  * @ent: entry in hns3_pci_tbl
1585  *
1586  * hns3_probe initializes a PF identified by a pci_dev structure.
1587  * The OS initialization, configuring of the PF private structure,
1588  * and a hardware reset occur.
1589  *
1590  * Returns 0 on success, negative on failure
1591  */
1592 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1593 {
1594 	struct hnae3_ae_dev *ae_dev;
1595 	int ret;
1596 
1597 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1598 			      GFP_KERNEL);
1599 	if (!ae_dev) {
1600 		ret = -ENOMEM;
1601 		return ret;
1602 	}
1603 
1604 	ae_dev->pdev = pdev;
1605 	ae_dev->flag = ent->driver_data;
1606 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1607 	pci_set_drvdata(pdev, ae_dev);
1608 
1609 	hnae3_register_ae_dev(ae_dev);
1610 
1611 	return 0;
1612 }
1613 
1614 /* hns3_remove - Device removal routine
1615  * @pdev: PCI device information struct
1616  */
1617 static void hns3_remove(struct pci_dev *pdev)
1618 {
1619 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1620 
1621 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1622 		hns3_disable_sriov(pdev);
1623 
1624 	hnae3_unregister_ae_dev(ae_dev);
1625 }
1626 
1627 /**
1628  * hns3_pci_sriov_configure
1629  * @pdev: pointer to a pci_dev structure
1630  * @num_vfs: number of VFs to allocate
1631  *
1632  * Enable or change the number of VFs. Called when the user updates the number
1633  * of VFs in sysfs.
1634  **/
1635 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1636 {
1637 	int ret;
1638 
1639 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1640 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1641 		return -EINVAL;
1642 	}
1643 
1644 	if (num_vfs) {
1645 		ret = pci_enable_sriov(pdev, num_vfs);
1646 		if (ret)
1647 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1648 		else
1649 			return num_vfs;
1650 	} else if (!pci_vfs_assigned(pdev)) {
1651 		pci_disable_sriov(pdev);
1652 	} else {
1653 		dev_warn(&pdev->dev,
1654 			 "Unable to free VFs because some are assigned to VMs.\n");
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static struct pci_driver hns3_driver = {
1661 	.name     = hns3_driver_name,
1662 	.id_table = hns3_pci_tbl,
1663 	.probe    = hns3_probe,
1664 	.remove   = hns3_remove,
1665 	.sriov_configure = hns3_pci_sriov_configure,
1666 };
1667 
1668 /* set default feature to hns3 */
1669 static void hns3_set_default_feature(struct net_device *netdev)
1670 {
1671 	netdev->priv_flags |= IFF_UNICAST_FLT;
1672 
1673 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1674 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1675 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1676 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1677 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1678 
1679 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1680 
1681 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1682 
1683 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1684 		NETIF_F_HW_VLAN_CTAG_FILTER |
1685 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1686 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1687 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1688 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1689 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1690 
1691 	netdev->vlan_features |=
1692 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1693 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1694 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1695 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1696 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1697 
1698 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1699 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1700 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1701 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1702 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1703 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1704 }
1705 
1706 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1707 			     struct hns3_desc_cb *cb)
1708 {
1709 	unsigned int order = hnae3_page_order(ring);
1710 	struct page *p;
1711 
1712 	p = dev_alloc_pages(order);
1713 	if (!p)
1714 		return -ENOMEM;
1715 
1716 	cb->priv = p;
1717 	cb->page_offset = 0;
1718 	cb->reuse_flag = 0;
1719 	cb->buf  = page_address(p);
1720 	cb->length = hnae3_page_size(ring);
1721 	cb->type = DESC_TYPE_PAGE;
1722 
1723 	return 0;
1724 }
1725 
1726 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1727 			     struct hns3_desc_cb *cb)
1728 {
1729 	if (cb->type == DESC_TYPE_SKB)
1730 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1731 	else if (!HNAE3_IS_TX_RING(ring))
1732 		put_page((struct page *)cb->priv);
1733 	memset(cb, 0, sizeof(*cb));
1734 }
1735 
1736 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1737 {
1738 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1739 			       cb->length, ring_to_dma_dir(ring));
1740 
1741 	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1742 		return -EIO;
1743 
1744 	return 0;
1745 }
1746 
1747 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1748 			      struct hns3_desc_cb *cb)
1749 {
1750 	if (cb->type == DESC_TYPE_SKB)
1751 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1752 				 ring_to_dma_dir(ring));
1753 	else
1754 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1755 			       ring_to_dma_dir(ring));
1756 }
1757 
1758 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1759 {
1760 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1761 	ring->desc[i].addr = 0;
1762 }
1763 
1764 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1765 {
1766 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
1767 
1768 	if (!ring->desc_cb[i].dma)
1769 		return;
1770 
1771 	hns3_buffer_detach(ring, i);
1772 	hns3_free_buffer(ring, cb);
1773 }
1774 
1775 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1776 {
1777 	int i;
1778 
1779 	for (i = 0; i < ring->desc_num; i++)
1780 		hns3_free_buffer_detach(ring, i);
1781 }
1782 
1783 /* free desc along with its attached buffer */
1784 static void hns3_free_desc(struct hns3_enet_ring *ring)
1785 {
1786 	int size = ring->desc_num * sizeof(ring->desc[0]);
1787 
1788 	hns3_free_buffers(ring);
1789 
1790 	if (ring->desc) {
1791 		dma_free_coherent(ring_to_dev(ring), size,
1792 				  ring->desc, ring->desc_dma_addr);
1793 		ring->desc = NULL;
1794 	}
1795 }
1796 
1797 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1798 {
1799 	int size = ring->desc_num * sizeof(ring->desc[0]);
1800 
1801 	ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
1802 					 &ring->desc_dma_addr,
1803 					 GFP_KERNEL);
1804 	if (!ring->desc)
1805 		return -ENOMEM;
1806 
1807 	return 0;
1808 }
1809 
1810 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1811 				   struct hns3_desc_cb *cb)
1812 {
1813 	int ret;
1814 
1815 	ret = hns3_alloc_buffer(ring, cb);
1816 	if (ret)
1817 		goto out;
1818 
1819 	ret = hns3_map_buffer(ring, cb);
1820 	if (ret)
1821 		goto out_with_buf;
1822 
1823 	return 0;
1824 
1825 out_with_buf:
1826 	hns3_free_buffer(ring, cb);
1827 out:
1828 	return ret;
1829 }
1830 
1831 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1832 {
1833 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1834 
1835 	if (ret)
1836 		return ret;
1837 
1838 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1839 
1840 	return 0;
1841 }
1842 
1843 /* Allocate memory for raw pkg, and map with dma */
1844 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1845 {
1846 	int i, j, ret;
1847 
1848 	for (i = 0; i < ring->desc_num; i++) {
1849 		ret = hns3_alloc_buffer_attach(ring, i);
1850 		if (ret)
1851 			goto out_buffer_fail;
1852 	}
1853 
1854 	return 0;
1855 
1856 out_buffer_fail:
1857 	for (j = i - 1; j >= 0; j--)
1858 		hns3_free_buffer_detach(ring, j);
1859 	return ret;
1860 }
1861 
1862 /* detach a in-used buffer and replace with a reserved one  */
1863 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1864 				struct hns3_desc_cb *res_cb)
1865 {
1866 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1867 	ring->desc_cb[i] = *res_cb;
1868 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1869 	ring->desc[i].rx.bd_base_info = 0;
1870 }
1871 
1872 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1873 {
1874 	ring->desc_cb[i].reuse_flag = 0;
1875 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1876 		+ ring->desc_cb[i].page_offset);
1877 	ring->desc[i].rx.bd_base_info = 0;
1878 }
1879 
1880 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1881 				      int *pkts)
1882 {
1883 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1884 
1885 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1886 	(*bytes) += desc_cb->length;
1887 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
1888 	hns3_free_buffer_detach(ring, ring->next_to_clean);
1889 
1890 	ring_ptr_move_fw(ring, next_to_clean);
1891 }
1892 
1893 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1894 {
1895 	int u = ring->next_to_use;
1896 	int c = ring->next_to_clean;
1897 
1898 	if (unlikely(h > ring->desc_num))
1899 		return 0;
1900 
1901 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1902 }
1903 
1904 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1905 {
1906 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1907 	struct netdev_queue *dev_queue;
1908 	int bytes, pkts;
1909 	int head;
1910 
1911 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1912 	rmb(); /* Make sure head is ready before touch any data */
1913 
1914 	if (is_ring_empty(ring) || head == ring->next_to_clean)
1915 		return true; /* no data to poll */
1916 
1917 	if (unlikely(!is_valid_clean_head(ring, head))) {
1918 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1919 			   ring->next_to_use, ring->next_to_clean);
1920 
1921 		u64_stats_update_begin(&ring->syncp);
1922 		ring->stats.io_err_cnt++;
1923 		u64_stats_update_end(&ring->syncp);
1924 		return true;
1925 	}
1926 
1927 	bytes = 0;
1928 	pkts = 0;
1929 	while (head != ring->next_to_clean && budget) {
1930 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1931 		/* Issue prefetch for next Tx descriptor */
1932 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1933 		budget--;
1934 	}
1935 
1936 	ring->tqp_vector->tx_group.total_bytes += bytes;
1937 	ring->tqp_vector->tx_group.total_packets += pkts;
1938 
1939 	u64_stats_update_begin(&ring->syncp);
1940 	ring->stats.tx_bytes += bytes;
1941 	ring->stats.tx_pkts += pkts;
1942 	u64_stats_update_end(&ring->syncp);
1943 
1944 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1945 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1946 
1947 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
1948 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1949 		/* Make sure that anybody stopping the queue after this
1950 		 * sees the new next_to_clean.
1951 		 */
1952 		smp_mb();
1953 		if (netif_tx_queue_stopped(dev_queue)) {
1954 			netif_tx_wake_queue(dev_queue);
1955 			ring->stats.restart_queue++;
1956 		}
1957 	}
1958 
1959 	return !!budget;
1960 }
1961 
1962 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1963 {
1964 	int ntc = ring->next_to_clean;
1965 	int ntu = ring->next_to_use;
1966 
1967 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1968 }
1969 
1970 static void
1971 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1972 {
1973 	struct hns3_desc_cb *desc_cb;
1974 	struct hns3_desc_cb res_cbs;
1975 	int i, ret;
1976 
1977 	for (i = 0; i < cleand_count; i++) {
1978 		desc_cb = &ring->desc_cb[ring->next_to_use];
1979 		if (desc_cb->reuse_flag) {
1980 			u64_stats_update_begin(&ring->syncp);
1981 			ring->stats.reuse_pg_cnt++;
1982 			u64_stats_update_end(&ring->syncp);
1983 
1984 			hns3_reuse_buffer(ring, ring->next_to_use);
1985 		} else {
1986 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
1987 			if (ret) {
1988 				u64_stats_update_begin(&ring->syncp);
1989 				ring->stats.sw_err_cnt++;
1990 				u64_stats_update_end(&ring->syncp);
1991 
1992 				netdev_err(ring->tqp->handle->kinfo.netdev,
1993 					   "hnae reserve buffer map failed.\n");
1994 				break;
1995 			}
1996 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
1997 		}
1998 
1999 		ring_ptr_move_fw(ring, next_to_use);
2000 	}
2001 
2002 	wmb(); /* Make all data has been write before submit */
2003 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2004 }
2005 
2006 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2007 				struct hns3_enet_ring *ring, int pull_len,
2008 				struct hns3_desc_cb *desc_cb)
2009 {
2010 	struct hns3_desc *desc;
2011 	int truesize, size;
2012 	int last_offset;
2013 	bool twobufs;
2014 
2015 	twobufs = ((PAGE_SIZE < 8192) &&
2016 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2017 
2018 	desc = &ring->desc[ring->next_to_clean];
2019 	size = le16_to_cpu(desc->rx.size);
2020 
2021 	truesize = hnae3_buf_size(ring);
2022 
2023 	if (!twobufs)
2024 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2025 
2026 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2027 			size - pull_len, truesize);
2028 
2029 	 /* Avoid re-using remote pages,flag default unreuse */
2030 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2031 		return;
2032 
2033 	if (twobufs) {
2034 		/* If we are only owner of page we can reuse it */
2035 		if (likely(page_count(desc_cb->priv) == 1)) {
2036 			/* Flip page offset to other buffer */
2037 			desc_cb->page_offset ^= truesize;
2038 
2039 			desc_cb->reuse_flag = 1;
2040 			/* bump ref count on page before it is given*/
2041 			get_page(desc_cb->priv);
2042 		}
2043 		return;
2044 	}
2045 
2046 	/* Move offset up to the next cache line */
2047 	desc_cb->page_offset += truesize;
2048 
2049 	if (desc_cb->page_offset <= last_offset) {
2050 		desc_cb->reuse_flag = 1;
2051 		/* Bump ref count on page before it is given*/
2052 		get_page(desc_cb->priv);
2053 	}
2054 }
2055 
2056 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2057 			     struct hns3_desc *desc)
2058 {
2059 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2060 	int l3_type, l4_type;
2061 	u32 bd_base_info;
2062 	int ol4_type;
2063 	u32 l234info;
2064 
2065 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2066 	l234info = le32_to_cpu(desc->rx.l234_info);
2067 
2068 	skb->ip_summed = CHECKSUM_NONE;
2069 
2070 	skb_checksum_none_assert(skb);
2071 
2072 	if (!(netdev->features & NETIF_F_RXCSUM))
2073 		return;
2074 
2075 	/* check if hardware has done checksum */
2076 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2077 		return;
2078 
2079 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2080 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2081 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2082 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2083 		netdev_err(netdev, "L3/L4 error pkt\n");
2084 		u64_stats_update_begin(&ring->syncp);
2085 		ring->stats.l3l4_csum_err++;
2086 		u64_stats_update_end(&ring->syncp);
2087 
2088 		return;
2089 	}
2090 
2091 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2092 				  HNS3_RXD_L3ID_S);
2093 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2094 				  HNS3_RXD_L4ID_S);
2095 
2096 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2097 				   HNS3_RXD_OL4ID_S);
2098 	switch (ol4_type) {
2099 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2100 	case HNS3_OL4_TYPE_NVGRE:
2101 		skb->csum_level = 1;
2102 	case HNS3_OL4_TYPE_NO_TUN:
2103 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2104 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2105 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2106 		    (l4_type == HNS3_L4_TYPE_UDP ||
2107 		     l4_type == HNS3_L4_TYPE_TCP ||
2108 		     l4_type == HNS3_L4_TYPE_SCTP))
2109 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2110 		break;
2111 	}
2112 }
2113 
2114 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2115 {
2116 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2117 }
2118 
2119 static u16 hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2120 			       struct hns3_desc *desc, u32 l234info)
2121 {
2122 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2123 	u16 vlan_tag;
2124 
2125 	if (pdev->revision == 0x20) {
2126 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2127 		if (!(vlan_tag & VLAN_VID_MASK))
2128 			vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2129 
2130 		return vlan_tag;
2131 	}
2132 
2133 #define HNS3_STRP_OUTER_VLAN	0x1
2134 #define HNS3_STRP_INNER_VLAN	0x2
2135 
2136 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2137 				HNS3_RXD_STRP_TAGP_S)) {
2138 	case HNS3_STRP_OUTER_VLAN:
2139 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2140 		break;
2141 	case HNS3_STRP_INNER_VLAN:
2142 		vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2143 		break;
2144 	default:
2145 		vlan_tag = 0;
2146 		break;
2147 	}
2148 
2149 	return vlan_tag;
2150 }
2151 
2152 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2153 			     struct sk_buff **out_skb, int *out_bnum)
2154 {
2155 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2156 	struct hns3_desc_cb *desc_cb;
2157 	struct hns3_desc *desc;
2158 	struct sk_buff *skb;
2159 	unsigned char *va;
2160 	u32 bd_base_info;
2161 	int pull_len;
2162 	u32 l234info;
2163 	int length;
2164 	int bnum;
2165 
2166 	desc = &ring->desc[ring->next_to_clean];
2167 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2168 
2169 	prefetch(desc);
2170 
2171 	length = le16_to_cpu(desc->rx.size);
2172 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2173 
2174 	/* Check valid BD */
2175 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2176 		return -EFAULT;
2177 
2178 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2179 
2180 	/* Prefetch first cache line of first page
2181 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2182 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2183 	 * actual we can have greater size of caches with 128B Level 1 cache
2184 	 * lines. In such a case, single fetch would suffice to cache in the
2185 	 * relevant part of the header.
2186 	 */
2187 	prefetch(va);
2188 #if L1_CACHE_BYTES < 128
2189 	prefetch(va + L1_CACHE_BYTES);
2190 #endif
2191 
2192 	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2193 					HNS3_RX_HEAD_SIZE);
2194 	if (unlikely(!skb)) {
2195 		netdev_err(netdev, "alloc rx skb fail\n");
2196 
2197 		u64_stats_update_begin(&ring->syncp);
2198 		ring->stats.sw_err_cnt++;
2199 		u64_stats_update_end(&ring->syncp);
2200 
2201 		return -ENOMEM;
2202 	}
2203 
2204 	prefetchw(skb->data);
2205 
2206 	bnum = 1;
2207 	if (length <= HNS3_RX_HEAD_SIZE) {
2208 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2209 
2210 		/* We can reuse buffer as-is, just make sure it is local */
2211 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2212 			desc_cb->reuse_flag = 1;
2213 		else /* This page cannot be reused so discard it */
2214 			put_page(desc_cb->priv);
2215 
2216 		ring_ptr_move_fw(ring, next_to_clean);
2217 	} else {
2218 		u64_stats_update_begin(&ring->syncp);
2219 		ring->stats.seg_pkt_cnt++;
2220 		u64_stats_update_end(&ring->syncp);
2221 
2222 		pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2223 
2224 		memcpy(__skb_put(skb, pull_len), va,
2225 		       ALIGN(pull_len, sizeof(long)));
2226 
2227 		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2228 		ring_ptr_move_fw(ring, next_to_clean);
2229 
2230 		while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2231 			desc = &ring->desc[ring->next_to_clean];
2232 			desc_cb = &ring->desc_cb[ring->next_to_clean];
2233 			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2234 			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2235 			ring_ptr_move_fw(ring, next_to_clean);
2236 			bnum++;
2237 		}
2238 	}
2239 
2240 	*out_bnum = bnum;
2241 
2242 	l234info = le32_to_cpu(desc->rx.l234_info);
2243 
2244 	/* Based on hw strategy, the tag offloaded will be stored at
2245 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2246 	 * in one layer tag case.
2247 	 */
2248 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2249 		u16 vlan_tag;
2250 
2251 		vlan_tag = hns3_parse_vlan_tag(ring, desc, l234info);
2252 		if (vlan_tag & VLAN_VID_MASK)
2253 			__vlan_hwaccel_put_tag(skb,
2254 					       htons(ETH_P_8021Q),
2255 					       vlan_tag);
2256 	}
2257 
2258 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2259 		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2260 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
2261 		u64_stats_update_begin(&ring->syncp);
2262 		ring->stats.non_vld_descs++;
2263 		u64_stats_update_end(&ring->syncp);
2264 
2265 		dev_kfree_skb_any(skb);
2266 		return -EINVAL;
2267 	}
2268 
2269 	if (unlikely((!desc->rx.pkt_len) ||
2270 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2271 		netdev_err(netdev, "truncated pkt\n");
2272 		u64_stats_update_begin(&ring->syncp);
2273 		ring->stats.err_pkt_len++;
2274 		u64_stats_update_end(&ring->syncp);
2275 
2276 		dev_kfree_skb_any(skb);
2277 		return -EFAULT;
2278 	}
2279 
2280 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2281 		netdev_err(netdev, "L2 error pkt\n");
2282 		u64_stats_update_begin(&ring->syncp);
2283 		ring->stats.l2_err++;
2284 		u64_stats_update_end(&ring->syncp);
2285 
2286 		dev_kfree_skb_any(skb);
2287 		return -EFAULT;
2288 	}
2289 
2290 	u64_stats_update_begin(&ring->syncp);
2291 	ring->stats.rx_pkts++;
2292 	ring->stats.rx_bytes += skb->len;
2293 	u64_stats_update_end(&ring->syncp);
2294 
2295 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2296 
2297 	hns3_rx_checksum(ring, skb, desc);
2298 	return 0;
2299 }
2300 
2301 int hns3_clean_rx_ring(
2302 		struct hns3_enet_ring *ring, int budget,
2303 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2304 {
2305 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2306 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2307 	int recv_pkts, recv_bds, clean_count, err;
2308 	int unused_count = hns3_desc_unused(ring);
2309 	struct sk_buff *skb = NULL;
2310 	int num, bnum = 0;
2311 
2312 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2313 	rmb(); /* Make sure num taken effect before the other data is touched */
2314 
2315 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2316 	num -= unused_count;
2317 
2318 	while (recv_pkts < budget && recv_bds < num) {
2319 		/* Reuse or realloc buffers */
2320 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2321 			hns3_nic_alloc_rx_buffers(ring,
2322 						  clean_count + unused_count);
2323 			clean_count = 0;
2324 			unused_count = hns3_desc_unused(ring);
2325 		}
2326 
2327 		/* Poll one pkt */
2328 		err = hns3_handle_rx_bd(ring, &skb, &bnum);
2329 		if (unlikely(!skb)) /* This fault cannot be repaired */
2330 			goto out;
2331 
2332 		recv_bds += bnum;
2333 		clean_count += bnum;
2334 		if (unlikely(err)) {  /* Do jump the err */
2335 			recv_pkts++;
2336 			continue;
2337 		}
2338 
2339 		/* Do update ip stack process */
2340 		skb->protocol = eth_type_trans(skb, netdev);
2341 		rx_fn(ring, skb);
2342 
2343 		recv_pkts++;
2344 	}
2345 
2346 out:
2347 	/* Make all data has been write before submit */
2348 	if (clean_count + unused_count > 0)
2349 		hns3_nic_alloc_rx_buffers(ring,
2350 					  clean_count + unused_count);
2351 
2352 	return recv_pkts;
2353 }
2354 
2355 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2356 {
2357 	struct hns3_enet_tqp_vector *tqp_vector =
2358 					ring_group->ring->tqp_vector;
2359 	enum hns3_flow_level_range new_flow_level;
2360 	int packets_per_msecs;
2361 	int bytes_per_msecs;
2362 	u32 time_passed_ms;
2363 	u16 new_int_gl;
2364 
2365 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2366 		return false;
2367 
2368 	if (ring_group->total_packets == 0) {
2369 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2370 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2371 		return true;
2372 	}
2373 
2374 	/* Simple throttlerate management
2375 	 * 0-10MB/s   lower     (50000 ints/s)
2376 	 * 10-20MB/s   middle    (20000 ints/s)
2377 	 * 20-1249MB/s high      (18000 ints/s)
2378 	 * > 40000pps  ultra     (8000 ints/s)
2379 	 */
2380 	new_flow_level = ring_group->coal.flow_level;
2381 	new_int_gl = ring_group->coal.int_gl;
2382 	time_passed_ms =
2383 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2384 
2385 	if (!time_passed_ms)
2386 		return false;
2387 
2388 	do_div(ring_group->total_packets, time_passed_ms);
2389 	packets_per_msecs = ring_group->total_packets;
2390 
2391 	do_div(ring_group->total_bytes, time_passed_ms);
2392 	bytes_per_msecs = ring_group->total_bytes;
2393 
2394 #define HNS3_RX_LOW_BYTE_RATE 10000
2395 #define HNS3_RX_MID_BYTE_RATE 20000
2396 
2397 	switch (new_flow_level) {
2398 	case HNS3_FLOW_LOW:
2399 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2400 			new_flow_level = HNS3_FLOW_MID;
2401 		break;
2402 	case HNS3_FLOW_MID:
2403 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2404 			new_flow_level = HNS3_FLOW_HIGH;
2405 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2406 			new_flow_level = HNS3_FLOW_LOW;
2407 		break;
2408 	case HNS3_FLOW_HIGH:
2409 	case HNS3_FLOW_ULTRA:
2410 	default:
2411 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2412 			new_flow_level = HNS3_FLOW_MID;
2413 		break;
2414 	}
2415 
2416 #define HNS3_RX_ULTRA_PACKET_RATE 40
2417 
2418 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2419 	    &tqp_vector->rx_group == ring_group)
2420 		new_flow_level = HNS3_FLOW_ULTRA;
2421 
2422 	switch (new_flow_level) {
2423 	case HNS3_FLOW_LOW:
2424 		new_int_gl = HNS3_INT_GL_50K;
2425 		break;
2426 	case HNS3_FLOW_MID:
2427 		new_int_gl = HNS3_INT_GL_20K;
2428 		break;
2429 	case HNS3_FLOW_HIGH:
2430 		new_int_gl = HNS3_INT_GL_18K;
2431 		break;
2432 	case HNS3_FLOW_ULTRA:
2433 		new_int_gl = HNS3_INT_GL_8K;
2434 		break;
2435 	default:
2436 		break;
2437 	}
2438 
2439 	ring_group->total_bytes = 0;
2440 	ring_group->total_packets = 0;
2441 	ring_group->coal.flow_level = new_flow_level;
2442 	if (new_int_gl != ring_group->coal.int_gl) {
2443 		ring_group->coal.int_gl = new_int_gl;
2444 		return true;
2445 	}
2446 	return false;
2447 }
2448 
2449 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2450 {
2451 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2452 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2453 	bool rx_update, tx_update;
2454 
2455 	if (tqp_vector->int_adapt_down > 0) {
2456 		tqp_vector->int_adapt_down--;
2457 		return;
2458 	}
2459 
2460 	if (rx_group->coal.gl_adapt_enable) {
2461 		rx_update = hns3_get_new_int_gl(rx_group);
2462 		if (rx_update)
2463 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2464 						       rx_group->coal.int_gl);
2465 	}
2466 
2467 	if (tx_group->coal.gl_adapt_enable) {
2468 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2469 		if (tx_update)
2470 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2471 						       tx_group->coal.int_gl);
2472 	}
2473 
2474 	tqp_vector->last_jiffies = jiffies;
2475 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2476 }
2477 
2478 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2479 {
2480 	struct hns3_enet_ring *ring;
2481 	int rx_pkt_total = 0;
2482 
2483 	struct hns3_enet_tqp_vector *tqp_vector =
2484 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2485 	bool clean_complete = true;
2486 	int rx_budget;
2487 
2488 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2489 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2490 	 */
2491 	hns3_for_each_ring(ring, tqp_vector->tx_group) {
2492 		if (!hns3_clean_tx_ring(ring, budget))
2493 			clean_complete = false;
2494 	}
2495 
2496 	/* make sure rx ring budget not smaller than 1 */
2497 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2498 
2499 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2500 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2501 						    hns3_rx_skb);
2502 
2503 		if (rx_cleaned >= rx_budget)
2504 			clean_complete = false;
2505 
2506 		rx_pkt_total += rx_cleaned;
2507 	}
2508 
2509 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2510 
2511 	if (!clean_complete)
2512 		return budget;
2513 
2514 	napi_complete(napi);
2515 	hns3_update_new_int_gl(tqp_vector);
2516 	hns3_mask_vector_irq(tqp_vector, 1);
2517 
2518 	return rx_pkt_total;
2519 }
2520 
2521 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2522 				      struct hnae3_ring_chain_node *head)
2523 {
2524 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2525 	struct hnae3_ring_chain_node *cur_chain = head;
2526 	struct hnae3_ring_chain_node *chain;
2527 	struct hns3_enet_ring *tx_ring;
2528 	struct hns3_enet_ring *rx_ring;
2529 
2530 	tx_ring = tqp_vector->tx_group.ring;
2531 	if (tx_ring) {
2532 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2533 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2534 			      HNAE3_RING_TYPE_TX);
2535 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2536 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2537 
2538 		cur_chain->next = NULL;
2539 
2540 		while (tx_ring->next) {
2541 			tx_ring = tx_ring->next;
2542 
2543 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2544 					     GFP_KERNEL);
2545 			if (!chain)
2546 				return -ENOMEM;
2547 
2548 			cur_chain->next = chain;
2549 			chain->tqp_index = tx_ring->tqp->tqp_index;
2550 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2551 				      HNAE3_RING_TYPE_TX);
2552 			hnae3_set_field(chain->int_gl_idx,
2553 					HNAE3_RING_GL_IDX_M,
2554 					HNAE3_RING_GL_IDX_S,
2555 					HNAE3_RING_GL_TX);
2556 
2557 			cur_chain = chain;
2558 		}
2559 	}
2560 
2561 	rx_ring = tqp_vector->rx_group.ring;
2562 	if (!tx_ring && rx_ring) {
2563 		cur_chain->next = NULL;
2564 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2565 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2566 			      HNAE3_RING_TYPE_RX);
2567 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2568 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2569 
2570 		rx_ring = rx_ring->next;
2571 	}
2572 
2573 	while (rx_ring) {
2574 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2575 		if (!chain)
2576 			return -ENOMEM;
2577 
2578 		cur_chain->next = chain;
2579 		chain->tqp_index = rx_ring->tqp->tqp_index;
2580 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2581 			      HNAE3_RING_TYPE_RX);
2582 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2583 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2584 
2585 		cur_chain = chain;
2586 
2587 		rx_ring = rx_ring->next;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2594 					struct hnae3_ring_chain_node *head)
2595 {
2596 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2597 	struct hnae3_ring_chain_node *chain_tmp, *chain;
2598 
2599 	chain = head->next;
2600 
2601 	while (chain) {
2602 		chain_tmp = chain->next;
2603 		devm_kfree(&pdev->dev, chain);
2604 		chain = chain_tmp;
2605 	}
2606 }
2607 
2608 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2609 				   struct hns3_enet_ring *ring)
2610 {
2611 	ring->next = group->ring;
2612 	group->ring = ring;
2613 
2614 	group->count++;
2615 }
2616 
2617 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2618 {
2619 	struct hnae3_ring_chain_node vector_ring_chain;
2620 	struct hnae3_handle *h = priv->ae_handle;
2621 	struct hns3_enet_tqp_vector *tqp_vector;
2622 	int ret = 0;
2623 	u16 i;
2624 
2625 	for (i = 0; i < priv->vector_num; i++) {
2626 		tqp_vector = &priv->tqp_vector[i];
2627 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2628 		tqp_vector->num_tqps = 0;
2629 	}
2630 
2631 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2632 		u16 vector_i = i % priv->vector_num;
2633 		u16 tqp_num = h->kinfo.num_tqps;
2634 
2635 		tqp_vector = &priv->tqp_vector[vector_i];
2636 
2637 		hns3_add_ring_to_group(&tqp_vector->tx_group,
2638 				       priv->ring_data[i].ring);
2639 
2640 		hns3_add_ring_to_group(&tqp_vector->rx_group,
2641 				       priv->ring_data[i + tqp_num].ring);
2642 
2643 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
2644 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2645 		tqp_vector->num_tqps++;
2646 	}
2647 
2648 	for (i = 0; i < priv->vector_num; i++) {
2649 		tqp_vector = &priv->tqp_vector[i];
2650 
2651 		tqp_vector->rx_group.total_bytes = 0;
2652 		tqp_vector->rx_group.total_packets = 0;
2653 		tqp_vector->tx_group.total_bytes = 0;
2654 		tqp_vector->tx_group.total_packets = 0;
2655 		tqp_vector->handle = h;
2656 
2657 		ret = hns3_get_vector_ring_chain(tqp_vector,
2658 						 &vector_ring_chain);
2659 		if (ret)
2660 			return ret;
2661 
2662 		ret = h->ae_algo->ops->map_ring_to_vector(h,
2663 			tqp_vector->vector_irq, &vector_ring_chain);
2664 
2665 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2666 
2667 		if (ret)
2668 			return ret;
2669 
2670 		netif_napi_add(priv->netdev, &tqp_vector->napi,
2671 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2678 {
2679 	struct hnae3_handle *h = priv->ae_handle;
2680 	struct hns3_enet_tqp_vector *tqp_vector;
2681 	struct hnae3_vector_info *vector;
2682 	struct pci_dev *pdev = h->pdev;
2683 	u16 tqp_num = h->kinfo.num_tqps;
2684 	u16 vector_num;
2685 	int ret = 0;
2686 	u16 i;
2687 
2688 	/* RSS size, cpu online and vector_num should be the same */
2689 	/* Should consider 2p/4p later */
2690 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
2691 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2692 			      GFP_KERNEL);
2693 	if (!vector)
2694 		return -ENOMEM;
2695 
2696 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2697 
2698 	priv->vector_num = vector_num;
2699 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2700 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2701 			     GFP_KERNEL);
2702 	if (!priv->tqp_vector) {
2703 		ret = -ENOMEM;
2704 		goto out;
2705 	}
2706 
2707 	for (i = 0; i < priv->vector_num; i++) {
2708 		tqp_vector = &priv->tqp_vector[i];
2709 		tqp_vector->idx = i;
2710 		tqp_vector->mask_addr = vector[i].io_addr;
2711 		tqp_vector->vector_irq = vector[i].vector;
2712 		hns3_vector_gl_rl_init(tqp_vector, priv);
2713 	}
2714 
2715 out:
2716 	devm_kfree(&pdev->dev, vector);
2717 	return ret;
2718 }
2719 
2720 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2721 {
2722 	group->ring = NULL;
2723 	group->count = 0;
2724 }
2725 
2726 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2727 {
2728 	struct hnae3_ring_chain_node vector_ring_chain;
2729 	struct hnae3_handle *h = priv->ae_handle;
2730 	struct hns3_enet_tqp_vector *tqp_vector;
2731 	int i, ret;
2732 
2733 	for (i = 0; i < priv->vector_num; i++) {
2734 		tqp_vector = &priv->tqp_vector[i];
2735 
2736 		ret = hns3_get_vector_ring_chain(tqp_vector,
2737 						 &vector_ring_chain);
2738 		if (ret)
2739 			return ret;
2740 
2741 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2742 			tqp_vector->vector_irq, &vector_ring_chain);
2743 		if (ret)
2744 			return ret;
2745 
2746 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2747 
2748 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2749 			(void)irq_set_affinity_hint(
2750 				priv->tqp_vector[i].vector_irq,
2751 						    NULL);
2752 			free_irq(priv->tqp_vector[i].vector_irq,
2753 				 &priv->tqp_vector[i]);
2754 		}
2755 
2756 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2757 		hns3_clear_ring_group(&tqp_vector->rx_group);
2758 		hns3_clear_ring_group(&tqp_vector->tx_group);
2759 		netif_napi_del(&priv->tqp_vector[i].napi);
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2766 {
2767 	struct hnae3_handle *h = priv->ae_handle;
2768 	struct pci_dev *pdev = h->pdev;
2769 	int i, ret;
2770 
2771 	for (i = 0; i < priv->vector_num; i++) {
2772 		struct hns3_enet_tqp_vector *tqp_vector;
2773 
2774 		tqp_vector = &priv->tqp_vector[i];
2775 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2776 		if (ret)
2777 			return ret;
2778 	}
2779 
2780 	devm_kfree(&pdev->dev, priv->tqp_vector);
2781 	return 0;
2782 }
2783 
2784 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2785 			     int ring_type)
2786 {
2787 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
2788 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2789 	struct pci_dev *pdev = priv->ae_handle->pdev;
2790 	struct hns3_enet_ring *ring;
2791 
2792 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2793 	if (!ring)
2794 		return -ENOMEM;
2795 
2796 	if (ring_type == HNAE3_RING_TYPE_TX) {
2797 		ring_data[q->tqp_index].ring = ring;
2798 		ring_data[q->tqp_index].queue_index = q->tqp_index;
2799 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2800 	} else {
2801 		ring_data[q->tqp_index + queue_num].ring = ring;
2802 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2803 		ring->io_base = q->io_base;
2804 	}
2805 
2806 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2807 
2808 	ring->tqp = q;
2809 	ring->desc = NULL;
2810 	ring->desc_cb = NULL;
2811 	ring->dev = priv->dev;
2812 	ring->desc_dma_addr = 0;
2813 	ring->buf_size = q->buf_size;
2814 	ring->desc_num = q->desc_num;
2815 	ring->next_to_use = 0;
2816 	ring->next_to_clean = 0;
2817 
2818 	return 0;
2819 }
2820 
2821 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2822 			      struct hns3_nic_priv *priv)
2823 {
2824 	int ret;
2825 
2826 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2827 	if (ret)
2828 		return ret;
2829 
2830 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2831 	if (ret)
2832 		return ret;
2833 
2834 	return 0;
2835 }
2836 
2837 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2838 {
2839 	struct hnae3_handle *h = priv->ae_handle;
2840 	struct pci_dev *pdev = h->pdev;
2841 	int i, ret;
2842 
2843 	priv->ring_data =  devm_kzalloc(&pdev->dev,
2844 					array3_size(h->kinfo.num_tqps,
2845 						    sizeof(*priv->ring_data),
2846 						    2),
2847 					GFP_KERNEL);
2848 	if (!priv->ring_data)
2849 		return -ENOMEM;
2850 
2851 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2852 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2853 		if (ret)
2854 			goto err;
2855 	}
2856 
2857 	return 0;
2858 err:
2859 	devm_kfree(&pdev->dev, priv->ring_data);
2860 	return ret;
2861 }
2862 
2863 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2864 {
2865 	struct hnae3_handle *h = priv->ae_handle;
2866 	int i;
2867 
2868 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2869 		devm_kfree(priv->dev, priv->ring_data[i].ring);
2870 		devm_kfree(priv->dev,
2871 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
2872 	}
2873 	devm_kfree(priv->dev, priv->ring_data);
2874 }
2875 
2876 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2877 {
2878 	int ret;
2879 
2880 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
2881 		return -EINVAL;
2882 
2883 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2884 				GFP_KERNEL);
2885 	if (!ring->desc_cb) {
2886 		ret = -ENOMEM;
2887 		goto out;
2888 	}
2889 
2890 	ret = hns3_alloc_desc(ring);
2891 	if (ret)
2892 		goto out_with_desc_cb;
2893 
2894 	if (!HNAE3_IS_TX_RING(ring)) {
2895 		ret = hns3_alloc_ring_buffers(ring);
2896 		if (ret)
2897 			goto out_with_desc;
2898 	}
2899 
2900 	return 0;
2901 
2902 out_with_desc:
2903 	hns3_free_desc(ring);
2904 out_with_desc_cb:
2905 	kfree(ring->desc_cb);
2906 	ring->desc_cb = NULL;
2907 out:
2908 	return ret;
2909 }
2910 
2911 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2912 {
2913 	hns3_free_desc(ring);
2914 	kfree(ring->desc_cb);
2915 	ring->desc_cb = NULL;
2916 	ring->next_to_clean = 0;
2917 	ring->next_to_use = 0;
2918 }
2919 
2920 static int hns3_buf_size2type(u32 buf_size)
2921 {
2922 	int bd_size_type;
2923 
2924 	switch (buf_size) {
2925 	case 512:
2926 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
2927 		break;
2928 	case 1024:
2929 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2930 		break;
2931 	case 2048:
2932 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2933 		break;
2934 	case 4096:
2935 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2936 		break;
2937 	default:
2938 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2939 	}
2940 
2941 	return bd_size_type;
2942 }
2943 
2944 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2945 {
2946 	dma_addr_t dma = ring->desc_dma_addr;
2947 	struct hnae3_queue *q = ring->tqp;
2948 
2949 	if (!HNAE3_IS_TX_RING(ring)) {
2950 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2951 			       (u32)dma);
2952 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2953 			       (u32)((dma >> 31) >> 1));
2954 
2955 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2956 			       hns3_buf_size2type(ring->buf_size));
2957 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2958 			       ring->desc_num / 8 - 1);
2959 
2960 	} else {
2961 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2962 			       (u32)dma);
2963 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2964 			       (u32)((dma >> 31) >> 1));
2965 
2966 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
2967 			       hns3_buf_size2type(ring->buf_size));
2968 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2969 			       ring->desc_num / 8 - 1);
2970 	}
2971 }
2972 
2973 int hns3_init_all_ring(struct hns3_nic_priv *priv)
2974 {
2975 	struct hnae3_handle *h = priv->ae_handle;
2976 	int ring_num = h->kinfo.num_tqps * 2;
2977 	int i, j;
2978 	int ret;
2979 
2980 	for (i = 0; i < ring_num; i++) {
2981 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
2982 		if (ret) {
2983 			dev_err(priv->dev,
2984 				"Alloc ring memory fail! ret=%d\n", ret);
2985 			goto out_when_alloc_ring_memory;
2986 		}
2987 
2988 		u64_stats_init(&priv->ring_data[i].ring->syncp);
2989 	}
2990 
2991 	return 0;
2992 
2993 out_when_alloc_ring_memory:
2994 	for (j = i - 1; j >= 0; j--)
2995 		hns3_fini_ring(priv->ring_data[j].ring);
2996 
2997 	return -ENOMEM;
2998 }
2999 
3000 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3001 {
3002 	struct hnae3_handle *h = priv->ae_handle;
3003 	int i;
3004 
3005 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3006 		if (h->ae_algo->ops->reset_queue)
3007 			h->ae_algo->ops->reset_queue(h, i);
3008 
3009 		hns3_fini_ring(priv->ring_data[i].ring);
3010 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3011 	}
3012 	return 0;
3013 }
3014 
3015 /* Set mac addr if it is configured. or leave it to the AE driver */
3016 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
3017 {
3018 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3019 	struct hnae3_handle *h = priv->ae_handle;
3020 	u8 mac_addr_temp[ETH_ALEN];
3021 
3022 	if (h->ae_algo->ops->get_mac_addr && init) {
3023 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3024 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3025 	}
3026 
3027 	/* Check if the MAC address is valid, if not get a random one */
3028 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3029 		eth_hw_addr_random(netdev);
3030 		dev_warn(priv->dev, "using random MAC address %pM\n",
3031 			 netdev->dev_addr);
3032 	}
3033 
3034 	if (h->ae_algo->ops->set_mac_addr)
3035 		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3036 
3037 }
3038 
3039 static void hns3_uninit_mac_addr(struct net_device *netdev)
3040 {
3041 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3042 	struct hnae3_handle *h = priv->ae_handle;
3043 
3044 	if (h->ae_algo->ops->rm_uc_addr)
3045 		h->ae_algo->ops->rm_uc_addr(h, netdev->dev_addr);
3046 }
3047 
3048 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3049 {
3050 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3051 
3052 	if ((netdev->features & NETIF_F_TSO) ||
3053 	    (netdev->features & NETIF_F_TSO6)) {
3054 		priv->ops.fill_desc = hns3_fill_desc_tso;
3055 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3056 	} else {
3057 		priv->ops.fill_desc = hns3_fill_desc;
3058 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3059 	}
3060 }
3061 
3062 static int hns3_client_init(struct hnae3_handle *handle)
3063 {
3064 	struct pci_dev *pdev = handle->pdev;
3065 	struct hns3_nic_priv *priv;
3066 	struct net_device *netdev;
3067 	int ret;
3068 
3069 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3070 				   hns3_get_max_available_channels(handle));
3071 	if (!netdev)
3072 		return -ENOMEM;
3073 
3074 	priv = netdev_priv(netdev);
3075 	priv->dev = &pdev->dev;
3076 	priv->netdev = netdev;
3077 	priv->ae_handle = handle;
3078 	priv->ae_handle->reset_level = HNAE3_NONE_RESET;
3079 	priv->ae_handle->last_reset_time = jiffies;
3080 	priv->tx_timeout_count = 0;
3081 
3082 	handle->kinfo.netdev = netdev;
3083 	handle->priv = (void *)priv;
3084 
3085 	hns3_init_mac_addr(netdev, true);
3086 
3087 	hns3_set_default_feature(netdev);
3088 
3089 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3090 	netdev->priv_flags |= IFF_UNICAST_FLT;
3091 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3092 	SET_NETDEV_DEV(netdev, &pdev->dev);
3093 	hns3_ethtool_set_ops(netdev);
3094 	hns3_nic_set_priv_ops(netdev);
3095 
3096 	/* Carrier off reporting is important to ethtool even BEFORE open */
3097 	netif_carrier_off(netdev);
3098 
3099 	ret = hns3_get_ring_config(priv);
3100 	if (ret) {
3101 		ret = -ENOMEM;
3102 		goto out_get_ring_cfg;
3103 	}
3104 
3105 	ret = hns3_nic_alloc_vector_data(priv);
3106 	if (ret) {
3107 		ret = -ENOMEM;
3108 		goto out_alloc_vector_data;
3109 	}
3110 
3111 	ret = hns3_nic_init_vector_data(priv);
3112 	if (ret) {
3113 		ret = -ENOMEM;
3114 		goto out_init_vector_data;
3115 	}
3116 
3117 	ret = hns3_init_all_ring(priv);
3118 	if (ret) {
3119 		ret = -ENOMEM;
3120 		goto out_init_ring_data;
3121 	}
3122 
3123 	ret = register_netdev(netdev);
3124 	if (ret) {
3125 		dev_err(priv->dev, "probe register netdev fail!\n");
3126 		goto out_reg_netdev_fail;
3127 	}
3128 
3129 	hns3_dcbnl_setup(handle);
3130 
3131 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3132 	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3133 
3134 	return ret;
3135 
3136 out_reg_netdev_fail:
3137 out_init_ring_data:
3138 	(void)hns3_nic_uninit_vector_data(priv);
3139 out_init_vector_data:
3140 	hns3_nic_dealloc_vector_data(priv);
3141 out_alloc_vector_data:
3142 	priv->ring_data = NULL;
3143 out_get_ring_cfg:
3144 	priv->ae_handle = NULL;
3145 	free_netdev(netdev);
3146 	return ret;
3147 }
3148 
3149 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3150 {
3151 	struct net_device *netdev = handle->kinfo.netdev;
3152 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3153 	int ret;
3154 
3155 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3156 		unregister_netdev(netdev);
3157 
3158 	hns3_force_clear_all_rx_ring(handle);
3159 
3160 	ret = hns3_nic_uninit_vector_data(priv);
3161 	if (ret)
3162 		netdev_err(netdev, "uninit vector error\n");
3163 
3164 	ret = hns3_nic_dealloc_vector_data(priv);
3165 	if (ret)
3166 		netdev_err(netdev, "dealloc vector error\n");
3167 
3168 	ret = hns3_uninit_all_ring(priv);
3169 	if (ret)
3170 		netdev_err(netdev, "uninit ring error\n");
3171 
3172 	hns3_put_ring_config(priv);
3173 
3174 	priv->ring_data = NULL;
3175 
3176 	hns3_uninit_mac_addr(netdev);
3177 
3178 	free_netdev(netdev);
3179 }
3180 
3181 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3182 {
3183 	struct net_device *netdev = handle->kinfo.netdev;
3184 
3185 	if (!netdev)
3186 		return;
3187 
3188 	if (linkup) {
3189 		netif_carrier_on(netdev);
3190 		netif_tx_wake_all_queues(netdev);
3191 		netdev_info(netdev, "link up\n");
3192 	} else {
3193 		netif_carrier_off(netdev);
3194 		netif_tx_stop_all_queues(netdev);
3195 		netdev_info(netdev, "link down\n");
3196 	}
3197 }
3198 
3199 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3200 {
3201 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3202 	struct net_device *ndev = kinfo->netdev;
3203 	bool if_running;
3204 	int ret;
3205 	u8 i;
3206 
3207 	if (tc > HNAE3_MAX_TC)
3208 		return -EINVAL;
3209 
3210 	if (!ndev)
3211 		return -ENODEV;
3212 
3213 	if_running = netif_running(ndev);
3214 
3215 	ret = netdev_set_num_tc(ndev, tc);
3216 	if (ret)
3217 		return ret;
3218 
3219 	if (if_running) {
3220 		(void)hns3_nic_net_stop(ndev);
3221 		msleep(100);
3222 	}
3223 
3224 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3225 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3226 	if (ret)
3227 		goto err_out;
3228 
3229 	if (tc <= 1) {
3230 		netdev_reset_tc(ndev);
3231 		goto out;
3232 	}
3233 
3234 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3235 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3236 
3237 		if (tc_info->enable)
3238 			netdev_set_tc_queue(ndev,
3239 					    tc_info->tc,
3240 					    tc_info->tqp_count,
3241 					    tc_info->tqp_offset);
3242 	}
3243 
3244 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
3245 		netdev_set_prio_tc_map(ndev, i,
3246 				       kinfo->prio_tc[i]);
3247 	}
3248 
3249 out:
3250 	ret = hns3_nic_set_real_num_queue(ndev);
3251 
3252 err_out:
3253 	if (if_running)
3254 		(void)hns3_nic_net_open(ndev);
3255 
3256 	return ret;
3257 }
3258 
3259 static void hns3_recover_hw_addr(struct net_device *ndev)
3260 {
3261 	struct netdev_hw_addr_list *list;
3262 	struct netdev_hw_addr *ha, *tmp;
3263 
3264 	/* go through and sync uc_addr entries to the device */
3265 	list = &ndev->uc;
3266 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3267 		hns3_nic_uc_sync(ndev, ha->addr);
3268 
3269 	/* go through and sync mc_addr entries to the device */
3270 	list = &ndev->mc;
3271 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3272 		hns3_nic_mc_sync(ndev, ha->addr);
3273 }
3274 
3275 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3276 {
3277 	while (ring->next_to_clean != ring->next_to_use) {
3278 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3279 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3280 		ring_ptr_move_fw(ring, next_to_clean);
3281 	}
3282 }
3283 
3284 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3285 {
3286 	struct hns3_desc_cb res_cbs;
3287 	int ret;
3288 
3289 	while (ring->next_to_use != ring->next_to_clean) {
3290 		/* When a buffer is not reused, it's memory has been
3291 		 * freed in hns3_handle_rx_bd or will be freed by
3292 		 * stack, so we need to replace the buffer here.
3293 		 */
3294 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3295 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3296 			if (ret) {
3297 				u64_stats_update_begin(&ring->syncp);
3298 				ring->stats.sw_err_cnt++;
3299 				u64_stats_update_end(&ring->syncp);
3300 				/* if alloc new buffer fail, exit directly
3301 				 * and reclear in up flow.
3302 				 */
3303 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3304 					    "reserve buffer map failed, ret = %d\n",
3305 					    ret);
3306 				return ret;
3307 			}
3308 			hns3_replace_buffer(ring, ring->next_to_use,
3309 					    &res_cbs);
3310 		}
3311 		ring_ptr_move_fw(ring, next_to_use);
3312 	}
3313 
3314 	return 0;
3315 }
3316 
3317 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3318 {
3319 	while (ring->next_to_use != ring->next_to_clean) {
3320 		/* When a buffer is not reused, it's memory has been
3321 		 * freed in hns3_handle_rx_bd or will be freed by
3322 		 * stack, so only need to unmap the buffer here.
3323 		 */
3324 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3325 			hns3_unmap_buffer(ring,
3326 					  &ring->desc_cb[ring->next_to_use]);
3327 			ring->desc_cb[ring->next_to_use].dma = 0;
3328 		}
3329 
3330 		ring_ptr_move_fw(ring, next_to_use);
3331 	}
3332 }
3333 
3334 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3335 {
3336 	struct net_device *ndev = h->kinfo.netdev;
3337 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3338 	struct hns3_enet_ring *ring;
3339 	u32 i;
3340 
3341 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3342 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3343 		hns3_force_clear_rx_ring(ring);
3344 	}
3345 }
3346 
3347 static void hns3_clear_all_ring(struct hnae3_handle *h)
3348 {
3349 	struct net_device *ndev = h->kinfo.netdev;
3350 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3351 	u32 i;
3352 
3353 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3354 		struct netdev_queue *dev_queue;
3355 		struct hns3_enet_ring *ring;
3356 
3357 		ring = priv->ring_data[i].ring;
3358 		hns3_clear_tx_ring(ring);
3359 		dev_queue = netdev_get_tx_queue(ndev,
3360 						priv->ring_data[i].queue_index);
3361 		netdev_tx_reset_queue(dev_queue);
3362 
3363 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3364 		/* Continue to clear other rings even if clearing some
3365 		 * rings failed.
3366 		 */
3367 		hns3_clear_rx_ring(ring);
3368 	}
3369 }
3370 
3371 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3372 {
3373 	struct net_device *ndev = h->kinfo.netdev;
3374 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3375 	struct hns3_enet_ring *rx_ring;
3376 	int i, j;
3377 	int ret;
3378 
3379 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3380 		h->ae_algo->ops->reset_queue(h, i);
3381 		hns3_init_ring_hw(priv->ring_data[i].ring);
3382 
3383 		/* We need to clear tx ring here because self test will
3384 		 * use the ring and will not run down before up
3385 		 */
3386 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3387 		priv->ring_data[i].ring->next_to_clean = 0;
3388 		priv->ring_data[i].ring->next_to_use = 0;
3389 
3390 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3391 		hns3_init_ring_hw(rx_ring);
3392 		ret = hns3_clear_rx_ring(rx_ring);
3393 		if (ret)
3394 			return ret;
3395 
3396 		/* We can not know the hardware head and tail when this
3397 		 * function is called in reset flow, so we reuse all desc.
3398 		 */
3399 		for (j = 0; j < rx_ring->desc_num; j++)
3400 			hns3_reuse_buffer(rx_ring, j);
3401 
3402 		rx_ring->next_to_clean = 0;
3403 		rx_ring->next_to_use = 0;
3404 	}
3405 
3406 	return 0;
3407 }
3408 
3409 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3410 {
3411 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3412 	struct net_device *ndev = kinfo->netdev;
3413 
3414 	if (!netif_running(ndev))
3415 		return -EIO;
3416 
3417 	return hns3_nic_net_stop(ndev);
3418 }
3419 
3420 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3421 {
3422 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3423 	int ret = 0;
3424 
3425 	if (netif_running(kinfo->netdev)) {
3426 		ret = hns3_nic_net_up(kinfo->netdev);
3427 		if (ret) {
3428 			netdev_err(kinfo->netdev,
3429 				   "hns net up fail, ret=%d!\n", ret);
3430 			return ret;
3431 		}
3432 		handle->last_reset_time = jiffies;
3433 	}
3434 
3435 	return ret;
3436 }
3437 
3438 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3439 {
3440 	struct net_device *netdev = handle->kinfo.netdev;
3441 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3442 	int ret;
3443 
3444 	hns3_init_mac_addr(netdev, false);
3445 	hns3_nic_set_rx_mode(netdev);
3446 	hns3_recover_hw_addr(netdev);
3447 
3448 	/* Hardware table is only clear when pf resets */
3449 	if (!(handle->flags & HNAE3_SUPPORT_VF))
3450 		hns3_restore_vlan(netdev);
3451 
3452 	/* Carrier off reporting is important to ethtool even BEFORE open */
3453 	netif_carrier_off(netdev);
3454 
3455 	ret = hns3_get_ring_config(priv);
3456 	if (ret)
3457 		return ret;
3458 
3459 	ret = hns3_nic_init_vector_data(priv);
3460 	if (ret)
3461 		return ret;
3462 
3463 	ret = hns3_init_all_ring(priv);
3464 	if (ret) {
3465 		hns3_nic_uninit_vector_data(priv);
3466 		priv->ring_data = NULL;
3467 	}
3468 
3469 	return ret;
3470 }
3471 
3472 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3473 {
3474 	struct net_device *netdev = handle->kinfo.netdev;
3475 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3476 	int ret;
3477 
3478 	hns3_force_clear_all_rx_ring(handle);
3479 
3480 	ret = hns3_nic_uninit_vector_data(priv);
3481 	if (ret) {
3482 		netdev_err(netdev, "uninit vector error\n");
3483 		return ret;
3484 	}
3485 
3486 	ret = hns3_uninit_all_ring(priv);
3487 	if (ret)
3488 		netdev_err(netdev, "uninit ring error\n");
3489 
3490 	hns3_put_ring_config(priv);
3491 
3492 	priv->ring_data = NULL;
3493 
3494 	hns3_uninit_mac_addr(netdev);
3495 
3496 	return ret;
3497 }
3498 
3499 static int hns3_reset_notify(struct hnae3_handle *handle,
3500 			     enum hnae3_reset_notify_type type)
3501 {
3502 	int ret = 0;
3503 
3504 	switch (type) {
3505 	case HNAE3_UP_CLIENT:
3506 		ret = hns3_reset_notify_up_enet(handle);
3507 		break;
3508 	case HNAE3_DOWN_CLIENT:
3509 		ret = hns3_reset_notify_down_enet(handle);
3510 		break;
3511 	case HNAE3_INIT_CLIENT:
3512 		ret = hns3_reset_notify_init_enet(handle);
3513 		break;
3514 	case HNAE3_UNINIT_CLIENT:
3515 		ret = hns3_reset_notify_uninit_enet(handle);
3516 		break;
3517 	default:
3518 		break;
3519 	}
3520 
3521 	return ret;
3522 }
3523 
3524 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3525 			      struct hns3_enet_coalesce *tx,
3526 			      struct hns3_enet_coalesce *rx)
3527 {
3528 	u16 vector_num = priv->vector_num;
3529 	int i;
3530 
3531 	for (i = 0; i < vector_num; i++) {
3532 		memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3533 		       sizeof(struct hns3_enet_coalesce));
3534 		memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3535 		       sizeof(struct hns3_enet_coalesce));
3536 	}
3537 }
3538 
3539 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3540 			       struct hns3_enet_coalesce *tx,
3541 			       struct hns3_enet_coalesce *rx)
3542 {
3543 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3544 	struct hnae3_handle *h = hns3_get_handle(netdev);
3545 	int ret;
3546 
3547 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3548 	if (ret)
3549 		return ret;
3550 
3551 	ret = hns3_get_ring_config(priv);
3552 	if (ret)
3553 		return ret;
3554 
3555 	ret = hns3_nic_alloc_vector_data(priv);
3556 	if (ret)
3557 		goto err_alloc_vector;
3558 
3559 	hns3_restore_coal(priv, tx, rx);
3560 
3561 	ret = hns3_nic_init_vector_data(priv);
3562 	if (ret)
3563 		goto err_uninit_vector;
3564 
3565 	ret = hns3_init_all_ring(priv);
3566 	if (ret)
3567 		goto err_put_ring;
3568 
3569 	return 0;
3570 
3571 err_put_ring:
3572 	hns3_put_ring_config(priv);
3573 err_uninit_vector:
3574 	hns3_nic_uninit_vector_data(priv);
3575 err_alloc_vector:
3576 	hns3_nic_dealloc_vector_data(priv);
3577 	return ret;
3578 }
3579 
3580 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3581 {
3582 	return (new_tqp_num / num_tc) * num_tc;
3583 }
3584 
3585 int hns3_set_channels(struct net_device *netdev,
3586 		      struct ethtool_channels *ch)
3587 {
3588 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3589 	struct hnae3_handle *h = hns3_get_handle(netdev);
3590 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
3591 	struct hns3_enet_coalesce tx_coal, rx_coal;
3592 	bool if_running = netif_running(netdev);
3593 	u32 new_tqp_num = ch->combined_count;
3594 	u16 org_tqp_num;
3595 	int ret;
3596 
3597 	if (ch->rx_count || ch->tx_count)
3598 		return -EINVAL;
3599 
3600 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
3601 	    new_tqp_num < kinfo->num_tc) {
3602 		dev_err(&netdev->dev,
3603 			"Change tqps fail, the tqp range is from %d to %d",
3604 			kinfo->num_tc,
3605 			hns3_get_max_available_channels(h));
3606 		return -EINVAL;
3607 	}
3608 
3609 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3610 	if (kinfo->num_tqps == new_tqp_num)
3611 		return 0;
3612 
3613 	if (if_running)
3614 		hns3_nic_net_stop(netdev);
3615 
3616 	ret = hns3_nic_uninit_vector_data(priv);
3617 	if (ret) {
3618 		dev_err(&netdev->dev,
3619 			"Unbind vector with tqp fail, nothing is changed");
3620 		goto open_netdev;
3621 	}
3622 
3623 	/* Changing the tqp num may also change the vector num,
3624 	 * ethtool only support setting and querying one coal
3625 	 * configuation for now, so save the vector 0' coal
3626 	 * configuation here in order to restore it.
3627 	 */
3628 	memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3629 	       sizeof(struct hns3_enet_coalesce));
3630 	memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3631 	       sizeof(struct hns3_enet_coalesce));
3632 
3633 	hns3_nic_dealloc_vector_data(priv);
3634 
3635 	hns3_uninit_all_ring(priv);
3636 	hns3_put_ring_config(priv);
3637 
3638 	org_tqp_num = h->kinfo.num_tqps;
3639 	ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3640 	if (ret) {
3641 		ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3642 					  &tx_coal, &rx_coal);
3643 		if (ret) {
3644 			/* If revert to old tqp failed, fatal error occurred */
3645 			dev_err(&netdev->dev,
3646 				"Revert to old tqp num fail, ret=%d", ret);
3647 			return ret;
3648 		}
3649 		dev_info(&netdev->dev,
3650 			 "Change tqp num fail, Revert to old tqp num");
3651 	}
3652 
3653 open_netdev:
3654 	if (if_running)
3655 		hns3_nic_net_open(netdev);
3656 
3657 	return ret;
3658 }
3659 
3660 static const struct hnae3_client_ops client_ops = {
3661 	.init_instance = hns3_client_init,
3662 	.uninit_instance = hns3_client_uninit,
3663 	.link_status_change = hns3_link_status_change,
3664 	.setup_tc = hns3_client_setup_tc,
3665 	.reset_notify = hns3_reset_notify,
3666 };
3667 
3668 /* hns3_init_module - Driver registration routine
3669  * hns3_init_module is the first routine called when the driver is
3670  * loaded. All it does is register with the PCI subsystem.
3671  */
3672 static int __init hns3_init_module(void)
3673 {
3674 	int ret;
3675 
3676 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3677 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3678 
3679 	client.type = HNAE3_CLIENT_KNIC;
3680 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3681 		 hns3_driver_name);
3682 
3683 	client.ops = &client_ops;
3684 
3685 	INIT_LIST_HEAD(&client.node);
3686 
3687 	ret = hnae3_register_client(&client);
3688 	if (ret)
3689 		return ret;
3690 
3691 	ret = pci_register_driver(&hns3_driver);
3692 	if (ret)
3693 		hnae3_unregister_client(&client);
3694 
3695 	return ret;
3696 }
3697 module_init(hns3_init_module);
3698 
3699 /* hns3_exit_module - Driver exit cleanup routine
3700  * hns3_exit_module is called just before the driver is removed
3701  * from memory.
3702  */
3703 static void __exit hns3_exit_module(void)
3704 {
3705 	pci_unregister_driver(&hns3_driver);
3706 	hnae3_unregister_client(&client);
3707 }
3708 module_exit(hns3_exit_module);
3709 
3710 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3711 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3712 MODULE_LICENSE("GPL");
3713 MODULE_ALIAS("pci:hns-nic");
3714 MODULE_VERSION(HNS3_MOD_VERSION);
3715