1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 44 int size, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)size); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 struct skb_frag_struct *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc(ring, priv, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 int hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct hnae_ring *ring = ring_data->ring; 309 struct device *dev = ring_to_dev(ring); 310 struct netdev_queue *dev_queue; 311 struct skb_frag_struct *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 wmb(); /* commit all data before submit */ 365 assert(skb->queue_mapping < priv->ae_handle->q_num); 366 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 367 ring->stats.tx_pkts++; 368 ring->stats.tx_bytes += skb->len; 369 370 return NETDEV_TX_OK; 371 372 out_map_frag_fail: 373 374 while (ring->next_to_use != next_to_use) { 375 unfill_desc(ring); 376 if (ring->next_to_use != next_to_use) 377 dma_unmap_page(dev, 378 ring->desc_cb[ring->next_to_use].dma, 379 ring->desc_cb[ring->next_to_use].length, 380 DMA_TO_DEVICE); 381 else 382 dma_unmap_single(dev, 383 ring->desc_cb[next_to_use].dma, 384 ring->desc_cb[next_to_use].length, 385 DMA_TO_DEVICE); 386 } 387 388 out_err_tx_ok: 389 390 dev_kfree_skb_any(skb); 391 return NETDEV_TX_OK; 392 393 out_net_tx_busy: 394 395 netif_stop_subqueue(ndev, skb->queue_mapping); 396 397 /* Herbert's original patch had: 398 * smp_mb__after_netif_stop_queue(); 399 * but since that doesn't exist yet, just open code it. 400 */ 401 smp_mb(); 402 return NETDEV_TX_BUSY; 403 } 404 405 /** 406 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE 407 * @data: pointer to the start of the headers 408 * @max: total length of section to find headers in 409 * 410 * This function is meant to determine the length of headers that will 411 * be recognized by hardware for LRO, GRO, and RSC offloads. The main 412 * motivation of doing this is to only perform one pull for IPv4 TCP 413 * packets so that we can do basic things like calculating the gso_size 414 * based on the average data per packet. 415 **/ 416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag, 417 unsigned int max_size) 418 { 419 unsigned char *network; 420 u8 hlen; 421 422 /* this should never happen, but better safe than sorry */ 423 if (max_size < ETH_HLEN) 424 return max_size; 425 426 /* initialize network frame pointer */ 427 network = data; 428 429 /* set first protocol and move network header forward */ 430 network += ETH_HLEN; 431 432 /* handle any vlan tag if present */ 433 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S) 434 == HNS_RX_FLAG_VLAN_PRESENT) { 435 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN)) 436 return max_size; 437 438 network += VLAN_HLEN; 439 } 440 441 /* handle L3 protocols */ 442 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 443 == HNS_RX_FLAG_L3ID_IPV4) { 444 if ((typeof(max_size))(network - data) > 445 (max_size - sizeof(struct iphdr))) 446 return max_size; 447 448 /* access ihl as a u8 to avoid unaligned access on ia64 */ 449 hlen = (network[0] & 0x0F) << 2; 450 451 /* verify hlen meets minimum size requirements */ 452 if (hlen < sizeof(struct iphdr)) 453 return network - data; 454 455 /* record next protocol if header is present */ 456 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 457 == HNS_RX_FLAG_L3ID_IPV6) { 458 if ((typeof(max_size))(network - data) > 459 (max_size - sizeof(struct ipv6hdr))) 460 return max_size; 461 462 /* record next protocol */ 463 hlen = sizeof(struct ipv6hdr); 464 } else { 465 return network - data; 466 } 467 468 /* relocate pointer to start of L4 header */ 469 network += hlen; 470 471 /* finally sort out TCP/UDP */ 472 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 473 == HNS_RX_FLAG_L4ID_TCP) { 474 if ((typeof(max_size))(network - data) > 475 (max_size - sizeof(struct tcphdr))) 476 return max_size; 477 478 /* access doff as a u8 to avoid unaligned access on ia64 */ 479 hlen = (network[12] & 0xF0) >> 2; 480 481 /* verify hlen meets minimum size requirements */ 482 if (hlen < sizeof(struct tcphdr)) 483 return network - data; 484 485 network += hlen; 486 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 487 == HNS_RX_FLAG_L4ID_UDP) { 488 if ((typeof(max_size))(network - data) > 489 (max_size - sizeof(struct udphdr))) 490 return max_size; 491 492 network += sizeof(struct udphdr); 493 } 494 495 /* If everything has gone correctly network should be the 496 * data section of the packet and will be the end of the header. 497 * If not then it probably represents the end of the last recognized 498 * header. 499 */ 500 if ((typeof(max_size))(network - data) < max_size) 501 return network - data; 502 else 503 return max_size; 504 } 505 506 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 507 struct hnae_ring *ring, int pull_len, 508 struct hnae_desc_cb *desc_cb) 509 { 510 struct hnae_desc *desc; 511 int truesize, size; 512 int last_offset; 513 bool twobufs; 514 515 twobufs = ((PAGE_SIZE < 8192) && 516 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 517 518 desc = &ring->desc[ring->next_to_clean]; 519 size = le16_to_cpu(desc->rx.size); 520 521 if (twobufs) { 522 truesize = hnae_buf_size(ring); 523 } else { 524 truesize = ALIGN(size, L1_CACHE_BYTES); 525 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 526 } 527 528 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 529 size - pull_len, truesize - pull_len); 530 531 /* avoid re-using remote pages,flag default unreuse */ 532 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 533 return; 534 535 if (twobufs) { 536 /* if we are only owner of page we can reuse it */ 537 if (likely(page_count(desc_cb->priv) == 1)) { 538 /* flip page offset to other buffer */ 539 desc_cb->page_offset ^= truesize; 540 541 desc_cb->reuse_flag = 1; 542 /* bump ref count on page before it is given*/ 543 get_page(desc_cb->priv); 544 } 545 return; 546 } 547 548 /* move offset up to the next cache line */ 549 desc_cb->page_offset += truesize; 550 551 if (desc_cb->page_offset <= last_offset) { 552 desc_cb->reuse_flag = 1; 553 /* bump ref count on page before it is given*/ 554 get_page(desc_cb->priv); 555 } 556 } 557 558 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 559 { 560 *out_bnum = hnae_get_field(bnum_flag, 561 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 562 } 563 564 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 565 { 566 *out_bnum = hnae_get_field(bnum_flag, 567 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 568 } 569 570 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 571 struct sk_buff *skb, u32 flag) 572 { 573 struct net_device *netdev = ring_data->napi.dev; 574 u32 l3id; 575 u32 l4id; 576 577 /* check if RX checksum offload is enabled */ 578 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 579 return; 580 581 /* In hardware, we only support checksum for the following protocols: 582 * 1) IPv4, 583 * 2) TCP(over IPv4 or IPv6), 584 * 3) UDP(over IPv4 or IPv6), 585 * 4) SCTP(over IPv4 or IPv6) 586 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 587 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 588 * 589 * Hardware limitation: 590 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 591 * Error" bit (which usually can be used to indicate whether checksum 592 * was calculated by the hardware and if there was any error encountered 593 * during checksum calculation). 594 * 595 * Software workaround: 596 * We do get info within the RX descriptor about the kind of L3/L4 597 * protocol coming in the packet and the error status. These errors 598 * might not just be checksum errors but could be related to version, 599 * length of IPv4, UDP, TCP etc. 600 * Because there is no-way of knowing if it is a L3/L4 error due to bad 601 * checksum or any other L3/L4 error, we will not (cannot) convey 602 * checksum status for such cases to upper stack and will not maintain 603 * the RX L3/L4 checksum counters as well. 604 */ 605 606 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 607 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 608 609 /* check L3 protocol for which checksum is supported */ 610 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 611 return; 612 613 /* check for any(not just checksum)flagged L3 protocol errors */ 614 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 615 return; 616 617 /* we do not support checksum of fragmented packets */ 618 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 619 return; 620 621 /* check L4 protocol for which checksum is supported */ 622 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 623 (l4id != HNS_RX_FLAG_L4ID_UDP) && 624 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 625 return; 626 627 /* check for any(not just checksum)flagged L4 protocol errors */ 628 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 629 return; 630 631 /* now, this has to be a packet with valid RX checksum */ 632 skb->ip_summed = CHECKSUM_UNNECESSARY; 633 } 634 635 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 636 struct sk_buff **out_skb, int *out_bnum) 637 { 638 struct hnae_ring *ring = ring_data->ring; 639 struct net_device *ndev = ring_data->napi.dev; 640 struct hns_nic_priv *priv = netdev_priv(ndev); 641 struct sk_buff *skb; 642 struct hnae_desc *desc; 643 struct hnae_desc_cb *desc_cb; 644 unsigned char *va; 645 int bnum, length, i; 646 int pull_len; 647 u32 bnum_flag; 648 649 desc = &ring->desc[ring->next_to_clean]; 650 desc_cb = &ring->desc_cb[ring->next_to_clean]; 651 652 prefetch(desc); 653 654 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 655 656 /* prefetch first cache line of first page */ 657 prefetch(va); 658 #if L1_CACHE_BYTES < 128 659 prefetch(va + L1_CACHE_BYTES); 660 #endif 661 662 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 663 HNS_RX_HEAD_SIZE); 664 if (unlikely(!skb)) { 665 netdev_err(ndev, "alloc rx skb fail\n"); 666 ring->stats.sw_err_cnt++; 667 return -ENOMEM; 668 } 669 670 prefetchw(skb->data); 671 length = le16_to_cpu(desc->rx.pkt_len); 672 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 673 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 674 *out_bnum = bnum; 675 676 if (length <= HNS_RX_HEAD_SIZE) { 677 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 678 679 /* we can reuse buffer as-is, just make sure it is local */ 680 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 681 desc_cb->reuse_flag = 1; 682 else /* this page cannot be reused so discard it */ 683 put_page(desc_cb->priv); 684 685 ring_ptr_move_fw(ring, next_to_clean); 686 687 if (unlikely(bnum != 1)) { /* check err*/ 688 *out_bnum = 1; 689 goto out_bnum_err; 690 } 691 } else { 692 ring->stats.seg_pkt_cnt++; 693 694 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE); 695 memcpy(__skb_put(skb, pull_len), va, 696 ALIGN(pull_len, sizeof(long))); 697 698 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 699 ring_ptr_move_fw(ring, next_to_clean); 700 701 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 702 *out_bnum = 1; 703 goto out_bnum_err; 704 } 705 for (i = 1; i < bnum; i++) { 706 desc = &ring->desc[ring->next_to_clean]; 707 desc_cb = &ring->desc_cb[ring->next_to_clean]; 708 709 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 710 ring_ptr_move_fw(ring, next_to_clean); 711 } 712 } 713 714 /* check except process, free skb and jump the desc */ 715 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 716 out_bnum_err: 717 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 718 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 719 bnum, ring->max_desc_num_per_pkt, 720 length, (int)MAX_SKB_FRAGS, 721 ((u64 *)desc)[0], ((u64 *)desc)[1]); 722 ring->stats.err_bd_num++; 723 dev_kfree_skb_any(skb); 724 return -EDOM; 725 } 726 727 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 728 729 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 730 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 731 ((u64 *)desc)[0], ((u64 *)desc)[1]); 732 ring->stats.non_vld_descs++; 733 dev_kfree_skb_any(skb); 734 return -EINVAL; 735 } 736 737 if (unlikely((!desc->rx.pkt_len) || 738 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 739 ring->stats.err_pkt_len++; 740 dev_kfree_skb_any(skb); 741 return -EFAULT; 742 } 743 744 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 745 ring->stats.l2_err++; 746 dev_kfree_skb_any(skb); 747 return -EFAULT; 748 } 749 750 ring->stats.rx_pkts++; 751 ring->stats.rx_bytes += skb->len; 752 753 /* indicate to upper stack if our hardware has already calculated 754 * the RX checksum 755 */ 756 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 757 758 return 0; 759 } 760 761 static void 762 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 763 { 764 int i, ret; 765 struct hnae_desc_cb res_cbs; 766 struct hnae_desc_cb *desc_cb; 767 struct hnae_ring *ring = ring_data->ring; 768 struct net_device *ndev = ring_data->napi.dev; 769 770 for (i = 0; i < cleand_count; i++) { 771 desc_cb = &ring->desc_cb[ring->next_to_use]; 772 if (desc_cb->reuse_flag) { 773 ring->stats.reuse_pg_cnt++; 774 hnae_reuse_buffer(ring, ring->next_to_use); 775 } else { 776 ret = hnae_reserve_buffer_map(ring, &res_cbs); 777 if (ret) { 778 ring->stats.sw_err_cnt++; 779 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 780 break; 781 } 782 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 783 } 784 785 ring_ptr_move_fw(ring, next_to_use); 786 } 787 788 wmb(); /* make all data has been write before submit */ 789 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 790 } 791 792 /* return error number for error or number of desc left to take 793 */ 794 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 795 struct sk_buff *skb) 796 { 797 struct net_device *ndev = ring_data->napi.dev; 798 799 skb->protocol = eth_type_trans(skb, ndev); 800 (void)napi_gro_receive(&ring_data->napi, skb); 801 } 802 803 static int hns_desc_unused(struct hnae_ring *ring) 804 { 805 int ntc = ring->next_to_clean; 806 int ntu = ring->next_to_use; 807 808 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 809 } 810 811 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 812 int budget, void *v) 813 { 814 struct hnae_ring *ring = ring_data->ring; 815 struct sk_buff *skb; 816 int num, bnum; 817 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 818 int recv_pkts, recv_bds, clean_count, err; 819 int unused_count = hns_desc_unused(ring); 820 821 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 822 rmb(); /* make sure num taken effect before the other data is touched */ 823 824 recv_pkts = 0, recv_bds = 0, clean_count = 0; 825 num -= unused_count; 826 827 while (recv_pkts < budget && recv_bds < num) { 828 /* reuse or realloc buffers */ 829 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 830 hns_nic_alloc_rx_buffers(ring_data, 831 clean_count + unused_count); 832 clean_count = 0; 833 unused_count = hns_desc_unused(ring); 834 } 835 836 /* poll one pkt */ 837 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 838 if (unlikely(!skb)) /* this fault cannot be repaired */ 839 goto out; 840 841 recv_bds += bnum; 842 clean_count += bnum; 843 if (unlikely(err)) { /* do jump the err */ 844 recv_pkts++; 845 continue; 846 } 847 848 /* do update ip stack process*/ 849 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 850 ring_data, skb); 851 recv_pkts++; 852 } 853 854 out: 855 /* make all data has been write before submit */ 856 if (clean_count + unused_count > 0) 857 hns_nic_alloc_rx_buffers(ring_data, 858 clean_count + unused_count); 859 860 return recv_pkts; 861 } 862 863 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 864 { 865 struct hnae_ring *ring = ring_data->ring; 866 int num = 0; 867 868 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 869 870 /* for hardware bug fixed */ 871 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 872 873 if (num > 0) { 874 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 875 ring_data->ring, 1); 876 877 return false; 878 } else { 879 return true; 880 } 881 } 882 883 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 884 { 885 struct hnae_ring *ring = ring_data->ring; 886 int num; 887 888 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 889 890 if (!num) 891 return true; 892 else 893 return false; 894 } 895 896 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 897 int *bytes, int *pkts) 898 { 899 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 900 901 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 902 (*bytes) += desc_cb->length; 903 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 904 hnae_free_buffer_detach(ring, ring->next_to_clean); 905 906 ring_ptr_move_fw(ring, next_to_clean); 907 } 908 909 static int is_valid_clean_head(struct hnae_ring *ring, int h) 910 { 911 int u = ring->next_to_use; 912 int c = ring->next_to_clean; 913 914 if (unlikely(h > ring->desc_num)) 915 return 0; 916 917 assert(u > 0 && u < ring->desc_num); 918 assert(c > 0 && c < ring->desc_num); 919 assert(u != c && h != c); /* must be checked before call this func */ 920 921 return u > c ? (h > c && h <= u) : (h > c || h <= u); 922 } 923 924 /* netif_tx_lock will turn down the performance, set only when necessary */ 925 #ifdef CONFIG_NET_POLL_CONTROLLER 926 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 927 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 928 #else 929 #define NETIF_TX_LOCK(ring) 930 #define NETIF_TX_UNLOCK(ring) 931 #endif 932 933 /* reclaim all desc in one budget 934 * return error or number of desc left 935 */ 936 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 937 int budget, void *v) 938 { 939 struct hnae_ring *ring = ring_data->ring; 940 struct net_device *ndev = ring_data->napi.dev; 941 struct netdev_queue *dev_queue; 942 struct hns_nic_priv *priv = netdev_priv(ndev); 943 int head; 944 int bytes, pkts; 945 946 NETIF_TX_LOCK(ring); 947 948 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 949 rmb(); /* make sure head is ready before touch any data */ 950 951 if (is_ring_empty(ring) || head == ring->next_to_clean) { 952 NETIF_TX_UNLOCK(ring); 953 return 0; /* no data to poll */ 954 } 955 956 if (!is_valid_clean_head(ring, head)) { 957 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 958 ring->next_to_use, ring->next_to_clean); 959 ring->stats.io_err_cnt++; 960 NETIF_TX_UNLOCK(ring); 961 return -EIO; 962 } 963 964 bytes = 0; 965 pkts = 0; 966 while (head != ring->next_to_clean) { 967 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 968 /* issue prefetch for next Tx descriptor */ 969 prefetch(&ring->desc_cb[ring->next_to_clean]); 970 } 971 972 NETIF_TX_UNLOCK(ring); 973 974 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 975 netdev_tx_completed_queue(dev_queue, pkts, bytes); 976 977 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 978 netif_carrier_on(ndev); 979 980 if (unlikely(pkts && netif_carrier_ok(ndev) && 981 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 982 /* Make sure that anybody stopping the queue after this 983 * sees the new next_to_clean. 984 */ 985 smp_mb(); 986 if (netif_tx_queue_stopped(dev_queue) && 987 !test_bit(NIC_STATE_DOWN, &priv->state)) { 988 netif_tx_wake_queue(dev_queue); 989 ring->stats.restart_queue++; 990 } 991 } 992 return 0; 993 } 994 995 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 996 { 997 struct hnae_ring *ring = ring_data->ring; 998 int head; 999 1000 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1001 1002 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1003 1004 if (head != ring->next_to_clean) { 1005 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1006 ring_data->ring, 1); 1007 1008 return false; 1009 } else { 1010 return true; 1011 } 1012 } 1013 1014 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1015 { 1016 struct hnae_ring *ring = ring_data->ring; 1017 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1018 1019 if (head == ring->next_to_clean) 1020 return true; 1021 else 1022 return false; 1023 } 1024 1025 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1026 { 1027 struct hnae_ring *ring = ring_data->ring; 1028 struct net_device *ndev = ring_data->napi.dev; 1029 struct netdev_queue *dev_queue; 1030 int head; 1031 int bytes, pkts; 1032 1033 NETIF_TX_LOCK(ring); 1034 1035 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1036 bytes = 0; 1037 pkts = 0; 1038 while (head != ring->next_to_clean) 1039 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1040 1041 NETIF_TX_UNLOCK(ring); 1042 1043 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1044 netdev_tx_reset_queue(dev_queue); 1045 } 1046 1047 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1048 { 1049 int clean_complete = 0; 1050 struct hns_nic_ring_data *ring_data = 1051 container_of(napi, struct hns_nic_ring_data, napi); 1052 struct hnae_ring *ring = ring_data->ring; 1053 1054 try_again: 1055 clean_complete += ring_data->poll_one( 1056 ring_data, budget - clean_complete, 1057 ring_data->ex_process); 1058 1059 if (clean_complete < budget) { 1060 if (ring_data->fini_process(ring_data)) { 1061 napi_complete(napi); 1062 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1063 } else { 1064 goto try_again; 1065 } 1066 } 1067 1068 return clean_complete; 1069 } 1070 1071 static irqreturn_t hns_irq_handle(int irq, void *dev) 1072 { 1073 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1074 1075 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1076 ring_data->ring, 1); 1077 napi_schedule(&ring_data->napi); 1078 1079 return IRQ_HANDLED; 1080 } 1081 1082 /** 1083 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1084 *@ndev: net device 1085 */ 1086 static void hns_nic_adjust_link(struct net_device *ndev) 1087 { 1088 struct hns_nic_priv *priv = netdev_priv(ndev); 1089 struct hnae_handle *h = priv->ae_handle; 1090 int state = 1; 1091 1092 if (ndev->phydev) { 1093 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1094 ndev->phydev->duplex); 1095 state = ndev->phydev->link; 1096 } 1097 state = state && h->dev->ops->get_status(h); 1098 1099 if (state != priv->link) { 1100 if (state) { 1101 netif_carrier_on(ndev); 1102 netif_tx_wake_all_queues(ndev); 1103 netdev_info(ndev, "link up\n"); 1104 } else { 1105 netif_carrier_off(ndev); 1106 netdev_info(ndev, "link down\n"); 1107 } 1108 priv->link = state; 1109 } 1110 } 1111 1112 /** 1113 *hns_nic_init_phy - init phy 1114 *@ndev: net device 1115 *@h: ae handle 1116 * Return 0 on success, negative on failure 1117 */ 1118 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1119 { 1120 struct phy_device *phy_dev = h->phy_dev; 1121 int ret; 1122 1123 if (!h->phy_dev) 1124 return 0; 1125 1126 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1127 phy_dev->dev_flags = 0; 1128 1129 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1130 h->phy_if); 1131 } else { 1132 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1133 } 1134 if (unlikely(ret)) 1135 return -ENODEV; 1136 1137 phy_dev->supported &= h->if_support; 1138 phy_dev->advertising = phy_dev->supported; 1139 1140 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1141 phy_dev->autoneg = false; 1142 1143 return 0; 1144 } 1145 1146 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1147 { 1148 struct hns_nic_priv *priv = netdev_priv(netdev); 1149 struct hnae_handle *h = priv->ae_handle; 1150 1151 napi_enable(&priv->ring_data[idx].napi); 1152 1153 enable_irq(priv->ring_data[idx].ring->irq); 1154 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1155 1156 return 0; 1157 } 1158 1159 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1160 { 1161 struct hns_nic_priv *priv = netdev_priv(ndev); 1162 struct hnae_handle *h = priv->ae_handle; 1163 struct sockaddr *mac_addr = p; 1164 int ret; 1165 1166 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1167 return -EADDRNOTAVAIL; 1168 1169 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1170 if (ret) { 1171 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1172 return ret; 1173 } 1174 1175 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1176 1177 return 0; 1178 } 1179 1180 void hns_nic_update_stats(struct net_device *netdev) 1181 { 1182 struct hns_nic_priv *priv = netdev_priv(netdev); 1183 struct hnae_handle *h = priv->ae_handle; 1184 1185 h->dev->ops->update_stats(h, &netdev->stats); 1186 } 1187 1188 /* set mac addr if it is configed. or leave it to the AE driver */ 1189 static void hns_init_mac_addr(struct net_device *ndev) 1190 { 1191 struct hns_nic_priv *priv = netdev_priv(ndev); 1192 1193 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1194 eth_hw_addr_random(ndev); 1195 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1196 ndev->dev_addr); 1197 } 1198 } 1199 1200 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1201 { 1202 struct hns_nic_priv *priv = netdev_priv(netdev); 1203 struct hnae_handle *h = priv->ae_handle; 1204 1205 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1206 disable_irq(priv->ring_data[idx].ring->irq); 1207 1208 napi_disable(&priv->ring_data[idx].napi); 1209 } 1210 1211 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1212 struct hnae_ring *ring, cpumask_t *mask) 1213 { 1214 int cpu; 1215 1216 /* Diffrent irq banlance between 16core and 32core. 1217 * The cpu mask set by ring index according to the ring flag 1218 * which indicate the ring is tx or rx. 1219 */ 1220 if (q_num == num_possible_cpus()) { 1221 if (is_tx_ring(ring)) 1222 cpu = ring_idx; 1223 else 1224 cpu = ring_idx - q_num; 1225 } else { 1226 if (is_tx_ring(ring)) 1227 cpu = ring_idx * 2; 1228 else 1229 cpu = (ring_idx - q_num) * 2 + 1; 1230 } 1231 1232 cpumask_clear(mask); 1233 cpumask_set_cpu(cpu, mask); 1234 1235 return cpu; 1236 } 1237 1238 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1239 { 1240 struct hnae_handle *h = priv->ae_handle; 1241 struct hns_nic_ring_data *rd; 1242 int i; 1243 int ret; 1244 int cpu; 1245 1246 for (i = 0; i < h->q_num * 2; i++) { 1247 rd = &priv->ring_data[i]; 1248 1249 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1250 break; 1251 1252 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1253 "%s-%s%d", priv->netdev->name, 1254 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1255 1256 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1257 1258 ret = request_irq(rd->ring->irq, 1259 hns_irq_handle, 0, rd->ring->ring_name, rd); 1260 if (ret) { 1261 netdev_err(priv->netdev, "request irq(%d) fail\n", 1262 rd->ring->irq); 1263 return ret; 1264 } 1265 disable_irq(rd->ring->irq); 1266 1267 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1268 rd->ring, &rd->mask); 1269 1270 if (cpu_online(cpu)) 1271 irq_set_affinity_hint(rd->ring->irq, 1272 &rd->mask); 1273 1274 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int hns_nic_net_up(struct net_device *ndev) 1281 { 1282 struct hns_nic_priv *priv = netdev_priv(ndev); 1283 struct hnae_handle *h = priv->ae_handle; 1284 int i, j; 1285 int ret; 1286 1287 ret = hns_nic_init_irq(priv); 1288 if (ret != 0) { 1289 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1290 return ret; 1291 } 1292 1293 for (i = 0; i < h->q_num * 2; i++) { 1294 ret = hns_nic_ring_open(ndev, i); 1295 if (ret) 1296 goto out_has_some_queues; 1297 } 1298 1299 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1300 if (ret) 1301 goto out_set_mac_addr_err; 1302 1303 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1304 if (ret) 1305 goto out_start_err; 1306 1307 if (ndev->phydev) 1308 phy_start(ndev->phydev); 1309 1310 clear_bit(NIC_STATE_DOWN, &priv->state); 1311 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1312 1313 return 0; 1314 1315 out_start_err: 1316 netif_stop_queue(ndev); 1317 out_set_mac_addr_err: 1318 out_has_some_queues: 1319 for (j = i - 1; j >= 0; j--) 1320 hns_nic_ring_close(ndev, j); 1321 1322 set_bit(NIC_STATE_DOWN, &priv->state); 1323 1324 return ret; 1325 } 1326 1327 static void hns_nic_net_down(struct net_device *ndev) 1328 { 1329 int i; 1330 struct hnae_ae_ops *ops; 1331 struct hns_nic_priv *priv = netdev_priv(ndev); 1332 1333 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1334 return; 1335 1336 (void)del_timer_sync(&priv->service_timer); 1337 netif_tx_stop_all_queues(ndev); 1338 netif_carrier_off(ndev); 1339 netif_tx_disable(ndev); 1340 priv->link = 0; 1341 1342 if (ndev->phydev) 1343 phy_stop(ndev->phydev); 1344 1345 ops = priv->ae_handle->dev->ops; 1346 1347 if (ops->stop) 1348 ops->stop(priv->ae_handle); 1349 1350 netif_tx_stop_all_queues(ndev); 1351 1352 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1353 hns_nic_ring_close(ndev, i); 1354 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1355 1356 /* clean tx buffers*/ 1357 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1358 } 1359 } 1360 1361 void hns_nic_net_reset(struct net_device *ndev) 1362 { 1363 struct hns_nic_priv *priv = netdev_priv(ndev); 1364 struct hnae_handle *handle = priv->ae_handle; 1365 1366 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1367 usleep_range(1000, 2000); 1368 1369 (void)hnae_reinit_handle(handle); 1370 1371 clear_bit(NIC_STATE_RESETTING, &priv->state); 1372 } 1373 1374 void hns_nic_net_reinit(struct net_device *netdev) 1375 { 1376 struct hns_nic_priv *priv = netdev_priv(netdev); 1377 1378 netif_trans_update(priv->netdev); 1379 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1380 usleep_range(1000, 2000); 1381 1382 hns_nic_net_down(netdev); 1383 hns_nic_net_reset(netdev); 1384 (void)hns_nic_net_up(netdev); 1385 clear_bit(NIC_STATE_REINITING, &priv->state); 1386 } 1387 1388 static int hns_nic_net_open(struct net_device *ndev) 1389 { 1390 struct hns_nic_priv *priv = netdev_priv(ndev); 1391 struct hnae_handle *h = priv->ae_handle; 1392 int ret; 1393 1394 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1395 return -EBUSY; 1396 1397 priv->link = 0; 1398 netif_carrier_off(ndev); 1399 1400 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1401 if (ret < 0) { 1402 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1403 ret); 1404 return ret; 1405 } 1406 1407 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1408 if (ret < 0) { 1409 netdev_err(ndev, 1410 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1411 return ret; 1412 } 1413 1414 ret = hns_nic_net_up(ndev); 1415 if (ret) { 1416 netdev_err(ndev, 1417 "hns net up fail, ret=%d!\n", ret); 1418 return ret; 1419 } 1420 1421 return 0; 1422 } 1423 1424 static int hns_nic_net_stop(struct net_device *ndev) 1425 { 1426 hns_nic_net_down(ndev); 1427 1428 return 0; 1429 } 1430 1431 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1432 static void hns_nic_net_timeout(struct net_device *ndev) 1433 { 1434 struct hns_nic_priv *priv = netdev_priv(ndev); 1435 1436 hns_tx_timeout_reset(priv); 1437 } 1438 1439 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1440 int cmd) 1441 { 1442 struct phy_device *phy_dev = netdev->phydev; 1443 1444 if (!netif_running(netdev)) 1445 return -EINVAL; 1446 1447 if (!phy_dev) 1448 return -ENOTSUPP; 1449 1450 return phy_mii_ioctl(phy_dev, ifr, cmd); 1451 } 1452 1453 /* use only for netconsole to poll with the device without interrupt */ 1454 #ifdef CONFIG_NET_POLL_CONTROLLER 1455 void hns_nic_poll_controller(struct net_device *ndev) 1456 { 1457 struct hns_nic_priv *priv = netdev_priv(ndev); 1458 unsigned long flags; 1459 int i; 1460 1461 local_irq_save(flags); 1462 for (i = 0; i < priv->ae_handle->q_num * 2; i++) 1463 napi_schedule(&priv->ring_data[i].napi); 1464 local_irq_restore(flags); 1465 } 1466 #endif 1467 1468 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1469 struct net_device *ndev) 1470 { 1471 struct hns_nic_priv *priv = netdev_priv(ndev); 1472 int ret; 1473 1474 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1475 ret = hns_nic_net_xmit_hw(ndev, skb, 1476 &tx_ring_data(priv, skb->queue_mapping)); 1477 if (ret == NETDEV_TX_OK) { 1478 netif_trans_update(ndev); 1479 ndev->stats.tx_bytes += skb->len; 1480 ndev->stats.tx_packets++; 1481 } 1482 return (netdev_tx_t)ret; 1483 } 1484 1485 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1486 struct sk_buff *skb) 1487 { 1488 dev_kfree_skb_any(skb); 1489 } 1490 1491 #define HNS_LB_TX_RING 0 1492 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1493 { 1494 struct sk_buff *skb; 1495 struct ethhdr *ethhdr; 1496 int frame_len; 1497 1498 /* allocate test skb */ 1499 skb = alloc_skb(64, GFP_KERNEL); 1500 if (!skb) 1501 return NULL; 1502 1503 skb_put(skb, 64); 1504 skb->dev = ndev; 1505 memset(skb->data, 0xFF, skb->len); 1506 1507 /* must be tcp/ip package */ 1508 ethhdr = (struct ethhdr *)skb->data; 1509 ethhdr->h_proto = htons(ETH_P_IP); 1510 1511 frame_len = skb->len & (~1ul); 1512 memset(&skb->data[frame_len / 2], 0xAA, 1513 frame_len / 2 - 1); 1514 1515 skb->queue_mapping = HNS_LB_TX_RING; 1516 1517 return skb; 1518 } 1519 1520 static int hns_enable_serdes_lb(struct net_device *ndev) 1521 { 1522 struct hns_nic_priv *priv = netdev_priv(ndev); 1523 struct hnae_handle *h = priv->ae_handle; 1524 struct hnae_ae_ops *ops = h->dev->ops; 1525 int speed, duplex; 1526 int ret; 1527 1528 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1529 if (ret) 1530 return ret; 1531 1532 ret = ops->start ? ops->start(h) : 0; 1533 if (ret) 1534 return ret; 1535 1536 /* link adjust duplex*/ 1537 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1538 speed = 1000; 1539 else 1540 speed = 10000; 1541 duplex = 1; 1542 1543 ops->adjust_link(h, speed, duplex); 1544 1545 /* wait h/w ready */ 1546 mdelay(300); 1547 1548 return 0; 1549 } 1550 1551 static void hns_disable_serdes_lb(struct net_device *ndev) 1552 { 1553 struct hns_nic_priv *priv = netdev_priv(ndev); 1554 struct hnae_handle *h = priv->ae_handle; 1555 struct hnae_ae_ops *ops = h->dev->ops; 1556 1557 ops->stop(h); 1558 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1559 } 1560 1561 /** 1562 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1563 *function as follows: 1564 * 1. if one rx ring has found the page_offset is not equal 0 between head 1565 * and tail, it means that the chip fetched the wrong descs for the ring 1566 * which buffer size is 4096. 1567 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1568 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1569 * recieving all packages and it will fetch new descriptions. 1570 * 4. recover to the original state. 1571 * 1572 *@ndev: net device 1573 */ 1574 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1575 { 1576 struct hns_nic_priv *priv = netdev_priv(ndev); 1577 struct hnae_handle *h = priv->ae_handle; 1578 struct hnae_ae_ops *ops = h->dev->ops; 1579 struct hns_nic_ring_data *rd; 1580 struct hnae_ring *ring; 1581 struct sk_buff *skb; 1582 u32 *org_indir; 1583 u32 *cur_indir; 1584 int indir_size; 1585 int head, tail; 1586 int fetch_num; 1587 int i, j; 1588 bool found; 1589 int retry_times; 1590 int ret = 0; 1591 1592 /* alloc indir memory */ 1593 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1594 org_indir = kzalloc(indir_size, GFP_KERNEL); 1595 if (!org_indir) 1596 return -ENOMEM; 1597 1598 /* store the orginal indirection */ 1599 ops->get_rss(h, org_indir, NULL, NULL); 1600 1601 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1602 if (!cur_indir) { 1603 ret = -ENOMEM; 1604 goto cur_indir_alloc_err; 1605 } 1606 1607 /* set loopback */ 1608 if (hns_enable_serdes_lb(ndev)) { 1609 ret = -EINVAL; 1610 goto enable_serdes_lb_err; 1611 } 1612 1613 /* foreach every rx ring to clear fetch desc */ 1614 for (i = 0; i < h->q_num; i++) { 1615 ring = &h->qs[i]->rx_ring; 1616 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1617 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1618 found = false; 1619 fetch_num = ring_dist(ring, head, tail); 1620 1621 while (head != tail) { 1622 if (ring->desc_cb[head].page_offset != 0) { 1623 found = true; 1624 break; 1625 } 1626 1627 head++; 1628 if (head == ring->desc_num) 1629 head = 0; 1630 } 1631 1632 if (found) { 1633 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1634 cur_indir[j] = i; 1635 ops->set_rss(h, cur_indir, NULL, 0); 1636 1637 for (j = 0; j < fetch_num; j++) { 1638 /* alloc one skb and init */ 1639 skb = hns_assemble_skb(ndev); 1640 if (!skb) 1641 goto out; 1642 rd = &tx_ring_data(priv, skb->queue_mapping); 1643 hns_nic_net_xmit_hw(ndev, skb, rd); 1644 1645 retry_times = 0; 1646 while (retry_times++ < 10) { 1647 mdelay(10); 1648 /* clean rx */ 1649 rd = &rx_ring_data(priv, i); 1650 if (rd->poll_one(rd, fetch_num, 1651 hns_nic_drop_rx_fetch)) 1652 break; 1653 } 1654 1655 retry_times = 0; 1656 while (retry_times++ < 10) { 1657 mdelay(10); 1658 /* clean tx ring 0 send package */ 1659 rd = &tx_ring_data(priv, 1660 HNS_LB_TX_RING); 1661 if (rd->poll_one(rd, fetch_num, NULL)) 1662 break; 1663 } 1664 } 1665 } 1666 } 1667 1668 out: 1669 /* restore everything */ 1670 ops->set_rss(h, org_indir, NULL, 0); 1671 hns_disable_serdes_lb(ndev); 1672 enable_serdes_lb_err: 1673 kfree(cur_indir); 1674 cur_indir_alloc_err: 1675 kfree(org_indir); 1676 1677 return ret; 1678 } 1679 1680 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1681 { 1682 struct hns_nic_priv *priv = netdev_priv(ndev); 1683 struct hnae_handle *h = priv->ae_handle; 1684 bool if_running = netif_running(ndev); 1685 int ret; 1686 1687 /* MTU < 68 is an error and causes problems on some kernels */ 1688 if (new_mtu < 68) 1689 return -EINVAL; 1690 1691 /* MTU no change */ 1692 if (new_mtu == ndev->mtu) 1693 return 0; 1694 1695 if (!h->dev->ops->set_mtu) 1696 return -ENOTSUPP; 1697 1698 if (if_running) { 1699 (void)hns_nic_net_stop(ndev); 1700 msleep(100); 1701 } 1702 1703 if (priv->enet_ver != AE_VERSION_1 && 1704 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1705 new_mtu > BD_SIZE_2048_MAX_MTU) { 1706 /* update desc */ 1707 hnae_reinit_all_ring_desc(h); 1708 1709 /* clear the package which the chip has fetched */ 1710 ret = hns_nic_clear_all_rx_fetch(ndev); 1711 1712 /* the page offset must be consist with desc */ 1713 hnae_reinit_all_ring_page_off(h); 1714 1715 if (ret) { 1716 netdev_err(ndev, "clear the fetched desc fail\n"); 1717 goto out; 1718 } 1719 } 1720 1721 ret = h->dev->ops->set_mtu(h, new_mtu); 1722 if (ret) { 1723 netdev_err(ndev, "set mtu fail, return value %d\n", 1724 ret); 1725 goto out; 1726 } 1727 1728 /* finally, set new mtu to netdevice */ 1729 ndev->mtu = new_mtu; 1730 1731 out: 1732 if (if_running) { 1733 if (hns_nic_net_open(ndev)) { 1734 netdev_err(ndev, "hns net open fail\n"); 1735 ret = -EINVAL; 1736 } 1737 } 1738 1739 return ret; 1740 } 1741 1742 static int hns_nic_set_features(struct net_device *netdev, 1743 netdev_features_t features) 1744 { 1745 struct hns_nic_priv *priv = netdev_priv(netdev); 1746 1747 switch (priv->enet_ver) { 1748 case AE_VERSION_1: 1749 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1750 netdev_info(netdev, "enet v1 do not support tso!\n"); 1751 break; 1752 default: 1753 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1754 priv->ops.fill_desc = fill_tso_desc; 1755 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1756 /* The chip only support 7*4096 */ 1757 netif_set_gso_max_size(netdev, 7 * 4096); 1758 } else { 1759 priv->ops.fill_desc = fill_v2_desc; 1760 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1761 } 1762 break; 1763 } 1764 netdev->features = features; 1765 return 0; 1766 } 1767 1768 static netdev_features_t hns_nic_fix_features( 1769 struct net_device *netdev, netdev_features_t features) 1770 { 1771 struct hns_nic_priv *priv = netdev_priv(netdev); 1772 1773 switch (priv->enet_ver) { 1774 case AE_VERSION_1: 1775 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1776 NETIF_F_HW_VLAN_CTAG_FILTER); 1777 break; 1778 default: 1779 break; 1780 } 1781 return features; 1782 } 1783 1784 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1785 { 1786 struct hns_nic_priv *priv = netdev_priv(netdev); 1787 struct hnae_handle *h = priv->ae_handle; 1788 1789 if (h->dev->ops->add_uc_addr) 1790 return h->dev->ops->add_uc_addr(h, addr); 1791 1792 return 0; 1793 } 1794 1795 static int hns_nic_uc_unsync(struct net_device *netdev, 1796 const unsigned char *addr) 1797 { 1798 struct hns_nic_priv *priv = netdev_priv(netdev); 1799 struct hnae_handle *h = priv->ae_handle; 1800 1801 if (h->dev->ops->rm_uc_addr) 1802 return h->dev->ops->rm_uc_addr(h, addr); 1803 1804 return 0; 1805 } 1806 1807 /** 1808 * nic_set_multicast_list - set mutl mac address 1809 * @netdev: net device 1810 * @p: mac address 1811 * 1812 * return void 1813 */ 1814 void hns_set_multicast_list(struct net_device *ndev) 1815 { 1816 struct hns_nic_priv *priv = netdev_priv(ndev); 1817 struct hnae_handle *h = priv->ae_handle; 1818 struct netdev_hw_addr *ha = NULL; 1819 1820 if (!h) { 1821 netdev_err(ndev, "hnae handle is null\n"); 1822 return; 1823 } 1824 1825 if (h->dev->ops->clr_mc_addr) 1826 if (h->dev->ops->clr_mc_addr(h)) 1827 netdev_err(ndev, "clear multicast address fail\n"); 1828 1829 if (h->dev->ops->set_mc_addr) { 1830 netdev_for_each_mc_addr(ha, ndev) 1831 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1832 netdev_err(ndev, "set multicast fail\n"); 1833 } 1834 } 1835 1836 void hns_nic_set_rx_mode(struct net_device *ndev) 1837 { 1838 struct hns_nic_priv *priv = netdev_priv(ndev); 1839 struct hnae_handle *h = priv->ae_handle; 1840 1841 if (h->dev->ops->set_promisc_mode) { 1842 if (ndev->flags & IFF_PROMISC) 1843 h->dev->ops->set_promisc_mode(h, 1); 1844 else 1845 h->dev->ops->set_promisc_mode(h, 0); 1846 } 1847 1848 hns_set_multicast_list(ndev); 1849 1850 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1851 netdev_err(ndev, "sync uc address fail\n"); 1852 } 1853 1854 static void hns_nic_get_stats64(struct net_device *ndev, 1855 struct rtnl_link_stats64 *stats) 1856 { 1857 int idx = 0; 1858 u64 tx_bytes = 0; 1859 u64 rx_bytes = 0; 1860 u64 tx_pkts = 0; 1861 u64 rx_pkts = 0; 1862 struct hns_nic_priv *priv = netdev_priv(ndev); 1863 struct hnae_handle *h = priv->ae_handle; 1864 1865 for (idx = 0; idx < h->q_num; idx++) { 1866 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1867 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1868 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1869 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1870 } 1871 1872 stats->tx_bytes = tx_bytes; 1873 stats->tx_packets = tx_pkts; 1874 stats->rx_bytes = rx_bytes; 1875 stats->rx_packets = rx_pkts; 1876 1877 stats->rx_errors = ndev->stats.rx_errors; 1878 stats->multicast = ndev->stats.multicast; 1879 stats->rx_length_errors = ndev->stats.rx_length_errors; 1880 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1881 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1882 1883 stats->tx_errors = ndev->stats.tx_errors; 1884 stats->rx_dropped = ndev->stats.rx_dropped; 1885 stats->tx_dropped = ndev->stats.tx_dropped; 1886 stats->collisions = ndev->stats.collisions; 1887 stats->rx_over_errors = ndev->stats.rx_over_errors; 1888 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1889 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1890 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1891 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1892 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1893 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1894 stats->tx_window_errors = ndev->stats.tx_window_errors; 1895 stats->rx_compressed = ndev->stats.rx_compressed; 1896 stats->tx_compressed = ndev->stats.tx_compressed; 1897 } 1898 1899 static u16 1900 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1901 void *accel_priv, select_queue_fallback_t fallback) 1902 { 1903 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1904 struct hns_nic_priv *priv = netdev_priv(ndev); 1905 1906 /* fix hardware broadcast/multicast packets queue loopback */ 1907 if (!AE_IS_VER1(priv->enet_ver) && 1908 is_multicast_ether_addr(eth_hdr->h_dest)) 1909 return 0; 1910 else 1911 return fallback(ndev, skb); 1912 } 1913 1914 static const struct net_device_ops hns_nic_netdev_ops = { 1915 .ndo_open = hns_nic_net_open, 1916 .ndo_stop = hns_nic_net_stop, 1917 .ndo_start_xmit = hns_nic_net_xmit, 1918 .ndo_tx_timeout = hns_nic_net_timeout, 1919 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1920 .ndo_change_mtu = hns_nic_change_mtu, 1921 .ndo_do_ioctl = hns_nic_do_ioctl, 1922 .ndo_set_features = hns_nic_set_features, 1923 .ndo_fix_features = hns_nic_fix_features, 1924 .ndo_get_stats64 = hns_nic_get_stats64, 1925 #ifdef CONFIG_NET_POLL_CONTROLLER 1926 .ndo_poll_controller = hns_nic_poll_controller, 1927 #endif 1928 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1929 .ndo_select_queue = hns_nic_select_queue, 1930 }; 1931 1932 static void hns_nic_update_link_status(struct net_device *netdev) 1933 { 1934 struct hns_nic_priv *priv = netdev_priv(netdev); 1935 1936 struct hnae_handle *h = priv->ae_handle; 1937 1938 if (h->phy_dev) { 1939 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1940 return; 1941 1942 (void)genphy_read_status(h->phy_dev); 1943 } 1944 hns_nic_adjust_link(netdev); 1945 } 1946 1947 /* for dumping key regs*/ 1948 static void hns_nic_dump(struct hns_nic_priv *priv) 1949 { 1950 struct hnae_handle *h = priv->ae_handle; 1951 struct hnae_ae_ops *ops = h->dev->ops; 1952 u32 *data, reg_num, i; 1953 1954 if (ops->get_regs_len && ops->get_regs) { 1955 reg_num = ops->get_regs_len(priv->ae_handle); 1956 reg_num = (reg_num + 3ul) & ~3ul; 1957 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1958 if (data) { 1959 ops->get_regs(priv->ae_handle, data); 1960 for (i = 0; i < reg_num; i += 4) 1961 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1962 i, data[i], data[i + 1], 1963 data[i + 2], data[i + 3]); 1964 kfree(data); 1965 } 1966 } 1967 1968 for (i = 0; i < h->q_num; i++) { 1969 pr_info("tx_queue%d_next_to_clean:%d\n", 1970 i, h->qs[i]->tx_ring.next_to_clean); 1971 pr_info("tx_queue%d_next_to_use:%d\n", 1972 i, h->qs[i]->tx_ring.next_to_use); 1973 pr_info("rx_queue%d_next_to_clean:%d\n", 1974 i, h->qs[i]->rx_ring.next_to_clean); 1975 pr_info("rx_queue%d_next_to_use:%d\n", 1976 i, h->qs[i]->rx_ring.next_to_use); 1977 } 1978 } 1979 1980 /* for resetting subtask */ 1981 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 1982 { 1983 enum hnae_port_type type = priv->ae_handle->port_type; 1984 1985 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 1986 return; 1987 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 1988 1989 /* If we're already down, removing or resetting, just bail */ 1990 if (test_bit(NIC_STATE_DOWN, &priv->state) || 1991 test_bit(NIC_STATE_REMOVING, &priv->state) || 1992 test_bit(NIC_STATE_RESETTING, &priv->state)) 1993 return; 1994 1995 hns_nic_dump(priv); 1996 netdev_info(priv->netdev, "try to reset %s port!\n", 1997 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 1998 1999 rtnl_lock(); 2000 /* put off any impending NetWatchDogTimeout */ 2001 netif_trans_update(priv->netdev); 2002 2003 if (type == HNAE_PORT_DEBUG) { 2004 hns_nic_net_reinit(priv->netdev); 2005 } else { 2006 netif_carrier_off(priv->netdev); 2007 netif_tx_disable(priv->netdev); 2008 } 2009 rtnl_unlock(); 2010 } 2011 2012 /* for doing service complete*/ 2013 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2014 { 2015 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2016 /* make sure to commit the things */ 2017 smp_mb__before_atomic(); 2018 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2019 } 2020 2021 static void hns_nic_service_task(struct work_struct *work) 2022 { 2023 struct hns_nic_priv *priv 2024 = container_of(work, struct hns_nic_priv, service_task); 2025 struct hnae_handle *h = priv->ae_handle; 2026 2027 hns_nic_update_link_status(priv->netdev); 2028 h->dev->ops->update_led_status(h); 2029 hns_nic_update_stats(priv->netdev); 2030 2031 hns_nic_reset_subtask(priv); 2032 hns_nic_service_event_complete(priv); 2033 } 2034 2035 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2036 { 2037 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2038 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2039 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2040 (void)schedule_work(&priv->service_task); 2041 } 2042 2043 static void hns_nic_service_timer(unsigned long data) 2044 { 2045 struct hns_nic_priv *priv = (struct hns_nic_priv *)data; 2046 2047 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2048 2049 hns_nic_task_schedule(priv); 2050 } 2051 2052 /** 2053 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2054 * @priv: driver private struct 2055 **/ 2056 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2057 { 2058 /* Do the reset outside of interrupt context */ 2059 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2060 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2061 netdev_warn(priv->netdev, 2062 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2063 priv->tx_timeout_count, priv->state); 2064 priv->tx_timeout_count++; 2065 hns_nic_task_schedule(priv); 2066 } 2067 } 2068 2069 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2070 { 2071 struct hnae_handle *h = priv->ae_handle; 2072 struct hns_nic_ring_data *rd; 2073 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2074 int i; 2075 2076 if (h->q_num > NIC_MAX_Q_PER_VF) { 2077 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2078 return -EINVAL; 2079 } 2080 2081 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2, 2082 GFP_KERNEL); 2083 if (!priv->ring_data) 2084 return -ENOMEM; 2085 2086 for (i = 0; i < h->q_num; i++) { 2087 rd = &priv->ring_data[i]; 2088 rd->queue_index = i; 2089 rd->ring = &h->qs[i]->tx_ring; 2090 rd->poll_one = hns_nic_tx_poll_one; 2091 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2092 hns_nic_tx_fini_pro_v2; 2093 2094 netif_napi_add(priv->netdev, &rd->napi, 2095 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2096 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2097 } 2098 for (i = h->q_num; i < h->q_num * 2; i++) { 2099 rd = &priv->ring_data[i]; 2100 rd->queue_index = i - h->q_num; 2101 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2102 rd->poll_one = hns_nic_rx_poll_one; 2103 rd->ex_process = hns_nic_rx_up_pro; 2104 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2105 hns_nic_rx_fini_pro_v2; 2106 2107 netif_napi_add(priv->netdev, &rd->napi, 2108 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2109 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2110 } 2111 2112 return 0; 2113 } 2114 2115 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2116 { 2117 struct hnae_handle *h = priv->ae_handle; 2118 int i; 2119 2120 for (i = 0; i < h->q_num * 2; i++) { 2121 netif_napi_del(&priv->ring_data[i].napi); 2122 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2123 (void)irq_set_affinity_hint( 2124 priv->ring_data[i].ring->irq, 2125 NULL); 2126 free_irq(priv->ring_data[i].ring->irq, 2127 &priv->ring_data[i]); 2128 } 2129 2130 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2131 } 2132 kfree(priv->ring_data); 2133 } 2134 2135 static void hns_nic_set_priv_ops(struct net_device *netdev) 2136 { 2137 struct hns_nic_priv *priv = netdev_priv(netdev); 2138 struct hnae_handle *h = priv->ae_handle; 2139 2140 if (AE_IS_VER1(priv->enet_ver)) { 2141 priv->ops.fill_desc = fill_desc; 2142 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2143 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2144 } else { 2145 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2146 if ((netdev->features & NETIF_F_TSO) || 2147 (netdev->features & NETIF_F_TSO6)) { 2148 priv->ops.fill_desc = fill_tso_desc; 2149 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2150 /* This chip only support 7*4096 */ 2151 netif_set_gso_max_size(netdev, 7 * 4096); 2152 } else { 2153 priv->ops.fill_desc = fill_v2_desc; 2154 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2155 } 2156 /* enable tso when init 2157 * control tso on/off through TSE bit in bd 2158 */ 2159 h->dev->ops->set_tso_stats(h, 1); 2160 } 2161 } 2162 2163 static int hns_nic_try_get_ae(struct net_device *ndev) 2164 { 2165 struct hns_nic_priv *priv = netdev_priv(ndev); 2166 struct hnae_handle *h; 2167 int ret; 2168 2169 h = hnae_get_handle(&priv->netdev->dev, 2170 priv->fwnode, priv->port_id, NULL); 2171 if (IS_ERR_OR_NULL(h)) { 2172 ret = -ENODEV; 2173 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2174 goto out; 2175 } 2176 priv->ae_handle = h; 2177 2178 ret = hns_nic_init_phy(ndev, h); 2179 if (ret) { 2180 dev_err(priv->dev, "probe phy device fail!\n"); 2181 goto out_init_phy; 2182 } 2183 2184 ret = hns_nic_init_ring_data(priv); 2185 if (ret) { 2186 ret = -ENOMEM; 2187 goto out_init_ring_data; 2188 } 2189 2190 hns_nic_set_priv_ops(ndev); 2191 2192 ret = register_netdev(ndev); 2193 if (ret) { 2194 dev_err(priv->dev, "probe register netdev fail!\n"); 2195 goto out_reg_ndev_fail; 2196 } 2197 return 0; 2198 2199 out_reg_ndev_fail: 2200 hns_nic_uninit_ring_data(priv); 2201 priv->ring_data = NULL; 2202 out_init_phy: 2203 out_init_ring_data: 2204 hnae_put_handle(priv->ae_handle); 2205 priv->ae_handle = NULL; 2206 out: 2207 return ret; 2208 } 2209 2210 static int hns_nic_notifier_action(struct notifier_block *nb, 2211 unsigned long action, void *data) 2212 { 2213 struct hns_nic_priv *priv = 2214 container_of(nb, struct hns_nic_priv, notifier_block); 2215 2216 assert(action == HNAE_AE_REGISTER); 2217 2218 if (!hns_nic_try_get_ae(priv->netdev)) { 2219 hnae_unregister_notifier(&priv->notifier_block); 2220 priv->notifier_block.notifier_call = NULL; 2221 } 2222 return 0; 2223 } 2224 2225 static int hns_nic_dev_probe(struct platform_device *pdev) 2226 { 2227 struct device *dev = &pdev->dev; 2228 struct net_device *ndev; 2229 struct hns_nic_priv *priv; 2230 u32 port_id; 2231 int ret; 2232 2233 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2234 if (!ndev) 2235 return -ENOMEM; 2236 2237 platform_set_drvdata(pdev, ndev); 2238 2239 priv = netdev_priv(ndev); 2240 priv->dev = dev; 2241 priv->netdev = ndev; 2242 2243 if (dev_of_node(dev)) { 2244 struct device_node *ae_node; 2245 2246 if (of_device_is_compatible(dev->of_node, 2247 "hisilicon,hns-nic-v1")) 2248 priv->enet_ver = AE_VERSION_1; 2249 else 2250 priv->enet_ver = AE_VERSION_2; 2251 2252 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2253 if (IS_ERR_OR_NULL(ae_node)) { 2254 ret = PTR_ERR(ae_node); 2255 dev_err(dev, "not find ae-handle\n"); 2256 goto out_read_prop_fail; 2257 } 2258 priv->fwnode = &ae_node->fwnode; 2259 } else if (is_acpi_node(dev->fwnode)) { 2260 struct acpi_reference_args args; 2261 2262 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2263 priv->enet_ver = AE_VERSION_1; 2264 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2265 priv->enet_ver = AE_VERSION_2; 2266 else 2267 return -ENXIO; 2268 2269 /* try to find port-idx-in-ae first */ 2270 ret = acpi_node_get_property_reference(dev->fwnode, 2271 "ae-handle", 0, &args); 2272 if (ret) { 2273 dev_err(dev, "not find ae-handle\n"); 2274 goto out_read_prop_fail; 2275 } 2276 priv->fwnode = acpi_fwnode_handle(args.adev); 2277 } else { 2278 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2279 return -ENXIO; 2280 } 2281 2282 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2283 if (ret) { 2284 /* only for old code compatible */ 2285 ret = device_property_read_u32(dev, "port-id", &port_id); 2286 if (ret) 2287 goto out_read_prop_fail; 2288 /* for old dts, we need to caculate the port offset */ 2289 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2290 : port_id - HNS_SRV_OFFSET; 2291 } 2292 priv->port_id = port_id; 2293 2294 hns_init_mac_addr(ndev); 2295 2296 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2297 ndev->priv_flags |= IFF_UNICAST_FLT; 2298 ndev->netdev_ops = &hns_nic_netdev_ops; 2299 hns_ethtool_set_ops(ndev); 2300 2301 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2302 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2303 NETIF_F_GRO; 2304 ndev->vlan_features |= 2305 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2306 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2307 2308 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2309 ndev->min_mtu = MAC_MIN_MTU; 2310 switch (priv->enet_ver) { 2311 case AE_VERSION_2: 2312 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2313 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2314 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2315 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2316 ndev->max_mtu = MAC_MAX_MTU_V2 - 2317 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2318 break; 2319 default: 2320 ndev->max_mtu = MAC_MAX_MTU - 2321 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2322 break; 2323 } 2324 2325 SET_NETDEV_DEV(ndev, dev); 2326 2327 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2328 dev_dbg(dev, "set mask to 64bit\n"); 2329 else 2330 dev_err(dev, "set mask to 64bit fail!\n"); 2331 2332 /* carrier off reporting is important to ethtool even BEFORE open */ 2333 netif_carrier_off(ndev); 2334 2335 setup_timer(&priv->service_timer, hns_nic_service_timer, 2336 (unsigned long)priv); 2337 INIT_WORK(&priv->service_task, hns_nic_service_task); 2338 2339 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2340 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2341 set_bit(NIC_STATE_DOWN, &priv->state); 2342 2343 if (hns_nic_try_get_ae(priv->netdev)) { 2344 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2345 ret = hnae_register_notifier(&priv->notifier_block); 2346 if (ret) { 2347 dev_err(dev, "register notifier fail!\n"); 2348 goto out_notify_fail; 2349 } 2350 dev_dbg(dev, "has not handle, register notifier!\n"); 2351 } 2352 2353 return 0; 2354 2355 out_notify_fail: 2356 (void)cancel_work_sync(&priv->service_task); 2357 out_read_prop_fail: 2358 free_netdev(ndev); 2359 return ret; 2360 } 2361 2362 static int hns_nic_dev_remove(struct platform_device *pdev) 2363 { 2364 struct net_device *ndev = platform_get_drvdata(pdev); 2365 struct hns_nic_priv *priv = netdev_priv(ndev); 2366 2367 if (ndev->reg_state != NETREG_UNINITIALIZED) 2368 unregister_netdev(ndev); 2369 2370 if (priv->ring_data) 2371 hns_nic_uninit_ring_data(priv); 2372 priv->ring_data = NULL; 2373 2374 if (ndev->phydev) 2375 phy_disconnect(ndev->phydev); 2376 2377 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2378 hnae_put_handle(priv->ae_handle); 2379 priv->ae_handle = NULL; 2380 if (priv->notifier_block.notifier_call) 2381 hnae_unregister_notifier(&priv->notifier_block); 2382 priv->notifier_block.notifier_call = NULL; 2383 2384 set_bit(NIC_STATE_REMOVING, &priv->state); 2385 (void)cancel_work_sync(&priv->service_task); 2386 2387 free_netdev(ndev); 2388 return 0; 2389 } 2390 2391 static const struct of_device_id hns_enet_of_match[] = { 2392 {.compatible = "hisilicon,hns-nic-v1",}, 2393 {.compatible = "hisilicon,hns-nic-v2",}, 2394 {}, 2395 }; 2396 2397 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2398 2399 static struct platform_driver hns_nic_dev_driver = { 2400 .driver = { 2401 .name = "hns-nic", 2402 .of_match_table = hns_enet_of_match, 2403 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2404 }, 2405 .probe = hns_nic_dev_probe, 2406 .remove = hns_nic_dev_remove, 2407 }; 2408 2409 module_platform_driver(hns_nic_dev_driver); 2410 2411 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2412 MODULE_AUTHOR("Hisilicon, Inc."); 2413 MODULE_LICENSE("GPL"); 2414 MODULE_ALIAS("platform:hns-nic"); 2415