xref: /linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 			 int size, dma_addr_t dma, int frag_end,
45 			 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	struct skb_frag_struct *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc(ring, priv,
293 			     (k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 			     dma + BD_MAX_SEND_SIZE * k,
296 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 			     buf_num,
298 			     (type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 			     mtu);
301 }
302 
303 int hns_nic_net_xmit_hw(struct net_device *ndev,
304 			struct sk_buff *skb,
305 			struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct device *dev = ring_to_dev(ring);
310 	struct netdev_queue *dev_queue;
311 	struct skb_frag_struct *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	wmb(); /* commit all data before submit */
365 	assert(skb->queue_mapping < priv->ae_handle->q_num);
366 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
367 	ring->stats.tx_pkts++;
368 	ring->stats.tx_bytes += skb->len;
369 
370 	return NETDEV_TX_OK;
371 
372 out_map_frag_fail:
373 
374 	while (ring->next_to_use != next_to_use) {
375 		unfill_desc(ring);
376 		if (ring->next_to_use != next_to_use)
377 			dma_unmap_page(dev,
378 				       ring->desc_cb[ring->next_to_use].dma,
379 				       ring->desc_cb[ring->next_to_use].length,
380 				       DMA_TO_DEVICE);
381 		else
382 			dma_unmap_single(dev,
383 					 ring->desc_cb[next_to_use].dma,
384 					 ring->desc_cb[next_to_use].length,
385 					 DMA_TO_DEVICE);
386 	}
387 
388 out_err_tx_ok:
389 
390 	dev_kfree_skb_any(skb);
391 	return NETDEV_TX_OK;
392 
393 out_net_tx_busy:
394 
395 	netif_stop_subqueue(ndev, skb->queue_mapping);
396 
397 	/* Herbert's original patch had:
398 	 *  smp_mb__after_netif_stop_queue();
399 	 * but since that doesn't exist yet, just open code it.
400 	 */
401 	smp_mb();
402 	return NETDEV_TX_BUSY;
403 }
404 
405 /**
406  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
407  * @data: pointer to the start of the headers
408  * @max: total length of section to find headers in
409  *
410  * This function is meant to determine the length of headers that will
411  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
412  * motivation of doing this is to only perform one pull for IPv4 TCP
413  * packets so that we can do basic things like calculating the gso_size
414  * based on the average data per packet.
415  **/
416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
417 					unsigned int max_size)
418 {
419 	unsigned char *network;
420 	u8 hlen;
421 
422 	/* this should never happen, but better safe than sorry */
423 	if (max_size < ETH_HLEN)
424 		return max_size;
425 
426 	/* initialize network frame pointer */
427 	network = data;
428 
429 	/* set first protocol and move network header forward */
430 	network += ETH_HLEN;
431 
432 	/* handle any vlan tag if present */
433 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
434 		== HNS_RX_FLAG_VLAN_PRESENT) {
435 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
436 			return max_size;
437 
438 		network += VLAN_HLEN;
439 	}
440 
441 	/* handle L3 protocols */
442 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
443 		== HNS_RX_FLAG_L3ID_IPV4) {
444 		if ((typeof(max_size))(network - data) >
445 		    (max_size - sizeof(struct iphdr)))
446 			return max_size;
447 
448 		/* access ihl as a u8 to avoid unaligned access on ia64 */
449 		hlen = (network[0] & 0x0F) << 2;
450 
451 		/* verify hlen meets minimum size requirements */
452 		if (hlen < sizeof(struct iphdr))
453 			return network - data;
454 
455 		/* record next protocol if header is present */
456 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
457 		== HNS_RX_FLAG_L3ID_IPV6) {
458 		if ((typeof(max_size))(network - data) >
459 		    (max_size - sizeof(struct ipv6hdr)))
460 			return max_size;
461 
462 		/* record next protocol */
463 		hlen = sizeof(struct ipv6hdr);
464 	} else {
465 		return network - data;
466 	}
467 
468 	/* relocate pointer to start of L4 header */
469 	network += hlen;
470 
471 	/* finally sort out TCP/UDP */
472 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
473 		== HNS_RX_FLAG_L4ID_TCP) {
474 		if ((typeof(max_size))(network - data) >
475 		    (max_size - sizeof(struct tcphdr)))
476 			return max_size;
477 
478 		/* access doff as a u8 to avoid unaligned access on ia64 */
479 		hlen = (network[12] & 0xF0) >> 2;
480 
481 		/* verify hlen meets minimum size requirements */
482 		if (hlen < sizeof(struct tcphdr))
483 			return network - data;
484 
485 		network += hlen;
486 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
487 		== HNS_RX_FLAG_L4ID_UDP) {
488 		if ((typeof(max_size))(network - data) >
489 		    (max_size - sizeof(struct udphdr)))
490 			return max_size;
491 
492 		network += sizeof(struct udphdr);
493 	}
494 
495 	/* If everything has gone correctly network should be the
496 	 * data section of the packet and will be the end of the header.
497 	 * If not then it probably represents the end of the last recognized
498 	 * header.
499 	 */
500 	if ((typeof(max_size))(network - data) < max_size)
501 		return network - data;
502 	else
503 		return max_size;
504 }
505 
506 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
507 			       struct hnae_ring *ring, int pull_len,
508 			       struct hnae_desc_cb *desc_cb)
509 {
510 	struct hnae_desc *desc;
511 	int truesize, size;
512 	int last_offset;
513 	bool twobufs;
514 
515 	twobufs = ((PAGE_SIZE < 8192) &&
516 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
517 
518 	desc = &ring->desc[ring->next_to_clean];
519 	size = le16_to_cpu(desc->rx.size);
520 
521 	if (twobufs) {
522 		truesize = hnae_buf_size(ring);
523 	} else {
524 		truesize = ALIGN(size, L1_CACHE_BYTES);
525 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
526 	}
527 
528 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
529 			size - pull_len, truesize - pull_len);
530 
531 	 /* avoid re-using remote pages,flag default unreuse */
532 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
533 		return;
534 
535 	if (twobufs) {
536 		/* if we are only owner of page we can reuse it */
537 		if (likely(page_count(desc_cb->priv) == 1)) {
538 			/* flip page offset to other buffer */
539 			desc_cb->page_offset ^= truesize;
540 
541 			desc_cb->reuse_flag = 1;
542 			/* bump ref count on page before it is given*/
543 			get_page(desc_cb->priv);
544 		}
545 		return;
546 	}
547 
548 	/* move offset up to the next cache line */
549 	desc_cb->page_offset += truesize;
550 
551 	if (desc_cb->page_offset <= last_offset) {
552 		desc_cb->reuse_flag = 1;
553 		/* bump ref count on page before it is given*/
554 		get_page(desc_cb->priv);
555 	}
556 }
557 
558 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
559 {
560 	*out_bnum = hnae_get_field(bnum_flag,
561 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
562 }
563 
564 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
565 {
566 	*out_bnum = hnae_get_field(bnum_flag,
567 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
568 }
569 
570 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
571 				struct sk_buff *skb, u32 flag)
572 {
573 	struct net_device *netdev = ring_data->napi.dev;
574 	u32 l3id;
575 	u32 l4id;
576 
577 	/* check if RX checksum offload is enabled */
578 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
579 		return;
580 
581 	/* In hardware, we only support checksum for the following protocols:
582 	 * 1) IPv4,
583 	 * 2) TCP(over IPv4 or IPv6),
584 	 * 3) UDP(over IPv4 or IPv6),
585 	 * 4) SCTP(over IPv4 or IPv6)
586 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
587 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
588 	 *
589 	 * Hardware limitation:
590 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
591 	 * Error" bit (which usually can be used to indicate whether checksum
592 	 * was calculated by the hardware and if there was any error encountered
593 	 * during checksum calculation).
594 	 *
595 	 * Software workaround:
596 	 * We do get info within the RX descriptor about the kind of L3/L4
597 	 * protocol coming in the packet and the error status. These errors
598 	 * might not just be checksum errors but could be related to version,
599 	 * length of IPv4, UDP, TCP etc.
600 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
601 	 * checksum or any other L3/L4 error, we will not (cannot) convey
602 	 * checksum status for such cases to upper stack and will not maintain
603 	 * the RX L3/L4 checksum counters as well.
604 	 */
605 
606 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
607 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
608 
609 	/*  check L3 protocol for which checksum is supported */
610 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
611 		return;
612 
613 	/* check for any(not just checksum)flagged L3 protocol errors */
614 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
615 		return;
616 
617 	/* we do not support checksum of fragmented packets */
618 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
619 		return;
620 
621 	/*  check L4 protocol for which checksum is supported */
622 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
623 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
624 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
625 		return;
626 
627 	/* check for any(not just checksum)flagged L4 protocol errors */
628 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
629 		return;
630 
631 	/* now, this has to be a packet with valid RX checksum */
632 	skb->ip_summed = CHECKSUM_UNNECESSARY;
633 }
634 
635 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
636 			       struct sk_buff **out_skb, int *out_bnum)
637 {
638 	struct hnae_ring *ring = ring_data->ring;
639 	struct net_device *ndev = ring_data->napi.dev;
640 	struct hns_nic_priv *priv = netdev_priv(ndev);
641 	struct sk_buff *skb;
642 	struct hnae_desc *desc;
643 	struct hnae_desc_cb *desc_cb;
644 	unsigned char *va;
645 	int bnum, length, i;
646 	int pull_len;
647 	u32 bnum_flag;
648 
649 	desc = &ring->desc[ring->next_to_clean];
650 	desc_cb = &ring->desc_cb[ring->next_to_clean];
651 
652 	prefetch(desc);
653 
654 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
655 
656 	/* prefetch first cache line of first page */
657 	prefetch(va);
658 #if L1_CACHE_BYTES < 128
659 	prefetch(va + L1_CACHE_BYTES);
660 #endif
661 
662 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
663 					HNS_RX_HEAD_SIZE);
664 	if (unlikely(!skb)) {
665 		netdev_err(ndev, "alloc rx skb fail\n");
666 		ring->stats.sw_err_cnt++;
667 		return -ENOMEM;
668 	}
669 
670 	prefetchw(skb->data);
671 	length = le16_to_cpu(desc->rx.pkt_len);
672 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
673 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
674 	*out_bnum = bnum;
675 
676 	if (length <= HNS_RX_HEAD_SIZE) {
677 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
678 
679 		/* we can reuse buffer as-is, just make sure it is local */
680 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
681 			desc_cb->reuse_flag = 1;
682 		else /* this page cannot be reused so discard it */
683 			put_page(desc_cb->priv);
684 
685 		ring_ptr_move_fw(ring, next_to_clean);
686 
687 		if (unlikely(bnum != 1)) { /* check err*/
688 			*out_bnum = 1;
689 			goto out_bnum_err;
690 		}
691 	} else {
692 		ring->stats.seg_pkt_cnt++;
693 
694 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
695 		memcpy(__skb_put(skb, pull_len), va,
696 		       ALIGN(pull_len, sizeof(long)));
697 
698 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
699 		ring_ptr_move_fw(ring, next_to_clean);
700 
701 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
702 			*out_bnum = 1;
703 			goto out_bnum_err;
704 		}
705 		for (i = 1; i < bnum; i++) {
706 			desc = &ring->desc[ring->next_to_clean];
707 			desc_cb = &ring->desc_cb[ring->next_to_clean];
708 
709 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
710 			ring_ptr_move_fw(ring, next_to_clean);
711 		}
712 	}
713 
714 	/* check except process, free skb and jump the desc */
715 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
716 out_bnum_err:
717 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
718 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
719 			   bnum, ring->max_desc_num_per_pkt,
720 			   length, (int)MAX_SKB_FRAGS,
721 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
722 		ring->stats.err_bd_num++;
723 		dev_kfree_skb_any(skb);
724 		return -EDOM;
725 	}
726 
727 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
728 
729 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
730 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
731 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
732 		ring->stats.non_vld_descs++;
733 		dev_kfree_skb_any(skb);
734 		return -EINVAL;
735 	}
736 
737 	if (unlikely((!desc->rx.pkt_len) ||
738 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
739 		ring->stats.err_pkt_len++;
740 		dev_kfree_skb_any(skb);
741 		return -EFAULT;
742 	}
743 
744 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
745 		ring->stats.l2_err++;
746 		dev_kfree_skb_any(skb);
747 		return -EFAULT;
748 	}
749 
750 	ring->stats.rx_pkts++;
751 	ring->stats.rx_bytes += skb->len;
752 
753 	/* indicate to upper stack if our hardware has already calculated
754 	 * the RX checksum
755 	 */
756 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
757 
758 	return 0;
759 }
760 
761 static void
762 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
763 {
764 	int i, ret;
765 	struct hnae_desc_cb res_cbs;
766 	struct hnae_desc_cb *desc_cb;
767 	struct hnae_ring *ring = ring_data->ring;
768 	struct net_device *ndev = ring_data->napi.dev;
769 
770 	for (i = 0; i < cleand_count; i++) {
771 		desc_cb = &ring->desc_cb[ring->next_to_use];
772 		if (desc_cb->reuse_flag) {
773 			ring->stats.reuse_pg_cnt++;
774 			hnae_reuse_buffer(ring, ring->next_to_use);
775 		} else {
776 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
777 			if (ret) {
778 				ring->stats.sw_err_cnt++;
779 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
780 				break;
781 			}
782 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
783 		}
784 
785 		ring_ptr_move_fw(ring, next_to_use);
786 	}
787 
788 	wmb(); /* make all data has been write before submit */
789 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
790 }
791 
792 /* return error number for error or number of desc left to take
793  */
794 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
795 			      struct sk_buff *skb)
796 {
797 	struct net_device *ndev = ring_data->napi.dev;
798 
799 	skb->protocol = eth_type_trans(skb, ndev);
800 	(void)napi_gro_receive(&ring_data->napi, skb);
801 }
802 
803 static int hns_desc_unused(struct hnae_ring *ring)
804 {
805 	int ntc = ring->next_to_clean;
806 	int ntu = ring->next_to_use;
807 
808 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
809 }
810 
811 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
812 			       int budget, void *v)
813 {
814 	struct hnae_ring *ring = ring_data->ring;
815 	struct sk_buff *skb;
816 	int num, bnum;
817 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
818 	int recv_pkts, recv_bds, clean_count, err;
819 	int unused_count = hns_desc_unused(ring);
820 
821 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
822 	rmb(); /* make sure num taken effect before the other data is touched */
823 
824 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
825 	num -= unused_count;
826 
827 	while (recv_pkts < budget && recv_bds < num) {
828 		/* reuse or realloc buffers */
829 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
830 			hns_nic_alloc_rx_buffers(ring_data,
831 						 clean_count + unused_count);
832 			clean_count = 0;
833 			unused_count = hns_desc_unused(ring);
834 		}
835 
836 		/* poll one pkt */
837 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
838 		if (unlikely(!skb)) /* this fault cannot be repaired */
839 			goto out;
840 
841 		recv_bds += bnum;
842 		clean_count += bnum;
843 		if (unlikely(err)) {  /* do jump the err */
844 			recv_pkts++;
845 			continue;
846 		}
847 
848 		/* do update ip stack process*/
849 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
850 							ring_data, skb);
851 		recv_pkts++;
852 	}
853 
854 out:
855 	/* make all data has been write before submit */
856 	if (clean_count + unused_count > 0)
857 		hns_nic_alloc_rx_buffers(ring_data,
858 					 clean_count + unused_count);
859 
860 	return recv_pkts;
861 }
862 
863 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
864 {
865 	struct hnae_ring *ring = ring_data->ring;
866 	int num = 0;
867 
868 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
869 
870 	/* for hardware bug fixed */
871 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
872 
873 	if (num > 0) {
874 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
875 			ring_data->ring, 1);
876 
877 		return false;
878 	} else {
879 		return true;
880 	}
881 }
882 
883 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
884 {
885 	struct hnae_ring *ring = ring_data->ring;
886 	int num;
887 
888 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
889 
890 	if (!num)
891 		return true;
892 	else
893 		return false;
894 }
895 
896 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
897 					    int *bytes, int *pkts)
898 {
899 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
900 
901 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
902 	(*bytes) += desc_cb->length;
903 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
904 	hnae_free_buffer_detach(ring, ring->next_to_clean);
905 
906 	ring_ptr_move_fw(ring, next_to_clean);
907 }
908 
909 static int is_valid_clean_head(struct hnae_ring *ring, int h)
910 {
911 	int u = ring->next_to_use;
912 	int c = ring->next_to_clean;
913 
914 	if (unlikely(h > ring->desc_num))
915 		return 0;
916 
917 	assert(u > 0 && u < ring->desc_num);
918 	assert(c > 0 && c < ring->desc_num);
919 	assert(u != c && h != c); /* must be checked before call this func */
920 
921 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
922 }
923 
924 /* netif_tx_lock will turn down the performance, set only when necessary */
925 #ifdef CONFIG_NET_POLL_CONTROLLER
926 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
927 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
928 #else
929 #define NETIF_TX_LOCK(ring)
930 #define NETIF_TX_UNLOCK(ring)
931 #endif
932 
933 /* reclaim all desc in one budget
934  * return error or number of desc left
935  */
936 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
937 			       int budget, void *v)
938 {
939 	struct hnae_ring *ring = ring_data->ring;
940 	struct net_device *ndev = ring_data->napi.dev;
941 	struct netdev_queue *dev_queue;
942 	struct hns_nic_priv *priv = netdev_priv(ndev);
943 	int head;
944 	int bytes, pkts;
945 
946 	NETIF_TX_LOCK(ring);
947 
948 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
949 	rmb(); /* make sure head is ready before touch any data */
950 
951 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
952 		NETIF_TX_UNLOCK(ring);
953 		return 0; /* no data to poll */
954 	}
955 
956 	if (!is_valid_clean_head(ring, head)) {
957 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
958 			   ring->next_to_use, ring->next_to_clean);
959 		ring->stats.io_err_cnt++;
960 		NETIF_TX_UNLOCK(ring);
961 		return -EIO;
962 	}
963 
964 	bytes = 0;
965 	pkts = 0;
966 	while (head != ring->next_to_clean) {
967 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
968 		/* issue prefetch for next Tx descriptor */
969 		prefetch(&ring->desc_cb[ring->next_to_clean]);
970 	}
971 
972 	NETIF_TX_UNLOCK(ring);
973 
974 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
975 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
976 
977 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
978 		netif_carrier_on(ndev);
979 
980 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
981 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
982 		/* Make sure that anybody stopping the queue after this
983 		 * sees the new next_to_clean.
984 		 */
985 		smp_mb();
986 		if (netif_tx_queue_stopped(dev_queue) &&
987 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
988 			netif_tx_wake_queue(dev_queue);
989 			ring->stats.restart_queue++;
990 		}
991 	}
992 	return 0;
993 }
994 
995 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
996 {
997 	struct hnae_ring *ring = ring_data->ring;
998 	int head;
999 
1000 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1001 
1002 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1003 
1004 	if (head != ring->next_to_clean) {
1005 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1006 			ring_data->ring, 1);
1007 
1008 		return false;
1009 	} else {
1010 		return true;
1011 	}
1012 }
1013 
1014 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1015 {
1016 	struct hnae_ring *ring = ring_data->ring;
1017 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1018 
1019 	if (head == ring->next_to_clean)
1020 		return true;
1021 	else
1022 		return false;
1023 }
1024 
1025 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1026 {
1027 	struct hnae_ring *ring = ring_data->ring;
1028 	struct net_device *ndev = ring_data->napi.dev;
1029 	struct netdev_queue *dev_queue;
1030 	int head;
1031 	int bytes, pkts;
1032 
1033 	NETIF_TX_LOCK(ring);
1034 
1035 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1036 	bytes = 0;
1037 	pkts = 0;
1038 	while (head != ring->next_to_clean)
1039 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1040 
1041 	NETIF_TX_UNLOCK(ring);
1042 
1043 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1044 	netdev_tx_reset_queue(dev_queue);
1045 }
1046 
1047 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1048 {
1049 	int clean_complete = 0;
1050 	struct hns_nic_ring_data *ring_data =
1051 		container_of(napi, struct hns_nic_ring_data, napi);
1052 	struct hnae_ring *ring = ring_data->ring;
1053 
1054 try_again:
1055 	clean_complete += ring_data->poll_one(
1056 				ring_data, budget - clean_complete,
1057 				ring_data->ex_process);
1058 
1059 	if (clean_complete < budget) {
1060 		if (ring_data->fini_process(ring_data)) {
1061 			napi_complete(napi);
1062 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1063 		} else {
1064 			goto try_again;
1065 		}
1066 	}
1067 
1068 	return clean_complete;
1069 }
1070 
1071 static irqreturn_t hns_irq_handle(int irq, void *dev)
1072 {
1073 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1074 
1075 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1076 		ring_data->ring, 1);
1077 	napi_schedule(&ring_data->napi);
1078 
1079 	return IRQ_HANDLED;
1080 }
1081 
1082 /**
1083  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1084  *@ndev: net device
1085  */
1086 static void hns_nic_adjust_link(struct net_device *ndev)
1087 {
1088 	struct hns_nic_priv *priv = netdev_priv(ndev);
1089 	struct hnae_handle *h = priv->ae_handle;
1090 	int state = 1;
1091 
1092 	if (ndev->phydev) {
1093 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1094 					 ndev->phydev->duplex);
1095 		state = ndev->phydev->link;
1096 	}
1097 	state = state && h->dev->ops->get_status(h);
1098 
1099 	if (state != priv->link) {
1100 		if (state) {
1101 			netif_carrier_on(ndev);
1102 			netif_tx_wake_all_queues(ndev);
1103 			netdev_info(ndev, "link up\n");
1104 		} else {
1105 			netif_carrier_off(ndev);
1106 			netdev_info(ndev, "link down\n");
1107 		}
1108 		priv->link = state;
1109 	}
1110 }
1111 
1112 /**
1113  *hns_nic_init_phy - init phy
1114  *@ndev: net device
1115  *@h: ae handle
1116  * Return 0 on success, negative on failure
1117  */
1118 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1119 {
1120 	struct phy_device *phy_dev = h->phy_dev;
1121 	int ret;
1122 
1123 	if (!h->phy_dev)
1124 		return 0;
1125 
1126 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1127 		phy_dev->dev_flags = 0;
1128 
1129 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1130 					 h->phy_if);
1131 	} else {
1132 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1133 	}
1134 	if (unlikely(ret))
1135 		return -ENODEV;
1136 
1137 	phy_dev->supported &= h->if_support;
1138 	phy_dev->advertising = phy_dev->supported;
1139 
1140 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1141 		phy_dev->autoneg = false;
1142 
1143 	return 0;
1144 }
1145 
1146 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1147 {
1148 	struct hns_nic_priv *priv = netdev_priv(netdev);
1149 	struct hnae_handle *h = priv->ae_handle;
1150 
1151 	napi_enable(&priv->ring_data[idx].napi);
1152 
1153 	enable_irq(priv->ring_data[idx].ring->irq);
1154 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1155 
1156 	return 0;
1157 }
1158 
1159 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1160 {
1161 	struct hns_nic_priv *priv = netdev_priv(ndev);
1162 	struct hnae_handle *h = priv->ae_handle;
1163 	struct sockaddr *mac_addr = p;
1164 	int ret;
1165 
1166 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1167 		return -EADDRNOTAVAIL;
1168 
1169 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1170 	if (ret) {
1171 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1172 		return ret;
1173 	}
1174 
1175 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1176 
1177 	return 0;
1178 }
1179 
1180 void hns_nic_update_stats(struct net_device *netdev)
1181 {
1182 	struct hns_nic_priv *priv = netdev_priv(netdev);
1183 	struct hnae_handle *h = priv->ae_handle;
1184 
1185 	h->dev->ops->update_stats(h, &netdev->stats);
1186 }
1187 
1188 /* set mac addr if it is configed. or leave it to the AE driver */
1189 static void hns_init_mac_addr(struct net_device *ndev)
1190 {
1191 	struct hns_nic_priv *priv = netdev_priv(ndev);
1192 
1193 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1194 		eth_hw_addr_random(ndev);
1195 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1196 			 ndev->dev_addr);
1197 	}
1198 }
1199 
1200 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1201 {
1202 	struct hns_nic_priv *priv = netdev_priv(netdev);
1203 	struct hnae_handle *h = priv->ae_handle;
1204 
1205 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1206 	disable_irq(priv->ring_data[idx].ring->irq);
1207 
1208 	napi_disable(&priv->ring_data[idx].napi);
1209 }
1210 
1211 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1212 				      struct hnae_ring *ring, cpumask_t *mask)
1213 {
1214 	int cpu;
1215 
1216 	/* Diffrent irq banlance between 16core and 32core.
1217 	 * The cpu mask set by ring index according to the ring flag
1218 	 * which indicate the ring is tx or rx.
1219 	 */
1220 	if (q_num == num_possible_cpus()) {
1221 		if (is_tx_ring(ring))
1222 			cpu = ring_idx;
1223 		else
1224 			cpu = ring_idx - q_num;
1225 	} else {
1226 		if (is_tx_ring(ring))
1227 			cpu = ring_idx * 2;
1228 		else
1229 			cpu = (ring_idx - q_num) * 2 + 1;
1230 	}
1231 
1232 	cpumask_clear(mask);
1233 	cpumask_set_cpu(cpu, mask);
1234 
1235 	return cpu;
1236 }
1237 
1238 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1239 {
1240 	struct hnae_handle *h = priv->ae_handle;
1241 	struct hns_nic_ring_data *rd;
1242 	int i;
1243 	int ret;
1244 	int cpu;
1245 
1246 	for (i = 0; i < h->q_num * 2; i++) {
1247 		rd = &priv->ring_data[i];
1248 
1249 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1250 			break;
1251 
1252 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1253 			 "%s-%s%d", priv->netdev->name,
1254 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1255 
1256 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1257 
1258 		ret = request_irq(rd->ring->irq,
1259 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1260 		if (ret) {
1261 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1262 				   rd->ring->irq);
1263 			return ret;
1264 		}
1265 		disable_irq(rd->ring->irq);
1266 
1267 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1268 						 rd->ring, &rd->mask);
1269 
1270 		if (cpu_online(cpu))
1271 			irq_set_affinity_hint(rd->ring->irq,
1272 					      &rd->mask);
1273 
1274 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int hns_nic_net_up(struct net_device *ndev)
1281 {
1282 	struct hns_nic_priv *priv = netdev_priv(ndev);
1283 	struct hnae_handle *h = priv->ae_handle;
1284 	int i, j;
1285 	int ret;
1286 
1287 	ret = hns_nic_init_irq(priv);
1288 	if (ret != 0) {
1289 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1290 		return ret;
1291 	}
1292 
1293 	for (i = 0; i < h->q_num * 2; i++) {
1294 		ret = hns_nic_ring_open(ndev, i);
1295 		if (ret)
1296 			goto out_has_some_queues;
1297 	}
1298 
1299 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1300 	if (ret)
1301 		goto out_set_mac_addr_err;
1302 
1303 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1304 	if (ret)
1305 		goto out_start_err;
1306 
1307 	if (ndev->phydev)
1308 		phy_start(ndev->phydev);
1309 
1310 	clear_bit(NIC_STATE_DOWN, &priv->state);
1311 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1312 
1313 	return 0;
1314 
1315 out_start_err:
1316 	netif_stop_queue(ndev);
1317 out_set_mac_addr_err:
1318 out_has_some_queues:
1319 	for (j = i - 1; j >= 0; j--)
1320 		hns_nic_ring_close(ndev, j);
1321 
1322 	set_bit(NIC_STATE_DOWN, &priv->state);
1323 
1324 	return ret;
1325 }
1326 
1327 static void hns_nic_net_down(struct net_device *ndev)
1328 {
1329 	int i;
1330 	struct hnae_ae_ops *ops;
1331 	struct hns_nic_priv *priv = netdev_priv(ndev);
1332 
1333 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1334 		return;
1335 
1336 	(void)del_timer_sync(&priv->service_timer);
1337 	netif_tx_stop_all_queues(ndev);
1338 	netif_carrier_off(ndev);
1339 	netif_tx_disable(ndev);
1340 	priv->link = 0;
1341 
1342 	if (ndev->phydev)
1343 		phy_stop(ndev->phydev);
1344 
1345 	ops = priv->ae_handle->dev->ops;
1346 
1347 	if (ops->stop)
1348 		ops->stop(priv->ae_handle);
1349 
1350 	netif_tx_stop_all_queues(ndev);
1351 
1352 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1353 		hns_nic_ring_close(ndev, i);
1354 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1355 
1356 		/* clean tx buffers*/
1357 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1358 	}
1359 }
1360 
1361 void hns_nic_net_reset(struct net_device *ndev)
1362 {
1363 	struct hns_nic_priv *priv = netdev_priv(ndev);
1364 	struct hnae_handle *handle = priv->ae_handle;
1365 
1366 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1367 		usleep_range(1000, 2000);
1368 
1369 	(void)hnae_reinit_handle(handle);
1370 
1371 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1372 }
1373 
1374 void hns_nic_net_reinit(struct net_device *netdev)
1375 {
1376 	struct hns_nic_priv *priv = netdev_priv(netdev);
1377 
1378 	netif_trans_update(priv->netdev);
1379 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1380 		usleep_range(1000, 2000);
1381 
1382 	hns_nic_net_down(netdev);
1383 	hns_nic_net_reset(netdev);
1384 	(void)hns_nic_net_up(netdev);
1385 	clear_bit(NIC_STATE_REINITING, &priv->state);
1386 }
1387 
1388 static int hns_nic_net_open(struct net_device *ndev)
1389 {
1390 	struct hns_nic_priv *priv = netdev_priv(ndev);
1391 	struct hnae_handle *h = priv->ae_handle;
1392 	int ret;
1393 
1394 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1395 		return -EBUSY;
1396 
1397 	priv->link = 0;
1398 	netif_carrier_off(ndev);
1399 
1400 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1401 	if (ret < 0) {
1402 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1403 			   ret);
1404 		return ret;
1405 	}
1406 
1407 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1408 	if (ret < 0) {
1409 		netdev_err(ndev,
1410 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1411 		return ret;
1412 	}
1413 
1414 	ret = hns_nic_net_up(ndev);
1415 	if (ret) {
1416 		netdev_err(ndev,
1417 			   "hns net up fail, ret=%d!\n", ret);
1418 		return ret;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 static int hns_nic_net_stop(struct net_device *ndev)
1425 {
1426 	hns_nic_net_down(ndev);
1427 
1428 	return 0;
1429 }
1430 
1431 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1432 static void hns_nic_net_timeout(struct net_device *ndev)
1433 {
1434 	struct hns_nic_priv *priv = netdev_priv(ndev);
1435 
1436 	hns_tx_timeout_reset(priv);
1437 }
1438 
1439 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1440 			    int cmd)
1441 {
1442 	struct phy_device *phy_dev = netdev->phydev;
1443 
1444 	if (!netif_running(netdev))
1445 		return -EINVAL;
1446 
1447 	if (!phy_dev)
1448 		return -ENOTSUPP;
1449 
1450 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1451 }
1452 
1453 /* use only for netconsole to poll with the device without interrupt */
1454 #ifdef CONFIG_NET_POLL_CONTROLLER
1455 void hns_nic_poll_controller(struct net_device *ndev)
1456 {
1457 	struct hns_nic_priv *priv = netdev_priv(ndev);
1458 	unsigned long flags;
1459 	int i;
1460 
1461 	local_irq_save(flags);
1462 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1463 		napi_schedule(&priv->ring_data[i].napi);
1464 	local_irq_restore(flags);
1465 }
1466 #endif
1467 
1468 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1469 				    struct net_device *ndev)
1470 {
1471 	struct hns_nic_priv *priv = netdev_priv(ndev);
1472 	int ret;
1473 
1474 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1475 	ret = hns_nic_net_xmit_hw(ndev, skb,
1476 				  &tx_ring_data(priv, skb->queue_mapping));
1477 	if (ret == NETDEV_TX_OK) {
1478 		netif_trans_update(ndev);
1479 		ndev->stats.tx_bytes += skb->len;
1480 		ndev->stats.tx_packets++;
1481 	}
1482 	return (netdev_tx_t)ret;
1483 }
1484 
1485 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1486 				  struct sk_buff *skb)
1487 {
1488 	dev_kfree_skb_any(skb);
1489 }
1490 
1491 #define HNS_LB_TX_RING	0
1492 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1493 {
1494 	struct sk_buff *skb;
1495 	struct ethhdr *ethhdr;
1496 	int frame_len;
1497 
1498 	/* allocate test skb */
1499 	skb = alloc_skb(64, GFP_KERNEL);
1500 	if (!skb)
1501 		return NULL;
1502 
1503 	skb_put(skb, 64);
1504 	skb->dev = ndev;
1505 	memset(skb->data, 0xFF, skb->len);
1506 
1507 	/* must be tcp/ip package */
1508 	ethhdr = (struct ethhdr *)skb->data;
1509 	ethhdr->h_proto = htons(ETH_P_IP);
1510 
1511 	frame_len = skb->len & (~1ul);
1512 	memset(&skb->data[frame_len / 2], 0xAA,
1513 	       frame_len / 2 - 1);
1514 
1515 	skb->queue_mapping = HNS_LB_TX_RING;
1516 
1517 	return skb;
1518 }
1519 
1520 static int hns_enable_serdes_lb(struct net_device *ndev)
1521 {
1522 	struct hns_nic_priv *priv = netdev_priv(ndev);
1523 	struct hnae_handle *h = priv->ae_handle;
1524 	struct hnae_ae_ops *ops = h->dev->ops;
1525 	int speed, duplex;
1526 	int ret;
1527 
1528 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1529 	if (ret)
1530 		return ret;
1531 
1532 	ret = ops->start ? ops->start(h) : 0;
1533 	if (ret)
1534 		return ret;
1535 
1536 	/* link adjust duplex*/
1537 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1538 		speed = 1000;
1539 	else
1540 		speed = 10000;
1541 	duplex = 1;
1542 
1543 	ops->adjust_link(h, speed, duplex);
1544 
1545 	/* wait h/w ready */
1546 	mdelay(300);
1547 
1548 	return 0;
1549 }
1550 
1551 static void hns_disable_serdes_lb(struct net_device *ndev)
1552 {
1553 	struct hns_nic_priv *priv = netdev_priv(ndev);
1554 	struct hnae_handle *h = priv->ae_handle;
1555 	struct hnae_ae_ops *ops = h->dev->ops;
1556 
1557 	ops->stop(h);
1558 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1559 }
1560 
1561 /**
1562  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1563  *function as follows:
1564  *    1. if one rx ring has found the page_offset is not equal 0 between head
1565  *       and tail, it means that the chip fetched the wrong descs for the ring
1566  *       which buffer size is 4096.
1567  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1568  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1569  *       recieving all packages and it will fetch new descriptions.
1570  *    4. recover to the original state.
1571  *
1572  *@ndev: net device
1573  */
1574 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1575 {
1576 	struct hns_nic_priv *priv = netdev_priv(ndev);
1577 	struct hnae_handle *h = priv->ae_handle;
1578 	struct hnae_ae_ops *ops = h->dev->ops;
1579 	struct hns_nic_ring_data *rd;
1580 	struct hnae_ring *ring;
1581 	struct sk_buff *skb;
1582 	u32 *org_indir;
1583 	u32 *cur_indir;
1584 	int indir_size;
1585 	int head, tail;
1586 	int fetch_num;
1587 	int i, j;
1588 	bool found;
1589 	int retry_times;
1590 	int ret = 0;
1591 
1592 	/* alloc indir memory */
1593 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1594 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1595 	if (!org_indir)
1596 		return -ENOMEM;
1597 
1598 	/* store the orginal indirection */
1599 	ops->get_rss(h, org_indir, NULL, NULL);
1600 
1601 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1602 	if (!cur_indir) {
1603 		ret = -ENOMEM;
1604 		goto cur_indir_alloc_err;
1605 	}
1606 
1607 	/* set loopback */
1608 	if (hns_enable_serdes_lb(ndev)) {
1609 		ret = -EINVAL;
1610 		goto enable_serdes_lb_err;
1611 	}
1612 
1613 	/* foreach every rx ring to clear fetch desc */
1614 	for (i = 0; i < h->q_num; i++) {
1615 		ring = &h->qs[i]->rx_ring;
1616 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1617 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1618 		found = false;
1619 		fetch_num = ring_dist(ring, head, tail);
1620 
1621 		while (head != tail) {
1622 			if (ring->desc_cb[head].page_offset != 0) {
1623 				found = true;
1624 				break;
1625 			}
1626 
1627 			head++;
1628 			if (head == ring->desc_num)
1629 				head = 0;
1630 		}
1631 
1632 		if (found) {
1633 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1634 				cur_indir[j] = i;
1635 			ops->set_rss(h, cur_indir, NULL, 0);
1636 
1637 			for (j = 0; j < fetch_num; j++) {
1638 				/* alloc one skb and init */
1639 				skb = hns_assemble_skb(ndev);
1640 				if (!skb)
1641 					goto out;
1642 				rd = &tx_ring_data(priv, skb->queue_mapping);
1643 				hns_nic_net_xmit_hw(ndev, skb, rd);
1644 
1645 				retry_times = 0;
1646 				while (retry_times++ < 10) {
1647 					mdelay(10);
1648 					/* clean rx */
1649 					rd = &rx_ring_data(priv, i);
1650 					if (rd->poll_one(rd, fetch_num,
1651 							 hns_nic_drop_rx_fetch))
1652 						break;
1653 				}
1654 
1655 				retry_times = 0;
1656 				while (retry_times++ < 10) {
1657 					mdelay(10);
1658 					/* clean tx ring 0 send package */
1659 					rd = &tx_ring_data(priv,
1660 							   HNS_LB_TX_RING);
1661 					if (rd->poll_one(rd, fetch_num, NULL))
1662 						break;
1663 				}
1664 			}
1665 		}
1666 	}
1667 
1668 out:
1669 	/* restore everything */
1670 	ops->set_rss(h, org_indir, NULL, 0);
1671 	hns_disable_serdes_lb(ndev);
1672 enable_serdes_lb_err:
1673 	kfree(cur_indir);
1674 cur_indir_alloc_err:
1675 	kfree(org_indir);
1676 
1677 	return ret;
1678 }
1679 
1680 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1681 {
1682 	struct hns_nic_priv *priv = netdev_priv(ndev);
1683 	struct hnae_handle *h = priv->ae_handle;
1684 	bool if_running = netif_running(ndev);
1685 	int ret;
1686 
1687 	/* MTU < 68 is an error and causes problems on some kernels */
1688 	if (new_mtu < 68)
1689 		return -EINVAL;
1690 
1691 	/* MTU no change */
1692 	if (new_mtu == ndev->mtu)
1693 		return 0;
1694 
1695 	if (!h->dev->ops->set_mtu)
1696 		return -ENOTSUPP;
1697 
1698 	if (if_running) {
1699 		(void)hns_nic_net_stop(ndev);
1700 		msleep(100);
1701 	}
1702 
1703 	if (priv->enet_ver != AE_VERSION_1 &&
1704 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1705 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1706 		/* update desc */
1707 		hnae_reinit_all_ring_desc(h);
1708 
1709 		/* clear the package which the chip has fetched */
1710 		ret = hns_nic_clear_all_rx_fetch(ndev);
1711 
1712 		/* the page offset must be consist with desc */
1713 		hnae_reinit_all_ring_page_off(h);
1714 
1715 		if (ret) {
1716 			netdev_err(ndev, "clear the fetched desc fail\n");
1717 			goto out;
1718 		}
1719 	}
1720 
1721 	ret = h->dev->ops->set_mtu(h, new_mtu);
1722 	if (ret) {
1723 		netdev_err(ndev, "set mtu fail, return value %d\n",
1724 			   ret);
1725 		goto out;
1726 	}
1727 
1728 	/* finally, set new mtu to netdevice */
1729 	ndev->mtu = new_mtu;
1730 
1731 out:
1732 	if (if_running) {
1733 		if (hns_nic_net_open(ndev)) {
1734 			netdev_err(ndev, "hns net open fail\n");
1735 			ret = -EINVAL;
1736 		}
1737 	}
1738 
1739 	return ret;
1740 }
1741 
1742 static int hns_nic_set_features(struct net_device *netdev,
1743 				netdev_features_t features)
1744 {
1745 	struct hns_nic_priv *priv = netdev_priv(netdev);
1746 
1747 	switch (priv->enet_ver) {
1748 	case AE_VERSION_1:
1749 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1750 			netdev_info(netdev, "enet v1 do not support tso!\n");
1751 		break;
1752 	default:
1753 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1754 			priv->ops.fill_desc = fill_tso_desc;
1755 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1756 			/* The chip only support 7*4096 */
1757 			netif_set_gso_max_size(netdev, 7 * 4096);
1758 		} else {
1759 			priv->ops.fill_desc = fill_v2_desc;
1760 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1761 		}
1762 		break;
1763 	}
1764 	netdev->features = features;
1765 	return 0;
1766 }
1767 
1768 static netdev_features_t hns_nic_fix_features(
1769 		struct net_device *netdev, netdev_features_t features)
1770 {
1771 	struct hns_nic_priv *priv = netdev_priv(netdev);
1772 
1773 	switch (priv->enet_ver) {
1774 	case AE_VERSION_1:
1775 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1776 				NETIF_F_HW_VLAN_CTAG_FILTER);
1777 		break;
1778 	default:
1779 		break;
1780 	}
1781 	return features;
1782 }
1783 
1784 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1785 {
1786 	struct hns_nic_priv *priv = netdev_priv(netdev);
1787 	struct hnae_handle *h = priv->ae_handle;
1788 
1789 	if (h->dev->ops->add_uc_addr)
1790 		return h->dev->ops->add_uc_addr(h, addr);
1791 
1792 	return 0;
1793 }
1794 
1795 static int hns_nic_uc_unsync(struct net_device *netdev,
1796 			     const unsigned char *addr)
1797 {
1798 	struct hns_nic_priv *priv = netdev_priv(netdev);
1799 	struct hnae_handle *h = priv->ae_handle;
1800 
1801 	if (h->dev->ops->rm_uc_addr)
1802 		return h->dev->ops->rm_uc_addr(h, addr);
1803 
1804 	return 0;
1805 }
1806 
1807 /**
1808  * nic_set_multicast_list - set mutl mac address
1809  * @netdev: net device
1810  * @p: mac address
1811  *
1812  * return void
1813  */
1814 void hns_set_multicast_list(struct net_device *ndev)
1815 {
1816 	struct hns_nic_priv *priv = netdev_priv(ndev);
1817 	struct hnae_handle *h = priv->ae_handle;
1818 	struct netdev_hw_addr *ha = NULL;
1819 
1820 	if (!h)	{
1821 		netdev_err(ndev, "hnae handle is null\n");
1822 		return;
1823 	}
1824 
1825 	if (h->dev->ops->clr_mc_addr)
1826 		if (h->dev->ops->clr_mc_addr(h))
1827 			netdev_err(ndev, "clear multicast address fail\n");
1828 
1829 	if (h->dev->ops->set_mc_addr) {
1830 		netdev_for_each_mc_addr(ha, ndev)
1831 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1832 				netdev_err(ndev, "set multicast fail\n");
1833 	}
1834 }
1835 
1836 void hns_nic_set_rx_mode(struct net_device *ndev)
1837 {
1838 	struct hns_nic_priv *priv = netdev_priv(ndev);
1839 	struct hnae_handle *h = priv->ae_handle;
1840 
1841 	if (h->dev->ops->set_promisc_mode) {
1842 		if (ndev->flags & IFF_PROMISC)
1843 			h->dev->ops->set_promisc_mode(h, 1);
1844 		else
1845 			h->dev->ops->set_promisc_mode(h, 0);
1846 	}
1847 
1848 	hns_set_multicast_list(ndev);
1849 
1850 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1851 		netdev_err(ndev, "sync uc address fail\n");
1852 }
1853 
1854 static void hns_nic_get_stats64(struct net_device *ndev,
1855 				struct rtnl_link_stats64 *stats)
1856 {
1857 	int idx = 0;
1858 	u64 tx_bytes = 0;
1859 	u64 rx_bytes = 0;
1860 	u64 tx_pkts = 0;
1861 	u64 rx_pkts = 0;
1862 	struct hns_nic_priv *priv = netdev_priv(ndev);
1863 	struct hnae_handle *h = priv->ae_handle;
1864 
1865 	for (idx = 0; idx < h->q_num; idx++) {
1866 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1867 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1868 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1869 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1870 	}
1871 
1872 	stats->tx_bytes = tx_bytes;
1873 	stats->tx_packets = tx_pkts;
1874 	stats->rx_bytes = rx_bytes;
1875 	stats->rx_packets = rx_pkts;
1876 
1877 	stats->rx_errors = ndev->stats.rx_errors;
1878 	stats->multicast = ndev->stats.multicast;
1879 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1880 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1881 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1882 
1883 	stats->tx_errors = ndev->stats.tx_errors;
1884 	stats->rx_dropped = ndev->stats.rx_dropped;
1885 	stats->tx_dropped = ndev->stats.tx_dropped;
1886 	stats->collisions = ndev->stats.collisions;
1887 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1888 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1889 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1890 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1891 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1892 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1893 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1894 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1895 	stats->rx_compressed = ndev->stats.rx_compressed;
1896 	stats->tx_compressed = ndev->stats.tx_compressed;
1897 }
1898 
1899 static u16
1900 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1901 		     void *accel_priv, select_queue_fallback_t fallback)
1902 {
1903 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1904 	struct hns_nic_priv *priv = netdev_priv(ndev);
1905 
1906 	/* fix hardware broadcast/multicast packets queue loopback */
1907 	if (!AE_IS_VER1(priv->enet_ver) &&
1908 	    is_multicast_ether_addr(eth_hdr->h_dest))
1909 		return 0;
1910 	else
1911 		return fallback(ndev, skb);
1912 }
1913 
1914 static const struct net_device_ops hns_nic_netdev_ops = {
1915 	.ndo_open = hns_nic_net_open,
1916 	.ndo_stop = hns_nic_net_stop,
1917 	.ndo_start_xmit = hns_nic_net_xmit,
1918 	.ndo_tx_timeout = hns_nic_net_timeout,
1919 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1920 	.ndo_change_mtu = hns_nic_change_mtu,
1921 	.ndo_do_ioctl = hns_nic_do_ioctl,
1922 	.ndo_set_features = hns_nic_set_features,
1923 	.ndo_fix_features = hns_nic_fix_features,
1924 	.ndo_get_stats64 = hns_nic_get_stats64,
1925 #ifdef CONFIG_NET_POLL_CONTROLLER
1926 	.ndo_poll_controller = hns_nic_poll_controller,
1927 #endif
1928 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1929 	.ndo_select_queue = hns_nic_select_queue,
1930 };
1931 
1932 static void hns_nic_update_link_status(struct net_device *netdev)
1933 {
1934 	struct hns_nic_priv *priv = netdev_priv(netdev);
1935 
1936 	struct hnae_handle *h = priv->ae_handle;
1937 
1938 	if (h->phy_dev) {
1939 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1940 			return;
1941 
1942 		(void)genphy_read_status(h->phy_dev);
1943 	}
1944 	hns_nic_adjust_link(netdev);
1945 }
1946 
1947 /* for dumping key regs*/
1948 static void hns_nic_dump(struct hns_nic_priv *priv)
1949 {
1950 	struct hnae_handle *h = priv->ae_handle;
1951 	struct hnae_ae_ops *ops = h->dev->ops;
1952 	u32 *data, reg_num, i;
1953 
1954 	if (ops->get_regs_len && ops->get_regs) {
1955 		reg_num = ops->get_regs_len(priv->ae_handle);
1956 		reg_num = (reg_num + 3ul) & ~3ul;
1957 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1958 		if (data) {
1959 			ops->get_regs(priv->ae_handle, data);
1960 			for (i = 0; i < reg_num; i += 4)
1961 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1962 					i, data[i], data[i + 1],
1963 					data[i + 2], data[i + 3]);
1964 			kfree(data);
1965 		}
1966 	}
1967 
1968 	for (i = 0; i < h->q_num; i++) {
1969 		pr_info("tx_queue%d_next_to_clean:%d\n",
1970 			i, h->qs[i]->tx_ring.next_to_clean);
1971 		pr_info("tx_queue%d_next_to_use:%d\n",
1972 			i, h->qs[i]->tx_ring.next_to_use);
1973 		pr_info("rx_queue%d_next_to_clean:%d\n",
1974 			i, h->qs[i]->rx_ring.next_to_clean);
1975 		pr_info("rx_queue%d_next_to_use:%d\n",
1976 			i, h->qs[i]->rx_ring.next_to_use);
1977 	}
1978 }
1979 
1980 /* for resetting subtask */
1981 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1982 {
1983 	enum hnae_port_type type = priv->ae_handle->port_type;
1984 
1985 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1986 		return;
1987 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1988 
1989 	/* If we're already down, removing or resetting, just bail */
1990 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1991 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1992 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1993 		return;
1994 
1995 	hns_nic_dump(priv);
1996 	netdev_info(priv->netdev, "try to reset %s port!\n",
1997 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1998 
1999 	rtnl_lock();
2000 	/* put off any impending NetWatchDogTimeout */
2001 	netif_trans_update(priv->netdev);
2002 
2003 	if (type == HNAE_PORT_DEBUG) {
2004 		hns_nic_net_reinit(priv->netdev);
2005 	} else {
2006 		netif_carrier_off(priv->netdev);
2007 		netif_tx_disable(priv->netdev);
2008 	}
2009 	rtnl_unlock();
2010 }
2011 
2012 /* for doing service complete*/
2013 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2014 {
2015 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2016 	/* make sure to commit the things */
2017 	smp_mb__before_atomic();
2018 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2019 }
2020 
2021 static void hns_nic_service_task(struct work_struct *work)
2022 {
2023 	struct hns_nic_priv *priv
2024 		= container_of(work, struct hns_nic_priv, service_task);
2025 	struct hnae_handle *h = priv->ae_handle;
2026 
2027 	hns_nic_update_link_status(priv->netdev);
2028 	h->dev->ops->update_led_status(h);
2029 	hns_nic_update_stats(priv->netdev);
2030 
2031 	hns_nic_reset_subtask(priv);
2032 	hns_nic_service_event_complete(priv);
2033 }
2034 
2035 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2036 {
2037 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2038 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2039 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2040 		(void)schedule_work(&priv->service_task);
2041 }
2042 
2043 static void hns_nic_service_timer(unsigned long data)
2044 {
2045 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2046 
2047 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2048 
2049 	hns_nic_task_schedule(priv);
2050 }
2051 
2052 /**
2053  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2054  * @priv: driver private struct
2055  **/
2056 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2057 {
2058 	/* Do the reset outside of interrupt context */
2059 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2060 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2061 		netdev_warn(priv->netdev,
2062 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2063 			    priv->tx_timeout_count, priv->state);
2064 		priv->tx_timeout_count++;
2065 		hns_nic_task_schedule(priv);
2066 	}
2067 }
2068 
2069 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2070 {
2071 	struct hnae_handle *h = priv->ae_handle;
2072 	struct hns_nic_ring_data *rd;
2073 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2074 	int i;
2075 
2076 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2077 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2078 		return -EINVAL;
2079 	}
2080 
2081 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2082 				  GFP_KERNEL);
2083 	if (!priv->ring_data)
2084 		return -ENOMEM;
2085 
2086 	for (i = 0; i < h->q_num; i++) {
2087 		rd = &priv->ring_data[i];
2088 		rd->queue_index = i;
2089 		rd->ring = &h->qs[i]->tx_ring;
2090 		rd->poll_one = hns_nic_tx_poll_one;
2091 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2092 			hns_nic_tx_fini_pro_v2;
2093 
2094 		netif_napi_add(priv->netdev, &rd->napi,
2095 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2096 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2097 	}
2098 	for (i = h->q_num; i < h->q_num * 2; i++) {
2099 		rd = &priv->ring_data[i];
2100 		rd->queue_index = i - h->q_num;
2101 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2102 		rd->poll_one = hns_nic_rx_poll_one;
2103 		rd->ex_process = hns_nic_rx_up_pro;
2104 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2105 			hns_nic_rx_fini_pro_v2;
2106 
2107 		netif_napi_add(priv->netdev, &rd->napi,
2108 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2109 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2116 {
2117 	struct hnae_handle *h = priv->ae_handle;
2118 	int i;
2119 
2120 	for (i = 0; i < h->q_num * 2; i++) {
2121 		netif_napi_del(&priv->ring_data[i].napi);
2122 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2123 			(void)irq_set_affinity_hint(
2124 				priv->ring_data[i].ring->irq,
2125 				NULL);
2126 			free_irq(priv->ring_data[i].ring->irq,
2127 				 &priv->ring_data[i]);
2128 		}
2129 
2130 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2131 	}
2132 	kfree(priv->ring_data);
2133 }
2134 
2135 static void hns_nic_set_priv_ops(struct net_device *netdev)
2136 {
2137 	struct hns_nic_priv *priv = netdev_priv(netdev);
2138 	struct hnae_handle *h = priv->ae_handle;
2139 
2140 	if (AE_IS_VER1(priv->enet_ver)) {
2141 		priv->ops.fill_desc = fill_desc;
2142 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2143 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2144 	} else {
2145 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2146 		if ((netdev->features & NETIF_F_TSO) ||
2147 		    (netdev->features & NETIF_F_TSO6)) {
2148 			priv->ops.fill_desc = fill_tso_desc;
2149 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2150 			/* This chip only support 7*4096 */
2151 			netif_set_gso_max_size(netdev, 7 * 4096);
2152 		} else {
2153 			priv->ops.fill_desc = fill_v2_desc;
2154 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2155 		}
2156 		/* enable tso when init
2157 		 * control tso on/off through TSE bit in bd
2158 		 */
2159 		h->dev->ops->set_tso_stats(h, 1);
2160 	}
2161 }
2162 
2163 static int hns_nic_try_get_ae(struct net_device *ndev)
2164 {
2165 	struct hns_nic_priv *priv = netdev_priv(ndev);
2166 	struct hnae_handle *h;
2167 	int ret;
2168 
2169 	h = hnae_get_handle(&priv->netdev->dev,
2170 			    priv->fwnode, priv->port_id, NULL);
2171 	if (IS_ERR_OR_NULL(h)) {
2172 		ret = -ENODEV;
2173 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2174 		goto out;
2175 	}
2176 	priv->ae_handle = h;
2177 
2178 	ret = hns_nic_init_phy(ndev, h);
2179 	if (ret) {
2180 		dev_err(priv->dev, "probe phy device fail!\n");
2181 		goto out_init_phy;
2182 	}
2183 
2184 	ret = hns_nic_init_ring_data(priv);
2185 	if (ret) {
2186 		ret = -ENOMEM;
2187 		goto out_init_ring_data;
2188 	}
2189 
2190 	hns_nic_set_priv_ops(ndev);
2191 
2192 	ret = register_netdev(ndev);
2193 	if (ret) {
2194 		dev_err(priv->dev, "probe register netdev fail!\n");
2195 		goto out_reg_ndev_fail;
2196 	}
2197 	return 0;
2198 
2199 out_reg_ndev_fail:
2200 	hns_nic_uninit_ring_data(priv);
2201 	priv->ring_data = NULL;
2202 out_init_phy:
2203 out_init_ring_data:
2204 	hnae_put_handle(priv->ae_handle);
2205 	priv->ae_handle = NULL;
2206 out:
2207 	return ret;
2208 }
2209 
2210 static int hns_nic_notifier_action(struct notifier_block *nb,
2211 				   unsigned long action, void *data)
2212 {
2213 	struct hns_nic_priv *priv =
2214 		container_of(nb, struct hns_nic_priv, notifier_block);
2215 
2216 	assert(action == HNAE_AE_REGISTER);
2217 
2218 	if (!hns_nic_try_get_ae(priv->netdev)) {
2219 		hnae_unregister_notifier(&priv->notifier_block);
2220 		priv->notifier_block.notifier_call = NULL;
2221 	}
2222 	return 0;
2223 }
2224 
2225 static int hns_nic_dev_probe(struct platform_device *pdev)
2226 {
2227 	struct device *dev = &pdev->dev;
2228 	struct net_device *ndev;
2229 	struct hns_nic_priv *priv;
2230 	u32 port_id;
2231 	int ret;
2232 
2233 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2234 	if (!ndev)
2235 		return -ENOMEM;
2236 
2237 	platform_set_drvdata(pdev, ndev);
2238 
2239 	priv = netdev_priv(ndev);
2240 	priv->dev = dev;
2241 	priv->netdev = ndev;
2242 
2243 	if (dev_of_node(dev)) {
2244 		struct device_node *ae_node;
2245 
2246 		if (of_device_is_compatible(dev->of_node,
2247 					    "hisilicon,hns-nic-v1"))
2248 			priv->enet_ver = AE_VERSION_1;
2249 		else
2250 			priv->enet_ver = AE_VERSION_2;
2251 
2252 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2253 		if (IS_ERR_OR_NULL(ae_node)) {
2254 			ret = PTR_ERR(ae_node);
2255 			dev_err(dev, "not find ae-handle\n");
2256 			goto out_read_prop_fail;
2257 		}
2258 		priv->fwnode = &ae_node->fwnode;
2259 	} else if (is_acpi_node(dev->fwnode)) {
2260 		struct acpi_reference_args args;
2261 
2262 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2263 			priv->enet_ver = AE_VERSION_1;
2264 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2265 			priv->enet_ver = AE_VERSION_2;
2266 		else
2267 			return -ENXIO;
2268 
2269 		/* try to find port-idx-in-ae first */
2270 		ret = acpi_node_get_property_reference(dev->fwnode,
2271 						       "ae-handle", 0, &args);
2272 		if (ret) {
2273 			dev_err(dev, "not find ae-handle\n");
2274 			goto out_read_prop_fail;
2275 		}
2276 		priv->fwnode = acpi_fwnode_handle(args.adev);
2277 	} else {
2278 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2279 		return -ENXIO;
2280 	}
2281 
2282 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2283 	if (ret) {
2284 		/* only for old code compatible */
2285 		ret = device_property_read_u32(dev, "port-id", &port_id);
2286 		if (ret)
2287 			goto out_read_prop_fail;
2288 		/* for old dts, we need to caculate the port offset */
2289 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2290 			: port_id - HNS_SRV_OFFSET;
2291 	}
2292 	priv->port_id = port_id;
2293 
2294 	hns_init_mac_addr(ndev);
2295 
2296 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2297 	ndev->priv_flags |= IFF_UNICAST_FLT;
2298 	ndev->netdev_ops = &hns_nic_netdev_ops;
2299 	hns_ethtool_set_ops(ndev);
2300 
2301 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2302 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2303 		NETIF_F_GRO;
2304 	ndev->vlan_features |=
2305 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2306 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2307 
2308 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2309 	ndev->min_mtu = MAC_MIN_MTU;
2310 	switch (priv->enet_ver) {
2311 	case AE_VERSION_2:
2312 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2313 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2314 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2315 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2316 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2317 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2318 		break;
2319 	default:
2320 		ndev->max_mtu = MAC_MAX_MTU -
2321 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2322 		break;
2323 	}
2324 
2325 	SET_NETDEV_DEV(ndev, dev);
2326 
2327 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2328 		dev_dbg(dev, "set mask to 64bit\n");
2329 	else
2330 		dev_err(dev, "set mask to 64bit fail!\n");
2331 
2332 	/* carrier off reporting is important to ethtool even BEFORE open */
2333 	netif_carrier_off(ndev);
2334 
2335 	setup_timer(&priv->service_timer, hns_nic_service_timer,
2336 		    (unsigned long)priv);
2337 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2338 
2339 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2340 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2341 	set_bit(NIC_STATE_DOWN, &priv->state);
2342 
2343 	if (hns_nic_try_get_ae(priv->netdev)) {
2344 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2345 		ret = hnae_register_notifier(&priv->notifier_block);
2346 		if (ret) {
2347 			dev_err(dev, "register notifier fail!\n");
2348 			goto out_notify_fail;
2349 		}
2350 		dev_dbg(dev, "has not handle, register notifier!\n");
2351 	}
2352 
2353 	return 0;
2354 
2355 out_notify_fail:
2356 	(void)cancel_work_sync(&priv->service_task);
2357 out_read_prop_fail:
2358 	free_netdev(ndev);
2359 	return ret;
2360 }
2361 
2362 static int hns_nic_dev_remove(struct platform_device *pdev)
2363 {
2364 	struct net_device *ndev = platform_get_drvdata(pdev);
2365 	struct hns_nic_priv *priv = netdev_priv(ndev);
2366 
2367 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2368 		unregister_netdev(ndev);
2369 
2370 	if (priv->ring_data)
2371 		hns_nic_uninit_ring_data(priv);
2372 	priv->ring_data = NULL;
2373 
2374 	if (ndev->phydev)
2375 		phy_disconnect(ndev->phydev);
2376 
2377 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2378 		hnae_put_handle(priv->ae_handle);
2379 	priv->ae_handle = NULL;
2380 	if (priv->notifier_block.notifier_call)
2381 		hnae_unregister_notifier(&priv->notifier_block);
2382 	priv->notifier_block.notifier_call = NULL;
2383 
2384 	set_bit(NIC_STATE_REMOVING, &priv->state);
2385 	(void)cancel_work_sync(&priv->service_task);
2386 
2387 	free_netdev(ndev);
2388 	return 0;
2389 }
2390 
2391 static const struct of_device_id hns_enet_of_match[] = {
2392 	{.compatible = "hisilicon,hns-nic-v1",},
2393 	{.compatible = "hisilicon,hns-nic-v2",},
2394 	{},
2395 };
2396 
2397 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2398 
2399 static struct platform_driver hns_nic_dev_driver = {
2400 	.driver = {
2401 		.name = "hns-nic",
2402 		.of_match_table = hns_enet_of_match,
2403 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2404 	},
2405 	.probe = hns_nic_dev_probe,
2406 	.remove = hns_nic_dev_remove,
2407 };
2408 
2409 module_platform_driver(hns_nic_dev_driver);
2410 
2411 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2412 MODULE_AUTHOR("Hisilicon, Inc.");
2413 MODULE_LICENSE("GPL");
2414 MODULE_ALIAS("platform:hns-nic");
2415