1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 44 int send_sz, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)send_sz); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 137 int size, dma_addr_t dma, int frag_end, 138 int buf_num, enum hns_desc_type type, int mtu) 139 { 140 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 141 buf_num, type, mtu); 142 } 143 144 static const struct acpi_device_id hns_enet_acpi_match[] = { 145 { "HISI00C1", 0 }, 146 { "HISI00C2", 0 }, 147 { }, 148 }; 149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 150 151 static void fill_desc(struct hnae_ring *ring, void *priv, 152 int size, dma_addr_t dma, int frag_end, 153 int buf_num, enum hns_desc_type type, int mtu) 154 { 155 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 156 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 157 struct sk_buff *skb; 158 __be16 protocol; 159 u32 ip_offset; 160 u32 asid_bufnum_pid = 0; 161 u32 flag_ipoffset = 0; 162 163 desc_cb->priv = priv; 164 desc_cb->length = size; 165 desc_cb->dma = dma; 166 desc_cb->type = type; 167 168 desc->addr = cpu_to_le64(dma); 169 desc->tx.send_size = cpu_to_le16((u16)size); 170 171 /*config bd buffer end */ 172 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 173 174 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 175 176 if (type == DESC_TYPE_SKB) { 177 skb = (struct sk_buff *)priv; 178 179 if (skb->ip_summed == CHECKSUM_PARTIAL) { 180 protocol = skb->protocol; 181 ip_offset = ETH_HLEN; 182 183 /*if it is a SW VLAN check the next protocol*/ 184 if (protocol == htons(ETH_P_8021Q)) { 185 ip_offset += VLAN_HLEN; 186 protocol = vlan_get_protocol(skb); 187 skb->protocol = protocol; 188 } 189 190 if (skb->protocol == htons(ETH_P_IP)) { 191 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 192 /* check for tcp/udp header */ 193 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 194 195 } else if (skb->protocol == htons(ETH_P_IPV6)) { 196 /* ipv6 has not l3 cs, check for L4 header */ 197 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 198 } 199 200 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 201 } 202 } 203 204 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 205 206 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 207 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 208 209 ring_ptr_move_fw(ring, next_to_use); 210 } 211 212 static void unfill_desc(struct hnae_ring *ring) 213 { 214 ring_ptr_move_bw(ring, next_to_use); 215 } 216 217 static int hns_nic_maybe_stop_tx( 218 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 219 { 220 struct sk_buff *skb = *out_skb; 221 struct sk_buff *new_skb = NULL; 222 int buf_num; 223 224 /* no. of segments (plus a header) */ 225 buf_num = skb_shinfo(skb)->nr_frags + 1; 226 227 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 228 if (ring_space(ring) < 1) 229 return -EBUSY; 230 231 new_skb = skb_copy(skb, GFP_ATOMIC); 232 if (!new_skb) 233 return -ENOMEM; 234 235 dev_kfree_skb_any(skb); 236 *out_skb = new_skb; 237 buf_num = 1; 238 } else if (buf_num > ring_space(ring)) { 239 return -EBUSY; 240 } 241 242 *bnum = buf_num; 243 return 0; 244 } 245 246 static int hns_nic_maybe_stop_tso( 247 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 248 { 249 int i; 250 int size; 251 int buf_num; 252 int frag_num; 253 struct sk_buff *skb = *out_skb; 254 struct sk_buff *new_skb = NULL; 255 struct skb_frag_struct *frag; 256 257 size = skb_headlen(skb); 258 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 259 260 frag_num = skb_shinfo(skb)->nr_frags; 261 for (i = 0; i < frag_num; i++) { 262 frag = &skb_shinfo(skb)->frags[i]; 263 size = skb_frag_size(frag); 264 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 265 } 266 267 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 268 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 269 if (ring_space(ring) < buf_num) 270 return -EBUSY; 271 /* manual split the send packet */ 272 new_skb = skb_copy(skb, GFP_ATOMIC); 273 if (!new_skb) 274 return -ENOMEM; 275 dev_kfree_skb_any(skb); 276 *out_skb = new_skb; 277 278 } else if (ring_space(ring) < buf_num) { 279 return -EBUSY; 280 } 281 282 *bnum = buf_num; 283 return 0; 284 } 285 286 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 287 int size, dma_addr_t dma, int frag_end, 288 int buf_num, enum hns_desc_type type, int mtu) 289 { 290 int frag_buf_num; 291 int sizeoflast; 292 int k; 293 294 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 295 sizeoflast = size % BD_MAX_SEND_SIZE; 296 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 297 298 /* when the frag size is bigger than hardware, split this frag */ 299 for (k = 0; k < frag_buf_num; k++) 300 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 301 (k == frag_buf_num - 1) ? 302 sizeoflast : BD_MAX_SEND_SIZE, 303 dma + BD_MAX_SEND_SIZE * k, 304 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 305 buf_num, 306 (type == DESC_TYPE_SKB && !k) ? 307 DESC_TYPE_SKB : DESC_TYPE_PAGE, 308 mtu); 309 } 310 311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 312 struct sk_buff *skb, 313 struct hns_nic_ring_data *ring_data) 314 { 315 struct hns_nic_priv *priv = netdev_priv(ndev); 316 struct hnae_ring *ring = ring_data->ring; 317 struct device *dev = ring_to_dev(ring); 318 struct netdev_queue *dev_queue; 319 struct skb_frag_struct *frag; 320 int buf_num; 321 int seg_num; 322 dma_addr_t dma; 323 int size, next_to_use; 324 int i; 325 326 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 327 case -EBUSY: 328 ring->stats.tx_busy++; 329 goto out_net_tx_busy; 330 case -ENOMEM: 331 ring->stats.sw_err_cnt++; 332 netdev_err(ndev, "no memory to xmit!\n"); 333 goto out_err_tx_ok; 334 default: 335 break; 336 } 337 338 /* no. of segments (plus a header) */ 339 seg_num = skb_shinfo(skb)->nr_frags + 1; 340 next_to_use = ring->next_to_use; 341 342 /* fill the first part */ 343 size = skb_headlen(skb); 344 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 345 if (dma_mapping_error(dev, dma)) { 346 netdev_err(ndev, "TX head DMA map failed\n"); 347 ring->stats.sw_err_cnt++; 348 goto out_err_tx_ok; 349 } 350 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 351 buf_num, DESC_TYPE_SKB, ndev->mtu); 352 353 /* fill the fragments */ 354 for (i = 1; i < seg_num; i++) { 355 frag = &skb_shinfo(skb)->frags[i - 1]; 356 size = skb_frag_size(frag); 357 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 358 if (dma_mapping_error(dev, dma)) { 359 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 360 ring->stats.sw_err_cnt++; 361 goto out_map_frag_fail; 362 } 363 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 364 seg_num - 1 == i ? 1 : 0, buf_num, 365 DESC_TYPE_PAGE, ndev->mtu); 366 } 367 368 /*complete translate all packets*/ 369 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 370 netdev_tx_sent_queue(dev_queue, skb->len); 371 372 netif_trans_update(ndev); 373 ndev->stats.tx_bytes += skb->len; 374 ndev->stats.tx_packets++; 375 376 wmb(); /* commit all data before submit */ 377 assert(skb->queue_mapping < priv->ae_handle->q_num); 378 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 379 ring->stats.tx_pkts++; 380 ring->stats.tx_bytes += skb->len; 381 382 return NETDEV_TX_OK; 383 384 out_map_frag_fail: 385 386 while (ring->next_to_use != next_to_use) { 387 unfill_desc(ring); 388 if (ring->next_to_use != next_to_use) 389 dma_unmap_page(dev, 390 ring->desc_cb[ring->next_to_use].dma, 391 ring->desc_cb[ring->next_to_use].length, 392 DMA_TO_DEVICE); 393 else 394 dma_unmap_single(dev, 395 ring->desc_cb[next_to_use].dma, 396 ring->desc_cb[next_to_use].length, 397 DMA_TO_DEVICE); 398 } 399 400 out_err_tx_ok: 401 402 dev_kfree_skb_any(skb); 403 return NETDEV_TX_OK; 404 405 out_net_tx_busy: 406 407 netif_stop_subqueue(ndev, skb->queue_mapping); 408 409 /* Herbert's original patch had: 410 * smp_mb__after_netif_stop_queue(); 411 * but since that doesn't exist yet, just open code it. 412 */ 413 smp_mb(); 414 return NETDEV_TX_BUSY; 415 } 416 417 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 418 struct hnae_ring *ring, int pull_len, 419 struct hnae_desc_cb *desc_cb) 420 { 421 struct hnae_desc *desc; 422 u32 truesize; 423 int size; 424 int last_offset; 425 bool twobufs; 426 427 twobufs = ((PAGE_SIZE < 8192) && 428 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 429 430 desc = &ring->desc[ring->next_to_clean]; 431 size = le16_to_cpu(desc->rx.size); 432 433 if (twobufs) { 434 truesize = hnae_buf_size(ring); 435 } else { 436 truesize = ALIGN(size, L1_CACHE_BYTES); 437 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 438 } 439 440 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 441 size - pull_len, truesize); 442 443 /* avoid re-using remote pages,flag default unreuse */ 444 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 445 return; 446 447 if (twobufs) { 448 /* if we are only owner of page we can reuse it */ 449 if (likely(page_count(desc_cb->priv) == 1)) { 450 /* flip page offset to other buffer */ 451 desc_cb->page_offset ^= truesize; 452 453 desc_cb->reuse_flag = 1; 454 /* bump ref count on page before it is given*/ 455 get_page(desc_cb->priv); 456 } 457 return; 458 } 459 460 /* move offset up to the next cache line */ 461 desc_cb->page_offset += truesize; 462 463 if (desc_cb->page_offset <= last_offset) { 464 desc_cb->reuse_flag = 1; 465 /* bump ref count on page before it is given*/ 466 get_page(desc_cb->priv); 467 } 468 } 469 470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 471 { 472 *out_bnum = hnae_get_field(bnum_flag, 473 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 474 } 475 476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 477 { 478 *out_bnum = hnae_get_field(bnum_flag, 479 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 480 } 481 482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 483 struct sk_buff *skb, u32 flag) 484 { 485 struct net_device *netdev = ring_data->napi.dev; 486 u32 l3id; 487 u32 l4id; 488 489 /* check if RX checksum offload is enabled */ 490 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 491 return; 492 493 /* In hardware, we only support checksum for the following protocols: 494 * 1) IPv4, 495 * 2) TCP(over IPv4 or IPv6), 496 * 3) UDP(over IPv4 or IPv6), 497 * 4) SCTP(over IPv4 or IPv6) 498 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 499 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 500 * 501 * Hardware limitation: 502 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 503 * Error" bit (which usually can be used to indicate whether checksum 504 * was calculated by the hardware and if there was any error encountered 505 * during checksum calculation). 506 * 507 * Software workaround: 508 * We do get info within the RX descriptor about the kind of L3/L4 509 * protocol coming in the packet and the error status. These errors 510 * might not just be checksum errors but could be related to version, 511 * length of IPv4, UDP, TCP etc. 512 * Because there is no-way of knowing if it is a L3/L4 error due to bad 513 * checksum or any other L3/L4 error, we will not (cannot) convey 514 * checksum status for such cases to upper stack and will not maintain 515 * the RX L3/L4 checksum counters as well. 516 */ 517 518 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 519 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 520 521 /* check L3 protocol for which checksum is supported */ 522 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 523 return; 524 525 /* check for any(not just checksum)flagged L3 protocol errors */ 526 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 527 return; 528 529 /* we do not support checksum of fragmented packets */ 530 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 531 return; 532 533 /* check L4 protocol for which checksum is supported */ 534 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 535 (l4id != HNS_RX_FLAG_L4ID_UDP) && 536 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 537 return; 538 539 /* check for any(not just checksum)flagged L4 protocol errors */ 540 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 541 return; 542 543 /* now, this has to be a packet with valid RX checksum */ 544 skb->ip_summed = CHECKSUM_UNNECESSARY; 545 } 546 547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 548 struct sk_buff **out_skb, int *out_bnum) 549 { 550 struct hnae_ring *ring = ring_data->ring; 551 struct net_device *ndev = ring_data->napi.dev; 552 struct hns_nic_priv *priv = netdev_priv(ndev); 553 struct sk_buff *skb; 554 struct hnae_desc *desc; 555 struct hnae_desc_cb *desc_cb; 556 unsigned char *va; 557 int bnum, length, i; 558 int pull_len; 559 u32 bnum_flag; 560 561 desc = &ring->desc[ring->next_to_clean]; 562 desc_cb = &ring->desc_cb[ring->next_to_clean]; 563 564 prefetch(desc); 565 566 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 567 568 /* prefetch first cache line of first page */ 569 prefetch(va); 570 #if L1_CACHE_BYTES < 128 571 prefetch(va + L1_CACHE_BYTES); 572 #endif 573 574 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 575 HNS_RX_HEAD_SIZE); 576 if (unlikely(!skb)) { 577 netdev_err(ndev, "alloc rx skb fail\n"); 578 ring->stats.sw_err_cnt++; 579 return -ENOMEM; 580 } 581 582 prefetchw(skb->data); 583 length = le16_to_cpu(desc->rx.pkt_len); 584 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 585 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 586 *out_bnum = bnum; 587 588 if (length <= HNS_RX_HEAD_SIZE) { 589 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 590 591 /* we can reuse buffer as-is, just make sure it is local */ 592 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 593 desc_cb->reuse_flag = 1; 594 else /* this page cannot be reused so discard it */ 595 put_page(desc_cb->priv); 596 597 ring_ptr_move_fw(ring, next_to_clean); 598 599 if (unlikely(bnum != 1)) { /* check err*/ 600 *out_bnum = 1; 601 goto out_bnum_err; 602 } 603 } else { 604 ring->stats.seg_pkt_cnt++; 605 606 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); 607 memcpy(__skb_put(skb, pull_len), va, 608 ALIGN(pull_len, sizeof(long))); 609 610 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 611 ring_ptr_move_fw(ring, next_to_clean); 612 613 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 614 *out_bnum = 1; 615 goto out_bnum_err; 616 } 617 for (i = 1; i < bnum; i++) { 618 desc = &ring->desc[ring->next_to_clean]; 619 desc_cb = &ring->desc_cb[ring->next_to_clean]; 620 621 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 622 ring_ptr_move_fw(ring, next_to_clean); 623 } 624 } 625 626 /* check except process, free skb and jump the desc */ 627 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 628 out_bnum_err: 629 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 630 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 631 bnum, ring->max_desc_num_per_pkt, 632 length, (int)MAX_SKB_FRAGS, 633 ((u64 *)desc)[0], ((u64 *)desc)[1]); 634 ring->stats.err_bd_num++; 635 dev_kfree_skb_any(skb); 636 return -EDOM; 637 } 638 639 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 640 641 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 642 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 643 ((u64 *)desc)[0], ((u64 *)desc)[1]); 644 ring->stats.non_vld_descs++; 645 dev_kfree_skb_any(skb); 646 return -EINVAL; 647 } 648 649 if (unlikely((!desc->rx.pkt_len) || 650 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 651 ring->stats.err_pkt_len++; 652 dev_kfree_skb_any(skb); 653 return -EFAULT; 654 } 655 656 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 657 ring->stats.l2_err++; 658 dev_kfree_skb_any(skb); 659 return -EFAULT; 660 } 661 662 ring->stats.rx_pkts++; 663 ring->stats.rx_bytes += skb->len; 664 665 /* indicate to upper stack if our hardware has already calculated 666 * the RX checksum 667 */ 668 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 669 670 return 0; 671 } 672 673 static void 674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 675 { 676 int i, ret; 677 struct hnae_desc_cb res_cbs; 678 struct hnae_desc_cb *desc_cb; 679 struct hnae_ring *ring = ring_data->ring; 680 struct net_device *ndev = ring_data->napi.dev; 681 682 for (i = 0; i < cleand_count; i++) { 683 desc_cb = &ring->desc_cb[ring->next_to_use]; 684 if (desc_cb->reuse_flag) { 685 ring->stats.reuse_pg_cnt++; 686 hnae_reuse_buffer(ring, ring->next_to_use); 687 } else { 688 ret = hnae_reserve_buffer_map(ring, &res_cbs); 689 if (ret) { 690 ring->stats.sw_err_cnt++; 691 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 692 break; 693 } 694 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 695 } 696 697 ring_ptr_move_fw(ring, next_to_use); 698 } 699 700 wmb(); /* make all data has been write before submit */ 701 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 702 } 703 704 /* return error number for error or number of desc left to take 705 */ 706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 707 struct sk_buff *skb) 708 { 709 struct net_device *ndev = ring_data->napi.dev; 710 711 skb->protocol = eth_type_trans(skb, ndev); 712 (void)napi_gro_receive(&ring_data->napi, skb); 713 } 714 715 static int hns_desc_unused(struct hnae_ring *ring) 716 { 717 int ntc = ring->next_to_clean; 718 int ntu = ring->next_to_use; 719 720 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 721 } 722 723 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 724 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 725 726 #define HNS_COAL_BDNUM 3 727 728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 729 { 730 bool coal_enable = ring->q->handle->coal_adapt_en; 731 732 if (coal_enable && 733 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 734 return HNS_COAL_BDNUM; 735 else 736 return 0; 737 } 738 739 static void hns_update_rx_rate(struct hnae_ring *ring) 740 { 741 bool coal_enable = ring->q->handle->coal_adapt_en; 742 u32 time_passed_ms; 743 u64 total_bytes; 744 745 if (!coal_enable || 746 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 747 return; 748 749 /* ring->stats.rx_bytes overflowed */ 750 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 751 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 752 ring->coal_last_jiffies = jiffies; 753 return; 754 } 755 756 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 757 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 758 do_div(total_bytes, time_passed_ms); 759 ring->coal_rx_rate = total_bytes >> 10; 760 761 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 762 ring->coal_last_jiffies = jiffies; 763 } 764 765 /** 766 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 767 **/ 768 static u32 smooth_alg(u32 new_param, u32 old_param) 769 { 770 u32 gap = (new_param > old_param) ? new_param - old_param 771 : old_param - new_param; 772 773 if (gap > 8) 774 gap >>= 3; 775 776 if (new_param > old_param) 777 return old_param + gap; 778 else 779 return old_param - gap; 780 } 781 782 /** 783 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 784 * @ring_data: pointer to hns_nic_ring_data 785 **/ 786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 787 { 788 struct hnae_ring *ring = ring_data->ring; 789 struct hnae_handle *handle = ring->q->handle; 790 u32 new_coal_param, old_coal_param = ring->coal_param; 791 792 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 793 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 794 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 795 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 796 else 797 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 798 799 if (new_coal_param == old_coal_param && 800 new_coal_param == handle->coal_param) 801 return; 802 803 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 804 ring->coal_param = new_coal_param; 805 806 /** 807 * Because all ring in one port has one coalesce param, when one ring 808 * calculate its own coalesce param, it cannot write to hardware at 809 * once. There are three conditions as follows: 810 * 1. current ring's coalesce param is larger than the hardware. 811 * 2. or ring which adapt last time can change again. 812 * 3. timeout. 813 */ 814 if (new_coal_param == handle->coal_param) { 815 handle->coal_last_jiffies = jiffies; 816 handle->coal_ring_idx = ring_data->queue_index; 817 } else if (new_coal_param > handle->coal_param || 818 handle->coal_ring_idx == ring_data->queue_index || 819 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 820 handle->dev->ops->set_coalesce_usecs(handle, 821 new_coal_param); 822 handle->dev->ops->set_coalesce_frames(handle, 823 1, new_coal_param); 824 handle->coal_param = new_coal_param; 825 handle->coal_ring_idx = ring_data->queue_index; 826 handle->coal_last_jiffies = jiffies; 827 } 828 } 829 830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 831 int budget, void *v) 832 { 833 struct hnae_ring *ring = ring_data->ring; 834 struct sk_buff *skb; 835 int num, bnum; 836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 837 int recv_pkts, recv_bds, clean_count, err; 838 int unused_count = hns_desc_unused(ring); 839 840 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 841 rmb(); /* make sure num taken effect before the other data is touched */ 842 843 recv_pkts = 0, recv_bds = 0, clean_count = 0; 844 num -= unused_count; 845 846 while (recv_pkts < budget && recv_bds < num) { 847 /* reuse or realloc buffers */ 848 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 849 hns_nic_alloc_rx_buffers(ring_data, 850 clean_count + unused_count); 851 clean_count = 0; 852 unused_count = hns_desc_unused(ring); 853 } 854 855 /* poll one pkt */ 856 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 857 if (unlikely(!skb)) /* this fault cannot be repaired */ 858 goto out; 859 860 recv_bds += bnum; 861 clean_count += bnum; 862 if (unlikely(err)) { /* do jump the err */ 863 recv_pkts++; 864 continue; 865 } 866 867 /* do update ip stack process*/ 868 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 869 ring_data, skb); 870 recv_pkts++; 871 } 872 873 out: 874 /* make all data has been write before submit */ 875 if (clean_count + unused_count > 0) 876 hns_nic_alloc_rx_buffers(ring_data, 877 clean_count + unused_count); 878 879 return recv_pkts; 880 } 881 882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 883 { 884 struct hnae_ring *ring = ring_data->ring; 885 int num = 0; 886 bool rx_stopped; 887 888 hns_update_rx_rate(ring); 889 890 /* for hardware bug fixed */ 891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 892 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 893 894 if (num <= hns_coal_rx_bdnum(ring)) { 895 if (ring->q->handle->coal_adapt_en) 896 hns_nic_adpt_coalesce(ring_data); 897 898 rx_stopped = true; 899 } else { 900 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 901 ring_data->ring, 1); 902 903 rx_stopped = false; 904 } 905 906 return rx_stopped; 907 } 908 909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 910 { 911 struct hnae_ring *ring = ring_data->ring; 912 int num; 913 914 hns_update_rx_rate(ring); 915 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 916 917 if (num <= hns_coal_rx_bdnum(ring)) { 918 if (ring->q->handle->coal_adapt_en) 919 hns_nic_adpt_coalesce(ring_data); 920 921 return true; 922 } 923 924 return false; 925 } 926 927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 928 int *bytes, int *pkts) 929 { 930 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 931 932 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 933 (*bytes) += desc_cb->length; 934 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 935 hnae_free_buffer_detach(ring, ring->next_to_clean); 936 937 ring_ptr_move_fw(ring, next_to_clean); 938 } 939 940 static int is_valid_clean_head(struct hnae_ring *ring, int h) 941 { 942 int u = ring->next_to_use; 943 int c = ring->next_to_clean; 944 945 if (unlikely(h > ring->desc_num)) 946 return 0; 947 948 assert(u > 0 && u < ring->desc_num); 949 assert(c > 0 && c < ring->desc_num); 950 assert(u != c && h != c); /* must be checked before call this func */ 951 952 return u > c ? (h > c && h <= u) : (h > c || h <= u); 953 } 954 955 /* netif_tx_lock will turn down the performance, set only when necessary */ 956 #ifdef CONFIG_NET_POLL_CONTROLLER 957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 959 #else 960 #define NETIF_TX_LOCK(ring) 961 #define NETIF_TX_UNLOCK(ring) 962 #endif 963 964 /* reclaim all desc in one budget 965 * return error or number of desc left 966 */ 967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 968 int budget, void *v) 969 { 970 struct hnae_ring *ring = ring_data->ring; 971 struct net_device *ndev = ring_data->napi.dev; 972 struct netdev_queue *dev_queue; 973 struct hns_nic_priv *priv = netdev_priv(ndev); 974 int head; 975 int bytes, pkts; 976 977 NETIF_TX_LOCK(ring); 978 979 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 980 rmb(); /* make sure head is ready before touch any data */ 981 982 if (is_ring_empty(ring) || head == ring->next_to_clean) { 983 NETIF_TX_UNLOCK(ring); 984 return 0; /* no data to poll */ 985 } 986 987 if (!is_valid_clean_head(ring, head)) { 988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 989 ring->next_to_use, ring->next_to_clean); 990 ring->stats.io_err_cnt++; 991 NETIF_TX_UNLOCK(ring); 992 return -EIO; 993 } 994 995 bytes = 0; 996 pkts = 0; 997 while (head != ring->next_to_clean) { 998 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 999 /* issue prefetch for next Tx descriptor */ 1000 prefetch(&ring->desc_cb[ring->next_to_clean]); 1001 } 1002 1003 NETIF_TX_UNLOCK(ring); 1004 1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1006 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1007 1008 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1009 netif_carrier_on(ndev); 1010 1011 if (unlikely(pkts && netif_carrier_ok(ndev) && 1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1013 /* Make sure that anybody stopping the queue after this 1014 * sees the new next_to_clean. 1015 */ 1016 smp_mb(); 1017 if (netif_tx_queue_stopped(dev_queue) && 1018 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1019 netif_tx_wake_queue(dev_queue); 1020 ring->stats.restart_queue++; 1021 } 1022 } 1023 return 0; 1024 } 1025 1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1027 { 1028 struct hnae_ring *ring = ring_data->ring; 1029 int head; 1030 1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1032 1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1034 1035 if (head != ring->next_to_clean) { 1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1037 ring_data->ring, 1); 1038 1039 return false; 1040 } else { 1041 return true; 1042 } 1043 } 1044 1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1046 { 1047 struct hnae_ring *ring = ring_data->ring; 1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1049 1050 if (head == ring->next_to_clean) 1051 return true; 1052 else 1053 return false; 1054 } 1055 1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1057 { 1058 struct hnae_ring *ring = ring_data->ring; 1059 struct net_device *ndev = ring_data->napi.dev; 1060 struct netdev_queue *dev_queue; 1061 int head; 1062 int bytes, pkts; 1063 1064 NETIF_TX_LOCK(ring); 1065 1066 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1067 bytes = 0; 1068 pkts = 0; 1069 while (head != ring->next_to_clean) 1070 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1071 1072 NETIF_TX_UNLOCK(ring); 1073 1074 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1075 netdev_tx_reset_queue(dev_queue); 1076 } 1077 1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1079 { 1080 int clean_complete = 0; 1081 struct hns_nic_ring_data *ring_data = 1082 container_of(napi, struct hns_nic_ring_data, napi); 1083 struct hnae_ring *ring = ring_data->ring; 1084 1085 try_again: 1086 clean_complete += ring_data->poll_one( 1087 ring_data, budget - clean_complete, 1088 ring_data->ex_process); 1089 1090 if (clean_complete < budget) { 1091 if (ring_data->fini_process(ring_data)) { 1092 napi_complete(napi); 1093 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1094 } else { 1095 goto try_again; 1096 } 1097 } 1098 1099 return clean_complete; 1100 } 1101 1102 static irqreturn_t hns_irq_handle(int irq, void *dev) 1103 { 1104 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1105 1106 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1107 ring_data->ring, 1); 1108 napi_schedule(&ring_data->napi); 1109 1110 return IRQ_HANDLED; 1111 } 1112 1113 /** 1114 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1115 *@ndev: net device 1116 */ 1117 static void hns_nic_adjust_link(struct net_device *ndev) 1118 { 1119 struct hns_nic_priv *priv = netdev_priv(ndev); 1120 struct hnae_handle *h = priv->ae_handle; 1121 int state = 1; 1122 1123 /* If there is no phy, do not need adjust link */ 1124 if (ndev->phydev) { 1125 /* When phy link down, do nothing */ 1126 if (ndev->phydev->link == 0) 1127 return; 1128 1129 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1130 ndev->phydev->duplex)) { 1131 /* because Hi161X chip don't support to change gmac 1132 * speed and duplex with traffic. Delay 200ms to 1133 * make sure there is no more data in chip FIFO. 1134 */ 1135 netif_carrier_off(ndev); 1136 msleep(200); 1137 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1138 ndev->phydev->duplex); 1139 netif_carrier_on(ndev); 1140 } 1141 } 1142 1143 state = state && h->dev->ops->get_status(h); 1144 1145 if (state != priv->link) { 1146 if (state) { 1147 netif_carrier_on(ndev); 1148 netif_tx_wake_all_queues(ndev); 1149 netdev_info(ndev, "link up\n"); 1150 } else { 1151 netif_carrier_off(ndev); 1152 netdev_info(ndev, "link down\n"); 1153 } 1154 priv->link = state; 1155 } 1156 } 1157 1158 /** 1159 *hns_nic_init_phy - init phy 1160 *@ndev: net device 1161 *@h: ae handle 1162 * Return 0 on success, negative on failure 1163 */ 1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1165 { 1166 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1167 struct phy_device *phy_dev = h->phy_dev; 1168 int ret; 1169 1170 if (!h->phy_dev) 1171 return 0; 1172 1173 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1174 phy_dev->dev_flags = 0; 1175 1176 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1177 h->phy_if); 1178 } else { 1179 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1180 } 1181 if (unlikely(ret)) 1182 return -ENODEV; 1183 1184 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1185 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1186 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1187 1188 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1189 phy_dev->autoneg = false; 1190 1191 return 0; 1192 } 1193 1194 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1195 { 1196 struct hns_nic_priv *priv = netdev_priv(netdev); 1197 struct hnae_handle *h = priv->ae_handle; 1198 1199 napi_enable(&priv->ring_data[idx].napi); 1200 1201 enable_irq(priv->ring_data[idx].ring->irq); 1202 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1203 1204 return 0; 1205 } 1206 1207 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1208 { 1209 struct hns_nic_priv *priv = netdev_priv(ndev); 1210 struct hnae_handle *h = priv->ae_handle; 1211 struct sockaddr *mac_addr = p; 1212 int ret; 1213 1214 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1215 return -EADDRNOTAVAIL; 1216 1217 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1218 if (ret) { 1219 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1220 return ret; 1221 } 1222 1223 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1224 1225 return 0; 1226 } 1227 1228 static void hns_nic_update_stats(struct net_device *netdev) 1229 { 1230 struct hns_nic_priv *priv = netdev_priv(netdev); 1231 struct hnae_handle *h = priv->ae_handle; 1232 1233 h->dev->ops->update_stats(h, &netdev->stats); 1234 } 1235 1236 /* set mac addr if it is configed. or leave it to the AE driver */ 1237 static void hns_init_mac_addr(struct net_device *ndev) 1238 { 1239 struct hns_nic_priv *priv = netdev_priv(ndev); 1240 1241 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1242 eth_hw_addr_random(ndev); 1243 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1244 ndev->dev_addr); 1245 } 1246 } 1247 1248 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1249 { 1250 struct hns_nic_priv *priv = netdev_priv(netdev); 1251 struct hnae_handle *h = priv->ae_handle; 1252 1253 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1254 disable_irq(priv->ring_data[idx].ring->irq); 1255 1256 napi_disable(&priv->ring_data[idx].napi); 1257 } 1258 1259 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1260 struct hnae_ring *ring, cpumask_t *mask) 1261 { 1262 int cpu; 1263 1264 /* Diffrent irq banlance between 16core and 32core. 1265 * The cpu mask set by ring index according to the ring flag 1266 * which indicate the ring is tx or rx. 1267 */ 1268 if (q_num == num_possible_cpus()) { 1269 if (is_tx_ring(ring)) 1270 cpu = ring_idx; 1271 else 1272 cpu = ring_idx - q_num; 1273 } else { 1274 if (is_tx_ring(ring)) 1275 cpu = ring_idx * 2; 1276 else 1277 cpu = (ring_idx - q_num) * 2 + 1; 1278 } 1279 1280 cpumask_clear(mask); 1281 cpumask_set_cpu(cpu, mask); 1282 1283 return cpu; 1284 } 1285 1286 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1287 { 1288 struct hnae_handle *h = priv->ae_handle; 1289 struct hns_nic_ring_data *rd; 1290 int i; 1291 int ret; 1292 int cpu; 1293 1294 for (i = 0; i < h->q_num * 2; i++) { 1295 rd = &priv->ring_data[i]; 1296 1297 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1298 break; 1299 1300 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1301 "%s-%s%d", priv->netdev->name, 1302 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1303 1304 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1305 1306 ret = request_irq(rd->ring->irq, 1307 hns_irq_handle, 0, rd->ring->ring_name, rd); 1308 if (ret) { 1309 netdev_err(priv->netdev, "request irq(%d) fail\n", 1310 rd->ring->irq); 1311 return ret; 1312 } 1313 disable_irq(rd->ring->irq); 1314 1315 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1316 rd->ring, &rd->mask); 1317 1318 if (cpu_online(cpu)) 1319 irq_set_affinity_hint(rd->ring->irq, 1320 &rd->mask); 1321 1322 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int hns_nic_net_up(struct net_device *ndev) 1329 { 1330 struct hns_nic_priv *priv = netdev_priv(ndev); 1331 struct hnae_handle *h = priv->ae_handle; 1332 int i, j; 1333 int ret; 1334 1335 ret = hns_nic_init_irq(priv); 1336 if (ret != 0) { 1337 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1338 return ret; 1339 } 1340 1341 for (i = 0; i < h->q_num * 2; i++) { 1342 ret = hns_nic_ring_open(ndev, i); 1343 if (ret) 1344 goto out_has_some_queues; 1345 } 1346 1347 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1348 if (ret) 1349 goto out_set_mac_addr_err; 1350 1351 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1352 if (ret) 1353 goto out_start_err; 1354 1355 if (ndev->phydev) 1356 phy_start(ndev->phydev); 1357 1358 clear_bit(NIC_STATE_DOWN, &priv->state); 1359 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1360 1361 return 0; 1362 1363 out_start_err: 1364 netif_stop_queue(ndev); 1365 out_set_mac_addr_err: 1366 out_has_some_queues: 1367 for (j = i - 1; j >= 0; j--) 1368 hns_nic_ring_close(ndev, j); 1369 1370 set_bit(NIC_STATE_DOWN, &priv->state); 1371 1372 return ret; 1373 } 1374 1375 static void hns_nic_net_down(struct net_device *ndev) 1376 { 1377 int i; 1378 struct hnae_ae_ops *ops; 1379 struct hns_nic_priv *priv = netdev_priv(ndev); 1380 1381 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1382 return; 1383 1384 (void)del_timer_sync(&priv->service_timer); 1385 netif_tx_stop_all_queues(ndev); 1386 netif_carrier_off(ndev); 1387 netif_tx_disable(ndev); 1388 priv->link = 0; 1389 1390 if (ndev->phydev) 1391 phy_stop(ndev->phydev); 1392 1393 ops = priv->ae_handle->dev->ops; 1394 1395 if (ops->stop) 1396 ops->stop(priv->ae_handle); 1397 1398 netif_tx_stop_all_queues(ndev); 1399 1400 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1401 hns_nic_ring_close(ndev, i); 1402 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1403 1404 /* clean tx buffers*/ 1405 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1406 } 1407 } 1408 1409 void hns_nic_net_reset(struct net_device *ndev) 1410 { 1411 struct hns_nic_priv *priv = netdev_priv(ndev); 1412 struct hnae_handle *handle = priv->ae_handle; 1413 1414 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1415 usleep_range(1000, 2000); 1416 1417 (void)hnae_reinit_handle(handle); 1418 1419 clear_bit(NIC_STATE_RESETTING, &priv->state); 1420 } 1421 1422 void hns_nic_net_reinit(struct net_device *netdev) 1423 { 1424 struct hns_nic_priv *priv = netdev_priv(netdev); 1425 enum hnae_port_type type = priv->ae_handle->port_type; 1426 1427 netif_trans_update(priv->netdev); 1428 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1429 usleep_range(1000, 2000); 1430 1431 hns_nic_net_down(netdev); 1432 1433 /* Only do hns_nic_net_reset in debug mode 1434 * because of hardware limitation. 1435 */ 1436 if (type == HNAE_PORT_DEBUG) 1437 hns_nic_net_reset(netdev); 1438 1439 (void)hns_nic_net_up(netdev); 1440 clear_bit(NIC_STATE_REINITING, &priv->state); 1441 } 1442 1443 static int hns_nic_net_open(struct net_device *ndev) 1444 { 1445 struct hns_nic_priv *priv = netdev_priv(ndev); 1446 struct hnae_handle *h = priv->ae_handle; 1447 int ret; 1448 1449 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1450 return -EBUSY; 1451 1452 priv->link = 0; 1453 netif_carrier_off(ndev); 1454 1455 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1456 if (ret < 0) { 1457 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1458 ret); 1459 return ret; 1460 } 1461 1462 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1463 if (ret < 0) { 1464 netdev_err(ndev, 1465 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1466 return ret; 1467 } 1468 1469 ret = hns_nic_net_up(ndev); 1470 if (ret) { 1471 netdev_err(ndev, 1472 "hns net up fail, ret=%d!\n", ret); 1473 return ret; 1474 } 1475 1476 return 0; 1477 } 1478 1479 static int hns_nic_net_stop(struct net_device *ndev) 1480 { 1481 hns_nic_net_down(ndev); 1482 1483 return 0; 1484 } 1485 1486 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1487 static void hns_nic_net_timeout(struct net_device *ndev) 1488 { 1489 struct hns_nic_priv *priv = netdev_priv(ndev); 1490 1491 hns_tx_timeout_reset(priv); 1492 } 1493 1494 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1495 int cmd) 1496 { 1497 struct phy_device *phy_dev = netdev->phydev; 1498 1499 if (!netif_running(netdev)) 1500 return -EINVAL; 1501 1502 if (!phy_dev) 1503 return -ENOTSUPP; 1504 1505 return phy_mii_ioctl(phy_dev, ifr, cmd); 1506 } 1507 1508 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1509 struct net_device *ndev) 1510 { 1511 struct hns_nic_priv *priv = netdev_priv(ndev); 1512 1513 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1514 1515 return hns_nic_net_xmit_hw(ndev, skb, 1516 &tx_ring_data(priv, skb->queue_mapping)); 1517 } 1518 1519 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1520 struct sk_buff *skb) 1521 { 1522 dev_kfree_skb_any(skb); 1523 } 1524 1525 #define HNS_LB_TX_RING 0 1526 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1527 { 1528 struct sk_buff *skb; 1529 struct ethhdr *ethhdr; 1530 int frame_len; 1531 1532 /* allocate test skb */ 1533 skb = alloc_skb(64, GFP_KERNEL); 1534 if (!skb) 1535 return NULL; 1536 1537 skb_put(skb, 64); 1538 skb->dev = ndev; 1539 memset(skb->data, 0xFF, skb->len); 1540 1541 /* must be tcp/ip package */ 1542 ethhdr = (struct ethhdr *)skb->data; 1543 ethhdr->h_proto = htons(ETH_P_IP); 1544 1545 frame_len = skb->len & (~1ul); 1546 memset(&skb->data[frame_len / 2], 0xAA, 1547 frame_len / 2 - 1); 1548 1549 skb->queue_mapping = HNS_LB_TX_RING; 1550 1551 return skb; 1552 } 1553 1554 static int hns_enable_serdes_lb(struct net_device *ndev) 1555 { 1556 struct hns_nic_priv *priv = netdev_priv(ndev); 1557 struct hnae_handle *h = priv->ae_handle; 1558 struct hnae_ae_ops *ops = h->dev->ops; 1559 int speed, duplex; 1560 int ret; 1561 1562 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1563 if (ret) 1564 return ret; 1565 1566 ret = ops->start ? ops->start(h) : 0; 1567 if (ret) 1568 return ret; 1569 1570 /* link adjust duplex*/ 1571 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1572 speed = 1000; 1573 else 1574 speed = 10000; 1575 duplex = 1; 1576 1577 ops->adjust_link(h, speed, duplex); 1578 1579 /* wait h/w ready */ 1580 mdelay(300); 1581 1582 return 0; 1583 } 1584 1585 static void hns_disable_serdes_lb(struct net_device *ndev) 1586 { 1587 struct hns_nic_priv *priv = netdev_priv(ndev); 1588 struct hnae_handle *h = priv->ae_handle; 1589 struct hnae_ae_ops *ops = h->dev->ops; 1590 1591 ops->stop(h); 1592 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1593 } 1594 1595 /** 1596 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1597 *function as follows: 1598 * 1. if one rx ring has found the page_offset is not equal 0 between head 1599 * and tail, it means that the chip fetched the wrong descs for the ring 1600 * which buffer size is 4096. 1601 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1602 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1603 * recieving all packages and it will fetch new descriptions. 1604 * 4. recover to the original state. 1605 * 1606 *@ndev: net device 1607 */ 1608 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1609 { 1610 struct hns_nic_priv *priv = netdev_priv(ndev); 1611 struct hnae_handle *h = priv->ae_handle; 1612 struct hnae_ae_ops *ops = h->dev->ops; 1613 struct hns_nic_ring_data *rd; 1614 struct hnae_ring *ring; 1615 struct sk_buff *skb; 1616 u32 *org_indir; 1617 u32 *cur_indir; 1618 int indir_size; 1619 int head, tail; 1620 int fetch_num; 1621 int i, j; 1622 bool found; 1623 int retry_times; 1624 int ret = 0; 1625 1626 /* alloc indir memory */ 1627 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1628 org_indir = kzalloc(indir_size, GFP_KERNEL); 1629 if (!org_indir) 1630 return -ENOMEM; 1631 1632 /* store the orginal indirection */ 1633 ops->get_rss(h, org_indir, NULL, NULL); 1634 1635 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1636 if (!cur_indir) { 1637 ret = -ENOMEM; 1638 goto cur_indir_alloc_err; 1639 } 1640 1641 /* set loopback */ 1642 if (hns_enable_serdes_lb(ndev)) { 1643 ret = -EINVAL; 1644 goto enable_serdes_lb_err; 1645 } 1646 1647 /* foreach every rx ring to clear fetch desc */ 1648 for (i = 0; i < h->q_num; i++) { 1649 ring = &h->qs[i]->rx_ring; 1650 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1651 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1652 found = false; 1653 fetch_num = ring_dist(ring, head, tail); 1654 1655 while (head != tail) { 1656 if (ring->desc_cb[head].page_offset != 0) { 1657 found = true; 1658 break; 1659 } 1660 1661 head++; 1662 if (head == ring->desc_num) 1663 head = 0; 1664 } 1665 1666 if (found) { 1667 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1668 cur_indir[j] = i; 1669 ops->set_rss(h, cur_indir, NULL, 0); 1670 1671 for (j = 0; j < fetch_num; j++) { 1672 /* alloc one skb and init */ 1673 skb = hns_assemble_skb(ndev); 1674 if (!skb) 1675 goto out; 1676 rd = &tx_ring_data(priv, skb->queue_mapping); 1677 hns_nic_net_xmit_hw(ndev, skb, rd); 1678 1679 retry_times = 0; 1680 while (retry_times++ < 10) { 1681 mdelay(10); 1682 /* clean rx */ 1683 rd = &rx_ring_data(priv, i); 1684 if (rd->poll_one(rd, fetch_num, 1685 hns_nic_drop_rx_fetch)) 1686 break; 1687 } 1688 1689 retry_times = 0; 1690 while (retry_times++ < 10) { 1691 mdelay(10); 1692 /* clean tx ring 0 send package */ 1693 rd = &tx_ring_data(priv, 1694 HNS_LB_TX_RING); 1695 if (rd->poll_one(rd, fetch_num, NULL)) 1696 break; 1697 } 1698 } 1699 } 1700 } 1701 1702 out: 1703 /* restore everything */ 1704 ops->set_rss(h, org_indir, NULL, 0); 1705 hns_disable_serdes_lb(ndev); 1706 enable_serdes_lb_err: 1707 kfree(cur_indir); 1708 cur_indir_alloc_err: 1709 kfree(org_indir); 1710 1711 return ret; 1712 } 1713 1714 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1715 { 1716 struct hns_nic_priv *priv = netdev_priv(ndev); 1717 struct hnae_handle *h = priv->ae_handle; 1718 bool if_running = netif_running(ndev); 1719 int ret; 1720 1721 /* MTU < 68 is an error and causes problems on some kernels */ 1722 if (new_mtu < 68) 1723 return -EINVAL; 1724 1725 /* MTU no change */ 1726 if (new_mtu == ndev->mtu) 1727 return 0; 1728 1729 if (!h->dev->ops->set_mtu) 1730 return -ENOTSUPP; 1731 1732 if (if_running) { 1733 (void)hns_nic_net_stop(ndev); 1734 msleep(100); 1735 } 1736 1737 if (priv->enet_ver != AE_VERSION_1 && 1738 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1739 new_mtu > BD_SIZE_2048_MAX_MTU) { 1740 /* update desc */ 1741 hnae_reinit_all_ring_desc(h); 1742 1743 /* clear the package which the chip has fetched */ 1744 ret = hns_nic_clear_all_rx_fetch(ndev); 1745 1746 /* the page offset must be consist with desc */ 1747 hnae_reinit_all_ring_page_off(h); 1748 1749 if (ret) { 1750 netdev_err(ndev, "clear the fetched desc fail\n"); 1751 goto out; 1752 } 1753 } 1754 1755 ret = h->dev->ops->set_mtu(h, new_mtu); 1756 if (ret) { 1757 netdev_err(ndev, "set mtu fail, return value %d\n", 1758 ret); 1759 goto out; 1760 } 1761 1762 /* finally, set new mtu to netdevice */ 1763 ndev->mtu = new_mtu; 1764 1765 out: 1766 if (if_running) { 1767 if (hns_nic_net_open(ndev)) { 1768 netdev_err(ndev, "hns net open fail\n"); 1769 ret = -EINVAL; 1770 } 1771 } 1772 1773 return ret; 1774 } 1775 1776 static int hns_nic_set_features(struct net_device *netdev, 1777 netdev_features_t features) 1778 { 1779 struct hns_nic_priv *priv = netdev_priv(netdev); 1780 1781 switch (priv->enet_ver) { 1782 case AE_VERSION_1: 1783 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1784 netdev_info(netdev, "enet v1 do not support tso!\n"); 1785 break; 1786 default: 1787 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1788 priv->ops.fill_desc = fill_tso_desc; 1789 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1790 /* The chip only support 7*4096 */ 1791 netif_set_gso_max_size(netdev, 7 * 4096); 1792 } else { 1793 priv->ops.fill_desc = fill_v2_desc; 1794 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1795 } 1796 break; 1797 } 1798 netdev->features = features; 1799 return 0; 1800 } 1801 1802 static netdev_features_t hns_nic_fix_features( 1803 struct net_device *netdev, netdev_features_t features) 1804 { 1805 struct hns_nic_priv *priv = netdev_priv(netdev); 1806 1807 switch (priv->enet_ver) { 1808 case AE_VERSION_1: 1809 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1810 NETIF_F_HW_VLAN_CTAG_FILTER); 1811 break; 1812 default: 1813 break; 1814 } 1815 return features; 1816 } 1817 1818 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1819 { 1820 struct hns_nic_priv *priv = netdev_priv(netdev); 1821 struct hnae_handle *h = priv->ae_handle; 1822 1823 if (h->dev->ops->add_uc_addr) 1824 return h->dev->ops->add_uc_addr(h, addr); 1825 1826 return 0; 1827 } 1828 1829 static int hns_nic_uc_unsync(struct net_device *netdev, 1830 const unsigned char *addr) 1831 { 1832 struct hns_nic_priv *priv = netdev_priv(netdev); 1833 struct hnae_handle *h = priv->ae_handle; 1834 1835 if (h->dev->ops->rm_uc_addr) 1836 return h->dev->ops->rm_uc_addr(h, addr); 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * nic_set_multicast_list - set mutl mac address 1843 * @netdev: net device 1844 * @p: mac address 1845 * 1846 * return void 1847 */ 1848 static void hns_set_multicast_list(struct net_device *ndev) 1849 { 1850 struct hns_nic_priv *priv = netdev_priv(ndev); 1851 struct hnae_handle *h = priv->ae_handle; 1852 struct netdev_hw_addr *ha = NULL; 1853 1854 if (!h) { 1855 netdev_err(ndev, "hnae handle is null\n"); 1856 return; 1857 } 1858 1859 if (h->dev->ops->clr_mc_addr) 1860 if (h->dev->ops->clr_mc_addr(h)) 1861 netdev_err(ndev, "clear multicast address fail\n"); 1862 1863 if (h->dev->ops->set_mc_addr) { 1864 netdev_for_each_mc_addr(ha, ndev) 1865 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1866 netdev_err(ndev, "set multicast fail\n"); 1867 } 1868 } 1869 1870 static void hns_nic_set_rx_mode(struct net_device *ndev) 1871 { 1872 struct hns_nic_priv *priv = netdev_priv(ndev); 1873 struct hnae_handle *h = priv->ae_handle; 1874 1875 if (h->dev->ops->set_promisc_mode) { 1876 if (ndev->flags & IFF_PROMISC) 1877 h->dev->ops->set_promisc_mode(h, 1); 1878 else 1879 h->dev->ops->set_promisc_mode(h, 0); 1880 } 1881 1882 hns_set_multicast_list(ndev); 1883 1884 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1885 netdev_err(ndev, "sync uc address fail\n"); 1886 } 1887 1888 static void hns_nic_get_stats64(struct net_device *ndev, 1889 struct rtnl_link_stats64 *stats) 1890 { 1891 int idx = 0; 1892 u64 tx_bytes = 0; 1893 u64 rx_bytes = 0; 1894 u64 tx_pkts = 0; 1895 u64 rx_pkts = 0; 1896 struct hns_nic_priv *priv = netdev_priv(ndev); 1897 struct hnae_handle *h = priv->ae_handle; 1898 1899 for (idx = 0; idx < h->q_num; idx++) { 1900 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1901 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1902 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1903 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1904 } 1905 1906 stats->tx_bytes = tx_bytes; 1907 stats->tx_packets = tx_pkts; 1908 stats->rx_bytes = rx_bytes; 1909 stats->rx_packets = rx_pkts; 1910 1911 stats->rx_errors = ndev->stats.rx_errors; 1912 stats->multicast = ndev->stats.multicast; 1913 stats->rx_length_errors = ndev->stats.rx_length_errors; 1914 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1915 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1916 1917 stats->tx_errors = ndev->stats.tx_errors; 1918 stats->rx_dropped = ndev->stats.rx_dropped; 1919 stats->tx_dropped = ndev->stats.tx_dropped; 1920 stats->collisions = ndev->stats.collisions; 1921 stats->rx_over_errors = ndev->stats.rx_over_errors; 1922 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1923 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1924 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1925 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1926 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1927 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1928 stats->tx_window_errors = ndev->stats.tx_window_errors; 1929 stats->rx_compressed = ndev->stats.rx_compressed; 1930 stats->tx_compressed = ndev->stats.tx_compressed; 1931 } 1932 1933 static u16 1934 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1935 struct net_device *sb_dev, 1936 select_queue_fallback_t fallback) 1937 { 1938 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1939 struct hns_nic_priv *priv = netdev_priv(ndev); 1940 1941 /* fix hardware broadcast/multicast packets queue loopback */ 1942 if (!AE_IS_VER1(priv->enet_ver) && 1943 is_multicast_ether_addr(eth_hdr->h_dest)) 1944 return 0; 1945 else 1946 return fallback(ndev, skb, NULL); 1947 } 1948 1949 static const struct net_device_ops hns_nic_netdev_ops = { 1950 .ndo_open = hns_nic_net_open, 1951 .ndo_stop = hns_nic_net_stop, 1952 .ndo_start_xmit = hns_nic_net_xmit, 1953 .ndo_tx_timeout = hns_nic_net_timeout, 1954 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1955 .ndo_change_mtu = hns_nic_change_mtu, 1956 .ndo_do_ioctl = hns_nic_do_ioctl, 1957 .ndo_set_features = hns_nic_set_features, 1958 .ndo_fix_features = hns_nic_fix_features, 1959 .ndo_get_stats64 = hns_nic_get_stats64, 1960 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1961 .ndo_select_queue = hns_nic_select_queue, 1962 }; 1963 1964 static void hns_nic_update_link_status(struct net_device *netdev) 1965 { 1966 struct hns_nic_priv *priv = netdev_priv(netdev); 1967 1968 struct hnae_handle *h = priv->ae_handle; 1969 1970 if (h->phy_dev) { 1971 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1972 return; 1973 1974 (void)genphy_read_status(h->phy_dev); 1975 } 1976 hns_nic_adjust_link(netdev); 1977 } 1978 1979 /* for dumping key regs*/ 1980 static void hns_nic_dump(struct hns_nic_priv *priv) 1981 { 1982 struct hnae_handle *h = priv->ae_handle; 1983 struct hnae_ae_ops *ops = h->dev->ops; 1984 u32 *data, reg_num, i; 1985 1986 if (ops->get_regs_len && ops->get_regs) { 1987 reg_num = ops->get_regs_len(priv->ae_handle); 1988 reg_num = (reg_num + 3ul) & ~3ul; 1989 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1990 if (data) { 1991 ops->get_regs(priv->ae_handle, data); 1992 for (i = 0; i < reg_num; i += 4) 1993 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1994 i, data[i], data[i + 1], 1995 data[i + 2], data[i + 3]); 1996 kfree(data); 1997 } 1998 } 1999 2000 for (i = 0; i < h->q_num; i++) { 2001 pr_info("tx_queue%d_next_to_clean:%d\n", 2002 i, h->qs[i]->tx_ring.next_to_clean); 2003 pr_info("tx_queue%d_next_to_use:%d\n", 2004 i, h->qs[i]->tx_ring.next_to_use); 2005 pr_info("rx_queue%d_next_to_clean:%d\n", 2006 i, h->qs[i]->rx_ring.next_to_clean); 2007 pr_info("rx_queue%d_next_to_use:%d\n", 2008 i, h->qs[i]->rx_ring.next_to_use); 2009 } 2010 } 2011 2012 /* for resetting subtask */ 2013 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2014 { 2015 enum hnae_port_type type = priv->ae_handle->port_type; 2016 2017 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2018 return; 2019 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2020 2021 /* If we're already down, removing or resetting, just bail */ 2022 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2023 test_bit(NIC_STATE_REMOVING, &priv->state) || 2024 test_bit(NIC_STATE_RESETTING, &priv->state)) 2025 return; 2026 2027 hns_nic_dump(priv); 2028 netdev_info(priv->netdev, "try to reset %s port!\n", 2029 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2030 2031 rtnl_lock(); 2032 /* put off any impending NetWatchDogTimeout */ 2033 netif_trans_update(priv->netdev); 2034 hns_nic_net_reinit(priv->netdev); 2035 2036 rtnl_unlock(); 2037 } 2038 2039 /* for doing service complete*/ 2040 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2041 { 2042 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2043 /* make sure to commit the things */ 2044 smp_mb__before_atomic(); 2045 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2046 } 2047 2048 static void hns_nic_service_task(struct work_struct *work) 2049 { 2050 struct hns_nic_priv *priv 2051 = container_of(work, struct hns_nic_priv, service_task); 2052 struct hnae_handle *h = priv->ae_handle; 2053 2054 hns_nic_update_link_status(priv->netdev); 2055 h->dev->ops->update_led_status(h); 2056 hns_nic_update_stats(priv->netdev); 2057 2058 hns_nic_reset_subtask(priv); 2059 hns_nic_service_event_complete(priv); 2060 } 2061 2062 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2063 { 2064 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2065 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2066 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2067 (void)schedule_work(&priv->service_task); 2068 } 2069 2070 static void hns_nic_service_timer(struct timer_list *t) 2071 { 2072 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2073 2074 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2075 2076 hns_nic_task_schedule(priv); 2077 } 2078 2079 /** 2080 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2081 * @priv: driver private struct 2082 **/ 2083 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2084 { 2085 /* Do the reset outside of interrupt context */ 2086 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2087 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2088 netdev_warn(priv->netdev, 2089 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2090 priv->tx_timeout_count, priv->state); 2091 priv->tx_timeout_count++; 2092 hns_nic_task_schedule(priv); 2093 } 2094 } 2095 2096 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2097 { 2098 struct hnae_handle *h = priv->ae_handle; 2099 struct hns_nic_ring_data *rd; 2100 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2101 int i; 2102 2103 if (h->q_num > NIC_MAX_Q_PER_VF) { 2104 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2105 return -EINVAL; 2106 } 2107 2108 priv->ring_data = kzalloc(array3_size(h->q_num, 2109 sizeof(*priv->ring_data), 2), 2110 GFP_KERNEL); 2111 if (!priv->ring_data) 2112 return -ENOMEM; 2113 2114 for (i = 0; i < h->q_num; i++) { 2115 rd = &priv->ring_data[i]; 2116 rd->queue_index = i; 2117 rd->ring = &h->qs[i]->tx_ring; 2118 rd->poll_one = hns_nic_tx_poll_one; 2119 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2120 hns_nic_tx_fini_pro_v2; 2121 2122 netif_napi_add(priv->netdev, &rd->napi, 2123 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2124 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2125 } 2126 for (i = h->q_num; i < h->q_num * 2; i++) { 2127 rd = &priv->ring_data[i]; 2128 rd->queue_index = i - h->q_num; 2129 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2130 rd->poll_one = hns_nic_rx_poll_one; 2131 rd->ex_process = hns_nic_rx_up_pro; 2132 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2133 hns_nic_rx_fini_pro_v2; 2134 2135 netif_napi_add(priv->netdev, &rd->napi, 2136 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2137 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2138 } 2139 2140 return 0; 2141 } 2142 2143 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2144 { 2145 struct hnae_handle *h = priv->ae_handle; 2146 int i; 2147 2148 for (i = 0; i < h->q_num * 2; i++) { 2149 netif_napi_del(&priv->ring_data[i].napi); 2150 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2151 (void)irq_set_affinity_hint( 2152 priv->ring_data[i].ring->irq, 2153 NULL); 2154 free_irq(priv->ring_data[i].ring->irq, 2155 &priv->ring_data[i]); 2156 } 2157 2158 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2159 } 2160 kfree(priv->ring_data); 2161 } 2162 2163 static void hns_nic_set_priv_ops(struct net_device *netdev) 2164 { 2165 struct hns_nic_priv *priv = netdev_priv(netdev); 2166 struct hnae_handle *h = priv->ae_handle; 2167 2168 if (AE_IS_VER1(priv->enet_ver)) { 2169 priv->ops.fill_desc = fill_desc; 2170 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2171 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2172 } else { 2173 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2174 if ((netdev->features & NETIF_F_TSO) || 2175 (netdev->features & NETIF_F_TSO6)) { 2176 priv->ops.fill_desc = fill_tso_desc; 2177 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2178 /* This chip only support 7*4096 */ 2179 netif_set_gso_max_size(netdev, 7 * 4096); 2180 } else { 2181 priv->ops.fill_desc = fill_v2_desc; 2182 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2183 } 2184 /* enable tso when init 2185 * control tso on/off through TSE bit in bd 2186 */ 2187 h->dev->ops->set_tso_stats(h, 1); 2188 } 2189 } 2190 2191 static int hns_nic_try_get_ae(struct net_device *ndev) 2192 { 2193 struct hns_nic_priv *priv = netdev_priv(ndev); 2194 struct hnae_handle *h; 2195 int ret; 2196 2197 h = hnae_get_handle(&priv->netdev->dev, 2198 priv->fwnode, priv->port_id, NULL); 2199 if (IS_ERR_OR_NULL(h)) { 2200 ret = -ENODEV; 2201 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2202 goto out; 2203 } 2204 priv->ae_handle = h; 2205 2206 ret = hns_nic_init_phy(ndev, h); 2207 if (ret) { 2208 dev_err(priv->dev, "probe phy device fail!\n"); 2209 goto out_init_phy; 2210 } 2211 2212 ret = hns_nic_init_ring_data(priv); 2213 if (ret) { 2214 ret = -ENOMEM; 2215 goto out_init_ring_data; 2216 } 2217 2218 hns_nic_set_priv_ops(ndev); 2219 2220 ret = register_netdev(ndev); 2221 if (ret) { 2222 dev_err(priv->dev, "probe register netdev fail!\n"); 2223 goto out_reg_ndev_fail; 2224 } 2225 return 0; 2226 2227 out_reg_ndev_fail: 2228 hns_nic_uninit_ring_data(priv); 2229 priv->ring_data = NULL; 2230 out_init_phy: 2231 out_init_ring_data: 2232 hnae_put_handle(priv->ae_handle); 2233 priv->ae_handle = NULL; 2234 out: 2235 return ret; 2236 } 2237 2238 static int hns_nic_notifier_action(struct notifier_block *nb, 2239 unsigned long action, void *data) 2240 { 2241 struct hns_nic_priv *priv = 2242 container_of(nb, struct hns_nic_priv, notifier_block); 2243 2244 assert(action == HNAE_AE_REGISTER); 2245 2246 if (!hns_nic_try_get_ae(priv->netdev)) { 2247 hnae_unregister_notifier(&priv->notifier_block); 2248 priv->notifier_block.notifier_call = NULL; 2249 } 2250 return 0; 2251 } 2252 2253 static int hns_nic_dev_probe(struct platform_device *pdev) 2254 { 2255 struct device *dev = &pdev->dev; 2256 struct net_device *ndev; 2257 struct hns_nic_priv *priv; 2258 u32 port_id; 2259 int ret; 2260 2261 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2262 if (!ndev) 2263 return -ENOMEM; 2264 2265 platform_set_drvdata(pdev, ndev); 2266 2267 priv = netdev_priv(ndev); 2268 priv->dev = dev; 2269 priv->netdev = ndev; 2270 2271 if (dev_of_node(dev)) { 2272 struct device_node *ae_node; 2273 2274 if (of_device_is_compatible(dev->of_node, 2275 "hisilicon,hns-nic-v1")) 2276 priv->enet_ver = AE_VERSION_1; 2277 else 2278 priv->enet_ver = AE_VERSION_2; 2279 2280 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2281 if (!ae_node) { 2282 ret = -ENODEV; 2283 dev_err(dev, "not find ae-handle\n"); 2284 goto out_read_prop_fail; 2285 } 2286 priv->fwnode = &ae_node->fwnode; 2287 } else if (is_acpi_node(dev->fwnode)) { 2288 struct fwnode_reference_args args; 2289 2290 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2291 priv->enet_ver = AE_VERSION_1; 2292 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2293 priv->enet_ver = AE_VERSION_2; 2294 else 2295 return -ENXIO; 2296 2297 /* try to find port-idx-in-ae first */ 2298 ret = acpi_node_get_property_reference(dev->fwnode, 2299 "ae-handle", 0, &args); 2300 if (ret) { 2301 dev_err(dev, "not find ae-handle\n"); 2302 goto out_read_prop_fail; 2303 } 2304 if (!is_acpi_device_node(args.fwnode)) { 2305 ret = -EINVAL; 2306 goto out_read_prop_fail; 2307 } 2308 priv->fwnode = args.fwnode; 2309 } else { 2310 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2311 return -ENXIO; 2312 } 2313 2314 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2315 if (ret) { 2316 /* only for old code compatible */ 2317 ret = device_property_read_u32(dev, "port-id", &port_id); 2318 if (ret) 2319 goto out_read_prop_fail; 2320 /* for old dts, we need to caculate the port offset */ 2321 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2322 : port_id - HNS_SRV_OFFSET; 2323 } 2324 priv->port_id = port_id; 2325 2326 hns_init_mac_addr(ndev); 2327 2328 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2329 ndev->priv_flags |= IFF_UNICAST_FLT; 2330 ndev->netdev_ops = &hns_nic_netdev_ops; 2331 hns_ethtool_set_ops(ndev); 2332 2333 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2334 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2335 NETIF_F_GRO; 2336 ndev->vlan_features |= 2337 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2338 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2339 2340 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2341 ndev->min_mtu = MAC_MIN_MTU; 2342 switch (priv->enet_ver) { 2343 case AE_VERSION_2: 2344 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2345 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2346 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2347 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2348 ndev->max_mtu = MAC_MAX_MTU_V2 - 2349 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2350 break; 2351 default: 2352 ndev->max_mtu = MAC_MAX_MTU - 2353 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2354 break; 2355 } 2356 2357 SET_NETDEV_DEV(ndev, dev); 2358 2359 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2360 dev_dbg(dev, "set mask to 64bit\n"); 2361 else 2362 dev_err(dev, "set mask to 64bit fail!\n"); 2363 2364 /* carrier off reporting is important to ethtool even BEFORE open */ 2365 netif_carrier_off(ndev); 2366 2367 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2368 INIT_WORK(&priv->service_task, hns_nic_service_task); 2369 2370 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2371 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2372 set_bit(NIC_STATE_DOWN, &priv->state); 2373 2374 if (hns_nic_try_get_ae(priv->netdev)) { 2375 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2376 ret = hnae_register_notifier(&priv->notifier_block); 2377 if (ret) { 2378 dev_err(dev, "register notifier fail!\n"); 2379 goto out_notify_fail; 2380 } 2381 dev_dbg(dev, "has not handle, register notifier!\n"); 2382 } 2383 2384 return 0; 2385 2386 out_notify_fail: 2387 (void)cancel_work_sync(&priv->service_task); 2388 out_read_prop_fail: 2389 free_netdev(ndev); 2390 return ret; 2391 } 2392 2393 static int hns_nic_dev_remove(struct platform_device *pdev) 2394 { 2395 struct net_device *ndev = platform_get_drvdata(pdev); 2396 struct hns_nic_priv *priv = netdev_priv(ndev); 2397 2398 if (ndev->reg_state != NETREG_UNINITIALIZED) 2399 unregister_netdev(ndev); 2400 2401 if (priv->ring_data) 2402 hns_nic_uninit_ring_data(priv); 2403 priv->ring_data = NULL; 2404 2405 if (ndev->phydev) 2406 phy_disconnect(ndev->phydev); 2407 2408 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2409 hnae_put_handle(priv->ae_handle); 2410 priv->ae_handle = NULL; 2411 if (priv->notifier_block.notifier_call) 2412 hnae_unregister_notifier(&priv->notifier_block); 2413 priv->notifier_block.notifier_call = NULL; 2414 2415 set_bit(NIC_STATE_REMOVING, &priv->state); 2416 (void)cancel_work_sync(&priv->service_task); 2417 2418 free_netdev(ndev); 2419 return 0; 2420 } 2421 2422 static const struct of_device_id hns_enet_of_match[] = { 2423 {.compatible = "hisilicon,hns-nic-v1",}, 2424 {.compatible = "hisilicon,hns-nic-v2",}, 2425 {}, 2426 }; 2427 2428 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2429 2430 static struct platform_driver hns_nic_dev_driver = { 2431 .driver = { 2432 .name = "hns-nic", 2433 .of_match_table = hns_enet_of_match, 2434 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2435 }, 2436 .probe = hns_nic_dev_probe, 2437 .remove = hns_nic_dev_remove, 2438 }; 2439 2440 module_platform_driver(hns_nic_dev_driver); 2441 2442 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2443 MODULE_AUTHOR("Hisilicon, Inc."); 2444 MODULE_LICENSE("GPL"); 2445 MODULE_ALIAS("platform:hns-nic"); 2446