1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 44 int send_sz, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)send_sz); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 137 int size, dma_addr_t dma, int frag_end, 138 int buf_num, enum hns_desc_type type, int mtu) 139 { 140 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 141 buf_num, type, mtu); 142 } 143 144 static const struct acpi_device_id hns_enet_acpi_match[] = { 145 { "HISI00C1", 0 }, 146 { "HISI00C2", 0 }, 147 { }, 148 }; 149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 150 151 static void fill_desc(struct hnae_ring *ring, void *priv, 152 int size, dma_addr_t dma, int frag_end, 153 int buf_num, enum hns_desc_type type, int mtu) 154 { 155 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 156 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 157 struct sk_buff *skb; 158 __be16 protocol; 159 u32 ip_offset; 160 u32 asid_bufnum_pid = 0; 161 u32 flag_ipoffset = 0; 162 163 desc_cb->priv = priv; 164 desc_cb->length = size; 165 desc_cb->dma = dma; 166 desc_cb->type = type; 167 168 desc->addr = cpu_to_le64(dma); 169 desc->tx.send_size = cpu_to_le16((u16)size); 170 171 /*config bd buffer end */ 172 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 173 174 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 175 176 if (type == DESC_TYPE_SKB) { 177 skb = (struct sk_buff *)priv; 178 179 if (skb->ip_summed == CHECKSUM_PARTIAL) { 180 protocol = skb->protocol; 181 ip_offset = ETH_HLEN; 182 183 /*if it is a SW VLAN check the next protocol*/ 184 if (protocol == htons(ETH_P_8021Q)) { 185 ip_offset += VLAN_HLEN; 186 protocol = vlan_get_protocol(skb); 187 skb->protocol = protocol; 188 } 189 190 if (skb->protocol == htons(ETH_P_IP)) { 191 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 192 /* check for tcp/udp header */ 193 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 194 195 } else if (skb->protocol == htons(ETH_P_IPV6)) { 196 /* ipv6 has not l3 cs, check for L4 header */ 197 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 198 } 199 200 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 201 } 202 } 203 204 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 205 206 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 207 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 208 209 ring_ptr_move_fw(ring, next_to_use); 210 } 211 212 static void unfill_desc(struct hnae_ring *ring) 213 { 214 ring_ptr_move_bw(ring, next_to_use); 215 } 216 217 static int hns_nic_maybe_stop_tx( 218 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 219 { 220 struct sk_buff *skb = *out_skb; 221 struct sk_buff *new_skb = NULL; 222 int buf_num; 223 224 /* no. of segments (plus a header) */ 225 buf_num = skb_shinfo(skb)->nr_frags + 1; 226 227 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 228 if (ring_space(ring) < 1) 229 return -EBUSY; 230 231 new_skb = skb_copy(skb, GFP_ATOMIC); 232 if (!new_skb) 233 return -ENOMEM; 234 235 dev_kfree_skb_any(skb); 236 *out_skb = new_skb; 237 buf_num = 1; 238 } else if (buf_num > ring_space(ring)) { 239 return -EBUSY; 240 } 241 242 *bnum = buf_num; 243 return 0; 244 } 245 246 static int hns_nic_maybe_stop_tso( 247 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 248 { 249 int i; 250 int size; 251 int buf_num; 252 int frag_num; 253 struct sk_buff *skb = *out_skb; 254 struct sk_buff *new_skb = NULL; 255 struct skb_frag_struct *frag; 256 257 size = skb_headlen(skb); 258 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 259 260 frag_num = skb_shinfo(skb)->nr_frags; 261 for (i = 0; i < frag_num; i++) { 262 frag = &skb_shinfo(skb)->frags[i]; 263 size = skb_frag_size(frag); 264 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 265 } 266 267 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 268 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 269 if (ring_space(ring) < buf_num) 270 return -EBUSY; 271 /* manual split the send packet */ 272 new_skb = skb_copy(skb, GFP_ATOMIC); 273 if (!new_skb) 274 return -ENOMEM; 275 dev_kfree_skb_any(skb); 276 *out_skb = new_skb; 277 278 } else if (ring_space(ring) < buf_num) { 279 return -EBUSY; 280 } 281 282 *bnum = buf_num; 283 return 0; 284 } 285 286 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 287 int size, dma_addr_t dma, int frag_end, 288 int buf_num, enum hns_desc_type type, int mtu) 289 { 290 int frag_buf_num; 291 int sizeoflast; 292 int k; 293 294 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 295 sizeoflast = size % BD_MAX_SEND_SIZE; 296 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 297 298 /* when the frag size is bigger than hardware, split this frag */ 299 for (k = 0; k < frag_buf_num; k++) 300 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 301 (k == frag_buf_num - 1) ? 302 sizeoflast : BD_MAX_SEND_SIZE, 303 dma + BD_MAX_SEND_SIZE * k, 304 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 305 buf_num, 306 (type == DESC_TYPE_SKB && !k) ? 307 DESC_TYPE_SKB : DESC_TYPE_PAGE, 308 mtu); 309 } 310 311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 312 struct sk_buff *skb, 313 struct hns_nic_ring_data *ring_data) 314 { 315 struct hns_nic_priv *priv = netdev_priv(ndev); 316 struct hnae_ring *ring = ring_data->ring; 317 struct device *dev = ring_to_dev(ring); 318 struct netdev_queue *dev_queue; 319 struct skb_frag_struct *frag; 320 int buf_num; 321 int seg_num; 322 dma_addr_t dma; 323 int size, next_to_use; 324 int i; 325 326 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 327 case -EBUSY: 328 ring->stats.tx_busy++; 329 goto out_net_tx_busy; 330 case -ENOMEM: 331 ring->stats.sw_err_cnt++; 332 netdev_err(ndev, "no memory to xmit!\n"); 333 goto out_err_tx_ok; 334 default: 335 break; 336 } 337 338 /* no. of segments (plus a header) */ 339 seg_num = skb_shinfo(skb)->nr_frags + 1; 340 next_to_use = ring->next_to_use; 341 342 /* fill the first part */ 343 size = skb_headlen(skb); 344 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 345 if (dma_mapping_error(dev, dma)) { 346 netdev_err(ndev, "TX head DMA map failed\n"); 347 ring->stats.sw_err_cnt++; 348 goto out_err_tx_ok; 349 } 350 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 351 buf_num, DESC_TYPE_SKB, ndev->mtu); 352 353 /* fill the fragments */ 354 for (i = 1; i < seg_num; i++) { 355 frag = &skb_shinfo(skb)->frags[i - 1]; 356 size = skb_frag_size(frag); 357 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 358 if (dma_mapping_error(dev, dma)) { 359 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 360 ring->stats.sw_err_cnt++; 361 goto out_map_frag_fail; 362 } 363 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 364 seg_num - 1 == i ? 1 : 0, buf_num, 365 DESC_TYPE_PAGE, ndev->mtu); 366 } 367 368 /*complete translate all packets*/ 369 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 370 netdev_tx_sent_queue(dev_queue, skb->len); 371 372 netif_trans_update(ndev); 373 ndev->stats.tx_bytes += skb->len; 374 ndev->stats.tx_packets++; 375 376 wmb(); /* commit all data before submit */ 377 assert(skb->queue_mapping < priv->ae_handle->q_num); 378 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 379 ring->stats.tx_pkts++; 380 ring->stats.tx_bytes += skb->len; 381 382 return NETDEV_TX_OK; 383 384 out_map_frag_fail: 385 386 while (ring->next_to_use != next_to_use) { 387 unfill_desc(ring); 388 if (ring->next_to_use != next_to_use) 389 dma_unmap_page(dev, 390 ring->desc_cb[ring->next_to_use].dma, 391 ring->desc_cb[ring->next_to_use].length, 392 DMA_TO_DEVICE); 393 else 394 dma_unmap_single(dev, 395 ring->desc_cb[next_to_use].dma, 396 ring->desc_cb[next_to_use].length, 397 DMA_TO_DEVICE); 398 } 399 400 out_err_tx_ok: 401 402 dev_kfree_skb_any(skb); 403 return NETDEV_TX_OK; 404 405 out_net_tx_busy: 406 407 netif_stop_subqueue(ndev, skb->queue_mapping); 408 409 /* Herbert's original patch had: 410 * smp_mb__after_netif_stop_queue(); 411 * but since that doesn't exist yet, just open code it. 412 */ 413 smp_mb(); 414 return NETDEV_TX_BUSY; 415 } 416 417 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 418 struct hnae_ring *ring, int pull_len, 419 struct hnae_desc_cb *desc_cb) 420 { 421 struct hnae_desc *desc; 422 u32 truesize; 423 int size; 424 int last_offset; 425 bool twobufs; 426 427 twobufs = ((PAGE_SIZE < 8192) && 428 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 429 430 desc = &ring->desc[ring->next_to_clean]; 431 size = le16_to_cpu(desc->rx.size); 432 433 if (twobufs) { 434 truesize = hnae_buf_size(ring); 435 } else { 436 truesize = ALIGN(size, L1_CACHE_BYTES); 437 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 438 } 439 440 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 441 size - pull_len, truesize); 442 443 /* avoid re-using remote pages,flag default unreuse */ 444 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 445 return; 446 447 if (twobufs) { 448 /* if we are only owner of page we can reuse it */ 449 if (likely(page_count(desc_cb->priv) == 1)) { 450 /* flip page offset to other buffer */ 451 desc_cb->page_offset ^= truesize; 452 453 desc_cb->reuse_flag = 1; 454 /* bump ref count on page before it is given*/ 455 get_page(desc_cb->priv); 456 } 457 return; 458 } 459 460 /* move offset up to the next cache line */ 461 desc_cb->page_offset += truesize; 462 463 if (desc_cb->page_offset <= last_offset) { 464 desc_cb->reuse_flag = 1; 465 /* bump ref count on page before it is given*/ 466 get_page(desc_cb->priv); 467 } 468 } 469 470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 471 { 472 *out_bnum = hnae_get_field(bnum_flag, 473 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 474 } 475 476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 477 { 478 *out_bnum = hnae_get_field(bnum_flag, 479 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 480 } 481 482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 483 struct sk_buff *skb, u32 flag) 484 { 485 struct net_device *netdev = ring_data->napi.dev; 486 u32 l3id; 487 u32 l4id; 488 489 /* check if RX checksum offload is enabled */ 490 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 491 return; 492 493 /* In hardware, we only support checksum for the following protocols: 494 * 1) IPv4, 495 * 2) TCP(over IPv4 or IPv6), 496 * 3) UDP(over IPv4 or IPv6), 497 * 4) SCTP(over IPv4 or IPv6) 498 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 499 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 500 * 501 * Hardware limitation: 502 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 503 * Error" bit (which usually can be used to indicate whether checksum 504 * was calculated by the hardware and if there was any error encountered 505 * during checksum calculation). 506 * 507 * Software workaround: 508 * We do get info within the RX descriptor about the kind of L3/L4 509 * protocol coming in the packet and the error status. These errors 510 * might not just be checksum errors but could be related to version, 511 * length of IPv4, UDP, TCP etc. 512 * Because there is no-way of knowing if it is a L3/L4 error due to bad 513 * checksum or any other L3/L4 error, we will not (cannot) convey 514 * checksum status for such cases to upper stack and will not maintain 515 * the RX L3/L4 checksum counters as well. 516 */ 517 518 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 519 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 520 521 /* check L3 protocol for which checksum is supported */ 522 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 523 return; 524 525 /* check for any(not just checksum)flagged L3 protocol errors */ 526 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 527 return; 528 529 /* we do not support checksum of fragmented packets */ 530 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 531 return; 532 533 /* check L4 protocol for which checksum is supported */ 534 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 535 (l4id != HNS_RX_FLAG_L4ID_UDP) && 536 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 537 return; 538 539 /* check for any(not just checksum)flagged L4 protocol errors */ 540 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 541 return; 542 543 /* now, this has to be a packet with valid RX checksum */ 544 skb->ip_summed = CHECKSUM_UNNECESSARY; 545 } 546 547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 548 struct sk_buff **out_skb, int *out_bnum) 549 { 550 struct hnae_ring *ring = ring_data->ring; 551 struct net_device *ndev = ring_data->napi.dev; 552 struct hns_nic_priv *priv = netdev_priv(ndev); 553 struct sk_buff *skb; 554 struct hnae_desc *desc; 555 struct hnae_desc_cb *desc_cb; 556 unsigned char *va; 557 int bnum, length, i; 558 int pull_len; 559 u32 bnum_flag; 560 561 desc = &ring->desc[ring->next_to_clean]; 562 desc_cb = &ring->desc_cb[ring->next_to_clean]; 563 564 prefetch(desc); 565 566 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 567 568 /* prefetch first cache line of first page */ 569 prefetch(va); 570 #if L1_CACHE_BYTES < 128 571 prefetch(va + L1_CACHE_BYTES); 572 #endif 573 574 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 575 HNS_RX_HEAD_SIZE); 576 if (unlikely(!skb)) { 577 netdev_err(ndev, "alloc rx skb fail\n"); 578 ring->stats.sw_err_cnt++; 579 return -ENOMEM; 580 } 581 582 prefetchw(skb->data); 583 length = le16_to_cpu(desc->rx.pkt_len); 584 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 585 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 586 *out_bnum = bnum; 587 588 if (length <= HNS_RX_HEAD_SIZE) { 589 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 590 591 /* we can reuse buffer as-is, just make sure it is local */ 592 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 593 desc_cb->reuse_flag = 1; 594 else /* this page cannot be reused so discard it */ 595 put_page(desc_cb->priv); 596 597 ring_ptr_move_fw(ring, next_to_clean); 598 599 if (unlikely(bnum != 1)) { /* check err*/ 600 *out_bnum = 1; 601 goto out_bnum_err; 602 } 603 } else { 604 ring->stats.seg_pkt_cnt++; 605 606 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); 607 memcpy(__skb_put(skb, pull_len), va, 608 ALIGN(pull_len, sizeof(long))); 609 610 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 611 ring_ptr_move_fw(ring, next_to_clean); 612 613 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 614 *out_bnum = 1; 615 goto out_bnum_err; 616 } 617 for (i = 1; i < bnum; i++) { 618 desc = &ring->desc[ring->next_to_clean]; 619 desc_cb = &ring->desc_cb[ring->next_to_clean]; 620 621 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 622 ring_ptr_move_fw(ring, next_to_clean); 623 } 624 } 625 626 /* check except process, free skb and jump the desc */ 627 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 628 out_bnum_err: 629 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 630 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 631 bnum, ring->max_desc_num_per_pkt, 632 length, (int)MAX_SKB_FRAGS, 633 ((u64 *)desc)[0], ((u64 *)desc)[1]); 634 ring->stats.err_bd_num++; 635 dev_kfree_skb_any(skb); 636 return -EDOM; 637 } 638 639 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 640 641 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 642 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 643 ((u64 *)desc)[0], ((u64 *)desc)[1]); 644 ring->stats.non_vld_descs++; 645 dev_kfree_skb_any(skb); 646 return -EINVAL; 647 } 648 649 if (unlikely((!desc->rx.pkt_len) || 650 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 651 ring->stats.err_pkt_len++; 652 dev_kfree_skb_any(skb); 653 return -EFAULT; 654 } 655 656 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 657 ring->stats.l2_err++; 658 dev_kfree_skb_any(skb); 659 return -EFAULT; 660 } 661 662 ring->stats.rx_pkts++; 663 ring->stats.rx_bytes += skb->len; 664 665 /* indicate to upper stack if our hardware has already calculated 666 * the RX checksum 667 */ 668 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 669 670 return 0; 671 } 672 673 static void 674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 675 { 676 int i, ret; 677 struct hnae_desc_cb res_cbs; 678 struct hnae_desc_cb *desc_cb; 679 struct hnae_ring *ring = ring_data->ring; 680 struct net_device *ndev = ring_data->napi.dev; 681 682 for (i = 0; i < cleand_count; i++) { 683 desc_cb = &ring->desc_cb[ring->next_to_use]; 684 if (desc_cb->reuse_flag) { 685 ring->stats.reuse_pg_cnt++; 686 hnae_reuse_buffer(ring, ring->next_to_use); 687 } else { 688 ret = hnae_reserve_buffer_map(ring, &res_cbs); 689 if (ret) { 690 ring->stats.sw_err_cnt++; 691 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 692 break; 693 } 694 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 695 } 696 697 ring_ptr_move_fw(ring, next_to_use); 698 } 699 700 wmb(); /* make all data has been write before submit */ 701 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 702 } 703 704 /* return error number for error or number of desc left to take 705 */ 706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 707 struct sk_buff *skb) 708 { 709 struct net_device *ndev = ring_data->napi.dev; 710 711 skb->protocol = eth_type_trans(skb, ndev); 712 (void)napi_gro_receive(&ring_data->napi, skb); 713 } 714 715 static int hns_desc_unused(struct hnae_ring *ring) 716 { 717 int ntc = ring->next_to_clean; 718 int ntu = ring->next_to_use; 719 720 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 721 } 722 723 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 724 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 725 726 #define HNS_COAL_BDNUM 3 727 728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 729 { 730 bool coal_enable = ring->q->handle->coal_adapt_en; 731 732 if (coal_enable && 733 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 734 return HNS_COAL_BDNUM; 735 else 736 return 0; 737 } 738 739 static void hns_update_rx_rate(struct hnae_ring *ring) 740 { 741 bool coal_enable = ring->q->handle->coal_adapt_en; 742 u32 time_passed_ms; 743 u64 total_bytes; 744 745 if (!coal_enable || 746 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 747 return; 748 749 /* ring->stats.rx_bytes overflowed */ 750 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 751 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 752 ring->coal_last_jiffies = jiffies; 753 return; 754 } 755 756 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 757 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 758 do_div(total_bytes, time_passed_ms); 759 ring->coal_rx_rate = total_bytes >> 10; 760 761 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 762 ring->coal_last_jiffies = jiffies; 763 } 764 765 /** 766 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 767 **/ 768 static u32 smooth_alg(u32 new_param, u32 old_param) 769 { 770 u32 gap = (new_param > old_param) ? new_param - old_param 771 : old_param - new_param; 772 773 if (gap > 8) 774 gap >>= 3; 775 776 if (new_param > old_param) 777 return old_param + gap; 778 else 779 return old_param - gap; 780 } 781 782 /** 783 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 784 * @ring_data: pointer to hns_nic_ring_data 785 **/ 786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 787 { 788 struct hnae_ring *ring = ring_data->ring; 789 struct hnae_handle *handle = ring->q->handle; 790 u32 new_coal_param, old_coal_param = ring->coal_param; 791 792 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 793 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 794 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 795 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 796 else 797 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 798 799 if (new_coal_param == old_coal_param && 800 new_coal_param == handle->coal_param) 801 return; 802 803 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 804 ring->coal_param = new_coal_param; 805 806 /** 807 * Because all ring in one port has one coalesce param, when one ring 808 * calculate its own coalesce param, it cannot write to hardware at 809 * once. There are three conditions as follows: 810 * 1. current ring's coalesce param is larger than the hardware. 811 * 2. or ring which adapt last time can change again. 812 * 3. timeout. 813 */ 814 if (new_coal_param == handle->coal_param) { 815 handle->coal_last_jiffies = jiffies; 816 handle->coal_ring_idx = ring_data->queue_index; 817 } else if (new_coal_param > handle->coal_param || 818 handle->coal_ring_idx == ring_data->queue_index || 819 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 820 handle->dev->ops->set_coalesce_usecs(handle, 821 new_coal_param); 822 handle->dev->ops->set_coalesce_frames(handle, 823 1, new_coal_param); 824 handle->coal_param = new_coal_param; 825 handle->coal_ring_idx = ring_data->queue_index; 826 handle->coal_last_jiffies = jiffies; 827 } 828 } 829 830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 831 int budget, void *v) 832 { 833 struct hnae_ring *ring = ring_data->ring; 834 struct sk_buff *skb; 835 int num, bnum; 836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 837 int recv_pkts, recv_bds, clean_count, err; 838 int unused_count = hns_desc_unused(ring); 839 840 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 841 rmb(); /* make sure num taken effect before the other data is touched */ 842 843 recv_pkts = 0, recv_bds = 0, clean_count = 0; 844 num -= unused_count; 845 846 while (recv_pkts < budget && recv_bds < num) { 847 /* reuse or realloc buffers */ 848 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 849 hns_nic_alloc_rx_buffers(ring_data, 850 clean_count + unused_count); 851 clean_count = 0; 852 unused_count = hns_desc_unused(ring); 853 } 854 855 /* poll one pkt */ 856 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 857 if (unlikely(!skb)) /* this fault cannot be repaired */ 858 goto out; 859 860 recv_bds += bnum; 861 clean_count += bnum; 862 if (unlikely(err)) { /* do jump the err */ 863 recv_pkts++; 864 continue; 865 } 866 867 /* do update ip stack process*/ 868 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 869 ring_data, skb); 870 recv_pkts++; 871 } 872 873 out: 874 /* make all data has been write before submit */ 875 if (clean_count + unused_count > 0) 876 hns_nic_alloc_rx_buffers(ring_data, 877 clean_count + unused_count); 878 879 return recv_pkts; 880 } 881 882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 883 { 884 struct hnae_ring *ring = ring_data->ring; 885 int num = 0; 886 bool rx_stopped; 887 888 hns_update_rx_rate(ring); 889 890 /* for hardware bug fixed */ 891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 892 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 893 894 if (num <= hns_coal_rx_bdnum(ring)) { 895 if (ring->q->handle->coal_adapt_en) 896 hns_nic_adpt_coalesce(ring_data); 897 898 rx_stopped = true; 899 } else { 900 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 901 ring_data->ring, 1); 902 903 rx_stopped = false; 904 } 905 906 return rx_stopped; 907 } 908 909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 910 { 911 struct hnae_ring *ring = ring_data->ring; 912 int num; 913 914 hns_update_rx_rate(ring); 915 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 916 917 if (num <= hns_coal_rx_bdnum(ring)) { 918 if (ring->q->handle->coal_adapt_en) 919 hns_nic_adpt_coalesce(ring_data); 920 921 return true; 922 } 923 924 return false; 925 } 926 927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 928 int *bytes, int *pkts) 929 { 930 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 931 932 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 933 (*bytes) += desc_cb->length; 934 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 935 hnae_free_buffer_detach(ring, ring->next_to_clean); 936 937 ring_ptr_move_fw(ring, next_to_clean); 938 } 939 940 static int is_valid_clean_head(struct hnae_ring *ring, int h) 941 { 942 int u = ring->next_to_use; 943 int c = ring->next_to_clean; 944 945 if (unlikely(h > ring->desc_num)) 946 return 0; 947 948 assert(u > 0 && u < ring->desc_num); 949 assert(c > 0 && c < ring->desc_num); 950 assert(u != c && h != c); /* must be checked before call this func */ 951 952 return u > c ? (h > c && h <= u) : (h > c || h <= u); 953 } 954 955 /* netif_tx_lock will turn down the performance, set only when necessary */ 956 #ifdef CONFIG_NET_POLL_CONTROLLER 957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 959 #else 960 #define NETIF_TX_LOCK(ring) 961 #define NETIF_TX_UNLOCK(ring) 962 #endif 963 964 /* reclaim all desc in one budget 965 * return error or number of desc left 966 */ 967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 968 int budget, void *v) 969 { 970 struct hnae_ring *ring = ring_data->ring; 971 struct net_device *ndev = ring_data->napi.dev; 972 struct netdev_queue *dev_queue; 973 struct hns_nic_priv *priv = netdev_priv(ndev); 974 int head; 975 int bytes, pkts; 976 977 NETIF_TX_LOCK(ring); 978 979 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 980 rmb(); /* make sure head is ready before touch any data */ 981 982 if (is_ring_empty(ring) || head == ring->next_to_clean) { 983 NETIF_TX_UNLOCK(ring); 984 return 0; /* no data to poll */ 985 } 986 987 if (!is_valid_clean_head(ring, head)) { 988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 989 ring->next_to_use, ring->next_to_clean); 990 ring->stats.io_err_cnt++; 991 NETIF_TX_UNLOCK(ring); 992 return -EIO; 993 } 994 995 bytes = 0; 996 pkts = 0; 997 while (head != ring->next_to_clean) { 998 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 999 /* issue prefetch for next Tx descriptor */ 1000 prefetch(&ring->desc_cb[ring->next_to_clean]); 1001 } 1002 1003 NETIF_TX_UNLOCK(ring); 1004 1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1006 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1007 1008 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1009 netif_carrier_on(ndev); 1010 1011 if (unlikely(pkts && netif_carrier_ok(ndev) && 1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1013 /* Make sure that anybody stopping the queue after this 1014 * sees the new next_to_clean. 1015 */ 1016 smp_mb(); 1017 if (netif_tx_queue_stopped(dev_queue) && 1018 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1019 netif_tx_wake_queue(dev_queue); 1020 ring->stats.restart_queue++; 1021 } 1022 } 1023 return 0; 1024 } 1025 1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1027 { 1028 struct hnae_ring *ring = ring_data->ring; 1029 int head; 1030 1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1032 1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1034 1035 if (head != ring->next_to_clean) { 1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1037 ring_data->ring, 1); 1038 1039 return false; 1040 } else { 1041 return true; 1042 } 1043 } 1044 1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1046 { 1047 struct hnae_ring *ring = ring_data->ring; 1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1049 1050 if (head == ring->next_to_clean) 1051 return true; 1052 else 1053 return false; 1054 } 1055 1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1057 { 1058 struct hnae_ring *ring = ring_data->ring; 1059 struct net_device *ndev = ring_data->napi.dev; 1060 struct netdev_queue *dev_queue; 1061 int head; 1062 int bytes, pkts; 1063 1064 NETIF_TX_LOCK(ring); 1065 1066 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1067 bytes = 0; 1068 pkts = 0; 1069 while (head != ring->next_to_clean) 1070 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1071 1072 NETIF_TX_UNLOCK(ring); 1073 1074 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1075 netdev_tx_reset_queue(dev_queue); 1076 } 1077 1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1079 { 1080 int clean_complete = 0; 1081 struct hns_nic_ring_data *ring_data = 1082 container_of(napi, struct hns_nic_ring_data, napi); 1083 struct hnae_ring *ring = ring_data->ring; 1084 1085 try_again: 1086 clean_complete += ring_data->poll_one( 1087 ring_data, budget - clean_complete, 1088 ring_data->ex_process); 1089 1090 if (clean_complete < budget) { 1091 if (ring_data->fini_process(ring_data)) { 1092 napi_complete(napi); 1093 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1094 } else { 1095 goto try_again; 1096 } 1097 } 1098 1099 return clean_complete; 1100 } 1101 1102 static irqreturn_t hns_irq_handle(int irq, void *dev) 1103 { 1104 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1105 1106 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1107 ring_data->ring, 1); 1108 napi_schedule(&ring_data->napi); 1109 1110 return IRQ_HANDLED; 1111 } 1112 1113 /** 1114 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1115 *@ndev: net device 1116 */ 1117 static void hns_nic_adjust_link(struct net_device *ndev) 1118 { 1119 struct hns_nic_priv *priv = netdev_priv(ndev); 1120 struct hnae_handle *h = priv->ae_handle; 1121 int state = 1; 1122 1123 /* If there is no phy, do not need adjust link */ 1124 if (ndev->phydev) { 1125 /* When phy link down, do nothing */ 1126 if (ndev->phydev->link == 0) 1127 return; 1128 1129 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1130 ndev->phydev->duplex)) { 1131 /* because Hi161X chip don't support to change gmac 1132 * speed and duplex with traffic. Delay 200ms to 1133 * make sure there is no more data in chip FIFO. 1134 */ 1135 netif_carrier_off(ndev); 1136 msleep(200); 1137 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1138 ndev->phydev->duplex); 1139 netif_carrier_on(ndev); 1140 } 1141 } 1142 1143 state = state && h->dev->ops->get_status(h); 1144 1145 if (state != priv->link) { 1146 if (state) { 1147 netif_carrier_on(ndev); 1148 netif_tx_wake_all_queues(ndev); 1149 netdev_info(ndev, "link up\n"); 1150 } else { 1151 netif_carrier_off(ndev); 1152 netdev_info(ndev, "link down\n"); 1153 } 1154 priv->link = state; 1155 } 1156 } 1157 1158 /** 1159 *hns_nic_init_phy - init phy 1160 *@ndev: net device 1161 *@h: ae handle 1162 * Return 0 on success, negative on failure 1163 */ 1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1165 { 1166 struct phy_device *phy_dev = h->phy_dev; 1167 int ret; 1168 1169 if (!h->phy_dev) 1170 return 0; 1171 1172 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1173 phy_dev->dev_flags = 0; 1174 1175 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1176 h->phy_if); 1177 } else { 1178 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1179 } 1180 if (unlikely(ret)) 1181 return -ENODEV; 1182 1183 phy_dev->supported &= h->if_support; 1184 phy_dev->advertising = phy_dev->supported; 1185 1186 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1187 phy_dev->autoneg = false; 1188 1189 if (h->phy_if == PHY_INTERFACE_MODE_SGMII) 1190 phy_stop(phy_dev); 1191 1192 return 0; 1193 } 1194 1195 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1196 { 1197 struct hns_nic_priv *priv = netdev_priv(netdev); 1198 struct hnae_handle *h = priv->ae_handle; 1199 1200 napi_enable(&priv->ring_data[idx].napi); 1201 1202 enable_irq(priv->ring_data[idx].ring->irq); 1203 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1204 1205 return 0; 1206 } 1207 1208 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1209 { 1210 struct hns_nic_priv *priv = netdev_priv(ndev); 1211 struct hnae_handle *h = priv->ae_handle; 1212 struct sockaddr *mac_addr = p; 1213 int ret; 1214 1215 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1216 return -EADDRNOTAVAIL; 1217 1218 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1219 if (ret) { 1220 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1221 return ret; 1222 } 1223 1224 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1225 1226 return 0; 1227 } 1228 1229 static void hns_nic_update_stats(struct net_device *netdev) 1230 { 1231 struct hns_nic_priv *priv = netdev_priv(netdev); 1232 struct hnae_handle *h = priv->ae_handle; 1233 1234 h->dev->ops->update_stats(h, &netdev->stats); 1235 } 1236 1237 /* set mac addr if it is configed. or leave it to the AE driver */ 1238 static void hns_init_mac_addr(struct net_device *ndev) 1239 { 1240 struct hns_nic_priv *priv = netdev_priv(ndev); 1241 1242 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1243 eth_hw_addr_random(ndev); 1244 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1245 ndev->dev_addr); 1246 } 1247 } 1248 1249 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1250 { 1251 struct hns_nic_priv *priv = netdev_priv(netdev); 1252 struct hnae_handle *h = priv->ae_handle; 1253 1254 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1255 disable_irq(priv->ring_data[idx].ring->irq); 1256 1257 napi_disable(&priv->ring_data[idx].napi); 1258 } 1259 1260 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1261 struct hnae_ring *ring, cpumask_t *mask) 1262 { 1263 int cpu; 1264 1265 /* Diffrent irq banlance between 16core and 32core. 1266 * The cpu mask set by ring index according to the ring flag 1267 * which indicate the ring is tx or rx. 1268 */ 1269 if (q_num == num_possible_cpus()) { 1270 if (is_tx_ring(ring)) 1271 cpu = ring_idx; 1272 else 1273 cpu = ring_idx - q_num; 1274 } else { 1275 if (is_tx_ring(ring)) 1276 cpu = ring_idx * 2; 1277 else 1278 cpu = (ring_idx - q_num) * 2 + 1; 1279 } 1280 1281 cpumask_clear(mask); 1282 cpumask_set_cpu(cpu, mask); 1283 1284 return cpu; 1285 } 1286 1287 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1288 { 1289 int i; 1290 1291 for (i = 0; i < q_num * 2; i++) { 1292 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1293 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1294 NULL); 1295 free_irq(priv->ring_data[i].ring->irq, 1296 &priv->ring_data[i]); 1297 priv->ring_data[i].ring->irq_init_flag = 1298 RCB_IRQ_NOT_INITED; 1299 } 1300 } 1301 } 1302 1303 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1304 { 1305 struct hnae_handle *h = priv->ae_handle; 1306 struct hns_nic_ring_data *rd; 1307 int i; 1308 int ret; 1309 int cpu; 1310 1311 for (i = 0; i < h->q_num * 2; i++) { 1312 rd = &priv->ring_data[i]; 1313 1314 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1315 break; 1316 1317 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1318 "%s-%s%d", priv->netdev->name, 1319 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1320 1321 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1322 1323 ret = request_irq(rd->ring->irq, 1324 hns_irq_handle, 0, rd->ring->ring_name, rd); 1325 if (ret) { 1326 netdev_err(priv->netdev, "request irq(%d) fail\n", 1327 rd->ring->irq); 1328 goto out_free_irq; 1329 } 1330 disable_irq(rd->ring->irq); 1331 1332 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1333 rd->ring, &rd->mask); 1334 1335 if (cpu_online(cpu)) 1336 irq_set_affinity_hint(rd->ring->irq, 1337 &rd->mask); 1338 1339 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1340 } 1341 1342 return 0; 1343 1344 out_free_irq: 1345 hns_nic_free_irq(h->q_num, priv); 1346 return ret; 1347 } 1348 1349 static int hns_nic_net_up(struct net_device *ndev) 1350 { 1351 struct hns_nic_priv *priv = netdev_priv(ndev); 1352 struct hnae_handle *h = priv->ae_handle; 1353 int i, j; 1354 int ret; 1355 1356 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1357 return 0; 1358 1359 ret = hns_nic_init_irq(priv); 1360 if (ret != 0) { 1361 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1362 return ret; 1363 } 1364 1365 for (i = 0; i < h->q_num * 2; i++) { 1366 ret = hns_nic_ring_open(ndev, i); 1367 if (ret) 1368 goto out_has_some_queues; 1369 } 1370 1371 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1372 if (ret) 1373 goto out_set_mac_addr_err; 1374 1375 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1376 if (ret) 1377 goto out_start_err; 1378 1379 if (ndev->phydev) 1380 phy_start(ndev->phydev); 1381 1382 clear_bit(NIC_STATE_DOWN, &priv->state); 1383 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1384 1385 return 0; 1386 1387 out_start_err: 1388 netif_stop_queue(ndev); 1389 out_set_mac_addr_err: 1390 out_has_some_queues: 1391 for (j = i - 1; j >= 0; j--) 1392 hns_nic_ring_close(ndev, j); 1393 1394 hns_nic_free_irq(h->q_num, priv); 1395 set_bit(NIC_STATE_DOWN, &priv->state); 1396 1397 return ret; 1398 } 1399 1400 static void hns_nic_net_down(struct net_device *ndev) 1401 { 1402 int i; 1403 struct hnae_ae_ops *ops; 1404 struct hns_nic_priv *priv = netdev_priv(ndev); 1405 1406 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1407 return; 1408 1409 (void)del_timer_sync(&priv->service_timer); 1410 netif_tx_stop_all_queues(ndev); 1411 netif_carrier_off(ndev); 1412 netif_tx_disable(ndev); 1413 priv->link = 0; 1414 1415 if (ndev->phydev) 1416 phy_stop(ndev->phydev); 1417 1418 ops = priv->ae_handle->dev->ops; 1419 1420 if (ops->stop) 1421 ops->stop(priv->ae_handle); 1422 1423 netif_tx_stop_all_queues(ndev); 1424 1425 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1426 hns_nic_ring_close(ndev, i); 1427 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1428 1429 /* clean tx buffers*/ 1430 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1431 } 1432 } 1433 1434 void hns_nic_net_reset(struct net_device *ndev) 1435 { 1436 struct hns_nic_priv *priv = netdev_priv(ndev); 1437 struct hnae_handle *handle = priv->ae_handle; 1438 1439 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1440 usleep_range(1000, 2000); 1441 1442 (void)hnae_reinit_handle(handle); 1443 1444 clear_bit(NIC_STATE_RESETTING, &priv->state); 1445 } 1446 1447 void hns_nic_net_reinit(struct net_device *netdev) 1448 { 1449 struct hns_nic_priv *priv = netdev_priv(netdev); 1450 enum hnae_port_type type = priv->ae_handle->port_type; 1451 1452 netif_trans_update(priv->netdev); 1453 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1454 usleep_range(1000, 2000); 1455 1456 hns_nic_net_down(netdev); 1457 1458 /* Only do hns_nic_net_reset in debug mode 1459 * because of hardware limitation. 1460 */ 1461 if (type == HNAE_PORT_DEBUG) 1462 hns_nic_net_reset(netdev); 1463 1464 (void)hns_nic_net_up(netdev); 1465 clear_bit(NIC_STATE_REINITING, &priv->state); 1466 } 1467 1468 static int hns_nic_net_open(struct net_device *ndev) 1469 { 1470 struct hns_nic_priv *priv = netdev_priv(ndev); 1471 struct hnae_handle *h = priv->ae_handle; 1472 int ret; 1473 1474 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1475 return -EBUSY; 1476 1477 priv->link = 0; 1478 netif_carrier_off(ndev); 1479 1480 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1481 if (ret < 0) { 1482 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1483 ret); 1484 return ret; 1485 } 1486 1487 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1488 if (ret < 0) { 1489 netdev_err(ndev, 1490 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1491 return ret; 1492 } 1493 1494 ret = hns_nic_net_up(ndev); 1495 if (ret) { 1496 netdev_err(ndev, 1497 "hns net up fail, ret=%d!\n", ret); 1498 return ret; 1499 } 1500 1501 return 0; 1502 } 1503 1504 static int hns_nic_net_stop(struct net_device *ndev) 1505 { 1506 hns_nic_net_down(ndev); 1507 1508 return 0; 1509 } 1510 1511 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1512 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1513 static void hns_nic_net_timeout(struct net_device *ndev) 1514 { 1515 struct hns_nic_priv *priv = netdev_priv(ndev); 1516 1517 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1518 ndev->watchdog_timeo *= 2; 1519 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1520 ndev->watchdog_timeo); 1521 } else { 1522 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1523 hns_tx_timeout_reset(priv); 1524 } 1525 } 1526 1527 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1528 int cmd) 1529 { 1530 struct phy_device *phy_dev = netdev->phydev; 1531 1532 if (!netif_running(netdev)) 1533 return -EINVAL; 1534 1535 if (!phy_dev) 1536 return -ENOTSUPP; 1537 1538 return phy_mii_ioctl(phy_dev, ifr, cmd); 1539 } 1540 1541 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1542 struct net_device *ndev) 1543 { 1544 struct hns_nic_priv *priv = netdev_priv(ndev); 1545 1546 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1547 1548 return hns_nic_net_xmit_hw(ndev, skb, 1549 &tx_ring_data(priv, skb->queue_mapping)); 1550 } 1551 1552 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1553 struct sk_buff *skb) 1554 { 1555 dev_kfree_skb_any(skb); 1556 } 1557 1558 #define HNS_LB_TX_RING 0 1559 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1560 { 1561 struct sk_buff *skb; 1562 struct ethhdr *ethhdr; 1563 int frame_len; 1564 1565 /* allocate test skb */ 1566 skb = alloc_skb(64, GFP_KERNEL); 1567 if (!skb) 1568 return NULL; 1569 1570 skb_put(skb, 64); 1571 skb->dev = ndev; 1572 memset(skb->data, 0xFF, skb->len); 1573 1574 /* must be tcp/ip package */ 1575 ethhdr = (struct ethhdr *)skb->data; 1576 ethhdr->h_proto = htons(ETH_P_IP); 1577 1578 frame_len = skb->len & (~1ul); 1579 memset(&skb->data[frame_len / 2], 0xAA, 1580 frame_len / 2 - 1); 1581 1582 skb->queue_mapping = HNS_LB_TX_RING; 1583 1584 return skb; 1585 } 1586 1587 static int hns_enable_serdes_lb(struct net_device *ndev) 1588 { 1589 struct hns_nic_priv *priv = netdev_priv(ndev); 1590 struct hnae_handle *h = priv->ae_handle; 1591 struct hnae_ae_ops *ops = h->dev->ops; 1592 int speed, duplex; 1593 int ret; 1594 1595 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1596 if (ret) 1597 return ret; 1598 1599 ret = ops->start ? ops->start(h) : 0; 1600 if (ret) 1601 return ret; 1602 1603 /* link adjust duplex*/ 1604 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1605 speed = 1000; 1606 else 1607 speed = 10000; 1608 duplex = 1; 1609 1610 ops->adjust_link(h, speed, duplex); 1611 1612 /* wait h/w ready */ 1613 mdelay(300); 1614 1615 return 0; 1616 } 1617 1618 static void hns_disable_serdes_lb(struct net_device *ndev) 1619 { 1620 struct hns_nic_priv *priv = netdev_priv(ndev); 1621 struct hnae_handle *h = priv->ae_handle; 1622 struct hnae_ae_ops *ops = h->dev->ops; 1623 1624 ops->stop(h); 1625 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1626 } 1627 1628 /** 1629 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1630 *function as follows: 1631 * 1. if one rx ring has found the page_offset is not equal 0 between head 1632 * and tail, it means that the chip fetched the wrong descs for the ring 1633 * which buffer size is 4096. 1634 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1635 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1636 * recieving all packages and it will fetch new descriptions. 1637 * 4. recover to the original state. 1638 * 1639 *@ndev: net device 1640 */ 1641 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1642 { 1643 struct hns_nic_priv *priv = netdev_priv(ndev); 1644 struct hnae_handle *h = priv->ae_handle; 1645 struct hnae_ae_ops *ops = h->dev->ops; 1646 struct hns_nic_ring_data *rd; 1647 struct hnae_ring *ring; 1648 struct sk_buff *skb; 1649 u32 *org_indir; 1650 u32 *cur_indir; 1651 int indir_size; 1652 int head, tail; 1653 int fetch_num; 1654 int i, j; 1655 bool found; 1656 int retry_times; 1657 int ret = 0; 1658 1659 /* alloc indir memory */ 1660 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1661 org_indir = kzalloc(indir_size, GFP_KERNEL); 1662 if (!org_indir) 1663 return -ENOMEM; 1664 1665 /* store the orginal indirection */ 1666 ops->get_rss(h, org_indir, NULL, NULL); 1667 1668 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1669 if (!cur_indir) { 1670 ret = -ENOMEM; 1671 goto cur_indir_alloc_err; 1672 } 1673 1674 /* set loopback */ 1675 if (hns_enable_serdes_lb(ndev)) { 1676 ret = -EINVAL; 1677 goto enable_serdes_lb_err; 1678 } 1679 1680 /* foreach every rx ring to clear fetch desc */ 1681 for (i = 0; i < h->q_num; i++) { 1682 ring = &h->qs[i]->rx_ring; 1683 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1684 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1685 found = false; 1686 fetch_num = ring_dist(ring, head, tail); 1687 1688 while (head != tail) { 1689 if (ring->desc_cb[head].page_offset != 0) { 1690 found = true; 1691 break; 1692 } 1693 1694 head++; 1695 if (head == ring->desc_num) 1696 head = 0; 1697 } 1698 1699 if (found) { 1700 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1701 cur_indir[j] = i; 1702 ops->set_rss(h, cur_indir, NULL, 0); 1703 1704 for (j = 0; j < fetch_num; j++) { 1705 /* alloc one skb and init */ 1706 skb = hns_assemble_skb(ndev); 1707 if (!skb) 1708 goto out; 1709 rd = &tx_ring_data(priv, skb->queue_mapping); 1710 hns_nic_net_xmit_hw(ndev, skb, rd); 1711 1712 retry_times = 0; 1713 while (retry_times++ < 10) { 1714 mdelay(10); 1715 /* clean rx */ 1716 rd = &rx_ring_data(priv, i); 1717 if (rd->poll_one(rd, fetch_num, 1718 hns_nic_drop_rx_fetch)) 1719 break; 1720 } 1721 1722 retry_times = 0; 1723 while (retry_times++ < 10) { 1724 mdelay(10); 1725 /* clean tx ring 0 send package */ 1726 rd = &tx_ring_data(priv, 1727 HNS_LB_TX_RING); 1728 if (rd->poll_one(rd, fetch_num, NULL)) 1729 break; 1730 } 1731 } 1732 } 1733 } 1734 1735 out: 1736 /* restore everything */ 1737 ops->set_rss(h, org_indir, NULL, 0); 1738 hns_disable_serdes_lb(ndev); 1739 enable_serdes_lb_err: 1740 kfree(cur_indir); 1741 cur_indir_alloc_err: 1742 kfree(org_indir); 1743 1744 return ret; 1745 } 1746 1747 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1748 { 1749 struct hns_nic_priv *priv = netdev_priv(ndev); 1750 struct hnae_handle *h = priv->ae_handle; 1751 bool if_running = netif_running(ndev); 1752 int ret; 1753 1754 /* MTU < 68 is an error and causes problems on some kernels */ 1755 if (new_mtu < 68) 1756 return -EINVAL; 1757 1758 /* MTU no change */ 1759 if (new_mtu == ndev->mtu) 1760 return 0; 1761 1762 if (!h->dev->ops->set_mtu) 1763 return -ENOTSUPP; 1764 1765 if (if_running) { 1766 (void)hns_nic_net_stop(ndev); 1767 msleep(100); 1768 } 1769 1770 if (priv->enet_ver != AE_VERSION_1 && 1771 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1772 new_mtu > BD_SIZE_2048_MAX_MTU) { 1773 /* update desc */ 1774 hnae_reinit_all_ring_desc(h); 1775 1776 /* clear the package which the chip has fetched */ 1777 ret = hns_nic_clear_all_rx_fetch(ndev); 1778 1779 /* the page offset must be consist with desc */ 1780 hnae_reinit_all_ring_page_off(h); 1781 1782 if (ret) { 1783 netdev_err(ndev, "clear the fetched desc fail\n"); 1784 goto out; 1785 } 1786 } 1787 1788 ret = h->dev->ops->set_mtu(h, new_mtu); 1789 if (ret) { 1790 netdev_err(ndev, "set mtu fail, return value %d\n", 1791 ret); 1792 goto out; 1793 } 1794 1795 /* finally, set new mtu to netdevice */ 1796 ndev->mtu = new_mtu; 1797 1798 out: 1799 if (if_running) { 1800 if (hns_nic_net_open(ndev)) { 1801 netdev_err(ndev, "hns net open fail\n"); 1802 ret = -EINVAL; 1803 } 1804 } 1805 1806 return ret; 1807 } 1808 1809 static int hns_nic_set_features(struct net_device *netdev, 1810 netdev_features_t features) 1811 { 1812 struct hns_nic_priv *priv = netdev_priv(netdev); 1813 1814 switch (priv->enet_ver) { 1815 case AE_VERSION_1: 1816 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1817 netdev_info(netdev, "enet v1 do not support tso!\n"); 1818 break; 1819 default: 1820 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1821 priv->ops.fill_desc = fill_tso_desc; 1822 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1823 /* The chip only support 7*4096 */ 1824 netif_set_gso_max_size(netdev, 7 * 4096); 1825 } else { 1826 priv->ops.fill_desc = fill_v2_desc; 1827 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1828 } 1829 break; 1830 } 1831 netdev->features = features; 1832 return 0; 1833 } 1834 1835 static netdev_features_t hns_nic_fix_features( 1836 struct net_device *netdev, netdev_features_t features) 1837 { 1838 struct hns_nic_priv *priv = netdev_priv(netdev); 1839 1840 switch (priv->enet_ver) { 1841 case AE_VERSION_1: 1842 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1843 NETIF_F_HW_VLAN_CTAG_FILTER); 1844 break; 1845 default: 1846 break; 1847 } 1848 return features; 1849 } 1850 1851 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1852 { 1853 struct hns_nic_priv *priv = netdev_priv(netdev); 1854 struct hnae_handle *h = priv->ae_handle; 1855 1856 if (h->dev->ops->add_uc_addr) 1857 return h->dev->ops->add_uc_addr(h, addr); 1858 1859 return 0; 1860 } 1861 1862 static int hns_nic_uc_unsync(struct net_device *netdev, 1863 const unsigned char *addr) 1864 { 1865 struct hns_nic_priv *priv = netdev_priv(netdev); 1866 struct hnae_handle *h = priv->ae_handle; 1867 1868 if (h->dev->ops->rm_uc_addr) 1869 return h->dev->ops->rm_uc_addr(h, addr); 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * nic_set_multicast_list - set mutl mac address 1876 * @netdev: net device 1877 * @p: mac address 1878 * 1879 * return void 1880 */ 1881 static void hns_set_multicast_list(struct net_device *ndev) 1882 { 1883 struct hns_nic_priv *priv = netdev_priv(ndev); 1884 struct hnae_handle *h = priv->ae_handle; 1885 struct netdev_hw_addr *ha = NULL; 1886 1887 if (!h) { 1888 netdev_err(ndev, "hnae handle is null\n"); 1889 return; 1890 } 1891 1892 if (h->dev->ops->clr_mc_addr) 1893 if (h->dev->ops->clr_mc_addr(h)) 1894 netdev_err(ndev, "clear multicast address fail\n"); 1895 1896 if (h->dev->ops->set_mc_addr) { 1897 netdev_for_each_mc_addr(ha, ndev) 1898 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1899 netdev_err(ndev, "set multicast fail\n"); 1900 } 1901 } 1902 1903 static void hns_nic_set_rx_mode(struct net_device *ndev) 1904 { 1905 struct hns_nic_priv *priv = netdev_priv(ndev); 1906 struct hnae_handle *h = priv->ae_handle; 1907 1908 if (h->dev->ops->set_promisc_mode) { 1909 if (ndev->flags & IFF_PROMISC) 1910 h->dev->ops->set_promisc_mode(h, 1); 1911 else 1912 h->dev->ops->set_promisc_mode(h, 0); 1913 } 1914 1915 hns_set_multicast_list(ndev); 1916 1917 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1918 netdev_err(ndev, "sync uc address fail\n"); 1919 } 1920 1921 static void hns_nic_get_stats64(struct net_device *ndev, 1922 struct rtnl_link_stats64 *stats) 1923 { 1924 int idx = 0; 1925 u64 tx_bytes = 0; 1926 u64 rx_bytes = 0; 1927 u64 tx_pkts = 0; 1928 u64 rx_pkts = 0; 1929 struct hns_nic_priv *priv = netdev_priv(ndev); 1930 struct hnae_handle *h = priv->ae_handle; 1931 1932 for (idx = 0; idx < h->q_num; idx++) { 1933 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1934 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1935 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1936 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1937 } 1938 1939 stats->tx_bytes = tx_bytes; 1940 stats->tx_packets = tx_pkts; 1941 stats->rx_bytes = rx_bytes; 1942 stats->rx_packets = rx_pkts; 1943 1944 stats->rx_errors = ndev->stats.rx_errors; 1945 stats->multicast = ndev->stats.multicast; 1946 stats->rx_length_errors = ndev->stats.rx_length_errors; 1947 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1948 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1949 1950 stats->tx_errors = ndev->stats.tx_errors; 1951 stats->rx_dropped = ndev->stats.rx_dropped; 1952 stats->tx_dropped = ndev->stats.tx_dropped; 1953 stats->collisions = ndev->stats.collisions; 1954 stats->rx_over_errors = ndev->stats.rx_over_errors; 1955 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1956 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1957 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1958 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1959 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1960 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1961 stats->tx_window_errors = ndev->stats.tx_window_errors; 1962 stats->rx_compressed = ndev->stats.rx_compressed; 1963 stats->tx_compressed = ndev->stats.tx_compressed; 1964 } 1965 1966 static u16 1967 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1968 struct net_device *sb_dev, 1969 select_queue_fallback_t fallback) 1970 { 1971 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1972 struct hns_nic_priv *priv = netdev_priv(ndev); 1973 1974 /* fix hardware broadcast/multicast packets queue loopback */ 1975 if (!AE_IS_VER1(priv->enet_ver) && 1976 is_multicast_ether_addr(eth_hdr->h_dest)) 1977 return 0; 1978 else 1979 return fallback(ndev, skb, NULL); 1980 } 1981 1982 static const struct net_device_ops hns_nic_netdev_ops = { 1983 .ndo_open = hns_nic_net_open, 1984 .ndo_stop = hns_nic_net_stop, 1985 .ndo_start_xmit = hns_nic_net_xmit, 1986 .ndo_tx_timeout = hns_nic_net_timeout, 1987 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1988 .ndo_change_mtu = hns_nic_change_mtu, 1989 .ndo_do_ioctl = hns_nic_do_ioctl, 1990 .ndo_set_features = hns_nic_set_features, 1991 .ndo_fix_features = hns_nic_fix_features, 1992 .ndo_get_stats64 = hns_nic_get_stats64, 1993 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1994 .ndo_select_queue = hns_nic_select_queue, 1995 }; 1996 1997 static void hns_nic_update_link_status(struct net_device *netdev) 1998 { 1999 struct hns_nic_priv *priv = netdev_priv(netdev); 2000 2001 struct hnae_handle *h = priv->ae_handle; 2002 2003 if (h->phy_dev) { 2004 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 2005 return; 2006 2007 (void)genphy_read_status(h->phy_dev); 2008 } 2009 hns_nic_adjust_link(netdev); 2010 } 2011 2012 /* for dumping key regs*/ 2013 static void hns_nic_dump(struct hns_nic_priv *priv) 2014 { 2015 struct hnae_handle *h = priv->ae_handle; 2016 struct hnae_ae_ops *ops = h->dev->ops; 2017 u32 *data, reg_num, i; 2018 2019 if (ops->get_regs_len && ops->get_regs) { 2020 reg_num = ops->get_regs_len(priv->ae_handle); 2021 reg_num = (reg_num + 3ul) & ~3ul; 2022 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 2023 if (data) { 2024 ops->get_regs(priv->ae_handle, data); 2025 for (i = 0; i < reg_num; i += 4) 2026 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2027 i, data[i], data[i + 1], 2028 data[i + 2], data[i + 3]); 2029 kfree(data); 2030 } 2031 } 2032 2033 for (i = 0; i < h->q_num; i++) { 2034 pr_info("tx_queue%d_next_to_clean:%d\n", 2035 i, h->qs[i]->tx_ring.next_to_clean); 2036 pr_info("tx_queue%d_next_to_use:%d\n", 2037 i, h->qs[i]->tx_ring.next_to_use); 2038 pr_info("rx_queue%d_next_to_clean:%d\n", 2039 i, h->qs[i]->rx_ring.next_to_clean); 2040 pr_info("rx_queue%d_next_to_use:%d\n", 2041 i, h->qs[i]->rx_ring.next_to_use); 2042 } 2043 } 2044 2045 /* for resetting subtask */ 2046 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2047 { 2048 enum hnae_port_type type = priv->ae_handle->port_type; 2049 2050 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2051 return; 2052 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2053 2054 /* If we're already down, removing or resetting, just bail */ 2055 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2056 test_bit(NIC_STATE_REMOVING, &priv->state) || 2057 test_bit(NIC_STATE_RESETTING, &priv->state)) 2058 return; 2059 2060 hns_nic_dump(priv); 2061 netdev_info(priv->netdev, "try to reset %s port!\n", 2062 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2063 2064 rtnl_lock(); 2065 /* put off any impending NetWatchDogTimeout */ 2066 netif_trans_update(priv->netdev); 2067 hns_nic_net_reinit(priv->netdev); 2068 2069 rtnl_unlock(); 2070 } 2071 2072 /* for doing service complete*/ 2073 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2074 { 2075 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2076 /* make sure to commit the things */ 2077 smp_mb__before_atomic(); 2078 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2079 } 2080 2081 static void hns_nic_service_task(struct work_struct *work) 2082 { 2083 struct hns_nic_priv *priv 2084 = container_of(work, struct hns_nic_priv, service_task); 2085 struct hnae_handle *h = priv->ae_handle; 2086 2087 hns_nic_reset_subtask(priv); 2088 hns_nic_update_link_status(priv->netdev); 2089 h->dev->ops->update_led_status(h); 2090 hns_nic_update_stats(priv->netdev); 2091 2092 hns_nic_service_event_complete(priv); 2093 } 2094 2095 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2096 { 2097 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2098 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2099 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2100 (void)schedule_work(&priv->service_task); 2101 } 2102 2103 static void hns_nic_service_timer(struct timer_list *t) 2104 { 2105 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2106 2107 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2108 2109 hns_nic_task_schedule(priv); 2110 } 2111 2112 /** 2113 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2114 * @priv: driver private struct 2115 **/ 2116 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2117 { 2118 /* Do the reset outside of interrupt context */ 2119 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2120 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2121 netdev_warn(priv->netdev, 2122 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2123 priv->tx_timeout_count, priv->state); 2124 priv->tx_timeout_count++; 2125 hns_nic_task_schedule(priv); 2126 } 2127 } 2128 2129 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2130 { 2131 struct hnae_handle *h = priv->ae_handle; 2132 struct hns_nic_ring_data *rd; 2133 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2134 int i; 2135 2136 if (h->q_num > NIC_MAX_Q_PER_VF) { 2137 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2138 return -EINVAL; 2139 } 2140 2141 priv->ring_data = kzalloc(array3_size(h->q_num, 2142 sizeof(*priv->ring_data), 2), 2143 GFP_KERNEL); 2144 if (!priv->ring_data) 2145 return -ENOMEM; 2146 2147 for (i = 0; i < h->q_num; i++) { 2148 rd = &priv->ring_data[i]; 2149 rd->queue_index = i; 2150 rd->ring = &h->qs[i]->tx_ring; 2151 rd->poll_one = hns_nic_tx_poll_one; 2152 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2153 hns_nic_tx_fini_pro_v2; 2154 2155 netif_napi_add(priv->netdev, &rd->napi, 2156 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2157 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2158 } 2159 for (i = h->q_num; i < h->q_num * 2; i++) { 2160 rd = &priv->ring_data[i]; 2161 rd->queue_index = i - h->q_num; 2162 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2163 rd->poll_one = hns_nic_rx_poll_one; 2164 rd->ex_process = hns_nic_rx_up_pro; 2165 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2166 hns_nic_rx_fini_pro_v2; 2167 2168 netif_napi_add(priv->netdev, &rd->napi, 2169 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2170 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2171 } 2172 2173 return 0; 2174 } 2175 2176 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2177 { 2178 struct hnae_handle *h = priv->ae_handle; 2179 int i; 2180 2181 for (i = 0; i < h->q_num * 2; i++) { 2182 netif_napi_del(&priv->ring_data[i].napi); 2183 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2184 (void)irq_set_affinity_hint( 2185 priv->ring_data[i].ring->irq, 2186 NULL); 2187 free_irq(priv->ring_data[i].ring->irq, 2188 &priv->ring_data[i]); 2189 } 2190 2191 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2192 } 2193 kfree(priv->ring_data); 2194 } 2195 2196 static void hns_nic_set_priv_ops(struct net_device *netdev) 2197 { 2198 struct hns_nic_priv *priv = netdev_priv(netdev); 2199 struct hnae_handle *h = priv->ae_handle; 2200 2201 if (AE_IS_VER1(priv->enet_ver)) { 2202 priv->ops.fill_desc = fill_desc; 2203 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2204 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2205 } else { 2206 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2207 if ((netdev->features & NETIF_F_TSO) || 2208 (netdev->features & NETIF_F_TSO6)) { 2209 priv->ops.fill_desc = fill_tso_desc; 2210 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2211 /* This chip only support 7*4096 */ 2212 netif_set_gso_max_size(netdev, 7 * 4096); 2213 } else { 2214 priv->ops.fill_desc = fill_v2_desc; 2215 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2216 } 2217 /* enable tso when init 2218 * control tso on/off through TSE bit in bd 2219 */ 2220 h->dev->ops->set_tso_stats(h, 1); 2221 } 2222 } 2223 2224 static int hns_nic_try_get_ae(struct net_device *ndev) 2225 { 2226 struct hns_nic_priv *priv = netdev_priv(ndev); 2227 struct hnae_handle *h; 2228 int ret; 2229 2230 h = hnae_get_handle(&priv->netdev->dev, 2231 priv->fwnode, priv->port_id, NULL); 2232 if (IS_ERR_OR_NULL(h)) { 2233 ret = -ENODEV; 2234 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2235 goto out; 2236 } 2237 priv->ae_handle = h; 2238 2239 ret = hns_nic_init_phy(ndev, h); 2240 if (ret) { 2241 dev_err(priv->dev, "probe phy device fail!\n"); 2242 goto out_init_phy; 2243 } 2244 2245 ret = hns_nic_init_ring_data(priv); 2246 if (ret) { 2247 ret = -ENOMEM; 2248 goto out_init_ring_data; 2249 } 2250 2251 hns_nic_set_priv_ops(ndev); 2252 2253 ret = register_netdev(ndev); 2254 if (ret) { 2255 dev_err(priv->dev, "probe register netdev fail!\n"); 2256 goto out_reg_ndev_fail; 2257 } 2258 return 0; 2259 2260 out_reg_ndev_fail: 2261 hns_nic_uninit_ring_data(priv); 2262 priv->ring_data = NULL; 2263 out_init_phy: 2264 out_init_ring_data: 2265 hnae_put_handle(priv->ae_handle); 2266 priv->ae_handle = NULL; 2267 out: 2268 return ret; 2269 } 2270 2271 static int hns_nic_notifier_action(struct notifier_block *nb, 2272 unsigned long action, void *data) 2273 { 2274 struct hns_nic_priv *priv = 2275 container_of(nb, struct hns_nic_priv, notifier_block); 2276 2277 assert(action == HNAE_AE_REGISTER); 2278 2279 if (!hns_nic_try_get_ae(priv->netdev)) { 2280 hnae_unregister_notifier(&priv->notifier_block); 2281 priv->notifier_block.notifier_call = NULL; 2282 } 2283 return 0; 2284 } 2285 2286 static int hns_nic_dev_probe(struct platform_device *pdev) 2287 { 2288 struct device *dev = &pdev->dev; 2289 struct net_device *ndev; 2290 struct hns_nic_priv *priv; 2291 u32 port_id; 2292 int ret; 2293 2294 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2295 if (!ndev) 2296 return -ENOMEM; 2297 2298 platform_set_drvdata(pdev, ndev); 2299 2300 priv = netdev_priv(ndev); 2301 priv->dev = dev; 2302 priv->netdev = ndev; 2303 2304 if (dev_of_node(dev)) { 2305 struct device_node *ae_node; 2306 2307 if (of_device_is_compatible(dev->of_node, 2308 "hisilicon,hns-nic-v1")) 2309 priv->enet_ver = AE_VERSION_1; 2310 else 2311 priv->enet_ver = AE_VERSION_2; 2312 2313 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2314 if (!ae_node) { 2315 ret = -ENODEV; 2316 dev_err(dev, "not find ae-handle\n"); 2317 goto out_read_prop_fail; 2318 } 2319 priv->fwnode = &ae_node->fwnode; 2320 } else if (is_acpi_node(dev->fwnode)) { 2321 struct fwnode_reference_args args; 2322 2323 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2324 priv->enet_ver = AE_VERSION_1; 2325 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2326 priv->enet_ver = AE_VERSION_2; 2327 else 2328 return -ENXIO; 2329 2330 /* try to find port-idx-in-ae first */ 2331 ret = acpi_node_get_property_reference(dev->fwnode, 2332 "ae-handle", 0, &args); 2333 if (ret) { 2334 dev_err(dev, "not find ae-handle\n"); 2335 goto out_read_prop_fail; 2336 } 2337 if (!is_acpi_device_node(args.fwnode)) { 2338 ret = -EINVAL; 2339 goto out_read_prop_fail; 2340 } 2341 priv->fwnode = args.fwnode; 2342 } else { 2343 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2344 return -ENXIO; 2345 } 2346 2347 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2348 if (ret) { 2349 /* only for old code compatible */ 2350 ret = device_property_read_u32(dev, "port-id", &port_id); 2351 if (ret) 2352 goto out_read_prop_fail; 2353 /* for old dts, we need to caculate the port offset */ 2354 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2355 : port_id - HNS_SRV_OFFSET; 2356 } 2357 priv->port_id = port_id; 2358 2359 hns_init_mac_addr(ndev); 2360 2361 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2362 ndev->priv_flags |= IFF_UNICAST_FLT; 2363 ndev->netdev_ops = &hns_nic_netdev_ops; 2364 hns_ethtool_set_ops(ndev); 2365 2366 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2367 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2368 NETIF_F_GRO; 2369 ndev->vlan_features |= 2370 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2371 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2372 2373 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2374 ndev->min_mtu = MAC_MIN_MTU; 2375 switch (priv->enet_ver) { 2376 case AE_VERSION_2: 2377 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2378 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2379 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2380 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2381 ndev->max_mtu = MAC_MAX_MTU_V2 - 2382 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2383 break; 2384 default: 2385 ndev->max_mtu = MAC_MAX_MTU - 2386 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2387 break; 2388 } 2389 2390 SET_NETDEV_DEV(ndev, dev); 2391 2392 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2393 dev_dbg(dev, "set mask to 64bit\n"); 2394 else 2395 dev_err(dev, "set mask to 64bit fail!\n"); 2396 2397 /* carrier off reporting is important to ethtool even BEFORE open */ 2398 netif_carrier_off(ndev); 2399 2400 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2401 INIT_WORK(&priv->service_task, hns_nic_service_task); 2402 2403 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2404 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2405 set_bit(NIC_STATE_DOWN, &priv->state); 2406 2407 if (hns_nic_try_get_ae(priv->netdev)) { 2408 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2409 ret = hnae_register_notifier(&priv->notifier_block); 2410 if (ret) { 2411 dev_err(dev, "register notifier fail!\n"); 2412 goto out_notify_fail; 2413 } 2414 dev_dbg(dev, "has not handle, register notifier!\n"); 2415 } 2416 2417 return 0; 2418 2419 out_notify_fail: 2420 (void)cancel_work_sync(&priv->service_task); 2421 out_read_prop_fail: 2422 free_netdev(ndev); 2423 return ret; 2424 } 2425 2426 static int hns_nic_dev_remove(struct platform_device *pdev) 2427 { 2428 struct net_device *ndev = platform_get_drvdata(pdev); 2429 struct hns_nic_priv *priv = netdev_priv(ndev); 2430 2431 if (ndev->reg_state != NETREG_UNINITIALIZED) 2432 unregister_netdev(ndev); 2433 2434 if (priv->ring_data) 2435 hns_nic_uninit_ring_data(priv); 2436 priv->ring_data = NULL; 2437 2438 if (ndev->phydev) 2439 phy_disconnect(ndev->phydev); 2440 2441 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2442 hnae_put_handle(priv->ae_handle); 2443 priv->ae_handle = NULL; 2444 if (priv->notifier_block.notifier_call) 2445 hnae_unregister_notifier(&priv->notifier_block); 2446 priv->notifier_block.notifier_call = NULL; 2447 2448 set_bit(NIC_STATE_REMOVING, &priv->state); 2449 (void)cancel_work_sync(&priv->service_task); 2450 2451 free_netdev(ndev); 2452 return 0; 2453 } 2454 2455 static const struct of_device_id hns_enet_of_match[] = { 2456 {.compatible = "hisilicon,hns-nic-v1",}, 2457 {.compatible = "hisilicon,hns-nic-v2",}, 2458 {}, 2459 }; 2460 2461 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2462 2463 static struct platform_driver hns_nic_dev_driver = { 2464 .driver = { 2465 .name = "hns-nic", 2466 .of_match_table = hns_enet_of_match, 2467 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2468 }, 2469 .probe = hns_nic_dev_probe, 2470 .remove = hns_nic_dev_remove, 2471 }; 2472 2473 module_platform_driver(hns_nic_dev_driver); 2474 2475 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2476 MODULE_AUTHOR("Hisilicon, Inc."); 2477 MODULE_LICENSE("GPL"); 2478 MODULE_ALIAS("platform:hns-nic"); 2479