xref: /linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22 
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25 
26 #define SERVICE_TIMER_HZ (1 * HZ)
27 
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31 
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35 
36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37 			    int send_sz, dma_addr_t dma, int frag_end,
38 			    int buf_num, enum hns_desc_type type, int mtu)
39 {
40 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42 	struct iphdr *iphdr;
43 	struct ipv6hdr *ipv6hdr;
44 	struct sk_buff *skb;
45 	__be16 protocol;
46 	u8 bn_pid = 0;
47 	u8 rrcfv = 0;
48 	u8 ip_offset = 0;
49 	u8 tvsvsn = 0;
50 	u16 mss = 0;
51 	u8 l4_len = 0;
52 	u16 paylen = 0;
53 
54 	desc_cb->priv = priv;
55 	desc_cb->length = size;
56 	desc_cb->dma = dma;
57 	desc_cb->type = type;
58 
59 	desc->addr = cpu_to_le64(dma);
60 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
61 
62 	/* config bd buffer end */
63 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65 
66 	/* fill port_id in the tx bd for sending management pkts */
67 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69 
70 	if (type == DESC_TYPE_SKB) {
71 		skb = (struct sk_buff *)priv;
72 
73 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
74 			skb_reset_mac_len(skb);
75 			protocol = skb->protocol;
76 			ip_offset = ETH_HLEN;
77 
78 			if (protocol == htons(ETH_P_8021Q)) {
79 				ip_offset += VLAN_HLEN;
80 				protocol = vlan_get_protocol(skb);
81 				skb->protocol = protocol;
82 			}
83 
84 			if (skb->protocol == htons(ETH_P_IP)) {
85 				iphdr = ip_hdr(skb);
86 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88 
89 				/* check for tcp/udp header */
90 				if (iphdr->protocol == IPPROTO_TCP &&
91 				    skb_is_gso(skb)) {
92 					hnae_set_bit(tvsvsn,
93 						     HNSV2_TXD_TSE_B, 1);
94 					l4_len = tcp_hdrlen(skb);
95 					mss = skb_shinfo(skb)->gso_size;
96 					paylen = skb->len - SKB_TMP_LEN(skb);
97 				}
98 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
99 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100 				ipv6hdr = ipv6_hdr(skb);
101 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102 
103 				/* check for tcp/udp header */
104 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106 					hnae_set_bit(tvsvsn,
107 						     HNSV2_TXD_TSE_B, 1);
108 					l4_len = tcp_hdrlen(skb);
109 					mss = skb_shinfo(skb)->gso_size;
110 					paylen = skb->len - SKB_TMP_LEN(skb);
111 				}
112 			}
113 			desc->tx.ip_offset = ip_offset;
114 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115 			desc->tx.mss = cpu_to_le16(mss);
116 			desc->tx.l4_len = l4_len;
117 			desc->tx.paylen = cpu_to_le16(paylen);
118 		}
119 	}
120 
121 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122 
123 	desc->tx.bn_pid = bn_pid;
124 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
125 
126 	ring_ptr_move_fw(ring, next_to_use);
127 }
128 
129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130 			 int size, dma_addr_t dma, int frag_end,
131 			 int buf_num, enum hns_desc_type type, int mtu)
132 {
133 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134 			buf_num, type, mtu);
135 }
136 
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138 	{ "HISI00C1", 0 },
139 	{ "HISI00C2", 0 },
140 	{ },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143 
144 static void fill_desc(struct hnae_ring *ring, void *priv,
145 		      int size, dma_addr_t dma, int frag_end,
146 		      int buf_num, enum hns_desc_type type, int mtu)
147 {
148 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 	struct sk_buff *skb;
151 	__be16 protocol;
152 	u32 ip_offset;
153 	u32 asid_bufnum_pid = 0;
154 	u32 flag_ipoffset = 0;
155 
156 	desc_cb->priv = priv;
157 	desc_cb->length = size;
158 	desc_cb->dma = dma;
159 	desc_cb->type = type;
160 
161 	desc->addr = cpu_to_le64(dma);
162 	desc->tx.send_size = cpu_to_le16((u16)size);
163 
164 	/*config bd buffer end */
165 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166 
167 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168 
169 	if (type == DESC_TYPE_SKB) {
170 		skb = (struct sk_buff *)priv;
171 
172 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 			protocol = skb->protocol;
174 			ip_offset = ETH_HLEN;
175 
176 			/*if it is a SW VLAN check the next protocol*/
177 			if (protocol == htons(ETH_P_8021Q)) {
178 				ip_offset += VLAN_HLEN;
179 				protocol = vlan_get_protocol(skb);
180 				skb->protocol = protocol;
181 			}
182 
183 			if (skb->protocol == htons(ETH_P_IP)) {
184 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 				/* check for tcp/udp header */
186 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187 
188 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
189 				/* ipv6 has not l3 cs, check for L4 header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 			}
192 
193 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 		}
195 	}
196 
197 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198 
199 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201 
202 	ring_ptr_move_fw(ring, next_to_use);
203 }
204 
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 	ring_ptr_move_bw(ring, next_to_use);
208 }
209 
210 static int hns_nic_maybe_stop_tx(
211 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 	struct sk_buff *skb = *out_skb;
214 	struct sk_buff *new_skb = NULL;
215 	int buf_num;
216 
217 	/* no. of segments (plus a header) */
218 	buf_num = skb_shinfo(skb)->nr_frags + 1;
219 
220 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 		if (ring_space(ring) < 1)
222 			return -EBUSY;
223 
224 		new_skb = skb_copy(skb, GFP_ATOMIC);
225 		if (!new_skb)
226 			return -ENOMEM;
227 
228 		dev_kfree_skb_any(skb);
229 		*out_skb = new_skb;
230 		buf_num = 1;
231 	} else if (buf_num > ring_space(ring)) {
232 		return -EBUSY;
233 	}
234 
235 	*bnum = buf_num;
236 	return 0;
237 }
238 
239 static int hns_nic_maybe_stop_tso(
240 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 	int i;
243 	int size;
244 	int buf_num;
245 	int frag_num;
246 	struct sk_buff *skb = *out_skb;
247 	struct sk_buff *new_skb = NULL;
248 	skb_frag_t *frag;
249 
250 	size = skb_headlen(skb);
251 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252 
253 	frag_num = skb_shinfo(skb)->nr_frags;
254 	for (i = 0; i < frag_num; i++) {
255 		frag = &skb_shinfo(skb)->frags[i];
256 		size = skb_frag_size(frag);
257 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 	}
259 
260 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 		if (ring_space(ring) < buf_num)
263 			return -EBUSY;
264 		/* manual split the send packet */
265 		new_skb = skb_copy(skb, GFP_ATOMIC);
266 		if (!new_skb)
267 			return -ENOMEM;
268 		dev_kfree_skb_any(skb);
269 		*out_skb = new_skb;
270 
271 	} else if (ring_space(ring) < buf_num) {
272 		return -EBUSY;
273 	}
274 
275 	*bnum = buf_num;
276 	return 0;
277 }
278 
279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280 			  int size, dma_addr_t dma, int frag_end,
281 			  int buf_num, enum hns_desc_type type, int mtu)
282 {
283 	int frag_buf_num;
284 	int sizeoflast;
285 	int k;
286 
287 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288 	sizeoflast = size % BD_MAX_SEND_SIZE;
289 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290 
291 	/* when the frag size is bigger than hardware, split this frag */
292 	for (k = 0; k < frag_buf_num; k++)
293 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294 				(k == frag_buf_num - 1) ?
295 					sizeoflast : BD_MAX_SEND_SIZE,
296 				dma + BD_MAX_SEND_SIZE * k,
297 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298 				buf_num,
299 				(type == DESC_TYPE_SKB && !k) ?
300 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
301 				mtu);
302 }
303 
304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305 				struct sk_buff *skb,
306 				struct hns_nic_ring_data *ring_data)
307 {
308 	struct hns_nic_priv *priv = netdev_priv(ndev);
309 	struct hnae_ring *ring = ring_data->ring;
310 	struct device *dev = ring_to_dev(ring);
311 	struct netdev_queue *dev_queue;
312 	skb_frag_t *frag;
313 	int buf_num;
314 	int seg_num;
315 	dma_addr_t dma;
316 	int size, next_to_use;
317 	int i;
318 
319 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320 	case -EBUSY:
321 		ring->stats.tx_busy++;
322 		goto out_net_tx_busy;
323 	case -ENOMEM:
324 		ring->stats.sw_err_cnt++;
325 		netdev_err(ndev, "no memory to xmit!\n");
326 		goto out_err_tx_ok;
327 	default:
328 		break;
329 	}
330 
331 	/* no. of segments (plus a header) */
332 	seg_num = skb_shinfo(skb)->nr_frags + 1;
333 	next_to_use = ring->next_to_use;
334 
335 	/* fill the first part */
336 	size = skb_headlen(skb);
337 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338 	if (dma_mapping_error(dev, dma)) {
339 		netdev_err(ndev, "TX head DMA map failed\n");
340 		ring->stats.sw_err_cnt++;
341 		goto out_err_tx_ok;
342 	}
343 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
345 
346 	/* fill the fragments */
347 	for (i = 1; i < seg_num; i++) {
348 		frag = &skb_shinfo(skb)->frags[i - 1];
349 		size = skb_frag_size(frag);
350 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351 		if (dma_mapping_error(dev, dma)) {
352 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353 			ring->stats.sw_err_cnt++;
354 			goto out_map_frag_fail;
355 		}
356 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357 				    seg_num - 1 == i ? 1 : 0, buf_num,
358 				    DESC_TYPE_PAGE, ndev->mtu);
359 	}
360 
361 	/*complete translate all packets*/
362 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363 	netdev_tx_sent_queue(dev_queue, skb->len);
364 
365 	netif_trans_update(ndev);
366 	ndev->stats.tx_bytes += skb->len;
367 	ndev->stats.tx_packets++;
368 
369 	wmb(); /* commit all data before submit */
370 	assert(skb->queue_mapping < priv->ae_handle->q_num);
371 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372 
373 	return NETDEV_TX_OK;
374 
375 out_map_frag_fail:
376 
377 	while (ring->next_to_use != next_to_use) {
378 		unfill_desc(ring);
379 		if (ring->next_to_use != next_to_use)
380 			dma_unmap_page(dev,
381 				       ring->desc_cb[ring->next_to_use].dma,
382 				       ring->desc_cb[ring->next_to_use].length,
383 				       DMA_TO_DEVICE);
384 		else
385 			dma_unmap_single(dev,
386 					 ring->desc_cb[next_to_use].dma,
387 					 ring->desc_cb[next_to_use].length,
388 					 DMA_TO_DEVICE);
389 	}
390 
391 out_err_tx_ok:
392 
393 	dev_kfree_skb_any(skb);
394 	return NETDEV_TX_OK;
395 
396 out_net_tx_busy:
397 
398 	netif_stop_subqueue(ndev, skb->queue_mapping);
399 
400 	/* Herbert's original patch had:
401 	 *  smp_mb__after_netif_stop_queue();
402 	 * but since that doesn't exist yet, just open code it.
403 	 */
404 	smp_mb();
405 	return NETDEV_TX_BUSY;
406 }
407 
408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409 			       struct hnae_ring *ring, int pull_len,
410 			       struct hnae_desc_cb *desc_cb)
411 {
412 	struct hnae_desc *desc;
413 	u32 truesize;
414 	int size;
415 	int last_offset;
416 	bool twobufs;
417 
418 	twobufs = ((PAGE_SIZE < 8192) &&
419 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420 
421 	desc = &ring->desc[ring->next_to_clean];
422 	size = le16_to_cpu(desc->rx.size);
423 
424 	if (twobufs) {
425 		truesize = hnae_buf_size(ring);
426 	} else {
427 		truesize = ALIGN(size, L1_CACHE_BYTES);
428 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429 	}
430 
431 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432 			size - pull_len, truesize);
433 
434 	 /* avoid re-using remote pages,flag default unreuse */
435 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436 		return;
437 
438 	if (twobufs) {
439 		/* if we are only owner of page we can reuse it */
440 		if (likely(page_count(desc_cb->priv) == 1)) {
441 			/* flip page offset to other buffer */
442 			desc_cb->page_offset ^= truesize;
443 
444 			desc_cb->reuse_flag = 1;
445 			/* bump ref count on page before it is given*/
446 			get_page(desc_cb->priv);
447 		}
448 		return;
449 	}
450 
451 	/* move offset up to the next cache line */
452 	desc_cb->page_offset += truesize;
453 
454 	if (desc_cb->page_offset <= last_offset) {
455 		desc_cb->reuse_flag = 1;
456 		/* bump ref count on page before it is given*/
457 		get_page(desc_cb->priv);
458 	}
459 }
460 
461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463 	*out_bnum = hnae_get_field(bnum_flag,
464 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466 
467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469 	*out_bnum = hnae_get_field(bnum_flag,
470 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472 
473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474 				struct sk_buff *skb, u32 flag)
475 {
476 	struct net_device *netdev = ring_data->napi.dev;
477 	u32 l3id;
478 	u32 l4id;
479 
480 	/* check if RX checksum offload is enabled */
481 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482 		return;
483 
484 	/* In hardware, we only support checksum for the following protocols:
485 	 * 1) IPv4,
486 	 * 2) TCP(over IPv4 or IPv6),
487 	 * 3) UDP(over IPv4 or IPv6),
488 	 * 4) SCTP(over IPv4 or IPv6)
489 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
490 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
491 	 *
492 	 * Hardware limitation:
493 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
494 	 * Error" bit (which usually can be used to indicate whether checksum
495 	 * was calculated by the hardware and if there was any error encountered
496 	 * during checksum calculation).
497 	 *
498 	 * Software workaround:
499 	 * We do get info within the RX descriptor about the kind of L3/L4
500 	 * protocol coming in the packet and the error status. These errors
501 	 * might not just be checksum errors but could be related to version,
502 	 * length of IPv4, UDP, TCP etc.
503 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
504 	 * checksum or any other L3/L4 error, we will not (cannot) convey
505 	 * checksum status for such cases to upper stack and will not maintain
506 	 * the RX L3/L4 checksum counters as well.
507 	 */
508 
509 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511 
512 	/*  check L3 protocol for which checksum is supported */
513 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514 		return;
515 
516 	/* check for any(not just checksum)flagged L3 protocol errors */
517 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518 		return;
519 
520 	/* we do not support checksum of fragmented packets */
521 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522 		return;
523 
524 	/*  check L4 protocol for which checksum is supported */
525 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
528 		return;
529 
530 	/* check for any(not just checksum)flagged L4 protocol errors */
531 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532 		return;
533 
534 	/* now, this has to be a packet with valid RX checksum */
535 	skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537 
538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539 			       struct sk_buff **out_skb, int *out_bnum)
540 {
541 	struct hnae_ring *ring = ring_data->ring;
542 	struct net_device *ndev = ring_data->napi.dev;
543 	struct hns_nic_priv *priv = netdev_priv(ndev);
544 	struct sk_buff *skb;
545 	struct hnae_desc *desc;
546 	struct hnae_desc_cb *desc_cb;
547 	unsigned char *va;
548 	int bnum, length, i;
549 	int pull_len;
550 	u32 bnum_flag;
551 
552 	desc = &ring->desc[ring->next_to_clean];
553 	desc_cb = &ring->desc_cb[ring->next_to_clean];
554 
555 	prefetch(desc);
556 
557 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558 
559 	/* prefetch first cache line of first page */
560 	prefetch(va);
561 #if L1_CACHE_BYTES < 128
562 	prefetch(va + L1_CACHE_BYTES);
563 #endif
564 
565 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
566 					HNS_RX_HEAD_SIZE);
567 	if (unlikely(!skb)) {
568 		netdev_err(ndev, "alloc rx skb fail\n");
569 		ring->stats.sw_err_cnt++;
570 		return -ENOMEM;
571 	}
572 
573 	prefetchw(skb->data);
574 	length = le16_to_cpu(desc->rx.pkt_len);
575 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
576 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
577 	*out_bnum = bnum;
578 
579 	if (length <= HNS_RX_HEAD_SIZE) {
580 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
581 
582 		/* we can reuse buffer as-is, just make sure it is local */
583 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
584 			desc_cb->reuse_flag = 1;
585 		else /* this page cannot be reused so discard it */
586 			put_page(desc_cb->priv);
587 
588 		ring_ptr_move_fw(ring, next_to_clean);
589 
590 		if (unlikely(bnum != 1)) { /* check err*/
591 			*out_bnum = 1;
592 			goto out_bnum_err;
593 		}
594 	} else {
595 		ring->stats.seg_pkt_cnt++;
596 
597 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
598 		memcpy(__skb_put(skb, pull_len), va,
599 		       ALIGN(pull_len, sizeof(long)));
600 
601 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
602 		ring_ptr_move_fw(ring, next_to_clean);
603 
604 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
605 			*out_bnum = 1;
606 			goto out_bnum_err;
607 		}
608 		for (i = 1; i < bnum; i++) {
609 			desc = &ring->desc[ring->next_to_clean];
610 			desc_cb = &ring->desc_cb[ring->next_to_clean];
611 
612 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
613 			ring_ptr_move_fw(ring, next_to_clean);
614 		}
615 	}
616 
617 	/* check except process, free skb and jump the desc */
618 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
619 out_bnum_err:
620 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
621 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
622 			   bnum, ring->max_desc_num_per_pkt,
623 			   length, (int)MAX_SKB_FRAGS,
624 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
625 		ring->stats.err_bd_num++;
626 		dev_kfree_skb_any(skb);
627 		return -EDOM;
628 	}
629 
630 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
631 
632 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
633 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
634 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
635 		ring->stats.non_vld_descs++;
636 		dev_kfree_skb_any(skb);
637 		return -EINVAL;
638 	}
639 
640 	if (unlikely((!desc->rx.pkt_len) ||
641 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
642 		ring->stats.err_pkt_len++;
643 		dev_kfree_skb_any(skb);
644 		return -EFAULT;
645 	}
646 
647 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
648 		ring->stats.l2_err++;
649 		dev_kfree_skb_any(skb);
650 		return -EFAULT;
651 	}
652 
653 	ring->stats.rx_pkts++;
654 	ring->stats.rx_bytes += skb->len;
655 
656 	/* indicate to upper stack if our hardware has already calculated
657 	 * the RX checksum
658 	 */
659 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
660 
661 	return 0;
662 }
663 
664 static void
665 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
666 {
667 	int i, ret;
668 	struct hnae_desc_cb res_cbs;
669 	struct hnae_desc_cb *desc_cb;
670 	struct hnae_ring *ring = ring_data->ring;
671 	struct net_device *ndev = ring_data->napi.dev;
672 
673 	for (i = 0; i < cleand_count; i++) {
674 		desc_cb = &ring->desc_cb[ring->next_to_use];
675 		if (desc_cb->reuse_flag) {
676 			ring->stats.reuse_pg_cnt++;
677 			hnae_reuse_buffer(ring, ring->next_to_use);
678 		} else {
679 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
680 			if (ret) {
681 				ring->stats.sw_err_cnt++;
682 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
683 				break;
684 			}
685 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
686 		}
687 
688 		ring_ptr_move_fw(ring, next_to_use);
689 	}
690 
691 	wmb(); /* make all data has been write before submit */
692 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
693 }
694 
695 /* return error number for error or number of desc left to take
696  */
697 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
698 			      struct sk_buff *skb)
699 {
700 	struct net_device *ndev = ring_data->napi.dev;
701 
702 	skb->protocol = eth_type_trans(skb, ndev);
703 	(void)napi_gro_receive(&ring_data->napi, skb);
704 }
705 
706 static int hns_desc_unused(struct hnae_ring *ring)
707 {
708 	int ntc = ring->next_to_clean;
709 	int ntu = ring->next_to_use;
710 
711 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
712 }
713 
714 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
715 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
716 
717 #define HNS_COAL_BDNUM			3
718 
719 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
720 {
721 	bool coal_enable = ring->q->handle->coal_adapt_en;
722 
723 	if (coal_enable &&
724 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
725 		return HNS_COAL_BDNUM;
726 	else
727 		return 0;
728 }
729 
730 static void hns_update_rx_rate(struct hnae_ring *ring)
731 {
732 	bool coal_enable = ring->q->handle->coal_adapt_en;
733 	u32 time_passed_ms;
734 	u64 total_bytes;
735 
736 	if (!coal_enable ||
737 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
738 		return;
739 
740 	/* ring->stats.rx_bytes overflowed */
741 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
742 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
743 		ring->coal_last_jiffies = jiffies;
744 		return;
745 	}
746 
747 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
748 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
749 	do_div(total_bytes, time_passed_ms);
750 	ring->coal_rx_rate = total_bytes >> 10;
751 
752 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
753 	ring->coal_last_jiffies = jiffies;
754 }
755 
756 /**
757  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
758  **/
759 static u32 smooth_alg(u32 new_param, u32 old_param)
760 {
761 	u32 gap = (new_param > old_param) ? new_param - old_param
762 					  : old_param - new_param;
763 
764 	if (gap > 8)
765 		gap >>= 3;
766 
767 	if (new_param > old_param)
768 		return old_param + gap;
769 	else
770 		return old_param - gap;
771 }
772 
773 /**
774  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
775  * @ring_data: pointer to hns_nic_ring_data
776  **/
777 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
778 {
779 	struct hnae_ring *ring = ring_data->ring;
780 	struct hnae_handle *handle = ring->q->handle;
781 	u32 new_coal_param, old_coal_param = ring->coal_param;
782 
783 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
784 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
785 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
786 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
787 	else
788 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
789 
790 	if (new_coal_param == old_coal_param &&
791 	    new_coal_param == handle->coal_param)
792 		return;
793 
794 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
795 	ring->coal_param = new_coal_param;
796 
797 	/**
798 	 * Because all ring in one port has one coalesce param, when one ring
799 	 * calculate its own coalesce param, it cannot write to hardware at
800 	 * once. There are three conditions as follows:
801 	 *       1. current ring's coalesce param is larger than the hardware.
802 	 *       2. or ring which adapt last time can change again.
803 	 *       3. timeout.
804 	 */
805 	if (new_coal_param == handle->coal_param) {
806 		handle->coal_last_jiffies = jiffies;
807 		handle->coal_ring_idx = ring_data->queue_index;
808 	} else if (new_coal_param > handle->coal_param ||
809 		   handle->coal_ring_idx == ring_data->queue_index ||
810 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
811 		handle->dev->ops->set_coalesce_usecs(handle,
812 					new_coal_param);
813 		handle->dev->ops->set_coalesce_frames(handle,
814 					1, new_coal_param);
815 		handle->coal_param = new_coal_param;
816 		handle->coal_ring_idx = ring_data->queue_index;
817 		handle->coal_last_jiffies = jiffies;
818 	}
819 }
820 
821 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
822 			       int budget, void *v)
823 {
824 	struct hnae_ring *ring = ring_data->ring;
825 	struct sk_buff *skb;
826 	int num, bnum;
827 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
828 	int recv_pkts, recv_bds, clean_count, err;
829 	int unused_count = hns_desc_unused(ring);
830 
831 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
832 	rmb(); /* make sure num taken effect before the other data is touched */
833 
834 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
835 	num -= unused_count;
836 
837 	while (recv_pkts < budget && recv_bds < num) {
838 		/* reuse or realloc buffers */
839 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
840 			hns_nic_alloc_rx_buffers(ring_data,
841 						 clean_count + unused_count);
842 			clean_count = 0;
843 			unused_count = hns_desc_unused(ring);
844 		}
845 
846 		/* poll one pkt */
847 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
848 		if (unlikely(!skb)) /* this fault cannot be repaired */
849 			goto out;
850 
851 		recv_bds += bnum;
852 		clean_count += bnum;
853 		if (unlikely(err)) {  /* do jump the err */
854 			recv_pkts++;
855 			continue;
856 		}
857 
858 		/* do update ip stack process*/
859 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
860 							ring_data, skb);
861 		recv_pkts++;
862 	}
863 
864 out:
865 	/* make all data has been write before submit */
866 	if (clean_count + unused_count > 0)
867 		hns_nic_alloc_rx_buffers(ring_data,
868 					 clean_count + unused_count);
869 
870 	return recv_pkts;
871 }
872 
873 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
874 {
875 	struct hnae_ring *ring = ring_data->ring;
876 	int num = 0;
877 	bool rx_stopped;
878 
879 	hns_update_rx_rate(ring);
880 
881 	/* for hardware bug fixed */
882 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
883 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
884 
885 	if (num <= hns_coal_rx_bdnum(ring)) {
886 		if (ring->q->handle->coal_adapt_en)
887 			hns_nic_adpt_coalesce(ring_data);
888 
889 		rx_stopped = true;
890 	} else {
891 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
892 			ring_data->ring, 1);
893 
894 		rx_stopped = false;
895 	}
896 
897 	return rx_stopped;
898 }
899 
900 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
901 {
902 	struct hnae_ring *ring = ring_data->ring;
903 	int num;
904 
905 	hns_update_rx_rate(ring);
906 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
907 
908 	if (num <= hns_coal_rx_bdnum(ring)) {
909 		if (ring->q->handle->coal_adapt_en)
910 			hns_nic_adpt_coalesce(ring_data);
911 
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
919 					    int *bytes, int *pkts)
920 {
921 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
922 
923 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
924 	(*bytes) += desc_cb->length;
925 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
926 	hnae_free_buffer_detach(ring, ring->next_to_clean);
927 
928 	ring_ptr_move_fw(ring, next_to_clean);
929 }
930 
931 static int is_valid_clean_head(struct hnae_ring *ring, int h)
932 {
933 	int u = ring->next_to_use;
934 	int c = ring->next_to_clean;
935 
936 	if (unlikely(h > ring->desc_num))
937 		return 0;
938 
939 	assert(u > 0 && u < ring->desc_num);
940 	assert(c > 0 && c < ring->desc_num);
941 	assert(u != c && h != c); /* must be checked before call this func */
942 
943 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
944 }
945 
946 /* reclaim all desc in one budget
947  * return error or number of desc left
948  */
949 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
950 			       int budget, void *v)
951 {
952 	struct hnae_ring *ring = ring_data->ring;
953 	struct net_device *ndev = ring_data->napi.dev;
954 	struct netdev_queue *dev_queue;
955 	struct hns_nic_priv *priv = netdev_priv(ndev);
956 	int head;
957 	int bytes, pkts;
958 
959 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
960 	rmb(); /* make sure head is ready before touch any data */
961 
962 	if (is_ring_empty(ring) || head == ring->next_to_clean)
963 		return 0; /* no data to poll */
964 
965 	if (!is_valid_clean_head(ring, head)) {
966 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
967 			   ring->next_to_use, ring->next_to_clean);
968 		ring->stats.io_err_cnt++;
969 		return -EIO;
970 	}
971 
972 	bytes = 0;
973 	pkts = 0;
974 	while (head != ring->next_to_clean) {
975 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
976 		/* issue prefetch for next Tx descriptor */
977 		prefetch(&ring->desc_cb[ring->next_to_clean]);
978 	}
979 	/* update tx ring statistics. */
980 	ring->stats.tx_pkts += pkts;
981 	ring->stats.tx_bytes += bytes;
982 
983 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
984 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
985 
986 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
987 		netif_carrier_on(ndev);
988 
989 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
990 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
991 		/* Make sure that anybody stopping the queue after this
992 		 * sees the new next_to_clean.
993 		 */
994 		smp_mb();
995 		if (netif_tx_queue_stopped(dev_queue) &&
996 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
997 			netif_tx_wake_queue(dev_queue);
998 			ring->stats.restart_queue++;
999 		}
1000 	}
1001 	return 0;
1002 }
1003 
1004 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1005 {
1006 	struct hnae_ring *ring = ring_data->ring;
1007 	int head;
1008 
1009 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1010 
1011 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1012 
1013 	if (head != ring->next_to_clean) {
1014 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1015 			ring_data->ring, 1);
1016 
1017 		return false;
1018 	} else {
1019 		return true;
1020 	}
1021 }
1022 
1023 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1024 {
1025 	struct hnae_ring *ring = ring_data->ring;
1026 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1027 
1028 	if (head == ring->next_to_clean)
1029 		return true;
1030 	else
1031 		return false;
1032 }
1033 
1034 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1035 {
1036 	struct hnae_ring *ring = ring_data->ring;
1037 	struct net_device *ndev = ring_data->napi.dev;
1038 	struct netdev_queue *dev_queue;
1039 	int head;
1040 	int bytes, pkts;
1041 
1042 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1043 	bytes = 0;
1044 	pkts = 0;
1045 	while (head != ring->next_to_clean)
1046 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1047 
1048 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1049 	netdev_tx_reset_queue(dev_queue);
1050 }
1051 
1052 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1053 {
1054 	int clean_complete = 0;
1055 	struct hns_nic_ring_data *ring_data =
1056 		container_of(napi, struct hns_nic_ring_data, napi);
1057 	struct hnae_ring *ring = ring_data->ring;
1058 
1059 try_again:
1060 	clean_complete += ring_data->poll_one(
1061 				ring_data, budget - clean_complete,
1062 				ring_data->ex_process);
1063 
1064 	if (clean_complete < budget) {
1065 		if (ring_data->fini_process(ring_data)) {
1066 			napi_complete(napi);
1067 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1068 		} else {
1069 			goto try_again;
1070 		}
1071 	}
1072 
1073 	return clean_complete;
1074 }
1075 
1076 static irqreturn_t hns_irq_handle(int irq, void *dev)
1077 {
1078 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1079 
1080 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1081 		ring_data->ring, 1);
1082 	napi_schedule(&ring_data->napi);
1083 
1084 	return IRQ_HANDLED;
1085 }
1086 
1087 /**
1088  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1089  *@ndev: net device
1090  */
1091 static void hns_nic_adjust_link(struct net_device *ndev)
1092 {
1093 	struct hns_nic_priv *priv = netdev_priv(ndev);
1094 	struct hnae_handle *h = priv->ae_handle;
1095 	int state = 1;
1096 
1097 	/* If there is no phy, do not need adjust link */
1098 	if (ndev->phydev) {
1099 		/* When phy link down, do nothing */
1100 		if (ndev->phydev->link == 0)
1101 			return;
1102 
1103 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1104 						  ndev->phydev->duplex)) {
1105 			/* because Hi161X chip don't support to change gmac
1106 			 * speed and duplex with traffic. Delay 200ms to
1107 			 * make sure there is no more data in chip FIFO.
1108 			 */
1109 			netif_carrier_off(ndev);
1110 			msleep(200);
1111 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1112 						 ndev->phydev->duplex);
1113 			netif_carrier_on(ndev);
1114 		}
1115 	}
1116 
1117 	state = state && h->dev->ops->get_status(h);
1118 
1119 	if (state != priv->link) {
1120 		if (state) {
1121 			netif_carrier_on(ndev);
1122 			netif_tx_wake_all_queues(ndev);
1123 			netdev_info(ndev, "link up\n");
1124 		} else {
1125 			netif_carrier_off(ndev);
1126 			netdev_info(ndev, "link down\n");
1127 		}
1128 		priv->link = state;
1129 	}
1130 }
1131 
1132 /**
1133  *hns_nic_init_phy - init phy
1134  *@ndev: net device
1135  *@h: ae handle
1136  * Return 0 on success, negative on failure
1137  */
1138 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1139 {
1140 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1141 	struct phy_device *phy_dev = h->phy_dev;
1142 	int ret;
1143 
1144 	if (!h->phy_dev)
1145 		return 0;
1146 
1147 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1148 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1149 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1150 
1151 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1152 		phy_dev->autoneg = false;
1153 
1154 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1155 		phy_dev->dev_flags = 0;
1156 
1157 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1158 					 h->phy_if);
1159 	} else {
1160 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1161 	}
1162 	if (unlikely(ret))
1163 		return -ENODEV;
1164 
1165 	phy_attached_info(phy_dev);
1166 
1167 	return 0;
1168 }
1169 
1170 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1171 {
1172 	struct hns_nic_priv *priv = netdev_priv(netdev);
1173 	struct hnae_handle *h = priv->ae_handle;
1174 
1175 	napi_enable(&priv->ring_data[idx].napi);
1176 
1177 	enable_irq(priv->ring_data[idx].ring->irq);
1178 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1179 
1180 	return 0;
1181 }
1182 
1183 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1184 {
1185 	struct hns_nic_priv *priv = netdev_priv(ndev);
1186 	struct hnae_handle *h = priv->ae_handle;
1187 	struct sockaddr *mac_addr = p;
1188 	int ret;
1189 
1190 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1191 		return -EADDRNOTAVAIL;
1192 
1193 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1194 	if (ret) {
1195 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1196 		return ret;
1197 	}
1198 
1199 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1200 
1201 	return 0;
1202 }
1203 
1204 static void hns_nic_update_stats(struct net_device *netdev)
1205 {
1206 	struct hns_nic_priv *priv = netdev_priv(netdev);
1207 	struct hnae_handle *h = priv->ae_handle;
1208 
1209 	h->dev->ops->update_stats(h, &netdev->stats);
1210 }
1211 
1212 /* set mac addr if it is configed. or leave it to the AE driver */
1213 static void hns_init_mac_addr(struct net_device *ndev)
1214 {
1215 	struct hns_nic_priv *priv = netdev_priv(ndev);
1216 
1217 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1218 		eth_hw_addr_random(ndev);
1219 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1220 			 ndev->dev_addr);
1221 	}
1222 }
1223 
1224 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1225 {
1226 	struct hns_nic_priv *priv = netdev_priv(netdev);
1227 	struct hnae_handle *h = priv->ae_handle;
1228 
1229 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1230 	disable_irq(priv->ring_data[idx].ring->irq);
1231 
1232 	napi_disable(&priv->ring_data[idx].napi);
1233 }
1234 
1235 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1236 				      struct hnae_ring *ring, cpumask_t *mask)
1237 {
1238 	int cpu;
1239 
1240 	/* Diffrent irq banlance between 16core and 32core.
1241 	 * The cpu mask set by ring index according to the ring flag
1242 	 * which indicate the ring is tx or rx.
1243 	 */
1244 	if (q_num == num_possible_cpus()) {
1245 		if (is_tx_ring(ring))
1246 			cpu = ring_idx;
1247 		else
1248 			cpu = ring_idx - q_num;
1249 	} else {
1250 		if (is_tx_ring(ring))
1251 			cpu = ring_idx * 2;
1252 		else
1253 			cpu = (ring_idx - q_num) * 2 + 1;
1254 	}
1255 
1256 	cpumask_clear(mask);
1257 	cpumask_set_cpu(cpu, mask);
1258 
1259 	return cpu;
1260 }
1261 
1262 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1263 {
1264 	int i;
1265 
1266 	for (i = 0; i < q_num * 2; i++) {
1267 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1268 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1269 					      NULL);
1270 			free_irq(priv->ring_data[i].ring->irq,
1271 				 &priv->ring_data[i]);
1272 			priv->ring_data[i].ring->irq_init_flag =
1273 				RCB_IRQ_NOT_INITED;
1274 		}
1275 	}
1276 }
1277 
1278 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1279 {
1280 	struct hnae_handle *h = priv->ae_handle;
1281 	struct hns_nic_ring_data *rd;
1282 	int i;
1283 	int ret;
1284 	int cpu;
1285 
1286 	for (i = 0; i < h->q_num * 2; i++) {
1287 		rd = &priv->ring_data[i];
1288 
1289 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1290 			break;
1291 
1292 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1293 			 "%s-%s%d", priv->netdev->name,
1294 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1295 
1296 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1297 
1298 		ret = request_irq(rd->ring->irq,
1299 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1300 		if (ret) {
1301 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1302 				   rd->ring->irq);
1303 			goto out_free_irq;
1304 		}
1305 		disable_irq(rd->ring->irq);
1306 
1307 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1308 						 rd->ring, &rd->mask);
1309 
1310 		if (cpu_online(cpu))
1311 			irq_set_affinity_hint(rd->ring->irq,
1312 					      &rd->mask);
1313 
1314 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1315 	}
1316 
1317 	return 0;
1318 
1319 out_free_irq:
1320 	hns_nic_free_irq(h->q_num, priv);
1321 	return ret;
1322 }
1323 
1324 static int hns_nic_net_up(struct net_device *ndev)
1325 {
1326 	struct hns_nic_priv *priv = netdev_priv(ndev);
1327 	struct hnae_handle *h = priv->ae_handle;
1328 	int i, j;
1329 	int ret;
1330 
1331 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1332 		return 0;
1333 
1334 	ret = hns_nic_init_irq(priv);
1335 	if (ret != 0) {
1336 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1337 		return ret;
1338 	}
1339 
1340 	for (i = 0; i < h->q_num * 2; i++) {
1341 		ret = hns_nic_ring_open(ndev, i);
1342 		if (ret)
1343 			goto out_has_some_queues;
1344 	}
1345 
1346 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1347 	if (ret)
1348 		goto out_set_mac_addr_err;
1349 
1350 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1351 	if (ret)
1352 		goto out_start_err;
1353 
1354 	if (ndev->phydev)
1355 		phy_start(ndev->phydev);
1356 
1357 	clear_bit(NIC_STATE_DOWN, &priv->state);
1358 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1359 
1360 	return 0;
1361 
1362 out_start_err:
1363 	netif_stop_queue(ndev);
1364 out_set_mac_addr_err:
1365 out_has_some_queues:
1366 	for (j = i - 1; j >= 0; j--)
1367 		hns_nic_ring_close(ndev, j);
1368 
1369 	hns_nic_free_irq(h->q_num, priv);
1370 	set_bit(NIC_STATE_DOWN, &priv->state);
1371 
1372 	return ret;
1373 }
1374 
1375 static void hns_nic_net_down(struct net_device *ndev)
1376 {
1377 	int i;
1378 	struct hnae_ae_ops *ops;
1379 	struct hns_nic_priv *priv = netdev_priv(ndev);
1380 
1381 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1382 		return;
1383 
1384 	(void)del_timer_sync(&priv->service_timer);
1385 	netif_tx_stop_all_queues(ndev);
1386 	netif_carrier_off(ndev);
1387 	netif_tx_disable(ndev);
1388 	priv->link = 0;
1389 
1390 	if (ndev->phydev)
1391 		phy_stop(ndev->phydev);
1392 
1393 	ops = priv->ae_handle->dev->ops;
1394 
1395 	if (ops->stop)
1396 		ops->stop(priv->ae_handle);
1397 
1398 	netif_tx_stop_all_queues(ndev);
1399 
1400 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1401 		hns_nic_ring_close(ndev, i);
1402 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1403 
1404 		/* clean tx buffers*/
1405 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1406 	}
1407 }
1408 
1409 void hns_nic_net_reset(struct net_device *ndev)
1410 {
1411 	struct hns_nic_priv *priv = netdev_priv(ndev);
1412 	struct hnae_handle *handle = priv->ae_handle;
1413 
1414 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1415 		usleep_range(1000, 2000);
1416 
1417 	(void)hnae_reinit_handle(handle);
1418 
1419 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1420 }
1421 
1422 void hns_nic_net_reinit(struct net_device *netdev)
1423 {
1424 	struct hns_nic_priv *priv = netdev_priv(netdev);
1425 	enum hnae_port_type type = priv->ae_handle->port_type;
1426 
1427 	netif_trans_update(priv->netdev);
1428 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1429 		usleep_range(1000, 2000);
1430 
1431 	hns_nic_net_down(netdev);
1432 
1433 	/* Only do hns_nic_net_reset in debug mode
1434 	 * because of hardware limitation.
1435 	 */
1436 	if (type == HNAE_PORT_DEBUG)
1437 		hns_nic_net_reset(netdev);
1438 
1439 	(void)hns_nic_net_up(netdev);
1440 	clear_bit(NIC_STATE_REINITING, &priv->state);
1441 }
1442 
1443 static int hns_nic_net_open(struct net_device *ndev)
1444 {
1445 	struct hns_nic_priv *priv = netdev_priv(ndev);
1446 	struct hnae_handle *h = priv->ae_handle;
1447 	int ret;
1448 
1449 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1450 		return -EBUSY;
1451 
1452 	priv->link = 0;
1453 	netif_carrier_off(ndev);
1454 
1455 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1456 	if (ret < 0) {
1457 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1458 			   ret);
1459 		return ret;
1460 	}
1461 
1462 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1463 	if (ret < 0) {
1464 		netdev_err(ndev,
1465 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1466 		return ret;
1467 	}
1468 
1469 	ret = hns_nic_net_up(ndev);
1470 	if (ret) {
1471 		netdev_err(ndev,
1472 			   "hns net up fail, ret=%d!\n", ret);
1473 		return ret;
1474 	}
1475 
1476 	return 0;
1477 }
1478 
1479 static int hns_nic_net_stop(struct net_device *ndev)
1480 {
1481 	hns_nic_net_down(ndev);
1482 
1483 	return 0;
1484 }
1485 
1486 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1487 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1488 static void hns_nic_net_timeout(struct net_device *ndev)
1489 {
1490 	struct hns_nic_priv *priv = netdev_priv(ndev);
1491 
1492 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1493 		ndev->watchdog_timeo *= 2;
1494 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1495 			    ndev->watchdog_timeo);
1496 	} else {
1497 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1498 		hns_tx_timeout_reset(priv);
1499 	}
1500 }
1501 
1502 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1503 			    int cmd)
1504 {
1505 	struct phy_device *phy_dev = netdev->phydev;
1506 
1507 	if (!netif_running(netdev))
1508 		return -EINVAL;
1509 
1510 	if (!phy_dev)
1511 		return -ENOTSUPP;
1512 
1513 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1514 }
1515 
1516 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1517 				    struct net_device *ndev)
1518 {
1519 	struct hns_nic_priv *priv = netdev_priv(ndev);
1520 
1521 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1522 
1523 	return hns_nic_net_xmit_hw(ndev, skb,
1524 				   &tx_ring_data(priv, skb->queue_mapping));
1525 }
1526 
1527 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1528 				  struct sk_buff *skb)
1529 {
1530 	dev_kfree_skb_any(skb);
1531 }
1532 
1533 #define HNS_LB_TX_RING	0
1534 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1535 {
1536 	struct sk_buff *skb;
1537 	struct ethhdr *ethhdr;
1538 	int frame_len;
1539 
1540 	/* allocate test skb */
1541 	skb = alloc_skb(64, GFP_KERNEL);
1542 	if (!skb)
1543 		return NULL;
1544 
1545 	skb_put(skb, 64);
1546 	skb->dev = ndev;
1547 	memset(skb->data, 0xFF, skb->len);
1548 
1549 	/* must be tcp/ip package */
1550 	ethhdr = (struct ethhdr *)skb->data;
1551 	ethhdr->h_proto = htons(ETH_P_IP);
1552 
1553 	frame_len = skb->len & (~1ul);
1554 	memset(&skb->data[frame_len / 2], 0xAA,
1555 	       frame_len / 2 - 1);
1556 
1557 	skb->queue_mapping = HNS_LB_TX_RING;
1558 
1559 	return skb;
1560 }
1561 
1562 static int hns_enable_serdes_lb(struct net_device *ndev)
1563 {
1564 	struct hns_nic_priv *priv = netdev_priv(ndev);
1565 	struct hnae_handle *h = priv->ae_handle;
1566 	struct hnae_ae_ops *ops = h->dev->ops;
1567 	int speed, duplex;
1568 	int ret;
1569 
1570 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1571 	if (ret)
1572 		return ret;
1573 
1574 	ret = ops->start ? ops->start(h) : 0;
1575 	if (ret)
1576 		return ret;
1577 
1578 	/* link adjust duplex*/
1579 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1580 		speed = 1000;
1581 	else
1582 		speed = 10000;
1583 	duplex = 1;
1584 
1585 	ops->adjust_link(h, speed, duplex);
1586 
1587 	/* wait h/w ready */
1588 	mdelay(300);
1589 
1590 	return 0;
1591 }
1592 
1593 static void hns_disable_serdes_lb(struct net_device *ndev)
1594 {
1595 	struct hns_nic_priv *priv = netdev_priv(ndev);
1596 	struct hnae_handle *h = priv->ae_handle;
1597 	struct hnae_ae_ops *ops = h->dev->ops;
1598 
1599 	ops->stop(h);
1600 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1601 }
1602 
1603 /**
1604  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1605  *function as follows:
1606  *    1. if one rx ring has found the page_offset is not equal 0 between head
1607  *       and tail, it means that the chip fetched the wrong descs for the ring
1608  *       which buffer size is 4096.
1609  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1610  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1611  *       recieving all packages and it will fetch new descriptions.
1612  *    4. recover to the original state.
1613  *
1614  *@ndev: net device
1615  */
1616 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1617 {
1618 	struct hns_nic_priv *priv = netdev_priv(ndev);
1619 	struct hnae_handle *h = priv->ae_handle;
1620 	struct hnae_ae_ops *ops = h->dev->ops;
1621 	struct hns_nic_ring_data *rd;
1622 	struct hnae_ring *ring;
1623 	struct sk_buff *skb;
1624 	u32 *org_indir;
1625 	u32 *cur_indir;
1626 	int indir_size;
1627 	int head, tail;
1628 	int fetch_num;
1629 	int i, j;
1630 	bool found;
1631 	int retry_times;
1632 	int ret = 0;
1633 
1634 	/* alloc indir memory */
1635 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1636 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1637 	if (!org_indir)
1638 		return -ENOMEM;
1639 
1640 	/* store the orginal indirection */
1641 	ops->get_rss(h, org_indir, NULL, NULL);
1642 
1643 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1644 	if (!cur_indir) {
1645 		ret = -ENOMEM;
1646 		goto cur_indir_alloc_err;
1647 	}
1648 
1649 	/* set loopback */
1650 	if (hns_enable_serdes_lb(ndev)) {
1651 		ret = -EINVAL;
1652 		goto enable_serdes_lb_err;
1653 	}
1654 
1655 	/* foreach every rx ring to clear fetch desc */
1656 	for (i = 0; i < h->q_num; i++) {
1657 		ring = &h->qs[i]->rx_ring;
1658 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1659 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1660 		found = false;
1661 		fetch_num = ring_dist(ring, head, tail);
1662 
1663 		while (head != tail) {
1664 			if (ring->desc_cb[head].page_offset != 0) {
1665 				found = true;
1666 				break;
1667 			}
1668 
1669 			head++;
1670 			if (head == ring->desc_num)
1671 				head = 0;
1672 		}
1673 
1674 		if (found) {
1675 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1676 				cur_indir[j] = i;
1677 			ops->set_rss(h, cur_indir, NULL, 0);
1678 
1679 			for (j = 0; j < fetch_num; j++) {
1680 				/* alloc one skb and init */
1681 				skb = hns_assemble_skb(ndev);
1682 				if (!skb)
1683 					goto out;
1684 				rd = &tx_ring_data(priv, skb->queue_mapping);
1685 				hns_nic_net_xmit_hw(ndev, skb, rd);
1686 
1687 				retry_times = 0;
1688 				while (retry_times++ < 10) {
1689 					mdelay(10);
1690 					/* clean rx */
1691 					rd = &rx_ring_data(priv, i);
1692 					if (rd->poll_one(rd, fetch_num,
1693 							 hns_nic_drop_rx_fetch))
1694 						break;
1695 				}
1696 
1697 				retry_times = 0;
1698 				while (retry_times++ < 10) {
1699 					mdelay(10);
1700 					/* clean tx ring 0 send package */
1701 					rd = &tx_ring_data(priv,
1702 							   HNS_LB_TX_RING);
1703 					if (rd->poll_one(rd, fetch_num, NULL))
1704 						break;
1705 				}
1706 			}
1707 		}
1708 	}
1709 
1710 out:
1711 	/* restore everything */
1712 	ops->set_rss(h, org_indir, NULL, 0);
1713 	hns_disable_serdes_lb(ndev);
1714 enable_serdes_lb_err:
1715 	kfree(cur_indir);
1716 cur_indir_alloc_err:
1717 	kfree(org_indir);
1718 
1719 	return ret;
1720 }
1721 
1722 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1723 {
1724 	struct hns_nic_priv *priv = netdev_priv(ndev);
1725 	struct hnae_handle *h = priv->ae_handle;
1726 	bool if_running = netif_running(ndev);
1727 	int ret;
1728 
1729 	/* MTU < 68 is an error and causes problems on some kernels */
1730 	if (new_mtu < 68)
1731 		return -EINVAL;
1732 
1733 	/* MTU no change */
1734 	if (new_mtu == ndev->mtu)
1735 		return 0;
1736 
1737 	if (!h->dev->ops->set_mtu)
1738 		return -ENOTSUPP;
1739 
1740 	if (if_running) {
1741 		(void)hns_nic_net_stop(ndev);
1742 		msleep(100);
1743 	}
1744 
1745 	if (priv->enet_ver != AE_VERSION_1 &&
1746 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1747 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1748 		/* update desc */
1749 		hnae_reinit_all_ring_desc(h);
1750 
1751 		/* clear the package which the chip has fetched */
1752 		ret = hns_nic_clear_all_rx_fetch(ndev);
1753 
1754 		/* the page offset must be consist with desc */
1755 		hnae_reinit_all_ring_page_off(h);
1756 
1757 		if (ret) {
1758 			netdev_err(ndev, "clear the fetched desc fail\n");
1759 			goto out;
1760 		}
1761 	}
1762 
1763 	ret = h->dev->ops->set_mtu(h, new_mtu);
1764 	if (ret) {
1765 		netdev_err(ndev, "set mtu fail, return value %d\n",
1766 			   ret);
1767 		goto out;
1768 	}
1769 
1770 	/* finally, set new mtu to netdevice */
1771 	ndev->mtu = new_mtu;
1772 
1773 out:
1774 	if (if_running) {
1775 		if (hns_nic_net_open(ndev)) {
1776 			netdev_err(ndev, "hns net open fail\n");
1777 			ret = -EINVAL;
1778 		}
1779 	}
1780 
1781 	return ret;
1782 }
1783 
1784 static int hns_nic_set_features(struct net_device *netdev,
1785 				netdev_features_t features)
1786 {
1787 	struct hns_nic_priv *priv = netdev_priv(netdev);
1788 
1789 	switch (priv->enet_ver) {
1790 	case AE_VERSION_1:
1791 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1792 			netdev_info(netdev, "enet v1 do not support tso!\n");
1793 		break;
1794 	default:
1795 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1796 			priv->ops.fill_desc = fill_tso_desc;
1797 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798 			/* The chip only support 7*4096 */
1799 			netif_set_gso_max_size(netdev, 7 * 4096);
1800 		} else {
1801 			priv->ops.fill_desc = fill_v2_desc;
1802 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1803 		}
1804 		break;
1805 	}
1806 	netdev->features = features;
1807 	return 0;
1808 }
1809 
1810 static netdev_features_t hns_nic_fix_features(
1811 		struct net_device *netdev, netdev_features_t features)
1812 {
1813 	struct hns_nic_priv *priv = netdev_priv(netdev);
1814 
1815 	switch (priv->enet_ver) {
1816 	case AE_VERSION_1:
1817 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1818 				NETIF_F_HW_VLAN_CTAG_FILTER);
1819 		break;
1820 	default:
1821 		break;
1822 	}
1823 	return features;
1824 }
1825 
1826 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1827 {
1828 	struct hns_nic_priv *priv = netdev_priv(netdev);
1829 	struct hnae_handle *h = priv->ae_handle;
1830 
1831 	if (h->dev->ops->add_uc_addr)
1832 		return h->dev->ops->add_uc_addr(h, addr);
1833 
1834 	return 0;
1835 }
1836 
1837 static int hns_nic_uc_unsync(struct net_device *netdev,
1838 			     const unsigned char *addr)
1839 {
1840 	struct hns_nic_priv *priv = netdev_priv(netdev);
1841 	struct hnae_handle *h = priv->ae_handle;
1842 
1843 	if (h->dev->ops->rm_uc_addr)
1844 		return h->dev->ops->rm_uc_addr(h, addr);
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  * nic_set_multicast_list - set mutl mac address
1851  * @netdev: net device
1852  * @p: mac address
1853  *
1854  * return void
1855  */
1856 static void hns_set_multicast_list(struct net_device *ndev)
1857 {
1858 	struct hns_nic_priv *priv = netdev_priv(ndev);
1859 	struct hnae_handle *h = priv->ae_handle;
1860 	struct netdev_hw_addr *ha = NULL;
1861 
1862 	if (!h)	{
1863 		netdev_err(ndev, "hnae handle is null\n");
1864 		return;
1865 	}
1866 
1867 	if (h->dev->ops->clr_mc_addr)
1868 		if (h->dev->ops->clr_mc_addr(h))
1869 			netdev_err(ndev, "clear multicast address fail\n");
1870 
1871 	if (h->dev->ops->set_mc_addr) {
1872 		netdev_for_each_mc_addr(ha, ndev)
1873 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1874 				netdev_err(ndev, "set multicast fail\n");
1875 	}
1876 }
1877 
1878 static void hns_nic_set_rx_mode(struct net_device *ndev)
1879 {
1880 	struct hns_nic_priv *priv = netdev_priv(ndev);
1881 	struct hnae_handle *h = priv->ae_handle;
1882 
1883 	if (h->dev->ops->set_promisc_mode) {
1884 		if (ndev->flags & IFF_PROMISC)
1885 			h->dev->ops->set_promisc_mode(h, 1);
1886 		else
1887 			h->dev->ops->set_promisc_mode(h, 0);
1888 	}
1889 
1890 	hns_set_multicast_list(ndev);
1891 
1892 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1893 		netdev_err(ndev, "sync uc address fail\n");
1894 }
1895 
1896 static void hns_nic_get_stats64(struct net_device *ndev,
1897 				struct rtnl_link_stats64 *stats)
1898 {
1899 	int idx = 0;
1900 	u64 tx_bytes = 0;
1901 	u64 rx_bytes = 0;
1902 	u64 tx_pkts = 0;
1903 	u64 rx_pkts = 0;
1904 	struct hns_nic_priv *priv = netdev_priv(ndev);
1905 	struct hnae_handle *h = priv->ae_handle;
1906 
1907 	for (idx = 0; idx < h->q_num; idx++) {
1908 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1909 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1910 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1911 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1912 	}
1913 
1914 	stats->tx_bytes = tx_bytes;
1915 	stats->tx_packets = tx_pkts;
1916 	stats->rx_bytes = rx_bytes;
1917 	stats->rx_packets = rx_pkts;
1918 
1919 	stats->rx_errors = ndev->stats.rx_errors;
1920 	stats->multicast = ndev->stats.multicast;
1921 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1922 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1923 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1924 
1925 	stats->tx_errors = ndev->stats.tx_errors;
1926 	stats->rx_dropped = ndev->stats.rx_dropped;
1927 	stats->tx_dropped = ndev->stats.tx_dropped;
1928 	stats->collisions = ndev->stats.collisions;
1929 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1930 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1931 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1932 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1933 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1934 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1935 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1936 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1937 	stats->rx_compressed = ndev->stats.rx_compressed;
1938 	stats->tx_compressed = ndev->stats.tx_compressed;
1939 }
1940 
1941 static u16
1942 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1943 		     struct net_device *sb_dev)
1944 {
1945 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1946 	struct hns_nic_priv *priv = netdev_priv(ndev);
1947 
1948 	/* fix hardware broadcast/multicast packets queue loopback */
1949 	if (!AE_IS_VER1(priv->enet_ver) &&
1950 	    is_multicast_ether_addr(eth_hdr->h_dest))
1951 		return 0;
1952 	else
1953 		return netdev_pick_tx(ndev, skb, NULL);
1954 }
1955 
1956 static const struct net_device_ops hns_nic_netdev_ops = {
1957 	.ndo_open = hns_nic_net_open,
1958 	.ndo_stop = hns_nic_net_stop,
1959 	.ndo_start_xmit = hns_nic_net_xmit,
1960 	.ndo_tx_timeout = hns_nic_net_timeout,
1961 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1962 	.ndo_change_mtu = hns_nic_change_mtu,
1963 	.ndo_do_ioctl = hns_nic_do_ioctl,
1964 	.ndo_set_features = hns_nic_set_features,
1965 	.ndo_fix_features = hns_nic_fix_features,
1966 	.ndo_get_stats64 = hns_nic_get_stats64,
1967 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1968 	.ndo_select_queue = hns_nic_select_queue,
1969 };
1970 
1971 static void hns_nic_update_link_status(struct net_device *netdev)
1972 {
1973 	struct hns_nic_priv *priv = netdev_priv(netdev);
1974 
1975 	struct hnae_handle *h = priv->ae_handle;
1976 
1977 	if (h->phy_dev) {
1978 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1979 			return;
1980 
1981 		(void)genphy_read_status(h->phy_dev);
1982 	}
1983 	hns_nic_adjust_link(netdev);
1984 }
1985 
1986 /* for dumping key regs*/
1987 static void hns_nic_dump(struct hns_nic_priv *priv)
1988 {
1989 	struct hnae_handle *h = priv->ae_handle;
1990 	struct hnae_ae_ops *ops = h->dev->ops;
1991 	u32 *data, reg_num, i;
1992 
1993 	if (ops->get_regs_len && ops->get_regs) {
1994 		reg_num = ops->get_regs_len(priv->ae_handle);
1995 		reg_num = (reg_num + 3ul) & ~3ul;
1996 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1997 		if (data) {
1998 			ops->get_regs(priv->ae_handle, data);
1999 			for (i = 0; i < reg_num; i += 4)
2000 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2001 					i, data[i], data[i + 1],
2002 					data[i + 2], data[i + 3]);
2003 			kfree(data);
2004 		}
2005 	}
2006 
2007 	for (i = 0; i < h->q_num; i++) {
2008 		pr_info("tx_queue%d_next_to_clean:%d\n",
2009 			i, h->qs[i]->tx_ring.next_to_clean);
2010 		pr_info("tx_queue%d_next_to_use:%d\n",
2011 			i, h->qs[i]->tx_ring.next_to_use);
2012 		pr_info("rx_queue%d_next_to_clean:%d\n",
2013 			i, h->qs[i]->rx_ring.next_to_clean);
2014 		pr_info("rx_queue%d_next_to_use:%d\n",
2015 			i, h->qs[i]->rx_ring.next_to_use);
2016 	}
2017 }
2018 
2019 /* for resetting subtask */
2020 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2021 {
2022 	enum hnae_port_type type = priv->ae_handle->port_type;
2023 
2024 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2025 		return;
2026 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2027 
2028 	/* If we're already down, removing or resetting, just bail */
2029 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2030 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2031 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2032 		return;
2033 
2034 	hns_nic_dump(priv);
2035 	netdev_info(priv->netdev, "try to reset %s port!\n",
2036 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2037 
2038 	rtnl_lock();
2039 	/* put off any impending NetWatchDogTimeout */
2040 	netif_trans_update(priv->netdev);
2041 	hns_nic_net_reinit(priv->netdev);
2042 
2043 	rtnl_unlock();
2044 }
2045 
2046 /* for doing service complete*/
2047 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2048 {
2049 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2050 	/* make sure to commit the things */
2051 	smp_mb__before_atomic();
2052 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2053 }
2054 
2055 static void hns_nic_service_task(struct work_struct *work)
2056 {
2057 	struct hns_nic_priv *priv
2058 		= container_of(work, struct hns_nic_priv, service_task);
2059 	struct hnae_handle *h = priv->ae_handle;
2060 
2061 	hns_nic_reset_subtask(priv);
2062 	hns_nic_update_link_status(priv->netdev);
2063 	h->dev->ops->update_led_status(h);
2064 	hns_nic_update_stats(priv->netdev);
2065 
2066 	hns_nic_service_event_complete(priv);
2067 }
2068 
2069 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2070 {
2071 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2072 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2073 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2074 		(void)schedule_work(&priv->service_task);
2075 }
2076 
2077 static void hns_nic_service_timer(struct timer_list *t)
2078 {
2079 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2080 
2081 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2082 
2083 	hns_nic_task_schedule(priv);
2084 }
2085 
2086 /**
2087  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2088  * @priv: driver private struct
2089  **/
2090 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2091 {
2092 	/* Do the reset outside of interrupt context */
2093 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2094 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2095 		netdev_warn(priv->netdev,
2096 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2097 			    priv->tx_timeout_count, priv->state);
2098 		priv->tx_timeout_count++;
2099 		hns_nic_task_schedule(priv);
2100 	}
2101 }
2102 
2103 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2104 {
2105 	struct hnae_handle *h = priv->ae_handle;
2106 	struct hns_nic_ring_data *rd;
2107 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2108 	int i;
2109 
2110 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2111 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2112 		return -EINVAL;
2113 	}
2114 
2115 	priv->ring_data = kzalloc(array3_size(h->q_num,
2116 					      sizeof(*priv->ring_data), 2),
2117 				  GFP_KERNEL);
2118 	if (!priv->ring_data)
2119 		return -ENOMEM;
2120 
2121 	for (i = 0; i < h->q_num; i++) {
2122 		rd = &priv->ring_data[i];
2123 		rd->queue_index = i;
2124 		rd->ring = &h->qs[i]->tx_ring;
2125 		rd->poll_one = hns_nic_tx_poll_one;
2126 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2127 			hns_nic_tx_fini_pro_v2;
2128 
2129 		netif_napi_add(priv->netdev, &rd->napi,
2130 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2131 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2132 	}
2133 	for (i = h->q_num; i < h->q_num * 2; i++) {
2134 		rd = &priv->ring_data[i];
2135 		rd->queue_index = i - h->q_num;
2136 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2137 		rd->poll_one = hns_nic_rx_poll_one;
2138 		rd->ex_process = hns_nic_rx_up_pro;
2139 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2140 			hns_nic_rx_fini_pro_v2;
2141 
2142 		netif_napi_add(priv->netdev, &rd->napi,
2143 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2144 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2151 {
2152 	struct hnae_handle *h = priv->ae_handle;
2153 	int i;
2154 
2155 	for (i = 0; i < h->q_num * 2; i++) {
2156 		netif_napi_del(&priv->ring_data[i].napi);
2157 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2158 			(void)irq_set_affinity_hint(
2159 				priv->ring_data[i].ring->irq,
2160 				NULL);
2161 			free_irq(priv->ring_data[i].ring->irq,
2162 				 &priv->ring_data[i]);
2163 		}
2164 
2165 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2166 	}
2167 	kfree(priv->ring_data);
2168 }
2169 
2170 static void hns_nic_set_priv_ops(struct net_device *netdev)
2171 {
2172 	struct hns_nic_priv *priv = netdev_priv(netdev);
2173 	struct hnae_handle *h = priv->ae_handle;
2174 
2175 	if (AE_IS_VER1(priv->enet_ver)) {
2176 		priv->ops.fill_desc = fill_desc;
2177 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2178 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2179 	} else {
2180 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2181 		if ((netdev->features & NETIF_F_TSO) ||
2182 		    (netdev->features & NETIF_F_TSO6)) {
2183 			priv->ops.fill_desc = fill_tso_desc;
2184 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2185 			/* This chip only support 7*4096 */
2186 			netif_set_gso_max_size(netdev, 7 * 4096);
2187 		} else {
2188 			priv->ops.fill_desc = fill_v2_desc;
2189 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2190 		}
2191 		/* enable tso when init
2192 		 * control tso on/off through TSE bit in bd
2193 		 */
2194 		h->dev->ops->set_tso_stats(h, 1);
2195 	}
2196 }
2197 
2198 static int hns_nic_try_get_ae(struct net_device *ndev)
2199 {
2200 	struct hns_nic_priv *priv = netdev_priv(ndev);
2201 	struct hnae_handle *h;
2202 	int ret;
2203 
2204 	h = hnae_get_handle(&priv->netdev->dev,
2205 			    priv->fwnode, priv->port_id, NULL);
2206 	if (IS_ERR_OR_NULL(h)) {
2207 		ret = -ENODEV;
2208 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2209 		goto out;
2210 	}
2211 	priv->ae_handle = h;
2212 
2213 	ret = hns_nic_init_phy(ndev, h);
2214 	if (ret) {
2215 		dev_err(priv->dev, "probe phy device fail!\n");
2216 		goto out_init_phy;
2217 	}
2218 
2219 	ret = hns_nic_init_ring_data(priv);
2220 	if (ret) {
2221 		ret = -ENOMEM;
2222 		goto out_init_ring_data;
2223 	}
2224 
2225 	hns_nic_set_priv_ops(ndev);
2226 
2227 	ret = register_netdev(ndev);
2228 	if (ret) {
2229 		dev_err(priv->dev, "probe register netdev fail!\n");
2230 		goto out_reg_ndev_fail;
2231 	}
2232 	return 0;
2233 
2234 out_reg_ndev_fail:
2235 	hns_nic_uninit_ring_data(priv);
2236 	priv->ring_data = NULL;
2237 out_init_phy:
2238 out_init_ring_data:
2239 	hnae_put_handle(priv->ae_handle);
2240 	priv->ae_handle = NULL;
2241 out:
2242 	return ret;
2243 }
2244 
2245 static int hns_nic_notifier_action(struct notifier_block *nb,
2246 				   unsigned long action, void *data)
2247 {
2248 	struct hns_nic_priv *priv =
2249 		container_of(nb, struct hns_nic_priv, notifier_block);
2250 
2251 	assert(action == HNAE_AE_REGISTER);
2252 
2253 	if (!hns_nic_try_get_ae(priv->netdev)) {
2254 		hnae_unregister_notifier(&priv->notifier_block);
2255 		priv->notifier_block.notifier_call = NULL;
2256 	}
2257 	return 0;
2258 }
2259 
2260 static int hns_nic_dev_probe(struct platform_device *pdev)
2261 {
2262 	struct device *dev = &pdev->dev;
2263 	struct net_device *ndev;
2264 	struct hns_nic_priv *priv;
2265 	u32 port_id;
2266 	int ret;
2267 
2268 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2269 	if (!ndev)
2270 		return -ENOMEM;
2271 
2272 	platform_set_drvdata(pdev, ndev);
2273 
2274 	priv = netdev_priv(ndev);
2275 	priv->dev = dev;
2276 	priv->netdev = ndev;
2277 
2278 	if (dev_of_node(dev)) {
2279 		struct device_node *ae_node;
2280 
2281 		if (of_device_is_compatible(dev->of_node,
2282 					    "hisilicon,hns-nic-v1"))
2283 			priv->enet_ver = AE_VERSION_1;
2284 		else
2285 			priv->enet_ver = AE_VERSION_2;
2286 
2287 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2288 		if (!ae_node) {
2289 			ret = -ENODEV;
2290 			dev_err(dev, "not find ae-handle\n");
2291 			goto out_read_prop_fail;
2292 		}
2293 		priv->fwnode = &ae_node->fwnode;
2294 	} else if (is_acpi_node(dev->fwnode)) {
2295 		struct fwnode_reference_args args;
2296 
2297 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2298 			priv->enet_ver = AE_VERSION_1;
2299 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2300 			priv->enet_ver = AE_VERSION_2;
2301 		else
2302 			return -ENXIO;
2303 
2304 		/* try to find port-idx-in-ae first */
2305 		ret = acpi_node_get_property_reference(dev->fwnode,
2306 						       "ae-handle", 0, &args);
2307 		if (ret) {
2308 			dev_err(dev, "not find ae-handle\n");
2309 			goto out_read_prop_fail;
2310 		}
2311 		if (!is_acpi_device_node(args.fwnode)) {
2312 			ret = -EINVAL;
2313 			goto out_read_prop_fail;
2314 		}
2315 		priv->fwnode = args.fwnode;
2316 	} else {
2317 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2318 		return -ENXIO;
2319 	}
2320 
2321 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2322 	if (ret) {
2323 		/* only for old code compatible */
2324 		ret = device_property_read_u32(dev, "port-id", &port_id);
2325 		if (ret)
2326 			goto out_read_prop_fail;
2327 		/* for old dts, we need to caculate the port offset */
2328 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2329 			: port_id - HNS_SRV_OFFSET;
2330 	}
2331 	priv->port_id = port_id;
2332 
2333 	hns_init_mac_addr(ndev);
2334 
2335 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2336 	ndev->priv_flags |= IFF_UNICAST_FLT;
2337 	ndev->netdev_ops = &hns_nic_netdev_ops;
2338 	hns_ethtool_set_ops(ndev);
2339 
2340 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2341 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2342 		NETIF_F_GRO;
2343 	ndev->vlan_features |=
2344 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2345 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2346 
2347 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2348 	ndev->min_mtu = MAC_MIN_MTU;
2349 	switch (priv->enet_ver) {
2350 	case AE_VERSION_2:
2351 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2352 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2353 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2354 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2355 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2356 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2357 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2358 		break;
2359 	default:
2360 		ndev->max_mtu = MAC_MAX_MTU -
2361 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2362 		break;
2363 	}
2364 
2365 	SET_NETDEV_DEV(ndev, dev);
2366 
2367 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2368 		dev_dbg(dev, "set mask to 64bit\n");
2369 	else
2370 		dev_err(dev, "set mask to 64bit fail!\n");
2371 
2372 	/* carrier off reporting is important to ethtool even BEFORE open */
2373 	netif_carrier_off(ndev);
2374 
2375 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2376 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2377 
2378 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2379 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2380 	set_bit(NIC_STATE_DOWN, &priv->state);
2381 
2382 	if (hns_nic_try_get_ae(priv->netdev)) {
2383 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2384 		ret = hnae_register_notifier(&priv->notifier_block);
2385 		if (ret) {
2386 			dev_err(dev, "register notifier fail!\n");
2387 			goto out_notify_fail;
2388 		}
2389 		dev_dbg(dev, "has not handle, register notifier!\n");
2390 	}
2391 
2392 	return 0;
2393 
2394 out_notify_fail:
2395 	(void)cancel_work_sync(&priv->service_task);
2396 out_read_prop_fail:
2397 	/* safe for ACPI FW */
2398 	of_node_put(to_of_node(priv->fwnode));
2399 	free_netdev(ndev);
2400 	return ret;
2401 }
2402 
2403 static int hns_nic_dev_remove(struct platform_device *pdev)
2404 {
2405 	struct net_device *ndev = platform_get_drvdata(pdev);
2406 	struct hns_nic_priv *priv = netdev_priv(ndev);
2407 
2408 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2409 		unregister_netdev(ndev);
2410 
2411 	if (priv->ring_data)
2412 		hns_nic_uninit_ring_data(priv);
2413 	priv->ring_data = NULL;
2414 
2415 	if (ndev->phydev)
2416 		phy_disconnect(ndev->phydev);
2417 
2418 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2419 		hnae_put_handle(priv->ae_handle);
2420 	priv->ae_handle = NULL;
2421 	if (priv->notifier_block.notifier_call)
2422 		hnae_unregister_notifier(&priv->notifier_block);
2423 	priv->notifier_block.notifier_call = NULL;
2424 
2425 	set_bit(NIC_STATE_REMOVING, &priv->state);
2426 	(void)cancel_work_sync(&priv->service_task);
2427 
2428 	/* safe for ACPI FW */
2429 	of_node_put(to_of_node(priv->fwnode));
2430 
2431 	free_netdev(ndev);
2432 	return 0;
2433 }
2434 
2435 static const struct of_device_id hns_enet_of_match[] = {
2436 	{.compatible = "hisilicon,hns-nic-v1",},
2437 	{.compatible = "hisilicon,hns-nic-v2",},
2438 	{},
2439 };
2440 
2441 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2442 
2443 static struct platform_driver hns_nic_dev_driver = {
2444 	.driver = {
2445 		.name = "hns-nic",
2446 		.of_match_table = hns_enet_of_match,
2447 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2448 	},
2449 	.probe = hns_nic_dev_probe,
2450 	.remove = hns_nic_dev_remove,
2451 };
2452 
2453 module_platform_driver(hns_nic_dev_driver);
2454 
2455 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2456 MODULE_AUTHOR("Hisilicon, Inc.");
2457 MODULE_LICENSE("GPL");
2458 MODULE_ALIAS("platform:hns-nic");
2459