xref: /linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 547f574fd9d5e3925d47fd44decbf6ab6df94b0e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23 
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26 
27 #define SERVICE_TIMER_HZ (1 * HZ)
28 
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32 
33 #define BD_MAX_SEND_SIZE 8191
34 #define SKB_TMP_LEN(SKB) \
35 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
36 
37 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
38 			    int send_sz, dma_addr_t dma, int frag_end,
39 			    int buf_num, enum hns_desc_type type, int mtu)
40 {
41 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
42 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
43 	struct iphdr *iphdr;
44 	struct ipv6hdr *ipv6hdr;
45 	struct sk_buff *skb;
46 	__be16 protocol;
47 	u8 bn_pid = 0;
48 	u8 rrcfv = 0;
49 	u8 ip_offset = 0;
50 	u8 tvsvsn = 0;
51 	u16 mss = 0;
52 	u8 l4_len = 0;
53 	u16 paylen = 0;
54 
55 	desc_cb->priv = priv;
56 	desc_cb->length = size;
57 	desc_cb->dma = dma;
58 	desc_cb->type = type;
59 
60 	desc->addr = cpu_to_le64(dma);
61 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
62 
63 	/* config bd buffer end */
64 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
65 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
66 
67 	/* fill port_id in the tx bd for sending management pkts */
68 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
69 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
70 
71 	if (type == DESC_TYPE_SKB) {
72 		skb = (struct sk_buff *)priv;
73 
74 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
75 			skb_reset_mac_len(skb);
76 			protocol = skb->protocol;
77 			ip_offset = ETH_HLEN;
78 
79 			if (protocol == htons(ETH_P_8021Q)) {
80 				ip_offset += VLAN_HLEN;
81 				protocol = vlan_get_protocol(skb);
82 				skb->protocol = protocol;
83 			}
84 
85 			if (skb->protocol == htons(ETH_P_IP)) {
86 				iphdr = ip_hdr(skb);
87 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
88 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
89 
90 				/* check for tcp/udp header */
91 				if (iphdr->protocol == IPPROTO_TCP &&
92 				    skb_is_gso(skb)) {
93 					hnae_set_bit(tvsvsn,
94 						     HNSV2_TXD_TSE_B, 1);
95 					l4_len = tcp_hdrlen(skb);
96 					mss = skb_shinfo(skb)->gso_size;
97 					paylen = skb->len - SKB_TMP_LEN(skb);
98 				}
99 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
100 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
101 				ipv6hdr = ipv6_hdr(skb);
102 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
103 
104 				/* check for tcp/udp header */
105 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
106 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
107 					hnae_set_bit(tvsvsn,
108 						     HNSV2_TXD_TSE_B, 1);
109 					l4_len = tcp_hdrlen(skb);
110 					mss = skb_shinfo(skb)->gso_size;
111 					paylen = skb->len - SKB_TMP_LEN(skb);
112 				}
113 			}
114 			desc->tx.ip_offset = ip_offset;
115 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
116 			desc->tx.mss = cpu_to_le16(mss);
117 			desc->tx.l4_len = l4_len;
118 			desc->tx.paylen = cpu_to_le16(paylen);
119 		}
120 	}
121 
122 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
123 
124 	desc->tx.bn_pid = bn_pid;
125 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
126 
127 	ring_ptr_move_fw(ring, next_to_use);
128 }
129 
130 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
131 			 int size, dma_addr_t dma, int frag_end,
132 			 int buf_num, enum hns_desc_type type, int mtu)
133 {
134 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
135 			buf_num, type, mtu);
136 }
137 
138 static const struct acpi_device_id hns_enet_acpi_match[] = {
139 	{ "HISI00C1", 0 },
140 	{ "HISI00C2", 0 },
141 	{ },
142 };
143 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
144 
145 static void fill_desc(struct hnae_ring *ring, void *priv,
146 		      int size, dma_addr_t dma, int frag_end,
147 		      int buf_num, enum hns_desc_type type, int mtu)
148 {
149 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
150 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
151 	struct sk_buff *skb;
152 	__be16 protocol;
153 	u32 ip_offset;
154 	u32 asid_bufnum_pid = 0;
155 	u32 flag_ipoffset = 0;
156 
157 	desc_cb->priv = priv;
158 	desc_cb->length = size;
159 	desc_cb->dma = dma;
160 	desc_cb->type = type;
161 
162 	desc->addr = cpu_to_le64(dma);
163 	desc->tx.send_size = cpu_to_le16((u16)size);
164 
165 	/*config bd buffer end */
166 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
167 
168 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
169 
170 	if (type == DESC_TYPE_SKB) {
171 		skb = (struct sk_buff *)priv;
172 
173 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
174 			protocol = skb->protocol;
175 			ip_offset = ETH_HLEN;
176 
177 			/*if it is a SW VLAN check the next protocol*/
178 			if (protocol == htons(ETH_P_8021Q)) {
179 				ip_offset += VLAN_HLEN;
180 				protocol = vlan_get_protocol(skb);
181 				skb->protocol = protocol;
182 			}
183 
184 			if (skb->protocol == htons(ETH_P_IP)) {
185 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
186 				/* check for tcp/udp header */
187 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
188 
189 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
190 				/* ipv6 has not l3 cs, check for L4 header */
191 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
192 			}
193 
194 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
195 		}
196 	}
197 
198 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
199 
200 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
201 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
202 
203 	ring_ptr_move_fw(ring, next_to_use);
204 }
205 
206 static void unfill_desc(struct hnae_ring *ring)
207 {
208 	ring_ptr_move_bw(ring, next_to_use);
209 }
210 
211 static int hns_nic_maybe_stop_tx(
212 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
213 {
214 	struct sk_buff *skb = *out_skb;
215 	struct sk_buff *new_skb = NULL;
216 	int buf_num;
217 
218 	/* no. of segments (plus a header) */
219 	buf_num = skb_shinfo(skb)->nr_frags + 1;
220 
221 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
222 		if (ring_space(ring) < 1)
223 			return -EBUSY;
224 
225 		new_skb = skb_copy(skb, GFP_ATOMIC);
226 		if (!new_skb)
227 			return -ENOMEM;
228 
229 		dev_kfree_skb_any(skb);
230 		*out_skb = new_skb;
231 		buf_num = 1;
232 	} else if (buf_num > ring_space(ring)) {
233 		return -EBUSY;
234 	}
235 
236 	*bnum = buf_num;
237 	return 0;
238 }
239 
240 static int hns_nic_maybe_stop_tso(
241 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
242 {
243 	int i;
244 	int size;
245 	int buf_num;
246 	int frag_num;
247 	struct sk_buff *skb = *out_skb;
248 	struct sk_buff *new_skb = NULL;
249 	skb_frag_t *frag;
250 
251 	size = skb_headlen(skb);
252 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253 
254 	frag_num = skb_shinfo(skb)->nr_frags;
255 	for (i = 0; i < frag_num; i++) {
256 		frag = &skb_shinfo(skb)->frags[i];
257 		size = skb_frag_size(frag);
258 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259 	}
260 
261 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
262 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
263 		if (ring_space(ring) < buf_num)
264 			return -EBUSY;
265 		/* manual split the send packet */
266 		new_skb = skb_copy(skb, GFP_ATOMIC);
267 		if (!new_skb)
268 			return -ENOMEM;
269 		dev_kfree_skb_any(skb);
270 		*out_skb = new_skb;
271 
272 	} else if (ring_space(ring) < buf_num) {
273 		return -EBUSY;
274 	}
275 
276 	*bnum = buf_num;
277 	return 0;
278 }
279 
280 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
281 			  int size, dma_addr_t dma, int frag_end,
282 			  int buf_num, enum hns_desc_type type, int mtu)
283 {
284 	int frag_buf_num;
285 	int sizeoflast;
286 	int k;
287 
288 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
289 	sizeoflast = size % BD_MAX_SEND_SIZE;
290 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
291 
292 	/* when the frag size is bigger than hardware, split this frag */
293 	for (k = 0; k < frag_buf_num; k++)
294 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
295 				(k == frag_buf_num - 1) ?
296 					sizeoflast : BD_MAX_SEND_SIZE,
297 				dma + BD_MAX_SEND_SIZE * k,
298 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
299 				buf_num,
300 				(type == DESC_TYPE_SKB && !k) ?
301 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
302 				mtu);
303 }
304 
305 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
306 				struct sk_buff *skb,
307 				struct hns_nic_ring_data *ring_data)
308 {
309 	struct hns_nic_priv *priv = netdev_priv(ndev);
310 	struct hnae_ring *ring = ring_data->ring;
311 	struct device *dev = ring_to_dev(ring);
312 	struct netdev_queue *dev_queue;
313 	skb_frag_t *frag;
314 	int buf_num;
315 	int seg_num;
316 	dma_addr_t dma;
317 	int size, next_to_use;
318 	int i;
319 
320 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
321 	case -EBUSY:
322 		ring->stats.tx_busy++;
323 		goto out_net_tx_busy;
324 	case -ENOMEM:
325 		ring->stats.sw_err_cnt++;
326 		netdev_err(ndev, "no memory to xmit!\n");
327 		goto out_err_tx_ok;
328 	default:
329 		break;
330 	}
331 
332 	/* no. of segments (plus a header) */
333 	seg_num = skb_shinfo(skb)->nr_frags + 1;
334 	next_to_use = ring->next_to_use;
335 
336 	/* fill the first part */
337 	size = skb_headlen(skb);
338 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
339 	if (dma_mapping_error(dev, dma)) {
340 		netdev_err(ndev, "TX head DMA map failed\n");
341 		ring->stats.sw_err_cnt++;
342 		goto out_err_tx_ok;
343 	}
344 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
345 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
346 
347 	/* fill the fragments */
348 	for (i = 1; i < seg_num; i++) {
349 		frag = &skb_shinfo(skb)->frags[i - 1];
350 		size = skb_frag_size(frag);
351 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
352 		if (dma_mapping_error(dev, dma)) {
353 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
354 			ring->stats.sw_err_cnt++;
355 			goto out_map_frag_fail;
356 		}
357 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
358 				    seg_num - 1 == i ? 1 : 0, buf_num,
359 				    DESC_TYPE_PAGE, ndev->mtu);
360 	}
361 
362 	/*complete translate all packets*/
363 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
364 	netdev_tx_sent_queue(dev_queue, skb->len);
365 
366 	netif_trans_update(ndev);
367 	ndev->stats.tx_bytes += skb->len;
368 	ndev->stats.tx_packets++;
369 
370 	wmb(); /* commit all data before submit */
371 	assert(skb->queue_mapping < priv->ae_handle->q_num);
372 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
373 
374 	return NETDEV_TX_OK;
375 
376 out_map_frag_fail:
377 
378 	while (ring->next_to_use != next_to_use) {
379 		unfill_desc(ring);
380 		if (ring->next_to_use != next_to_use)
381 			dma_unmap_page(dev,
382 				       ring->desc_cb[ring->next_to_use].dma,
383 				       ring->desc_cb[ring->next_to_use].length,
384 				       DMA_TO_DEVICE);
385 		else
386 			dma_unmap_single(dev,
387 					 ring->desc_cb[next_to_use].dma,
388 					 ring->desc_cb[next_to_use].length,
389 					 DMA_TO_DEVICE);
390 	}
391 
392 out_err_tx_ok:
393 
394 	dev_kfree_skb_any(skb);
395 	return NETDEV_TX_OK;
396 
397 out_net_tx_busy:
398 
399 	netif_stop_subqueue(ndev, skb->queue_mapping);
400 
401 	/* Herbert's original patch had:
402 	 *  smp_mb__after_netif_stop_queue();
403 	 * but since that doesn't exist yet, just open code it.
404 	 */
405 	smp_mb();
406 	return NETDEV_TX_BUSY;
407 }
408 
409 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
410 			       struct hnae_ring *ring, int pull_len,
411 			       struct hnae_desc_cb *desc_cb)
412 {
413 	struct hnae_desc *desc;
414 	u32 truesize;
415 	int size;
416 	int last_offset;
417 	bool twobufs;
418 
419 	twobufs = ((PAGE_SIZE < 8192) &&
420 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
421 
422 	desc = &ring->desc[ring->next_to_clean];
423 	size = le16_to_cpu(desc->rx.size);
424 
425 	if (twobufs) {
426 		truesize = hnae_buf_size(ring);
427 	} else {
428 		truesize = ALIGN(size, L1_CACHE_BYTES);
429 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
430 	}
431 
432 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
433 			size - pull_len, truesize);
434 
435 	 /* avoid re-using remote pages,flag default unreuse */
436 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
437 		return;
438 
439 	if (twobufs) {
440 		/* if we are only owner of page we can reuse it */
441 		if (likely(page_count(desc_cb->priv) == 1)) {
442 			/* flip page offset to other buffer */
443 			desc_cb->page_offset ^= truesize;
444 
445 			desc_cb->reuse_flag = 1;
446 			/* bump ref count on page before it is given*/
447 			get_page(desc_cb->priv);
448 		}
449 		return;
450 	}
451 
452 	/* move offset up to the next cache line */
453 	desc_cb->page_offset += truesize;
454 
455 	if (desc_cb->page_offset <= last_offset) {
456 		desc_cb->reuse_flag = 1;
457 		/* bump ref count on page before it is given*/
458 		get_page(desc_cb->priv);
459 	}
460 }
461 
462 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
463 {
464 	*out_bnum = hnae_get_field(bnum_flag,
465 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
466 }
467 
468 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
469 {
470 	*out_bnum = hnae_get_field(bnum_flag,
471 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
472 }
473 
474 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
475 				struct sk_buff *skb, u32 flag)
476 {
477 	struct net_device *netdev = ring_data->napi.dev;
478 	u32 l3id;
479 	u32 l4id;
480 
481 	/* check if RX checksum offload is enabled */
482 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
483 		return;
484 
485 	/* In hardware, we only support checksum for the following protocols:
486 	 * 1) IPv4,
487 	 * 2) TCP(over IPv4 or IPv6),
488 	 * 3) UDP(over IPv4 or IPv6),
489 	 * 4) SCTP(over IPv4 or IPv6)
490 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
491 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
492 	 *
493 	 * Hardware limitation:
494 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
495 	 * Error" bit (which usually can be used to indicate whether checksum
496 	 * was calculated by the hardware and if there was any error encountered
497 	 * during checksum calculation).
498 	 *
499 	 * Software workaround:
500 	 * We do get info within the RX descriptor about the kind of L3/L4
501 	 * protocol coming in the packet and the error status. These errors
502 	 * might not just be checksum errors but could be related to version,
503 	 * length of IPv4, UDP, TCP etc.
504 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
505 	 * checksum or any other L3/L4 error, we will not (cannot) convey
506 	 * checksum status for such cases to upper stack and will not maintain
507 	 * the RX L3/L4 checksum counters as well.
508 	 */
509 
510 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
511 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
512 
513 	/*  check L3 protocol for which checksum is supported */
514 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
515 		return;
516 
517 	/* check for any(not just checksum)flagged L3 protocol errors */
518 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
519 		return;
520 
521 	/* we do not support checksum of fragmented packets */
522 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
523 		return;
524 
525 	/*  check L4 protocol for which checksum is supported */
526 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
527 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
528 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
529 		return;
530 
531 	/* check for any(not just checksum)flagged L4 protocol errors */
532 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
533 		return;
534 
535 	/* now, this has to be a packet with valid RX checksum */
536 	skb->ip_summed = CHECKSUM_UNNECESSARY;
537 }
538 
539 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
540 			       struct sk_buff **out_skb, int *out_bnum)
541 {
542 	struct hnae_ring *ring = ring_data->ring;
543 	struct net_device *ndev = ring_data->napi.dev;
544 	struct hns_nic_priv *priv = netdev_priv(ndev);
545 	struct sk_buff *skb;
546 	struct hnae_desc *desc;
547 	struct hnae_desc_cb *desc_cb;
548 	unsigned char *va;
549 	int bnum, length, i;
550 	int pull_len;
551 	u32 bnum_flag;
552 
553 	desc = &ring->desc[ring->next_to_clean];
554 	desc_cb = &ring->desc_cb[ring->next_to_clean];
555 
556 	prefetch(desc);
557 
558 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
559 
560 	/* prefetch first cache line of first page */
561 	net_prefetch(va);
562 
563 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
564 					HNS_RX_HEAD_SIZE);
565 	if (unlikely(!skb)) {
566 		ring->stats.sw_err_cnt++;
567 		return -ENOMEM;
568 	}
569 
570 	prefetchw(skb->data);
571 	length = le16_to_cpu(desc->rx.pkt_len);
572 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
573 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
574 	*out_bnum = bnum;
575 
576 	if (length <= HNS_RX_HEAD_SIZE) {
577 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
578 
579 		/* we can reuse buffer as-is, just make sure it is local */
580 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
581 			desc_cb->reuse_flag = 1;
582 		else /* this page cannot be reused so discard it */
583 			put_page(desc_cb->priv);
584 
585 		ring_ptr_move_fw(ring, next_to_clean);
586 
587 		if (unlikely(bnum != 1)) { /* check err*/
588 			*out_bnum = 1;
589 			goto out_bnum_err;
590 		}
591 	} else {
592 		ring->stats.seg_pkt_cnt++;
593 
594 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
595 		memcpy(__skb_put(skb, pull_len), va,
596 		       ALIGN(pull_len, sizeof(long)));
597 
598 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
599 		ring_ptr_move_fw(ring, next_to_clean);
600 
601 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
602 			*out_bnum = 1;
603 			goto out_bnum_err;
604 		}
605 		for (i = 1; i < bnum; i++) {
606 			desc = &ring->desc[ring->next_to_clean];
607 			desc_cb = &ring->desc_cb[ring->next_to_clean];
608 
609 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
610 			ring_ptr_move_fw(ring, next_to_clean);
611 		}
612 	}
613 
614 	/* check except process, free skb and jump the desc */
615 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
616 out_bnum_err:
617 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
618 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
619 			   bnum, ring->max_desc_num_per_pkt,
620 			   length, (int)MAX_SKB_FRAGS,
621 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
622 		ring->stats.err_bd_num++;
623 		dev_kfree_skb_any(skb);
624 		return -EDOM;
625 	}
626 
627 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
628 
629 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
630 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
631 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
632 		ring->stats.non_vld_descs++;
633 		dev_kfree_skb_any(skb);
634 		return -EINVAL;
635 	}
636 
637 	if (unlikely((!desc->rx.pkt_len) ||
638 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
639 		ring->stats.err_pkt_len++;
640 		dev_kfree_skb_any(skb);
641 		return -EFAULT;
642 	}
643 
644 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
645 		ring->stats.l2_err++;
646 		dev_kfree_skb_any(skb);
647 		return -EFAULT;
648 	}
649 
650 	ring->stats.rx_pkts++;
651 	ring->stats.rx_bytes += skb->len;
652 
653 	/* indicate to upper stack if our hardware has already calculated
654 	 * the RX checksum
655 	 */
656 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
657 
658 	return 0;
659 }
660 
661 static void
662 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
663 {
664 	int i, ret;
665 	struct hnae_desc_cb res_cbs;
666 	struct hnae_desc_cb *desc_cb;
667 	struct hnae_ring *ring = ring_data->ring;
668 	struct net_device *ndev = ring_data->napi.dev;
669 
670 	for (i = 0; i < cleand_count; i++) {
671 		desc_cb = &ring->desc_cb[ring->next_to_use];
672 		if (desc_cb->reuse_flag) {
673 			ring->stats.reuse_pg_cnt++;
674 			hnae_reuse_buffer(ring, ring->next_to_use);
675 		} else {
676 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
677 			if (ret) {
678 				ring->stats.sw_err_cnt++;
679 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
680 				break;
681 			}
682 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
683 		}
684 
685 		ring_ptr_move_fw(ring, next_to_use);
686 	}
687 
688 	wmb(); /* make all data has been write before submit */
689 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
690 }
691 
692 /* return error number for error or number of desc left to take
693  */
694 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
695 			      struct sk_buff *skb)
696 {
697 	struct net_device *ndev = ring_data->napi.dev;
698 
699 	skb->protocol = eth_type_trans(skb, ndev);
700 	napi_gro_receive(&ring_data->napi, skb);
701 }
702 
703 static int hns_desc_unused(struct hnae_ring *ring)
704 {
705 	int ntc = ring->next_to_clean;
706 	int ntu = ring->next_to_use;
707 
708 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
709 }
710 
711 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
712 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
713 
714 #define HNS_COAL_BDNUM			3
715 
716 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
717 {
718 	bool coal_enable = ring->q->handle->coal_adapt_en;
719 
720 	if (coal_enable &&
721 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
722 		return HNS_COAL_BDNUM;
723 	else
724 		return 0;
725 }
726 
727 static void hns_update_rx_rate(struct hnae_ring *ring)
728 {
729 	bool coal_enable = ring->q->handle->coal_adapt_en;
730 	u32 time_passed_ms;
731 	u64 total_bytes;
732 
733 	if (!coal_enable ||
734 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
735 		return;
736 
737 	/* ring->stats.rx_bytes overflowed */
738 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
739 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
740 		ring->coal_last_jiffies = jiffies;
741 		return;
742 	}
743 
744 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
745 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
746 	do_div(total_bytes, time_passed_ms);
747 	ring->coal_rx_rate = total_bytes >> 10;
748 
749 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
750 	ring->coal_last_jiffies = jiffies;
751 }
752 
753 /**
754  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
755  * @new_param: new value
756  * @old_param: old value
757  **/
758 static u32 smooth_alg(u32 new_param, u32 old_param)
759 {
760 	u32 gap = (new_param > old_param) ? new_param - old_param
761 					  : old_param - new_param;
762 
763 	if (gap > 8)
764 		gap >>= 3;
765 
766 	if (new_param > old_param)
767 		return old_param + gap;
768 	else
769 		return old_param - gap;
770 }
771 
772 /**
773  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
774  * @ring_data: pointer to hns_nic_ring_data
775  **/
776 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
777 {
778 	struct hnae_ring *ring = ring_data->ring;
779 	struct hnae_handle *handle = ring->q->handle;
780 	u32 new_coal_param, old_coal_param = ring->coal_param;
781 
782 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
783 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
784 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
785 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
786 	else
787 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
788 
789 	if (new_coal_param == old_coal_param &&
790 	    new_coal_param == handle->coal_param)
791 		return;
792 
793 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
794 	ring->coal_param = new_coal_param;
795 
796 	/**
797 	 * Because all ring in one port has one coalesce param, when one ring
798 	 * calculate its own coalesce param, it cannot write to hardware at
799 	 * once. There are three conditions as follows:
800 	 *       1. current ring's coalesce param is larger than the hardware.
801 	 *       2. or ring which adapt last time can change again.
802 	 *       3. timeout.
803 	 */
804 	if (new_coal_param == handle->coal_param) {
805 		handle->coal_last_jiffies = jiffies;
806 		handle->coal_ring_idx = ring_data->queue_index;
807 	} else if (new_coal_param > handle->coal_param ||
808 		   handle->coal_ring_idx == ring_data->queue_index ||
809 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
810 		handle->dev->ops->set_coalesce_usecs(handle,
811 					new_coal_param);
812 		handle->dev->ops->set_coalesce_frames(handle,
813 					1, new_coal_param);
814 		handle->coal_param = new_coal_param;
815 		handle->coal_ring_idx = ring_data->queue_index;
816 		handle->coal_last_jiffies = jiffies;
817 	}
818 }
819 
820 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
821 			       int budget, void *v)
822 {
823 	struct hnae_ring *ring = ring_data->ring;
824 	struct sk_buff *skb;
825 	int num, bnum;
826 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
827 	int recv_pkts, recv_bds, clean_count, err;
828 	int unused_count = hns_desc_unused(ring);
829 
830 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
831 	rmb(); /* make sure num taken effect before the other data is touched */
832 
833 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
834 	num -= unused_count;
835 
836 	while (recv_pkts < budget && recv_bds < num) {
837 		/* reuse or realloc buffers */
838 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
839 			hns_nic_alloc_rx_buffers(ring_data,
840 						 clean_count + unused_count);
841 			clean_count = 0;
842 			unused_count = hns_desc_unused(ring);
843 		}
844 
845 		/* poll one pkt */
846 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
847 		if (unlikely(!skb)) /* this fault cannot be repaired */
848 			goto out;
849 
850 		recv_bds += bnum;
851 		clean_count += bnum;
852 		if (unlikely(err)) {  /* do jump the err */
853 			recv_pkts++;
854 			continue;
855 		}
856 
857 		/* do update ip stack process*/
858 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
859 							ring_data, skb);
860 		recv_pkts++;
861 	}
862 
863 out:
864 	/* make all data has been write before submit */
865 	if (clean_count + unused_count > 0)
866 		hns_nic_alloc_rx_buffers(ring_data,
867 					 clean_count + unused_count);
868 
869 	return recv_pkts;
870 }
871 
872 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
873 {
874 	struct hnae_ring *ring = ring_data->ring;
875 	int num = 0;
876 	bool rx_stopped;
877 
878 	hns_update_rx_rate(ring);
879 
880 	/* for hardware bug fixed */
881 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
882 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
883 
884 	if (num <= hns_coal_rx_bdnum(ring)) {
885 		if (ring->q->handle->coal_adapt_en)
886 			hns_nic_adpt_coalesce(ring_data);
887 
888 		rx_stopped = true;
889 	} else {
890 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
891 			ring_data->ring, 1);
892 
893 		rx_stopped = false;
894 	}
895 
896 	return rx_stopped;
897 }
898 
899 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
900 {
901 	struct hnae_ring *ring = ring_data->ring;
902 	int num;
903 
904 	hns_update_rx_rate(ring);
905 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
906 
907 	if (num <= hns_coal_rx_bdnum(ring)) {
908 		if (ring->q->handle->coal_adapt_en)
909 			hns_nic_adpt_coalesce(ring_data);
910 
911 		return true;
912 	}
913 
914 	return false;
915 }
916 
917 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
918 					    int *bytes, int *pkts)
919 {
920 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
921 
922 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
923 	(*bytes) += desc_cb->length;
924 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
925 	hnae_free_buffer_detach(ring, ring->next_to_clean);
926 
927 	ring_ptr_move_fw(ring, next_to_clean);
928 }
929 
930 static int is_valid_clean_head(struct hnae_ring *ring, int h)
931 {
932 	int u = ring->next_to_use;
933 	int c = ring->next_to_clean;
934 
935 	if (unlikely(h > ring->desc_num))
936 		return 0;
937 
938 	assert(u > 0 && u < ring->desc_num);
939 	assert(c > 0 && c < ring->desc_num);
940 	assert(u != c && h != c); /* must be checked before call this func */
941 
942 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
943 }
944 
945 /* reclaim all desc in one budget
946  * return error or number of desc left
947  */
948 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
949 			       int budget, void *v)
950 {
951 	struct hnae_ring *ring = ring_data->ring;
952 	struct net_device *ndev = ring_data->napi.dev;
953 	struct netdev_queue *dev_queue;
954 	struct hns_nic_priv *priv = netdev_priv(ndev);
955 	int head;
956 	int bytes, pkts;
957 
958 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
959 	rmb(); /* make sure head is ready before touch any data */
960 
961 	if (is_ring_empty(ring) || head == ring->next_to_clean)
962 		return 0; /* no data to poll */
963 
964 	if (!is_valid_clean_head(ring, head)) {
965 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
966 			   ring->next_to_use, ring->next_to_clean);
967 		ring->stats.io_err_cnt++;
968 		return -EIO;
969 	}
970 
971 	bytes = 0;
972 	pkts = 0;
973 	while (head != ring->next_to_clean) {
974 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
975 		/* issue prefetch for next Tx descriptor */
976 		prefetch(&ring->desc_cb[ring->next_to_clean]);
977 	}
978 	/* update tx ring statistics. */
979 	ring->stats.tx_pkts += pkts;
980 	ring->stats.tx_bytes += bytes;
981 
982 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
983 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
984 
985 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
986 		netif_carrier_on(ndev);
987 
988 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
989 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
990 		/* Make sure that anybody stopping the queue after this
991 		 * sees the new next_to_clean.
992 		 */
993 		smp_mb();
994 		if (netif_tx_queue_stopped(dev_queue) &&
995 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
996 			netif_tx_wake_queue(dev_queue);
997 			ring->stats.restart_queue++;
998 		}
999 	}
1000 	return 0;
1001 }
1002 
1003 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1004 {
1005 	struct hnae_ring *ring = ring_data->ring;
1006 	int head;
1007 
1008 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1009 
1010 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1011 
1012 	if (head != ring->next_to_clean) {
1013 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1014 			ring_data->ring, 1);
1015 
1016 		return false;
1017 	} else {
1018 		return true;
1019 	}
1020 }
1021 
1022 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1023 {
1024 	struct hnae_ring *ring = ring_data->ring;
1025 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1026 
1027 	if (head == ring->next_to_clean)
1028 		return true;
1029 	else
1030 		return false;
1031 }
1032 
1033 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1034 {
1035 	struct hnae_ring *ring = ring_data->ring;
1036 	struct net_device *ndev = ring_data->napi.dev;
1037 	struct netdev_queue *dev_queue;
1038 	int head;
1039 	int bytes, pkts;
1040 
1041 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1042 	bytes = 0;
1043 	pkts = 0;
1044 	while (head != ring->next_to_clean)
1045 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1046 
1047 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1048 	netdev_tx_reset_queue(dev_queue);
1049 }
1050 
1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1052 {
1053 	int clean_complete = 0;
1054 	struct hns_nic_ring_data *ring_data =
1055 		container_of(napi, struct hns_nic_ring_data, napi);
1056 	struct hnae_ring *ring = ring_data->ring;
1057 
1058 	clean_complete += ring_data->poll_one(
1059 				ring_data, budget - clean_complete,
1060 				ring_data->ex_process);
1061 
1062 	if (clean_complete < budget) {
1063 		if (ring_data->fini_process(ring_data)) {
1064 			napi_complete(napi);
1065 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1066 		} else {
1067 			return budget;
1068 		}
1069 	}
1070 
1071 	return clean_complete;
1072 }
1073 
1074 static irqreturn_t hns_irq_handle(int irq, void *dev)
1075 {
1076 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1077 
1078 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1079 		ring_data->ring, 1);
1080 	napi_schedule(&ring_data->napi);
1081 
1082 	return IRQ_HANDLED;
1083 }
1084 
1085 /**
1086  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1087  *@ndev: net device
1088  */
1089 static void hns_nic_adjust_link(struct net_device *ndev)
1090 {
1091 	struct hns_nic_priv *priv = netdev_priv(ndev);
1092 	struct hnae_handle *h = priv->ae_handle;
1093 	int state = 1;
1094 
1095 	/* If there is no phy, do not need adjust link */
1096 	if (ndev->phydev) {
1097 		/* When phy link down, do nothing */
1098 		if (ndev->phydev->link == 0)
1099 			return;
1100 
1101 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1102 						  ndev->phydev->duplex)) {
1103 			/* because Hi161X chip don't support to change gmac
1104 			 * speed and duplex with traffic. Delay 200ms to
1105 			 * make sure there is no more data in chip FIFO.
1106 			 */
1107 			netif_carrier_off(ndev);
1108 			msleep(200);
1109 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1110 						 ndev->phydev->duplex);
1111 			netif_carrier_on(ndev);
1112 		}
1113 	}
1114 
1115 	state = state && h->dev->ops->get_status(h);
1116 
1117 	if (state != priv->link) {
1118 		if (state) {
1119 			netif_carrier_on(ndev);
1120 			netif_tx_wake_all_queues(ndev);
1121 			netdev_info(ndev, "link up\n");
1122 		} else {
1123 			netif_carrier_off(ndev);
1124 			netdev_info(ndev, "link down\n");
1125 		}
1126 		priv->link = state;
1127 	}
1128 }
1129 
1130 /**
1131  *hns_nic_init_phy - init phy
1132  *@ndev: net device
1133  *@h: ae handle
1134  * Return 0 on success, negative on failure
1135  */
1136 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1137 {
1138 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1139 	struct phy_device *phy_dev = h->phy_dev;
1140 	int ret;
1141 
1142 	if (!h->phy_dev)
1143 		return 0;
1144 
1145 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1146 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1147 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1148 
1149 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1150 		phy_dev->autoneg = false;
1151 
1152 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1153 		phy_dev->dev_flags = 0;
1154 
1155 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1156 					 h->phy_if);
1157 	} else {
1158 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1159 	}
1160 	if (unlikely(ret))
1161 		return -ENODEV;
1162 
1163 	phy_attached_info(phy_dev);
1164 
1165 	return 0;
1166 }
1167 
1168 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1169 {
1170 	struct hns_nic_priv *priv = netdev_priv(netdev);
1171 	struct hnae_handle *h = priv->ae_handle;
1172 
1173 	napi_enable(&priv->ring_data[idx].napi);
1174 
1175 	enable_irq(priv->ring_data[idx].ring->irq);
1176 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1177 
1178 	return 0;
1179 }
1180 
1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1182 {
1183 	struct hns_nic_priv *priv = netdev_priv(ndev);
1184 	struct hnae_handle *h = priv->ae_handle;
1185 	struct sockaddr *mac_addr = p;
1186 	int ret;
1187 
1188 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1189 		return -EADDRNOTAVAIL;
1190 
1191 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1192 	if (ret) {
1193 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1194 		return ret;
1195 	}
1196 
1197 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1198 
1199 	return 0;
1200 }
1201 
1202 static void hns_nic_update_stats(struct net_device *netdev)
1203 {
1204 	struct hns_nic_priv *priv = netdev_priv(netdev);
1205 	struct hnae_handle *h = priv->ae_handle;
1206 
1207 	h->dev->ops->update_stats(h, &netdev->stats);
1208 }
1209 
1210 /* set mac addr if it is configed. or leave it to the AE driver */
1211 static void hns_init_mac_addr(struct net_device *ndev)
1212 {
1213 	struct hns_nic_priv *priv = netdev_priv(ndev);
1214 
1215 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1216 		eth_hw_addr_random(ndev);
1217 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1218 			 ndev->dev_addr);
1219 	}
1220 }
1221 
1222 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1223 {
1224 	struct hns_nic_priv *priv = netdev_priv(netdev);
1225 	struct hnae_handle *h = priv->ae_handle;
1226 
1227 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1228 	disable_irq(priv->ring_data[idx].ring->irq);
1229 
1230 	napi_disable(&priv->ring_data[idx].napi);
1231 }
1232 
1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1234 				      struct hnae_ring *ring, cpumask_t *mask)
1235 {
1236 	int cpu;
1237 
1238 	/* Diffrent irq banlance between 16core and 32core.
1239 	 * The cpu mask set by ring index according to the ring flag
1240 	 * which indicate the ring is tx or rx.
1241 	 */
1242 	if (q_num == num_possible_cpus()) {
1243 		if (is_tx_ring(ring))
1244 			cpu = ring_idx;
1245 		else
1246 			cpu = ring_idx - q_num;
1247 	} else {
1248 		if (is_tx_ring(ring))
1249 			cpu = ring_idx * 2;
1250 		else
1251 			cpu = (ring_idx - q_num) * 2 + 1;
1252 	}
1253 
1254 	cpumask_clear(mask);
1255 	cpumask_set_cpu(cpu, mask);
1256 
1257 	return cpu;
1258 }
1259 
1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; i < q_num * 2; i++) {
1265 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1266 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1267 					      NULL);
1268 			free_irq(priv->ring_data[i].ring->irq,
1269 				 &priv->ring_data[i]);
1270 			priv->ring_data[i].ring->irq_init_flag =
1271 				RCB_IRQ_NOT_INITED;
1272 		}
1273 	}
1274 }
1275 
1276 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1277 {
1278 	struct hnae_handle *h = priv->ae_handle;
1279 	struct hns_nic_ring_data *rd;
1280 	int i;
1281 	int ret;
1282 	int cpu;
1283 
1284 	for (i = 0; i < h->q_num * 2; i++) {
1285 		rd = &priv->ring_data[i];
1286 
1287 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1288 			break;
1289 
1290 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1291 			 "%s-%s%d", priv->netdev->name,
1292 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1293 
1294 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1295 
1296 		irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1297 		ret = request_irq(rd->ring->irq,
1298 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1299 		if (ret) {
1300 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1301 				   rd->ring->irq);
1302 			goto out_free_irq;
1303 		}
1304 
1305 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1306 						 rd->ring, &rd->mask);
1307 
1308 		if (cpu_online(cpu))
1309 			irq_set_affinity_hint(rd->ring->irq,
1310 					      &rd->mask);
1311 
1312 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1313 	}
1314 
1315 	return 0;
1316 
1317 out_free_irq:
1318 	hns_nic_free_irq(h->q_num, priv);
1319 	return ret;
1320 }
1321 
1322 static int hns_nic_net_up(struct net_device *ndev)
1323 {
1324 	struct hns_nic_priv *priv = netdev_priv(ndev);
1325 	struct hnae_handle *h = priv->ae_handle;
1326 	int i, j;
1327 	int ret;
1328 
1329 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1330 		return 0;
1331 
1332 	ret = hns_nic_init_irq(priv);
1333 	if (ret != 0) {
1334 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1335 		return ret;
1336 	}
1337 
1338 	for (i = 0; i < h->q_num * 2; i++) {
1339 		ret = hns_nic_ring_open(ndev, i);
1340 		if (ret)
1341 			goto out_has_some_queues;
1342 	}
1343 
1344 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1345 	if (ret)
1346 		goto out_set_mac_addr_err;
1347 
1348 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1349 	if (ret)
1350 		goto out_start_err;
1351 
1352 	if (ndev->phydev)
1353 		phy_start(ndev->phydev);
1354 
1355 	clear_bit(NIC_STATE_DOWN, &priv->state);
1356 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1357 
1358 	return 0;
1359 
1360 out_start_err:
1361 	netif_stop_queue(ndev);
1362 out_set_mac_addr_err:
1363 out_has_some_queues:
1364 	for (j = i - 1; j >= 0; j--)
1365 		hns_nic_ring_close(ndev, j);
1366 
1367 	hns_nic_free_irq(h->q_num, priv);
1368 	set_bit(NIC_STATE_DOWN, &priv->state);
1369 
1370 	return ret;
1371 }
1372 
1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375 	int i;
1376 	struct hnae_ae_ops *ops;
1377 	struct hns_nic_priv *priv = netdev_priv(ndev);
1378 
1379 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380 		return;
1381 
1382 	(void)del_timer_sync(&priv->service_timer);
1383 	netif_tx_stop_all_queues(ndev);
1384 	netif_carrier_off(ndev);
1385 	netif_tx_disable(ndev);
1386 	priv->link = 0;
1387 
1388 	if (ndev->phydev)
1389 		phy_stop(ndev->phydev);
1390 
1391 	ops = priv->ae_handle->dev->ops;
1392 
1393 	if (ops->stop)
1394 		ops->stop(priv->ae_handle);
1395 
1396 	netif_tx_stop_all_queues(ndev);
1397 
1398 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399 		hns_nic_ring_close(ndev, i);
1400 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401 
1402 		/* clean tx buffers*/
1403 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404 	}
1405 }
1406 
1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409 	struct hns_nic_priv *priv = netdev_priv(ndev);
1410 	struct hnae_handle *handle = priv->ae_handle;
1411 
1412 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413 		usleep_range(1000, 2000);
1414 
1415 	(void)hnae_reinit_handle(handle);
1416 
1417 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419 
1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422 	struct hns_nic_priv *priv = netdev_priv(netdev);
1423 	enum hnae_port_type type = priv->ae_handle->port_type;
1424 
1425 	netif_trans_update(priv->netdev);
1426 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427 		usleep_range(1000, 2000);
1428 
1429 	hns_nic_net_down(netdev);
1430 
1431 	/* Only do hns_nic_net_reset in debug mode
1432 	 * because of hardware limitation.
1433 	 */
1434 	if (type == HNAE_PORT_DEBUG)
1435 		hns_nic_net_reset(netdev);
1436 
1437 	(void)hns_nic_net_up(netdev);
1438 	clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440 
1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443 	struct hns_nic_priv *priv = netdev_priv(ndev);
1444 	struct hnae_handle *h = priv->ae_handle;
1445 	int ret;
1446 
1447 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1448 		return -EBUSY;
1449 
1450 	priv->link = 0;
1451 	netif_carrier_off(ndev);
1452 
1453 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454 	if (ret < 0) {
1455 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456 			   ret);
1457 		return ret;
1458 	}
1459 
1460 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461 	if (ret < 0) {
1462 		netdev_err(ndev,
1463 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464 		return ret;
1465 	}
1466 
1467 	ret = hns_nic_net_up(ndev);
1468 	if (ret) {
1469 		netdev_err(ndev,
1470 			   "hns net up fail, ret=%d!\n", ret);
1471 		return ret;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479 	hns_nic_net_down(ndev);
1480 
1481 	return 0;
1482 }
1483 
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1486 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1487 {
1488 	struct hns_nic_priv *priv = netdev_priv(ndev);
1489 
1490 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1491 		ndev->watchdog_timeo *= 2;
1492 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1493 			    ndev->watchdog_timeo);
1494 	} else {
1495 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1496 		hns_tx_timeout_reset(priv);
1497 	}
1498 }
1499 
1500 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1501 				    struct net_device *ndev)
1502 {
1503 	struct hns_nic_priv *priv = netdev_priv(ndev);
1504 
1505 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1506 
1507 	return hns_nic_net_xmit_hw(ndev, skb,
1508 				   &tx_ring_data(priv, skb->queue_mapping));
1509 }
1510 
1511 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1512 				  struct sk_buff *skb)
1513 {
1514 	dev_kfree_skb_any(skb);
1515 }
1516 
1517 #define HNS_LB_TX_RING	0
1518 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1519 {
1520 	struct sk_buff *skb;
1521 	struct ethhdr *ethhdr;
1522 	int frame_len;
1523 
1524 	/* allocate test skb */
1525 	skb = alloc_skb(64, GFP_KERNEL);
1526 	if (!skb)
1527 		return NULL;
1528 
1529 	skb_put(skb, 64);
1530 	skb->dev = ndev;
1531 	memset(skb->data, 0xFF, skb->len);
1532 
1533 	/* must be tcp/ip package */
1534 	ethhdr = (struct ethhdr *)skb->data;
1535 	ethhdr->h_proto = htons(ETH_P_IP);
1536 
1537 	frame_len = skb->len & (~1ul);
1538 	memset(&skb->data[frame_len / 2], 0xAA,
1539 	       frame_len / 2 - 1);
1540 
1541 	skb->queue_mapping = HNS_LB_TX_RING;
1542 
1543 	return skb;
1544 }
1545 
1546 static int hns_enable_serdes_lb(struct net_device *ndev)
1547 {
1548 	struct hns_nic_priv *priv = netdev_priv(ndev);
1549 	struct hnae_handle *h = priv->ae_handle;
1550 	struct hnae_ae_ops *ops = h->dev->ops;
1551 	int speed, duplex;
1552 	int ret;
1553 
1554 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1555 	if (ret)
1556 		return ret;
1557 
1558 	ret = ops->start ? ops->start(h) : 0;
1559 	if (ret)
1560 		return ret;
1561 
1562 	/* link adjust duplex*/
1563 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1564 		speed = 1000;
1565 	else
1566 		speed = 10000;
1567 	duplex = 1;
1568 
1569 	ops->adjust_link(h, speed, duplex);
1570 
1571 	/* wait h/w ready */
1572 	mdelay(300);
1573 
1574 	return 0;
1575 }
1576 
1577 static void hns_disable_serdes_lb(struct net_device *ndev)
1578 {
1579 	struct hns_nic_priv *priv = netdev_priv(ndev);
1580 	struct hnae_handle *h = priv->ae_handle;
1581 	struct hnae_ae_ops *ops = h->dev->ops;
1582 
1583 	ops->stop(h);
1584 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1585 }
1586 
1587 /**
1588  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1589  *function as follows:
1590  *    1. if one rx ring has found the page_offset is not equal 0 between head
1591  *       and tail, it means that the chip fetched the wrong descs for the ring
1592  *       which buffer size is 4096.
1593  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1594  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1595  *       recieving all packages and it will fetch new descriptions.
1596  *    4. recover to the original state.
1597  *
1598  *@ndev: net device
1599  */
1600 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1601 {
1602 	struct hns_nic_priv *priv = netdev_priv(ndev);
1603 	struct hnae_handle *h = priv->ae_handle;
1604 	struct hnae_ae_ops *ops = h->dev->ops;
1605 	struct hns_nic_ring_data *rd;
1606 	struct hnae_ring *ring;
1607 	struct sk_buff *skb;
1608 	u32 *org_indir;
1609 	u32 *cur_indir;
1610 	int indir_size;
1611 	int head, tail;
1612 	int fetch_num;
1613 	int i, j;
1614 	bool found;
1615 	int retry_times;
1616 	int ret = 0;
1617 
1618 	/* alloc indir memory */
1619 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1620 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1621 	if (!org_indir)
1622 		return -ENOMEM;
1623 
1624 	/* store the orginal indirection */
1625 	ops->get_rss(h, org_indir, NULL, NULL);
1626 
1627 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1628 	if (!cur_indir) {
1629 		ret = -ENOMEM;
1630 		goto cur_indir_alloc_err;
1631 	}
1632 
1633 	/* set loopback */
1634 	if (hns_enable_serdes_lb(ndev)) {
1635 		ret = -EINVAL;
1636 		goto enable_serdes_lb_err;
1637 	}
1638 
1639 	/* foreach every rx ring to clear fetch desc */
1640 	for (i = 0; i < h->q_num; i++) {
1641 		ring = &h->qs[i]->rx_ring;
1642 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1643 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1644 		found = false;
1645 		fetch_num = ring_dist(ring, head, tail);
1646 
1647 		while (head != tail) {
1648 			if (ring->desc_cb[head].page_offset != 0) {
1649 				found = true;
1650 				break;
1651 			}
1652 
1653 			head++;
1654 			if (head == ring->desc_num)
1655 				head = 0;
1656 		}
1657 
1658 		if (found) {
1659 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1660 				cur_indir[j] = i;
1661 			ops->set_rss(h, cur_indir, NULL, 0);
1662 
1663 			for (j = 0; j < fetch_num; j++) {
1664 				/* alloc one skb and init */
1665 				skb = hns_assemble_skb(ndev);
1666 				if (!skb)
1667 					goto out;
1668 				rd = &tx_ring_data(priv, skb->queue_mapping);
1669 				hns_nic_net_xmit_hw(ndev, skb, rd);
1670 
1671 				retry_times = 0;
1672 				while (retry_times++ < 10) {
1673 					mdelay(10);
1674 					/* clean rx */
1675 					rd = &rx_ring_data(priv, i);
1676 					if (rd->poll_one(rd, fetch_num,
1677 							 hns_nic_drop_rx_fetch))
1678 						break;
1679 				}
1680 
1681 				retry_times = 0;
1682 				while (retry_times++ < 10) {
1683 					mdelay(10);
1684 					/* clean tx ring 0 send package */
1685 					rd = &tx_ring_data(priv,
1686 							   HNS_LB_TX_RING);
1687 					if (rd->poll_one(rd, fetch_num, NULL))
1688 						break;
1689 				}
1690 			}
1691 		}
1692 	}
1693 
1694 out:
1695 	/* restore everything */
1696 	ops->set_rss(h, org_indir, NULL, 0);
1697 	hns_disable_serdes_lb(ndev);
1698 enable_serdes_lb_err:
1699 	kfree(cur_indir);
1700 cur_indir_alloc_err:
1701 	kfree(org_indir);
1702 
1703 	return ret;
1704 }
1705 
1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1707 {
1708 	struct hns_nic_priv *priv = netdev_priv(ndev);
1709 	struct hnae_handle *h = priv->ae_handle;
1710 	bool if_running = netif_running(ndev);
1711 	int ret;
1712 
1713 	/* MTU < 68 is an error and causes problems on some kernels */
1714 	if (new_mtu < 68)
1715 		return -EINVAL;
1716 
1717 	/* MTU no change */
1718 	if (new_mtu == ndev->mtu)
1719 		return 0;
1720 
1721 	if (!h->dev->ops->set_mtu)
1722 		return -ENOTSUPP;
1723 
1724 	if (if_running) {
1725 		(void)hns_nic_net_stop(ndev);
1726 		msleep(100);
1727 	}
1728 
1729 	if (priv->enet_ver != AE_VERSION_1 &&
1730 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1731 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1732 		/* update desc */
1733 		hnae_reinit_all_ring_desc(h);
1734 
1735 		/* clear the package which the chip has fetched */
1736 		ret = hns_nic_clear_all_rx_fetch(ndev);
1737 
1738 		/* the page offset must be consist with desc */
1739 		hnae_reinit_all_ring_page_off(h);
1740 
1741 		if (ret) {
1742 			netdev_err(ndev, "clear the fetched desc fail\n");
1743 			goto out;
1744 		}
1745 	}
1746 
1747 	ret = h->dev->ops->set_mtu(h, new_mtu);
1748 	if (ret) {
1749 		netdev_err(ndev, "set mtu fail, return value %d\n",
1750 			   ret);
1751 		goto out;
1752 	}
1753 
1754 	/* finally, set new mtu to netdevice */
1755 	ndev->mtu = new_mtu;
1756 
1757 out:
1758 	if (if_running) {
1759 		if (hns_nic_net_open(ndev)) {
1760 			netdev_err(ndev, "hns net open fail\n");
1761 			ret = -EINVAL;
1762 		}
1763 	}
1764 
1765 	return ret;
1766 }
1767 
1768 static int hns_nic_set_features(struct net_device *netdev,
1769 				netdev_features_t features)
1770 {
1771 	struct hns_nic_priv *priv = netdev_priv(netdev);
1772 
1773 	switch (priv->enet_ver) {
1774 	case AE_VERSION_1:
1775 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1776 			netdev_info(netdev, "enet v1 do not support tso!\n");
1777 		break;
1778 	default:
1779 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1780 			priv->ops.fill_desc = fill_tso_desc;
1781 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1782 			/* The chip only support 7*4096 */
1783 			netif_set_gso_max_size(netdev, 7 * 4096);
1784 		} else {
1785 			priv->ops.fill_desc = fill_v2_desc;
1786 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1787 		}
1788 		break;
1789 	}
1790 	netdev->features = features;
1791 	return 0;
1792 }
1793 
1794 static netdev_features_t hns_nic_fix_features(
1795 		struct net_device *netdev, netdev_features_t features)
1796 {
1797 	struct hns_nic_priv *priv = netdev_priv(netdev);
1798 
1799 	switch (priv->enet_ver) {
1800 	case AE_VERSION_1:
1801 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1802 				NETIF_F_HW_VLAN_CTAG_FILTER);
1803 		break;
1804 	default:
1805 		break;
1806 	}
1807 	return features;
1808 }
1809 
1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1811 {
1812 	struct hns_nic_priv *priv = netdev_priv(netdev);
1813 	struct hnae_handle *h = priv->ae_handle;
1814 
1815 	if (h->dev->ops->add_uc_addr)
1816 		return h->dev->ops->add_uc_addr(h, addr);
1817 
1818 	return 0;
1819 }
1820 
1821 static int hns_nic_uc_unsync(struct net_device *netdev,
1822 			     const unsigned char *addr)
1823 {
1824 	struct hns_nic_priv *priv = netdev_priv(netdev);
1825 	struct hnae_handle *h = priv->ae_handle;
1826 
1827 	if (h->dev->ops->rm_uc_addr)
1828 		return h->dev->ops->rm_uc_addr(h, addr);
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * hns_set_multicast_list - set mutl mac address
1835  * @ndev: net device
1836  *
1837  * return void
1838  */
1839 static void hns_set_multicast_list(struct net_device *ndev)
1840 {
1841 	struct hns_nic_priv *priv = netdev_priv(ndev);
1842 	struct hnae_handle *h = priv->ae_handle;
1843 	struct netdev_hw_addr *ha = NULL;
1844 
1845 	if (!h)	{
1846 		netdev_err(ndev, "hnae handle is null\n");
1847 		return;
1848 	}
1849 
1850 	if (h->dev->ops->clr_mc_addr)
1851 		if (h->dev->ops->clr_mc_addr(h))
1852 			netdev_err(ndev, "clear multicast address fail\n");
1853 
1854 	if (h->dev->ops->set_mc_addr) {
1855 		netdev_for_each_mc_addr(ha, ndev)
1856 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1857 				netdev_err(ndev, "set multicast fail\n");
1858 	}
1859 }
1860 
1861 static void hns_nic_set_rx_mode(struct net_device *ndev)
1862 {
1863 	struct hns_nic_priv *priv = netdev_priv(ndev);
1864 	struct hnae_handle *h = priv->ae_handle;
1865 
1866 	if (h->dev->ops->set_promisc_mode) {
1867 		if (ndev->flags & IFF_PROMISC)
1868 			h->dev->ops->set_promisc_mode(h, 1);
1869 		else
1870 			h->dev->ops->set_promisc_mode(h, 0);
1871 	}
1872 
1873 	hns_set_multicast_list(ndev);
1874 
1875 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1876 		netdev_err(ndev, "sync uc address fail\n");
1877 }
1878 
1879 static void hns_nic_get_stats64(struct net_device *ndev,
1880 				struct rtnl_link_stats64 *stats)
1881 {
1882 	int idx = 0;
1883 	u64 tx_bytes = 0;
1884 	u64 rx_bytes = 0;
1885 	u64 tx_pkts = 0;
1886 	u64 rx_pkts = 0;
1887 	struct hns_nic_priv *priv = netdev_priv(ndev);
1888 	struct hnae_handle *h = priv->ae_handle;
1889 
1890 	for (idx = 0; idx < h->q_num; idx++) {
1891 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1892 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1893 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1894 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1895 	}
1896 
1897 	stats->tx_bytes = tx_bytes;
1898 	stats->tx_packets = tx_pkts;
1899 	stats->rx_bytes = rx_bytes;
1900 	stats->rx_packets = rx_pkts;
1901 
1902 	stats->rx_errors = ndev->stats.rx_errors;
1903 	stats->multicast = ndev->stats.multicast;
1904 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1905 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1906 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1907 
1908 	stats->tx_errors = ndev->stats.tx_errors;
1909 	stats->rx_dropped = ndev->stats.rx_dropped;
1910 	stats->tx_dropped = ndev->stats.tx_dropped;
1911 	stats->collisions = ndev->stats.collisions;
1912 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1913 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1914 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1915 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1916 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1917 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1918 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1919 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1920 	stats->rx_compressed = ndev->stats.rx_compressed;
1921 	stats->tx_compressed = ndev->stats.tx_compressed;
1922 }
1923 
1924 static u16
1925 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1926 		     struct net_device *sb_dev)
1927 {
1928 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929 	struct hns_nic_priv *priv = netdev_priv(ndev);
1930 
1931 	/* fix hardware broadcast/multicast packets queue loopback */
1932 	if (!AE_IS_VER1(priv->enet_ver) &&
1933 	    is_multicast_ether_addr(eth_hdr->h_dest))
1934 		return 0;
1935 	else
1936 		return netdev_pick_tx(ndev, skb, NULL);
1937 }
1938 
1939 static const struct net_device_ops hns_nic_netdev_ops = {
1940 	.ndo_open = hns_nic_net_open,
1941 	.ndo_stop = hns_nic_net_stop,
1942 	.ndo_start_xmit = hns_nic_net_xmit,
1943 	.ndo_tx_timeout = hns_nic_net_timeout,
1944 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1945 	.ndo_change_mtu = hns_nic_change_mtu,
1946 	.ndo_do_ioctl = phy_do_ioctl_running,
1947 	.ndo_set_features = hns_nic_set_features,
1948 	.ndo_fix_features = hns_nic_fix_features,
1949 	.ndo_get_stats64 = hns_nic_get_stats64,
1950 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1951 	.ndo_select_queue = hns_nic_select_queue,
1952 };
1953 
1954 static void hns_nic_update_link_status(struct net_device *netdev)
1955 {
1956 	struct hns_nic_priv *priv = netdev_priv(netdev);
1957 
1958 	struct hnae_handle *h = priv->ae_handle;
1959 
1960 	if (h->phy_dev) {
1961 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1962 			return;
1963 
1964 		(void)genphy_read_status(h->phy_dev);
1965 	}
1966 	hns_nic_adjust_link(netdev);
1967 }
1968 
1969 /* for dumping key regs*/
1970 static void hns_nic_dump(struct hns_nic_priv *priv)
1971 {
1972 	struct hnae_handle *h = priv->ae_handle;
1973 	struct hnae_ae_ops *ops = h->dev->ops;
1974 	u32 *data, reg_num, i;
1975 
1976 	if (ops->get_regs_len && ops->get_regs) {
1977 		reg_num = ops->get_regs_len(priv->ae_handle);
1978 		reg_num = (reg_num + 3ul) & ~3ul;
1979 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1980 		if (data) {
1981 			ops->get_regs(priv->ae_handle, data);
1982 			for (i = 0; i < reg_num; i += 4)
1983 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984 					i, data[i], data[i + 1],
1985 					data[i + 2], data[i + 3]);
1986 			kfree(data);
1987 		}
1988 	}
1989 
1990 	for (i = 0; i < h->q_num; i++) {
1991 		pr_info("tx_queue%d_next_to_clean:%d\n",
1992 			i, h->qs[i]->tx_ring.next_to_clean);
1993 		pr_info("tx_queue%d_next_to_use:%d\n",
1994 			i, h->qs[i]->tx_ring.next_to_use);
1995 		pr_info("rx_queue%d_next_to_clean:%d\n",
1996 			i, h->qs[i]->rx_ring.next_to_clean);
1997 		pr_info("rx_queue%d_next_to_use:%d\n",
1998 			i, h->qs[i]->rx_ring.next_to_use);
1999 	}
2000 }
2001 
2002 /* for resetting subtask */
2003 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2004 {
2005 	enum hnae_port_type type = priv->ae_handle->port_type;
2006 
2007 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2008 		return;
2009 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2010 
2011 	/* If we're already down, removing or resetting, just bail */
2012 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2013 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2014 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2015 		return;
2016 
2017 	hns_nic_dump(priv);
2018 	netdev_info(priv->netdev, "try to reset %s port!\n",
2019 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2020 
2021 	rtnl_lock();
2022 	/* put off any impending NetWatchDogTimeout */
2023 	netif_trans_update(priv->netdev);
2024 	hns_nic_net_reinit(priv->netdev);
2025 
2026 	rtnl_unlock();
2027 }
2028 
2029 /* for doing service complete*/
2030 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2031 {
2032 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2033 	/* make sure to commit the things */
2034 	smp_mb__before_atomic();
2035 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2036 }
2037 
2038 static void hns_nic_service_task(struct work_struct *work)
2039 {
2040 	struct hns_nic_priv *priv
2041 		= container_of(work, struct hns_nic_priv, service_task);
2042 	struct hnae_handle *h = priv->ae_handle;
2043 
2044 	hns_nic_reset_subtask(priv);
2045 	hns_nic_update_link_status(priv->netdev);
2046 	h->dev->ops->update_led_status(h);
2047 	hns_nic_update_stats(priv->netdev);
2048 
2049 	hns_nic_service_event_complete(priv);
2050 }
2051 
2052 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2053 {
2054 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2055 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2056 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2057 		(void)schedule_work(&priv->service_task);
2058 }
2059 
2060 static void hns_nic_service_timer(struct timer_list *t)
2061 {
2062 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2063 
2064 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2065 
2066 	hns_nic_task_schedule(priv);
2067 }
2068 
2069 /**
2070  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2071  * @priv: driver private struct
2072  **/
2073 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2074 {
2075 	/* Do the reset outside of interrupt context */
2076 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2077 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2078 		netdev_warn(priv->netdev,
2079 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2080 			    priv->tx_timeout_count, priv->state);
2081 		priv->tx_timeout_count++;
2082 		hns_nic_task_schedule(priv);
2083 	}
2084 }
2085 
2086 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2087 {
2088 	struct hnae_handle *h = priv->ae_handle;
2089 	struct hns_nic_ring_data *rd;
2090 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2091 	int i;
2092 
2093 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2094 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2095 		return -EINVAL;
2096 	}
2097 
2098 	priv->ring_data = kzalloc(array3_size(h->q_num,
2099 					      sizeof(*priv->ring_data), 2),
2100 				  GFP_KERNEL);
2101 	if (!priv->ring_data)
2102 		return -ENOMEM;
2103 
2104 	for (i = 0; i < h->q_num; i++) {
2105 		rd = &priv->ring_data[i];
2106 		rd->queue_index = i;
2107 		rd->ring = &h->qs[i]->tx_ring;
2108 		rd->poll_one = hns_nic_tx_poll_one;
2109 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2110 			hns_nic_tx_fini_pro_v2;
2111 
2112 		netif_napi_add(priv->netdev, &rd->napi,
2113 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2114 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2115 	}
2116 	for (i = h->q_num; i < h->q_num * 2; i++) {
2117 		rd = &priv->ring_data[i];
2118 		rd->queue_index = i - h->q_num;
2119 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2120 		rd->poll_one = hns_nic_rx_poll_one;
2121 		rd->ex_process = hns_nic_rx_up_pro;
2122 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2123 			hns_nic_rx_fini_pro_v2;
2124 
2125 		netif_napi_add(priv->netdev, &rd->napi,
2126 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2127 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2134 {
2135 	struct hnae_handle *h = priv->ae_handle;
2136 	int i;
2137 
2138 	for (i = 0; i < h->q_num * 2; i++) {
2139 		netif_napi_del(&priv->ring_data[i].napi);
2140 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2141 			(void)irq_set_affinity_hint(
2142 				priv->ring_data[i].ring->irq,
2143 				NULL);
2144 			free_irq(priv->ring_data[i].ring->irq,
2145 				 &priv->ring_data[i]);
2146 		}
2147 
2148 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2149 	}
2150 	kfree(priv->ring_data);
2151 }
2152 
2153 static void hns_nic_set_priv_ops(struct net_device *netdev)
2154 {
2155 	struct hns_nic_priv *priv = netdev_priv(netdev);
2156 	struct hnae_handle *h = priv->ae_handle;
2157 
2158 	if (AE_IS_VER1(priv->enet_ver)) {
2159 		priv->ops.fill_desc = fill_desc;
2160 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2161 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2162 	} else {
2163 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2164 		if ((netdev->features & NETIF_F_TSO) ||
2165 		    (netdev->features & NETIF_F_TSO6)) {
2166 			priv->ops.fill_desc = fill_tso_desc;
2167 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2168 			/* This chip only support 7*4096 */
2169 			netif_set_gso_max_size(netdev, 7 * 4096);
2170 		} else {
2171 			priv->ops.fill_desc = fill_v2_desc;
2172 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2173 		}
2174 		/* enable tso when init
2175 		 * control tso on/off through TSE bit in bd
2176 		 */
2177 		h->dev->ops->set_tso_stats(h, 1);
2178 	}
2179 }
2180 
2181 static int hns_nic_try_get_ae(struct net_device *ndev)
2182 {
2183 	struct hns_nic_priv *priv = netdev_priv(ndev);
2184 	struct hnae_handle *h;
2185 	int ret;
2186 
2187 	h = hnae_get_handle(&priv->netdev->dev,
2188 			    priv->fwnode, priv->port_id, NULL);
2189 	if (IS_ERR_OR_NULL(h)) {
2190 		ret = -ENODEV;
2191 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2192 		goto out;
2193 	}
2194 	priv->ae_handle = h;
2195 
2196 	ret = hns_nic_init_phy(ndev, h);
2197 	if (ret) {
2198 		dev_err(priv->dev, "probe phy device fail!\n");
2199 		goto out_init_phy;
2200 	}
2201 
2202 	ret = hns_nic_init_ring_data(priv);
2203 	if (ret) {
2204 		ret = -ENOMEM;
2205 		goto out_init_ring_data;
2206 	}
2207 
2208 	hns_nic_set_priv_ops(ndev);
2209 
2210 	ret = register_netdev(ndev);
2211 	if (ret) {
2212 		dev_err(priv->dev, "probe register netdev fail!\n");
2213 		goto out_reg_ndev_fail;
2214 	}
2215 	return 0;
2216 
2217 out_reg_ndev_fail:
2218 	hns_nic_uninit_ring_data(priv);
2219 	priv->ring_data = NULL;
2220 out_init_phy:
2221 out_init_ring_data:
2222 	hnae_put_handle(priv->ae_handle);
2223 	priv->ae_handle = NULL;
2224 out:
2225 	return ret;
2226 }
2227 
2228 static int hns_nic_notifier_action(struct notifier_block *nb,
2229 				   unsigned long action, void *data)
2230 {
2231 	struct hns_nic_priv *priv =
2232 		container_of(nb, struct hns_nic_priv, notifier_block);
2233 
2234 	assert(action == HNAE_AE_REGISTER);
2235 
2236 	if (!hns_nic_try_get_ae(priv->netdev)) {
2237 		hnae_unregister_notifier(&priv->notifier_block);
2238 		priv->notifier_block.notifier_call = NULL;
2239 	}
2240 	return 0;
2241 }
2242 
2243 static int hns_nic_dev_probe(struct platform_device *pdev)
2244 {
2245 	struct device *dev = &pdev->dev;
2246 	struct net_device *ndev;
2247 	struct hns_nic_priv *priv;
2248 	u32 port_id;
2249 	int ret;
2250 
2251 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2252 	if (!ndev)
2253 		return -ENOMEM;
2254 
2255 	platform_set_drvdata(pdev, ndev);
2256 
2257 	priv = netdev_priv(ndev);
2258 	priv->dev = dev;
2259 	priv->netdev = ndev;
2260 
2261 	if (dev_of_node(dev)) {
2262 		struct device_node *ae_node;
2263 
2264 		if (of_device_is_compatible(dev->of_node,
2265 					    "hisilicon,hns-nic-v1"))
2266 			priv->enet_ver = AE_VERSION_1;
2267 		else
2268 			priv->enet_ver = AE_VERSION_2;
2269 
2270 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2271 		if (!ae_node) {
2272 			ret = -ENODEV;
2273 			dev_err(dev, "not find ae-handle\n");
2274 			goto out_read_prop_fail;
2275 		}
2276 		priv->fwnode = &ae_node->fwnode;
2277 	} else if (is_acpi_node(dev->fwnode)) {
2278 		struct fwnode_reference_args args;
2279 
2280 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2281 			priv->enet_ver = AE_VERSION_1;
2282 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2283 			priv->enet_ver = AE_VERSION_2;
2284 		else {
2285 			ret = -ENXIO;
2286 			goto out_read_prop_fail;
2287 		}
2288 
2289 		/* try to find port-idx-in-ae first */
2290 		ret = acpi_node_get_property_reference(dev->fwnode,
2291 						       "ae-handle", 0, &args);
2292 		if (ret) {
2293 			dev_err(dev, "not find ae-handle\n");
2294 			goto out_read_prop_fail;
2295 		}
2296 		if (!is_acpi_device_node(args.fwnode)) {
2297 			ret = -EINVAL;
2298 			goto out_read_prop_fail;
2299 		}
2300 		priv->fwnode = args.fwnode;
2301 	} else {
2302 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2303 		ret = -ENXIO;
2304 		goto out_read_prop_fail;
2305 	}
2306 
2307 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2308 	if (ret) {
2309 		/* only for old code compatible */
2310 		ret = device_property_read_u32(dev, "port-id", &port_id);
2311 		if (ret)
2312 			goto out_read_prop_fail;
2313 		/* for old dts, we need to caculate the port offset */
2314 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2315 			: port_id - HNS_SRV_OFFSET;
2316 	}
2317 	priv->port_id = port_id;
2318 
2319 	hns_init_mac_addr(ndev);
2320 
2321 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2322 	ndev->priv_flags |= IFF_UNICAST_FLT;
2323 	ndev->netdev_ops = &hns_nic_netdev_ops;
2324 	hns_ethtool_set_ops(ndev);
2325 
2326 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2327 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2328 		NETIF_F_GRO;
2329 	ndev->vlan_features |=
2330 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2331 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2332 
2333 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2334 	ndev->min_mtu = MAC_MIN_MTU;
2335 	switch (priv->enet_ver) {
2336 	case AE_VERSION_2:
2337 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2338 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2339 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2340 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2341 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2342 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2343 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2344 		break;
2345 	default:
2346 		ndev->max_mtu = MAC_MAX_MTU -
2347 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2348 		break;
2349 	}
2350 
2351 	SET_NETDEV_DEV(ndev, dev);
2352 
2353 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2354 		dev_dbg(dev, "set mask to 64bit\n");
2355 	else
2356 		dev_err(dev, "set mask to 64bit fail!\n");
2357 
2358 	/* carrier off reporting is important to ethtool even BEFORE open */
2359 	netif_carrier_off(ndev);
2360 
2361 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2362 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2363 
2364 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2365 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2366 	set_bit(NIC_STATE_DOWN, &priv->state);
2367 
2368 	if (hns_nic_try_get_ae(priv->netdev)) {
2369 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2370 		ret = hnae_register_notifier(&priv->notifier_block);
2371 		if (ret) {
2372 			dev_err(dev, "register notifier fail!\n");
2373 			goto out_notify_fail;
2374 		}
2375 		dev_dbg(dev, "has not handle, register notifier!\n");
2376 	}
2377 
2378 	return 0;
2379 
2380 out_notify_fail:
2381 	(void)cancel_work_sync(&priv->service_task);
2382 out_read_prop_fail:
2383 	/* safe for ACPI FW */
2384 	of_node_put(to_of_node(priv->fwnode));
2385 	free_netdev(ndev);
2386 	return ret;
2387 }
2388 
2389 static int hns_nic_dev_remove(struct platform_device *pdev)
2390 {
2391 	struct net_device *ndev = platform_get_drvdata(pdev);
2392 	struct hns_nic_priv *priv = netdev_priv(ndev);
2393 
2394 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2395 		unregister_netdev(ndev);
2396 
2397 	if (priv->ring_data)
2398 		hns_nic_uninit_ring_data(priv);
2399 	priv->ring_data = NULL;
2400 
2401 	if (ndev->phydev)
2402 		phy_disconnect(ndev->phydev);
2403 
2404 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2405 		hnae_put_handle(priv->ae_handle);
2406 	priv->ae_handle = NULL;
2407 	if (priv->notifier_block.notifier_call)
2408 		hnae_unregister_notifier(&priv->notifier_block);
2409 	priv->notifier_block.notifier_call = NULL;
2410 
2411 	set_bit(NIC_STATE_REMOVING, &priv->state);
2412 	(void)cancel_work_sync(&priv->service_task);
2413 
2414 	/* safe for ACPI FW */
2415 	of_node_put(to_of_node(priv->fwnode));
2416 
2417 	free_netdev(ndev);
2418 	return 0;
2419 }
2420 
2421 static const struct of_device_id hns_enet_of_match[] = {
2422 	{.compatible = "hisilicon,hns-nic-v1",},
2423 	{.compatible = "hisilicon,hns-nic-v2",},
2424 	{},
2425 };
2426 
2427 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2428 
2429 static struct platform_driver hns_nic_dev_driver = {
2430 	.driver = {
2431 		.name = "hns-nic",
2432 		.of_match_table = hns_enet_of_match,
2433 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2434 	},
2435 	.probe = hns_nic_dev_probe,
2436 	.remove = hns_nic_dev_remove,
2437 };
2438 
2439 module_platform_driver(hns_nic_dev_driver);
2440 
2441 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2442 MODULE_AUTHOR("Hisilicon, Inc.");
2443 MODULE_LICENSE("GPL");
2444 MODULE_ALIAS("platform:hns-nic");
2445