xref: /linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28 
29 #define SERVICE_TIMER_HZ (1 * HZ)
30 
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33 
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37 
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41 
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 			 int size, dma_addr_t dma, int frag_end,
44 			 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 	struct iphdr *iphdr;
49 	struct ipv6hdr *ipv6hdr;
50 	struct sk_buff *skb;
51 	__be16 protocol;
52 	u8 bn_pid = 0;
53 	u8 rrcfv = 0;
54 	u8 ip_offset = 0;
55 	u8 tvsvsn = 0;
56 	u16 mss = 0;
57 	u8 l4_len = 0;
58 	u16 paylen = 0;
59 
60 	desc_cb->priv = priv;
61 	desc_cb->length = size;
62 	desc_cb->dma = dma;
63 	desc_cb->type = type;
64 
65 	desc->addr = cpu_to_le64(dma);
66 	desc->tx.send_size = cpu_to_le16((u16)size);
67 
68 	/* config bd buffer end */
69 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71 
72 	/* fill port_id in the tx bd for sending management pkts */
73 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75 
76 	if (type == DESC_TYPE_SKB) {
77 		skb = (struct sk_buff *)priv;
78 
79 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
80 			skb_reset_mac_len(skb);
81 			protocol = skb->protocol;
82 			ip_offset = ETH_HLEN;
83 
84 			if (protocol == htons(ETH_P_8021Q)) {
85 				ip_offset += VLAN_HLEN;
86 				protocol = vlan_get_protocol(skb);
87 				skb->protocol = protocol;
88 			}
89 
90 			if (skb->protocol == htons(ETH_P_IP)) {
91 				iphdr = ip_hdr(skb);
92 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94 
95 				/* check for tcp/udp header */
96 				if (iphdr->protocol == IPPROTO_TCP &&
97 				    skb_is_gso(skb)) {
98 					hnae_set_bit(tvsvsn,
99 						     HNSV2_TXD_TSE_B, 1);
100 					l4_len = tcp_hdrlen(skb);
101 					mss = skb_shinfo(skb)->gso_size;
102 					paylen = skb->len - SKB_TMP_LEN(skb);
103 				}
104 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
105 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106 				ipv6hdr = ipv6_hdr(skb);
107 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108 
109 				/* check for tcp/udp header */
110 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112 					hnae_set_bit(tvsvsn,
113 						     HNSV2_TXD_TSE_B, 1);
114 					l4_len = tcp_hdrlen(skb);
115 					mss = skb_shinfo(skb)->gso_size;
116 					paylen = skb->len - SKB_TMP_LEN(skb);
117 				}
118 			}
119 			desc->tx.ip_offset = ip_offset;
120 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121 			desc->tx.mss = cpu_to_le16(mss);
122 			desc->tx.l4_len = l4_len;
123 			desc->tx.paylen = cpu_to_le16(paylen);
124 		}
125 	}
126 
127 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128 
129 	desc->tx.bn_pid = bn_pid;
130 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
131 
132 	ring_ptr_move_fw(ring, next_to_use);
133 }
134 
135 static void fill_desc(struct hnae_ring *ring, void *priv,
136 		      int size, dma_addr_t dma, int frag_end,
137 		      int buf_num, enum hns_desc_type type, int mtu)
138 {
139 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
140 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
141 	struct sk_buff *skb;
142 	__be16 protocol;
143 	u32 ip_offset;
144 	u32 asid_bufnum_pid = 0;
145 	u32 flag_ipoffset = 0;
146 
147 	desc_cb->priv = priv;
148 	desc_cb->length = size;
149 	desc_cb->dma = dma;
150 	desc_cb->type = type;
151 
152 	desc->addr = cpu_to_le64(dma);
153 	desc->tx.send_size = cpu_to_le16((u16)size);
154 
155 	/*config bd buffer end */
156 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
157 
158 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
159 
160 	if (type == DESC_TYPE_SKB) {
161 		skb = (struct sk_buff *)priv;
162 
163 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
164 			protocol = skb->protocol;
165 			ip_offset = ETH_HLEN;
166 
167 			/*if it is a SW VLAN check the next protocol*/
168 			if (protocol == htons(ETH_P_8021Q)) {
169 				ip_offset += VLAN_HLEN;
170 				protocol = vlan_get_protocol(skb);
171 				skb->protocol = protocol;
172 			}
173 
174 			if (skb->protocol == htons(ETH_P_IP)) {
175 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
176 				/* check for tcp/udp header */
177 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
178 
179 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
180 				/* ipv6 has not l3 cs, check for L4 header */
181 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
182 			}
183 
184 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
185 		}
186 	}
187 
188 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
189 
190 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
191 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
192 
193 	ring_ptr_move_fw(ring, next_to_use);
194 }
195 
196 static void unfill_desc(struct hnae_ring *ring)
197 {
198 	ring_ptr_move_bw(ring, next_to_use);
199 }
200 
201 static int hns_nic_maybe_stop_tx(
202 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
203 {
204 	struct sk_buff *skb = *out_skb;
205 	struct sk_buff *new_skb = NULL;
206 	int buf_num;
207 
208 	/* no. of segments (plus a header) */
209 	buf_num = skb_shinfo(skb)->nr_frags + 1;
210 
211 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
212 		if (ring_space(ring) < 1)
213 			return -EBUSY;
214 
215 		new_skb = skb_copy(skb, GFP_ATOMIC);
216 		if (!new_skb)
217 			return -ENOMEM;
218 
219 		dev_kfree_skb_any(skb);
220 		*out_skb = new_skb;
221 		buf_num = 1;
222 	} else if (buf_num > ring_space(ring)) {
223 		return -EBUSY;
224 	}
225 
226 	*bnum = buf_num;
227 	return 0;
228 }
229 
230 static int hns_nic_maybe_stop_tso(
231 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
232 {
233 	int i;
234 	int size;
235 	int buf_num;
236 	int frag_num;
237 	struct sk_buff *skb = *out_skb;
238 	struct sk_buff *new_skb = NULL;
239 	struct skb_frag_struct *frag;
240 
241 	size = skb_headlen(skb);
242 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
243 
244 	frag_num = skb_shinfo(skb)->nr_frags;
245 	for (i = 0; i < frag_num; i++) {
246 		frag = &skb_shinfo(skb)->frags[i];
247 		size = skb_frag_size(frag);
248 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
249 	}
250 
251 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
252 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253 		if (ring_space(ring) < buf_num)
254 			return -EBUSY;
255 		/* manual split the send packet */
256 		new_skb = skb_copy(skb, GFP_ATOMIC);
257 		if (!new_skb)
258 			return -ENOMEM;
259 		dev_kfree_skb_any(skb);
260 		*out_skb = new_skb;
261 
262 	} else if (ring_space(ring) < buf_num) {
263 		return -EBUSY;
264 	}
265 
266 	*bnum = buf_num;
267 	return 0;
268 }
269 
270 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
271 			  int size, dma_addr_t dma, int frag_end,
272 			  int buf_num, enum hns_desc_type type, int mtu)
273 {
274 	int frag_buf_num;
275 	int sizeoflast;
276 	int k;
277 
278 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
279 	sizeoflast = size % BD_MAX_SEND_SIZE;
280 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
281 
282 	/* when the frag size is bigger than hardware, split this frag */
283 	for (k = 0; k < frag_buf_num; k++)
284 		fill_v2_desc(ring, priv,
285 			     (k == frag_buf_num - 1) ?
286 					sizeoflast : BD_MAX_SEND_SIZE,
287 			     dma + BD_MAX_SEND_SIZE * k,
288 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
289 			     buf_num,
290 			     (type == DESC_TYPE_SKB && !k) ?
291 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
292 			     mtu);
293 }
294 
295 int hns_nic_net_xmit_hw(struct net_device *ndev,
296 			struct sk_buff *skb,
297 			struct hns_nic_ring_data *ring_data)
298 {
299 	struct hns_nic_priv *priv = netdev_priv(ndev);
300 	struct device *dev = priv->dev;
301 	struct hnae_ring *ring = ring_data->ring;
302 	struct netdev_queue *dev_queue;
303 	struct skb_frag_struct *frag;
304 	int buf_num;
305 	int seg_num;
306 	dma_addr_t dma;
307 	int size, next_to_use;
308 	int i;
309 
310 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
311 	case -EBUSY:
312 		ring->stats.tx_busy++;
313 		goto out_net_tx_busy;
314 	case -ENOMEM:
315 		ring->stats.sw_err_cnt++;
316 		netdev_err(ndev, "no memory to xmit!\n");
317 		goto out_err_tx_ok;
318 	default:
319 		break;
320 	}
321 
322 	/* no. of segments (plus a header) */
323 	seg_num = skb_shinfo(skb)->nr_frags + 1;
324 	next_to_use = ring->next_to_use;
325 
326 	/* fill the first part */
327 	size = skb_headlen(skb);
328 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
329 	if (dma_mapping_error(dev, dma)) {
330 		netdev_err(ndev, "TX head DMA map failed\n");
331 		ring->stats.sw_err_cnt++;
332 		goto out_err_tx_ok;
333 	}
334 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
335 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
336 
337 	/* fill the fragments */
338 	for (i = 1; i < seg_num; i++) {
339 		frag = &skb_shinfo(skb)->frags[i - 1];
340 		size = skb_frag_size(frag);
341 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
342 		if (dma_mapping_error(dev, dma)) {
343 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
344 			ring->stats.sw_err_cnt++;
345 			goto out_map_frag_fail;
346 		}
347 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
348 				    seg_num - 1 == i ? 1 : 0, buf_num,
349 				    DESC_TYPE_PAGE, ndev->mtu);
350 	}
351 
352 	/*complete translate all packets*/
353 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
354 	netdev_tx_sent_queue(dev_queue, skb->len);
355 
356 	wmb(); /* commit all data before submit */
357 	assert(skb->queue_mapping < priv->ae_handle->q_num);
358 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
359 	ring->stats.tx_pkts++;
360 	ring->stats.tx_bytes += skb->len;
361 
362 	return NETDEV_TX_OK;
363 
364 out_map_frag_fail:
365 
366 	while (ring->next_to_use != next_to_use) {
367 		unfill_desc(ring);
368 		if (ring->next_to_use != next_to_use)
369 			dma_unmap_page(dev,
370 				       ring->desc_cb[ring->next_to_use].dma,
371 				       ring->desc_cb[ring->next_to_use].length,
372 				       DMA_TO_DEVICE);
373 		else
374 			dma_unmap_single(dev,
375 					 ring->desc_cb[next_to_use].dma,
376 					 ring->desc_cb[next_to_use].length,
377 					 DMA_TO_DEVICE);
378 	}
379 
380 out_err_tx_ok:
381 
382 	dev_kfree_skb_any(skb);
383 	return NETDEV_TX_OK;
384 
385 out_net_tx_busy:
386 
387 	netif_stop_subqueue(ndev, skb->queue_mapping);
388 
389 	/* Herbert's original patch had:
390 	 *  smp_mb__after_netif_stop_queue();
391 	 * but since that doesn't exist yet, just open code it.
392 	 */
393 	smp_mb();
394 	return NETDEV_TX_BUSY;
395 }
396 
397 /**
398  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
399  * @data: pointer to the start of the headers
400  * @max: total length of section to find headers in
401  *
402  * This function is meant to determine the length of headers that will
403  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
404  * motivation of doing this is to only perform one pull for IPv4 TCP
405  * packets so that we can do basic things like calculating the gso_size
406  * based on the average data per packet.
407  **/
408 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
409 					unsigned int max_size)
410 {
411 	unsigned char *network;
412 	u8 hlen;
413 
414 	/* this should never happen, but better safe than sorry */
415 	if (max_size < ETH_HLEN)
416 		return max_size;
417 
418 	/* initialize network frame pointer */
419 	network = data;
420 
421 	/* set first protocol and move network header forward */
422 	network += ETH_HLEN;
423 
424 	/* handle any vlan tag if present */
425 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
426 		== HNS_RX_FLAG_VLAN_PRESENT) {
427 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
428 			return max_size;
429 
430 		network += VLAN_HLEN;
431 	}
432 
433 	/* handle L3 protocols */
434 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
435 		== HNS_RX_FLAG_L3ID_IPV4) {
436 		if ((typeof(max_size))(network - data) >
437 		    (max_size - sizeof(struct iphdr)))
438 			return max_size;
439 
440 		/* access ihl as a u8 to avoid unaligned access on ia64 */
441 		hlen = (network[0] & 0x0F) << 2;
442 
443 		/* verify hlen meets minimum size requirements */
444 		if (hlen < sizeof(struct iphdr))
445 			return network - data;
446 
447 		/* record next protocol if header is present */
448 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
449 		== HNS_RX_FLAG_L3ID_IPV6) {
450 		if ((typeof(max_size))(network - data) >
451 		    (max_size - sizeof(struct ipv6hdr)))
452 			return max_size;
453 
454 		/* record next protocol */
455 		hlen = sizeof(struct ipv6hdr);
456 	} else {
457 		return network - data;
458 	}
459 
460 	/* relocate pointer to start of L4 header */
461 	network += hlen;
462 
463 	/* finally sort out TCP/UDP */
464 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
465 		== HNS_RX_FLAG_L4ID_TCP) {
466 		if ((typeof(max_size))(network - data) >
467 		    (max_size - sizeof(struct tcphdr)))
468 			return max_size;
469 
470 		/* access doff as a u8 to avoid unaligned access on ia64 */
471 		hlen = (network[12] & 0xF0) >> 2;
472 
473 		/* verify hlen meets minimum size requirements */
474 		if (hlen < sizeof(struct tcphdr))
475 			return network - data;
476 
477 		network += hlen;
478 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
479 		== HNS_RX_FLAG_L4ID_UDP) {
480 		if ((typeof(max_size))(network - data) >
481 		    (max_size - sizeof(struct udphdr)))
482 			return max_size;
483 
484 		network += sizeof(struct udphdr);
485 	}
486 
487 	/* If everything has gone correctly network should be the
488 	 * data section of the packet and will be the end of the header.
489 	 * If not then it probably represents the end of the last recognized
490 	 * header.
491 	 */
492 	if ((typeof(max_size))(network - data) < max_size)
493 		return network - data;
494 	else
495 		return max_size;
496 }
497 
498 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
499 			       struct hnae_ring *ring, int pull_len,
500 			       struct hnae_desc_cb *desc_cb)
501 {
502 	struct hnae_desc *desc;
503 	int truesize, size;
504 	int last_offset;
505 	bool twobufs;
506 
507 	twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
508 
509 	desc = &ring->desc[ring->next_to_clean];
510 	size = le16_to_cpu(desc->rx.size);
511 
512 	if (twobufs) {
513 		truesize = hnae_buf_size(ring);
514 	} else {
515 		truesize = ALIGN(size, L1_CACHE_BYTES);
516 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
517 	}
518 
519 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
520 			size - pull_len, truesize - pull_len);
521 
522 	 /* avoid re-using remote pages,flag default unreuse */
523 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
524 		return;
525 
526 	if (twobufs) {
527 		/* if we are only owner of page we can reuse it */
528 		if (likely(page_count(desc_cb->priv) == 1)) {
529 			/* flip page offset to other buffer */
530 			desc_cb->page_offset ^= truesize;
531 
532 			desc_cb->reuse_flag = 1;
533 			/* bump ref count on page before it is given*/
534 			get_page(desc_cb->priv);
535 		}
536 		return;
537 	}
538 
539 	/* move offset up to the next cache line */
540 	desc_cb->page_offset += truesize;
541 
542 	if (desc_cb->page_offset <= last_offset) {
543 		desc_cb->reuse_flag = 1;
544 		/* bump ref count on page before it is given*/
545 		get_page(desc_cb->priv);
546 	}
547 }
548 
549 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
550 {
551 	*out_bnum = hnae_get_field(bnum_flag,
552 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
553 }
554 
555 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
556 {
557 	*out_bnum = hnae_get_field(bnum_flag,
558 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
559 }
560 
561 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
562 			       struct sk_buff **out_skb, int *out_bnum)
563 {
564 	struct hnae_ring *ring = ring_data->ring;
565 	struct net_device *ndev = ring_data->napi.dev;
566 	struct hns_nic_priv *priv = netdev_priv(ndev);
567 	struct sk_buff *skb;
568 	struct hnae_desc *desc;
569 	struct hnae_desc_cb *desc_cb;
570 	struct ethhdr *eh;
571 	unsigned char *va;
572 	int bnum, length, i;
573 	int pull_len;
574 	u32 bnum_flag;
575 
576 	desc = &ring->desc[ring->next_to_clean];
577 	desc_cb = &ring->desc_cb[ring->next_to_clean];
578 
579 	prefetch(desc);
580 
581 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582 
583 	/* prefetch first cache line of first page */
584 	prefetch(va);
585 #if L1_CACHE_BYTES < 128
586 	prefetch(va + L1_CACHE_BYTES);
587 #endif
588 
589 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
590 					HNS_RX_HEAD_SIZE);
591 	if (unlikely(!skb)) {
592 		netdev_err(ndev, "alloc rx skb fail\n");
593 		ring->stats.sw_err_cnt++;
594 		return -ENOMEM;
595 	}
596 
597 	prefetchw(skb->data);
598 	length = le16_to_cpu(desc->rx.pkt_len);
599 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
600 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
601 	*out_bnum = bnum;
602 
603 	if (length <= HNS_RX_HEAD_SIZE) {
604 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
605 
606 		/* we can reuse buffer as-is, just make sure it is local */
607 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
608 			desc_cb->reuse_flag = 1;
609 		else /* this page cannot be reused so discard it */
610 			put_page(desc_cb->priv);
611 
612 		ring_ptr_move_fw(ring, next_to_clean);
613 
614 		if (unlikely(bnum != 1)) { /* check err*/
615 			*out_bnum = 1;
616 			goto out_bnum_err;
617 		}
618 	} else {
619 		ring->stats.seg_pkt_cnt++;
620 
621 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
622 		memcpy(__skb_put(skb, pull_len), va,
623 		       ALIGN(pull_len, sizeof(long)));
624 
625 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
626 		ring_ptr_move_fw(ring, next_to_clean);
627 
628 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
629 			*out_bnum = 1;
630 			goto out_bnum_err;
631 		}
632 		for (i = 1; i < bnum; i++) {
633 			desc = &ring->desc[ring->next_to_clean];
634 			desc_cb = &ring->desc_cb[ring->next_to_clean];
635 
636 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
637 			ring_ptr_move_fw(ring, next_to_clean);
638 		}
639 	}
640 
641 	/* check except process, free skb and jump the desc */
642 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
643 out_bnum_err:
644 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
645 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
646 			   bnum, ring->max_desc_num_per_pkt,
647 			   length, (int)MAX_SKB_FRAGS,
648 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
649 		ring->stats.err_bd_num++;
650 		dev_kfree_skb_any(skb);
651 		return -EDOM;
652 	}
653 
654 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
655 
656 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
657 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
658 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
659 		ring->stats.non_vld_descs++;
660 		dev_kfree_skb_any(skb);
661 		return -EINVAL;
662 	}
663 
664 	if (unlikely((!desc->rx.pkt_len) ||
665 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
666 		ring->stats.err_pkt_len++;
667 		dev_kfree_skb_any(skb);
668 		return -EFAULT;
669 	}
670 
671 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
672 		ring->stats.l2_err++;
673 		dev_kfree_skb_any(skb);
674 		return -EFAULT;
675 	}
676 
677 	/* filter out multicast pkt with the same src mac as this port */
678 	eh = eth_hdr(skb);
679 	if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
680 		     ether_addr_equal(ndev->dev_addr, eh->h_source))) {
681 		dev_kfree_skb_any(skb);
682 		return -EFAULT;
683 	}
684 
685 	ring->stats.rx_pkts++;
686 	ring->stats.rx_bytes += skb->len;
687 
688 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
689 		     hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
690 		ring->stats.l3l4_csum_err++;
691 		return 0;
692 	}
693 
694 	skb->ip_summed = CHECKSUM_UNNECESSARY;
695 
696 	return 0;
697 }
698 
699 static void
700 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
701 {
702 	int i, ret;
703 	struct hnae_desc_cb res_cbs;
704 	struct hnae_desc_cb *desc_cb;
705 	struct hnae_ring *ring = ring_data->ring;
706 	struct net_device *ndev = ring_data->napi.dev;
707 
708 	for (i = 0; i < cleand_count; i++) {
709 		desc_cb = &ring->desc_cb[ring->next_to_use];
710 		if (desc_cb->reuse_flag) {
711 			ring->stats.reuse_pg_cnt++;
712 			hnae_reuse_buffer(ring, ring->next_to_use);
713 		} else {
714 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
715 			if (ret) {
716 				ring->stats.sw_err_cnt++;
717 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
718 				break;
719 			}
720 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
721 		}
722 
723 		ring_ptr_move_fw(ring, next_to_use);
724 	}
725 
726 	wmb(); /* make all data has been write before submit */
727 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
728 }
729 
730 /* return error number for error or number of desc left to take
731  */
732 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
733 			      struct sk_buff *skb)
734 {
735 	struct net_device *ndev = ring_data->napi.dev;
736 
737 	skb->protocol = eth_type_trans(skb, ndev);
738 	(void)napi_gro_receive(&ring_data->napi, skb);
739 	ndev->last_rx = jiffies;
740 }
741 
742 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
743 			       int budget, void *v)
744 {
745 	struct hnae_ring *ring = ring_data->ring;
746 	struct sk_buff *skb;
747 	int num, bnum, ex_num;
748 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
749 	int recv_pkts, recv_bds, clean_count, err;
750 
751 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
752 	rmb(); /* make sure num taken effect before the other data is touched */
753 
754 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
755 recv:
756 	while (recv_pkts < budget && recv_bds < num) {
757 		/* reuse or realloc buffers*/
758 		if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
759 			hns_nic_alloc_rx_buffers(ring_data, clean_count);
760 			clean_count = 0;
761 		}
762 
763 		/* poll one pkg*/
764 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
765 		if (unlikely(!skb)) /* this fault cannot be repaired */
766 			break;
767 
768 		recv_bds += bnum;
769 		clean_count += bnum;
770 		if (unlikely(err)) {  /* do jump the err */
771 			recv_pkts++;
772 			continue;
773 		}
774 
775 		/* do update ip stack process*/
776 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
777 							ring_data, skb);
778 		recv_pkts++;
779 	}
780 
781 	/* make all data has been write before submit */
782 	if (recv_pkts < budget) {
783 		ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
784 
785 		if (ex_num > clean_count) {
786 			num += ex_num - clean_count;
787 			rmb(); /*complete read rx ring bd number*/
788 			goto recv;
789 		}
790 	}
791 
792 	/* make all data has been write before submit */
793 	if (clean_count > 0)
794 		hns_nic_alloc_rx_buffers(ring_data, clean_count);
795 
796 	return recv_pkts;
797 }
798 
799 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
800 {
801 	struct hnae_ring *ring = ring_data->ring;
802 	int num = 0;
803 
804 	/* for hardware bug fixed */
805 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
806 
807 	if (num > 0) {
808 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
809 			ring_data->ring, 1);
810 
811 		napi_schedule(&ring_data->napi);
812 	}
813 }
814 
815 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
816 					    int *bytes, int *pkts)
817 {
818 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
819 
820 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
821 	(*bytes) += desc_cb->length;
822 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
823 	hnae_free_buffer_detach(ring, ring->next_to_clean);
824 
825 	ring_ptr_move_fw(ring, next_to_clean);
826 }
827 
828 static int is_valid_clean_head(struct hnae_ring *ring, int h)
829 {
830 	int u = ring->next_to_use;
831 	int c = ring->next_to_clean;
832 
833 	if (unlikely(h > ring->desc_num))
834 		return 0;
835 
836 	assert(u > 0 && u < ring->desc_num);
837 	assert(c > 0 && c < ring->desc_num);
838 	assert(u != c && h != c); /* must be checked before call this func */
839 
840 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
841 }
842 
843 /* netif_tx_lock will turn down the performance, set only when necessary */
844 #ifdef CONFIG_NET_POLL_CONTROLLER
845 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
846 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
847 #else
848 #define NETIF_TX_LOCK(ndev)
849 #define NETIF_TX_UNLOCK(ndev)
850 #endif
851 /* reclaim all desc in one budget
852  * return error or number of desc left
853  */
854 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
855 			       int budget, void *v)
856 {
857 	struct hnae_ring *ring = ring_data->ring;
858 	struct net_device *ndev = ring_data->napi.dev;
859 	struct netdev_queue *dev_queue;
860 	struct hns_nic_priv *priv = netdev_priv(ndev);
861 	int head;
862 	int bytes, pkts;
863 
864 	NETIF_TX_LOCK(ndev);
865 
866 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
867 	rmb(); /* make sure head is ready before touch any data */
868 
869 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
870 		NETIF_TX_UNLOCK(ndev);
871 		return 0; /* no data to poll */
872 	}
873 
874 	if (!is_valid_clean_head(ring, head)) {
875 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
876 			   ring->next_to_use, ring->next_to_clean);
877 		ring->stats.io_err_cnt++;
878 		NETIF_TX_UNLOCK(ndev);
879 		return -EIO;
880 	}
881 
882 	bytes = 0;
883 	pkts = 0;
884 	while (head != ring->next_to_clean) {
885 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
886 		/* issue prefetch for next Tx descriptor */
887 		prefetch(&ring->desc_cb[ring->next_to_clean]);
888 	}
889 
890 	NETIF_TX_UNLOCK(ndev);
891 
892 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
893 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
894 
895 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
896 		netif_carrier_on(ndev);
897 
898 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
899 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
900 		/* Make sure that anybody stopping the queue after this
901 		 * sees the new next_to_clean.
902 		 */
903 		smp_mb();
904 		if (netif_tx_queue_stopped(dev_queue) &&
905 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
906 			netif_tx_wake_queue(dev_queue);
907 			ring->stats.restart_queue++;
908 		}
909 	}
910 	return 0;
911 }
912 
913 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
914 {
915 	struct hnae_ring *ring = ring_data->ring;
916 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
917 
918 	if (head != ring->next_to_clean) {
919 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
920 			ring_data->ring, 1);
921 
922 		napi_schedule(&ring_data->napi);
923 	}
924 }
925 
926 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
927 {
928 	struct hnae_ring *ring = ring_data->ring;
929 	struct net_device *ndev = ring_data->napi.dev;
930 	struct netdev_queue *dev_queue;
931 	int head;
932 	int bytes, pkts;
933 
934 	NETIF_TX_LOCK(ndev);
935 
936 	head = ring->next_to_use; /* ntu :soft setted ring position*/
937 	bytes = 0;
938 	pkts = 0;
939 	while (head != ring->next_to_clean)
940 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
941 
942 	NETIF_TX_UNLOCK(ndev);
943 
944 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
945 	netdev_tx_reset_queue(dev_queue);
946 }
947 
948 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
949 {
950 	struct hns_nic_ring_data *ring_data =
951 		container_of(napi, struct hns_nic_ring_data, napi);
952 	int clean_complete = ring_data->poll_one(
953 				ring_data, budget, ring_data->ex_process);
954 
955 	if (clean_complete >= 0 && clean_complete < budget) {
956 		napi_complete(napi);
957 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
958 			ring_data->ring, 0);
959 		if (ring_data->fini_process)
960 			ring_data->fini_process(ring_data);
961 		return 0;
962 	}
963 
964 	return clean_complete;
965 }
966 
967 static irqreturn_t hns_irq_handle(int irq, void *dev)
968 {
969 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
970 
971 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
972 		ring_data->ring, 1);
973 	napi_schedule(&ring_data->napi);
974 
975 	return IRQ_HANDLED;
976 }
977 
978 /**
979  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
980  *@ndev: net device
981  */
982 static void hns_nic_adjust_link(struct net_device *ndev)
983 {
984 	struct hns_nic_priv *priv = netdev_priv(ndev);
985 	struct hnae_handle *h = priv->ae_handle;
986 
987 	h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
988 }
989 
990 /**
991  *hns_nic_init_phy - init phy
992  *@ndev: net device
993  *@h: ae handle
994  * Return 0 on success, negative on failure
995  */
996 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
997 {
998 	struct hns_nic_priv *priv = netdev_priv(ndev);
999 	struct phy_device *phy_dev = NULL;
1000 
1001 	if (!h->phy_node)
1002 		return 0;
1003 
1004 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1005 		phy_dev = of_phy_connect(ndev, h->phy_node,
1006 					 hns_nic_adjust_link, 0, h->phy_if);
1007 	else
1008 		phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1009 
1010 	if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1011 		return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1012 
1013 	phy_dev->supported &= h->if_support;
1014 	phy_dev->advertising = phy_dev->supported;
1015 
1016 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1017 		phy_dev->autoneg = false;
1018 
1019 	priv->phy = phy_dev;
1020 
1021 	return 0;
1022 }
1023 
1024 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1025 {
1026 	struct hns_nic_priv *priv = netdev_priv(netdev);
1027 	struct hnae_handle *h = priv->ae_handle;
1028 
1029 	napi_enable(&priv->ring_data[idx].napi);
1030 
1031 	enable_irq(priv->ring_data[idx].ring->irq);
1032 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1033 
1034 	return 0;
1035 }
1036 
1037 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1038 {
1039 	struct hns_nic_priv *priv = netdev_priv(ndev);
1040 	struct hnae_handle *h = priv->ae_handle;
1041 	struct sockaddr *mac_addr = p;
1042 	int ret;
1043 
1044 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1045 		return -EADDRNOTAVAIL;
1046 
1047 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1048 	if (ret) {
1049 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1050 		return ret;
1051 	}
1052 
1053 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1054 
1055 	return 0;
1056 }
1057 
1058 void hns_nic_update_stats(struct net_device *netdev)
1059 {
1060 	struct hns_nic_priv *priv = netdev_priv(netdev);
1061 	struct hnae_handle *h = priv->ae_handle;
1062 
1063 	h->dev->ops->update_stats(h, &netdev->stats);
1064 }
1065 
1066 /* set mac addr if it is configed. or leave it to the AE driver */
1067 static void hns_init_mac_addr(struct net_device *ndev)
1068 {
1069 	struct hns_nic_priv *priv = netdev_priv(ndev);
1070 	struct device_node *node = priv->dev->of_node;
1071 	const void *mac_addr_temp;
1072 
1073 	mac_addr_temp = of_get_mac_address(node);
1074 	if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1075 		memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1076 	} else {
1077 		eth_hw_addr_random(ndev);
1078 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1079 			 ndev->dev_addr);
1080 	}
1081 }
1082 
1083 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1084 {
1085 	struct hns_nic_priv *priv = netdev_priv(netdev);
1086 	struct hnae_handle *h = priv->ae_handle;
1087 
1088 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1089 	disable_irq(priv->ring_data[idx].ring->irq);
1090 
1091 	napi_disable(&priv->ring_data[idx].napi);
1092 }
1093 
1094 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1095 {
1096 	struct hnae_handle *h = priv->ae_handle;
1097 	struct hns_nic_ring_data *rd;
1098 	int i;
1099 	int cpu;
1100 	cpumask_t mask;
1101 
1102 	/*diffrent irq banlance for 16core and 32core*/
1103 	if (h->q_num == num_possible_cpus()) {
1104 		for (i = 0; i < h->q_num * 2; i++) {
1105 			rd = &priv->ring_data[i];
1106 			if (cpu_online(rd->queue_index)) {
1107 				cpumask_clear(&mask);
1108 				cpu = rd->queue_index;
1109 				cpumask_set_cpu(cpu, &mask);
1110 				(void)irq_set_affinity_hint(rd->ring->irq,
1111 							    &mask);
1112 			}
1113 		}
1114 	} else {
1115 		for (i = 0; i < h->q_num; i++) {
1116 			rd = &priv->ring_data[i];
1117 			if (cpu_online(rd->queue_index * 2)) {
1118 				cpumask_clear(&mask);
1119 				cpu = rd->queue_index * 2;
1120 				cpumask_set_cpu(cpu, &mask);
1121 				(void)irq_set_affinity_hint(rd->ring->irq,
1122 							    &mask);
1123 			}
1124 		}
1125 
1126 		for (i = h->q_num; i < h->q_num * 2; i++) {
1127 			rd = &priv->ring_data[i];
1128 			if (cpu_online(rd->queue_index * 2 + 1)) {
1129 				cpumask_clear(&mask);
1130 				cpu = rd->queue_index * 2 + 1;
1131 				cpumask_set_cpu(cpu, &mask);
1132 				(void)irq_set_affinity_hint(rd->ring->irq,
1133 							    &mask);
1134 			}
1135 		}
1136 	}
1137 }
1138 
1139 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1140 {
1141 	struct hnae_handle *h = priv->ae_handle;
1142 	struct hns_nic_ring_data *rd;
1143 	int i;
1144 	int ret;
1145 
1146 	for (i = 0; i < h->q_num * 2; i++) {
1147 		rd = &priv->ring_data[i];
1148 
1149 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1150 			break;
1151 
1152 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1153 			 "%s-%s%d", priv->netdev->name,
1154 			 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1155 
1156 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1157 
1158 		ret = request_irq(rd->ring->irq,
1159 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1160 		if (ret) {
1161 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1162 				   rd->ring->irq);
1163 			return ret;
1164 		}
1165 		disable_irq(rd->ring->irq);
1166 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1167 	}
1168 
1169 	/*set cpu affinity*/
1170 	hns_set_irq_affinity(priv);
1171 
1172 	return 0;
1173 }
1174 
1175 static int hns_nic_net_up(struct net_device *ndev)
1176 {
1177 	struct hns_nic_priv *priv = netdev_priv(ndev);
1178 	struct hnae_handle *h = priv->ae_handle;
1179 	int i, j, k;
1180 	int ret;
1181 
1182 	ret = hns_nic_init_irq(priv);
1183 	if (ret != 0) {
1184 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1185 		return ret;
1186 	}
1187 
1188 	for (i = 0; i < h->q_num * 2; i++) {
1189 		ret = hns_nic_ring_open(ndev, i);
1190 		if (ret)
1191 			goto out_has_some_queues;
1192 	}
1193 
1194 	for (k = 0; k < h->q_num; k++)
1195 		h->dev->ops->toggle_queue_status(h->qs[k], 1);
1196 
1197 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1198 	if (ret)
1199 		goto out_set_mac_addr_err;
1200 
1201 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1202 	if (ret)
1203 		goto out_start_err;
1204 
1205 	if (priv->phy)
1206 		phy_start(priv->phy);
1207 
1208 	clear_bit(NIC_STATE_DOWN, &priv->state);
1209 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1210 
1211 	return 0;
1212 
1213 out_start_err:
1214 	netif_stop_queue(ndev);
1215 out_set_mac_addr_err:
1216 	for (k = 0; k < h->q_num; k++)
1217 		h->dev->ops->toggle_queue_status(h->qs[k], 0);
1218 out_has_some_queues:
1219 	for (j = i - 1; j >= 0; j--)
1220 		hns_nic_ring_close(ndev, j);
1221 
1222 	set_bit(NIC_STATE_DOWN, &priv->state);
1223 
1224 	return ret;
1225 }
1226 
1227 static void hns_nic_net_down(struct net_device *ndev)
1228 {
1229 	int i;
1230 	struct hnae_ae_ops *ops;
1231 	struct hns_nic_priv *priv = netdev_priv(ndev);
1232 
1233 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1234 		return;
1235 
1236 	(void)del_timer_sync(&priv->service_timer);
1237 	netif_tx_stop_all_queues(ndev);
1238 	netif_carrier_off(ndev);
1239 	netif_tx_disable(ndev);
1240 	priv->link = 0;
1241 
1242 	if (priv->phy)
1243 		phy_stop(priv->phy);
1244 
1245 	ops = priv->ae_handle->dev->ops;
1246 
1247 	if (ops->stop)
1248 		ops->stop(priv->ae_handle);
1249 
1250 	netif_tx_stop_all_queues(ndev);
1251 
1252 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1253 		hns_nic_ring_close(ndev, i);
1254 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1255 
1256 		/* clean tx buffers*/
1257 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1258 	}
1259 }
1260 
1261 void hns_nic_net_reset(struct net_device *ndev)
1262 {
1263 	struct hns_nic_priv *priv = netdev_priv(ndev);
1264 	struct hnae_handle *handle = priv->ae_handle;
1265 
1266 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1267 		usleep_range(1000, 2000);
1268 
1269 	(void)hnae_reinit_handle(handle);
1270 
1271 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1272 }
1273 
1274 void hns_nic_net_reinit(struct net_device *netdev)
1275 {
1276 	struct hns_nic_priv *priv = netdev_priv(netdev);
1277 
1278 	netif_trans_update(priv->netdev);
1279 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1280 		usleep_range(1000, 2000);
1281 
1282 	hns_nic_net_down(netdev);
1283 	hns_nic_net_reset(netdev);
1284 	(void)hns_nic_net_up(netdev);
1285 	clear_bit(NIC_STATE_REINITING, &priv->state);
1286 }
1287 
1288 static int hns_nic_net_open(struct net_device *ndev)
1289 {
1290 	struct hns_nic_priv *priv = netdev_priv(ndev);
1291 	struct hnae_handle *h = priv->ae_handle;
1292 	int ret;
1293 
1294 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1295 		return -EBUSY;
1296 
1297 	priv->link = 0;
1298 	netif_carrier_off(ndev);
1299 
1300 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1301 	if (ret < 0) {
1302 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1303 			   ret);
1304 		return ret;
1305 	}
1306 
1307 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1308 	if (ret < 0) {
1309 		netdev_err(ndev,
1310 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1311 		return ret;
1312 	}
1313 
1314 	ret = hns_nic_net_up(ndev);
1315 	if (ret) {
1316 		netdev_err(ndev,
1317 			   "hns net up fail, ret=%d!\n", ret);
1318 		return ret;
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int hns_nic_net_stop(struct net_device *ndev)
1325 {
1326 	hns_nic_net_down(ndev);
1327 
1328 	return 0;
1329 }
1330 
1331 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1332 static void hns_nic_net_timeout(struct net_device *ndev)
1333 {
1334 	struct hns_nic_priv *priv = netdev_priv(ndev);
1335 
1336 	hns_tx_timeout_reset(priv);
1337 }
1338 
1339 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1340 			    int cmd)
1341 {
1342 	struct hns_nic_priv *priv = netdev_priv(netdev);
1343 	struct phy_device *phy_dev = priv->phy;
1344 
1345 	if (!netif_running(netdev))
1346 		return -EINVAL;
1347 
1348 	if (!phy_dev)
1349 		return -ENOTSUPP;
1350 
1351 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1352 }
1353 
1354 /* use only for netconsole to poll with the device without interrupt */
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 void hns_nic_poll_controller(struct net_device *ndev)
1357 {
1358 	struct hns_nic_priv *priv = netdev_priv(ndev);
1359 	unsigned long flags;
1360 	int i;
1361 
1362 	local_irq_save(flags);
1363 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1364 		napi_schedule(&priv->ring_data[i].napi);
1365 	local_irq_restore(flags);
1366 }
1367 #endif
1368 
1369 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1370 				    struct net_device *ndev)
1371 {
1372 	struct hns_nic_priv *priv = netdev_priv(ndev);
1373 	int ret;
1374 
1375 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1376 	ret = hns_nic_net_xmit_hw(ndev, skb,
1377 				  &tx_ring_data(priv, skb->queue_mapping));
1378 	if (ret == NETDEV_TX_OK) {
1379 		netif_trans_update(ndev);
1380 		ndev->stats.tx_bytes += skb->len;
1381 		ndev->stats.tx_packets++;
1382 	}
1383 	return (netdev_tx_t)ret;
1384 }
1385 
1386 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1387 {
1388 	struct hns_nic_priv *priv = netdev_priv(ndev);
1389 	struct hnae_handle *h = priv->ae_handle;
1390 	int ret;
1391 
1392 	/* MTU < 68 is an error and causes problems on some kernels */
1393 	if (new_mtu < 68)
1394 		return -EINVAL;
1395 
1396 	if (!h->dev->ops->set_mtu)
1397 		return -ENOTSUPP;
1398 
1399 	if (netif_running(ndev)) {
1400 		(void)hns_nic_net_stop(ndev);
1401 		msleep(100);
1402 
1403 		ret = h->dev->ops->set_mtu(h, new_mtu);
1404 		if (ret)
1405 			netdev_err(ndev, "set mtu fail, return value %d\n",
1406 				   ret);
1407 
1408 		if (hns_nic_net_open(ndev))
1409 			netdev_err(ndev, "hns net open fail\n");
1410 	} else {
1411 		ret = h->dev->ops->set_mtu(h, new_mtu);
1412 	}
1413 
1414 	if (!ret)
1415 		ndev->mtu = new_mtu;
1416 
1417 	return ret;
1418 }
1419 
1420 static int hns_nic_set_features(struct net_device *netdev,
1421 				netdev_features_t features)
1422 {
1423 	struct hns_nic_priv *priv = netdev_priv(netdev);
1424 	struct hnae_handle *h = priv->ae_handle;
1425 
1426 	switch (priv->enet_ver) {
1427 	case AE_VERSION_1:
1428 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1429 			netdev_info(netdev, "enet v1 do not support tso!\n");
1430 		break;
1431 	default:
1432 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1433 			priv->ops.fill_desc = fill_tso_desc;
1434 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1435 			/* The chip only support 7*4096 */
1436 			netif_set_gso_max_size(netdev, 7 * 4096);
1437 			h->dev->ops->set_tso_stats(h, 1);
1438 		} else {
1439 			priv->ops.fill_desc = fill_v2_desc;
1440 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1441 			h->dev->ops->set_tso_stats(h, 0);
1442 		}
1443 		break;
1444 	}
1445 	netdev->features = features;
1446 	return 0;
1447 }
1448 
1449 static netdev_features_t hns_nic_fix_features(
1450 		struct net_device *netdev, netdev_features_t features)
1451 {
1452 	struct hns_nic_priv *priv = netdev_priv(netdev);
1453 
1454 	switch (priv->enet_ver) {
1455 	case AE_VERSION_1:
1456 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1457 				NETIF_F_HW_VLAN_CTAG_FILTER);
1458 		break;
1459 	default:
1460 		break;
1461 	}
1462 	return features;
1463 }
1464 
1465 /**
1466  * nic_set_multicast_list - set mutl mac address
1467  * @netdev: net device
1468  * @p: mac address
1469  *
1470  * return void
1471  */
1472 void hns_set_multicast_list(struct net_device *ndev)
1473 {
1474 	struct hns_nic_priv *priv = netdev_priv(ndev);
1475 	struct hnae_handle *h = priv->ae_handle;
1476 	struct netdev_hw_addr *ha = NULL;
1477 
1478 	if (!h)	{
1479 		netdev_err(ndev, "hnae handle is null\n");
1480 		return;
1481 	}
1482 
1483 	if (h->dev->ops->set_mc_addr) {
1484 		netdev_for_each_mc_addr(ha, ndev)
1485 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1486 				netdev_err(ndev, "set multicast fail\n");
1487 	}
1488 }
1489 
1490 void hns_nic_set_rx_mode(struct net_device *ndev)
1491 {
1492 	struct hns_nic_priv *priv = netdev_priv(ndev);
1493 	struct hnae_handle *h = priv->ae_handle;
1494 
1495 	if (h->dev->ops->set_promisc_mode) {
1496 		if (ndev->flags & IFF_PROMISC)
1497 			h->dev->ops->set_promisc_mode(h, 1);
1498 		else
1499 			h->dev->ops->set_promisc_mode(h, 0);
1500 	}
1501 
1502 	hns_set_multicast_list(ndev);
1503 }
1504 
1505 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1506 					      struct rtnl_link_stats64 *stats)
1507 {
1508 	int idx = 0;
1509 	u64 tx_bytes = 0;
1510 	u64 rx_bytes = 0;
1511 	u64 tx_pkts = 0;
1512 	u64 rx_pkts = 0;
1513 	struct hns_nic_priv *priv = netdev_priv(ndev);
1514 	struct hnae_handle *h = priv->ae_handle;
1515 
1516 	for (idx = 0; idx < h->q_num; idx++) {
1517 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1518 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1519 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1520 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1521 	}
1522 
1523 	stats->tx_bytes = tx_bytes;
1524 	stats->tx_packets = tx_pkts;
1525 	stats->rx_bytes = rx_bytes;
1526 	stats->rx_packets = rx_pkts;
1527 
1528 	stats->rx_errors = ndev->stats.rx_errors;
1529 	stats->multicast = ndev->stats.multicast;
1530 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1531 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1532 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1533 
1534 	stats->tx_errors = ndev->stats.tx_errors;
1535 	stats->rx_dropped = ndev->stats.rx_dropped;
1536 	stats->tx_dropped = ndev->stats.tx_dropped;
1537 	stats->collisions = ndev->stats.collisions;
1538 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1539 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1540 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1541 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1542 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1543 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1544 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1545 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1546 	stats->rx_compressed = ndev->stats.rx_compressed;
1547 	stats->tx_compressed = ndev->stats.tx_compressed;
1548 
1549 	return stats;
1550 }
1551 
1552 static const struct net_device_ops hns_nic_netdev_ops = {
1553 	.ndo_open = hns_nic_net_open,
1554 	.ndo_stop = hns_nic_net_stop,
1555 	.ndo_start_xmit = hns_nic_net_xmit,
1556 	.ndo_tx_timeout = hns_nic_net_timeout,
1557 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1558 	.ndo_change_mtu = hns_nic_change_mtu,
1559 	.ndo_do_ioctl = hns_nic_do_ioctl,
1560 	.ndo_set_features = hns_nic_set_features,
1561 	.ndo_fix_features = hns_nic_fix_features,
1562 	.ndo_get_stats64 = hns_nic_get_stats64,
1563 #ifdef CONFIG_NET_POLL_CONTROLLER
1564 	.ndo_poll_controller = hns_nic_poll_controller,
1565 #endif
1566 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1567 };
1568 
1569 static void hns_nic_update_link_status(struct net_device *netdev)
1570 {
1571 	struct hns_nic_priv *priv = netdev_priv(netdev);
1572 
1573 	struct hnae_handle *h = priv->ae_handle;
1574 	int state = 1;
1575 
1576 	if (priv->phy) {
1577 		if (!genphy_update_link(priv->phy))
1578 			state = priv->phy->link;
1579 		else
1580 			state = 0;
1581 	}
1582 	state = state && h->dev->ops->get_status(h);
1583 
1584 	if (state != priv->link) {
1585 		if (state) {
1586 			netif_carrier_on(netdev);
1587 			netif_tx_wake_all_queues(netdev);
1588 			netdev_info(netdev, "link up\n");
1589 		} else {
1590 			netif_carrier_off(netdev);
1591 			netdev_info(netdev, "link down\n");
1592 		}
1593 		priv->link = state;
1594 	}
1595 }
1596 
1597 /* for dumping key regs*/
1598 static void hns_nic_dump(struct hns_nic_priv *priv)
1599 {
1600 	struct hnae_handle *h = priv->ae_handle;
1601 	struct hnae_ae_ops *ops = h->dev->ops;
1602 	u32 *data, reg_num, i;
1603 
1604 	if (ops->get_regs_len && ops->get_regs) {
1605 		reg_num = ops->get_regs_len(priv->ae_handle);
1606 		reg_num = (reg_num + 3ul) & ~3ul;
1607 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1608 		if (data) {
1609 			ops->get_regs(priv->ae_handle, data);
1610 			for (i = 0; i < reg_num; i += 4)
1611 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1612 					i, data[i], data[i + 1],
1613 					data[i + 2], data[i + 3]);
1614 			kfree(data);
1615 		}
1616 	}
1617 
1618 	for (i = 0; i < h->q_num; i++) {
1619 		pr_info("tx_queue%d_next_to_clean:%d\n",
1620 			i, h->qs[i]->tx_ring.next_to_clean);
1621 		pr_info("tx_queue%d_next_to_use:%d\n",
1622 			i, h->qs[i]->tx_ring.next_to_use);
1623 		pr_info("rx_queue%d_next_to_clean:%d\n",
1624 			i, h->qs[i]->rx_ring.next_to_clean);
1625 		pr_info("rx_queue%d_next_to_use:%d\n",
1626 			i, h->qs[i]->rx_ring.next_to_use);
1627 	}
1628 }
1629 
1630 /* for resetting suntask*/
1631 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1632 {
1633 	enum hnae_port_type type = priv->ae_handle->port_type;
1634 
1635 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1636 		return;
1637 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1638 
1639 	/* If we're already down, removing or resetting, just bail */
1640 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1641 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1642 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1643 		return;
1644 
1645 	hns_nic_dump(priv);
1646 	netdev_info(priv->netdev, "try to reset %s port!\n",
1647 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1648 
1649 	rtnl_lock();
1650 	/* put off any impending NetWatchDogTimeout */
1651 	netif_trans_update(priv->netdev);
1652 
1653 	if (type == HNAE_PORT_DEBUG) {
1654 		hns_nic_net_reinit(priv->netdev);
1655 	} else {
1656 		netif_carrier_off(priv->netdev);
1657 		netif_tx_disable(priv->netdev);
1658 	}
1659 	rtnl_unlock();
1660 }
1661 
1662 /* for doing service complete*/
1663 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1664 {
1665 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1666 
1667 	smp_mb__before_atomic();
1668 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1669 }
1670 
1671 static void hns_nic_service_task(struct work_struct *work)
1672 {
1673 	struct hns_nic_priv *priv
1674 		= container_of(work, struct hns_nic_priv, service_task);
1675 	struct hnae_handle *h = priv->ae_handle;
1676 
1677 	hns_nic_update_link_status(priv->netdev);
1678 	h->dev->ops->update_led_status(h);
1679 	hns_nic_update_stats(priv->netdev);
1680 
1681 	hns_nic_reset_subtask(priv);
1682 	hns_nic_service_event_complete(priv);
1683 }
1684 
1685 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1686 {
1687 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1688 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1689 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1690 		(void)schedule_work(&priv->service_task);
1691 }
1692 
1693 static void hns_nic_service_timer(unsigned long data)
1694 {
1695 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1696 
1697 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1698 
1699 	hns_nic_task_schedule(priv);
1700 }
1701 
1702 /**
1703  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1704  * @priv: driver private struct
1705  **/
1706 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1707 {
1708 	/* Do the reset outside of interrupt context */
1709 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1710 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1711 		netdev_warn(priv->netdev,
1712 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
1713 			    priv->tx_timeout_count, priv->state);
1714 		priv->tx_timeout_count++;
1715 		hns_nic_task_schedule(priv);
1716 	}
1717 }
1718 
1719 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1720 {
1721 	struct hnae_handle *h = priv->ae_handle;
1722 	struct hns_nic_ring_data *rd;
1723 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1724 	int i;
1725 
1726 	if (h->q_num > NIC_MAX_Q_PER_VF) {
1727 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1728 		return -EINVAL;
1729 	}
1730 
1731 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1732 				  GFP_KERNEL);
1733 	if (!priv->ring_data)
1734 		return -ENOMEM;
1735 
1736 	for (i = 0; i < h->q_num; i++) {
1737 		rd = &priv->ring_data[i];
1738 		rd->queue_index = i;
1739 		rd->ring = &h->qs[i]->tx_ring;
1740 		rd->poll_one = hns_nic_tx_poll_one;
1741 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : NULL;
1742 
1743 		netif_napi_add(priv->netdev, &rd->napi,
1744 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1745 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1746 	}
1747 	for (i = h->q_num; i < h->q_num * 2; i++) {
1748 		rd = &priv->ring_data[i];
1749 		rd->queue_index = i - h->q_num;
1750 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
1751 		rd->poll_one = hns_nic_rx_poll_one;
1752 		rd->ex_process = hns_nic_rx_up_pro;
1753 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : NULL;
1754 
1755 		netif_napi_add(priv->netdev, &rd->napi,
1756 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1757 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1764 {
1765 	struct hnae_handle *h = priv->ae_handle;
1766 	int i;
1767 
1768 	for (i = 0; i < h->q_num * 2; i++) {
1769 		netif_napi_del(&priv->ring_data[i].napi);
1770 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1771 			(void)irq_set_affinity_hint(
1772 				priv->ring_data[i].ring->irq,
1773 				NULL);
1774 			free_irq(priv->ring_data[i].ring->irq,
1775 				 &priv->ring_data[i]);
1776 		}
1777 
1778 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1779 	}
1780 	kfree(priv->ring_data);
1781 }
1782 
1783 static void hns_nic_set_priv_ops(struct net_device *netdev)
1784 {
1785 	struct hns_nic_priv *priv = netdev_priv(netdev);
1786 	struct hnae_handle *h = priv->ae_handle;
1787 
1788 	if (AE_IS_VER1(priv->enet_ver)) {
1789 		priv->ops.fill_desc = fill_desc;
1790 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1791 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1792 	} else {
1793 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1794 		if ((netdev->features & NETIF_F_TSO) ||
1795 		    (netdev->features & NETIF_F_TSO6)) {
1796 			priv->ops.fill_desc = fill_tso_desc;
1797 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798 			/* This chip only support 7*4096 */
1799 			netif_set_gso_max_size(netdev, 7 * 4096);
1800 			h->dev->ops->set_tso_stats(h, 1);
1801 		} else {
1802 			priv->ops.fill_desc = fill_v2_desc;
1803 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1804 		}
1805 	}
1806 }
1807 
1808 static int hns_nic_try_get_ae(struct net_device *ndev)
1809 {
1810 	struct hns_nic_priv *priv = netdev_priv(ndev);
1811 	struct hnae_handle *h;
1812 	int ret;
1813 
1814 	h = hnae_get_handle(&priv->netdev->dev,
1815 			    priv->ae_node, priv->port_id, NULL);
1816 	if (IS_ERR_OR_NULL(h)) {
1817 		ret = -ENODEV;
1818 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
1819 		goto out;
1820 	}
1821 	priv->ae_handle = h;
1822 
1823 	ret = hns_nic_init_phy(ndev, h);
1824 	if (ret) {
1825 		dev_err(priv->dev, "probe phy device fail!\n");
1826 		goto out_init_phy;
1827 	}
1828 
1829 	ret = hns_nic_init_ring_data(priv);
1830 	if (ret) {
1831 		ret = -ENOMEM;
1832 		goto out_init_ring_data;
1833 	}
1834 
1835 	hns_nic_set_priv_ops(ndev);
1836 
1837 	ret = register_netdev(ndev);
1838 	if (ret) {
1839 		dev_err(priv->dev, "probe register netdev fail!\n");
1840 		goto out_reg_ndev_fail;
1841 	}
1842 	return 0;
1843 
1844 out_reg_ndev_fail:
1845 	hns_nic_uninit_ring_data(priv);
1846 	priv->ring_data = NULL;
1847 out_init_phy:
1848 out_init_ring_data:
1849 	hnae_put_handle(priv->ae_handle);
1850 	priv->ae_handle = NULL;
1851 out:
1852 	return ret;
1853 }
1854 
1855 static int hns_nic_notifier_action(struct notifier_block *nb,
1856 				   unsigned long action, void *data)
1857 {
1858 	struct hns_nic_priv *priv =
1859 		container_of(nb, struct hns_nic_priv, notifier_block);
1860 
1861 	assert(action == HNAE_AE_REGISTER);
1862 
1863 	if (!hns_nic_try_get_ae(priv->netdev)) {
1864 		hnae_unregister_notifier(&priv->notifier_block);
1865 		priv->notifier_block.notifier_call = NULL;
1866 	}
1867 	return 0;
1868 }
1869 
1870 static int hns_nic_dev_probe(struct platform_device *pdev)
1871 {
1872 	struct device *dev = &pdev->dev;
1873 	struct net_device *ndev;
1874 	struct hns_nic_priv *priv;
1875 	struct device_node *node = dev->of_node;
1876 	u32 port_id;
1877 	int ret;
1878 
1879 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1880 	if (!ndev)
1881 		return -ENOMEM;
1882 
1883 	platform_set_drvdata(pdev, ndev);
1884 
1885 	priv = netdev_priv(ndev);
1886 	priv->dev = dev;
1887 	priv->netdev = ndev;
1888 
1889 	if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1890 		priv->enet_ver = AE_VERSION_1;
1891 	else
1892 		priv->enet_ver = AE_VERSION_2;
1893 
1894 	priv->ae_node = (void *)of_parse_phandle(node, "ae-handle", 0);
1895 	if (IS_ERR_OR_NULL(priv->ae_node)) {
1896 		ret = PTR_ERR(priv->ae_node);
1897 		dev_err(dev, "not find ae-handle\n");
1898 		goto out_read_prop_fail;
1899 	}
1900 	/* try to find port-idx-in-ae first */
1901 	ret = of_property_read_u32(node, "port-idx-in-ae", &port_id);
1902 	if (ret) {
1903 		/* only for old code compatible */
1904 		ret = of_property_read_u32(node, "port-id", &port_id);
1905 		if (ret)
1906 			goto out_read_prop_fail;
1907 		/* for old dts, we need to caculate the port offset */
1908 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1909 			: port_id - HNS_SRV_OFFSET;
1910 	}
1911 	priv->port_id = port_id;
1912 
1913 	hns_init_mac_addr(ndev);
1914 
1915 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1916 	ndev->priv_flags |= IFF_UNICAST_FLT;
1917 	ndev->netdev_ops = &hns_nic_netdev_ops;
1918 	hns_ethtool_set_ops(ndev);
1919 
1920 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1921 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1922 		NETIF_F_GRO;
1923 	ndev->vlan_features |=
1924 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1925 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1926 
1927 	switch (priv->enet_ver) {
1928 	case AE_VERSION_2:
1929 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1930 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1931 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1932 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1933 		break;
1934 	default:
1935 		break;
1936 	}
1937 
1938 	SET_NETDEV_DEV(ndev, dev);
1939 
1940 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1941 		dev_dbg(dev, "set mask to 64bit\n");
1942 	else
1943 		dev_err(dev, "set mask to 32bit fail!\n");
1944 
1945 	/* carrier off reporting is important to ethtool even BEFORE open */
1946 	netif_carrier_off(ndev);
1947 
1948 	setup_timer(&priv->service_timer, hns_nic_service_timer,
1949 		    (unsigned long)priv);
1950 	INIT_WORK(&priv->service_task, hns_nic_service_task);
1951 
1952 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1953 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1954 	set_bit(NIC_STATE_DOWN, &priv->state);
1955 
1956 	if (hns_nic_try_get_ae(priv->netdev)) {
1957 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
1958 		ret = hnae_register_notifier(&priv->notifier_block);
1959 		if (ret) {
1960 			dev_err(dev, "register notifier fail!\n");
1961 			goto out_notify_fail;
1962 		}
1963 		dev_dbg(dev, "has not handle, register notifier!\n");
1964 	}
1965 
1966 	return 0;
1967 
1968 out_notify_fail:
1969 	(void)cancel_work_sync(&priv->service_task);
1970 out_read_prop_fail:
1971 	free_netdev(ndev);
1972 	return ret;
1973 }
1974 
1975 static int hns_nic_dev_remove(struct platform_device *pdev)
1976 {
1977 	struct net_device *ndev = platform_get_drvdata(pdev);
1978 	struct hns_nic_priv *priv = netdev_priv(ndev);
1979 
1980 	if (ndev->reg_state != NETREG_UNINITIALIZED)
1981 		unregister_netdev(ndev);
1982 
1983 	if (priv->ring_data)
1984 		hns_nic_uninit_ring_data(priv);
1985 	priv->ring_data = NULL;
1986 
1987 	if (priv->phy)
1988 		phy_disconnect(priv->phy);
1989 	priv->phy = NULL;
1990 
1991 	if (!IS_ERR_OR_NULL(priv->ae_handle))
1992 		hnae_put_handle(priv->ae_handle);
1993 	priv->ae_handle = NULL;
1994 	if (priv->notifier_block.notifier_call)
1995 		hnae_unregister_notifier(&priv->notifier_block);
1996 	priv->notifier_block.notifier_call = NULL;
1997 
1998 	set_bit(NIC_STATE_REMOVING, &priv->state);
1999 	(void)cancel_work_sync(&priv->service_task);
2000 
2001 	free_netdev(ndev);
2002 	return 0;
2003 }
2004 
2005 static const struct of_device_id hns_enet_of_match[] = {
2006 	{.compatible = "hisilicon,hns-nic-v1",},
2007 	{.compatible = "hisilicon,hns-nic-v2",},
2008 	{},
2009 };
2010 
2011 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2012 
2013 static struct platform_driver hns_nic_dev_driver = {
2014 	.driver = {
2015 		.name = "hns-nic",
2016 		.of_match_table = hns_enet_of_match,
2017 	},
2018 	.probe = hns_nic_dev_probe,
2019 	.remove = hns_nic_dev_remove,
2020 };
2021 
2022 module_platform_driver(hns_nic_dev_driver);
2023 
2024 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2025 MODULE_AUTHOR("Hisilicon, Inc.");
2026 MODULE_LICENSE("GPL");
2027 MODULE_ALIAS("platform:hns-nic");
2028