1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include "gve_dqo.h" 11 #include <net/ip.h> 12 #include <linux/tcp.h> 13 #include <linux/slab.h> 14 #include <linux/skbuff.h> 15 16 /* Returns true if tx_bufs are available. */ 17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count) 18 { 19 int num_avail; 20 21 if (!tx->dqo.qpl) 22 return true; 23 24 num_avail = tx->dqo.num_tx_qpl_bufs - 25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 26 tx->dqo_tx.free_tx_qpl_buf_cnt); 27 28 if (count <= num_avail) 29 return true; 30 31 /* Update cached value from dqo_compl. */ 32 tx->dqo_tx.free_tx_qpl_buf_cnt = 33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt); 34 35 num_avail = tx->dqo.num_tx_qpl_bufs - 36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 37 tx->dqo_tx.free_tx_qpl_buf_cnt); 38 39 return count <= num_avail; 40 } 41 42 static s16 43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx) 44 { 45 s16 index; 46 47 index = tx->dqo_tx.free_tx_qpl_buf_head; 48 49 /* No TX buffers available, try to steal the list from the 50 * completion handler. 51 */ 52 if (unlikely(index == -1)) { 53 tx->dqo_tx.free_tx_qpl_buf_head = 54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 55 index = tx->dqo_tx.free_tx_qpl_buf_head; 56 57 if (unlikely(index == -1)) 58 return index; 59 } 60 61 /* Remove TX buf from free list */ 62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index]; 63 64 return index; 65 } 66 67 static void 68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx, 69 struct gve_tx_pending_packet_dqo *pkt) 70 { 71 s16 index; 72 int i; 73 74 if (!pkt->num_bufs) 75 return; 76 77 index = pkt->tx_qpl_buf_ids[0]; 78 /* Create a linked list of buffers to be added to the free list */ 79 for (i = 1; i < pkt->num_bufs; i++) { 80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i]; 81 index = pkt->tx_qpl_buf_ids[i]; 82 } 83 84 while (true) { 85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head); 86 87 tx->dqo.tx_qpl_buf_next[index] = old_head; 88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head, 89 old_head, 90 pkt->tx_qpl_buf_ids[0]) == old_head) { 91 break; 92 } 93 } 94 95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt); 96 pkt->num_bufs = 0; 97 } 98 99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */ 100 static bool gve_has_pending_packet(struct gve_tx_ring *tx) 101 { 102 /* Check TX path's list. */ 103 if (tx->dqo_tx.free_pending_packets != -1) 104 return true; 105 106 /* Check completion handler's list. */ 107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1) 108 return true; 109 110 return false; 111 } 112 113 static struct gve_tx_pending_packet_dqo * 114 gve_alloc_pending_packet(struct gve_tx_ring *tx) 115 { 116 struct gve_tx_pending_packet_dqo *pending_packet; 117 s16 index; 118 119 index = tx->dqo_tx.free_pending_packets; 120 121 /* No pending_packets available, try to steal the list from the 122 * completion handler. 123 */ 124 if (unlikely(index == -1)) { 125 tx->dqo_tx.free_pending_packets = 126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1); 127 index = tx->dqo_tx.free_pending_packets; 128 129 if (unlikely(index == -1)) 130 return NULL; 131 } 132 133 pending_packet = &tx->dqo.pending_packets[index]; 134 135 /* Remove pending_packet from free list */ 136 tx->dqo_tx.free_pending_packets = pending_packet->next; 137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL; 138 139 return pending_packet; 140 } 141 142 static void 143 gve_free_pending_packet(struct gve_tx_ring *tx, 144 struct gve_tx_pending_packet_dqo *pending_packet) 145 { 146 s16 index = pending_packet - tx->dqo.pending_packets; 147 148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED; 149 while (true) { 150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets); 151 152 pending_packet->next = old_head; 153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets, 154 old_head, index) == old_head) { 155 break; 156 } 157 } 158 } 159 160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers. 161 */ 162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx) 163 { 164 int i; 165 166 for (i = 0; i < tx->dqo.num_pending_packets; i++) { 167 struct gve_tx_pending_packet_dqo *cur_state = 168 &tx->dqo.pending_packets[i]; 169 int j; 170 171 for (j = 0; j < cur_state->num_bufs; j++) { 172 if (j == 0) { 173 dma_unmap_single(tx->dev, 174 dma_unmap_addr(cur_state, dma[j]), 175 dma_unmap_len(cur_state, len[j]), 176 DMA_TO_DEVICE); 177 } else { 178 dma_unmap_page(tx->dev, 179 dma_unmap_addr(cur_state, dma[j]), 180 dma_unmap_len(cur_state, len[j]), 181 DMA_TO_DEVICE); 182 } 183 } 184 if (cur_state->skb) { 185 dev_consume_skb_any(cur_state->skb); 186 cur_state->skb = NULL; 187 } 188 } 189 } 190 191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx) 192 { 193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 194 struct gve_tx_ring *tx = &priv->tx[idx]; 195 196 if (!gve_tx_was_added_to_block(priv, idx)) 197 return; 198 199 gve_remove_napi(priv, ntfy_idx); 200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL); 201 netdev_tx_reset_queue(tx->netdev_txq); 202 gve_tx_clean_pending_packets(tx); 203 gve_tx_remove_from_block(priv, idx); 204 } 205 206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 207 struct gve_tx_alloc_rings_cfg *cfg) 208 { 209 struct device *hdev = &priv->pdev->dev; 210 int idx = tx->q_num; 211 size_t bytes; 212 u32 qpl_id; 213 214 if (tx->q_resources) { 215 dma_free_coherent(hdev, sizeof(*tx->q_resources), 216 tx->q_resources, tx->q_resources_bus); 217 tx->q_resources = NULL; 218 } 219 220 if (tx->dqo.compl_ring) { 221 bytes = sizeof(tx->dqo.compl_ring[0]) * 222 (tx->dqo.complq_mask + 1); 223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring, 224 tx->complq_bus_dqo); 225 tx->dqo.compl_ring = NULL; 226 } 227 228 if (tx->dqo.tx_ring) { 229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus); 231 tx->dqo.tx_ring = NULL; 232 } 233 234 kvfree(tx->dqo.pending_packets); 235 tx->dqo.pending_packets = NULL; 236 237 kvfree(tx->dqo.tx_qpl_buf_next); 238 tx->dqo.tx_qpl_buf_next = NULL; 239 240 if (tx->dqo.qpl) { 241 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id); 243 tx->dqo.qpl = NULL; 244 } 245 246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 247 } 248 249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx) 250 { 251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO * 252 tx->dqo.qpl->num_entries; 253 int i; 254 255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs, 256 sizeof(tx->dqo.tx_qpl_buf_next[0]), 257 GFP_KERNEL); 258 if (!tx->dqo.tx_qpl_buf_next) 259 return -ENOMEM; 260 261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs; 262 263 /* Generate free TX buf list */ 264 for (i = 0; i < num_tx_qpl_bufs - 1; i++) 265 tx->dqo.tx_qpl_buf_next[i] = i + 1; 266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1; 267 268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 269 return 0; 270 } 271 272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx) 273 { 274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 275 struct gve_tx_ring *tx = &priv->tx[idx]; 276 277 gve_tx_add_to_block(priv, idx); 278 279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 281 } 282 283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv, 284 struct gve_tx_alloc_rings_cfg *cfg, 285 struct gve_tx_ring *tx, 286 int idx) 287 { 288 struct device *hdev = &priv->pdev->dev; 289 int num_pending_packets; 290 int qpl_page_cnt; 291 size_t bytes; 292 u32 qpl_id; 293 int i; 294 295 memset(tx, 0, sizeof(*tx)); 296 tx->q_num = idx; 297 tx->dev = hdev; 298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0); 299 300 /* Queue sizes must be a power of 2 */ 301 tx->mask = cfg->ring_size - 1; 302 tx->dqo.complq_mask = tx->mask; 303 304 /* The max number of pending packets determines the maximum number of 305 * descriptors which maybe written to the completion queue. 306 * 307 * We must set the number small enough to make sure we never overrun the 308 * completion queue. 309 */ 310 num_pending_packets = tx->dqo.complq_mask + 1; 311 312 /* Reserve space for descriptor completions, which will be reported at 313 * most every GVE_TX_MIN_RE_INTERVAL packets. 314 */ 315 num_pending_packets -= 316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL; 317 318 /* Each packet may have at most 2 buffer completions if it receives both 319 * a miss and reinjection completion. 320 */ 321 num_pending_packets /= 2; 322 323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX); 324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets, 325 sizeof(tx->dqo.pending_packets[0]), 326 GFP_KERNEL); 327 if (!tx->dqo.pending_packets) 328 goto err; 329 330 /* Set up linked list of pending packets */ 331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++) 332 tx->dqo.pending_packets[i].next = i + 1; 333 334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1; 335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1); 336 tx->dqo_compl.miss_completions.head = -1; 337 tx->dqo_compl.miss_completions.tail = -1; 338 tx->dqo_compl.timed_out_completions.head = -1; 339 tx->dqo_compl.timed_out_completions.tail = -1; 340 341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 343 if (!tx->dqo.tx_ring) 344 goto err; 345 346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1); 347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes, 348 &tx->complq_bus_dqo, 349 GFP_KERNEL); 350 if (!tx->dqo.compl_ring) 351 goto err; 352 353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), 354 &tx->q_resources_bus, GFP_KERNEL); 355 if (!tx->q_resources) 356 goto err; 357 358 if (!cfg->raw_addressing) { 359 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 360 qpl_page_cnt = priv->tx_pages_per_qpl; 361 362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 363 qpl_page_cnt); 364 if (!tx->dqo.qpl) 365 goto err; 366 367 if (gve_tx_qpl_buf_init(tx)) 368 goto err; 369 } 370 371 return 0; 372 373 err: 374 gve_tx_free_ring_dqo(priv, tx, cfg); 375 return -ENOMEM; 376 } 377 378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv, 379 struct gve_tx_alloc_rings_cfg *cfg) 380 { 381 struct gve_tx_ring *tx = cfg->tx; 382 int total_queues; 383 int err = 0; 384 int i, j; 385 386 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings; 387 if (total_queues > cfg->qcfg->max_queues) { 388 netif_err(priv, drv, priv->dev, 389 "Cannot alloc more than the max num of Tx rings\n"); 390 return -EINVAL; 391 } 392 393 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 394 GFP_KERNEL); 395 if (!tx) 396 return -ENOMEM; 397 398 for (i = 0; i < total_queues; i++) { 399 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i); 400 if (err) { 401 netif_err(priv, drv, priv->dev, 402 "Failed to alloc tx ring=%d: err=%d\n", 403 i, err); 404 goto err; 405 } 406 } 407 408 cfg->tx = tx; 409 return 0; 410 411 err: 412 for (j = 0; j < i; j++) 413 gve_tx_free_ring_dqo(priv, &tx[j], cfg); 414 kvfree(tx); 415 return err; 416 } 417 418 void gve_tx_free_rings_dqo(struct gve_priv *priv, 419 struct gve_tx_alloc_rings_cfg *cfg) 420 { 421 struct gve_tx_ring *tx = cfg->tx; 422 int i; 423 424 if (!tx) 425 return; 426 427 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++) 428 gve_tx_free_ring_dqo(priv, &tx[i], cfg); 429 430 kvfree(tx); 431 cfg->tx = NULL; 432 } 433 434 /* Returns the number of slots available in the ring */ 435 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx) 436 { 437 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask; 438 439 return tx->mask - num_used; 440 } 441 442 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx, 443 int desc_count, int buf_count) 444 { 445 return gve_has_pending_packet(tx) && 446 num_avail_tx_slots(tx) >= desc_count && 447 gve_has_free_tx_qpl_bufs(tx, buf_count); 448 } 449 450 /* Stops the queue if available descriptors is less than 'count'. 451 * Return: 0 if stop is not required. 452 */ 453 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx, 454 int desc_count, int buf_count) 455 { 456 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 457 return 0; 458 459 /* Update cached TX head pointer */ 460 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 461 462 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 463 return 0; 464 465 /* No space, so stop the queue */ 466 tx->stop_queue++; 467 netif_tx_stop_queue(tx->netdev_txq); 468 469 /* Sync with restarting queue in `gve_tx_poll_dqo()` */ 470 mb(); 471 472 /* After stopping queue, check if we can transmit again in order to 473 * avoid TOCTOU bug. 474 */ 475 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 476 477 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 478 return -EBUSY; 479 480 netif_tx_start_queue(tx->netdev_txq); 481 tx->wake_queue++; 482 return 0; 483 } 484 485 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb, 486 struct gve_tx_metadata_dqo *metadata) 487 { 488 memset(metadata, 0, sizeof(*metadata)); 489 metadata->version = GVE_TX_METADATA_VERSION_DQO; 490 491 if (skb->l4_hash) { 492 u16 path_hash = skb->hash ^ (skb->hash >> 16); 493 494 path_hash &= (1 << 15) - 1; 495 if (unlikely(path_hash == 0)) 496 path_hash = ~path_hash; 497 498 metadata->path_hash = path_hash; 499 } 500 } 501 502 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx, 503 struct sk_buff *skb, u32 len, u64 addr, 504 s16 compl_tag, bool eop, bool is_gso) 505 { 506 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL; 507 508 while (len > 0) { 509 struct gve_tx_pkt_desc_dqo *desc = 510 &tx->dqo.tx_ring[*desc_idx].pkt; 511 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO); 512 bool cur_eop = eop && cur_len == len; 513 514 *desc = (struct gve_tx_pkt_desc_dqo){ 515 .buf_addr = cpu_to_le64(addr), 516 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO, 517 .end_of_packet = cur_eop, 518 .checksum_offload_enable = checksum_offload_en, 519 .compl_tag = cpu_to_le16(compl_tag), 520 .buf_size = cur_len, 521 }; 522 523 addr += cur_len; 524 len -= cur_len; 525 *desc_idx = (*desc_idx + 1) & tx->mask; 526 } 527 } 528 529 /* Validates and prepares `skb` for TSO. 530 * 531 * Returns header length, or < 0 if invalid. 532 */ 533 static int gve_prep_tso(struct sk_buff *skb) 534 { 535 struct tcphdr *tcp; 536 int header_len; 537 u32 paylen; 538 int err; 539 540 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length 541 * of the TSO to be <= 262143. 542 * 543 * However, we don't validate these because: 544 * - Hypervisor enforces a limit of 9K MTU 545 * - Kernel will not produce a TSO larger than 64k 546 */ 547 548 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO)) 549 return -1; 550 551 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 552 return -EINVAL; 553 554 /* Needed because we will modify header. */ 555 err = skb_cow_head(skb, 0); 556 if (err < 0) 557 return err; 558 559 tcp = tcp_hdr(skb); 560 paylen = skb->len - skb_transport_offset(skb); 561 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen)); 562 header_len = skb_tcp_all_headers(skb); 563 564 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO)) 565 return -EINVAL; 566 567 return header_len; 568 } 569 570 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc, 571 const struct sk_buff *skb, 572 const struct gve_tx_metadata_dqo *metadata, 573 int header_len) 574 { 575 *desc = (struct gve_tx_tso_context_desc_dqo){ 576 .header_len = header_len, 577 .cmd_dtype = { 578 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO, 579 .tso = 1, 580 }, 581 .flex0 = metadata->bytes[0], 582 .flex5 = metadata->bytes[5], 583 .flex6 = metadata->bytes[6], 584 .flex7 = metadata->bytes[7], 585 .flex8 = metadata->bytes[8], 586 .flex9 = metadata->bytes[9], 587 .flex10 = metadata->bytes[10], 588 .flex11 = metadata->bytes[11], 589 }; 590 desc->tso_total_len = skb->len - header_len; 591 desc->mss = skb_shinfo(skb)->gso_size; 592 } 593 594 static void 595 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc, 596 const struct gve_tx_metadata_dqo *metadata) 597 { 598 *desc = (struct gve_tx_general_context_desc_dqo){ 599 .flex0 = metadata->bytes[0], 600 .flex1 = metadata->bytes[1], 601 .flex2 = metadata->bytes[2], 602 .flex3 = metadata->bytes[3], 603 .flex4 = metadata->bytes[4], 604 .flex5 = metadata->bytes[5], 605 .flex6 = metadata->bytes[6], 606 .flex7 = metadata->bytes[7], 607 .flex8 = metadata->bytes[8], 608 .flex9 = metadata->bytes[9], 609 .flex10 = metadata->bytes[10], 610 .flex11 = metadata->bytes[11], 611 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO}, 612 }; 613 } 614 615 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx, 616 struct sk_buff *skb, 617 struct gve_tx_pending_packet_dqo *pkt, 618 s16 completion_tag, 619 u32 *desc_idx, 620 bool is_gso) 621 { 622 const struct skb_shared_info *shinfo = skb_shinfo(skb); 623 int i; 624 625 /* Note: HW requires that the size of a non-TSO packet be within the 626 * range of [17, 9728]. 627 * 628 * We don't double check because 629 * - We limited `netdev->min_mtu` to ETH_MIN_MTU. 630 * - Hypervisor won't allow MTU larger than 9216. 631 */ 632 633 pkt->num_bufs = 0; 634 /* Map the linear portion of skb */ 635 { 636 u32 len = skb_headlen(skb); 637 dma_addr_t addr; 638 639 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 640 if (unlikely(dma_mapping_error(tx->dev, addr))) 641 goto err; 642 643 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 644 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 645 ++pkt->num_bufs; 646 647 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 648 completion_tag, 649 /*eop=*/shinfo->nr_frags == 0, is_gso); 650 } 651 652 for (i = 0; i < shinfo->nr_frags; i++) { 653 const skb_frag_t *frag = &shinfo->frags[i]; 654 bool is_eop = i == (shinfo->nr_frags - 1); 655 u32 len = skb_frag_size(frag); 656 dma_addr_t addr; 657 658 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 659 if (unlikely(dma_mapping_error(tx->dev, addr))) 660 goto err; 661 662 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 663 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), pkt, 664 dma[pkt->num_bufs], addr); 665 ++pkt->num_bufs; 666 667 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 668 completion_tag, is_eop, is_gso); 669 } 670 671 return 0; 672 err: 673 for (i = 0; i < pkt->num_bufs; i++) { 674 if (i == 0) { 675 dma_unmap_single(tx->dev, 676 dma_unmap_addr(pkt, dma[i]), 677 dma_unmap_len(pkt, len[i]), 678 DMA_TO_DEVICE); 679 } else { 680 dma_unmap_page(tx->dev, 681 dma_unmap_addr(pkt, dma[i]), 682 dma_unmap_len(pkt, len[i]), 683 DMA_TO_DEVICE); 684 } 685 } 686 pkt->num_bufs = 0; 687 return -1; 688 } 689 690 /* Tx buffer i corresponds to 691 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO 692 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO 693 */ 694 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx, 695 s16 index, 696 void **va, dma_addr_t *dma_addr) 697 { 698 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO); 699 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO; 700 701 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset; 702 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset; 703 } 704 705 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx, 706 struct sk_buff *skb, 707 struct gve_tx_pending_packet_dqo *pkt, 708 s16 completion_tag, 709 u32 *desc_idx, 710 bool is_gso) 711 { 712 u32 copy_offset = 0; 713 dma_addr_t dma_addr; 714 u32 copy_len; 715 s16 index; 716 void *va; 717 718 /* Break the packet into buffer size chunks */ 719 pkt->num_bufs = 0; 720 while (copy_offset < skb->len) { 721 index = gve_alloc_tx_qpl_buf(tx); 722 if (unlikely(index == -1)) 723 goto err; 724 725 gve_tx_buf_get_addr(tx, index, &va, &dma_addr); 726 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO, 727 skb->len - copy_offset); 728 skb_copy_bits(skb, copy_offset, va, copy_len); 729 730 copy_offset += copy_len; 731 dma_sync_single_for_device(tx->dev, dma_addr, 732 copy_len, DMA_TO_DEVICE); 733 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, 734 copy_len, 735 dma_addr, 736 completion_tag, 737 copy_offset == skb->len, 738 is_gso); 739 740 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index; 741 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt; 742 ++pkt->num_bufs; 743 } 744 745 return 0; 746 err: 747 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */ 748 gve_free_tx_qpl_bufs(tx, pkt); 749 return -ENOMEM; 750 } 751 752 /* Returns 0 on success, or < 0 on error. 753 * 754 * Before this function is called, the caller must ensure 755 * gve_has_pending_packet(tx) returns true. 756 */ 757 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx, 758 struct sk_buff *skb) 759 { 760 const bool is_gso = skb_is_gso(skb); 761 u32 desc_idx = tx->dqo_tx.tail; 762 struct gve_tx_pending_packet_dqo *pkt; 763 struct gve_tx_metadata_dqo metadata; 764 s16 completion_tag; 765 766 pkt = gve_alloc_pending_packet(tx); 767 if (!pkt) 768 return -ENOMEM; 769 770 pkt->skb = skb; 771 completion_tag = pkt - tx->dqo.pending_packets; 772 773 gve_extract_tx_metadata_dqo(skb, &metadata); 774 if (is_gso) { 775 int header_len = gve_prep_tso(skb); 776 777 if (unlikely(header_len < 0)) 778 goto err; 779 780 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx, 781 skb, &metadata, header_len); 782 desc_idx = (desc_idx + 1) & tx->mask; 783 } 784 785 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx, 786 &metadata); 787 desc_idx = (desc_idx + 1) & tx->mask; 788 789 if (tx->dqo.qpl) { 790 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt, 791 completion_tag, 792 &desc_idx, is_gso)) 793 goto err; 794 } else { 795 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt, 796 completion_tag, 797 &desc_idx, is_gso)) 798 goto err; 799 } 800 801 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs; 802 803 /* Commit the changes to our state */ 804 tx->dqo_tx.tail = desc_idx; 805 806 /* Request a descriptor completion on the last descriptor of the 807 * packet if we are allowed to by the HW enforced interval. 808 */ 809 { 810 u32 last_desc_idx = (desc_idx - 1) & tx->mask; 811 u32 last_report_event_interval = 812 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask; 813 814 if (unlikely(last_report_event_interval >= 815 GVE_TX_MIN_RE_INTERVAL)) { 816 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true; 817 tx->dqo_tx.last_re_idx = last_desc_idx; 818 } 819 } 820 821 return 0; 822 823 err: 824 pkt->skb = NULL; 825 gve_free_pending_packet(tx, pkt); 826 827 return -1; 828 } 829 830 static int gve_num_descs_per_buf(size_t size) 831 { 832 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO); 833 } 834 835 static int gve_num_buffer_descs_needed(const struct sk_buff *skb) 836 { 837 const struct skb_shared_info *shinfo = skb_shinfo(skb); 838 int num_descs; 839 int i; 840 841 num_descs = gve_num_descs_per_buf(skb_headlen(skb)); 842 843 for (i = 0; i < shinfo->nr_frags; i++) { 844 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]); 845 846 num_descs += gve_num_descs_per_buf(frag_size); 847 } 848 849 return num_descs; 850 } 851 852 /* Returns true if HW is capable of sending TSO represented by `skb`. 853 * 854 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers. 855 * - The header is counted as one buffer for every single segment. 856 * - A buffer which is split between two segments is counted for both. 857 * - If a buffer contains both header and payload, it is counted as two buffers. 858 */ 859 static bool gve_can_send_tso(const struct sk_buff *skb) 860 { 861 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1; 862 const struct skb_shared_info *shinfo = skb_shinfo(skb); 863 const int header_len = skb_tcp_all_headers(skb); 864 const int gso_size = shinfo->gso_size; 865 int cur_seg_num_bufs; 866 int prev_frag_size; 867 int cur_seg_size; 868 int i; 869 870 cur_seg_size = skb_headlen(skb) - header_len; 871 prev_frag_size = skb_headlen(skb); 872 cur_seg_num_bufs = cur_seg_size > 0; 873 874 for (i = 0; i < shinfo->nr_frags; i++) { 875 if (cur_seg_size >= gso_size) { 876 cur_seg_size %= gso_size; 877 cur_seg_num_bufs = cur_seg_size > 0; 878 879 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) { 880 int prev_frag_remain = prev_frag_size % 881 GVE_TX_MAX_BUF_SIZE_DQO; 882 883 /* If the last descriptor of the previous frag 884 * is less than cur_seg_size, the segment will 885 * span two descriptors in the previous frag. 886 * Since max gso size (9728) is less than 887 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible 888 * for the segment to span more than two 889 * descriptors. 890 */ 891 if (prev_frag_remain && 892 cur_seg_size > prev_frag_remain) 893 cur_seg_num_bufs++; 894 } 895 } 896 897 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg)) 898 return false; 899 900 prev_frag_size = skb_frag_size(&shinfo->frags[i]); 901 cur_seg_size += prev_frag_size; 902 } 903 904 return true; 905 } 906 907 netdev_features_t gve_features_check_dqo(struct sk_buff *skb, 908 struct net_device *dev, 909 netdev_features_t features) 910 { 911 if (skb_is_gso(skb) && !gve_can_send_tso(skb)) 912 return features & ~NETIF_F_GSO_MASK; 913 914 return features; 915 } 916 917 /* Attempt to transmit specified SKB. 918 * 919 * Returns 0 if the SKB was transmitted or dropped. 920 * Returns -1 if there is not currently enough space to transmit the SKB. 921 */ 922 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx, 923 struct sk_buff *skb) 924 { 925 int num_buffer_descs; 926 int total_num_descs; 927 928 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb))) 929 goto drop; 930 931 if (tx->dqo.qpl) { 932 /* We do not need to verify the number of buffers used per 933 * packet or per segment in case of TSO as with 2K size buffers 934 * none of the TX packet rules would be violated. 935 * 936 * gve_can_send_tso() checks that each TCP segment of gso_size is 937 * not distributed over more than 9 SKB frags.. 938 */ 939 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO); 940 } else { 941 num_buffer_descs = gve_num_buffer_descs_needed(skb); 942 if (!skb_is_gso(skb)) { 943 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) { 944 if (unlikely(skb_linearize(skb) < 0)) 945 goto drop; 946 947 num_buffer_descs = 1; 948 } 949 } 950 } 951 952 /* Metadata + (optional TSO) + data descriptors. */ 953 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs; 954 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs + 955 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP, 956 num_buffer_descs))) { 957 return -1; 958 } 959 960 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0)) 961 goto drop; 962 963 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 964 skb_tx_timestamp(skb); 965 return 0; 966 967 drop: 968 tx->dropped_pkt++; 969 dev_kfree_skb_any(skb); 970 return 0; 971 } 972 973 /* Transmit a given skb and ring the doorbell. */ 974 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev) 975 { 976 struct gve_priv *priv = netdev_priv(dev); 977 struct gve_tx_ring *tx; 978 979 tx = &priv->tx[skb_get_queue_mapping(skb)]; 980 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) { 981 /* We need to ring the txq doorbell -- we have stopped the Tx 982 * queue for want of resources, but prior calls to gve_tx() 983 * may have added descriptors without ringing the doorbell. 984 */ 985 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 986 return NETDEV_TX_BUSY; 987 } 988 989 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 990 return NETDEV_TX_OK; 991 992 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 993 return NETDEV_TX_OK; 994 } 995 996 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list, 997 struct gve_tx_pending_packet_dqo *pending_packet) 998 { 999 s16 old_tail, index; 1000 1001 index = pending_packet - tx->dqo.pending_packets; 1002 old_tail = list->tail; 1003 list->tail = index; 1004 if (old_tail == -1) 1005 list->head = index; 1006 else 1007 tx->dqo.pending_packets[old_tail].next = index; 1008 1009 pending_packet->next = -1; 1010 pending_packet->prev = old_tail; 1011 } 1012 1013 static void remove_from_list(struct gve_tx_ring *tx, 1014 struct gve_index_list *list, 1015 struct gve_tx_pending_packet_dqo *pkt) 1016 { 1017 s16 prev_index, next_index; 1018 1019 prev_index = pkt->prev; 1020 next_index = pkt->next; 1021 1022 if (prev_index == -1) { 1023 /* Node is head */ 1024 list->head = next_index; 1025 } else { 1026 tx->dqo.pending_packets[prev_index].next = next_index; 1027 } 1028 if (next_index == -1) { 1029 /* Node is tail */ 1030 list->tail = prev_index; 1031 } else { 1032 tx->dqo.pending_packets[next_index].prev = prev_index; 1033 } 1034 } 1035 1036 static void gve_unmap_packet(struct device *dev, 1037 struct gve_tx_pending_packet_dqo *pkt) 1038 { 1039 int i; 1040 1041 /* SKB linear portion is guaranteed to be mapped */ 1042 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]), 1043 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE); 1044 for (i = 1; i < pkt->num_bufs; i++) { 1045 netmem_dma_unmap_page_attrs(dev, dma_unmap_addr(pkt, dma[i]), 1046 dma_unmap_len(pkt, len[i]), 1047 DMA_TO_DEVICE, 0); 1048 } 1049 pkt->num_bufs = 0; 1050 } 1051 1052 /* Completion types and expected behavior: 1053 * No Miss compl + Packet compl = Packet completed normally. 1054 * Miss compl + Re-inject compl = Packet completed normally. 1055 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed. 1056 * Miss compl + Packet compl = Skipped i.e. packet not completed. 1057 */ 1058 static void gve_handle_packet_completion(struct gve_priv *priv, 1059 struct gve_tx_ring *tx, bool is_napi, 1060 u16 compl_tag, u64 *bytes, u64 *pkts, 1061 bool is_reinjection) 1062 { 1063 struct gve_tx_pending_packet_dqo *pending_packet; 1064 1065 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1066 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1067 priv->dev->name, (int)compl_tag); 1068 return; 1069 } 1070 1071 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1072 1073 if (unlikely(is_reinjection)) { 1074 if (unlikely(pending_packet->state == 1075 GVE_PACKET_STATE_TIMED_OUT_COMPL)) { 1076 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n", 1077 priv->dev->name, (int)compl_tag); 1078 /* Packet was already completed as a result of timeout, 1079 * so just remove from list and free pending packet. 1080 */ 1081 remove_from_list(tx, 1082 &tx->dqo_compl.timed_out_completions, 1083 pending_packet); 1084 gve_free_pending_packet(tx, pending_packet); 1085 return; 1086 } 1087 if (unlikely(pending_packet->state != 1088 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) { 1089 /* No outstanding miss completion but packet allocated 1090 * implies packet receives a re-injection completion 1091 * without a prior miss completion. Return without 1092 * completing the packet. 1093 */ 1094 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n", 1095 priv->dev->name, (int)compl_tag); 1096 return; 1097 } 1098 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1099 pending_packet); 1100 } else { 1101 /* Packet is allocated but not a pending data completion. */ 1102 if (unlikely(pending_packet->state != 1103 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1104 net_err_ratelimited("%s: No pending data completion: %d\n", 1105 priv->dev->name, (int)compl_tag); 1106 return; 1107 } 1108 } 1109 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs; 1110 if (tx->dqo.qpl) 1111 gve_free_tx_qpl_bufs(tx, pending_packet); 1112 else 1113 gve_unmap_packet(tx->dev, pending_packet); 1114 1115 *bytes += pending_packet->skb->len; 1116 (*pkts)++; 1117 napi_consume_skb(pending_packet->skb, is_napi); 1118 pending_packet->skb = NULL; 1119 gve_free_pending_packet(tx, pending_packet); 1120 } 1121 1122 static void gve_handle_miss_completion(struct gve_priv *priv, 1123 struct gve_tx_ring *tx, u16 compl_tag, 1124 u64 *bytes, u64 *pkts) 1125 { 1126 struct gve_tx_pending_packet_dqo *pending_packet; 1127 1128 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1129 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1130 priv->dev->name, (int)compl_tag); 1131 return; 1132 } 1133 1134 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1135 if (unlikely(pending_packet->state != 1136 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1137 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n", 1138 priv->dev->name, (int)pending_packet->state, 1139 (int)compl_tag); 1140 return; 1141 } 1142 1143 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL; 1144 /* jiffies can wraparound but time comparisons can handle overflows. */ 1145 pending_packet->timeout_jiffies = 1146 jiffies + 1147 secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT); 1148 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet); 1149 1150 *bytes += pending_packet->skb->len; 1151 (*pkts)++; 1152 } 1153 1154 static void remove_miss_completions(struct gve_priv *priv, 1155 struct gve_tx_ring *tx) 1156 { 1157 struct gve_tx_pending_packet_dqo *pending_packet; 1158 s16 next_index; 1159 1160 next_index = tx->dqo_compl.miss_completions.head; 1161 while (next_index != -1) { 1162 pending_packet = &tx->dqo.pending_packets[next_index]; 1163 next_index = pending_packet->next; 1164 /* Break early because packets should timeout in order. */ 1165 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1166 break; 1167 1168 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1169 pending_packet); 1170 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e. 1171 * the completion tag is not freed to ensure that the driver 1172 * can take appropriate action if a corresponding valid 1173 * completion is received later. 1174 */ 1175 if (tx->dqo.qpl) 1176 gve_free_tx_qpl_bufs(tx, pending_packet); 1177 else 1178 gve_unmap_packet(tx->dev, pending_packet); 1179 1180 /* This indicates the packet was dropped. */ 1181 dev_kfree_skb_any(pending_packet->skb); 1182 pending_packet->skb = NULL; 1183 tx->dropped_pkt++; 1184 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n", 1185 priv->dev->name, 1186 (int)(pending_packet - tx->dqo.pending_packets)); 1187 1188 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL; 1189 pending_packet->timeout_jiffies = 1190 jiffies + 1191 secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT); 1192 /* Maintain pending packet in another list so the packet can be 1193 * unallocated at a later time. 1194 */ 1195 add_to_list(tx, &tx->dqo_compl.timed_out_completions, 1196 pending_packet); 1197 } 1198 } 1199 1200 static void remove_timed_out_completions(struct gve_priv *priv, 1201 struct gve_tx_ring *tx) 1202 { 1203 struct gve_tx_pending_packet_dqo *pending_packet; 1204 s16 next_index; 1205 1206 next_index = tx->dqo_compl.timed_out_completions.head; 1207 while (next_index != -1) { 1208 pending_packet = &tx->dqo.pending_packets[next_index]; 1209 next_index = pending_packet->next; 1210 /* Break early because packets should timeout in order. */ 1211 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1212 break; 1213 1214 remove_from_list(tx, &tx->dqo_compl.timed_out_completions, 1215 pending_packet); 1216 gve_free_pending_packet(tx, pending_packet); 1217 } 1218 } 1219 1220 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 1221 struct napi_struct *napi) 1222 { 1223 u64 reinject_compl_bytes = 0; 1224 u64 reinject_compl_pkts = 0; 1225 int num_descs_cleaned = 0; 1226 u64 miss_compl_bytes = 0; 1227 u64 miss_compl_pkts = 0; 1228 u64 pkt_compl_bytes = 0; 1229 u64 pkt_compl_pkts = 0; 1230 1231 /* Limit in order to avoid blocking for too long */ 1232 while (!napi || pkt_compl_pkts < napi->weight) { 1233 struct gve_tx_compl_desc *compl_desc = 1234 &tx->dqo.compl_ring[tx->dqo_compl.head]; 1235 u16 type; 1236 1237 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit) 1238 break; 1239 1240 /* Prefetch the next descriptor. */ 1241 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) & 1242 tx->dqo.complq_mask]); 1243 1244 /* Do not read data until we own the descriptor */ 1245 dma_rmb(); 1246 type = compl_desc->type; 1247 1248 if (type == GVE_COMPL_TYPE_DQO_DESC) { 1249 /* This is the last descriptor fetched by HW plus one */ 1250 u16 tx_head = le16_to_cpu(compl_desc->tx_head); 1251 1252 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head); 1253 } else if (type == GVE_COMPL_TYPE_DQO_PKT) { 1254 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1255 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) { 1256 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT; 1257 gve_handle_miss_completion(priv, tx, compl_tag, 1258 &miss_compl_bytes, 1259 &miss_compl_pkts); 1260 } else { 1261 gve_handle_packet_completion(priv, tx, !!napi, 1262 compl_tag, 1263 &pkt_compl_bytes, 1264 &pkt_compl_pkts, 1265 false); 1266 } 1267 } else if (type == GVE_COMPL_TYPE_DQO_MISS) { 1268 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1269 1270 gve_handle_miss_completion(priv, tx, compl_tag, 1271 &miss_compl_bytes, 1272 &miss_compl_pkts); 1273 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) { 1274 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1275 1276 gve_handle_packet_completion(priv, tx, !!napi, 1277 compl_tag, 1278 &reinject_compl_bytes, 1279 &reinject_compl_pkts, 1280 true); 1281 } 1282 1283 tx->dqo_compl.head = 1284 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask; 1285 /* Flip the generation bit when we wrap around */ 1286 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0; 1287 num_descs_cleaned++; 1288 } 1289 1290 netdev_tx_completed_queue(tx->netdev_txq, 1291 pkt_compl_pkts + miss_compl_pkts, 1292 pkt_compl_bytes + miss_compl_bytes); 1293 1294 remove_miss_completions(priv, tx); 1295 remove_timed_out_completions(priv, tx); 1296 1297 u64_stats_update_begin(&tx->statss); 1298 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes; 1299 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts; 1300 u64_stats_update_end(&tx->statss); 1301 return num_descs_cleaned; 1302 } 1303 1304 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean) 1305 { 1306 struct gve_tx_compl_desc *compl_desc; 1307 struct gve_tx_ring *tx = block->tx; 1308 struct gve_priv *priv = block->priv; 1309 1310 if (do_clean) { 1311 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx, 1312 &block->napi); 1313 1314 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */ 1315 mb(); 1316 1317 if (netif_tx_queue_stopped(tx->netdev_txq) && 1318 num_descs_cleaned > 0) { 1319 tx->wake_queue++; 1320 netif_tx_wake_queue(tx->netdev_txq); 1321 } 1322 } 1323 1324 /* Return true if we still have work. */ 1325 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head]; 1326 return compl_desc->generation != tx->dqo_compl.cur_gen_bit; 1327 } 1328