1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include "gve_dqo.h" 11 #include <net/ip.h> 12 #include <linux/tcp.h> 13 #include <linux/slab.h> 14 #include <linux/skbuff.h> 15 16 /* Returns true if tx_bufs are available. */ 17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count) 18 { 19 int num_avail; 20 21 if (!tx->dqo.qpl) 22 return true; 23 24 num_avail = tx->dqo.num_tx_qpl_bufs - 25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 26 tx->dqo_tx.free_tx_qpl_buf_cnt); 27 28 if (count <= num_avail) 29 return true; 30 31 /* Update cached value from dqo_compl. */ 32 tx->dqo_tx.free_tx_qpl_buf_cnt = 33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt); 34 35 num_avail = tx->dqo.num_tx_qpl_bufs - 36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 37 tx->dqo_tx.free_tx_qpl_buf_cnt); 38 39 return count <= num_avail; 40 } 41 42 static s16 43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx) 44 { 45 s16 index; 46 47 index = tx->dqo_tx.free_tx_qpl_buf_head; 48 49 /* No TX buffers available, try to steal the list from the 50 * completion handler. 51 */ 52 if (unlikely(index == -1)) { 53 tx->dqo_tx.free_tx_qpl_buf_head = 54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 55 index = tx->dqo_tx.free_tx_qpl_buf_head; 56 57 if (unlikely(index == -1)) 58 return index; 59 } 60 61 /* Remove TX buf from free list */ 62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index]; 63 64 return index; 65 } 66 67 static void 68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx, 69 struct gve_tx_pending_packet_dqo *pkt) 70 { 71 s16 index; 72 int i; 73 74 if (!pkt->num_bufs) 75 return; 76 77 index = pkt->tx_qpl_buf_ids[0]; 78 /* Create a linked list of buffers to be added to the free list */ 79 for (i = 1; i < pkt->num_bufs; i++) { 80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i]; 81 index = pkt->tx_qpl_buf_ids[i]; 82 } 83 84 while (true) { 85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head); 86 87 tx->dqo.tx_qpl_buf_next[index] = old_head; 88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head, 89 old_head, 90 pkt->tx_qpl_buf_ids[0]) == old_head) { 91 break; 92 } 93 } 94 95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt); 96 pkt->num_bufs = 0; 97 } 98 99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */ 100 static bool gve_has_pending_packet(struct gve_tx_ring *tx) 101 { 102 /* Check TX path's list. */ 103 if (tx->dqo_tx.free_pending_packets != -1) 104 return true; 105 106 /* Check completion handler's list. */ 107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1) 108 return true; 109 110 return false; 111 } 112 113 static struct gve_tx_pending_packet_dqo * 114 gve_alloc_pending_packet(struct gve_tx_ring *tx) 115 { 116 struct gve_tx_pending_packet_dqo *pending_packet; 117 s16 index; 118 119 index = tx->dqo_tx.free_pending_packets; 120 121 /* No pending_packets available, try to steal the list from the 122 * completion handler. 123 */ 124 if (unlikely(index == -1)) { 125 tx->dqo_tx.free_pending_packets = 126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1); 127 index = tx->dqo_tx.free_pending_packets; 128 129 if (unlikely(index == -1)) 130 return NULL; 131 } 132 133 pending_packet = &tx->dqo.pending_packets[index]; 134 135 /* Remove pending_packet from free list */ 136 tx->dqo_tx.free_pending_packets = pending_packet->next; 137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL; 138 139 return pending_packet; 140 } 141 142 static void 143 gve_free_pending_packet(struct gve_tx_ring *tx, 144 struct gve_tx_pending_packet_dqo *pending_packet) 145 { 146 s16 index = pending_packet - tx->dqo.pending_packets; 147 148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED; 149 while (true) { 150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets); 151 152 pending_packet->next = old_head; 153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets, 154 old_head, index) == old_head) { 155 break; 156 } 157 } 158 } 159 160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers. 161 */ 162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx) 163 { 164 int i; 165 166 for (i = 0; i < tx->dqo.num_pending_packets; i++) { 167 struct gve_tx_pending_packet_dqo *cur_state = 168 &tx->dqo.pending_packets[i]; 169 int j; 170 171 for (j = 0; j < cur_state->num_bufs; j++) { 172 if (j == 0) { 173 dma_unmap_single(tx->dev, 174 dma_unmap_addr(cur_state, dma[j]), 175 dma_unmap_len(cur_state, len[j]), 176 DMA_TO_DEVICE); 177 } else { 178 dma_unmap_page(tx->dev, 179 dma_unmap_addr(cur_state, dma[j]), 180 dma_unmap_len(cur_state, len[j]), 181 DMA_TO_DEVICE); 182 } 183 } 184 if (cur_state->skb) { 185 dev_consume_skb_any(cur_state->skb); 186 cur_state->skb = NULL; 187 } 188 } 189 } 190 191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx) 192 { 193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 194 struct gve_tx_ring *tx = &priv->tx[idx]; 195 196 if (!gve_tx_was_added_to_block(priv, idx)) 197 return; 198 199 gve_remove_napi(priv, ntfy_idx); 200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL); 201 netdev_tx_reset_queue(tx->netdev_txq); 202 gve_tx_clean_pending_packets(tx); 203 gve_tx_remove_from_block(priv, idx); 204 } 205 206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 207 struct gve_tx_alloc_rings_cfg *cfg) 208 { 209 struct device *hdev = &priv->pdev->dev; 210 int idx = tx->q_num; 211 size_t bytes; 212 213 if (tx->q_resources) { 214 dma_free_coherent(hdev, sizeof(*tx->q_resources), 215 tx->q_resources, tx->q_resources_bus); 216 tx->q_resources = NULL; 217 } 218 219 if (tx->dqo.compl_ring) { 220 bytes = sizeof(tx->dqo.compl_ring[0]) * 221 (tx->dqo.complq_mask + 1); 222 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring, 223 tx->complq_bus_dqo); 224 tx->dqo.compl_ring = NULL; 225 } 226 227 if (tx->dqo.tx_ring) { 228 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 229 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus); 230 tx->dqo.tx_ring = NULL; 231 } 232 233 kvfree(tx->dqo.pending_packets); 234 tx->dqo.pending_packets = NULL; 235 236 kvfree(tx->dqo.tx_qpl_buf_next); 237 tx->dqo.tx_qpl_buf_next = NULL; 238 239 if (tx->dqo.qpl) { 240 gve_unassign_qpl(cfg->qpl_cfg, tx->dqo.qpl->id); 241 tx->dqo.qpl = NULL; 242 } 243 244 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 245 } 246 247 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx) 248 { 249 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO * 250 tx->dqo.qpl->num_entries; 251 int i; 252 253 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs, 254 sizeof(tx->dqo.tx_qpl_buf_next[0]), 255 GFP_KERNEL); 256 if (!tx->dqo.tx_qpl_buf_next) 257 return -ENOMEM; 258 259 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs; 260 261 /* Generate free TX buf list */ 262 for (i = 0; i < num_tx_qpl_bufs - 1; i++) 263 tx->dqo.tx_qpl_buf_next[i] = i + 1; 264 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1; 265 266 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 267 return 0; 268 } 269 270 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx) 271 { 272 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 273 struct gve_tx_ring *tx = &priv->tx[idx]; 274 275 gve_tx_add_to_block(priv, idx); 276 277 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 278 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 279 } 280 281 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv, 282 struct gve_tx_alloc_rings_cfg *cfg, 283 struct gve_tx_ring *tx, 284 int idx) 285 { 286 struct device *hdev = &priv->pdev->dev; 287 int num_pending_packets; 288 size_t bytes; 289 int i; 290 291 memset(tx, 0, sizeof(*tx)); 292 tx->q_num = idx; 293 tx->dev = hdev; 294 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0); 295 296 /* Queue sizes must be a power of 2 */ 297 tx->mask = cfg->ring_size - 1; 298 tx->dqo.complq_mask = tx->mask; 299 300 /* The max number of pending packets determines the maximum number of 301 * descriptors which maybe written to the completion queue. 302 * 303 * We must set the number small enough to make sure we never overrun the 304 * completion queue. 305 */ 306 num_pending_packets = tx->dqo.complq_mask + 1; 307 308 /* Reserve space for descriptor completions, which will be reported at 309 * most every GVE_TX_MIN_RE_INTERVAL packets. 310 */ 311 num_pending_packets -= 312 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL; 313 314 /* Each packet may have at most 2 buffer completions if it receives both 315 * a miss and reinjection completion. 316 */ 317 num_pending_packets /= 2; 318 319 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX); 320 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets, 321 sizeof(tx->dqo.pending_packets[0]), 322 GFP_KERNEL); 323 if (!tx->dqo.pending_packets) 324 goto err; 325 326 /* Set up linked list of pending packets */ 327 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++) 328 tx->dqo.pending_packets[i].next = i + 1; 329 330 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1; 331 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1); 332 tx->dqo_compl.miss_completions.head = -1; 333 tx->dqo_compl.miss_completions.tail = -1; 334 tx->dqo_compl.timed_out_completions.head = -1; 335 tx->dqo_compl.timed_out_completions.tail = -1; 336 337 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 338 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 339 if (!tx->dqo.tx_ring) 340 goto err; 341 342 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1); 343 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes, 344 &tx->complq_bus_dqo, 345 GFP_KERNEL); 346 if (!tx->dqo.compl_ring) 347 goto err; 348 349 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), 350 &tx->q_resources_bus, GFP_KERNEL); 351 if (!tx->q_resources) 352 goto err; 353 354 if (!cfg->raw_addressing) { 355 tx->dqo.qpl = gve_assign_tx_qpl(cfg, idx); 356 if (!tx->dqo.qpl) 357 goto err; 358 359 if (gve_tx_qpl_buf_init(tx)) 360 goto err; 361 } 362 363 return 0; 364 365 err: 366 gve_tx_free_ring_dqo(priv, tx, cfg); 367 return -ENOMEM; 368 } 369 370 int gve_tx_alloc_rings_dqo(struct gve_priv *priv, 371 struct gve_tx_alloc_rings_cfg *cfg) 372 { 373 struct gve_tx_ring *tx = cfg->tx; 374 int err = 0; 375 int i, j; 376 377 if (!cfg->raw_addressing && !cfg->qpls) { 378 netif_err(priv, drv, priv->dev, 379 "Cannot alloc QPL ring before allocing QPLs\n"); 380 return -EINVAL; 381 } 382 383 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 384 netif_err(priv, drv, priv->dev, 385 "Cannot alloc more than the max num of Tx rings\n"); 386 return -EINVAL; 387 } 388 389 if (cfg->start_idx == 0) { 390 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 391 GFP_KERNEL); 392 if (!tx) 393 return -ENOMEM; 394 } else if (!tx) { 395 netif_err(priv, drv, priv->dev, 396 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 397 return -EINVAL; 398 } 399 400 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 401 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i); 402 if (err) { 403 netif_err(priv, drv, priv->dev, 404 "Failed to alloc tx ring=%d: err=%d\n", 405 i, err); 406 goto err; 407 } 408 } 409 410 cfg->tx = tx; 411 return 0; 412 413 err: 414 for (j = 0; j < i; j++) 415 gve_tx_free_ring_dqo(priv, &tx[j], cfg); 416 if (cfg->start_idx == 0) 417 kvfree(tx); 418 return err; 419 } 420 421 void gve_tx_free_rings_dqo(struct gve_priv *priv, 422 struct gve_tx_alloc_rings_cfg *cfg) 423 { 424 struct gve_tx_ring *tx = cfg->tx; 425 int i; 426 427 if (!tx) 428 return; 429 430 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 431 gve_tx_free_ring_dqo(priv, &tx[i], cfg); 432 433 if (cfg->start_idx == 0) { 434 kvfree(tx); 435 cfg->tx = NULL; 436 } 437 } 438 439 /* Returns the number of slots available in the ring */ 440 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx) 441 { 442 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask; 443 444 return tx->mask - num_used; 445 } 446 447 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx, 448 int desc_count, int buf_count) 449 { 450 return gve_has_pending_packet(tx) && 451 num_avail_tx_slots(tx) >= desc_count && 452 gve_has_free_tx_qpl_bufs(tx, buf_count); 453 } 454 455 /* Stops the queue if available descriptors is less than 'count'. 456 * Return: 0 if stop is not required. 457 */ 458 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx, 459 int desc_count, int buf_count) 460 { 461 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 462 return 0; 463 464 /* Update cached TX head pointer */ 465 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 466 467 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 468 return 0; 469 470 /* No space, so stop the queue */ 471 tx->stop_queue++; 472 netif_tx_stop_queue(tx->netdev_txq); 473 474 /* Sync with restarting queue in `gve_tx_poll_dqo()` */ 475 mb(); 476 477 /* After stopping queue, check if we can transmit again in order to 478 * avoid TOCTOU bug. 479 */ 480 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 481 482 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 483 return -EBUSY; 484 485 netif_tx_start_queue(tx->netdev_txq); 486 tx->wake_queue++; 487 return 0; 488 } 489 490 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb, 491 struct gve_tx_metadata_dqo *metadata) 492 { 493 memset(metadata, 0, sizeof(*metadata)); 494 metadata->version = GVE_TX_METADATA_VERSION_DQO; 495 496 if (skb->l4_hash) { 497 u16 path_hash = skb->hash ^ (skb->hash >> 16); 498 499 path_hash &= (1 << 15) - 1; 500 if (unlikely(path_hash == 0)) 501 path_hash = ~path_hash; 502 503 metadata->path_hash = path_hash; 504 } 505 } 506 507 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx, 508 struct sk_buff *skb, u32 len, u64 addr, 509 s16 compl_tag, bool eop, bool is_gso) 510 { 511 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL; 512 513 while (len > 0) { 514 struct gve_tx_pkt_desc_dqo *desc = 515 &tx->dqo.tx_ring[*desc_idx].pkt; 516 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO); 517 bool cur_eop = eop && cur_len == len; 518 519 *desc = (struct gve_tx_pkt_desc_dqo){ 520 .buf_addr = cpu_to_le64(addr), 521 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO, 522 .end_of_packet = cur_eop, 523 .checksum_offload_enable = checksum_offload_en, 524 .compl_tag = cpu_to_le16(compl_tag), 525 .buf_size = cur_len, 526 }; 527 528 addr += cur_len; 529 len -= cur_len; 530 *desc_idx = (*desc_idx + 1) & tx->mask; 531 } 532 } 533 534 /* Validates and prepares `skb` for TSO. 535 * 536 * Returns header length, or < 0 if invalid. 537 */ 538 static int gve_prep_tso(struct sk_buff *skb) 539 { 540 struct tcphdr *tcp; 541 int header_len; 542 u32 paylen; 543 int err; 544 545 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length 546 * of the TSO to be <= 262143. 547 * 548 * However, we don't validate these because: 549 * - Hypervisor enforces a limit of 9K MTU 550 * - Kernel will not produce a TSO larger than 64k 551 */ 552 553 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO)) 554 return -1; 555 556 /* Needed because we will modify header. */ 557 err = skb_cow_head(skb, 0); 558 if (err < 0) 559 return err; 560 561 tcp = tcp_hdr(skb); 562 563 /* Remove payload length from checksum. */ 564 paylen = skb->len - skb_transport_offset(skb); 565 566 switch (skb_shinfo(skb)->gso_type) { 567 case SKB_GSO_TCPV4: 568 case SKB_GSO_TCPV6: 569 csum_replace_by_diff(&tcp->check, 570 (__force __wsum)htonl(paylen)); 571 572 /* Compute length of segmentation header. */ 573 header_len = skb_tcp_all_headers(skb); 574 break; 575 default: 576 return -EINVAL; 577 } 578 579 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO)) 580 return -EINVAL; 581 582 return header_len; 583 } 584 585 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc, 586 const struct sk_buff *skb, 587 const struct gve_tx_metadata_dqo *metadata, 588 int header_len) 589 { 590 *desc = (struct gve_tx_tso_context_desc_dqo){ 591 .header_len = header_len, 592 .cmd_dtype = { 593 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO, 594 .tso = 1, 595 }, 596 .flex0 = metadata->bytes[0], 597 .flex5 = metadata->bytes[5], 598 .flex6 = metadata->bytes[6], 599 .flex7 = metadata->bytes[7], 600 .flex8 = metadata->bytes[8], 601 .flex9 = metadata->bytes[9], 602 .flex10 = metadata->bytes[10], 603 .flex11 = metadata->bytes[11], 604 }; 605 desc->tso_total_len = skb->len - header_len; 606 desc->mss = skb_shinfo(skb)->gso_size; 607 } 608 609 static void 610 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc, 611 const struct gve_tx_metadata_dqo *metadata) 612 { 613 *desc = (struct gve_tx_general_context_desc_dqo){ 614 .flex0 = metadata->bytes[0], 615 .flex1 = metadata->bytes[1], 616 .flex2 = metadata->bytes[2], 617 .flex3 = metadata->bytes[3], 618 .flex4 = metadata->bytes[4], 619 .flex5 = metadata->bytes[5], 620 .flex6 = metadata->bytes[6], 621 .flex7 = metadata->bytes[7], 622 .flex8 = metadata->bytes[8], 623 .flex9 = metadata->bytes[9], 624 .flex10 = metadata->bytes[10], 625 .flex11 = metadata->bytes[11], 626 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO}, 627 }; 628 } 629 630 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx, 631 struct sk_buff *skb, 632 struct gve_tx_pending_packet_dqo *pkt, 633 s16 completion_tag, 634 u32 *desc_idx, 635 bool is_gso) 636 { 637 const struct skb_shared_info *shinfo = skb_shinfo(skb); 638 int i; 639 640 /* Note: HW requires that the size of a non-TSO packet be within the 641 * range of [17, 9728]. 642 * 643 * We don't double check because 644 * - We limited `netdev->min_mtu` to ETH_MIN_MTU. 645 * - Hypervisor won't allow MTU larger than 9216. 646 */ 647 648 pkt->num_bufs = 0; 649 /* Map the linear portion of skb */ 650 { 651 u32 len = skb_headlen(skb); 652 dma_addr_t addr; 653 654 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 655 if (unlikely(dma_mapping_error(tx->dev, addr))) 656 goto err; 657 658 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 659 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 660 ++pkt->num_bufs; 661 662 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 663 completion_tag, 664 /*eop=*/shinfo->nr_frags == 0, is_gso); 665 } 666 667 for (i = 0; i < shinfo->nr_frags; i++) { 668 const skb_frag_t *frag = &shinfo->frags[i]; 669 bool is_eop = i == (shinfo->nr_frags - 1); 670 u32 len = skb_frag_size(frag); 671 dma_addr_t addr; 672 673 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 674 if (unlikely(dma_mapping_error(tx->dev, addr))) 675 goto err; 676 677 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 678 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 679 ++pkt->num_bufs; 680 681 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 682 completion_tag, is_eop, is_gso); 683 } 684 685 return 0; 686 err: 687 for (i = 0; i < pkt->num_bufs; i++) { 688 if (i == 0) { 689 dma_unmap_single(tx->dev, 690 dma_unmap_addr(pkt, dma[i]), 691 dma_unmap_len(pkt, len[i]), 692 DMA_TO_DEVICE); 693 } else { 694 dma_unmap_page(tx->dev, 695 dma_unmap_addr(pkt, dma[i]), 696 dma_unmap_len(pkt, len[i]), 697 DMA_TO_DEVICE); 698 } 699 } 700 pkt->num_bufs = 0; 701 return -1; 702 } 703 704 /* Tx buffer i corresponds to 705 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO 706 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO 707 */ 708 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx, 709 s16 index, 710 void **va, dma_addr_t *dma_addr) 711 { 712 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO); 713 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO; 714 715 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset; 716 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset; 717 } 718 719 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx, 720 struct sk_buff *skb, 721 struct gve_tx_pending_packet_dqo *pkt, 722 s16 completion_tag, 723 u32 *desc_idx, 724 bool is_gso) 725 { 726 u32 copy_offset = 0; 727 dma_addr_t dma_addr; 728 u32 copy_len; 729 s16 index; 730 void *va; 731 732 /* Break the packet into buffer size chunks */ 733 pkt->num_bufs = 0; 734 while (copy_offset < skb->len) { 735 index = gve_alloc_tx_qpl_buf(tx); 736 if (unlikely(index == -1)) 737 goto err; 738 739 gve_tx_buf_get_addr(tx, index, &va, &dma_addr); 740 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO, 741 skb->len - copy_offset); 742 skb_copy_bits(skb, copy_offset, va, copy_len); 743 744 copy_offset += copy_len; 745 dma_sync_single_for_device(tx->dev, dma_addr, 746 copy_len, DMA_TO_DEVICE); 747 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, 748 copy_len, 749 dma_addr, 750 completion_tag, 751 copy_offset == skb->len, 752 is_gso); 753 754 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index; 755 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt; 756 ++pkt->num_bufs; 757 } 758 759 return 0; 760 err: 761 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */ 762 gve_free_tx_qpl_bufs(tx, pkt); 763 return -ENOMEM; 764 } 765 766 /* Returns 0 on success, or < 0 on error. 767 * 768 * Before this function is called, the caller must ensure 769 * gve_has_pending_packet(tx) returns true. 770 */ 771 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx, 772 struct sk_buff *skb) 773 { 774 const bool is_gso = skb_is_gso(skb); 775 u32 desc_idx = tx->dqo_tx.tail; 776 struct gve_tx_pending_packet_dqo *pkt; 777 struct gve_tx_metadata_dqo metadata; 778 s16 completion_tag; 779 780 pkt = gve_alloc_pending_packet(tx); 781 pkt->skb = skb; 782 completion_tag = pkt - tx->dqo.pending_packets; 783 784 gve_extract_tx_metadata_dqo(skb, &metadata); 785 if (is_gso) { 786 int header_len = gve_prep_tso(skb); 787 788 if (unlikely(header_len < 0)) 789 goto err; 790 791 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx, 792 skb, &metadata, header_len); 793 desc_idx = (desc_idx + 1) & tx->mask; 794 } 795 796 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx, 797 &metadata); 798 desc_idx = (desc_idx + 1) & tx->mask; 799 800 if (tx->dqo.qpl) { 801 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt, 802 completion_tag, 803 &desc_idx, is_gso)) 804 goto err; 805 } else { 806 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt, 807 completion_tag, 808 &desc_idx, is_gso)) 809 goto err; 810 } 811 812 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs; 813 814 /* Commit the changes to our state */ 815 tx->dqo_tx.tail = desc_idx; 816 817 /* Request a descriptor completion on the last descriptor of the 818 * packet if we are allowed to by the HW enforced interval. 819 */ 820 { 821 u32 last_desc_idx = (desc_idx - 1) & tx->mask; 822 u32 last_report_event_interval = 823 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask; 824 825 if (unlikely(last_report_event_interval >= 826 GVE_TX_MIN_RE_INTERVAL)) { 827 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true; 828 tx->dqo_tx.last_re_idx = last_desc_idx; 829 } 830 } 831 832 return 0; 833 834 err: 835 pkt->skb = NULL; 836 gve_free_pending_packet(tx, pkt); 837 838 return -1; 839 } 840 841 static int gve_num_descs_per_buf(size_t size) 842 { 843 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO); 844 } 845 846 static int gve_num_buffer_descs_needed(const struct sk_buff *skb) 847 { 848 const struct skb_shared_info *shinfo = skb_shinfo(skb); 849 int num_descs; 850 int i; 851 852 num_descs = gve_num_descs_per_buf(skb_headlen(skb)); 853 854 for (i = 0; i < shinfo->nr_frags; i++) { 855 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]); 856 857 num_descs += gve_num_descs_per_buf(frag_size); 858 } 859 860 return num_descs; 861 } 862 863 /* Returns true if HW is capable of sending TSO represented by `skb`. 864 * 865 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers. 866 * - The header is counted as one buffer for every single segment. 867 * - A buffer which is split between two segments is counted for both. 868 * - If a buffer contains both header and payload, it is counted as two buffers. 869 */ 870 static bool gve_can_send_tso(const struct sk_buff *skb) 871 { 872 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1; 873 const struct skb_shared_info *shinfo = skb_shinfo(skb); 874 const int header_len = skb_tcp_all_headers(skb); 875 const int gso_size = shinfo->gso_size; 876 int cur_seg_num_bufs; 877 int cur_seg_size; 878 int i; 879 880 cur_seg_size = skb_headlen(skb) - header_len; 881 cur_seg_num_bufs = cur_seg_size > 0; 882 883 for (i = 0; i < shinfo->nr_frags; i++) { 884 if (cur_seg_size >= gso_size) { 885 cur_seg_size %= gso_size; 886 cur_seg_num_bufs = cur_seg_size > 0; 887 } 888 889 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg)) 890 return false; 891 892 cur_seg_size += skb_frag_size(&shinfo->frags[i]); 893 } 894 895 return true; 896 } 897 898 netdev_features_t gve_features_check_dqo(struct sk_buff *skb, 899 struct net_device *dev, 900 netdev_features_t features) 901 { 902 if (skb_is_gso(skb) && !gve_can_send_tso(skb)) 903 return features & ~NETIF_F_GSO_MASK; 904 905 return features; 906 } 907 908 /* Attempt to transmit specified SKB. 909 * 910 * Returns 0 if the SKB was transmitted or dropped. 911 * Returns -1 if there is not currently enough space to transmit the SKB. 912 */ 913 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx, 914 struct sk_buff *skb) 915 { 916 int num_buffer_descs; 917 int total_num_descs; 918 919 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb))) 920 goto drop; 921 922 if (tx->dqo.qpl) { 923 /* We do not need to verify the number of buffers used per 924 * packet or per segment in case of TSO as with 2K size buffers 925 * none of the TX packet rules would be violated. 926 * 927 * gve_can_send_tso() checks that each TCP segment of gso_size is 928 * not distributed over more than 9 SKB frags.. 929 */ 930 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO); 931 } else { 932 num_buffer_descs = gve_num_buffer_descs_needed(skb); 933 if (!skb_is_gso(skb)) { 934 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) { 935 if (unlikely(skb_linearize(skb) < 0)) 936 goto drop; 937 938 num_buffer_descs = 1; 939 } 940 } 941 } 942 943 /* Metadata + (optional TSO) + data descriptors. */ 944 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs; 945 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs + 946 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP, 947 num_buffer_descs))) { 948 return -1; 949 } 950 951 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0)) 952 goto drop; 953 954 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 955 skb_tx_timestamp(skb); 956 return 0; 957 958 drop: 959 tx->dropped_pkt++; 960 dev_kfree_skb_any(skb); 961 return 0; 962 } 963 964 /* Transmit a given skb and ring the doorbell. */ 965 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev) 966 { 967 struct gve_priv *priv = netdev_priv(dev); 968 struct gve_tx_ring *tx; 969 970 tx = &priv->tx[skb_get_queue_mapping(skb)]; 971 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) { 972 /* We need to ring the txq doorbell -- we have stopped the Tx 973 * queue for want of resources, but prior calls to gve_tx() 974 * may have added descriptors without ringing the doorbell. 975 */ 976 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 977 return NETDEV_TX_BUSY; 978 } 979 980 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 981 return NETDEV_TX_OK; 982 983 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 984 return NETDEV_TX_OK; 985 } 986 987 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list, 988 struct gve_tx_pending_packet_dqo *pending_packet) 989 { 990 s16 old_tail, index; 991 992 index = pending_packet - tx->dqo.pending_packets; 993 old_tail = list->tail; 994 list->tail = index; 995 if (old_tail == -1) 996 list->head = index; 997 else 998 tx->dqo.pending_packets[old_tail].next = index; 999 1000 pending_packet->next = -1; 1001 pending_packet->prev = old_tail; 1002 } 1003 1004 static void remove_from_list(struct gve_tx_ring *tx, 1005 struct gve_index_list *list, 1006 struct gve_tx_pending_packet_dqo *pkt) 1007 { 1008 s16 prev_index, next_index; 1009 1010 prev_index = pkt->prev; 1011 next_index = pkt->next; 1012 1013 if (prev_index == -1) { 1014 /* Node is head */ 1015 list->head = next_index; 1016 } else { 1017 tx->dqo.pending_packets[prev_index].next = next_index; 1018 } 1019 if (next_index == -1) { 1020 /* Node is tail */ 1021 list->tail = prev_index; 1022 } else { 1023 tx->dqo.pending_packets[next_index].prev = prev_index; 1024 } 1025 } 1026 1027 static void gve_unmap_packet(struct device *dev, 1028 struct gve_tx_pending_packet_dqo *pkt) 1029 { 1030 int i; 1031 1032 /* SKB linear portion is guaranteed to be mapped */ 1033 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]), 1034 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE); 1035 for (i = 1; i < pkt->num_bufs; i++) { 1036 dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]), 1037 dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE); 1038 } 1039 pkt->num_bufs = 0; 1040 } 1041 1042 /* Completion types and expected behavior: 1043 * No Miss compl + Packet compl = Packet completed normally. 1044 * Miss compl + Re-inject compl = Packet completed normally. 1045 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed. 1046 * Miss compl + Packet compl = Skipped i.e. packet not completed. 1047 */ 1048 static void gve_handle_packet_completion(struct gve_priv *priv, 1049 struct gve_tx_ring *tx, bool is_napi, 1050 u16 compl_tag, u64 *bytes, u64 *pkts, 1051 bool is_reinjection) 1052 { 1053 struct gve_tx_pending_packet_dqo *pending_packet; 1054 1055 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1056 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1057 priv->dev->name, (int)compl_tag); 1058 return; 1059 } 1060 1061 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1062 1063 if (unlikely(is_reinjection)) { 1064 if (unlikely(pending_packet->state == 1065 GVE_PACKET_STATE_TIMED_OUT_COMPL)) { 1066 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n", 1067 priv->dev->name, (int)compl_tag); 1068 /* Packet was already completed as a result of timeout, 1069 * so just remove from list and free pending packet. 1070 */ 1071 remove_from_list(tx, 1072 &tx->dqo_compl.timed_out_completions, 1073 pending_packet); 1074 gve_free_pending_packet(tx, pending_packet); 1075 return; 1076 } 1077 if (unlikely(pending_packet->state != 1078 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) { 1079 /* No outstanding miss completion but packet allocated 1080 * implies packet receives a re-injection completion 1081 * without a prior miss completion. Return without 1082 * completing the packet. 1083 */ 1084 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n", 1085 priv->dev->name, (int)compl_tag); 1086 return; 1087 } 1088 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1089 pending_packet); 1090 } else { 1091 /* Packet is allocated but not a pending data completion. */ 1092 if (unlikely(pending_packet->state != 1093 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1094 net_err_ratelimited("%s: No pending data completion: %d\n", 1095 priv->dev->name, (int)compl_tag); 1096 return; 1097 } 1098 } 1099 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs; 1100 if (tx->dqo.qpl) 1101 gve_free_tx_qpl_bufs(tx, pending_packet); 1102 else 1103 gve_unmap_packet(tx->dev, pending_packet); 1104 1105 *bytes += pending_packet->skb->len; 1106 (*pkts)++; 1107 napi_consume_skb(pending_packet->skb, is_napi); 1108 pending_packet->skb = NULL; 1109 gve_free_pending_packet(tx, pending_packet); 1110 } 1111 1112 static void gve_handle_miss_completion(struct gve_priv *priv, 1113 struct gve_tx_ring *tx, u16 compl_tag, 1114 u64 *bytes, u64 *pkts) 1115 { 1116 struct gve_tx_pending_packet_dqo *pending_packet; 1117 1118 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1119 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1120 priv->dev->name, (int)compl_tag); 1121 return; 1122 } 1123 1124 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1125 if (unlikely(pending_packet->state != 1126 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1127 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n", 1128 priv->dev->name, (int)pending_packet->state, 1129 (int)compl_tag); 1130 return; 1131 } 1132 1133 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL; 1134 /* jiffies can wraparound but time comparisons can handle overflows. */ 1135 pending_packet->timeout_jiffies = 1136 jiffies + 1137 msecs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT * 1138 MSEC_PER_SEC); 1139 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet); 1140 1141 *bytes += pending_packet->skb->len; 1142 (*pkts)++; 1143 } 1144 1145 static void remove_miss_completions(struct gve_priv *priv, 1146 struct gve_tx_ring *tx) 1147 { 1148 struct gve_tx_pending_packet_dqo *pending_packet; 1149 s16 next_index; 1150 1151 next_index = tx->dqo_compl.miss_completions.head; 1152 while (next_index != -1) { 1153 pending_packet = &tx->dqo.pending_packets[next_index]; 1154 next_index = pending_packet->next; 1155 /* Break early because packets should timeout in order. */ 1156 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1157 break; 1158 1159 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1160 pending_packet); 1161 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e. 1162 * the completion tag is not freed to ensure that the driver 1163 * can take appropriate action if a corresponding valid 1164 * completion is received later. 1165 */ 1166 if (tx->dqo.qpl) 1167 gve_free_tx_qpl_bufs(tx, pending_packet); 1168 else 1169 gve_unmap_packet(tx->dev, pending_packet); 1170 1171 /* This indicates the packet was dropped. */ 1172 dev_kfree_skb_any(pending_packet->skb); 1173 pending_packet->skb = NULL; 1174 tx->dropped_pkt++; 1175 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n", 1176 priv->dev->name, 1177 (int)(pending_packet - tx->dqo.pending_packets)); 1178 1179 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL; 1180 pending_packet->timeout_jiffies = 1181 jiffies + 1182 msecs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT * 1183 MSEC_PER_SEC); 1184 /* Maintain pending packet in another list so the packet can be 1185 * unallocated at a later time. 1186 */ 1187 add_to_list(tx, &tx->dqo_compl.timed_out_completions, 1188 pending_packet); 1189 } 1190 } 1191 1192 static void remove_timed_out_completions(struct gve_priv *priv, 1193 struct gve_tx_ring *tx) 1194 { 1195 struct gve_tx_pending_packet_dqo *pending_packet; 1196 s16 next_index; 1197 1198 next_index = tx->dqo_compl.timed_out_completions.head; 1199 while (next_index != -1) { 1200 pending_packet = &tx->dqo.pending_packets[next_index]; 1201 next_index = pending_packet->next; 1202 /* Break early because packets should timeout in order. */ 1203 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1204 break; 1205 1206 remove_from_list(tx, &tx->dqo_compl.timed_out_completions, 1207 pending_packet); 1208 gve_free_pending_packet(tx, pending_packet); 1209 } 1210 } 1211 1212 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 1213 struct napi_struct *napi) 1214 { 1215 u64 reinject_compl_bytes = 0; 1216 u64 reinject_compl_pkts = 0; 1217 int num_descs_cleaned = 0; 1218 u64 miss_compl_bytes = 0; 1219 u64 miss_compl_pkts = 0; 1220 u64 pkt_compl_bytes = 0; 1221 u64 pkt_compl_pkts = 0; 1222 1223 /* Limit in order to avoid blocking for too long */ 1224 while (!napi || pkt_compl_pkts < napi->weight) { 1225 struct gve_tx_compl_desc *compl_desc = 1226 &tx->dqo.compl_ring[tx->dqo_compl.head]; 1227 u16 type; 1228 1229 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit) 1230 break; 1231 1232 /* Prefetch the next descriptor. */ 1233 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) & 1234 tx->dqo.complq_mask]); 1235 1236 /* Do not read data until we own the descriptor */ 1237 dma_rmb(); 1238 type = compl_desc->type; 1239 1240 if (type == GVE_COMPL_TYPE_DQO_DESC) { 1241 /* This is the last descriptor fetched by HW plus one */ 1242 u16 tx_head = le16_to_cpu(compl_desc->tx_head); 1243 1244 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head); 1245 } else if (type == GVE_COMPL_TYPE_DQO_PKT) { 1246 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1247 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) { 1248 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT; 1249 gve_handle_miss_completion(priv, tx, compl_tag, 1250 &miss_compl_bytes, 1251 &miss_compl_pkts); 1252 } else { 1253 gve_handle_packet_completion(priv, tx, !!napi, 1254 compl_tag, 1255 &pkt_compl_bytes, 1256 &pkt_compl_pkts, 1257 false); 1258 } 1259 } else if (type == GVE_COMPL_TYPE_DQO_MISS) { 1260 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1261 1262 gve_handle_miss_completion(priv, tx, compl_tag, 1263 &miss_compl_bytes, 1264 &miss_compl_pkts); 1265 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) { 1266 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1267 1268 gve_handle_packet_completion(priv, tx, !!napi, 1269 compl_tag, 1270 &reinject_compl_bytes, 1271 &reinject_compl_pkts, 1272 true); 1273 } 1274 1275 tx->dqo_compl.head = 1276 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask; 1277 /* Flip the generation bit when we wrap around */ 1278 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0; 1279 num_descs_cleaned++; 1280 } 1281 1282 netdev_tx_completed_queue(tx->netdev_txq, 1283 pkt_compl_pkts + miss_compl_pkts, 1284 pkt_compl_bytes + miss_compl_bytes); 1285 1286 remove_miss_completions(priv, tx); 1287 remove_timed_out_completions(priv, tx); 1288 1289 u64_stats_update_begin(&tx->statss); 1290 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes; 1291 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts; 1292 u64_stats_update_end(&tx->statss); 1293 return num_descs_cleaned; 1294 } 1295 1296 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean) 1297 { 1298 struct gve_tx_compl_desc *compl_desc; 1299 struct gve_tx_ring *tx = block->tx; 1300 struct gve_priv *priv = block->priv; 1301 1302 if (do_clean) { 1303 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx, 1304 &block->napi); 1305 1306 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */ 1307 mb(); 1308 1309 if (netif_tx_queue_stopped(tx->netdev_txq) && 1310 num_descs_cleaned > 0) { 1311 tx->wake_queue++; 1312 netif_tx_wake_queue(tx->netdev_txq); 1313 } 1314 } 1315 1316 /* Return true if we still have work. */ 1317 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head]; 1318 return compl_desc->generation != tx->dqo_compl.cur_gen_bit; 1319 } 1320