1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include "gve_dqo.h" 11 #include <net/ip.h> 12 #include <linux/tcp.h> 13 #include <linux/slab.h> 14 #include <linux/skbuff.h> 15 16 /* Returns true if tx_bufs are available. */ 17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count) 18 { 19 int num_avail; 20 21 if (!tx->dqo.qpl) 22 return true; 23 24 num_avail = tx->dqo.num_tx_qpl_bufs - 25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 26 tx->dqo_tx.free_tx_qpl_buf_cnt); 27 28 if (count <= num_avail) 29 return true; 30 31 /* Update cached value from dqo_compl. */ 32 tx->dqo_tx.free_tx_qpl_buf_cnt = 33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt); 34 35 num_avail = tx->dqo.num_tx_qpl_bufs - 36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 37 tx->dqo_tx.free_tx_qpl_buf_cnt); 38 39 return count <= num_avail; 40 } 41 42 static s16 43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx) 44 { 45 s16 index; 46 47 index = tx->dqo_tx.free_tx_qpl_buf_head; 48 49 /* No TX buffers available, try to steal the list from the 50 * completion handler. 51 */ 52 if (unlikely(index == -1)) { 53 tx->dqo_tx.free_tx_qpl_buf_head = 54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 55 index = tx->dqo_tx.free_tx_qpl_buf_head; 56 57 if (unlikely(index == -1)) 58 return index; 59 } 60 61 /* Remove TX buf from free list */ 62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index]; 63 64 return index; 65 } 66 67 static void 68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx, 69 struct gve_tx_pending_packet_dqo *pkt) 70 { 71 s16 index; 72 int i; 73 74 if (!pkt->num_bufs) 75 return; 76 77 index = pkt->tx_qpl_buf_ids[0]; 78 /* Create a linked list of buffers to be added to the free list */ 79 for (i = 1; i < pkt->num_bufs; i++) { 80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i]; 81 index = pkt->tx_qpl_buf_ids[i]; 82 } 83 84 while (true) { 85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head); 86 87 tx->dqo.tx_qpl_buf_next[index] = old_head; 88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head, 89 old_head, 90 pkt->tx_qpl_buf_ids[0]) == old_head) { 91 break; 92 } 93 } 94 95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt); 96 pkt->num_bufs = 0; 97 } 98 99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */ 100 static bool gve_has_pending_packet(struct gve_tx_ring *tx) 101 { 102 /* Check TX path's list. */ 103 if (tx->dqo_tx.free_pending_packets != -1) 104 return true; 105 106 /* Check completion handler's list. */ 107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1) 108 return true; 109 110 return false; 111 } 112 113 static struct gve_tx_pending_packet_dqo * 114 gve_alloc_pending_packet(struct gve_tx_ring *tx) 115 { 116 struct gve_tx_pending_packet_dqo *pending_packet; 117 s16 index; 118 119 index = tx->dqo_tx.free_pending_packets; 120 121 /* No pending_packets available, try to steal the list from the 122 * completion handler. 123 */ 124 if (unlikely(index == -1)) { 125 tx->dqo_tx.free_pending_packets = 126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1); 127 index = tx->dqo_tx.free_pending_packets; 128 129 if (unlikely(index == -1)) 130 return NULL; 131 } 132 133 pending_packet = &tx->dqo.pending_packets[index]; 134 135 /* Remove pending_packet from free list */ 136 tx->dqo_tx.free_pending_packets = pending_packet->next; 137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL; 138 139 return pending_packet; 140 } 141 142 static void 143 gve_free_pending_packet(struct gve_tx_ring *tx, 144 struct gve_tx_pending_packet_dqo *pending_packet) 145 { 146 s16 index = pending_packet - tx->dqo.pending_packets; 147 148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED; 149 while (true) { 150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets); 151 152 pending_packet->next = old_head; 153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets, 154 old_head, index) == old_head) { 155 break; 156 } 157 } 158 } 159 160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers. 161 */ 162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx) 163 { 164 int i; 165 166 for (i = 0; i < tx->dqo.num_pending_packets; i++) { 167 struct gve_tx_pending_packet_dqo *cur_state = 168 &tx->dqo.pending_packets[i]; 169 int j; 170 171 for (j = 0; j < cur_state->num_bufs; j++) { 172 if (j == 0) { 173 dma_unmap_single(tx->dev, 174 dma_unmap_addr(cur_state, dma[j]), 175 dma_unmap_len(cur_state, len[j]), 176 DMA_TO_DEVICE); 177 } else { 178 dma_unmap_page(tx->dev, 179 dma_unmap_addr(cur_state, dma[j]), 180 dma_unmap_len(cur_state, len[j]), 181 DMA_TO_DEVICE); 182 } 183 } 184 if (cur_state->skb) { 185 dev_consume_skb_any(cur_state->skb); 186 cur_state->skb = NULL; 187 } 188 } 189 } 190 191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx) 192 { 193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 194 struct gve_tx_ring *tx = &priv->tx[idx]; 195 196 if (!gve_tx_was_added_to_block(priv, idx)) 197 return; 198 199 gve_remove_napi(priv, ntfy_idx); 200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL); 201 netdev_tx_reset_queue(tx->netdev_txq); 202 gve_tx_clean_pending_packets(tx); 203 gve_tx_remove_from_block(priv, idx); 204 } 205 206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 207 struct gve_tx_alloc_rings_cfg *cfg) 208 { 209 struct device *hdev = &priv->pdev->dev; 210 int idx = tx->q_num; 211 size_t bytes; 212 u32 qpl_id; 213 214 if (tx->q_resources) { 215 dma_free_coherent(hdev, sizeof(*tx->q_resources), 216 tx->q_resources, tx->q_resources_bus); 217 tx->q_resources = NULL; 218 } 219 220 if (tx->dqo.compl_ring) { 221 bytes = sizeof(tx->dqo.compl_ring[0]) * 222 (tx->dqo.complq_mask + 1); 223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring, 224 tx->complq_bus_dqo); 225 tx->dqo.compl_ring = NULL; 226 } 227 228 if (tx->dqo.tx_ring) { 229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus); 231 tx->dqo.tx_ring = NULL; 232 } 233 234 kvfree(tx->dqo.pending_packets); 235 tx->dqo.pending_packets = NULL; 236 237 kvfree(tx->dqo.tx_qpl_buf_next); 238 tx->dqo.tx_qpl_buf_next = NULL; 239 240 if (tx->dqo.qpl) { 241 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id); 243 tx->dqo.qpl = NULL; 244 } 245 246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 247 } 248 249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx) 250 { 251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO * 252 tx->dqo.qpl->num_entries; 253 int i; 254 255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs, 256 sizeof(tx->dqo.tx_qpl_buf_next[0]), 257 GFP_KERNEL); 258 if (!tx->dqo.tx_qpl_buf_next) 259 return -ENOMEM; 260 261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs; 262 263 /* Generate free TX buf list */ 264 for (i = 0; i < num_tx_qpl_bufs - 1; i++) 265 tx->dqo.tx_qpl_buf_next[i] = i + 1; 266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1; 267 268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 269 return 0; 270 } 271 272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx) 273 { 274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 275 struct gve_tx_ring *tx = &priv->tx[idx]; 276 277 gve_tx_add_to_block(priv, idx); 278 279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 281 } 282 283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv, 284 struct gve_tx_alloc_rings_cfg *cfg, 285 struct gve_tx_ring *tx, 286 int idx) 287 { 288 struct device *hdev = &priv->pdev->dev; 289 int num_pending_packets; 290 int qpl_page_cnt; 291 size_t bytes; 292 u32 qpl_id; 293 int i; 294 295 memset(tx, 0, sizeof(*tx)); 296 tx->q_num = idx; 297 tx->dev = hdev; 298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0); 299 300 /* Queue sizes must be a power of 2 */ 301 tx->mask = cfg->ring_size - 1; 302 tx->dqo.complq_mask = tx->mask; 303 304 /* The max number of pending packets determines the maximum number of 305 * descriptors which maybe written to the completion queue. 306 * 307 * We must set the number small enough to make sure we never overrun the 308 * completion queue. 309 */ 310 num_pending_packets = tx->dqo.complq_mask + 1; 311 312 /* Reserve space for descriptor completions, which will be reported at 313 * most every GVE_TX_MIN_RE_INTERVAL packets. 314 */ 315 num_pending_packets -= 316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL; 317 318 /* Each packet may have at most 2 buffer completions if it receives both 319 * a miss and reinjection completion. 320 */ 321 num_pending_packets /= 2; 322 323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX); 324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets, 325 sizeof(tx->dqo.pending_packets[0]), 326 GFP_KERNEL); 327 if (!tx->dqo.pending_packets) 328 goto err; 329 330 /* Set up linked list of pending packets */ 331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++) 332 tx->dqo.pending_packets[i].next = i + 1; 333 334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1; 335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1); 336 tx->dqo_compl.miss_completions.head = -1; 337 tx->dqo_compl.miss_completions.tail = -1; 338 tx->dqo_compl.timed_out_completions.head = -1; 339 tx->dqo_compl.timed_out_completions.tail = -1; 340 341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 343 if (!tx->dqo.tx_ring) 344 goto err; 345 346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1); 347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes, 348 &tx->complq_bus_dqo, 349 GFP_KERNEL); 350 if (!tx->dqo.compl_ring) 351 goto err; 352 353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), 354 &tx->q_resources_bus, GFP_KERNEL); 355 if (!tx->q_resources) 356 goto err; 357 358 if (!cfg->raw_addressing) { 359 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 360 qpl_page_cnt = priv->tx_pages_per_qpl; 361 362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 363 qpl_page_cnt); 364 if (!tx->dqo.qpl) 365 goto err; 366 367 if (gve_tx_qpl_buf_init(tx)) 368 goto err; 369 } 370 371 return 0; 372 373 err: 374 gve_tx_free_ring_dqo(priv, tx, cfg); 375 return -ENOMEM; 376 } 377 378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv, 379 struct gve_tx_alloc_rings_cfg *cfg) 380 { 381 struct gve_tx_ring *tx = cfg->tx; 382 int total_queues; 383 int err = 0; 384 int i, j; 385 386 total_queues = cfg->qcfg->num_queues + cfg->num_xdp_rings; 387 if (total_queues > cfg->qcfg->max_queues) { 388 netif_err(priv, drv, priv->dev, 389 "Cannot alloc more than the max num of Tx rings\n"); 390 return -EINVAL; 391 } 392 393 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 394 GFP_KERNEL); 395 if (!tx) 396 return -ENOMEM; 397 398 for (i = 0; i < total_queues; i++) { 399 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i); 400 if (err) { 401 netif_err(priv, drv, priv->dev, 402 "Failed to alloc tx ring=%d: err=%d\n", 403 i, err); 404 goto err; 405 } 406 } 407 408 cfg->tx = tx; 409 return 0; 410 411 err: 412 for (j = 0; j < i; j++) 413 gve_tx_free_ring_dqo(priv, &tx[j], cfg); 414 kvfree(tx); 415 return err; 416 } 417 418 void gve_tx_free_rings_dqo(struct gve_priv *priv, 419 struct gve_tx_alloc_rings_cfg *cfg) 420 { 421 struct gve_tx_ring *tx = cfg->tx; 422 int i; 423 424 if (!tx) 425 return; 426 427 for (i = 0; i < cfg->qcfg->num_queues + cfg->qcfg->num_xdp_queues; i++) 428 gve_tx_free_ring_dqo(priv, &tx[i], cfg); 429 430 kvfree(tx); 431 cfg->tx = NULL; 432 } 433 434 /* Returns the number of slots available in the ring */ 435 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx) 436 { 437 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask; 438 439 return tx->mask - num_used; 440 } 441 442 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx, 443 int desc_count, int buf_count) 444 { 445 return gve_has_pending_packet(tx) && 446 num_avail_tx_slots(tx) >= desc_count && 447 gve_has_free_tx_qpl_bufs(tx, buf_count); 448 } 449 450 /* Stops the queue if available descriptors is less than 'count'. 451 * Return: 0 if stop is not required. 452 */ 453 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx, 454 int desc_count, int buf_count) 455 { 456 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 457 return 0; 458 459 /* Update cached TX head pointer */ 460 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 461 462 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 463 return 0; 464 465 /* No space, so stop the queue */ 466 tx->stop_queue++; 467 netif_tx_stop_queue(tx->netdev_txq); 468 469 /* Sync with restarting queue in `gve_tx_poll_dqo()` */ 470 mb(); 471 472 /* After stopping queue, check if we can transmit again in order to 473 * avoid TOCTOU bug. 474 */ 475 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 476 477 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 478 return -EBUSY; 479 480 netif_tx_start_queue(tx->netdev_txq); 481 tx->wake_queue++; 482 return 0; 483 } 484 485 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb, 486 struct gve_tx_metadata_dqo *metadata) 487 { 488 memset(metadata, 0, sizeof(*metadata)); 489 metadata->version = GVE_TX_METADATA_VERSION_DQO; 490 491 if (skb->l4_hash) { 492 u16 path_hash = skb->hash ^ (skb->hash >> 16); 493 494 path_hash &= (1 << 15) - 1; 495 if (unlikely(path_hash == 0)) 496 path_hash = ~path_hash; 497 498 metadata->path_hash = path_hash; 499 } 500 } 501 502 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx, 503 struct sk_buff *skb, u32 len, u64 addr, 504 s16 compl_tag, bool eop, bool is_gso) 505 { 506 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL; 507 508 while (len > 0) { 509 struct gve_tx_pkt_desc_dqo *desc = 510 &tx->dqo.tx_ring[*desc_idx].pkt; 511 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO); 512 bool cur_eop = eop && cur_len == len; 513 514 *desc = (struct gve_tx_pkt_desc_dqo){ 515 .buf_addr = cpu_to_le64(addr), 516 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO, 517 .end_of_packet = cur_eop, 518 .checksum_offload_enable = checksum_offload_en, 519 .compl_tag = cpu_to_le16(compl_tag), 520 .buf_size = cur_len, 521 }; 522 523 addr += cur_len; 524 len -= cur_len; 525 *desc_idx = (*desc_idx + 1) & tx->mask; 526 } 527 } 528 529 /* Validates and prepares `skb` for TSO. 530 * 531 * Returns header length, or < 0 if invalid. 532 */ 533 static int gve_prep_tso(struct sk_buff *skb) 534 { 535 struct tcphdr *tcp; 536 int header_len; 537 u32 paylen; 538 int err; 539 540 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length 541 * of the TSO to be <= 262143. 542 * 543 * However, we don't validate these because: 544 * - Hypervisor enforces a limit of 9K MTU 545 * - Kernel will not produce a TSO larger than 64k 546 */ 547 548 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO)) 549 return -1; 550 551 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 552 return -EINVAL; 553 554 /* Needed because we will modify header. */ 555 err = skb_cow_head(skb, 0); 556 if (err < 0) 557 return err; 558 559 tcp = tcp_hdr(skb); 560 paylen = skb->len - skb_transport_offset(skb); 561 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen)); 562 header_len = skb_tcp_all_headers(skb); 563 564 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO)) 565 return -EINVAL; 566 567 return header_len; 568 } 569 570 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc, 571 const struct sk_buff *skb, 572 const struct gve_tx_metadata_dqo *metadata, 573 int header_len) 574 { 575 *desc = (struct gve_tx_tso_context_desc_dqo){ 576 .header_len = header_len, 577 .cmd_dtype = { 578 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO, 579 .tso = 1, 580 }, 581 .flex0 = metadata->bytes[0], 582 .flex5 = metadata->bytes[5], 583 .flex6 = metadata->bytes[6], 584 .flex7 = metadata->bytes[7], 585 .flex8 = metadata->bytes[8], 586 .flex9 = metadata->bytes[9], 587 .flex10 = metadata->bytes[10], 588 .flex11 = metadata->bytes[11], 589 }; 590 desc->tso_total_len = skb->len - header_len; 591 desc->mss = skb_shinfo(skb)->gso_size; 592 } 593 594 static void 595 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc, 596 const struct gve_tx_metadata_dqo *metadata) 597 { 598 *desc = (struct gve_tx_general_context_desc_dqo){ 599 .flex0 = metadata->bytes[0], 600 .flex1 = metadata->bytes[1], 601 .flex2 = metadata->bytes[2], 602 .flex3 = metadata->bytes[3], 603 .flex4 = metadata->bytes[4], 604 .flex5 = metadata->bytes[5], 605 .flex6 = metadata->bytes[6], 606 .flex7 = metadata->bytes[7], 607 .flex8 = metadata->bytes[8], 608 .flex9 = metadata->bytes[9], 609 .flex10 = metadata->bytes[10], 610 .flex11 = metadata->bytes[11], 611 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO}, 612 }; 613 } 614 615 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx, 616 struct sk_buff *skb, 617 struct gve_tx_pending_packet_dqo *pkt, 618 s16 completion_tag, 619 u32 *desc_idx, 620 bool is_gso) 621 { 622 const struct skb_shared_info *shinfo = skb_shinfo(skb); 623 int i; 624 625 /* Note: HW requires that the size of a non-TSO packet be within the 626 * range of [17, 9728]. 627 * 628 * We don't double check because 629 * - We limited `netdev->min_mtu` to ETH_MIN_MTU. 630 * - Hypervisor won't allow MTU larger than 9216. 631 */ 632 633 pkt->num_bufs = 0; 634 /* Map the linear portion of skb */ 635 { 636 u32 len = skb_headlen(skb); 637 dma_addr_t addr; 638 639 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 640 if (unlikely(dma_mapping_error(tx->dev, addr))) 641 goto err; 642 643 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 644 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 645 ++pkt->num_bufs; 646 647 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 648 completion_tag, 649 /*eop=*/shinfo->nr_frags == 0, is_gso); 650 } 651 652 for (i = 0; i < shinfo->nr_frags; i++) { 653 const skb_frag_t *frag = &shinfo->frags[i]; 654 bool is_eop = i == (shinfo->nr_frags - 1); 655 u32 len = skb_frag_size(frag); 656 dma_addr_t addr; 657 658 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 659 if (unlikely(dma_mapping_error(tx->dev, addr))) 660 goto err; 661 662 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 663 netmem_dma_unmap_addr_set(skb_frag_netmem(frag), pkt, 664 dma[pkt->num_bufs], addr); 665 ++pkt->num_bufs; 666 667 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 668 completion_tag, is_eop, is_gso); 669 } 670 671 return 0; 672 err: 673 for (i = 0; i < pkt->num_bufs; i++) { 674 if (i == 0) { 675 dma_unmap_single(tx->dev, 676 dma_unmap_addr(pkt, dma[i]), 677 dma_unmap_len(pkt, len[i]), 678 DMA_TO_DEVICE); 679 } else { 680 dma_unmap_page(tx->dev, 681 dma_unmap_addr(pkt, dma[i]), 682 dma_unmap_len(pkt, len[i]), 683 DMA_TO_DEVICE); 684 } 685 } 686 pkt->num_bufs = 0; 687 return -1; 688 } 689 690 /* Tx buffer i corresponds to 691 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO 692 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO 693 */ 694 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx, 695 s16 index, 696 void **va, dma_addr_t *dma_addr) 697 { 698 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO); 699 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO; 700 701 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset; 702 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset; 703 } 704 705 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx, 706 struct sk_buff *skb, 707 struct gve_tx_pending_packet_dqo *pkt, 708 s16 completion_tag, 709 u32 *desc_idx, 710 bool is_gso) 711 { 712 u32 copy_offset = 0; 713 dma_addr_t dma_addr; 714 u32 copy_len; 715 s16 index; 716 void *va; 717 718 /* Break the packet into buffer size chunks */ 719 pkt->num_bufs = 0; 720 while (copy_offset < skb->len) { 721 index = gve_alloc_tx_qpl_buf(tx); 722 if (unlikely(index == -1)) 723 goto err; 724 725 gve_tx_buf_get_addr(tx, index, &va, &dma_addr); 726 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO, 727 skb->len - copy_offset); 728 skb_copy_bits(skb, copy_offset, va, copy_len); 729 730 copy_offset += copy_len; 731 dma_sync_single_for_device(tx->dev, dma_addr, 732 copy_len, DMA_TO_DEVICE); 733 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, 734 copy_len, 735 dma_addr, 736 completion_tag, 737 copy_offset == skb->len, 738 is_gso); 739 740 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index; 741 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt; 742 ++pkt->num_bufs; 743 } 744 745 return 0; 746 err: 747 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */ 748 gve_free_tx_qpl_bufs(tx, pkt); 749 return -ENOMEM; 750 } 751 752 /* Returns 0 on success, or < 0 on error. 753 * 754 * Before this function is called, the caller must ensure 755 * gve_has_pending_packet(tx) returns true. 756 */ 757 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx, 758 struct sk_buff *skb) 759 { 760 const bool is_gso = skb_is_gso(skb); 761 u32 desc_idx = tx->dqo_tx.tail; 762 struct gve_tx_pending_packet_dqo *pkt; 763 struct gve_tx_metadata_dqo metadata; 764 s16 completion_tag; 765 766 pkt = gve_alloc_pending_packet(tx); 767 pkt->skb = skb; 768 completion_tag = pkt - tx->dqo.pending_packets; 769 770 gve_extract_tx_metadata_dqo(skb, &metadata); 771 if (is_gso) { 772 int header_len = gve_prep_tso(skb); 773 774 if (unlikely(header_len < 0)) 775 goto err; 776 777 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx, 778 skb, &metadata, header_len); 779 desc_idx = (desc_idx + 1) & tx->mask; 780 } 781 782 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx, 783 &metadata); 784 desc_idx = (desc_idx + 1) & tx->mask; 785 786 if (tx->dqo.qpl) { 787 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt, 788 completion_tag, 789 &desc_idx, is_gso)) 790 goto err; 791 } else { 792 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt, 793 completion_tag, 794 &desc_idx, is_gso)) 795 goto err; 796 } 797 798 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs; 799 800 /* Commit the changes to our state */ 801 tx->dqo_tx.tail = desc_idx; 802 803 /* Request a descriptor completion on the last descriptor of the 804 * packet if we are allowed to by the HW enforced interval. 805 */ 806 { 807 u32 last_desc_idx = (desc_idx - 1) & tx->mask; 808 u32 last_report_event_interval = 809 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask; 810 811 if (unlikely(last_report_event_interval >= 812 GVE_TX_MIN_RE_INTERVAL)) { 813 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true; 814 tx->dqo_tx.last_re_idx = last_desc_idx; 815 } 816 } 817 818 return 0; 819 820 err: 821 pkt->skb = NULL; 822 gve_free_pending_packet(tx, pkt); 823 824 return -1; 825 } 826 827 static int gve_num_descs_per_buf(size_t size) 828 { 829 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO); 830 } 831 832 static int gve_num_buffer_descs_needed(const struct sk_buff *skb) 833 { 834 const struct skb_shared_info *shinfo = skb_shinfo(skb); 835 int num_descs; 836 int i; 837 838 num_descs = gve_num_descs_per_buf(skb_headlen(skb)); 839 840 for (i = 0; i < shinfo->nr_frags; i++) { 841 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]); 842 843 num_descs += gve_num_descs_per_buf(frag_size); 844 } 845 846 return num_descs; 847 } 848 849 /* Returns true if HW is capable of sending TSO represented by `skb`. 850 * 851 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers. 852 * - The header is counted as one buffer for every single segment. 853 * - A buffer which is split between two segments is counted for both. 854 * - If a buffer contains both header and payload, it is counted as two buffers. 855 */ 856 static bool gve_can_send_tso(const struct sk_buff *skb) 857 { 858 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1; 859 const struct skb_shared_info *shinfo = skb_shinfo(skb); 860 const int header_len = skb_tcp_all_headers(skb); 861 const int gso_size = shinfo->gso_size; 862 int cur_seg_num_bufs; 863 int prev_frag_size; 864 int cur_seg_size; 865 int i; 866 867 cur_seg_size = skb_headlen(skb) - header_len; 868 prev_frag_size = skb_headlen(skb); 869 cur_seg_num_bufs = cur_seg_size > 0; 870 871 for (i = 0; i < shinfo->nr_frags; i++) { 872 if (cur_seg_size >= gso_size) { 873 cur_seg_size %= gso_size; 874 cur_seg_num_bufs = cur_seg_size > 0; 875 876 if (prev_frag_size > GVE_TX_MAX_BUF_SIZE_DQO) { 877 int prev_frag_remain = prev_frag_size % 878 GVE_TX_MAX_BUF_SIZE_DQO; 879 880 /* If the last descriptor of the previous frag 881 * is less than cur_seg_size, the segment will 882 * span two descriptors in the previous frag. 883 * Since max gso size (9728) is less than 884 * GVE_TX_MAX_BUF_SIZE_DQO, it is impossible 885 * for the segment to span more than two 886 * descriptors. 887 */ 888 if (prev_frag_remain && 889 cur_seg_size > prev_frag_remain) 890 cur_seg_num_bufs++; 891 } 892 } 893 894 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg)) 895 return false; 896 897 prev_frag_size = skb_frag_size(&shinfo->frags[i]); 898 cur_seg_size += prev_frag_size; 899 } 900 901 return true; 902 } 903 904 netdev_features_t gve_features_check_dqo(struct sk_buff *skb, 905 struct net_device *dev, 906 netdev_features_t features) 907 { 908 if (skb_is_gso(skb) && !gve_can_send_tso(skb)) 909 return features & ~NETIF_F_GSO_MASK; 910 911 return features; 912 } 913 914 /* Attempt to transmit specified SKB. 915 * 916 * Returns 0 if the SKB was transmitted or dropped. 917 * Returns -1 if there is not currently enough space to transmit the SKB. 918 */ 919 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx, 920 struct sk_buff *skb) 921 { 922 int num_buffer_descs; 923 int total_num_descs; 924 925 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb))) 926 goto drop; 927 928 if (tx->dqo.qpl) { 929 /* We do not need to verify the number of buffers used per 930 * packet or per segment in case of TSO as with 2K size buffers 931 * none of the TX packet rules would be violated. 932 * 933 * gve_can_send_tso() checks that each TCP segment of gso_size is 934 * not distributed over more than 9 SKB frags.. 935 */ 936 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO); 937 } else { 938 num_buffer_descs = gve_num_buffer_descs_needed(skb); 939 if (!skb_is_gso(skb)) { 940 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) { 941 if (unlikely(skb_linearize(skb) < 0)) 942 goto drop; 943 944 num_buffer_descs = 1; 945 } 946 } 947 } 948 949 /* Metadata + (optional TSO) + data descriptors. */ 950 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs; 951 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs + 952 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP, 953 num_buffer_descs))) { 954 return -1; 955 } 956 957 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0)) 958 goto drop; 959 960 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 961 skb_tx_timestamp(skb); 962 return 0; 963 964 drop: 965 tx->dropped_pkt++; 966 dev_kfree_skb_any(skb); 967 return 0; 968 } 969 970 /* Transmit a given skb and ring the doorbell. */ 971 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev) 972 { 973 struct gve_priv *priv = netdev_priv(dev); 974 struct gve_tx_ring *tx; 975 976 tx = &priv->tx[skb_get_queue_mapping(skb)]; 977 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) { 978 /* We need to ring the txq doorbell -- we have stopped the Tx 979 * queue for want of resources, but prior calls to gve_tx() 980 * may have added descriptors without ringing the doorbell. 981 */ 982 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 983 return NETDEV_TX_BUSY; 984 } 985 986 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 987 return NETDEV_TX_OK; 988 989 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 990 return NETDEV_TX_OK; 991 } 992 993 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list, 994 struct gve_tx_pending_packet_dqo *pending_packet) 995 { 996 s16 old_tail, index; 997 998 index = pending_packet - tx->dqo.pending_packets; 999 old_tail = list->tail; 1000 list->tail = index; 1001 if (old_tail == -1) 1002 list->head = index; 1003 else 1004 tx->dqo.pending_packets[old_tail].next = index; 1005 1006 pending_packet->next = -1; 1007 pending_packet->prev = old_tail; 1008 } 1009 1010 static void remove_from_list(struct gve_tx_ring *tx, 1011 struct gve_index_list *list, 1012 struct gve_tx_pending_packet_dqo *pkt) 1013 { 1014 s16 prev_index, next_index; 1015 1016 prev_index = pkt->prev; 1017 next_index = pkt->next; 1018 1019 if (prev_index == -1) { 1020 /* Node is head */ 1021 list->head = next_index; 1022 } else { 1023 tx->dqo.pending_packets[prev_index].next = next_index; 1024 } 1025 if (next_index == -1) { 1026 /* Node is tail */ 1027 list->tail = prev_index; 1028 } else { 1029 tx->dqo.pending_packets[next_index].prev = prev_index; 1030 } 1031 } 1032 1033 static void gve_unmap_packet(struct device *dev, 1034 struct gve_tx_pending_packet_dqo *pkt) 1035 { 1036 int i; 1037 1038 /* SKB linear portion is guaranteed to be mapped */ 1039 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]), 1040 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE); 1041 for (i = 1; i < pkt->num_bufs; i++) { 1042 netmem_dma_unmap_page_attrs(dev, dma_unmap_addr(pkt, dma[i]), 1043 dma_unmap_len(pkt, len[i]), 1044 DMA_TO_DEVICE, 0); 1045 } 1046 pkt->num_bufs = 0; 1047 } 1048 1049 /* Completion types and expected behavior: 1050 * No Miss compl + Packet compl = Packet completed normally. 1051 * Miss compl + Re-inject compl = Packet completed normally. 1052 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed. 1053 * Miss compl + Packet compl = Skipped i.e. packet not completed. 1054 */ 1055 static void gve_handle_packet_completion(struct gve_priv *priv, 1056 struct gve_tx_ring *tx, bool is_napi, 1057 u16 compl_tag, u64 *bytes, u64 *pkts, 1058 bool is_reinjection) 1059 { 1060 struct gve_tx_pending_packet_dqo *pending_packet; 1061 1062 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1063 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1064 priv->dev->name, (int)compl_tag); 1065 return; 1066 } 1067 1068 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1069 1070 if (unlikely(is_reinjection)) { 1071 if (unlikely(pending_packet->state == 1072 GVE_PACKET_STATE_TIMED_OUT_COMPL)) { 1073 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n", 1074 priv->dev->name, (int)compl_tag); 1075 /* Packet was already completed as a result of timeout, 1076 * so just remove from list and free pending packet. 1077 */ 1078 remove_from_list(tx, 1079 &tx->dqo_compl.timed_out_completions, 1080 pending_packet); 1081 gve_free_pending_packet(tx, pending_packet); 1082 return; 1083 } 1084 if (unlikely(pending_packet->state != 1085 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) { 1086 /* No outstanding miss completion but packet allocated 1087 * implies packet receives a re-injection completion 1088 * without a prior miss completion. Return without 1089 * completing the packet. 1090 */ 1091 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n", 1092 priv->dev->name, (int)compl_tag); 1093 return; 1094 } 1095 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1096 pending_packet); 1097 } else { 1098 /* Packet is allocated but not a pending data completion. */ 1099 if (unlikely(pending_packet->state != 1100 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1101 net_err_ratelimited("%s: No pending data completion: %d\n", 1102 priv->dev->name, (int)compl_tag); 1103 return; 1104 } 1105 } 1106 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs; 1107 if (tx->dqo.qpl) 1108 gve_free_tx_qpl_bufs(tx, pending_packet); 1109 else 1110 gve_unmap_packet(tx->dev, pending_packet); 1111 1112 *bytes += pending_packet->skb->len; 1113 (*pkts)++; 1114 napi_consume_skb(pending_packet->skb, is_napi); 1115 pending_packet->skb = NULL; 1116 gve_free_pending_packet(tx, pending_packet); 1117 } 1118 1119 static void gve_handle_miss_completion(struct gve_priv *priv, 1120 struct gve_tx_ring *tx, u16 compl_tag, 1121 u64 *bytes, u64 *pkts) 1122 { 1123 struct gve_tx_pending_packet_dqo *pending_packet; 1124 1125 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1126 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1127 priv->dev->name, (int)compl_tag); 1128 return; 1129 } 1130 1131 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1132 if (unlikely(pending_packet->state != 1133 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1134 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n", 1135 priv->dev->name, (int)pending_packet->state, 1136 (int)compl_tag); 1137 return; 1138 } 1139 1140 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL; 1141 /* jiffies can wraparound but time comparisons can handle overflows. */ 1142 pending_packet->timeout_jiffies = 1143 jiffies + 1144 secs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT); 1145 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet); 1146 1147 *bytes += pending_packet->skb->len; 1148 (*pkts)++; 1149 } 1150 1151 static void remove_miss_completions(struct gve_priv *priv, 1152 struct gve_tx_ring *tx) 1153 { 1154 struct gve_tx_pending_packet_dqo *pending_packet; 1155 s16 next_index; 1156 1157 next_index = tx->dqo_compl.miss_completions.head; 1158 while (next_index != -1) { 1159 pending_packet = &tx->dqo.pending_packets[next_index]; 1160 next_index = pending_packet->next; 1161 /* Break early because packets should timeout in order. */ 1162 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1163 break; 1164 1165 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1166 pending_packet); 1167 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e. 1168 * the completion tag is not freed to ensure that the driver 1169 * can take appropriate action if a corresponding valid 1170 * completion is received later. 1171 */ 1172 if (tx->dqo.qpl) 1173 gve_free_tx_qpl_bufs(tx, pending_packet); 1174 else 1175 gve_unmap_packet(tx->dev, pending_packet); 1176 1177 /* This indicates the packet was dropped. */ 1178 dev_kfree_skb_any(pending_packet->skb); 1179 pending_packet->skb = NULL; 1180 tx->dropped_pkt++; 1181 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n", 1182 priv->dev->name, 1183 (int)(pending_packet - tx->dqo.pending_packets)); 1184 1185 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL; 1186 pending_packet->timeout_jiffies = 1187 jiffies + 1188 secs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT); 1189 /* Maintain pending packet in another list so the packet can be 1190 * unallocated at a later time. 1191 */ 1192 add_to_list(tx, &tx->dqo_compl.timed_out_completions, 1193 pending_packet); 1194 } 1195 } 1196 1197 static void remove_timed_out_completions(struct gve_priv *priv, 1198 struct gve_tx_ring *tx) 1199 { 1200 struct gve_tx_pending_packet_dqo *pending_packet; 1201 s16 next_index; 1202 1203 next_index = tx->dqo_compl.timed_out_completions.head; 1204 while (next_index != -1) { 1205 pending_packet = &tx->dqo.pending_packets[next_index]; 1206 next_index = pending_packet->next; 1207 /* Break early because packets should timeout in order. */ 1208 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1209 break; 1210 1211 remove_from_list(tx, &tx->dqo_compl.timed_out_completions, 1212 pending_packet); 1213 gve_free_pending_packet(tx, pending_packet); 1214 } 1215 } 1216 1217 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 1218 struct napi_struct *napi) 1219 { 1220 u64 reinject_compl_bytes = 0; 1221 u64 reinject_compl_pkts = 0; 1222 int num_descs_cleaned = 0; 1223 u64 miss_compl_bytes = 0; 1224 u64 miss_compl_pkts = 0; 1225 u64 pkt_compl_bytes = 0; 1226 u64 pkt_compl_pkts = 0; 1227 1228 /* Limit in order to avoid blocking for too long */ 1229 while (!napi || pkt_compl_pkts < napi->weight) { 1230 struct gve_tx_compl_desc *compl_desc = 1231 &tx->dqo.compl_ring[tx->dqo_compl.head]; 1232 u16 type; 1233 1234 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit) 1235 break; 1236 1237 /* Prefetch the next descriptor. */ 1238 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) & 1239 tx->dqo.complq_mask]); 1240 1241 /* Do not read data until we own the descriptor */ 1242 dma_rmb(); 1243 type = compl_desc->type; 1244 1245 if (type == GVE_COMPL_TYPE_DQO_DESC) { 1246 /* This is the last descriptor fetched by HW plus one */ 1247 u16 tx_head = le16_to_cpu(compl_desc->tx_head); 1248 1249 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head); 1250 } else if (type == GVE_COMPL_TYPE_DQO_PKT) { 1251 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1252 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) { 1253 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT; 1254 gve_handle_miss_completion(priv, tx, compl_tag, 1255 &miss_compl_bytes, 1256 &miss_compl_pkts); 1257 } else { 1258 gve_handle_packet_completion(priv, tx, !!napi, 1259 compl_tag, 1260 &pkt_compl_bytes, 1261 &pkt_compl_pkts, 1262 false); 1263 } 1264 } else if (type == GVE_COMPL_TYPE_DQO_MISS) { 1265 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1266 1267 gve_handle_miss_completion(priv, tx, compl_tag, 1268 &miss_compl_bytes, 1269 &miss_compl_pkts); 1270 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) { 1271 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1272 1273 gve_handle_packet_completion(priv, tx, !!napi, 1274 compl_tag, 1275 &reinject_compl_bytes, 1276 &reinject_compl_pkts, 1277 true); 1278 } 1279 1280 tx->dqo_compl.head = 1281 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask; 1282 /* Flip the generation bit when we wrap around */ 1283 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0; 1284 num_descs_cleaned++; 1285 } 1286 1287 netdev_tx_completed_queue(tx->netdev_txq, 1288 pkt_compl_pkts + miss_compl_pkts, 1289 pkt_compl_bytes + miss_compl_bytes); 1290 1291 remove_miss_completions(priv, tx); 1292 remove_timed_out_completions(priv, tx); 1293 1294 u64_stats_update_begin(&tx->statss); 1295 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes; 1296 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts; 1297 u64_stats_update_end(&tx->statss); 1298 return num_descs_cleaned; 1299 } 1300 1301 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean) 1302 { 1303 struct gve_tx_compl_desc *compl_desc; 1304 struct gve_tx_ring *tx = block->tx; 1305 struct gve_priv *priv = block->priv; 1306 1307 if (do_clean) { 1308 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx, 1309 &block->napi); 1310 1311 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */ 1312 mb(); 1313 1314 if (netif_tx_queue_stopped(tx->netdev_txq) && 1315 num_descs_cleaned > 0) { 1316 tx->wake_queue++; 1317 netif_tx_wake_queue(tx->netdev_txq); 1318 } 1319 } 1320 1321 /* Return true if we still have work. */ 1322 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head]; 1323 return compl_desc->generation != tx->dqo_compl.cur_gen_bit; 1324 } 1325