xref: /linux/drivers/net/ethernet/google/gve/gve_tx_dqo.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include "gve_dqo.h"
11 #include <net/ip.h>
12 #include <linux/tcp.h>
13 #include <linux/slab.h>
14 #include <linux/skbuff.h>
15 
16 /* Returns true if tx_bufs are available. */
17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count)
18 {
19 	int num_avail;
20 
21 	if (!tx->dqo.qpl)
22 		return true;
23 
24 	num_avail = tx->dqo.num_tx_qpl_bufs -
25 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
26 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
27 
28 	if (count <= num_avail)
29 		return true;
30 
31 	/* Update cached value from dqo_compl. */
32 	tx->dqo_tx.free_tx_qpl_buf_cnt =
33 		atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt);
34 
35 	num_avail = tx->dqo.num_tx_qpl_bufs -
36 		(tx->dqo_tx.alloc_tx_qpl_buf_cnt -
37 		 tx->dqo_tx.free_tx_qpl_buf_cnt);
38 
39 	return count <= num_avail;
40 }
41 
42 static s16
43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx)
44 {
45 	s16 index;
46 
47 	index = tx->dqo_tx.free_tx_qpl_buf_head;
48 
49 	/* No TX buffers available, try to steal the list from the
50 	 * completion handler.
51 	 */
52 	if (unlikely(index == -1)) {
53 		tx->dqo_tx.free_tx_qpl_buf_head =
54 			atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
55 		index = tx->dqo_tx.free_tx_qpl_buf_head;
56 
57 		if (unlikely(index == -1))
58 			return index;
59 	}
60 
61 	/* Remove TX buf from free list */
62 	tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index];
63 
64 	return index;
65 }
66 
67 static void
68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx,
69 		     struct gve_tx_pending_packet_dqo *pkt)
70 {
71 	s16 index;
72 	int i;
73 
74 	if (!pkt->num_bufs)
75 		return;
76 
77 	index = pkt->tx_qpl_buf_ids[0];
78 	/* Create a linked list of buffers to be added to the free list */
79 	for (i = 1; i < pkt->num_bufs; i++) {
80 		tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i];
81 		index = pkt->tx_qpl_buf_ids[i];
82 	}
83 
84 	while (true) {
85 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head);
86 
87 		tx->dqo.tx_qpl_buf_next[index] = old_head;
88 		if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head,
89 				   old_head,
90 				   pkt->tx_qpl_buf_ids[0]) == old_head) {
91 			break;
92 		}
93 	}
94 
95 	atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt);
96 	pkt->num_bufs = 0;
97 }
98 
99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */
100 static bool gve_has_pending_packet(struct gve_tx_ring *tx)
101 {
102 	/* Check TX path's list. */
103 	if (tx->dqo_tx.free_pending_packets != -1)
104 		return true;
105 
106 	/* Check completion handler's list. */
107 	if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1)
108 		return true;
109 
110 	return false;
111 }
112 
113 static struct gve_tx_pending_packet_dqo *
114 gve_alloc_pending_packet(struct gve_tx_ring *tx)
115 {
116 	struct gve_tx_pending_packet_dqo *pending_packet;
117 	s16 index;
118 
119 	index = tx->dqo_tx.free_pending_packets;
120 
121 	/* No pending_packets available, try to steal the list from the
122 	 * completion handler.
123 	 */
124 	if (unlikely(index == -1)) {
125 		tx->dqo_tx.free_pending_packets =
126 			atomic_xchg(&tx->dqo_compl.free_pending_packets, -1);
127 		index = tx->dqo_tx.free_pending_packets;
128 
129 		if (unlikely(index == -1))
130 			return NULL;
131 	}
132 
133 	pending_packet = &tx->dqo.pending_packets[index];
134 
135 	/* Remove pending_packet from free list */
136 	tx->dqo_tx.free_pending_packets = pending_packet->next;
137 	pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
138 
139 	return pending_packet;
140 }
141 
142 static void
143 gve_free_pending_packet(struct gve_tx_ring *tx,
144 			struct gve_tx_pending_packet_dqo *pending_packet)
145 {
146 	s16 index = pending_packet - tx->dqo.pending_packets;
147 
148 	pending_packet->state = GVE_PACKET_STATE_UNALLOCATED;
149 	while (true) {
150 		s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets);
151 
152 		pending_packet->next = old_head;
153 		if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets,
154 				   old_head, index) == old_head) {
155 			break;
156 		}
157 	}
158 }
159 
160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers.
161  */
162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx)
163 {
164 	int i;
165 
166 	for (i = 0; i < tx->dqo.num_pending_packets; i++) {
167 		struct gve_tx_pending_packet_dqo *cur_state =
168 			&tx->dqo.pending_packets[i];
169 		int j;
170 
171 		for (j = 0; j < cur_state->num_bufs; j++) {
172 			if (j == 0) {
173 				dma_unmap_single(tx->dev,
174 					dma_unmap_addr(cur_state, dma[j]),
175 					dma_unmap_len(cur_state, len[j]),
176 					DMA_TO_DEVICE);
177 			} else {
178 				dma_unmap_page(tx->dev,
179 					dma_unmap_addr(cur_state, dma[j]),
180 					dma_unmap_len(cur_state, len[j]),
181 					DMA_TO_DEVICE);
182 			}
183 		}
184 		if (cur_state->skb) {
185 			dev_consume_skb_any(cur_state->skb);
186 			cur_state->skb = NULL;
187 		}
188 	}
189 }
190 
191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx)
192 {
193 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
194 	struct gve_tx_ring *tx = &priv->tx[idx];
195 
196 	if (!gve_tx_was_added_to_block(priv, idx))
197 		return;
198 
199 	gve_remove_napi(priv, ntfy_idx);
200 	gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL);
201 	netdev_tx_reset_queue(tx->netdev_txq);
202 	gve_tx_clean_pending_packets(tx);
203 	gve_tx_remove_from_block(priv, idx);
204 }
205 
206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
207 				 struct gve_tx_alloc_rings_cfg *cfg)
208 {
209 	struct device *hdev = &priv->pdev->dev;
210 	int idx = tx->q_num;
211 	size_t bytes;
212 
213 	if (tx->q_resources) {
214 		dma_free_coherent(hdev, sizeof(*tx->q_resources),
215 				  tx->q_resources, tx->q_resources_bus);
216 		tx->q_resources = NULL;
217 	}
218 
219 	if (tx->dqo.compl_ring) {
220 		bytes = sizeof(tx->dqo.compl_ring[0]) *
221 			(tx->dqo.complq_mask + 1);
222 		dma_free_coherent(hdev, bytes, tx->dqo.compl_ring,
223 				  tx->complq_bus_dqo);
224 		tx->dqo.compl_ring = NULL;
225 	}
226 
227 	if (tx->dqo.tx_ring) {
228 		bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
229 		dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus);
230 		tx->dqo.tx_ring = NULL;
231 	}
232 
233 	kvfree(tx->dqo.pending_packets);
234 	tx->dqo.pending_packets = NULL;
235 
236 	kvfree(tx->dqo.tx_qpl_buf_next);
237 	tx->dqo.tx_qpl_buf_next = NULL;
238 
239 	if (tx->dqo.qpl) {
240 		gve_unassign_qpl(cfg->qpl_cfg, tx->dqo.qpl->id);
241 		tx->dqo.qpl = NULL;
242 	}
243 
244 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
245 }
246 
247 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx)
248 {
249 	int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO *
250 		tx->dqo.qpl->num_entries;
251 	int i;
252 
253 	tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs,
254 					   sizeof(tx->dqo.tx_qpl_buf_next[0]),
255 					   GFP_KERNEL);
256 	if (!tx->dqo.tx_qpl_buf_next)
257 		return -ENOMEM;
258 
259 	tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs;
260 
261 	/* Generate free TX buf list */
262 	for (i = 0; i < num_tx_qpl_bufs - 1; i++)
263 		tx->dqo.tx_qpl_buf_next[i] = i + 1;
264 	tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1;
265 
266 	atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1);
267 	return 0;
268 }
269 
270 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx)
271 {
272 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
273 	struct gve_tx_ring *tx = &priv->tx[idx];
274 
275 	gve_tx_add_to_block(priv, idx);
276 
277 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
278 	gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
279 }
280 
281 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv,
282 				 struct gve_tx_alloc_rings_cfg *cfg,
283 				 struct gve_tx_ring *tx,
284 				 int idx)
285 {
286 	struct device *hdev = &priv->pdev->dev;
287 	int num_pending_packets;
288 	size_t bytes;
289 	int i;
290 
291 	memset(tx, 0, sizeof(*tx));
292 	tx->q_num = idx;
293 	tx->dev = hdev;
294 	atomic_set_release(&tx->dqo_compl.hw_tx_head, 0);
295 
296 	/* Queue sizes must be a power of 2 */
297 	tx->mask = cfg->ring_size - 1;
298 	tx->dqo.complq_mask = priv->queue_format == GVE_DQO_RDA_FORMAT ?
299 		priv->options_dqo_rda.tx_comp_ring_entries - 1 :
300 		tx->mask;
301 
302 	/* The max number of pending packets determines the maximum number of
303 	 * descriptors which maybe written to the completion queue.
304 	 *
305 	 * We must set the number small enough to make sure we never overrun the
306 	 * completion queue.
307 	 */
308 	num_pending_packets = tx->dqo.complq_mask + 1;
309 
310 	/* Reserve space for descriptor completions, which will be reported at
311 	 * most every GVE_TX_MIN_RE_INTERVAL packets.
312 	 */
313 	num_pending_packets -=
314 		(tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL;
315 
316 	/* Each packet may have at most 2 buffer completions if it receives both
317 	 * a miss and reinjection completion.
318 	 */
319 	num_pending_packets /= 2;
320 
321 	tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX);
322 	tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets,
323 					   sizeof(tx->dqo.pending_packets[0]),
324 					   GFP_KERNEL);
325 	if (!tx->dqo.pending_packets)
326 		goto err;
327 
328 	/* Set up linked list of pending packets */
329 	for (i = 0; i < tx->dqo.num_pending_packets - 1; i++)
330 		tx->dqo.pending_packets[i].next = i + 1;
331 
332 	tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1;
333 	atomic_set_release(&tx->dqo_compl.free_pending_packets, -1);
334 	tx->dqo_compl.miss_completions.head = -1;
335 	tx->dqo_compl.miss_completions.tail = -1;
336 	tx->dqo_compl.timed_out_completions.head = -1;
337 	tx->dqo_compl.timed_out_completions.tail = -1;
338 
339 	bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1);
340 	tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
341 	if (!tx->dqo.tx_ring)
342 		goto err;
343 
344 	bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1);
345 	tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes,
346 						&tx->complq_bus_dqo,
347 						GFP_KERNEL);
348 	if (!tx->dqo.compl_ring)
349 		goto err;
350 
351 	tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources),
352 					     &tx->q_resources_bus, GFP_KERNEL);
353 	if (!tx->q_resources)
354 		goto err;
355 
356 	if (!cfg->raw_addressing) {
357 		tx->dqo.qpl = gve_assign_tx_qpl(cfg, idx);
358 		if (!tx->dqo.qpl)
359 			goto err;
360 
361 		if (gve_tx_qpl_buf_init(tx))
362 			goto err;
363 	}
364 
365 	return 0;
366 
367 err:
368 	gve_tx_free_ring_dqo(priv, tx, cfg);
369 	return -ENOMEM;
370 }
371 
372 int gve_tx_alloc_rings_dqo(struct gve_priv *priv,
373 			   struct gve_tx_alloc_rings_cfg *cfg)
374 {
375 	struct gve_tx_ring *tx = cfg->tx;
376 	int err = 0;
377 	int i, j;
378 
379 	if (!cfg->raw_addressing && !cfg->qpls) {
380 		netif_err(priv, drv, priv->dev,
381 			  "Cannot alloc QPL ring before allocing QPLs\n");
382 		return -EINVAL;
383 	}
384 
385 	if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
386 		netif_err(priv, drv, priv->dev,
387 			  "Cannot alloc more than the max num of Tx rings\n");
388 		return -EINVAL;
389 	}
390 
391 	if (cfg->start_idx == 0) {
392 		tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
393 			      GFP_KERNEL);
394 		if (!tx)
395 			return -ENOMEM;
396 	} else if (!tx) {
397 		netif_err(priv, drv, priv->dev,
398 			  "Cannot alloc tx rings from a nonzero start idx without tx array\n");
399 		return -EINVAL;
400 	}
401 
402 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
403 		err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i);
404 		if (err) {
405 			netif_err(priv, drv, priv->dev,
406 				  "Failed to alloc tx ring=%d: err=%d\n",
407 				  i, err);
408 			goto err;
409 		}
410 	}
411 
412 	cfg->tx = tx;
413 	return 0;
414 
415 err:
416 	for (j = 0; j < i; j++)
417 		gve_tx_free_ring_dqo(priv, &tx[j], cfg);
418 	if (cfg->start_idx == 0)
419 		kvfree(tx);
420 	return err;
421 }
422 
423 void gve_tx_free_rings_dqo(struct gve_priv *priv,
424 			   struct gve_tx_alloc_rings_cfg *cfg)
425 {
426 	struct gve_tx_ring *tx = cfg->tx;
427 	int i;
428 
429 	if (!tx)
430 		return;
431 
432 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
433 		gve_tx_free_ring_dqo(priv, &tx[i], cfg);
434 
435 	if (cfg->start_idx == 0) {
436 		kvfree(tx);
437 		cfg->tx = NULL;
438 	}
439 }
440 
441 /* Returns the number of slots available in the ring */
442 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx)
443 {
444 	u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask;
445 
446 	return tx->mask - num_used;
447 }
448 
449 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx,
450 				       int desc_count, int buf_count)
451 {
452 	return gve_has_pending_packet(tx) &&
453 		   num_avail_tx_slots(tx) >= desc_count &&
454 		   gve_has_free_tx_qpl_bufs(tx, buf_count);
455 }
456 
457 /* Stops the queue if available descriptors is less than 'count'.
458  * Return: 0 if stop is not required.
459  */
460 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx,
461 				 int desc_count, int buf_count)
462 {
463 	if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
464 		return 0;
465 
466 	/* Update cached TX head pointer */
467 	tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
468 
469 	if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
470 		return 0;
471 
472 	/* No space, so stop the queue */
473 	tx->stop_queue++;
474 	netif_tx_stop_queue(tx->netdev_txq);
475 
476 	/* Sync with restarting queue in `gve_tx_poll_dqo()` */
477 	mb();
478 
479 	/* After stopping queue, check if we can transmit again in order to
480 	 * avoid TOCTOU bug.
481 	 */
482 	tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head);
483 
484 	if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count)))
485 		return -EBUSY;
486 
487 	netif_tx_start_queue(tx->netdev_txq);
488 	tx->wake_queue++;
489 	return 0;
490 }
491 
492 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb,
493 					struct gve_tx_metadata_dqo *metadata)
494 {
495 	memset(metadata, 0, sizeof(*metadata));
496 	metadata->version = GVE_TX_METADATA_VERSION_DQO;
497 
498 	if (skb->l4_hash) {
499 		u16 path_hash = skb->hash ^ (skb->hash >> 16);
500 
501 		path_hash &= (1 << 15) - 1;
502 		if (unlikely(path_hash == 0))
503 			path_hash = ~path_hash;
504 
505 		metadata->path_hash = path_hash;
506 	}
507 }
508 
509 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx,
510 				     struct sk_buff *skb, u32 len, u64 addr,
511 				     s16 compl_tag, bool eop, bool is_gso)
512 {
513 	const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL;
514 
515 	while (len > 0) {
516 		struct gve_tx_pkt_desc_dqo *desc =
517 			&tx->dqo.tx_ring[*desc_idx].pkt;
518 		u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO);
519 		bool cur_eop = eop && cur_len == len;
520 
521 		*desc = (struct gve_tx_pkt_desc_dqo){
522 			.buf_addr = cpu_to_le64(addr),
523 			.dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
524 			.end_of_packet = cur_eop,
525 			.checksum_offload_enable = checksum_offload_en,
526 			.compl_tag = cpu_to_le16(compl_tag),
527 			.buf_size = cur_len,
528 		};
529 
530 		addr += cur_len;
531 		len -= cur_len;
532 		*desc_idx = (*desc_idx + 1) & tx->mask;
533 	}
534 }
535 
536 /* Validates and prepares `skb` for TSO.
537  *
538  * Returns header length, or < 0 if invalid.
539  */
540 static int gve_prep_tso(struct sk_buff *skb)
541 {
542 	struct tcphdr *tcp;
543 	int header_len;
544 	u32 paylen;
545 	int err;
546 
547 	/* Note: HW requires MSS (gso_size) to be <= 9728 and the total length
548 	 * of the TSO to be <= 262143.
549 	 *
550 	 * However, we don't validate these because:
551 	 * - Hypervisor enforces a limit of 9K MTU
552 	 * - Kernel will not produce a TSO larger than 64k
553 	 */
554 
555 	if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO))
556 		return -1;
557 
558 	/* Needed because we will modify header. */
559 	err = skb_cow_head(skb, 0);
560 	if (err < 0)
561 		return err;
562 
563 	tcp = tcp_hdr(skb);
564 
565 	/* Remove payload length from checksum. */
566 	paylen = skb->len - skb_transport_offset(skb);
567 
568 	switch (skb_shinfo(skb)->gso_type) {
569 	case SKB_GSO_TCPV4:
570 	case SKB_GSO_TCPV6:
571 		csum_replace_by_diff(&tcp->check,
572 				     (__force __wsum)htonl(paylen));
573 
574 		/* Compute length of segmentation header. */
575 		header_len = skb_tcp_all_headers(skb);
576 		break;
577 	default:
578 		return -EINVAL;
579 	}
580 
581 	if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO))
582 		return -EINVAL;
583 
584 	return header_len;
585 }
586 
587 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
588 				     const struct sk_buff *skb,
589 				     const struct gve_tx_metadata_dqo *metadata,
590 				     int header_len)
591 {
592 	*desc = (struct gve_tx_tso_context_desc_dqo){
593 		.header_len = header_len,
594 		.cmd_dtype = {
595 			.dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
596 			.tso = 1,
597 		},
598 		.flex0 = metadata->bytes[0],
599 		.flex5 = metadata->bytes[5],
600 		.flex6 = metadata->bytes[6],
601 		.flex7 = metadata->bytes[7],
602 		.flex8 = metadata->bytes[8],
603 		.flex9 = metadata->bytes[9],
604 		.flex10 = metadata->bytes[10],
605 		.flex11 = metadata->bytes[11],
606 	};
607 	desc->tso_total_len = skb->len - header_len;
608 	desc->mss = skb_shinfo(skb)->gso_size;
609 }
610 
611 static void
612 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
613 			     const struct gve_tx_metadata_dqo *metadata)
614 {
615 	*desc = (struct gve_tx_general_context_desc_dqo){
616 		.flex0 = metadata->bytes[0],
617 		.flex1 = metadata->bytes[1],
618 		.flex2 = metadata->bytes[2],
619 		.flex3 = metadata->bytes[3],
620 		.flex4 = metadata->bytes[4],
621 		.flex5 = metadata->bytes[5],
622 		.flex6 = metadata->bytes[6],
623 		.flex7 = metadata->bytes[7],
624 		.flex8 = metadata->bytes[8],
625 		.flex9 = metadata->bytes[9],
626 		.flex10 = metadata->bytes[10],
627 		.flex11 = metadata->bytes[11],
628 		.cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
629 	};
630 }
631 
632 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx,
633 				      struct sk_buff *skb,
634 				      struct gve_tx_pending_packet_dqo *pkt,
635 				      s16 completion_tag,
636 				      u32 *desc_idx,
637 				      bool is_gso)
638 {
639 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
640 	int i;
641 
642 	/* Note: HW requires that the size of a non-TSO packet be within the
643 	 * range of [17, 9728].
644 	 *
645 	 * We don't double check because
646 	 * - We limited `netdev->min_mtu` to ETH_MIN_MTU.
647 	 * - Hypervisor won't allow MTU larger than 9216.
648 	 */
649 
650 	pkt->num_bufs = 0;
651 	/* Map the linear portion of skb */
652 	{
653 		u32 len = skb_headlen(skb);
654 		dma_addr_t addr;
655 
656 		addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
657 		if (unlikely(dma_mapping_error(tx->dev, addr)))
658 			goto err;
659 
660 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
661 		dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
662 		++pkt->num_bufs;
663 
664 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
665 					 completion_tag,
666 					 /*eop=*/shinfo->nr_frags == 0, is_gso);
667 	}
668 
669 	for (i = 0; i < shinfo->nr_frags; i++) {
670 		const skb_frag_t *frag = &shinfo->frags[i];
671 		bool is_eop = i == (shinfo->nr_frags - 1);
672 		u32 len = skb_frag_size(frag);
673 		dma_addr_t addr;
674 
675 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
676 		if (unlikely(dma_mapping_error(tx->dev, addr)))
677 			goto err;
678 
679 		dma_unmap_len_set(pkt, len[pkt->num_bufs], len);
680 		dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr);
681 		++pkt->num_bufs;
682 
683 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr,
684 					 completion_tag, is_eop, is_gso);
685 	}
686 
687 	return 0;
688 err:
689 	for (i = 0; i < pkt->num_bufs; i++) {
690 		if (i == 0) {
691 			dma_unmap_single(tx->dev,
692 					 dma_unmap_addr(pkt, dma[i]),
693 					 dma_unmap_len(pkt, len[i]),
694 					 DMA_TO_DEVICE);
695 		} else {
696 			dma_unmap_page(tx->dev,
697 				       dma_unmap_addr(pkt, dma[i]),
698 				       dma_unmap_len(pkt, len[i]),
699 				       DMA_TO_DEVICE);
700 		}
701 	}
702 	pkt->num_bufs = 0;
703 	return -1;
704 }
705 
706 /* Tx buffer i corresponds to
707  * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
708  * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
709  */
710 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx,
711 				s16 index,
712 				void **va, dma_addr_t *dma_addr)
713 {
714 	int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
715 	int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO;
716 
717 	*va = page_address(tx->dqo.qpl->pages[page_id]) + offset;
718 	*dma_addr = tx->dqo.qpl->page_buses[page_id] + offset;
719 }
720 
721 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx,
722 				   struct sk_buff *skb,
723 				   struct gve_tx_pending_packet_dqo *pkt,
724 				   s16 completion_tag,
725 				   u32 *desc_idx,
726 				   bool is_gso)
727 {
728 	u32 copy_offset = 0;
729 	dma_addr_t dma_addr;
730 	u32 copy_len;
731 	s16 index;
732 	void *va;
733 
734 	/* Break the packet into buffer size chunks */
735 	pkt->num_bufs = 0;
736 	while (copy_offset < skb->len) {
737 		index = gve_alloc_tx_qpl_buf(tx);
738 		if (unlikely(index == -1))
739 			goto err;
740 
741 		gve_tx_buf_get_addr(tx, index, &va, &dma_addr);
742 		copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO,
743 				 skb->len - copy_offset);
744 		skb_copy_bits(skb, copy_offset, va, copy_len);
745 
746 		copy_offset += copy_len;
747 		dma_sync_single_for_device(tx->dev, dma_addr,
748 					   copy_len, DMA_TO_DEVICE);
749 		gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb,
750 					 copy_len,
751 					 dma_addr,
752 					 completion_tag,
753 					 copy_offset == skb->len,
754 					 is_gso);
755 
756 		pkt->tx_qpl_buf_ids[pkt->num_bufs] = index;
757 		++tx->dqo_tx.alloc_tx_qpl_buf_cnt;
758 		++pkt->num_bufs;
759 	}
760 
761 	return 0;
762 err:
763 	/* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */
764 	gve_free_tx_qpl_bufs(tx, pkt);
765 	return -ENOMEM;
766 }
767 
768 /* Returns 0 on success, or < 0 on error.
769  *
770  * Before this function is called, the caller must ensure
771  * gve_has_pending_packet(tx) returns true.
772  */
773 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx,
774 			      struct sk_buff *skb)
775 {
776 	const bool is_gso = skb_is_gso(skb);
777 	u32 desc_idx = tx->dqo_tx.tail;
778 	struct gve_tx_pending_packet_dqo *pkt;
779 	struct gve_tx_metadata_dqo metadata;
780 	s16 completion_tag;
781 
782 	pkt = gve_alloc_pending_packet(tx);
783 	pkt->skb = skb;
784 	completion_tag = pkt - tx->dqo.pending_packets;
785 
786 	gve_extract_tx_metadata_dqo(skb, &metadata);
787 	if (is_gso) {
788 		int header_len = gve_prep_tso(skb);
789 
790 		if (unlikely(header_len < 0))
791 			goto err;
792 
793 		gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx,
794 					 skb, &metadata, header_len);
795 		desc_idx = (desc_idx + 1) & tx->mask;
796 	}
797 
798 	gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx,
799 				     &metadata);
800 	desc_idx = (desc_idx + 1) & tx->mask;
801 
802 	if (tx->dqo.qpl) {
803 		if (gve_tx_add_skb_copy_dqo(tx, skb, pkt,
804 					    completion_tag,
805 					    &desc_idx, is_gso))
806 			goto err;
807 	}  else {
808 		if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt,
809 					       completion_tag,
810 					       &desc_idx, is_gso))
811 			goto err;
812 	}
813 
814 	tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs;
815 
816 	/* Commit the changes to our state */
817 	tx->dqo_tx.tail = desc_idx;
818 
819 	/* Request a descriptor completion on the last descriptor of the
820 	 * packet if we are allowed to by the HW enforced interval.
821 	 */
822 	{
823 		u32 last_desc_idx = (desc_idx - 1) & tx->mask;
824 		u32 last_report_event_interval =
825 			(last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask;
826 
827 		if (unlikely(last_report_event_interval >=
828 			     GVE_TX_MIN_RE_INTERVAL)) {
829 			tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true;
830 			tx->dqo_tx.last_re_idx = last_desc_idx;
831 		}
832 	}
833 
834 	return 0;
835 
836 err:
837 	pkt->skb = NULL;
838 	gve_free_pending_packet(tx, pkt);
839 
840 	return -1;
841 }
842 
843 static int gve_num_descs_per_buf(size_t size)
844 {
845 	return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO);
846 }
847 
848 static int gve_num_buffer_descs_needed(const struct sk_buff *skb)
849 {
850 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
851 	int num_descs;
852 	int i;
853 
854 	num_descs = gve_num_descs_per_buf(skb_headlen(skb));
855 
856 	for (i = 0; i < shinfo->nr_frags; i++) {
857 		unsigned int frag_size = skb_frag_size(&shinfo->frags[i]);
858 
859 		num_descs += gve_num_descs_per_buf(frag_size);
860 	}
861 
862 	return num_descs;
863 }
864 
865 /* Returns true if HW is capable of sending TSO represented by `skb`.
866  *
867  * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers.
868  * - The header is counted as one buffer for every single segment.
869  * - A buffer which is split between two segments is counted for both.
870  * - If a buffer contains both header and payload, it is counted as two buffers.
871  */
872 static bool gve_can_send_tso(const struct sk_buff *skb)
873 {
874 	const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1;
875 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
876 	const int header_len = skb_tcp_all_headers(skb);
877 	const int gso_size = shinfo->gso_size;
878 	int cur_seg_num_bufs;
879 	int cur_seg_size;
880 	int i;
881 
882 	cur_seg_size = skb_headlen(skb) - header_len;
883 	cur_seg_num_bufs = cur_seg_size > 0;
884 
885 	for (i = 0; i < shinfo->nr_frags; i++) {
886 		if (cur_seg_size >= gso_size) {
887 			cur_seg_size %= gso_size;
888 			cur_seg_num_bufs = cur_seg_size > 0;
889 		}
890 
891 		if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg))
892 			return false;
893 
894 		cur_seg_size += skb_frag_size(&shinfo->frags[i]);
895 	}
896 
897 	return true;
898 }
899 
900 netdev_features_t gve_features_check_dqo(struct sk_buff *skb,
901 					 struct net_device *dev,
902 					 netdev_features_t features)
903 {
904 	if (skb_is_gso(skb) && !gve_can_send_tso(skb))
905 		return features & ~NETIF_F_GSO_MASK;
906 
907 	return features;
908 }
909 
910 /* Attempt to transmit specified SKB.
911  *
912  * Returns 0 if the SKB was transmitted or dropped.
913  * Returns -1 if there is not currently enough space to transmit the SKB.
914  */
915 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx,
916 			  struct sk_buff *skb)
917 {
918 	int num_buffer_descs;
919 	int total_num_descs;
920 
921 	if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb)))
922 		goto drop;
923 
924 	if (tx->dqo.qpl) {
925 		/* We do not need to verify the number of buffers used per
926 		 * packet or per segment in case of TSO as with 2K size buffers
927 		 * none of the TX packet rules would be violated.
928 		 *
929 		 * gve_can_send_tso() checks that each TCP segment of gso_size is
930 		 * not distributed over more than 9 SKB frags..
931 		 */
932 		num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO);
933 	} else {
934 		num_buffer_descs = gve_num_buffer_descs_needed(skb);
935 		if (!skb_is_gso(skb)) {
936 			if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) {
937 				if (unlikely(skb_linearize(skb) < 0))
938 					goto drop;
939 
940 				num_buffer_descs = 1;
941 			}
942 		}
943 	}
944 
945 	/* Metadata + (optional TSO) + data descriptors. */
946 	total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs;
947 	if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs +
948 			GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP,
949 			num_buffer_descs))) {
950 		return -1;
951 	}
952 
953 	if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0))
954 		goto drop;
955 
956 	netdev_tx_sent_queue(tx->netdev_txq, skb->len);
957 	skb_tx_timestamp(skb);
958 	return 0;
959 
960 drop:
961 	tx->dropped_pkt++;
962 	dev_kfree_skb_any(skb);
963 	return 0;
964 }
965 
966 /* Transmit a given skb and ring the doorbell. */
967 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev)
968 {
969 	struct gve_priv *priv = netdev_priv(dev);
970 	struct gve_tx_ring *tx;
971 
972 	tx = &priv->tx[skb_get_queue_mapping(skb)];
973 	if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) {
974 		/* We need to ring the txq doorbell -- we have stopped the Tx
975 		 * queue for want of resources, but prior calls to gve_tx()
976 		 * may have added descriptors without ringing the doorbell.
977 		 */
978 		gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
979 		return NETDEV_TX_BUSY;
980 	}
981 
982 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
983 		return NETDEV_TX_OK;
984 
985 	gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail);
986 	return NETDEV_TX_OK;
987 }
988 
989 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list,
990 			struct gve_tx_pending_packet_dqo *pending_packet)
991 {
992 	s16 old_tail, index;
993 
994 	index = pending_packet - tx->dqo.pending_packets;
995 	old_tail = list->tail;
996 	list->tail = index;
997 	if (old_tail == -1)
998 		list->head = index;
999 	else
1000 		tx->dqo.pending_packets[old_tail].next = index;
1001 
1002 	pending_packet->next = -1;
1003 	pending_packet->prev = old_tail;
1004 }
1005 
1006 static void remove_from_list(struct gve_tx_ring *tx,
1007 			     struct gve_index_list *list,
1008 			     struct gve_tx_pending_packet_dqo *pkt)
1009 {
1010 	s16 prev_index, next_index;
1011 
1012 	prev_index = pkt->prev;
1013 	next_index = pkt->next;
1014 
1015 	if (prev_index == -1) {
1016 		/* Node is head */
1017 		list->head = next_index;
1018 	} else {
1019 		tx->dqo.pending_packets[prev_index].next = next_index;
1020 	}
1021 	if (next_index == -1) {
1022 		/* Node is tail */
1023 		list->tail = prev_index;
1024 	} else {
1025 		tx->dqo.pending_packets[next_index].prev = prev_index;
1026 	}
1027 }
1028 
1029 static void gve_unmap_packet(struct device *dev,
1030 			     struct gve_tx_pending_packet_dqo *pkt)
1031 {
1032 	int i;
1033 
1034 	/* SKB linear portion is guaranteed to be mapped */
1035 	dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]),
1036 			 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE);
1037 	for (i = 1; i < pkt->num_bufs; i++) {
1038 		dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]),
1039 			       dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE);
1040 	}
1041 	pkt->num_bufs = 0;
1042 }
1043 
1044 /* Completion types and expected behavior:
1045  * No Miss compl + Packet compl = Packet completed normally.
1046  * Miss compl + Re-inject compl = Packet completed normally.
1047  * No Miss compl + Re-inject compl = Skipped i.e. packet not completed.
1048  * Miss compl + Packet compl = Skipped i.e. packet not completed.
1049  */
1050 static void gve_handle_packet_completion(struct gve_priv *priv,
1051 					 struct gve_tx_ring *tx, bool is_napi,
1052 					 u16 compl_tag, u64 *bytes, u64 *pkts,
1053 					 bool is_reinjection)
1054 {
1055 	struct gve_tx_pending_packet_dqo *pending_packet;
1056 
1057 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1058 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1059 				    priv->dev->name, (int)compl_tag);
1060 		return;
1061 	}
1062 
1063 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1064 
1065 	if (unlikely(is_reinjection)) {
1066 		if (unlikely(pending_packet->state ==
1067 			     GVE_PACKET_STATE_TIMED_OUT_COMPL)) {
1068 			net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n",
1069 					    priv->dev->name, (int)compl_tag);
1070 			/* Packet was already completed as a result of timeout,
1071 			 * so just remove from list and free pending packet.
1072 			 */
1073 			remove_from_list(tx,
1074 					 &tx->dqo_compl.timed_out_completions,
1075 					 pending_packet);
1076 			gve_free_pending_packet(tx, pending_packet);
1077 			return;
1078 		}
1079 		if (unlikely(pending_packet->state !=
1080 			     GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) {
1081 			/* No outstanding miss completion but packet allocated
1082 			 * implies packet receives a re-injection completion
1083 			 * without a prior miss completion. Return without
1084 			 * completing the packet.
1085 			 */
1086 			net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n",
1087 					    priv->dev->name, (int)compl_tag);
1088 			return;
1089 		}
1090 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1091 				 pending_packet);
1092 	} else {
1093 		/* Packet is allocated but not a pending data completion. */
1094 		if (unlikely(pending_packet->state !=
1095 			     GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1096 			net_err_ratelimited("%s: No pending data completion: %d\n",
1097 					    priv->dev->name, (int)compl_tag);
1098 			return;
1099 		}
1100 	}
1101 	tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs;
1102 	if (tx->dqo.qpl)
1103 		gve_free_tx_qpl_bufs(tx, pending_packet);
1104 	else
1105 		gve_unmap_packet(tx->dev, pending_packet);
1106 
1107 	*bytes += pending_packet->skb->len;
1108 	(*pkts)++;
1109 	napi_consume_skb(pending_packet->skb, is_napi);
1110 	pending_packet->skb = NULL;
1111 	gve_free_pending_packet(tx, pending_packet);
1112 }
1113 
1114 static void gve_handle_miss_completion(struct gve_priv *priv,
1115 				       struct gve_tx_ring *tx, u16 compl_tag,
1116 				       u64 *bytes, u64 *pkts)
1117 {
1118 	struct gve_tx_pending_packet_dqo *pending_packet;
1119 
1120 	if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) {
1121 		net_err_ratelimited("%s: Invalid TX completion tag: %d\n",
1122 				    priv->dev->name, (int)compl_tag);
1123 		return;
1124 	}
1125 
1126 	pending_packet = &tx->dqo.pending_packets[compl_tag];
1127 	if (unlikely(pending_packet->state !=
1128 				GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
1129 		net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n",
1130 				    priv->dev->name, (int)pending_packet->state,
1131 				    (int)compl_tag);
1132 		return;
1133 	}
1134 
1135 	pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL;
1136 	/* jiffies can wraparound but time comparisons can handle overflows. */
1137 	pending_packet->timeout_jiffies =
1138 			jiffies +
1139 			msecs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT *
1140 					 MSEC_PER_SEC);
1141 	add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet);
1142 
1143 	*bytes += pending_packet->skb->len;
1144 	(*pkts)++;
1145 }
1146 
1147 static void remove_miss_completions(struct gve_priv *priv,
1148 				    struct gve_tx_ring *tx)
1149 {
1150 	struct gve_tx_pending_packet_dqo *pending_packet;
1151 	s16 next_index;
1152 
1153 	next_index = tx->dqo_compl.miss_completions.head;
1154 	while (next_index != -1) {
1155 		pending_packet = &tx->dqo.pending_packets[next_index];
1156 		next_index = pending_packet->next;
1157 		/* Break early because packets should timeout in order. */
1158 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1159 			break;
1160 
1161 		remove_from_list(tx, &tx->dqo_compl.miss_completions,
1162 				 pending_packet);
1163 		/* Unmap/free TX buffers and free skb but do not unallocate packet i.e.
1164 		 * the completion tag is not freed to ensure that the driver
1165 		 * can take appropriate action if a corresponding valid
1166 		 * completion is received later.
1167 		 */
1168 		if (tx->dqo.qpl)
1169 			gve_free_tx_qpl_bufs(tx, pending_packet);
1170 		else
1171 			gve_unmap_packet(tx->dev, pending_packet);
1172 
1173 		/* This indicates the packet was dropped. */
1174 		dev_kfree_skb_any(pending_packet->skb);
1175 		pending_packet->skb = NULL;
1176 		tx->dropped_pkt++;
1177 		net_err_ratelimited("%s: No reinjection completion was received for: %d.\n",
1178 				    priv->dev->name,
1179 				    (int)(pending_packet - tx->dqo.pending_packets));
1180 
1181 		pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL;
1182 		pending_packet->timeout_jiffies =
1183 				jiffies +
1184 				msecs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT *
1185 						 MSEC_PER_SEC);
1186 		/* Maintain pending packet in another list so the packet can be
1187 		 * unallocated at a later time.
1188 		 */
1189 		add_to_list(tx, &tx->dqo_compl.timed_out_completions,
1190 			    pending_packet);
1191 	}
1192 }
1193 
1194 static void remove_timed_out_completions(struct gve_priv *priv,
1195 					 struct gve_tx_ring *tx)
1196 {
1197 	struct gve_tx_pending_packet_dqo *pending_packet;
1198 	s16 next_index;
1199 
1200 	next_index = tx->dqo_compl.timed_out_completions.head;
1201 	while (next_index != -1) {
1202 		pending_packet = &tx->dqo.pending_packets[next_index];
1203 		next_index = pending_packet->next;
1204 		/* Break early because packets should timeout in order. */
1205 		if (time_is_after_jiffies(pending_packet->timeout_jiffies))
1206 			break;
1207 
1208 		remove_from_list(tx, &tx->dqo_compl.timed_out_completions,
1209 				 pending_packet);
1210 		gve_free_pending_packet(tx, pending_packet);
1211 	}
1212 }
1213 
1214 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx,
1215 			  struct napi_struct *napi)
1216 {
1217 	u64 reinject_compl_bytes = 0;
1218 	u64 reinject_compl_pkts = 0;
1219 	int num_descs_cleaned = 0;
1220 	u64 miss_compl_bytes = 0;
1221 	u64 miss_compl_pkts = 0;
1222 	u64 pkt_compl_bytes = 0;
1223 	u64 pkt_compl_pkts = 0;
1224 
1225 	/* Limit in order to avoid blocking for too long */
1226 	while (!napi || pkt_compl_pkts < napi->weight) {
1227 		struct gve_tx_compl_desc *compl_desc =
1228 			&tx->dqo.compl_ring[tx->dqo_compl.head];
1229 		u16 type;
1230 
1231 		if (compl_desc->generation == tx->dqo_compl.cur_gen_bit)
1232 			break;
1233 
1234 		/* Prefetch the next descriptor. */
1235 		prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) &
1236 				tx->dqo.complq_mask]);
1237 
1238 		/* Do not read data until we own the descriptor */
1239 		dma_rmb();
1240 		type = compl_desc->type;
1241 
1242 		if (type == GVE_COMPL_TYPE_DQO_DESC) {
1243 			/* This is the last descriptor fetched by HW plus one */
1244 			u16 tx_head = le16_to_cpu(compl_desc->tx_head);
1245 
1246 			atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head);
1247 		} else if (type == GVE_COMPL_TYPE_DQO_PKT) {
1248 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1249 			if (compl_tag & GVE_ALT_MISS_COMPL_BIT) {
1250 				compl_tag &= ~GVE_ALT_MISS_COMPL_BIT;
1251 				gve_handle_miss_completion(priv, tx, compl_tag,
1252 							   &miss_compl_bytes,
1253 							   &miss_compl_pkts);
1254 			} else {
1255 				gve_handle_packet_completion(priv, tx, !!napi,
1256 							     compl_tag,
1257 							     &pkt_compl_bytes,
1258 							     &pkt_compl_pkts,
1259 							     false);
1260 			}
1261 		} else if (type == GVE_COMPL_TYPE_DQO_MISS) {
1262 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1263 
1264 			gve_handle_miss_completion(priv, tx, compl_tag,
1265 						   &miss_compl_bytes,
1266 						   &miss_compl_pkts);
1267 		} else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) {
1268 			u16 compl_tag = le16_to_cpu(compl_desc->completion_tag);
1269 
1270 			gve_handle_packet_completion(priv, tx, !!napi,
1271 						     compl_tag,
1272 						     &reinject_compl_bytes,
1273 						     &reinject_compl_pkts,
1274 						     true);
1275 		}
1276 
1277 		tx->dqo_compl.head =
1278 			(tx->dqo_compl.head + 1) & tx->dqo.complq_mask;
1279 		/* Flip the generation bit when we wrap around */
1280 		tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0;
1281 		num_descs_cleaned++;
1282 	}
1283 
1284 	netdev_tx_completed_queue(tx->netdev_txq,
1285 				  pkt_compl_pkts + miss_compl_pkts,
1286 				  pkt_compl_bytes + miss_compl_bytes);
1287 
1288 	remove_miss_completions(priv, tx);
1289 	remove_timed_out_completions(priv, tx);
1290 
1291 	u64_stats_update_begin(&tx->statss);
1292 	tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes;
1293 	tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts;
1294 	u64_stats_update_end(&tx->statss);
1295 	return num_descs_cleaned;
1296 }
1297 
1298 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean)
1299 {
1300 	struct gve_tx_compl_desc *compl_desc;
1301 	struct gve_tx_ring *tx = block->tx;
1302 	struct gve_priv *priv = block->priv;
1303 
1304 	if (do_clean) {
1305 		int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx,
1306 							      &block->napi);
1307 
1308 		/* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */
1309 		mb();
1310 
1311 		if (netif_tx_queue_stopped(tx->netdev_txq) &&
1312 		    num_descs_cleaned > 0) {
1313 			tx->wake_queue++;
1314 			netif_tx_wake_queue(tx->netdev_txq);
1315 		}
1316 	}
1317 
1318 	/* Return true if we still have work. */
1319 	compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head];
1320 	return compl_desc->generation != tx->dqo_compl.cur_gen_bit;
1321 }
1322