1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include "gve_dqo.h" 11 #include <net/ip.h> 12 #include <linux/tcp.h> 13 #include <linux/slab.h> 14 #include <linux/skbuff.h> 15 16 /* Returns true if tx_bufs are available. */ 17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count) 18 { 19 int num_avail; 20 21 if (!tx->dqo.qpl) 22 return true; 23 24 num_avail = tx->dqo.num_tx_qpl_bufs - 25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 26 tx->dqo_tx.free_tx_qpl_buf_cnt); 27 28 if (count <= num_avail) 29 return true; 30 31 /* Update cached value from dqo_compl. */ 32 tx->dqo_tx.free_tx_qpl_buf_cnt = 33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt); 34 35 num_avail = tx->dqo.num_tx_qpl_bufs - 36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 37 tx->dqo_tx.free_tx_qpl_buf_cnt); 38 39 return count <= num_avail; 40 } 41 42 static s16 43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx) 44 { 45 s16 index; 46 47 index = tx->dqo_tx.free_tx_qpl_buf_head; 48 49 /* No TX buffers available, try to steal the list from the 50 * completion handler. 51 */ 52 if (unlikely(index == -1)) { 53 tx->dqo_tx.free_tx_qpl_buf_head = 54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 55 index = tx->dqo_tx.free_tx_qpl_buf_head; 56 57 if (unlikely(index == -1)) 58 return index; 59 } 60 61 /* Remove TX buf from free list */ 62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index]; 63 64 return index; 65 } 66 67 static void 68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx, 69 struct gve_tx_pending_packet_dqo *pkt) 70 { 71 s16 index; 72 int i; 73 74 if (!pkt->num_bufs) 75 return; 76 77 index = pkt->tx_qpl_buf_ids[0]; 78 /* Create a linked list of buffers to be added to the free list */ 79 for (i = 1; i < pkt->num_bufs; i++) { 80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i]; 81 index = pkt->tx_qpl_buf_ids[i]; 82 } 83 84 while (true) { 85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head); 86 87 tx->dqo.tx_qpl_buf_next[index] = old_head; 88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head, 89 old_head, 90 pkt->tx_qpl_buf_ids[0]) == old_head) { 91 break; 92 } 93 } 94 95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt); 96 pkt->num_bufs = 0; 97 } 98 99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */ 100 static bool gve_has_pending_packet(struct gve_tx_ring *tx) 101 { 102 /* Check TX path's list. */ 103 if (tx->dqo_tx.free_pending_packets != -1) 104 return true; 105 106 /* Check completion handler's list. */ 107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1) 108 return true; 109 110 return false; 111 } 112 113 static struct gve_tx_pending_packet_dqo * 114 gve_alloc_pending_packet(struct gve_tx_ring *tx) 115 { 116 struct gve_tx_pending_packet_dqo *pending_packet; 117 s16 index; 118 119 index = tx->dqo_tx.free_pending_packets; 120 121 /* No pending_packets available, try to steal the list from the 122 * completion handler. 123 */ 124 if (unlikely(index == -1)) { 125 tx->dqo_tx.free_pending_packets = 126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1); 127 index = tx->dqo_tx.free_pending_packets; 128 129 if (unlikely(index == -1)) 130 return NULL; 131 } 132 133 pending_packet = &tx->dqo.pending_packets[index]; 134 135 /* Remove pending_packet from free list */ 136 tx->dqo_tx.free_pending_packets = pending_packet->next; 137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL; 138 139 return pending_packet; 140 } 141 142 static void 143 gve_free_pending_packet(struct gve_tx_ring *tx, 144 struct gve_tx_pending_packet_dqo *pending_packet) 145 { 146 s16 index = pending_packet - tx->dqo.pending_packets; 147 148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED; 149 while (true) { 150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets); 151 152 pending_packet->next = old_head; 153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets, 154 old_head, index) == old_head) { 155 break; 156 } 157 } 158 } 159 160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers. 161 */ 162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx) 163 { 164 int i; 165 166 for (i = 0; i < tx->dqo.num_pending_packets; i++) { 167 struct gve_tx_pending_packet_dqo *cur_state = 168 &tx->dqo.pending_packets[i]; 169 int j; 170 171 for (j = 0; j < cur_state->num_bufs; j++) { 172 if (j == 0) { 173 dma_unmap_single(tx->dev, 174 dma_unmap_addr(cur_state, dma[j]), 175 dma_unmap_len(cur_state, len[j]), 176 DMA_TO_DEVICE); 177 } else { 178 dma_unmap_page(tx->dev, 179 dma_unmap_addr(cur_state, dma[j]), 180 dma_unmap_len(cur_state, len[j]), 181 DMA_TO_DEVICE); 182 } 183 } 184 if (cur_state->skb) { 185 dev_consume_skb_any(cur_state->skb); 186 cur_state->skb = NULL; 187 } 188 } 189 } 190 191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx) 192 { 193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 194 struct gve_tx_ring *tx = &priv->tx[idx]; 195 196 if (!gve_tx_was_added_to_block(priv, idx)) 197 return; 198 199 gve_remove_napi(priv, ntfy_idx); 200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL); 201 netdev_tx_reset_queue(tx->netdev_txq); 202 gve_tx_clean_pending_packets(tx); 203 gve_tx_remove_from_block(priv, idx); 204 } 205 206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 207 struct gve_tx_alloc_rings_cfg *cfg) 208 { 209 struct device *hdev = &priv->pdev->dev; 210 int idx = tx->q_num; 211 size_t bytes; 212 u32 qpl_id; 213 214 if (tx->q_resources) { 215 dma_free_coherent(hdev, sizeof(*tx->q_resources), 216 tx->q_resources, tx->q_resources_bus); 217 tx->q_resources = NULL; 218 } 219 220 if (tx->dqo.compl_ring) { 221 bytes = sizeof(tx->dqo.compl_ring[0]) * 222 (tx->dqo.complq_mask + 1); 223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring, 224 tx->complq_bus_dqo); 225 tx->dqo.compl_ring = NULL; 226 } 227 228 if (tx->dqo.tx_ring) { 229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus); 231 tx->dqo.tx_ring = NULL; 232 } 233 234 kvfree(tx->dqo.pending_packets); 235 tx->dqo.pending_packets = NULL; 236 237 kvfree(tx->dqo.tx_qpl_buf_next); 238 tx->dqo.tx_qpl_buf_next = NULL; 239 240 if (tx->dqo.qpl) { 241 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id); 243 tx->dqo.qpl = NULL; 244 } 245 246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 247 } 248 249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx) 250 { 251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO * 252 tx->dqo.qpl->num_entries; 253 int i; 254 255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs, 256 sizeof(tx->dqo.tx_qpl_buf_next[0]), 257 GFP_KERNEL); 258 if (!tx->dqo.tx_qpl_buf_next) 259 return -ENOMEM; 260 261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs; 262 263 /* Generate free TX buf list */ 264 for (i = 0; i < num_tx_qpl_bufs - 1; i++) 265 tx->dqo.tx_qpl_buf_next[i] = i + 1; 266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1; 267 268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 269 return 0; 270 } 271 272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx) 273 { 274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 275 struct gve_tx_ring *tx = &priv->tx[idx]; 276 277 gve_tx_add_to_block(priv, idx); 278 279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 281 } 282 283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv, 284 struct gve_tx_alloc_rings_cfg *cfg, 285 struct gve_tx_ring *tx, 286 int idx) 287 { 288 struct device *hdev = &priv->pdev->dev; 289 int num_pending_packets; 290 int qpl_page_cnt; 291 size_t bytes; 292 u32 qpl_id; 293 int i; 294 295 memset(tx, 0, sizeof(*tx)); 296 tx->q_num = idx; 297 tx->dev = hdev; 298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0); 299 300 /* Queue sizes must be a power of 2 */ 301 tx->mask = cfg->ring_size - 1; 302 tx->dqo.complq_mask = tx->mask; 303 304 /* The max number of pending packets determines the maximum number of 305 * descriptors which maybe written to the completion queue. 306 * 307 * We must set the number small enough to make sure we never overrun the 308 * completion queue. 309 */ 310 num_pending_packets = tx->dqo.complq_mask + 1; 311 312 /* Reserve space for descriptor completions, which will be reported at 313 * most every GVE_TX_MIN_RE_INTERVAL packets. 314 */ 315 num_pending_packets -= 316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL; 317 318 /* Each packet may have at most 2 buffer completions if it receives both 319 * a miss and reinjection completion. 320 */ 321 num_pending_packets /= 2; 322 323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX); 324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets, 325 sizeof(tx->dqo.pending_packets[0]), 326 GFP_KERNEL); 327 if (!tx->dqo.pending_packets) 328 goto err; 329 330 /* Set up linked list of pending packets */ 331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++) 332 tx->dqo.pending_packets[i].next = i + 1; 333 334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1; 335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1); 336 tx->dqo_compl.miss_completions.head = -1; 337 tx->dqo_compl.miss_completions.tail = -1; 338 tx->dqo_compl.timed_out_completions.head = -1; 339 tx->dqo_compl.timed_out_completions.tail = -1; 340 341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 343 if (!tx->dqo.tx_ring) 344 goto err; 345 346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1); 347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes, 348 &tx->complq_bus_dqo, 349 GFP_KERNEL); 350 if (!tx->dqo.compl_ring) 351 goto err; 352 353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), 354 &tx->q_resources_bus, GFP_KERNEL); 355 if (!tx->q_resources) 356 goto err; 357 358 if (!cfg->raw_addressing) { 359 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 360 qpl_page_cnt = priv->tx_pages_per_qpl; 361 362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 363 qpl_page_cnt); 364 if (!tx->dqo.qpl) 365 goto err; 366 367 if (gve_tx_qpl_buf_init(tx)) 368 goto err; 369 } 370 371 return 0; 372 373 err: 374 gve_tx_free_ring_dqo(priv, tx, cfg); 375 return -ENOMEM; 376 } 377 378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv, 379 struct gve_tx_alloc_rings_cfg *cfg) 380 { 381 struct gve_tx_ring *tx = cfg->tx; 382 int err = 0; 383 int i, j; 384 385 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 386 netif_err(priv, drv, priv->dev, 387 "Cannot alloc more than the max num of Tx rings\n"); 388 return -EINVAL; 389 } 390 391 if (cfg->start_idx == 0) { 392 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 393 GFP_KERNEL); 394 if (!tx) 395 return -ENOMEM; 396 } else if (!tx) { 397 netif_err(priv, drv, priv->dev, 398 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 399 return -EINVAL; 400 } 401 402 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 403 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i); 404 if (err) { 405 netif_err(priv, drv, priv->dev, 406 "Failed to alloc tx ring=%d: err=%d\n", 407 i, err); 408 goto err; 409 } 410 } 411 412 cfg->tx = tx; 413 return 0; 414 415 err: 416 for (j = 0; j < i; j++) 417 gve_tx_free_ring_dqo(priv, &tx[j], cfg); 418 if (cfg->start_idx == 0) 419 kvfree(tx); 420 return err; 421 } 422 423 void gve_tx_free_rings_dqo(struct gve_priv *priv, 424 struct gve_tx_alloc_rings_cfg *cfg) 425 { 426 struct gve_tx_ring *tx = cfg->tx; 427 int i; 428 429 if (!tx) 430 return; 431 432 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 433 gve_tx_free_ring_dqo(priv, &tx[i], cfg); 434 435 if (cfg->start_idx == 0) { 436 kvfree(tx); 437 cfg->tx = NULL; 438 } 439 } 440 441 /* Returns the number of slots available in the ring */ 442 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx) 443 { 444 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask; 445 446 return tx->mask - num_used; 447 } 448 449 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx, 450 int desc_count, int buf_count) 451 { 452 return gve_has_pending_packet(tx) && 453 num_avail_tx_slots(tx) >= desc_count && 454 gve_has_free_tx_qpl_bufs(tx, buf_count); 455 } 456 457 /* Stops the queue if available descriptors is less than 'count'. 458 * Return: 0 if stop is not required. 459 */ 460 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx, 461 int desc_count, int buf_count) 462 { 463 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 464 return 0; 465 466 /* Update cached TX head pointer */ 467 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 468 469 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 470 return 0; 471 472 /* No space, so stop the queue */ 473 tx->stop_queue++; 474 netif_tx_stop_queue(tx->netdev_txq); 475 476 /* Sync with restarting queue in `gve_tx_poll_dqo()` */ 477 mb(); 478 479 /* After stopping queue, check if we can transmit again in order to 480 * avoid TOCTOU bug. 481 */ 482 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 483 484 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 485 return -EBUSY; 486 487 netif_tx_start_queue(tx->netdev_txq); 488 tx->wake_queue++; 489 return 0; 490 } 491 492 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb, 493 struct gve_tx_metadata_dqo *metadata) 494 { 495 memset(metadata, 0, sizeof(*metadata)); 496 metadata->version = GVE_TX_METADATA_VERSION_DQO; 497 498 if (skb->l4_hash) { 499 u16 path_hash = skb->hash ^ (skb->hash >> 16); 500 501 path_hash &= (1 << 15) - 1; 502 if (unlikely(path_hash == 0)) 503 path_hash = ~path_hash; 504 505 metadata->path_hash = path_hash; 506 } 507 } 508 509 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx, 510 struct sk_buff *skb, u32 len, u64 addr, 511 s16 compl_tag, bool eop, bool is_gso) 512 { 513 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL; 514 515 while (len > 0) { 516 struct gve_tx_pkt_desc_dqo *desc = 517 &tx->dqo.tx_ring[*desc_idx].pkt; 518 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO); 519 bool cur_eop = eop && cur_len == len; 520 521 *desc = (struct gve_tx_pkt_desc_dqo){ 522 .buf_addr = cpu_to_le64(addr), 523 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO, 524 .end_of_packet = cur_eop, 525 .checksum_offload_enable = checksum_offload_en, 526 .compl_tag = cpu_to_le16(compl_tag), 527 .buf_size = cur_len, 528 }; 529 530 addr += cur_len; 531 len -= cur_len; 532 *desc_idx = (*desc_idx + 1) & tx->mask; 533 } 534 } 535 536 /* Validates and prepares `skb` for TSO. 537 * 538 * Returns header length, or < 0 if invalid. 539 */ 540 static int gve_prep_tso(struct sk_buff *skb) 541 { 542 struct tcphdr *tcp; 543 int header_len; 544 u32 paylen; 545 int err; 546 547 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length 548 * of the TSO to be <= 262143. 549 * 550 * However, we don't validate these because: 551 * - Hypervisor enforces a limit of 9K MTU 552 * - Kernel will not produce a TSO larger than 64k 553 */ 554 555 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO)) 556 return -1; 557 558 if (!(skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 559 return -EINVAL; 560 561 /* Needed because we will modify header. */ 562 err = skb_cow_head(skb, 0); 563 if (err < 0) 564 return err; 565 566 tcp = tcp_hdr(skb); 567 paylen = skb->len - skb_transport_offset(skb); 568 csum_replace_by_diff(&tcp->check, (__force __wsum)htonl(paylen)); 569 header_len = skb_tcp_all_headers(skb); 570 571 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO)) 572 return -EINVAL; 573 574 return header_len; 575 } 576 577 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc, 578 const struct sk_buff *skb, 579 const struct gve_tx_metadata_dqo *metadata, 580 int header_len) 581 { 582 *desc = (struct gve_tx_tso_context_desc_dqo){ 583 .header_len = header_len, 584 .cmd_dtype = { 585 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO, 586 .tso = 1, 587 }, 588 .flex0 = metadata->bytes[0], 589 .flex5 = metadata->bytes[5], 590 .flex6 = metadata->bytes[6], 591 .flex7 = metadata->bytes[7], 592 .flex8 = metadata->bytes[8], 593 .flex9 = metadata->bytes[9], 594 .flex10 = metadata->bytes[10], 595 .flex11 = metadata->bytes[11], 596 }; 597 desc->tso_total_len = skb->len - header_len; 598 desc->mss = skb_shinfo(skb)->gso_size; 599 } 600 601 static void 602 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc, 603 const struct gve_tx_metadata_dqo *metadata) 604 { 605 *desc = (struct gve_tx_general_context_desc_dqo){ 606 .flex0 = metadata->bytes[0], 607 .flex1 = metadata->bytes[1], 608 .flex2 = metadata->bytes[2], 609 .flex3 = metadata->bytes[3], 610 .flex4 = metadata->bytes[4], 611 .flex5 = metadata->bytes[5], 612 .flex6 = metadata->bytes[6], 613 .flex7 = metadata->bytes[7], 614 .flex8 = metadata->bytes[8], 615 .flex9 = metadata->bytes[9], 616 .flex10 = metadata->bytes[10], 617 .flex11 = metadata->bytes[11], 618 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO}, 619 }; 620 } 621 622 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx, 623 struct sk_buff *skb, 624 struct gve_tx_pending_packet_dqo *pkt, 625 s16 completion_tag, 626 u32 *desc_idx, 627 bool is_gso) 628 { 629 const struct skb_shared_info *shinfo = skb_shinfo(skb); 630 int i; 631 632 /* Note: HW requires that the size of a non-TSO packet be within the 633 * range of [17, 9728]. 634 * 635 * We don't double check because 636 * - We limited `netdev->min_mtu` to ETH_MIN_MTU. 637 * - Hypervisor won't allow MTU larger than 9216. 638 */ 639 640 pkt->num_bufs = 0; 641 /* Map the linear portion of skb */ 642 { 643 u32 len = skb_headlen(skb); 644 dma_addr_t addr; 645 646 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 647 if (unlikely(dma_mapping_error(tx->dev, addr))) 648 goto err; 649 650 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 651 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 652 ++pkt->num_bufs; 653 654 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 655 completion_tag, 656 /*eop=*/shinfo->nr_frags == 0, is_gso); 657 } 658 659 for (i = 0; i < shinfo->nr_frags; i++) { 660 const skb_frag_t *frag = &shinfo->frags[i]; 661 bool is_eop = i == (shinfo->nr_frags - 1); 662 u32 len = skb_frag_size(frag); 663 dma_addr_t addr; 664 665 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 666 if (unlikely(dma_mapping_error(tx->dev, addr))) 667 goto err; 668 669 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 670 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 671 ++pkt->num_bufs; 672 673 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 674 completion_tag, is_eop, is_gso); 675 } 676 677 return 0; 678 err: 679 for (i = 0; i < pkt->num_bufs; i++) { 680 if (i == 0) { 681 dma_unmap_single(tx->dev, 682 dma_unmap_addr(pkt, dma[i]), 683 dma_unmap_len(pkt, len[i]), 684 DMA_TO_DEVICE); 685 } else { 686 dma_unmap_page(tx->dev, 687 dma_unmap_addr(pkt, dma[i]), 688 dma_unmap_len(pkt, len[i]), 689 DMA_TO_DEVICE); 690 } 691 } 692 pkt->num_bufs = 0; 693 return -1; 694 } 695 696 /* Tx buffer i corresponds to 697 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO 698 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO 699 */ 700 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx, 701 s16 index, 702 void **va, dma_addr_t *dma_addr) 703 { 704 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO); 705 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO; 706 707 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset; 708 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset; 709 } 710 711 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx, 712 struct sk_buff *skb, 713 struct gve_tx_pending_packet_dqo *pkt, 714 s16 completion_tag, 715 u32 *desc_idx, 716 bool is_gso) 717 { 718 u32 copy_offset = 0; 719 dma_addr_t dma_addr; 720 u32 copy_len; 721 s16 index; 722 void *va; 723 724 /* Break the packet into buffer size chunks */ 725 pkt->num_bufs = 0; 726 while (copy_offset < skb->len) { 727 index = gve_alloc_tx_qpl_buf(tx); 728 if (unlikely(index == -1)) 729 goto err; 730 731 gve_tx_buf_get_addr(tx, index, &va, &dma_addr); 732 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO, 733 skb->len - copy_offset); 734 skb_copy_bits(skb, copy_offset, va, copy_len); 735 736 copy_offset += copy_len; 737 dma_sync_single_for_device(tx->dev, dma_addr, 738 copy_len, DMA_TO_DEVICE); 739 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, 740 copy_len, 741 dma_addr, 742 completion_tag, 743 copy_offset == skb->len, 744 is_gso); 745 746 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index; 747 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt; 748 ++pkt->num_bufs; 749 } 750 751 return 0; 752 err: 753 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */ 754 gve_free_tx_qpl_bufs(tx, pkt); 755 return -ENOMEM; 756 } 757 758 /* Returns 0 on success, or < 0 on error. 759 * 760 * Before this function is called, the caller must ensure 761 * gve_has_pending_packet(tx) returns true. 762 */ 763 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx, 764 struct sk_buff *skb) 765 { 766 const bool is_gso = skb_is_gso(skb); 767 u32 desc_idx = tx->dqo_tx.tail; 768 struct gve_tx_pending_packet_dqo *pkt; 769 struct gve_tx_metadata_dqo metadata; 770 s16 completion_tag; 771 772 pkt = gve_alloc_pending_packet(tx); 773 pkt->skb = skb; 774 completion_tag = pkt - tx->dqo.pending_packets; 775 776 gve_extract_tx_metadata_dqo(skb, &metadata); 777 if (is_gso) { 778 int header_len = gve_prep_tso(skb); 779 780 if (unlikely(header_len < 0)) 781 goto err; 782 783 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx, 784 skb, &metadata, header_len); 785 desc_idx = (desc_idx + 1) & tx->mask; 786 } 787 788 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx, 789 &metadata); 790 desc_idx = (desc_idx + 1) & tx->mask; 791 792 if (tx->dqo.qpl) { 793 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt, 794 completion_tag, 795 &desc_idx, is_gso)) 796 goto err; 797 } else { 798 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt, 799 completion_tag, 800 &desc_idx, is_gso)) 801 goto err; 802 } 803 804 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs; 805 806 /* Commit the changes to our state */ 807 tx->dqo_tx.tail = desc_idx; 808 809 /* Request a descriptor completion on the last descriptor of the 810 * packet if we are allowed to by the HW enforced interval. 811 */ 812 { 813 u32 last_desc_idx = (desc_idx - 1) & tx->mask; 814 u32 last_report_event_interval = 815 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask; 816 817 if (unlikely(last_report_event_interval >= 818 GVE_TX_MIN_RE_INTERVAL)) { 819 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true; 820 tx->dqo_tx.last_re_idx = last_desc_idx; 821 } 822 } 823 824 return 0; 825 826 err: 827 pkt->skb = NULL; 828 gve_free_pending_packet(tx, pkt); 829 830 return -1; 831 } 832 833 static int gve_num_descs_per_buf(size_t size) 834 { 835 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO); 836 } 837 838 static int gve_num_buffer_descs_needed(const struct sk_buff *skb) 839 { 840 const struct skb_shared_info *shinfo = skb_shinfo(skb); 841 int num_descs; 842 int i; 843 844 num_descs = gve_num_descs_per_buf(skb_headlen(skb)); 845 846 for (i = 0; i < shinfo->nr_frags; i++) { 847 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]); 848 849 num_descs += gve_num_descs_per_buf(frag_size); 850 } 851 852 return num_descs; 853 } 854 855 /* Returns true if HW is capable of sending TSO represented by `skb`. 856 * 857 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers. 858 * - The header is counted as one buffer for every single segment. 859 * - A buffer which is split between two segments is counted for both. 860 * - If a buffer contains both header and payload, it is counted as two buffers. 861 */ 862 static bool gve_can_send_tso(const struct sk_buff *skb) 863 { 864 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1; 865 const struct skb_shared_info *shinfo = skb_shinfo(skb); 866 const int header_len = skb_tcp_all_headers(skb); 867 const int gso_size = shinfo->gso_size; 868 int cur_seg_num_bufs; 869 int cur_seg_size; 870 int i; 871 872 cur_seg_size = skb_headlen(skb) - header_len; 873 cur_seg_num_bufs = cur_seg_size > 0; 874 875 for (i = 0; i < shinfo->nr_frags; i++) { 876 if (cur_seg_size >= gso_size) { 877 cur_seg_size %= gso_size; 878 cur_seg_num_bufs = cur_seg_size > 0; 879 } 880 881 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg)) 882 return false; 883 884 cur_seg_size += skb_frag_size(&shinfo->frags[i]); 885 } 886 887 return true; 888 } 889 890 netdev_features_t gve_features_check_dqo(struct sk_buff *skb, 891 struct net_device *dev, 892 netdev_features_t features) 893 { 894 if (skb_is_gso(skb) && !gve_can_send_tso(skb)) 895 return features & ~NETIF_F_GSO_MASK; 896 897 return features; 898 } 899 900 /* Attempt to transmit specified SKB. 901 * 902 * Returns 0 if the SKB was transmitted or dropped. 903 * Returns -1 if there is not currently enough space to transmit the SKB. 904 */ 905 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx, 906 struct sk_buff *skb) 907 { 908 int num_buffer_descs; 909 int total_num_descs; 910 911 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb))) 912 goto drop; 913 914 if (tx->dqo.qpl) { 915 /* We do not need to verify the number of buffers used per 916 * packet or per segment in case of TSO as with 2K size buffers 917 * none of the TX packet rules would be violated. 918 * 919 * gve_can_send_tso() checks that each TCP segment of gso_size is 920 * not distributed over more than 9 SKB frags.. 921 */ 922 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO); 923 } else { 924 num_buffer_descs = gve_num_buffer_descs_needed(skb); 925 if (!skb_is_gso(skb)) { 926 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) { 927 if (unlikely(skb_linearize(skb) < 0)) 928 goto drop; 929 930 num_buffer_descs = 1; 931 } 932 } 933 } 934 935 /* Metadata + (optional TSO) + data descriptors. */ 936 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs; 937 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs + 938 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP, 939 num_buffer_descs))) { 940 return -1; 941 } 942 943 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0)) 944 goto drop; 945 946 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 947 skb_tx_timestamp(skb); 948 return 0; 949 950 drop: 951 tx->dropped_pkt++; 952 dev_kfree_skb_any(skb); 953 return 0; 954 } 955 956 /* Transmit a given skb and ring the doorbell. */ 957 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev) 958 { 959 struct gve_priv *priv = netdev_priv(dev); 960 struct gve_tx_ring *tx; 961 962 tx = &priv->tx[skb_get_queue_mapping(skb)]; 963 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) { 964 /* We need to ring the txq doorbell -- we have stopped the Tx 965 * queue for want of resources, but prior calls to gve_tx() 966 * may have added descriptors without ringing the doorbell. 967 */ 968 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 969 return NETDEV_TX_BUSY; 970 } 971 972 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 973 return NETDEV_TX_OK; 974 975 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 976 return NETDEV_TX_OK; 977 } 978 979 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list, 980 struct gve_tx_pending_packet_dqo *pending_packet) 981 { 982 s16 old_tail, index; 983 984 index = pending_packet - tx->dqo.pending_packets; 985 old_tail = list->tail; 986 list->tail = index; 987 if (old_tail == -1) 988 list->head = index; 989 else 990 tx->dqo.pending_packets[old_tail].next = index; 991 992 pending_packet->next = -1; 993 pending_packet->prev = old_tail; 994 } 995 996 static void remove_from_list(struct gve_tx_ring *tx, 997 struct gve_index_list *list, 998 struct gve_tx_pending_packet_dqo *pkt) 999 { 1000 s16 prev_index, next_index; 1001 1002 prev_index = pkt->prev; 1003 next_index = pkt->next; 1004 1005 if (prev_index == -1) { 1006 /* Node is head */ 1007 list->head = next_index; 1008 } else { 1009 tx->dqo.pending_packets[prev_index].next = next_index; 1010 } 1011 if (next_index == -1) { 1012 /* Node is tail */ 1013 list->tail = prev_index; 1014 } else { 1015 tx->dqo.pending_packets[next_index].prev = prev_index; 1016 } 1017 } 1018 1019 static void gve_unmap_packet(struct device *dev, 1020 struct gve_tx_pending_packet_dqo *pkt) 1021 { 1022 int i; 1023 1024 /* SKB linear portion is guaranteed to be mapped */ 1025 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]), 1026 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE); 1027 for (i = 1; i < pkt->num_bufs; i++) { 1028 dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]), 1029 dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE); 1030 } 1031 pkt->num_bufs = 0; 1032 } 1033 1034 /* Completion types and expected behavior: 1035 * No Miss compl + Packet compl = Packet completed normally. 1036 * Miss compl + Re-inject compl = Packet completed normally. 1037 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed. 1038 * Miss compl + Packet compl = Skipped i.e. packet not completed. 1039 */ 1040 static void gve_handle_packet_completion(struct gve_priv *priv, 1041 struct gve_tx_ring *tx, bool is_napi, 1042 u16 compl_tag, u64 *bytes, u64 *pkts, 1043 bool is_reinjection) 1044 { 1045 struct gve_tx_pending_packet_dqo *pending_packet; 1046 1047 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1048 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1049 priv->dev->name, (int)compl_tag); 1050 return; 1051 } 1052 1053 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1054 1055 if (unlikely(is_reinjection)) { 1056 if (unlikely(pending_packet->state == 1057 GVE_PACKET_STATE_TIMED_OUT_COMPL)) { 1058 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n", 1059 priv->dev->name, (int)compl_tag); 1060 /* Packet was already completed as a result of timeout, 1061 * so just remove from list and free pending packet. 1062 */ 1063 remove_from_list(tx, 1064 &tx->dqo_compl.timed_out_completions, 1065 pending_packet); 1066 gve_free_pending_packet(tx, pending_packet); 1067 return; 1068 } 1069 if (unlikely(pending_packet->state != 1070 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) { 1071 /* No outstanding miss completion but packet allocated 1072 * implies packet receives a re-injection completion 1073 * without a prior miss completion. Return without 1074 * completing the packet. 1075 */ 1076 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n", 1077 priv->dev->name, (int)compl_tag); 1078 return; 1079 } 1080 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1081 pending_packet); 1082 } else { 1083 /* Packet is allocated but not a pending data completion. */ 1084 if (unlikely(pending_packet->state != 1085 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1086 net_err_ratelimited("%s: No pending data completion: %d\n", 1087 priv->dev->name, (int)compl_tag); 1088 return; 1089 } 1090 } 1091 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs; 1092 if (tx->dqo.qpl) 1093 gve_free_tx_qpl_bufs(tx, pending_packet); 1094 else 1095 gve_unmap_packet(tx->dev, pending_packet); 1096 1097 *bytes += pending_packet->skb->len; 1098 (*pkts)++; 1099 napi_consume_skb(pending_packet->skb, is_napi); 1100 pending_packet->skb = NULL; 1101 gve_free_pending_packet(tx, pending_packet); 1102 } 1103 1104 static void gve_handle_miss_completion(struct gve_priv *priv, 1105 struct gve_tx_ring *tx, u16 compl_tag, 1106 u64 *bytes, u64 *pkts) 1107 { 1108 struct gve_tx_pending_packet_dqo *pending_packet; 1109 1110 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1111 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1112 priv->dev->name, (int)compl_tag); 1113 return; 1114 } 1115 1116 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1117 if (unlikely(pending_packet->state != 1118 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1119 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n", 1120 priv->dev->name, (int)pending_packet->state, 1121 (int)compl_tag); 1122 return; 1123 } 1124 1125 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL; 1126 /* jiffies can wraparound but time comparisons can handle overflows. */ 1127 pending_packet->timeout_jiffies = 1128 jiffies + 1129 msecs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT * 1130 MSEC_PER_SEC); 1131 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet); 1132 1133 *bytes += pending_packet->skb->len; 1134 (*pkts)++; 1135 } 1136 1137 static void remove_miss_completions(struct gve_priv *priv, 1138 struct gve_tx_ring *tx) 1139 { 1140 struct gve_tx_pending_packet_dqo *pending_packet; 1141 s16 next_index; 1142 1143 next_index = tx->dqo_compl.miss_completions.head; 1144 while (next_index != -1) { 1145 pending_packet = &tx->dqo.pending_packets[next_index]; 1146 next_index = pending_packet->next; 1147 /* Break early because packets should timeout in order. */ 1148 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1149 break; 1150 1151 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1152 pending_packet); 1153 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e. 1154 * the completion tag is not freed to ensure that the driver 1155 * can take appropriate action if a corresponding valid 1156 * completion is received later. 1157 */ 1158 if (tx->dqo.qpl) 1159 gve_free_tx_qpl_bufs(tx, pending_packet); 1160 else 1161 gve_unmap_packet(tx->dev, pending_packet); 1162 1163 /* This indicates the packet was dropped. */ 1164 dev_kfree_skb_any(pending_packet->skb); 1165 pending_packet->skb = NULL; 1166 tx->dropped_pkt++; 1167 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n", 1168 priv->dev->name, 1169 (int)(pending_packet - tx->dqo.pending_packets)); 1170 1171 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL; 1172 pending_packet->timeout_jiffies = 1173 jiffies + 1174 msecs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT * 1175 MSEC_PER_SEC); 1176 /* Maintain pending packet in another list so the packet can be 1177 * unallocated at a later time. 1178 */ 1179 add_to_list(tx, &tx->dqo_compl.timed_out_completions, 1180 pending_packet); 1181 } 1182 } 1183 1184 static void remove_timed_out_completions(struct gve_priv *priv, 1185 struct gve_tx_ring *tx) 1186 { 1187 struct gve_tx_pending_packet_dqo *pending_packet; 1188 s16 next_index; 1189 1190 next_index = tx->dqo_compl.timed_out_completions.head; 1191 while (next_index != -1) { 1192 pending_packet = &tx->dqo.pending_packets[next_index]; 1193 next_index = pending_packet->next; 1194 /* Break early because packets should timeout in order. */ 1195 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1196 break; 1197 1198 remove_from_list(tx, &tx->dqo_compl.timed_out_completions, 1199 pending_packet); 1200 gve_free_pending_packet(tx, pending_packet); 1201 } 1202 } 1203 1204 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 1205 struct napi_struct *napi) 1206 { 1207 u64 reinject_compl_bytes = 0; 1208 u64 reinject_compl_pkts = 0; 1209 int num_descs_cleaned = 0; 1210 u64 miss_compl_bytes = 0; 1211 u64 miss_compl_pkts = 0; 1212 u64 pkt_compl_bytes = 0; 1213 u64 pkt_compl_pkts = 0; 1214 1215 /* Limit in order to avoid blocking for too long */ 1216 while (!napi || pkt_compl_pkts < napi->weight) { 1217 struct gve_tx_compl_desc *compl_desc = 1218 &tx->dqo.compl_ring[tx->dqo_compl.head]; 1219 u16 type; 1220 1221 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit) 1222 break; 1223 1224 /* Prefetch the next descriptor. */ 1225 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) & 1226 tx->dqo.complq_mask]); 1227 1228 /* Do not read data until we own the descriptor */ 1229 dma_rmb(); 1230 type = compl_desc->type; 1231 1232 if (type == GVE_COMPL_TYPE_DQO_DESC) { 1233 /* This is the last descriptor fetched by HW plus one */ 1234 u16 tx_head = le16_to_cpu(compl_desc->tx_head); 1235 1236 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head); 1237 } else if (type == GVE_COMPL_TYPE_DQO_PKT) { 1238 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1239 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) { 1240 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT; 1241 gve_handle_miss_completion(priv, tx, compl_tag, 1242 &miss_compl_bytes, 1243 &miss_compl_pkts); 1244 } else { 1245 gve_handle_packet_completion(priv, tx, !!napi, 1246 compl_tag, 1247 &pkt_compl_bytes, 1248 &pkt_compl_pkts, 1249 false); 1250 } 1251 } else if (type == GVE_COMPL_TYPE_DQO_MISS) { 1252 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1253 1254 gve_handle_miss_completion(priv, tx, compl_tag, 1255 &miss_compl_bytes, 1256 &miss_compl_pkts); 1257 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) { 1258 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1259 1260 gve_handle_packet_completion(priv, tx, !!napi, 1261 compl_tag, 1262 &reinject_compl_bytes, 1263 &reinject_compl_pkts, 1264 true); 1265 } 1266 1267 tx->dqo_compl.head = 1268 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask; 1269 /* Flip the generation bit when we wrap around */ 1270 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0; 1271 num_descs_cleaned++; 1272 } 1273 1274 netdev_tx_completed_queue(tx->netdev_txq, 1275 pkt_compl_pkts + miss_compl_pkts, 1276 pkt_compl_bytes + miss_compl_bytes); 1277 1278 remove_miss_completions(priv, tx); 1279 remove_timed_out_completions(priv, tx); 1280 1281 u64_stats_update_begin(&tx->statss); 1282 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes; 1283 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts; 1284 u64_stats_update_end(&tx->statss); 1285 return num_descs_cleaned; 1286 } 1287 1288 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean) 1289 { 1290 struct gve_tx_compl_desc *compl_desc; 1291 struct gve_tx_ring *tx = block->tx; 1292 struct gve_priv *priv = block->priv; 1293 1294 if (do_clean) { 1295 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx, 1296 &block->napi); 1297 1298 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */ 1299 mb(); 1300 1301 if (netif_tx_queue_stopped(tx->netdev_txq) && 1302 num_descs_cleaned > 0) { 1303 tx->wake_queue++; 1304 netif_tx_wake_queue(tx->netdev_txq); 1305 } 1306 } 1307 1308 /* Return true if we still have work. */ 1309 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head]; 1310 return compl_desc->generation != tx->dqo_compl.cur_gen_bit; 1311 } 1312