1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include "gve_dqo.h" 11 #include <net/ip.h> 12 #include <linux/tcp.h> 13 #include <linux/slab.h> 14 #include <linux/skbuff.h> 15 16 /* Returns true if tx_bufs are available. */ 17 static bool gve_has_free_tx_qpl_bufs(struct gve_tx_ring *tx, int count) 18 { 19 int num_avail; 20 21 if (!tx->dqo.qpl) 22 return true; 23 24 num_avail = tx->dqo.num_tx_qpl_bufs - 25 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 26 tx->dqo_tx.free_tx_qpl_buf_cnt); 27 28 if (count <= num_avail) 29 return true; 30 31 /* Update cached value from dqo_compl. */ 32 tx->dqo_tx.free_tx_qpl_buf_cnt = 33 atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_cnt); 34 35 num_avail = tx->dqo.num_tx_qpl_bufs - 36 (tx->dqo_tx.alloc_tx_qpl_buf_cnt - 37 tx->dqo_tx.free_tx_qpl_buf_cnt); 38 39 return count <= num_avail; 40 } 41 42 static s16 43 gve_alloc_tx_qpl_buf(struct gve_tx_ring *tx) 44 { 45 s16 index; 46 47 index = tx->dqo_tx.free_tx_qpl_buf_head; 48 49 /* No TX buffers available, try to steal the list from the 50 * completion handler. 51 */ 52 if (unlikely(index == -1)) { 53 tx->dqo_tx.free_tx_qpl_buf_head = 54 atomic_xchg(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 55 index = tx->dqo_tx.free_tx_qpl_buf_head; 56 57 if (unlikely(index == -1)) 58 return index; 59 } 60 61 /* Remove TX buf from free list */ 62 tx->dqo_tx.free_tx_qpl_buf_head = tx->dqo.tx_qpl_buf_next[index]; 63 64 return index; 65 } 66 67 static void 68 gve_free_tx_qpl_bufs(struct gve_tx_ring *tx, 69 struct gve_tx_pending_packet_dqo *pkt) 70 { 71 s16 index; 72 int i; 73 74 if (!pkt->num_bufs) 75 return; 76 77 index = pkt->tx_qpl_buf_ids[0]; 78 /* Create a linked list of buffers to be added to the free list */ 79 for (i = 1; i < pkt->num_bufs; i++) { 80 tx->dqo.tx_qpl_buf_next[index] = pkt->tx_qpl_buf_ids[i]; 81 index = pkt->tx_qpl_buf_ids[i]; 82 } 83 84 while (true) { 85 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_tx_qpl_buf_head); 86 87 tx->dqo.tx_qpl_buf_next[index] = old_head; 88 if (atomic_cmpxchg(&tx->dqo_compl.free_tx_qpl_buf_head, 89 old_head, 90 pkt->tx_qpl_buf_ids[0]) == old_head) { 91 break; 92 } 93 } 94 95 atomic_add(pkt->num_bufs, &tx->dqo_compl.free_tx_qpl_buf_cnt); 96 pkt->num_bufs = 0; 97 } 98 99 /* Returns true if a gve_tx_pending_packet_dqo object is available. */ 100 static bool gve_has_pending_packet(struct gve_tx_ring *tx) 101 { 102 /* Check TX path's list. */ 103 if (tx->dqo_tx.free_pending_packets != -1) 104 return true; 105 106 /* Check completion handler's list. */ 107 if (atomic_read_acquire(&tx->dqo_compl.free_pending_packets) != -1) 108 return true; 109 110 return false; 111 } 112 113 static struct gve_tx_pending_packet_dqo * 114 gve_alloc_pending_packet(struct gve_tx_ring *tx) 115 { 116 struct gve_tx_pending_packet_dqo *pending_packet; 117 s16 index; 118 119 index = tx->dqo_tx.free_pending_packets; 120 121 /* No pending_packets available, try to steal the list from the 122 * completion handler. 123 */ 124 if (unlikely(index == -1)) { 125 tx->dqo_tx.free_pending_packets = 126 atomic_xchg(&tx->dqo_compl.free_pending_packets, -1); 127 index = tx->dqo_tx.free_pending_packets; 128 129 if (unlikely(index == -1)) 130 return NULL; 131 } 132 133 pending_packet = &tx->dqo.pending_packets[index]; 134 135 /* Remove pending_packet from free list */ 136 tx->dqo_tx.free_pending_packets = pending_packet->next; 137 pending_packet->state = GVE_PACKET_STATE_PENDING_DATA_COMPL; 138 139 return pending_packet; 140 } 141 142 static void 143 gve_free_pending_packet(struct gve_tx_ring *tx, 144 struct gve_tx_pending_packet_dqo *pending_packet) 145 { 146 s16 index = pending_packet - tx->dqo.pending_packets; 147 148 pending_packet->state = GVE_PACKET_STATE_UNALLOCATED; 149 while (true) { 150 s16 old_head = atomic_read_acquire(&tx->dqo_compl.free_pending_packets); 151 152 pending_packet->next = old_head; 153 if (atomic_cmpxchg(&tx->dqo_compl.free_pending_packets, 154 old_head, index) == old_head) { 155 break; 156 } 157 } 158 } 159 160 /* gve_tx_free_desc - Cleans up all pending tx requests and buffers. 161 */ 162 static void gve_tx_clean_pending_packets(struct gve_tx_ring *tx) 163 { 164 int i; 165 166 for (i = 0; i < tx->dqo.num_pending_packets; i++) { 167 struct gve_tx_pending_packet_dqo *cur_state = 168 &tx->dqo.pending_packets[i]; 169 int j; 170 171 for (j = 0; j < cur_state->num_bufs; j++) { 172 if (j == 0) { 173 dma_unmap_single(tx->dev, 174 dma_unmap_addr(cur_state, dma[j]), 175 dma_unmap_len(cur_state, len[j]), 176 DMA_TO_DEVICE); 177 } else { 178 dma_unmap_page(tx->dev, 179 dma_unmap_addr(cur_state, dma[j]), 180 dma_unmap_len(cur_state, len[j]), 181 DMA_TO_DEVICE); 182 } 183 } 184 if (cur_state->skb) { 185 dev_consume_skb_any(cur_state->skb); 186 cur_state->skb = NULL; 187 } 188 } 189 } 190 191 void gve_tx_stop_ring_dqo(struct gve_priv *priv, int idx) 192 { 193 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 194 struct gve_tx_ring *tx = &priv->tx[idx]; 195 196 if (!gve_tx_was_added_to_block(priv, idx)) 197 return; 198 199 gve_remove_napi(priv, ntfy_idx); 200 gve_clean_tx_done_dqo(priv, tx, /*napi=*/NULL); 201 netdev_tx_reset_queue(tx->netdev_txq); 202 gve_tx_clean_pending_packets(tx); 203 gve_tx_remove_from_block(priv, idx); 204 } 205 206 static void gve_tx_free_ring_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 207 struct gve_tx_alloc_rings_cfg *cfg) 208 { 209 struct device *hdev = &priv->pdev->dev; 210 int idx = tx->q_num; 211 size_t bytes; 212 u32 qpl_id; 213 214 if (tx->q_resources) { 215 dma_free_coherent(hdev, sizeof(*tx->q_resources), 216 tx->q_resources, tx->q_resources_bus); 217 tx->q_resources = NULL; 218 } 219 220 if (tx->dqo.compl_ring) { 221 bytes = sizeof(tx->dqo.compl_ring[0]) * 222 (tx->dqo.complq_mask + 1); 223 dma_free_coherent(hdev, bytes, tx->dqo.compl_ring, 224 tx->complq_bus_dqo); 225 tx->dqo.compl_ring = NULL; 226 } 227 228 if (tx->dqo.tx_ring) { 229 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 230 dma_free_coherent(hdev, bytes, tx->dqo.tx_ring, tx->bus); 231 tx->dqo.tx_ring = NULL; 232 } 233 234 kvfree(tx->dqo.pending_packets); 235 tx->dqo.pending_packets = NULL; 236 237 kvfree(tx->dqo.tx_qpl_buf_next); 238 tx->dqo.tx_qpl_buf_next = NULL; 239 240 if (tx->dqo.qpl) { 241 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 242 gve_free_queue_page_list(priv, tx->dqo.qpl, qpl_id); 243 tx->dqo.qpl = NULL; 244 } 245 246 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 247 } 248 249 static int gve_tx_qpl_buf_init(struct gve_tx_ring *tx) 250 { 251 int num_tx_qpl_bufs = GVE_TX_BUFS_PER_PAGE_DQO * 252 tx->dqo.qpl->num_entries; 253 int i; 254 255 tx->dqo.tx_qpl_buf_next = kvcalloc(num_tx_qpl_bufs, 256 sizeof(tx->dqo.tx_qpl_buf_next[0]), 257 GFP_KERNEL); 258 if (!tx->dqo.tx_qpl_buf_next) 259 return -ENOMEM; 260 261 tx->dqo.num_tx_qpl_bufs = num_tx_qpl_bufs; 262 263 /* Generate free TX buf list */ 264 for (i = 0; i < num_tx_qpl_bufs - 1; i++) 265 tx->dqo.tx_qpl_buf_next[i] = i + 1; 266 tx->dqo.tx_qpl_buf_next[num_tx_qpl_bufs - 1] = -1; 267 268 atomic_set_release(&tx->dqo_compl.free_tx_qpl_buf_head, -1); 269 return 0; 270 } 271 272 void gve_tx_start_ring_dqo(struct gve_priv *priv, int idx) 273 { 274 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 275 struct gve_tx_ring *tx = &priv->tx[idx]; 276 277 gve_tx_add_to_block(priv, idx); 278 279 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 280 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 281 } 282 283 static int gve_tx_alloc_ring_dqo(struct gve_priv *priv, 284 struct gve_tx_alloc_rings_cfg *cfg, 285 struct gve_tx_ring *tx, 286 int idx) 287 { 288 struct device *hdev = &priv->pdev->dev; 289 int num_pending_packets; 290 int qpl_page_cnt; 291 size_t bytes; 292 u32 qpl_id; 293 int i; 294 295 memset(tx, 0, sizeof(*tx)); 296 tx->q_num = idx; 297 tx->dev = hdev; 298 atomic_set_release(&tx->dqo_compl.hw_tx_head, 0); 299 300 /* Queue sizes must be a power of 2 */ 301 tx->mask = cfg->ring_size - 1; 302 tx->dqo.complq_mask = tx->mask; 303 304 /* The max number of pending packets determines the maximum number of 305 * descriptors which maybe written to the completion queue. 306 * 307 * We must set the number small enough to make sure we never overrun the 308 * completion queue. 309 */ 310 num_pending_packets = tx->dqo.complq_mask + 1; 311 312 /* Reserve space for descriptor completions, which will be reported at 313 * most every GVE_TX_MIN_RE_INTERVAL packets. 314 */ 315 num_pending_packets -= 316 (tx->dqo.complq_mask + 1) / GVE_TX_MIN_RE_INTERVAL; 317 318 /* Each packet may have at most 2 buffer completions if it receives both 319 * a miss and reinjection completion. 320 */ 321 num_pending_packets /= 2; 322 323 tx->dqo.num_pending_packets = min_t(int, num_pending_packets, S16_MAX); 324 tx->dqo.pending_packets = kvcalloc(tx->dqo.num_pending_packets, 325 sizeof(tx->dqo.pending_packets[0]), 326 GFP_KERNEL); 327 if (!tx->dqo.pending_packets) 328 goto err; 329 330 /* Set up linked list of pending packets */ 331 for (i = 0; i < tx->dqo.num_pending_packets - 1; i++) 332 tx->dqo.pending_packets[i].next = i + 1; 333 334 tx->dqo.pending_packets[tx->dqo.num_pending_packets - 1].next = -1; 335 atomic_set_release(&tx->dqo_compl.free_pending_packets, -1); 336 tx->dqo_compl.miss_completions.head = -1; 337 tx->dqo_compl.miss_completions.tail = -1; 338 tx->dqo_compl.timed_out_completions.head = -1; 339 tx->dqo_compl.timed_out_completions.tail = -1; 340 341 bytes = sizeof(tx->dqo.tx_ring[0]) * (tx->mask + 1); 342 tx->dqo.tx_ring = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 343 if (!tx->dqo.tx_ring) 344 goto err; 345 346 bytes = sizeof(tx->dqo.compl_ring[0]) * (tx->dqo.complq_mask + 1); 347 tx->dqo.compl_ring = dma_alloc_coherent(hdev, bytes, 348 &tx->complq_bus_dqo, 349 GFP_KERNEL); 350 if (!tx->dqo.compl_ring) 351 goto err; 352 353 tx->q_resources = dma_alloc_coherent(hdev, sizeof(*tx->q_resources), 354 &tx->q_resources_bus, GFP_KERNEL); 355 if (!tx->q_resources) 356 goto err; 357 358 if (!cfg->raw_addressing) { 359 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 360 qpl_page_cnt = priv->tx_pages_per_qpl; 361 362 tx->dqo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 363 qpl_page_cnt); 364 if (!tx->dqo.qpl) 365 goto err; 366 367 if (gve_tx_qpl_buf_init(tx)) 368 goto err; 369 } 370 371 return 0; 372 373 err: 374 gve_tx_free_ring_dqo(priv, tx, cfg); 375 return -ENOMEM; 376 } 377 378 int gve_tx_alloc_rings_dqo(struct gve_priv *priv, 379 struct gve_tx_alloc_rings_cfg *cfg) 380 { 381 struct gve_tx_ring *tx = cfg->tx; 382 int err = 0; 383 int i, j; 384 385 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 386 netif_err(priv, drv, priv->dev, 387 "Cannot alloc more than the max num of Tx rings\n"); 388 return -EINVAL; 389 } 390 391 if (cfg->start_idx == 0) { 392 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 393 GFP_KERNEL); 394 if (!tx) 395 return -ENOMEM; 396 } else if (!tx) { 397 netif_err(priv, drv, priv->dev, 398 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 399 return -EINVAL; 400 } 401 402 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 403 err = gve_tx_alloc_ring_dqo(priv, cfg, &tx[i], i); 404 if (err) { 405 netif_err(priv, drv, priv->dev, 406 "Failed to alloc tx ring=%d: err=%d\n", 407 i, err); 408 goto err; 409 } 410 } 411 412 cfg->tx = tx; 413 return 0; 414 415 err: 416 for (j = 0; j < i; j++) 417 gve_tx_free_ring_dqo(priv, &tx[j], cfg); 418 if (cfg->start_idx == 0) 419 kvfree(tx); 420 return err; 421 } 422 423 void gve_tx_free_rings_dqo(struct gve_priv *priv, 424 struct gve_tx_alloc_rings_cfg *cfg) 425 { 426 struct gve_tx_ring *tx = cfg->tx; 427 int i; 428 429 if (!tx) 430 return; 431 432 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 433 gve_tx_free_ring_dqo(priv, &tx[i], cfg); 434 435 if (cfg->start_idx == 0) { 436 kvfree(tx); 437 cfg->tx = NULL; 438 } 439 } 440 441 /* Returns the number of slots available in the ring */ 442 static u32 num_avail_tx_slots(const struct gve_tx_ring *tx) 443 { 444 u32 num_used = (tx->dqo_tx.tail - tx->dqo_tx.head) & tx->mask; 445 446 return tx->mask - num_used; 447 } 448 449 static bool gve_has_avail_slots_tx_dqo(struct gve_tx_ring *tx, 450 int desc_count, int buf_count) 451 { 452 return gve_has_pending_packet(tx) && 453 num_avail_tx_slots(tx) >= desc_count && 454 gve_has_free_tx_qpl_bufs(tx, buf_count); 455 } 456 457 /* Stops the queue if available descriptors is less than 'count'. 458 * Return: 0 if stop is not required. 459 */ 460 static int gve_maybe_stop_tx_dqo(struct gve_tx_ring *tx, 461 int desc_count, int buf_count) 462 { 463 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 464 return 0; 465 466 /* Update cached TX head pointer */ 467 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 468 469 if (likely(gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 470 return 0; 471 472 /* No space, so stop the queue */ 473 tx->stop_queue++; 474 netif_tx_stop_queue(tx->netdev_txq); 475 476 /* Sync with restarting queue in `gve_tx_poll_dqo()` */ 477 mb(); 478 479 /* After stopping queue, check if we can transmit again in order to 480 * avoid TOCTOU bug. 481 */ 482 tx->dqo_tx.head = atomic_read_acquire(&tx->dqo_compl.hw_tx_head); 483 484 if (likely(!gve_has_avail_slots_tx_dqo(tx, desc_count, buf_count))) 485 return -EBUSY; 486 487 netif_tx_start_queue(tx->netdev_txq); 488 tx->wake_queue++; 489 return 0; 490 } 491 492 static void gve_extract_tx_metadata_dqo(const struct sk_buff *skb, 493 struct gve_tx_metadata_dqo *metadata) 494 { 495 memset(metadata, 0, sizeof(*metadata)); 496 metadata->version = GVE_TX_METADATA_VERSION_DQO; 497 498 if (skb->l4_hash) { 499 u16 path_hash = skb->hash ^ (skb->hash >> 16); 500 501 path_hash &= (1 << 15) - 1; 502 if (unlikely(path_hash == 0)) 503 path_hash = ~path_hash; 504 505 metadata->path_hash = path_hash; 506 } 507 } 508 509 static void gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx, u32 *desc_idx, 510 struct sk_buff *skb, u32 len, u64 addr, 511 s16 compl_tag, bool eop, bool is_gso) 512 { 513 const bool checksum_offload_en = skb->ip_summed == CHECKSUM_PARTIAL; 514 515 while (len > 0) { 516 struct gve_tx_pkt_desc_dqo *desc = 517 &tx->dqo.tx_ring[*desc_idx].pkt; 518 u32 cur_len = min_t(u32, len, GVE_TX_MAX_BUF_SIZE_DQO); 519 bool cur_eop = eop && cur_len == len; 520 521 *desc = (struct gve_tx_pkt_desc_dqo){ 522 .buf_addr = cpu_to_le64(addr), 523 .dtype = GVE_TX_PKT_DESC_DTYPE_DQO, 524 .end_of_packet = cur_eop, 525 .checksum_offload_enable = checksum_offload_en, 526 .compl_tag = cpu_to_le16(compl_tag), 527 .buf_size = cur_len, 528 }; 529 530 addr += cur_len; 531 len -= cur_len; 532 *desc_idx = (*desc_idx + 1) & tx->mask; 533 } 534 } 535 536 /* Validates and prepares `skb` for TSO. 537 * 538 * Returns header length, or < 0 if invalid. 539 */ 540 static int gve_prep_tso(struct sk_buff *skb) 541 { 542 struct tcphdr *tcp; 543 int header_len; 544 u32 paylen; 545 int err; 546 547 /* Note: HW requires MSS (gso_size) to be <= 9728 and the total length 548 * of the TSO to be <= 262143. 549 * 550 * However, we don't validate these because: 551 * - Hypervisor enforces a limit of 9K MTU 552 * - Kernel will not produce a TSO larger than 64k 553 */ 554 555 if (unlikely(skb_shinfo(skb)->gso_size < GVE_TX_MIN_TSO_MSS_DQO)) 556 return -1; 557 558 /* Needed because we will modify header. */ 559 err = skb_cow_head(skb, 0); 560 if (err < 0) 561 return err; 562 563 tcp = tcp_hdr(skb); 564 565 /* Remove payload length from checksum. */ 566 paylen = skb->len - skb_transport_offset(skb); 567 568 switch (skb_shinfo(skb)->gso_type) { 569 case SKB_GSO_TCPV4: 570 case SKB_GSO_TCPV6: 571 csum_replace_by_diff(&tcp->check, 572 (__force __wsum)htonl(paylen)); 573 574 /* Compute length of segmentation header. */ 575 header_len = skb_tcp_all_headers(skb); 576 break; 577 default: 578 return -EINVAL; 579 } 580 581 if (unlikely(header_len > GVE_TX_MAX_HDR_SIZE_DQO)) 582 return -EINVAL; 583 584 return header_len; 585 } 586 587 static void gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc, 588 const struct sk_buff *skb, 589 const struct gve_tx_metadata_dqo *metadata, 590 int header_len) 591 { 592 *desc = (struct gve_tx_tso_context_desc_dqo){ 593 .header_len = header_len, 594 .cmd_dtype = { 595 .dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO, 596 .tso = 1, 597 }, 598 .flex0 = metadata->bytes[0], 599 .flex5 = metadata->bytes[5], 600 .flex6 = metadata->bytes[6], 601 .flex7 = metadata->bytes[7], 602 .flex8 = metadata->bytes[8], 603 .flex9 = metadata->bytes[9], 604 .flex10 = metadata->bytes[10], 605 .flex11 = metadata->bytes[11], 606 }; 607 desc->tso_total_len = skb->len - header_len; 608 desc->mss = skb_shinfo(skb)->gso_size; 609 } 610 611 static void 612 gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc, 613 const struct gve_tx_metadata_dqo *metadata) 614 { 615 *desc = (struct gve_tx_general_context_desc_dqo){ 616 .flex0 = metadata->bytes[0], 617 .flex1 = metadata->bytes[1], 618 .flex2 = metadata->bytes[2], 619 .flex3 = metadata->bytes[3], 620 .flex4 = metadata->bytes[4], 621 .flex5 = metadata->bytes[5], 622 .flex6 = metadata->bytes[6], 623 .flex7 = metadata->bytes[7], 624 .flex8 = metadata->bytes[8], 625 .flex9 = metadata->bytes[9], 626 .flex10 = metadata->bytes[10], 627 .flex11 = metadata->bytes[11], 628 .cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO}, 629 }; 630 } 631 632 static int gve_tx_add_skb_no_copy_dqo(struct gve_tx_ring *tx, 633 struct sk_buff *skb, 634 struct gve_tx_pending_packet_dqo *pkt, 635 s16 completion_tag, 636 u32 *desc_idx, 637 bool is_gso) 638 { 639 const struct skb_shared_info *shinfo = skb_shinfo(skb); 640 int i; 641 642 /* Note: HW requires that the size of a non-TSO packet be within the 643 * range of [17, 9728]. 644 * 645 * We don't double check because 646 * - We limited `netdev->min_mtu` to ETH_MIN_MTU. 647 * - Hypervisor won't allow MTU larger than 9216. 648 */ 649 650 pkt->num_bufs = 0; 651 /* Map the linear portion of skb */ 652 { 653 u32 len = skb_headlen(skb); 654 dma_addr_t addr; 655 656 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 657 if (unlikely(dma_mapping_error(tx->dev, addr))) 658 goto err; 659 660 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 661 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 662 ++pkt->num_bufs; 663 664 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 665 completion_tag, 666 /*eop=*/shinfo->nr_frags == 0, is_gso); 667 } 668 669 for (i = 0; i < shinfo->nr_frags; i++) { 670 const skb_frag_t *frag = &shinfo->frags[i]; 671 bool is_eop = i == (shinfo->nr_frags - 1); 672 u32 len = skb_frag_size(frag); 673 dma_addr_t addr; 674 675 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 676 if (unlikely(dma_mapping_error(tx->dev, addr))) 677 goto err; 678 679 dma_unmap_len_set(pkt, len[pkt->num_bufs], len); 680 dma_unmap_addr_set(pkt, dma[pkt->num_bufs], addr); 681 ++pkt->num_bufs; 682 683 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, len, addr, 684 completion_tag, is_eop, is_gso); 685 } 686 687 return 0; 688 err: 689 for (i = 0; i < pkt->num_bufs; i++) { 690 if (i == 0) { 691 dma_unmap_single(tx->dev, 692 dma_unmap_addr(pkt, dma[i]), 693 dma_unmap_len(pkt, len[i]), 694 DMA_TO_DEVICE); 695 } else { 696 dma_unmap_page(tx->dev, 697 dma_unmap_addr(pkt, dma[i]), 698 dma_unmap_len(pkt, len[i]), 699 DMA_TO_DEVICE); 700 } 701 } 702 pkt->num_bufs = 0; 703 return -1; 704 } 705 706 /* Tx buffer i corresponds to 707 * qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO 708 * qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO 709 */ 710 static void gve_tx_buf_get_addr(struct gve_tx_ring *tx, 711 s16 index, 712 void **va, dma_addr_t *dma_addr) 713 { 714 int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO); 715 int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) << GVE_TX_BUF_SHIFT_DQO; 716 717 *va = page_address(tx->dqo.qpl->pages[page_id]) + offset; 718 *dma_addr = tx->dqo.qpl->page_buses[page_id] + offset; 719 } 720 721 static int gve_tx_add_skb_copy_dqo(struct gve_tx_ring *tx, 722 struct sk_buff *skb, 723 struct gve_tx_pending_packet_dqo *pkt, 724 s16 completion_tag, 725 u32 *desc_idx, 726 bool is_gso) 727 { 728 u32 copy_offset = 0; 729 dma_addr_t dma_addr; 730 u32 copy_len; 731 s16 index; 732 void *va; 733 734 /* Break the packet into buffer size chunks */ 735 pkt->num_bufs = 0; 736 while (copy_offset < skb->len) { 737 index = gve_alloc_tx_qpl_buf(tx); 738 if (unlikely(index == -1)) 739 goto err; 740 741 gve_tx_buf_get_addr(tx, index, &va, &dma_addr); 742 copy_len = min_t(u32, GVE_TX_BUF_SIZE_DQO, 743 skb->len - copy_offset); 744 skb_copy_bits(skb, copy_offset, va, copy_len); 745 746 copy_offset += copy_len; 747 dma_sync_single_for_device(tx->dev, dma_addr, 748 copy_len, DMA_TO_DEVICE); 749 gve_tx_fill_pkt_desc_dqo(tx, desc_idx, skb, 750 copy_len, 751 dma_addr, 752 completion_tag, 753 copy_offset == skb->len, 754 is_gso); 755 756 pkt->tx_qpl_buf_ids[pkt->num_bufs] = index; 757 ++tx->dqo_tx.alloc_tx_qpl_buf_cnt; 758 ++pkt->num_bufs; 759 } 760 761 return 0; 762 err: 763 /* Should not be here if gve_has_free_tx_qpl_bufs() check is correct */ 764 gve_free_tx_qpl_bufs(tx, pkt); 765 return -ENOMEM; 766 } 767 768 /* Returns 0 on success, or < 0 on error. 769 * 770 * Before this function is called, the caller must ensure 771 * gve_has_pending_packet(tx) returns true. 772 */ 773 static int gve_tx_add_skb_dqo(struct gve_tx_ring *tx, 774 struct sk_buff *skb) 775 { 776 const bool is_gso = skb_is_gso(skb); 777 u32 desc_idx = tx->dqo_tx.tail; 778 struct gve_tx_pending_packet_dqo *pkt; 779 struct gve_tx_metadata_dqo metadata; 780 s16 completion_tag; 781 782 pkt = gve_alloc_pending_packet(tx); 783 pkt->skb = skb; 784 completion_tag = pkt - tx->dqo.pending_packets; 785 786 gve_extract_tx_metadata_dqo(skb, &metadata); 787 if (is_gso) { 788 int header_len = gve_prep_tso(skb); 789 790 if (unlikely(header_len < 0)) 791 goto err; 792 793 gve_tx_fill_tso_ctx_desc(&tx->dqo.tx_ring[desc_idx].tso_ctx, 794 skb, &metadata, header_len); 795 desc_idx = (desc_idx + 1) & tx->mask; 796 } 797 798 gve_tx_fill_general_ctx_desc(&tx->dqo.tx_ring[desc_idx].general_ctx, 799 &metadata); 800 desc_idx = (desc_idx + 1) & tx->mask; 801 802 if (tx->dqo.qpl) { 803 if (gve_tx_add_skb_copy_dqo(tx, skb, pkt, 804 completion_tag, 805 &desc_idx, is_gso)) 806 goto err; 807 } else { 808 if (gve_tx_add_skb_no_copy_dqo(tx, skb, pkt, 809 completion_tag, 810 &desc_idx, is_gso)) 811 goto err; 812 } 813 814 tx->dqo_tx.posted_packet_desc_cnt += pkt->num_bufs; 815 816 /* Commit the changes to our state */ 817 tx->dqo_tx.tail = desc_idx; 818 819 /* Request a descriptor completion on the last descriptor of the 820 * packet if we are allowed to by the HW enforced interval. 821 */ 822 { 823 u32 last_desc_idx = (desc_idx - 1) & tx->mask; 824 u32 last_report_event_interval = 825 (last_desc_idx - tx->dqo_tx.last_re_idx) & tx->mask; 826 827 if (unlikely(last_report_event_interval >= 828 GVE_TX_MIN_RE_INTERVAL)) { 829 tx->dqo.tx_ring[last_desc_idx].pkt.report_event = true; 830 tx->dqo_tx.last_re_idx = last_desc_idx; 831 } 832 } 833 834 return 0; 835 836 err: 837 pkt->skb = NULL; 838 gve_free_pending_packet(tx, pkt); 839 840 return -1; 841 } 842 843 static int gve_num_descs_per_buf(size_t size) 844 { 845 return DIV_ROUND_UP(size, GVE_TX_MAX_BUF_SIZE_DQO); 846 } 847 848 static int gve_num_buffer_descs_needed(const struct sk_buff *skb) 849 { 850 const struct skb_shared_info *shinfo = skb_shinfo(skb); 851 int num_descs; 852 int i; 853 854 num_descs = gve_num_descs_per_buf(skb_headlen(skb)); 855 856 for (i = 0; i < shinfo->nr_frags; i++) { 857 unsigned int frag_size = skb_frag_size(&shinfo->frags[i]); 858 859 num_descs += gve_num_descs_per_buf(frag_size); 860 } 861 862 return num_descs; 863 } 864 865 /* Returns true if HW is capable of sending TSO represented by `skb`. 866 * 867 * Each segment must not span more than GVE_TX_MAX_DATA_DESCS buffers. 868 * - The header is counted as one buffer for every single segment. 869 * - A buffer which is split between two segments is counted for both. 870 * - If a buffer contains both header and payload, it is counted as two buffers. 871 */ 872 static bool gve_can_send_tso(const struct sk_buff *skb) 873 { 874 const int max_bufs_per_seg = GVE_TX_MAX_DATA_DESCS - 1; 875 const struct skb_shared_info *shinfo = skb_shinfo(skb); 876 const int header_len = skb_tcp_all_headers(skb); 877 const int gso_size = shinfo->gso_size; 878 int cur_seg_num_bufs; 879 int cur_seg_size; 880 int i; 881 882 cur_seg_size = skb_headlen(skb) - header_len; 883 cur_seg_num_bufs = cur_seg_size > 0; 884 885 for (i = 0; i < shinfo->nr_frags; i++) { 886 if (cur_seg_size >= gso_size) { 887 cur_seg_size %= gso_size; 888 cur_seg_num_bufs = cur_seg_size > 0; 889 } 890 891 if (unlikely(++cur_seg_num_bufs > max_bufs_per_seg)) 892 return false; 893 894 cur_seg_size += skb_frag_size(&shinfo->frags[i]); 895 } 896 897 return true; 898 } 899 900 netdev_features_t gve_features_check_dqo(struct sk_buff *skb, 901 struct net_device *dev, 902 netdev_features_t features) 903 { 904 if (skb_is_gso(skb) && !gve_can_send_tso(skb)) 905 return features & ~NETIF_F_GSO_MASK; 906 907 return features; 908 } 909 910 /* Attempt to transmit specified SKB. 911 * 912 * Returns 0 if the SKB was transmitted or dropped. 913 * Returns -1 if there is not currently enough space to transmit the SKB. 914 */ 915 static int gve_try_tx_skb(struct gve_priv *priv, struct gve_tx_ring *tx, 916 struct sk_buff *skb) 917 { 918 int num_buffer_descs; 919 int total_num_descs; 920 921 if (skb_is_gso(skb) && unlikely(ipv6_hopopt_jumbo_remove(skb))) 922 goto drop; 923 924 if (tx->dqo.qpl) { 925 /* We do not need to verify the number of buffers used per 926 * packet or per segment in case of TSO as with 2K size buffers 927 * none of the TX packet rules would be violated. 928 * 929 * gve_can_send_tso() checks that each TCP segment of gso_size is 930 * not distributed over more than 9 SKB frags.. 931 */ 932 num_buffer_descs = DIV_ROUND_UP(skb->len, GVE_TX_BUF_SIZE_DQO); 933 } else { 934 num_buffer_descs = gve_num_buffer_descs_needed(skb); 935 if (!skb_is_gso(skb)) { 936 if (unlikely(num_buffer_descs > GVE_TX_MAX_DATA_DESCS)) { 937 if (unlikely(skb_linearize(skb) < 0)) 938 goto drop; 939 940 num_buffer_descs = 1; 941 } 942 } 943 } 944 945 /* Metadata + (optional TSO) + data descriptors. */ 946 total_num_descs = 1 + skb_is_gso(skb) + num_buffer_descs; 947 if (unlikely(gve_maybe_stop_tx_dqo(tx, total_num_descs + 948 GVE_TX_MIN_DESC_PREVENT_CACHE_OVERLAP, 949 num_buffer_descs))) { 950 return -1; 951 } 952 953 if (unlikely(gve_tx_add_skb_dqo(tx, skb) < 0)) 954 goto drop; 955 956 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 957 skb_tx_timestamp(skb); 958 return 0; 959 960 drop: 961 tx->dropped_pkt++; 962 dev_kfree_skb_any(skb); 963 return 0; 964 } 965 966 /* Transmit a given skb and ring the doorbell. */ 967 netdev_tx_t gve_tx_dqo(struct sk_buff *skb, struct net_device *dev) 968 { 969 struct gve_priv *priv = netdev_priv(dev); 970 struct gve_tx_ring *tx; 971 972 tx = &priv->tx[skb_get_queue_mapping(skb)]; 973 if (unlikely(gve_try_tx_skb(priv, tx, skb) < 0)) { 974 /* We need to ring the txq doorbell -- we have stopped the Tx 975 * queue for want of resources, but prior calls to gve_tx() 976 * may have added descriptors without ringing the doorbell. 977 */ 978 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 979 return NETDEV_TX_BUSY; 980 } 981 982 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 983 return NETDEV_TX_OK; 984 985 gve_tx_put_doorbell_dqo(priv, tx->q_resources, tx->dqo_tx.tail); 986 return NETDEV_TX_OK; 987 } 988 989 static void add_to_list(struct gve_tx_ring *tx, struct gve_index_list *list, 990 struct gve_tx_pending_packet_dqo *pending_packet) 991 { 992 s16 old_tail, index; 993 994 index = pending_packet - tx->dqo.pending_packets; 995 old_tail = list->tail; 996 list->tail = index; 997 if (old_tail == -1) 998 list->head = index; 999 else 1000 tx->dqo.pending_packets[old_tail].next = index; 1001 1002 pending_packet->next = -1; 1003 pending_packet->prev = old_tail; 1004 } 1005 1006 static void remove_from_list(struct gve_tx_ring *tx, 1007 struct gve_index_list *list, 1008 struct gve_tx_pending_packet_dqo *pkt) 1009 { 1010 s16 prev_index, next_index; 1011 1012 prev_index = pkt->prev; 1013 next_index = pkt->next; 1014 1015 if (prev_index == -1) { 1016 /* Node is head */ 1017 list->head = next_index; 1018 } else { 1019 tx->dqo.pending_packets[prev_index].next = next_index; 1020 } 1021 if (next_index == -1) { 1022 /* Node is tail */ 1023 list->tail = prev_index; 1024 } else { 1025 tx->dqo.pending_packets[next_index].prev = prev_index; 1026 } 1027 } 1028 1029 static void gve_unmap_packet(struct device *dev, 1030 struct gve_tx_pending_packet_dqo *pkt) 1031 { 1032 int i; 1033 1034 /* SKB linear portion is guaranteed to be mapped */ 1035 dma_unmap_single(dev, dma_unmap_addr(pkt, dma[0]), 1036 dma_unmap_len(pkt, len[0]), DMA_TO_DEVICE); 1037 for (i = 1; i < pkt->num_bufs; i++) { 1038 dma_unmap_page(dev, dma_unmap_addr(pkt, dma[i]), 1039 dma_unmap_len(pkt, len[i]), DMA_TO_DEVICE); 1040 } 1041 pkt->num_bufs = 0; 1042 } 1043 1044 /* Completion types and expected behavior: 1045 * No Miss compl + Packet compl = Packet completed normally. 1046 * Miss compl + Re-inject compl = Packet completed normally. 1047 * No Miss compl + Re-inject compl = Skipped i.e. packet not completed. 1048 * Miss compl + Packet compl = Skipped i.e. packet not completed. 1049 */ 1050 static void gve_handle_packet_completion(struct gve_priv *priv, 1051 struct gve_tx_ring *tx, bool is_napi, 1052 u16 compl_tag, u64 *bytes, u64 *pkts, 1053 bool is_reinjection) 1054 { 1055 struct gve_tx_pending_packet_dqo *pending_packet; 1056 1057 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1058 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1059 priv->dev->name, (int)compl_tag); 1060 return; 1061 } 1062 1063 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1064 1065 if (unlikely(is_reinjection)) { 1066 if (unlikely(pending_packet->state == 1067 GVE_PACKET_STATE_TIMED_OUT_COMPL)) { 1068 net_err_ratelimited("%s: Re-injection completion: %d received after timeout.\n", 1069 priv->dev->name, (int)compl_tag); 1070 /* Packet was already completed as a result of timeout, 1071 * so just remove from list and free pending packet. 1072 */ 1073 remove_from_list(tx, 1074 &tx->dqo_compl.timed_out_completions, 1075 pending_packet); 1076 gve_free_pending_packet(tx, pending_packet); 1077 return; 1078 } 1079 if (unlikely(pending_packet->state != 1080 GVE_PACKET_STATE_PENDING_REINJECT_COMPL)) { 1081 /* No outstanding miss completion but packet allocated 1082 * implies packet receives a re-injection completion 1083 * without a prior miss completion. Return without 1084 * completing the packet. 1085 */ 1086 net_err_ratelimited("%s: Re-injection completion received without corresponding miss completion: %d\n", 1087 priv->dev->name, (int)compl_tag); 1088 return; 1089 } 1090 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1091 pending_packet); 1092 } else { 1093 /* Packet is allocated but not a pending data completion. */ 1094 if (unlikely(pending_packet->state != 1095 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1096 net_err_ratelimited("%s: No pending data completion: %d\n", 1097 priv->dev->name, (int)compl_tag); 1098 return; 1099 } 1100 } 1101 tx->dqo_tx.completed_packet_desc_cnt += pending_packet->num_bufs; 1102 if (tx->dqo.qpl) 1103 gve_free_tx_qpl_bufs(tx, pending_packet); 1104 else 1105 gve_unmap_packet(tx->dev, pending_packet); 1106 1107 *bytes += pending_packet->skb->len; 1108 (*pkts)++; 1109 napi_consume_skb(pending_packet->skb, is_napi); 1110 pending_packet->skb = NULL; 1111 gve_free_pending_packet(tx, pending_packet); 1112 } 1113 1114 static void gve_handle_miss_completion(struct gve_priv *priv, 1115 struct gve_tx_ring *tx, u16 compl_tag, 1116 u64 *bytes, u64 *pkts) 1117 { 1118 struct gve_tx_pending_packet_dqo *pending_packet; 1119 1120 if (unlikely(compl_tag >= tx->dqo.num_pending_packets)) { 1121 net_err_ratelimited("%s: Invalid TX completion tag: %d\n", 1122 priv->dev->name, (int)compl_tag); 1123 return; 1124 } 1125 1126 pending_packet = &tx->dqo.pending_packets[compl_tag]; 1127 if (unlikely(pending_packet->state != 1128 GVE_PACKET_STATE_PENDING_DATA_COMPL)) { 1129 net_err_ratelimited("%s: Unexpected packet state: %d for completion tag : %d\n", 1130 priv->dev->name, (int)pending_packet->state, 1131 (int)compl_tag); 1132 return; 1133 } 1134 1135 pending_packet->state = GVE_PACKET_STATE_PENDING_REINJECT_COMPL; 1136 /* jiffies can wraparound but time comparisons can handle overflows. */ 1137 pending_packet->timeout_jiffies = 1138 jiffies + 1139 msecs_to_jiffies(GVE_REINJECT_COMPL_TIMEOUT * 1140 MSEC_PER_SEC); 1141 add_to_list(tx, &tx->dqo_compl.miss_completions, pending_packet); 1142 1143 *bytes += pending_packet->skb->len; 1144 (*pkts)++; 1145 } 1146 1147 static void remove_miss_completions(struct gve_priv *priv, 1148 struct gve_tx_ring *tx) 1149 { 1150 struct gve_tx_pending_packet_dqo *pending_packet; 1151 s16 next_index; 1152 1153 next_index = tx->dqo_compl.miss_completions.head; 1154 while (next_index != -1) { 1155 pending_packet = &tx->dqo.pending_packets[next_index]; 1156 next_index = pending_packet->next; 1157 /* Break early because packets should timeout in order. */ 1158 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1159 break; 1160 1161 remove_from_list(tx, &tx->dqo_compl.miss_completions, 1162 pending_packet); 1163 /* Unmap/free TX buffers and free skb but do not unallocate packet i.e. 1164 * the completion tag is not freed to ensure that the driver 1165 * can take appropriate action if a corresponding valid 1166 * completion is received later. 1167 */ 1168 if (tx->dqo.qpl) 1169 gve_free_tx_qpl_bufs(tx, pending_packet); 1170 else 1171 gve_unmap_packet(tx->dev, pending_packet); 1172 1173 /* This indicates the packet was dropped. */ 1174 dev_kfree_skb_any(pending_packet->skb); 1175 pending_packet->skb = NULL; 1176 tx->dropped_pkt++; 1177 net_err_ratelimited("%s: No reinjection completion was received for: %d.\n", 1178 priv->dev->name, 1179 (int)(pending_packet - tx->dqo.pending_packets)); 1180 1181 pending_packet->state = GVE_PACKET_STATE_TIMED_OUT_COMPL; 1182 pending_packet->timeout_jiffies = 1183 jiffies + 1184 msecs_to_jiffies(GVE_DEALLOCATE_COMPL_TIMEOUT * 1185 MSEC_PER_SEC); 1186 /* Maintain pending packet in another list so the packet can be 1187 * unallocated at a later time. 1188 */ 1189 add_to_list(tx, &tx->dqo_compl.timed_out_completions, 1190 pending_packet); 1191 } 1192 } 1193 1194 static void remove_timed_out_completions(struct gve_priv *priv, 1195 struct gve_tx_ring *tx) 1196 { 1197 struct gve_tx_pending_packet_dqo *pending_packet; 1198 s16 next_index; 1199 1200 next_index = tx->dqo_compl.timed_out_completions.head; 1201 while (next_index != -1) { 1202 pending_packet = &tx->dqo.pending_packets[next_index]; 1203 next_index = pending_packet->next; 1204 /* Break early because packets should timeout in order. */ 1205 if (time_is_after_jiffies(pending_packet->timeout_jiffies)) 1206 break; 1207 1208 remove_from_list(tx, &tx->dqo_compl.timed_out_completions, 1209 pending_packet); 1210 gve_free_pending_packet(tx, pending_packet); 1211 } 1212 } 1213 1214 int gve_clean_tx_done_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, 1215 struct napi_struct *napi) 1216 { 1217 u64 reinject_compl_bytes = 0; 1218 u64 reinject_compl_pkts = 0; 1219 int num_descs_cleaned = 0; 1220 u64 miss_compl_bytes = 0; 1221 u64 miss_compl_pkts = 0; 1222 u64 pkt_compl_bytes = 0; 1223 u64 pkt_compl_pkts = 0; 1224 1225 /* Limit in order to avoid blocking for too long */ 1226 while (!napi || pkt_compl_pkts < napi->weight) { 1227 struct gve_tx_compl_desc *compl_desc = 1228 &tx->dqo.compl_ring[tx->dqo_compl.head]; 1229 u16 type; 1230 1231 if (compl_desc->generation == tx->dqo_compl.cur_gen_bit) 1232 break; 1233 1234 /* Prefetch the next descriptor. */ 1235 prefetch(&tx->dqo.compl_ring[(tx->dqo_compl.head + 1) & 1236 tx->dqo.complq_mask]); 1237 1238 /* Do not read data until we own the descriptor */ 1239 dma_rmb(); 1240 type = compl_desc->type; 1241 1242 if (type == GVE_COMPL_TYPE_DQO_DESC) { 1243 /* This is the last descriptor fetched by HW plus one */ 1244 u16 tx_head = le16_to_cpu(compl_desc->tx_head); 1245 1246 atomic_set_release(&tx->dqo_compl.hw_tx_head, tx_head); 1247 } else if (type == GVE_COMPL_TYPE_DQO_PKT) { 1248 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1249 if (compl_tag & GVE_ALT_MISS_COMPL_BIT) { 1250 compl_tag &= ~GVE_ALT_MISS_COMPL_BIT; 1251 gve_handle_miss_completion(priv, tx, compl_tag, 1252 &miss_compl_bytes, 1253 &miss_compl_pkts); 1254 } else { 1255 gve_handle_packet_completion(priv, tx, !!napi, 1256 compl_tag, 1257 &pkt_compl_bytes, 1258 &pkt_compl_pkts, 1259 false); 1260 } 1261 } else if (type == GVE_COMPL_TYPE_DQO_MISS) { 1262 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1263 1264 gve_handle_miss_completion(priv, tx, compl_tag, 1265 &miss_compl_bytes, 1266 &miss_compl_pkts); 1267 } else if (type == GVE_COMPL_TYPE_DQO_REINJECTION) { 1268 u16 compl_tag = le16_to_cpu(compl_desc->completion_tag); 1269 1270 gve_handle_packet_completion(priv, tx, !!napi, 1271 compl_tag, 1272 &reinject_compl_bytes, 1273 &reinject_compl_pkts, 1274 true); 1275 } 1276 1277 tx->dqo_compl.head = 1278 (tx->dqo_compl.head + 1) & tx->dqo.complq_mask; 1279 /* Flip the generation bit when we wrap around */ 1280 tx->dqo_compl.cur_gen_bit ^= tx->dqo_compl.head == 0; 1281 num_descs_cleaned++; 1282 } 1283 1284 netdev_tx_completed_queue(tx->netdev_txq, 1285 pkt_compl_pkts + miss_compl_pkts, 1286 pkt_compl_bytes + miss_compl_bytes); 1287 1288 remove_miss_completions(priv, tx); 1289 remove_timed_out_completions(priv, tx); 1290 1291 u64_stats_update_begin(&tx->statss); 1292 tx->bytes_done += pkt_compl_bytes + reinject_compl_bytes; 1293 tx->pkt_done += pkt_compl_pkts + reinject_compl_pkts; 1294 u64_stats_update_end(&tx->statss); 1295 return num_descs_cleaned; 1296 } 1297 1298 bool gve_tx_poll_dqo(struct gve_notify_block *block, bool do_clean) 1299 { 1300 struct gve_tx_compl_desc *compl_desc; 1301 struct gve_tx_ring *tx = block->tx; 1302 struct gve_priv *priv = block->priv; 1303 1304 if (do_clean) { 1305 int num_descs_cleaned = gve_clean_tx_done_dqo(priv, tx, 1306 &block->napi); 1307 1308 /* Sync with queue being stopped in `gve_maybe_stop_tx_dqo()` */ 1309 mb(); 1310 1311 if (netif_tx_queue_stopped(tx->netdev_txq) && 1312 num_descs_cleaned > 0) { 1313 tx->wake_queue++; 1314 netif_tx_wake_queue(tx->netdev_txq); 1315 } 1316 } 1317 1318 /* Return true if we still have work. */ 1319 compl_desc = &tx->dqo.compl_ring[tx->dqo_compl.head]; 1320 return compl_desc->generation != tx->dqo_compl.cur_gen_bit; 1321 } 1322