1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include <linux/ip.h> 11 #include <linux/tcp.h> 12 #include <linux/vmalloc.h> 13 #include <linux/skbuff.h> 14 #include <net/xdp_sock_drv.h> 15 16 static inline void gve_tx_put_doorbell(struct gve_priv *priv, 17 struct gve_queue_resources *q_resources, 18 u32 val) 19 { 20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); 21 } 22 23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) 24 { 25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); 26 struct gve_tx_ring *tx = &priv->tx[tx_qid]; 27 28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 29 } 30 31 /* gvnic can only transmit from a Registered Segment. 32 * We copy skb payloads into the registered segment before writing Tx 33 * descriptors and ringing the Tx doorbell. 34 * 35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must 36 * free allocations in the order they were allocated. 37 */ 38 39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) 40 { 41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, 42 PAGE_KERNEL); 43 if (unlikely(!fifo->base)) { 44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", 45 fifo->qpl->id); 46 return -ENOMEM; 47 } 48 49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE; 50 atomic_set(&fifo->available, fifo->size); 51 fifo->head = 0; 52 return 0; 53 } 54 55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) 56 { 57 WARN(atomic_read(&fifo->available) != fifo->size, 58 "Releasing non-empty fifo"); 59 60 vunmap(fifo->base); 61 } 62 63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, 64 size_t bytes) 65 { 66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; 67 } 68 69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) 70 { 71 return (atomic_read(&fifo->available) <= bytes) ? false : true; 72 } 73 74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO 75 * @fifo: FIFO to allocate from 76 * @bytes: Allocation size 77 * @iov: Scatter-gather elements to fill with allocation fragment base/len 78 * 79 * Returns number of valid elements in iov[] or negative on error. 80 * 81 * Allocations from a given FIFO must be externally synchronized but concurrent 82 * allocation and frees are allowed. 83 */ 84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, 85 struct gve_tx_iovec iov[2]) 86 { 87 size_t overflow, padding; 88 u32 aligned_head; 89 int nfrags = 0; 90 91 if (!bytes) 92 return 0; 93 94 /* This check happens before we know how much padding is needed to 95 * align to a cacheline boundary for the payload, but that is fine, 96 * because the FIFO head always start aligned, and the FIFO's boundaries 97 * are aligned, so if there is space for the data, there is space for 98 * the padding to the next alignment. 99 */ 100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes), 101 "Reached %s when there's not enough space in the fifo", __func__); 102 103 nfrags++; 104 105 iov[0].iov_offset = fifo->head; 106 iov[0].iov_len = bytes; 107 fifo->head += bytes; 108 109 if (fifo->head > fifo->size) { 110 /* If the allocation did not fit in the tail fragment of the 111 * FIFO, also use the head fragment. 112 */ 113 nfrags++; 114 overflow = fifo->head - fifo->size; 115 iov[0].iov_len -= overflow; 116 iov[1].iov_offset = 0; /* Start of fifo*/ 117 iov[1].iov_len = overflow; 118 119 fifo->head = overflow; 120 } 121 122 /* Re-align to a cacheline boundary */ 123 aligned_head = L1_CACHE_ALIGN(fifo->head); 124 padding = aligned_head - fifo->head; 125 iov[nfrags - 1].iov_padding = padding; 126 atomic_sub(bytes + padding, &fifo->available); 127 fifo->head = aligned_head; 128 129 if (fifo->head == fifo->size) 130 fifo->head = 0; 131 132 return nfrags; 133 } 134 135 /* gve_tx_free_fifo - Return space to Tx FIFO 136 * @fifo: FIFO to return fragments to 137 * @bytes: Bytes to free 138 */ 139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) 140 { 141 atomic_add(bytes, &fifo->available); 142 } 143 144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) 145 { 146 size_t space_freed = 0; 147 int i; 148 149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) { 150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; 151 info->iov[i].iov_len = 0; 152 info->iov[i].iov_padding = 0; 153 } 154 return space_freed; 155 } 156 157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, 158 u32 to_do) 159 { 160 struct gve_tx_buffer_state *info; 161 u32 clean_end = tx->done + to_do; 162 u64 pkts = 0, bytes = 0; 163 size_t space_freed = 0; 164 u32 xsk_complete = 0; 165 u32 idx; 166 167 for (; tx->done < clean_end; tx->done++) { 168 idx = tx->done & tx->mask; 169 info = &tx->info[idx]; 170 171 if (unlikely(!info->xdp.size)) 172 continue; 173 174 bytes += info->xdp.size; 175 pkts++; 176 xsk_complete += info->xdp.is_xsk; 177 178 info->xdp.size = 0; 179 if (info->xdp_frame) { 180 xdp_return_frame(info->xdp_frame); 181 info->xdp_frame = NULL; 182 } 183 space_freed += gve_tx_clear_buffer_state(info); 184 } 185 186 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 187 if (xsk_complete > 0 && tx->xsk_pool) 188 xsk_tx_completed(tx->xsk_pool, xsk_complete); 189 u64_stats_update_begin(&tx->statss); 190 tx->bytes_done += bytes; 191 tx->pkt_done += pkts; 192 u64_stats_update_end(&tx->statss); 193 return pkts; 194 } 195 196 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 197 u32 to_do, bool try_to_wake); 198 199 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx) 200 { 201 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 202 struct gve_tx_ring *tx = &priv->tx[idx]; 203 204 if (!gve_tx_was_added_to_block(priv, idx)) 205 return; 206 207 gve_remove_napi(priv, ntfy_idx); 208 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); 209 netdev_tx_reset_queue(tx->netdev_txq); 210 gve_tx_remove_from_block(priv, idx); 211 } 212 213 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx, 214 struct gve_tx_alloc_rings_cfg *cfg) 215 { 216 struct device *hdev = &priv->pdev->dev; 217 int idx = tx->q_num; 218 size_t bytes; 219 u32 slots; 220 221 slots = tx->mask + 1; 222 dma_free_coherent(hdev, sizeof(*tx->q_resources), 223 tx->q_resources, tx->q_resources_bus); 224 tx->q_resources = NULL; 225 226 if (!tx->raw_addressing) { 227 gve_tx_fifo_release(priv, &tx->tx_fifo); 228 gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id); 229 tx->tx_fifo.qpl = NULL; 230 } 231 232 bytes = sizeof(*tx->desc) * slots; 233 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 234 tx->desc = NULL; 235 236 vfree(tx->info); 237 tx->info = NULL; 238 239 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 240 } 241 242 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx) 243 { 244 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 245 struct gve_tx_ring *tx = &priv->tx[idx]; 246 247 gve_tx_add_to_block(priv, idx); 248 249 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 250 gve_add_napi(priv, ntfy_idx, gve_napi_poll); 251 } 252 253 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv, 254 struct gve_tx_alloc_rings_cfg *cfg, 255 struct gve_tx_ring *tx, 256 int idx) 257 { 258 struct device *hdev = &priv->pdev->dev; 259 size_t bytes; 260 261 /* Make sure everything is zeroed to start */ 262 memset(tx, 0, sizeof(*tx)); 263 spin_lock_init(&tx->clean_lock); 264 spin_lock_init(&tx->xdp_lock); 265 tx->q_num = idx; 266 267 tx->mask = cfg->ring_size - 1; 268 269 /* alloc metadata */ 270 tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info)); 271 if (!tx->info) 272 return -ENOMEM; 273 274 /* alloc tx queue */ 275 bytes = sizeof(*tx->desc) * cfg->ring_size; 276 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 277 if (!tx->desc) 278 goto abort_with_info; 279 280 tx->raw_addressing = cfg->raw_addressing; 281 tx->dev = hdev; 282 if (!tx->raw_addressing) { 283 tx->tx_fifo.qpl = gve_assign_tx_qpl(cfg, idx); 284 if (!tx->tx_fifo.qpl) 285 goto abort_with_desc; 286 /* map Tx FIFO */ 287 if (gve_tx_fifo_init(priv, &tx->tx_fifo)) 288 goto abort_with_qpl; 289 } 290 291 tx->q_resources = 292 dma_alloc_coherent(hdev, 293 sizeof(*tx->q_resources), 294 &tx->q_resources_bus, 295 GFP_KERNEL); 296 if (!tx->q_resources) 297 goto abort_with_fifo; 298 299 return 0; 300 301 abort_with_fifo: 302 if (!tx->raw_addressing) 303 gve_tx_fifo_release(priv, &tx->tx_fifo); 304 abort_with_qpl: 305 if (!tx->raw_addressing) 306 gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id); 307 abort_with_desc: 308 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 309 tx->desc = NULL; 310 abort_with_info: 311 vfree(tx->info); 312 tx->info = NULL; 313 return -ENOMEM; 314 } 315 316 int gve_tx_alloc_rings_gqi(struct gve_priv *priv, 317 struct gve_tx_alloc_rings_cfg *cfg) 318 { 319 struct gve_tx_ring *tx = cfg->tx; 320 int err = 0; 321 int i, j; 322 323 if (!cfg->raw_addressing && !cfg->qpls) { 324 netif_err(priv, drv, priv->dev, 325 "Cannot alloc QPL ring before allocing QPLs\n"); 326 return -EINVAL; 327 } 328 329 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 330 netif_err(priv, drv, priv->dev, 331 "Cannot alloc more than the max num of Tx rings\n"); 332 return -EINVAL; 333 } 334 335 if (cfg->start_idx == 0) { 336 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 337 GFP_KERNEL); 338 if (!tx) 339 return -ENOMEM; 340 } else if (!tx) { 341 netif_err(priv, drv, priv->dev, 342 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 343 return -EINVAL; 344 } 345 346 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 347 err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i); 348 if (err) { 349 netif_err(priv, drv, priv->dev, 350 "Failed to alloc tx ring=%d: err=%d\n", 351 i, err); 352 goto cleanup; 353 } 354 } 355 356 cfg->tx = tx; 357 return 0; 358 359 cleanup: 360 for (j = 0; j < i; j++) 361 gve_tx_free_ring_gqi(priv, &tx[j], cfg); 362 if (cfg->start_idx == 0) 363 kvfree(tx); 364 return err; 365 } 366 367 void gve_tx_free_rings_gqi(struct gve_priv *priv, 368 struct gve_tx_alloc_rings_cfg *cfg) 369 { 370 struct gve_tx_ring *tx = cfg->tx; 371 int i; 372 373 if (!tx) 374 return; 375 376 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 377 gve_tx_free_ring_gqi(priv, &tx[i], cfg); 378 379 if (cfg->start_idx == 0) { 380 kvfree(tx); 381 cfg->tx = NULL; 382 } 383 } 384 385 /* gve_tx_avail - Calculates the number of slots available in the ring 386 * @tx: tx ring to check 387 * 388 * Returns the number of slots available 389 * 390 * The capacity of the queue is mask + 1. We don't need to reserve an entry. 391 **/ 392 static inline u32 gve_tx_avail(struct gve_tx_ring *tx) 393 { 394 return tx->mask + 1 - (tx->req - tx->done); 395 } 396 397 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, 398 struct sk_buff *skb) 399 { 400 int pad_bytes, align_hdr_pad; 401 int bytes; 402 int hlen; 403 404 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : 405 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 406 407 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, 408 hlen); 409 /* We need to take into account the header alignment padding. */ 410 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; 411 bytes = align_hdr_pad + pad_bytes + skb->len; 412 413 return bytes; 414 } 415 416 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : 417 * 1 for each skb frag 418 * 1 for the skb linear portion 419 * 1 for when tcp hdr needs to be in separate descriptor 420 * 1 if the payload wraps to the beginning of the FIFO 421 * 1 for metadata descriptor 422 */ 423 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) 424 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) 425 { 426 if (info->skb) { 427 dma_unmap_single(dev, dma_unmap_addr(info, dma), 428 dma_unmap_len(info, len), 429 DMA_TO_DEVICE); 430 dma_unmap_len_set(info, len, 0); 431 } else { 432 dma_unmap_page(dev, dma_unmap_addr(info, dma), 433 dma_unmap_len(info, len), 434 DMA_TO_DEVICE); 435 dma_unmap_len_set(info, len, 0); 436 } 437 } 438 439 /* Check if sufficient resources (descriptor ring space, FIFO space) are 440 * available to transmit the given number of bytes. 441 */ 442 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) 443 { 444 bool can_alloc = true; 445 446 if (!tx->raw_addressing) 447 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); 448 449 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); 450 } 451 452 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); 453 454 /* Stops the queue if the skb cannot be transmitted. */ 455 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 456 struct sk_buff *skb) 457 { 458 int bytes_required = 0; 459 u32 nic_done; 460 u32 to_do; 461 int ret; 462 463 if (!tx->raw_addressing) 464 bytes_required = gve_skb_fifo_bytes_required(tx, skb); 465 466 if (likely(gve_can_tx(tx, bytes_required))) 467 return 0; 468 469 ret = -EBUSY; 470 spin_lock(&tx->clean_lock); 471 nic_done = gve_tx_load_event_counter(priv, tx); 472 to_do = nic_done - tx->done; 473 474 /* Only try to clean if there is hope for TX */ 475 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { 476 if (to_do > 0) { 477 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); 478 gve_clean_tx_done(priv, tx, to_do, false); 479 } 480 if (likely(gve_can_tx(tx, bytes_required))) 481 ret = 0; 482 } 483 if (ret) { 484 /* No space, so stop the queue */ 485 tx->stop_queue++; 486 netif_tx_stop_queue(tx->netdev_txq); 487 } 488 spin_unlock(&tx->clean_lock); 489 490 return ret; 491 } 492 493 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, 494 u16 csum_offset, u8 ip_summed, bool is_gso, 495 int l4_hdr_offset, u32 desc_cnt, 496 u16 hlen, u64 addr, u16 pkt_len) 497 { 498 /* l4_hdr_offset and csum_offset are in units of 16-bit words */ 499 if (is_gso) { 500 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; 501 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 502 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 503 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { 504 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; 505 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 506 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 507 } else { 508 pkt_desc->pkt.type_flags = GVE_TXD_STD; 509 pkt_desc->pkt.l4_csum_offset = 0; 510 pkt_desc->pkt.l4_hdr_offset = 0; 511 } 512 pkt_desc->pkt.desc_cnt = desc_cnt; 513 pkt_desc->pkt.len = cpu_to_be16(pkt_len); 514 pkt_desc->pkt.seg_len = cpu_to_be16(hlen); 515 pkt_desc->pkt.seg_addr = cpu_to_be64(addr); 516 } 517 518 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, 519 struct sk_buff *skb) 520 { 521 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); 522 523 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; 524 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | 525 GVE_MTD_PATH_HASH_L4; 526 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); 527 mtd_desc->mtd.reserved0 = 0; 528 mtd_desc->mtd.reserved1 = 0; 529 } 530 531 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, 532 u16 l3_offset, u16 gso_size, 533 bool is_gso_v6, bool is_gso, 534 u16 len, u64 addr) 535 { 536 seg_desc->seg.type_flags = GVE_TXD_SEG; 537 if (is_gso) { 538 if (is_gso_v6) 539 seg_desc->seg.type_flags |= GVE_TXSF_IPV6; 540 seg_desc->seg.l3_offset = l3_offset >> 1; 541 seg_desc->seg.mss = cpu_to_be16(gso_size); 542 } 543 seg_desc->seg.seg_len = cpu_to_be16(len); 544 seg_desc->seg.seg_addr = cpu_to_be64(addr); 545 } 546 547 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, 548 u64 iov_offset, u64 iov_len) 549 { 550 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; 551 u64 first_page = iov_offset / PAGE_SIZE; 552 u64 page; 553 554 for (page = first_page; page <= last_page; page++) 555 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); 556 } 557 558 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) 559 { 560 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; 561 union gve_tx_desc *pkt_desc, *seg_desc; 562 struct gve_tx_buffer_state *info; 563 int mtd_desc_nr = !!skb->l4_hash; 564 bool is_gso = skb_is_gso(skb); 565 u32 idx = tx->req & tx->mask; 566 int payload_iov = 2; 567 int copy_offset; 568 u32 next_idx; 569 int i; 570 571 info = &tx->info[idx]; 572 pkt_desc = &tx->desc[idx]; 573 574 l4_hdr_offset = skb_checksum_start_offset(skb); 575 /* If the skb is gso, then we want the tcp header alone in the first segment 576 * otherwise we want the minimum required by the gVNIC spec. 577 */ 578 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : 579 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 580 581 info->skb = skb; 582 /* We don't want to split the header, so if necessary, pad to the end 583 * of the fifo and then put the header at the beginning of the fifo. 584 */ 585 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); 586 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, 587 &info->iov[0]); 588 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); 589 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, 590 &info->iov[payload_iov]); 591 592 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 593 is_gso, l4_hdr_offset, 594 1 + mtd_desc_nr + payload_nfrags, hlen, 595 info->iov[hdr_nfrags - 1].iov_offset, skb->len); 596 597 skb_copy_bits(skb, 0, 598 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, 599 hlen); 600 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 601 info->iov[hdr_nfrags - 1].iov_offset, 602 info->iov[hdr_nfrags - 1].iov_len); 603 copy_offset = hlen; 604 605 if (mtd_desc_nr) { 606 next_idx = (tx->req + 1) & tx->mask; 607 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); 608 } 609 610 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { 611 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; 612 seg_desc = &tx->desc[next_idx]; 613 614 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 615 skb_shinfo(skb)->gso_size, 616 skb_is_gso_v6(skb), is_gso, 617 info->iov[i].iov_len, 618 info->iov[i].iov_offset); 619 620 skb_copy_bits(skb, copy_offset, 621 tx->tx_fifo.base + info->iov[i].iov_offset, 622 info->iov[i].iov_len); 623 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 624 info->iov[i].iov_offset, 625 info->iov[i].iov_len); 626 copy_offset += info->iov[i].iov_len; 627 } 628 629 return 1 + mtd_desc_nr + payload_nfrags; 630 } 631 632 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, 633 struct sk_buff *skb) 634 { 635 const struct skb_shared_info *shinfo = skb_shinfo(skb); 636 int hlen, num_descriptors, l4_hdr_offset; 637 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; 638 struct gve_tx_buffer_state *info; 639 int mtd_desc_nr = !!skb->l4_hash; 640 bool is_gso = skb_is_gso(skb); 641 u32 idx = tx->req & tx->mask; 642 u64 addr; 643 u32 len; 644 int i; 645 646 info = &tx->info[idx]; 647 pkt_desc = &tx->desc[idx]; 648 649 l4_hdr_offset = skb_checksum_start_offset(skb); 650 /* If the skb is gso, then we want only up to the tcp header in the first segment 651 * to efficiently replicate on each segment otherwise we want the linear portion 652 * of the skb (which will contain the checksum because skb->csum_start and 653 * skb->csum_offset are given relative to skb->head) in the first segment. 654 */ 655 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); 656 len = skb_headlen(skb); 657 658 info->skb = skb; 659 660 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 661 if (unlikely(dma_mapping_error(tx->dev, addr))) { 662 tx->dma_mapping_error++; 663 goto drop; 664 } 665 dma_unmap_len_set(info, len, len); 666 dma_unmap_addr_set(info, dma, addr); 667 668 num_descriptors = 1 + shinfo->nr_frags; 669 if (hlen < len) 670 num_descriptors++; 671 if (mtd_desc_nr) 672 num_descriptors++; 673 674 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 675 is_gso, l4_hdr_offset, 676 num_descriptors, hlen, addr, skb->len); 677 678 if (mtd_desc_nr) { 679 idx = (idx + 1) & tx->mask; 680 mtd_desc = &tx->desc[idx]; 681 gve_tx_fill_mtd_desc(mtd_desc, skb); 682 } 683 684 if (hlen < len) { 685 /* For gso the rest of the linear portion of the skb needs to 686 * be in its own descriptor. 687 */ 688 len -= hlen; 689 addr += hlen; 690 idx = (idx + 1) & tx->mask; 691 seg_desc = &tx->desc[idx]; 692 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 693 skb_shinfo(skb)->gso_size, 694 skb_is_gso_v6(skb), is_gso, len, addr); 695 } 696 697 for (i = 0; i < shinfo->nr_frags; i++) { 698 const skb_frag_t *frag = &shinfo->frags[i]; 699 700 idx = (idx + 1) & tx->mask; 701 seg_desc = &tx->desc[idx]; 702 len = skb_frag_size(frag); 703 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 704 if (unlikely(dma_mapping_error(tx->dev, addr))) { 705 tx->dma_mapping_error++; 706 goto unmap_drop; 707 } 708 tx->info[idx].skb = NULL; 709 dma_unmap_len_set(&tx->info[idx], len, len); 710 dma_unmap_addr_set(&tx->info[idx], dma, addr); 711 712 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 713 skb_shinfo(skb)->gso_size, 714 skb_is_gso_v6(skb), is_gso, len, addr); 715 } 716 717 return num_descriptors; 718 719 unmap_drop: 720 i += num_descriptors - shinfo->nr_frags; 721 while (i--) { 722 /* Skip metadata descriptor, if set */ 723 if (i == 1 && mtd_desc_nr == 1) 724 continue; 725 idx--; 726 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); 727 } 728 drop: 729 tx->dropped_pkt++; 730 return 0; 731 } 732 733 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) 734 { 735 struct gve_priv *priv = netdev_priv(dev); 736 struct gve_tx_ring *tx; 737 int nsegs; 738 739 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, 740 "skb queue index out of range"); 741 tx = &priv->tx[skb_get_queue_mapping(skb)]; 742 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { 743 /* We need to ring the txq doorbell -- we have stopped the Tx 744 * queue for want of resources, but prior calls to gve_tx() 745 * may have added descriptors without ringing the doorbell. 746 */ 747 748 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 749 return NETDEV_TX_BUSY; 750 } 751 if (tx->raw_addressing) 752 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); 753 else 754 nsegs = gve_tx_add_skb_copy(priv, tx, skb); 755 756 /* If the packet is getting sent, we need to update the skb */ 757 if (nsegs) { 758 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 759 skb_tx_timestamp(skb); 760 tx->req += nsegs; 761 } else { 762 dev_kfree_skb_any(skb); 763 } 764 765 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 766 return NETDEV_TX_OK; 767 768 /* Give packets to NIC. Even if this packet failed to send the doorbell 769 * might need to be rung because of xmit_more. 770 */ 771 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 772 return NETDEV_TX_OK; 773 } 774 775 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, 776 void *data, int len, void *frame_p, bool is_xsk) 777 { 778 int pad, nfrags, ndescs, iovi, offset; 779 struct gve_tx_buffer_state *info; 780 u32 reqi = tx->req; 781 782 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); 783 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) 784 pad = 0; 785 info = &tx->info[reqi & tx->mask]; 786 info->xdp_frame = frame_p; 787 info->xdp.size = len; 788 info->xdp.is_xsk = is_xsk; 789 790 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, 791 &info->iov[0]); 792 iovi = pad > 0; 793 ndescs = nfrags - iovi; 794 offset = 0; 795 796 while (iovi < nfrags) { 797 if (!offset) 798 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, 799 CHECKSUM_NONE, false, 0, ndescs, 800 info->iov[iovi].iov_len, 801 info->iov[iovi].iov_offset, len); 802 else 803 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 804 0, 0, false, false, 805 info->iov[iovi].iov_len, 806 info->iov[iovi].iov_offset); 807 808 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, 809 data + offset, info->iov[iovi].iov_len); 810 gve_dma_sync_for_device(&priv->pdev->dev, 811 tx->tx_fifo.qpl->page_buses, 812 info->iov[iovi].iov_offset, 813 info->iov[iovi].iov_len); 814 offset += info->iov[iovi].iov_len; 815 iovi++; 816 reqi++; 817 } 818 819 return ndescs; 820 } 821 822 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 823 u32 flags) 824 { 825 struct gve_priv *priv = netdev_priv(dev); 826 struct gve_tx_ring *tx; 827 int i, err = 0, qid; 828 829 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 830 return -EINVAL; 831 832 qid = gve_xdp_tx_queue_id(priv, 833 smp_processor_id() % priv->num_xdp_queues); 834 835 tx = &priv->tx[qid]; 836 837 spin_lock(&tx->xdp_lock); 838 for (i = 0; i < n; i++) { 839 err = gve_xdp_xmit_one(priv, tx, frames[i]->data, 840 frames[i]->len, frames[i]); 841 if (err) 842 break; 843 } 844 845 if (flags & XDP_XMIT_FLUSH) 846 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 847 848 spin_unlock(&tx->xdp_lock); 849 850 u64_stats_update_begin(&tx->statss); 851 tx->xdp_xmit += n; 852 tx->xdp_xmit_errors += n - i; 853 u64_stats_update_end(&tx->statss); 854 855 return i ? i : err; 856 } 857 858 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, 859 void *data, int len, void *frame_p) 860 { 861 int nsegs; 862 863 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) 864 return -EBUSY; 865 866 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); 867 tx->req += nsegs; 868 869 return 0; 870 } 871 872 #define GVE_TX_START_THRESH 4096 873 874 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 875 u32 to_do, bool try_to_wake) 876 { 877 struct gve_tx_buffer_state *info; 878 u64 pkts = 0, bytes = 0; 879 size_t space_freed = 0; 880 struct sk_buff *skb; 881 u32 idx; 882 int j; 883 884 for (j = 0; j < to_do; j++) { 885 idx = tx->done & tx->mask; 886 netif_info(priv, tx_done, priv->dev, 887 "[%d] %s: idx=%d (req=%u done=%u)\n", 888 tx->q_num, __func__, idx, tx->req, tx->done); 889 info = &tx->info[idx]; 890 skb = info->skb; 891 892 /* Unmap the buffer */ 893 if (tx->raw_addressing) 894 gve_tx_unmap_buf(tx->dev, info); 895 tx->done++; 896 /* Mark as free */ 897 if (skb) { 898 info->skb = NULL; 899 bytes += skb->len; 900 pkts++; 901 dev_consume_skb_any(skb); 902 if (tx->raw_addressing) 903 continue; 904 space_freed += gve_tx_clear_buffer_state(info); 905 } 906 } 907 908 if (!tx->raw_addressing) 909 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 910 u64_stats_update_begin(&tx->statss); 911 tx->bytes_done += bytes; 912 tx->pkt_done += pkts; 913 u64_stats_update_end(&tx->statss); 914 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); 915 916 /* start the queue if we've stopped it */ 917 #ifndef CONFIG_BQL 918 /* Make sure that the doorbells are synced */ 919 smp_mb(); 920 #endif 921 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && 922 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { 923 tx->wake_queue++; 924 netif_tx_wake_queue(tx->netdev_txq); 925 } 926 927 return pkts; 928 } 929 930 u32 gve_tx_load_event_counter(struct gve_priv *priv, 931 struct gve_tx_ring *tx) 932 { 933 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); 934 __be32 counter = READ_ONCE(priv->counter_array[counter_index]); 935 936 return be32_to_cpu(counter); 937 } 938 939 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 940 int budget) 941 { 942 struct xdp_desc desc; 943 int sent = 0, nsegs; 944 void *data; 945 946 spin_lock(&tx->xdp_lock); 947 while (sent < budget) { 948 if (!gve_can_tx(tx, GVE_TX_START_THRESH)) 949 goto out; 950 951 if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { 952 tx->xdp_xsk_done = tx->xdp_xsk_wakeup; 953 goto out; 954 } 955 956 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); 957 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); 958 tx->req += nsegs; 959 sent++; 960 } 961 out: 962 if (sent > 0) { 963 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 964 xsk_tx_release(tx->xsk_pool); 965 } 966 spin_unlock(&tx->xdp_lock); 967 return sent; 968 } 969 970 bool gve_xdp_poll(struct gve_notify_block *block, int budget) 971 { 972 struct gve_priv *priv = block->priv; 973 struct gve_tx_ring *tx = block->tx; 974 u32 nic_done; 975 bool repoll; 976 u32 to_do; 977 978 /* Find out how much work there is to be done */ 979 nic_done = gve_tx_load_event_counter(priv, tx); 980 to_do = min_t(u32, (nic_done - tx->done), budget); 981 gve_clean_xdp_done(priv, tx, to_do); 982 repoll = nic_done != tx->done; 983 984 if (tx->xsk_pool) { 985 int sent = gve_xsk_tx(priv, tx, budget); 986 987 u64_stats_update_begin(&tx->statss); 988 tx->xdp_xsk_sent += sent; 989 u64_stats_update_end(&tx->statss); 990 repoll |= (sent == budget); 991 if (xsk_uses_need_wakeup(tx->xsk_pool)) 992 xsk_set_tx_need_wakeup(tx->xsk_pool); 993 } 994 995 /* If we still have work we want to repoll */ 996 return repoll; 997 } 998 999 bool gve_tx_poll(struct gve_notify_block *block, int budget) 1000 { 1001 struct gve_priv *priv = block->priv; 1002 struct gve_tx_ring *tx = block->tx; 1003 u32 nic_done; 1004 u32 to_do; 1005 1006 /* If budget is 0, do all the work */ 1007 if (budget == 0) 1008 budget = INT_MAX; 1009 1010 /* In TX path, it may try to clean completed pkts in order to xmit, 1011 * to avoid cleaning conflict, use spin_lock(), it yields better 1012 * concurrency between xmit/clean than netif's lock. 1013 */ 1014 spin_lock(&tx->clean_lock); 1015 /* Find out how much work there is to be done */ 1016 nic_done = gve_tx_load_event_counter(priv, tx); 1017 to_do = min_t(u32, (nic_done - tx->done), budget); 1018 gve_clean_tx_done(priv, tx, to_do, true); 1019 spin_unlock(&tx->clean_lock); 1020 /* If we still have work we want to repoll */ 1021 return nic_done != tx->done; 1022 } 1023 1024 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) 1025 { 1026 u32 nic_done = gve_tx_load_event_counter(priv, tx); 1027 1028 return nic_done != tx->done; 1029 } 1030