xref: /linux/drivers/net/ethernet/google/gve/gve_tx.c (revision e6719d48ba6329536c459dcee5a571e535687094)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15 
16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 				       struct gve_queue_resources *q_resources,
18 				       u32 val)
19 {
20 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22 
23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
27 
28 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30 
31 /* gvnic can only transmit from a Registered Segment.
32  * We copy skb payloads into the registered segment before writing Tx
33  * descriptors and ringing the Tx doorbell.
34  *
35  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36  * free allocations in the order they were allocated.
37  */
38 
39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 			  PAGE_KERNEL);
43 	if (unlikely(!fifo->base)) {
44 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 			  fifo->qpl->id);
46 		return -ENOMEM;
47 	}
48 
49 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 	atomic_set(&fifo->available, fifo->size);
51 	fifo->head = 0;
52 	return 0;
53 }
54 
55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 	WARN(atomic_read(&fifo->available) != fifo->size,
58 	     "Releasing non-empty fifo");
59 
60 	vunmap(fifo->base);
61 }
62 
63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 					  size_t bytes)
65 {
66 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68 
69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73 
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75  * @fifo: FIFO to allocate from
76  * @bytes: Allocation size
77  * @iov: Scatter-gather elements to fill with allocation fragment base/len
78  *
79  * Returns number of valid elements in iov[] or negative on error.
80  *
81  * Allocations from a given FIFO must be externally synchronized but concurrent
82  * allocation and frees are allowed.
83  */
84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 			     struct gve_tx_iovec iov[2])
86 {
87 	size_t overflow, padding;
88 	u32 aligned_head;
89 	int nfrags = 0;
90 
91 	if (!bytes)
92 		return 0;
93 
94 	/* This check happens before we know how much padding is needed to
95 	 * align to a cacheline boundary for the payload, but that is fine,
96 	 * because the FIFO head always start aligned, and the FIFO's boundaries
97 	 * are aligned, so if there is space for the data, there is space for
98 	 * the padding to the next alignment.
99 	 */
100 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 	     "Reached %s when there's not enough space in the fifo", __func__);
102 
103 	nfrags++;
104 
105 	iov[0].iov_offset = fifo->head;
106 	iov[0].iov_len = bytes;
107 	fifo->head += bytes;
108 
109 	if (fifo->head > fifo->size) {
110 		/* If the allocation did not fit in the tail fragment of the
111 		 * FIFO, also use the head fragment.
112 		 */
113 		nfrags++;
114 		overflow = fifo->head - fifo->size;
115 		iov[0].iov_len -= overflow;
116 		iov[1].iov_offset = 0;	/* Start of fifo*/
117 		iov[1].iov_len = overflow;
118 
119 		fifo->head = overflow;
120 	}
121 
122 	/* Re-align to a cacheline boundary */
123 	aligned_head = L1_CACHE_ALIGN(fifo->head);
124 	padding = aligned_head - fifo->head;
125 	iov[nfrags - 1].iov_padding = padding;
126 	atomic_sub(bytes + padding, &fifo->available);
127 	fifo->head = aligned_head;
128 
129 	if (fifo->head == fifo->size)
130 		fifo->head = 0;
131 
132 	return nfrags;
133 }
134 
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136  * @fifo: FIFO to return fragments to
137  * @bytes: Bytes to free
138  */
139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 	atomic_add(bytes, &fifo->available);
142 }
143 
144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 	size_t space_freed = 0;
147 	int i;
148 
149 	for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 		space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 		info->iov[i].iov_len = 0;
152 		info->iov[i].iov_padding = 0;
153 	}
154 	return space_freed;
155 }
156 
157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 			      u32 to_do)
159 {
160 	struct gve_tx_buffer_state *info;
161 	u32 clean_end = tx->done + to_do;
162 	u64 pkts = 0, bytes = 0;
163 	size_t space_freed = 0;
164 	u32 xsk_complete = 0;
165 	u32 idx;
166 
167 	for (; tx->done < clean_end; tx->done++) {
168 		idx = tx->done & tx->mask;
169 		info = &tx->info[idx];
170 
171 		if (unlikely(!info->xdp.size))
172 			continue;
173 
174 		bytes += info->xdp.size;
175 		pkts++;
176 		xsk_complete += info->xdp.is_xsk;
177 
178 		info->xdp.size = 0;
179 		if (info->xdp_frame) {
180 			xdp_return_frame(info->xdp_frame);
181 			info->xdp_frame = NULL;
182 		}
183 		space_freed += gve_tx_clear_buffer_state(info);
184 	}
185 
186 	gve_tx_free_fifo(&tx->tx_fifo, space_freed);
187 	if (xsk_complete > 0 && tx->xsk_pool)
188 		xsk_tx_completed(tx->xsk_pool, xsk_complete);
189 	u64_stats_update_begin(&tx->statss);
190 	tx->bytes_done += bytes;
191 	tx->pkt_done += pkts;
192 	u64_stats_update_end(&tx->statss);
193 	return pkts;
194 }
195 
196 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
197 			     u32 to_do, bool try_to_wake);
198 
199 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx)
200 {
201 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
202 	struct gve_tx_ring *tx = &priv->tx[idx];
203 
204 	if (!gve_tx_was_added_to_block(priv, idx))
205 		return;
206 
207 	gve_remove_napi(priv, ntfy_idx);
208 	gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
209 	netdev_tx_reset_queue(tx->netdev_txq);
210 	gve_tx_remove_from_block(priv, idx);
211 }
212 
213 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx,
214 				 struct gve_tx_alloc_rings_cfg *cfg)
215 {
216 	struct device *hdev = &priv->pdev->dev;
217 	int idx = tx->q_num;
218 	size_t bytes;
219 	u32 slots;
220 
221 	slots = tx->mask + 1;
222 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
223 			  tx->q_resources, tx->q_resources_bus);
224 	tx->q_resources = NULL;
225 
226 	if (!tx->raw_addressing) {
227 		gve_tx_fifo_release(priv, &tx->tx_fifo);
228 		gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id);
229 		tx->tx_fifo.qpl = NULL;
230 	}
231 
232 	bytes = sizeof(*tx->desc) * slots;
233 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
234 	tx->desc = NULL;
235 
236 	vfree(tx->info);
237 	tx->info = NULL;
238 
239 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
240 }
241 
242 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx)
243 {
244 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
245 	struct gve_tx_ring *tx = &priv->tx[idx];
246 
247 	gve_tx_add_to_block(priv, idx);
248 
249 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
250 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
251 }
252 
253 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv,
254 				 struct gve_tx_alloc_rings_cfg *cfg,
255 				 struct gve_tx_ring *tx,
256 				 int idx)
257 {
258 	struct device *hdev = &priv->pdev->dev;
259 	size_t bytes;
260 
261 	/* Make sure everything is zeroed to start */
262 	memset(tx, 0, sizeof(*tx));
263 	spin_lock_init(&tx->clean_lock);
264 	spin_lock_init(&tx->xdp_lock);
265 	tx->q_num = idx;
266 
267 	tx->mask = cfg->ring_size - 1;
268 
269 	/* alloc metadata */
270 	tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info));
271 	if (!tx->info)
272 		return -ENOMEM;
273 
274 	/* alloc tx queue */
275 	bytes = sizeof(*tx->desc) * cfg->ring_size;
276 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
277 	if (!tx->desc)
278 		goto abort_with_info;
279 
280 	tx->raw_addressing = cfg->raw_addressing;
281 	tx->dev = hdev;
282 	if (!tx->raw_addressing) {
283 		tx->tx_fifo.qpl = gve_assign_tx_qpl(cfg, idx);
284 		if (!tx->tx_fifo.qpl)
285 			goto abort_with_desc;
286 		/* map Tx FIFO */
287 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
288 			goto abort_with_qpl;
289 	}
290 
291 	tx->q_resources =
292 		dma_alloc_coherent(hdev,
293 				   sizeof(*tx->q_resources),
294 				   &tx->q_resources_bus,
295 				   GFP_KERNEL);
296 	if (!tx->q_resources)
297 		goto abort_with_fifo;
298 
299 	return 0;
300 
301 abort_with_fifo:
302 	if (!tx->raw_addressing)
303 		gve_tx_fifo_release(priv, &tx->tx_fifo);
304 abort_with_qpl:
305 	if (!tx->raw_addressing)
306 		gve_unassign_qpl(cfg->qpl_cfg, tx->tx_fifo.qpl->id);
307 abort_with_desc:
308 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
309 	tx->desc = NULL;
310 abort_with_info:
311 	vfree(tx->info);
312 	tx->info = NULL;
313 	return -ENOMEM;
314 }
315 
316 int gve_tx_alloc_rings_gqi(struct gve_priv *priv,
317 			   struct gve_tx_alloc_rings_cfg *cfg)
318 {
319 	struct gve_tx_ring *tx = cfg->tx;
320 	int err = 0;
321 	int i, j;
322 
323 	if (!cfg->raw_addressing && !cfg->qpls) {
324 		netif_err(priv, drv, priv->dev,
325 			  "Cannot alloc QPL ring before allocing QPLs\n");
326 		return -EINVAL;
327 	}
328 
329 	if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
330 		netif_err(priv, drv, priv->dev,
331 			  "Cannot alloc more than the max num of Tx rings\n");
332 		return -EINVAL;
333 	}
334 
335 	if (cfg->start_idx == 0) {
336 		tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
337 			      GFP_KERNEL);
338 		if (!tx)
339 			return -ENOMEM;
340 	} else if (!tx) {
341 		netif_err(priv, drv, priv->dev,
342 			  "Cannot alloc tx rings from a nonzero start idx without tx array\n");
343 		return -EINVAL;
344 	}
345 
346 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
347 		err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i);
348 		if (err) {
349 			netif_err(priv, drv, priv->dev,
350 				  "Failed to alloc tx ring=%d: err=%d\n",
351 				  i, err);
352 			goto cleanup;
353 		}
354 	}
355 
356 	cfg->tx = tx;
357 	return 0;
358 
359 cleanup:
360 	for (j = 0; j < i; j++)
361 		gve_tx_free_ring_gqi(priv, &tx[j], cfg);
362 	if (cfg->start_idx == 0)
363 		kvfree(tx);
364 	return err;
365 }
366 
367 void gve_tx_free_rings_gqi(struct gve_priv *priv,
368 			   struct gve_tx_alloc_rings_cfg *cfg)
369 {
370 	struct gve_tx_ring *tx = cfg->tx;
371 	int i;
372 
373 	if (!tx)
374 		return;
375 
376 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
377 		gve_tx_free_ring_gqi(priv, &tx[i], cfg);
378 
379 	if (cfg->start_idx == 0) {
380 		kvfree(tx);
381 		cfg->tx = NULL;
382 	}
383 }
384 
385 /* gve_tx_avail - Calculates the number of slots available in the ring
386  * @tx: tx ring to check
387  *
388  * Returns the number of slots available
389  *
390  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
391  **/
392 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
393 {
394 	return tx->mask + 1 - (tx->req - tx->done);
395 }
396 
397 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
398 					      struct sk_buff *skb)
399 {
400 	int pad_bytes, align_hdr_pad;
401 	int bytes;
402 	int hlen;
403 
404 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
405 				 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
406 
407 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
408 						   hlen);
409 	/* We need to take into account the header alignment padding. */
410 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
411 	bytes = align_hdr_pad + pad_bytes + skb->len;
412 
413 	return bytes;
414 }
415 
416 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
417  * 1 for each skb frag
418  * 1 for the skb linear portion
419  * 1 for when tcp hdr needs to be in separate descriptor
420  * 1 if the payload wraps to the beginning of the FIFO
421  * 1 for metadata descriptor
422  */
423 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 4)
424 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
425 {
426 	if (info->skb) {
427 		dma_unmap_single(dev, dma_unmap_addr(info, dma),
428 				 dma_unmap_len(info, len),
429 				 DMA_TO_DEVICE);
430 		dma_unmap_len_set(info, len, 0);
431 	} else {
432 		dma_unmap_page(dev, dma_unmap_addr(info, dma),
433 			       dma_unmap_len(info, len),
434 			       DMA_TO_DEVICE);
435 		dma_unmap_len_set(info, len, 0);
436 	}
437 }
438 
439 /* Check if sufficient resources (descriptor ring space, FIFO space) are
440  * available to transmit the given number of bytes.
441  */
442 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
443 {
444 	bool can_alloc = true;
445 
446 	if (!tx->raw_addressing)
447 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
448 
449 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
450 }
451 
452 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
453 
454 /* Stops the queue if the skb cannot be transmitted. */
455 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
456 			     struct sk_buff *skb)
457 {
458 	int bytes_required = 0;
459 	u32 nic_done;
460 	u32 to_do;
461 	int ret;
462 
463 	if (!tx->raw_addressing)
464 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
465 
466 	if (likely(gve_can_tx(tx, bytes_required)))
467 		return 0;
468 
469 	ret = -EBUSY;
470 	spin_lock(&tx->clean_lock);
471 	nic_done = gve_tx_load_event_counter(priv, tx);
472 	to_do = nic_done - tx->done;
473 
474 	/* Only try to clean if there is hope for TX */
475 	if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
476 		if (to_do > 0) {
477 			to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
478 			gve_clean_tx_done(priv, tx, to_do, false);
479 		}
480 		if (likely(gve_can_tx(tx, bytes_required)))
481 			ret = 0;
482 	}
483 	if (ret) {
484 		/* No space, so stop the queue */
485 		tx->stop_queue++;
486 		netif_tx_stop_queue(tx->netdev_txq);
487 	}
488 	spin_unlock(&tx->clean_lock);
489 
490 	return ret;
491 }
492 
493 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
494 				 u16 csum_offset, u8 ip_summed, bool is_gso,
495 				 int l4_hdr_offset, u32 desc_cnt,
496 				 u16 hlen, u64 addr, u16 pkt_len)
497 {
498 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
499 	if (is_gso) {
500 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
501 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
502 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
503 	} else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
504 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
505 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
506 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
507 	} else {
508 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
509 		pkt_desc->pkt.l4_csum_offset = 0;
510 		pkt_desc->pkt.l4_hdr_offset = 0;
511 	}
512 	pkt_desc->pkt.desc_cnt = desc_cnt;
513 	pkt_desc->pkt.len = cpu_to_be16(pkt_len);
514 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
515 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
516 }
517 
518 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
519 				 struct sk_buff *skb)
520 {
521 	BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
522 
523 	mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
524 	mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
525 				   GVE_MTD_PATH_HASH_L4;
526 	mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
527 	mtd_desc->mtd.reserved0 = 0;
528 	mtd_desc->mtd.reserved1 = 0;
529 }
530 
531 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
532 				 u16 l3_offset, u16 gso_size,
533 				 bool is_gso_v6, bool is_gso,
534 				 u16 len, u64 addr)
535 {
536 	seg_desc->seg.type_flags = GVE_TXD_SEG;
537 	if (is_gso) {
538 		if (is_gso_v6)
539 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
540 		seg_desc->seg.l3_offset = l3_offset >> 1;
541 		seg_desc->seg.mss = cpu_to_be16(gso_size);
542 	}
543 	seg_desc->seg.seg_len = cpu_to_be16(len);
544 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
545 }
546 
547 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
548 				    u64 iov_offset, u64 iov_len)
549 {
550 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
551 	u64 first_page = iov_offset / PAGE_SIZE;
552 	u64 page;
553 
554 	for (page = first_page; page <= last_page; page++)
555 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
556 }
557 
558 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
559 {
560 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
561 	union gve_tx_desc *pkt_desc, *seg_desc;
562 	struct gve_tx_buffer_state *info;
563 	int mtd_desc_nr = !!skb->l4_hash;
564 	bool is_gso = skb_is_gso(skb);
565 	u32 idx = tx->req & tx->mask;
566 	int payload_iov = 2;
567 	int copy_offset;
568 	u32 next_idx;
569 	int i;
570 
571 	info = &tx->info[idx];
572 	pkt_desc = &tx->desc[idx];
573 
574 	l4_hdr_offset = skb_checksum_start_offset(skb);
575 	/* If the skb is gso, then we want the tcp header alone in the first segment
576 	 * otherwise we want the minimum required by the gVNIC spec.
577 	 */
578 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
579 			min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
580 
581 	info->skb =  skb;
582 	/* We don't want to split the header, so if necessary, pad to the end
583 	 * of the fifo and then put the header at the beginning of the fifo.
584 	 */
585 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
586 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
587 				       &info->iov[0]);
588 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
589 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
590 					   &info->iov[payload_iov]);
591 
592 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
593 			     is_gso, l4_hdr_offset,
594 			     1 + mtd_desc_nr + payload_nfrags, hlen,
595 			     info->iov[hdr_nfrags - 1].iov_offset, skb->len);
596 
597 	skb_copy_bits(skb, 0,
598 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
599 		      hlen);
600 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
601 				info->iov[hdr_nfrags - 1].iov_offset,
602 				info->iov[hdr_nfrags - 1].iov_len);
603 	copy_offset = hlen;
604 
605 	if (mtd_desc_nr) {
606 		next_idx = (tx->req + 1) & tx->mask;
607 		gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
608 	}
609 
610 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
611 		next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
612 		seg_desc = &tx->desc[next_idx];
613 
614 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
615 				     skb_shinfo(skb)->gso_size,
616 				     skb_is_gso_v6(skb), is_gso,
617 				     info->iov[i].iov_len,
618 				     info->iov[i].iov_offset);
619 
620 		skb_copy_bits(skb, copy_offset,
621 			      tx->tx_fifo.base + info->iov[i].iov_offset,
622 			      info->iov[i].iov_len);
623 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
624 					info->iov[i].iov_offset,
625 					info->iov[i].iov_len);
626 		copy_offset += info->iov[i].iov_len;
627 	}
628 
629 	return 1 + mtd_desc_nr + payload_nfrags;
630 }
631 
632 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
633 				  struct sk_buff *skb)
634 {
635 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
636 	int hlen, num_descriptors, l4_hdr_offset;
637 	union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
638 	struct gve_tx_buffer_state *info;
639 	int mtd_desc_nr = !!skb->l4_hash;
640 	bool is_gso = skb_is_gso(skb);
641 	u32 idx = tx->req & tx->mask;
642 	u64 addr;
643 	u32 len;
644 	int i;
645 
646 	info = &tx->info[idx];
647 	pkt_desc = &tx->desc[idx];
648 
649 	l4_hdr_offset = skb_checksum_start_offset(skb);
650 	/* If the skb is gso, then we want only up to the tcp header in the first segment
651 	 * to efficiently replicate on each segment otherwise we want the linear portion
652 	 * of the skb (which will contain the checksum because skb->csum_start and
653 	 * skb->csum_offset are given relative to skb->head) in the first segment.
654 	 */
655 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
656 	len = skb_headlen(skb);
657 
658 	info->skb =  skb;
659 
660 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
661 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
662 		tx->dma_mapping_error++;
663 		goto drop;
664 	}
665 	dma_unmap_len_set(info, len, len);
666 	dma_unmap_addr_set(info, dma, addr);
667 
668 	num_descriptors = 1 + shinfo->nr_frags;
669 	if (hlen < len)
670 		num_descriptors++;
671 	if (mtd_desc_nr)
672 		num_descriptors++;
673 
674 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
675 			     is_gso, l4_hdr_offset,
676 			     num_descriptors, hlen, addr, skb->len);
677 
678 	if (mtd_desc_nr) {
679 		idx = (idx + 1) & tx->mask;
680 		mtd_desc = &tx->desc[idx];
681 		gve_tx_fill_mtd_desc(mtd_desc, skb);
682 	}
683 
684 	if (hlen < len) {
685 		/* For gso the rest of the linear portion of the skb needs to
686 		 * be in its own descriptor.
687 		 */
688 		len -= hlen;
689 		addr += hlen;
690 		idx = (idx + 1) & tx->mask;
691 		seg_desc = &tx->desc[idx];
692 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
693 				     skb_shinfo(skb)->gso_size,
694 				     skb_is_gso_v6(skb), is_gso, len, addr);
695 	}
696 
697 	for (i = 0; i < shinfo->nr_frags; i++) {
698 		const skb_frag_t *frag = &shinfo->frags[i];
699 
700 		idx = (idx + 1) & tx->mask;
701 		seg_desc = &tx->desc[idx];
702 		len = skb_frag_size(frag);
703 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
704 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
705 			tx->dma_mapping_error++;
706 			goto unmap_drop;
707 		}
708 		tx->info[idx].skb = NULL;
709 		dma_unmap_len_set(&tx->info[idx], len, len);
710 		dma_unmap_addr_set(&tx->info[idx], dma, addr);
711 
712 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
713 				     skb_shinfo(skb)->gso_size,
714 				     skb_is_gso_v6(skb), is_gso, len, addr);
715 	}
716 
717 	return num_descriptors;
718 
719 unmap_drop:
720 	i += num_descriptors - shinfo->nr_frags;
721 	while (i--) {
722 		/* Skip metadata descriptor, if set */
723 		if (i == 1 && mtd_desc_nr == 1)
724 			continue;
725 		idx--;
726 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
727 	}
728 drop:
729 	tx->dropped_pkt++;
730 	return 0;
731 }
732 
733 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
734 {
735 	struct gve_priv *priv = netdev_priv(dev);
736 	struct gve_tx_ring *tx;
737 	int nsegs;
738 
739 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
740 	     "skb queue index out of range");
741 	tx = &priv->tx[skb_get_queue_mapping(skb)];
742 	if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
743 		/* We need to ring the txq doorbell -- we have stopped the Tx
744 		 * queue for want of resources, but prior calls to gve_tx()
745 		 * may have added descriptors without ringing the doorbell.
746 		 */
747 
748 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
749 		return NETDEV_TX_BUSY;
750 	}
751 	if (tx->raw_addressing)
752 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
753 	else
754 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
755 
756 	/* If the packet is getting sent, we need to update the skb */
757 	if (nsegs) {
758 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
759 		skb_tx_timestamp(skb);
760 		tx->req += nsegs;
761 	} else {
762 		dev_kfree_skb_any(skb);
763 	}
764 
765 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
766 		return NETDEV_TX_OK;
767 
768 	/* Give packets to NIC. Even if this packet failed to send the doorbell
769 	 * might need to be rung because of xmit_more.
770 	 */
771 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
772 	return NETDEV_TX_OK;
773 }
774 
775 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
776 			   void *data, int len, void *frame_p, bool is_xsk)
777 {
778 	int pad, nfrags, ndescs, iovi, offset;
779 	struct gve_tx_buffer_state *info;
780 	u32 reqi = tx->req;
781 
782 	pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
783 	if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
784 		pad = 0;
785 	info = &tx->info[reqi & tx->mask];
786 	info->xdp_frame = frame_p;
787 	info->xdp.size = len;
788 	info->xdp.is_xsk = is_xsk;
789 
790 	nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
791 				   &info->iov[0]);
792 	iovi = pad > 0;
793 	ndescs = nfrags - iovi;
794 	offset = 0;
795 
796 	while (iovi < nfrags) {
797 		if (!offset)
798 			gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
799 					     CHECKSUM_NONE, false, 0, ndescs,
800 					     info->iov[iovi].iov_len,
801 					     info->iov[iovi].iov_offset, len);
802 		else
803 			gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
804 					     0, 0, false, false,
805 					     info->iov[iovi].iov_len,
806 					     info->iov[iovi].iov_offset);
807 
808 		memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
809 		       data + offset, info->iov[iovi].iov_len);
810 		gve_dma_sync_for_device(&priv->pdev->dev,
811 					tx->tx_fifo.qpl->page_buses,
812 					info->iov[iovi].iov_offset,
813 					info->iov[iovi].iov_len);
814 		offset += info->iov[iovi].iov_len;
815 		iovi++;
816 		reqi++;
817 	}
818 
819 	return ndescs;
820 }
821 
822 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
823 		 u32 flags)
824 {
825 	struct gve_priv *priv = netdev_priv(dev);
826 	struct gve_tx_ring *tx;
827 	int i, err = 0, qid;
828 
829 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
830 		return -EINVAL;
831 
832 	qid = gve_xdp_tx_queue_id(priv,
833 				  smp_processor_id() % priv->num_xdp_queues);
834 
835 	tx = &priv->tx[qid];
836 
837 	spin_lock(&tx->xdp_lock);
838 	for (i = 0; i < n; i++) {
839 		err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
840 				       frames[i]->len, frames[i]);
841 		if (err)
842 			break;
843 	}
844 
845 	if (flags & XDP_XMIT_FLUSH)
846 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
847 
848 	spin_unlock(&tx->xdp_lock);
849 
850 	u64_stats_update_begin(&tx->statss);
851 	tx->xdp_xmit += n;
852 	tx->xdp_xmit_errors += n - i;
853 	u64_stats_update_end(&tx->statss);
854 
855 	return i ? i : err;
856 }
857 
858 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
859 		     void *data, int len, void *frame_p)
860 {
861 	int nsegs;
862 
863 	if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
864 		return -EBUSY;
865 
866 	nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
867 	tx->req += nsegs;
868 
869 	return 0;
870 }
871 
872 #define GVE_TX_START_THRESH	4096
873 
874 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
875 			     u32 to_do, bool try_to_wake)
876 {
877 	struct gve_tx_buffer_state *info;
878 	u64 pkts = 0, bytes = 0;
879 	size_t space_freed = 0;
880 	struct sk_buff *skb;
881 	u32 idx;
882 	int j;
883 
884 	for (j = 0; j < to_do; j++) {
885 		idx = tx->done & tx->mask;
886 		netif_info(priv, tx_done, priv->dev,
887 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
888 			   tx->q_num, __func__, idx, tx->req, tx->done);
889 		info = &tx->info[idx];
890 		skb = info->skb;
891 
892 		/* Unmap the buffer */
893 		if (tx->raw_addressing)
894 			gve_tx_unmap_buf(tx->dev, info);
895 		tx->done++;
896 		/* Mark as free */
897 		if (skb) {
898 			info->skb = NULL;
899 			bytes += skb->len;
900 			pkts++;
901 			dev_consume_skb_any(skb);
902 			if (tx->raw_addressing)
903 				continue;
904 			space_freed += gve_tx_clear_buffer_state(info);
905 		}
906 	}
907 
908 	if (!tx->raw_addressing)
909 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
910 	u64_stats_update_begin(&tx->statss);
911 	tx->bytes_done += bytes;
912 	tx->pkt_done += pkts;
913 	u64_stats_update_end(&tx->statss);
914 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
915 
916 	/* start the queue if we've stopped it */
917 #ifndef CONFIG_BQL
918 	/* Make sure that the doorbells are synced */
919 	smp_mb();
920 #endif
921 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
922 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
923 		tx->wake_queue++;
924 		netif_tx_wake_queue(tx->netdev_txq);
925 	}
926 
927 	return pkts;
928 }
929 
930 u32 gve_tx_load_event_counter(struct gve_priv *priv,
931 			      struct gve_tx_ring *tx)
932 {
933 	u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
934 	__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
935 
936 	return be32_to_cpu(counter);
937 }
938 
939 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
940 		      int budget)
941 {
942 	struct xdp_desc desc;
943 	int sent = 0, nsegs;
944 	void *data;
945 
946 	spin_lock(&tx->xdp_lock);
947 	while (sent < budget) {
948 		if (!gve_can_tx(tx, GVE_TX_START_THRESH))
949 			goto out;
950 
951 		if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
952 			tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
953 			goto out;
954 		}
955 
956 		data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
957 		nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
958 		tx->req += nsegs;
959 		sent++;
960 	}
961 out:
962 	if (sent > 0) {
963 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
964 		xsk_tx_release(tx->xsk_pool);
965 	}
966 	spin_unlock(&tx->xdp_lock);
967 	return sent;
968 }
969 
970 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
971 {
972 	struct gve_priv *priv = block->priv;
973 	struct gve_tx_ring *tx = block->tx;
974 	u32 nic_done;
975 	bool repoll;
976 	u32 to_do;
977 
978 	/* Find out how much work there is to be done */
979 	nic_done = gve_tx_load_event_counter(priv, tx);
980 	to_do = min_t(u32, (nic_done - tx->done), budget);
981 	gve_clean_xdp_done(priv, tx, to_do);
982 	repoll = nic_done != tx->done;
983 
984 	if (tx->xsk_pool) {
985 		int sent = gve_xsk_tx(priv, tx, budget);
986 
987 		u64_stats_update_begin(&tx->statss);
988 		tx->xdp_xsk_sent += sent;
989 		u64_stats_update_end(&tx->statss);
990 		repoll |= (sent == budget);
991 		if (xsk_uses_need_wakeup(tx->xsk_pool))
992 			xsk_set_tx_need_wakeup(tx->xsk_pool);
993 	}
994 
995 	/* If we still have work we want to repoll */
996 	return repoll;
997 }
998 
999 bool gve_tx_poll(struct gve_notify_block *block, int budget)
1000 {
1001 	struct gve_priv *priv = block->priv;
1002 	struct gve_tx_ring *tx = block->tx;
1003 	u32 nic_done;
1004 	u32 to_do;
1005 
1006 	/* If budget is 0, do all the work */
1007 	if (budget == 0)
1008 		budget = INT_MAX;
1009 
1010 	/* In TX path, it may try to clean completed pkts in order to xmit,
1011 	 * to avoid cleaning conflict, use spin_lock(), it yields better
1012 	 * concurrency between xmit/clean than netif's lock.
1013 	 */
1014 	spin_lock(&tx->clean_lock);
1015 	/* Find out how much work there is to be done */
1016 	nic_done = gve_tx_load_event_counter(priv, tx);
1017 	to_do = min_t(u32, (nic_done - tx->done), budget);
1018 	gve_clean_tx_done(priv, tx, to_do, true);
1019 	spin_unlock(&tx->clean_lock);
1020 	/* If we still have work we want to repoll */
1021 	return nic_done != tx->done;
1022 }
1023 
1024 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
1025 {
1026 	u32 nic_done = gve_tx_load_event_counter(priv, tx);
1027 
1028 	return nic_done != tx->done;
1029 }
1030