xref: /linux/drivers/net/ethernet/google/gve/gve_tx.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15 
16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 				       struct gve_queue_resources *q_resources,
18 				       u32 val)
19 {
20 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22 
23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
27 
28 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30 
31 /* gvnic can only transmit from a Registered Segment.
32  * We copy skb payloads into the registered segment before writing Tx
33  * descriptors and ringing the Tx doorbell.
34  *
35  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36  * free allocations in the order they were allocated.
37  */
38 
39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 			  PAGE_KERNEL);
43 	if (unlikely(!fifo->base)) {
44 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 			  fifo->qpl->id);
46 		return -ENOMEM;
47 	}
48 
49 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 	atomic_set(&fifo->available, fifo->size);
51 	fifo->head = 0;
52 	return 0;
53 }
54 
55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 	WARN(atomic_read(&fifo->available) != fifo->size,
58 	     "Releasing non-empty fifo");
59 
60 	vunmap(fifo->base);
61 }
62 
63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 					  size_t bytes)
65 {
66 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68 
69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73 
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75  * @fifo: FIFO to allocate from
76  * @bytes: Allocation size
77  * @iov: Scatter-gather elements to fill with allocation fragment base/len
78  *
79  * Returns number of valid elements in iov[] or negative on error.
80  *
81  * Allocations from a given FIFO must be externally synchronized but concurrent
82  * allocation and frees are allowed.
83  */
84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 			     struct gve_tx_iovec iov[2])
86 {
87 	size_t overflow, padding;
88 	u32 aligned_head;
89 	int nfrags = 0;
90 
91 	if (!bytes)
92 		return 0;
93 
94 	/* This check happens before we know how much padding is needed to
95 	 * align to a cacheline boundary for the payload, but that is fine,
96 	 * because the FIFO head always start aligned, and the FIFO's boundaries
97 	 * are aligned, so if there is space for the data, there is space for
98 	 * the padding to the next alignment.
99 	 */
100 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 	     "Reached %s when there's not enough space in the fifo", __func__);
102 
103 	nfrags++;
104 
105 	iov[0].iov_offset = fifo->head;
106 	iov[0].iov_len = bytes;
107 	fifo->head += bytes;
108 
109 	if (fifo->head > fifo->size) {
110 		/* If the allocation did not fit in the tail fragment of the
111 		 * FIFO, also use the head fragment.
112 		 */
113 		nfrags++;
114 		overflow = fifo->head - fifo->size;
115 		iov[0].iov_len -= overflow;
116 		iov[1].iov_offset = 0;	/* Start of fifo*/
117 		iov[1].iov_len = overflow;
118 
119 		fifo->head = overflow;
120 	}
121 
122 	/* Re-align to a cacheline boundary */
123 	aligned_head = L1_CACHE_ALIGN(fifo->head);
124 	padding = aligned_head - fifo->head;
125 	iov[nfrags - 1].iov_padding = padding;
126 	atomic_sub(bytes + padding, &fifo->available);
127 	fifo->head = aligned_head;
128 
129 	if (fifo->head == fifo->size)
130 		fifo->head = 0;
131 
132 	return nfrags;
133 }
134 
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136  * @fifo: FIFO to return fragments to
137  * @bytes: Bytes to free
138  */
139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 	atomic_add(bytes, &fifo->available);
142 }
143 
144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 	size_t space_freed = 0;
147 	int i;
148 
149 	for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 		space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 		info->iov[i].iov_len = 0;
152 		info->iov[i].iov_padding = 0;
153 	}
154 	return space_freed;
155 }
156 
157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 			      u32 to_do)
159 {
160 	struct gve_tx_buffer_state *info;
161 	u64 pkts = 0, bytes = 0;
162 	size_t space_freed = 0;
163 	u32 xsk_complete = 0;
164 	u32 idx;
165 	int i;
166 
167 	for (i = 0; i < to_do; i++) {
168 		idx = tx->done & tx->mask;
169 		info = &tx->info[idx];
170 		tx->done++;
171 
172 		if (unlikely(!info->xdp.size))
173 			continue;
174 
175 		bytes += info->xdp.size;
176 		pkts++;
177 		xsk_complete += info->xdp.is_xsk;
178 
179 		info->xdp.size = 0;
180 		if (info->xdp_frame) {
181 			xdp_return_frame(info->xdp_frame);
182 			info->xdp_frame = NULL;
183 		}
184 		space_freed += gve_tx_clear_buffer_state(info);
185 	}
186 
187 	gve_tx_free_fifo(&tx->tx_fifo, space_freed);
188 	if (xsk_complete > 0 && tx->xsk_pool)
189 		xsk_tx_completed(tx->xsk_pool, xsk_complete);
190 	u64_stats_update_begin(&tx->statss);
191 	tx->bytes_done += bytes;
192 	tx->pkt_done += pkts;
193 	u64_stats_update_end(&tx->statss);
194 	return pkts;
195 }
196 
197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
198 			     u32 to_do, bool try_to_wake);
199 
200 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx)
201 {
202 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
203 	struct gve_tx_ring *tx = &priv->tx[idx];
204 
205 	if (!gve_tx_was_added_to_block(priv, idx))
206 		return;
207 
208 	gve_remove_napi(priv, ntfy_idx);
209 	gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
210 	netdev_tx_reset_queue(tx->netdev_txq);
211 	gve_tx_remove_from_block(priv, idx);
212 }
213 
214 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx,
215 				 struct gve_tx_alloc_rings_cfg *cfg)
216 {
217 	struct device *hdev = &priv->pdev->dev;
218 	int idx = tx->q_num;
219 	size_t bytes;
220 	u32 qpl_id;
221 	u32 slots;
222 
223 	slots = tx->mask + 1;
224 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
225 			  tx->q_resources, tx->q_resources_bus);
226 	tx->q_resources = NULL;
227 
228 	if (tx->tx_fifo.qpl) {
229 		if (tx->tx_fifo.base)
230 			gve_tx_fifo_release(priv, &tx->tx_fifo);
231 
232 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
233 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
234 		tx->tx_fifo.qpl = NULL;
235 	}
236 
237 	bytes = sizeof(*tx->desc) * slots;
238 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
239 	tx->desc = NULL;
240 
241 	vfree(tx->info);
242 	tx->info = NULL;
243 
244 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
245 }
246 
247 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx)
248 {
249 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
250 	struct gve_tx_ring *tx = &priv->tx[idx];
251 
252 	gve_tx_add_to_block(priv, idx);
253 
254 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
255 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
256 }
257 
258 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv,
259 				 struct gve_tx_alloc_rings_cfg *cfg,
260 				 struct gve_tx_ring *tx,
261 				 int idx)
262 {
263 	struct device *hdev = &priv->pdev->dev;
264 	int qpl_page_cnt;
265 	u32 qpl_id = 0;
266 	size_t bytes;
267 
268 	/* Make sure everything is zeroed to start */
269 	memset(tx, 0, sizeof(*tx));
270 	spin_lock_init(&tx->clean_lock);
271 	spin_lock_init(&tx->xdp_lock);
272 	tx->q_num = idx;
273 
274 	tx->mask = cfg->ring_size - 1;
275 
276 	/* alloc metadata */
277 	tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info));
278 	if (!tx->info)
279 		return -ENOMEM;
280 
281 	/* alloc tx queue */
282 	bytes = sizeof(*tx->desc) * cfg->ring_size;
283 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
284 	if (!tx->desc)
285 		goto abort_with_info;
286 
287 	tx->raw_addressing = cfg->raw_addressing;
288 	tx->dev = hdev;
289 	if (!tx->raw_addressing) {
290 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
291 		qpl_page_cnt = priv->tx_pages_per_qpl;
292 
293 		tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
294 							    qpl_page_cnt);
295 		if (!tx->tx_fifo.qpl)
296 			goto abort_with_desc;
297 
298 		/* map Tx FIFO */
299 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
300 			goto abort_with_qpl;
301 	}
302 
303 	tx->q_resources =
304 		dma_alloc_coherent(hdev,
305 				   sizeof(*tx->q_resources),
306 				   &tx->q_resources_bus,
307 				   GFP_KERNEL);
308 	if (!tx->q_resources)
309 		goto abort_with_fifo;
310 
311 	return 0;
312 
313 abort_with_fifo:
314 	if (!tx->raw_addressing)
315 		gve_tx_fifo_release(priv, &tx->tx_fifo);
316 abort_with_qpl:
317 	if (!tx->raw_addressing) {
318 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
319 		tx->tx_fifo.qpl = NULL;
320 	}
321 abort_with_desc:
322 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
323 	tx->desc = NULL;
324 abort_with_info:
325 	vfree(tx->info);
326 	tx->info = NULL;
327 	return -ENOMEM;
328 }
329 
330 int gve_tx_alloc_rings_gqi(struct gve_priv *priv,
331 			   struct gve_tx_alloc_rings_cfg *cfg)
332 {
333 	struct gve_tx_ring *tx = cfg->tx;
334 	int err = 0;
335 	int i, j;
336 
337 	if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
338 		netif_err(priv, drv, priv->dev,
339 			  "Cannot alloc more than the max num of Tx rings\n");
340 		return -EINVAL;
341 	}
342 
343 	if (cfg->start_idx == 0) {
344 		tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
345 			      GFP_KERNEL);
346 		if (!tx)
347 			return -ENOMEM;
348 	} else if (!tx) {
349 		netif_err(priv, drv, priv->dev,
350 			  "Cannot alloc tx rings from a nonzero start idx without tx array\n");
351 		return -EINVAL;
352 	}
353 
354 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
355 		err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i);
356 		if (err) {
357 			netif_err(priv, drv, priv->dev,
358 				  "Failed to alloc tx ring=%d: err=%d\n",
359 				  i, err);
360 			goto cleanup;
361 		}
362 	}
363 
364 	cfg->tx = tx;
365 	return 0;
366 
367 cleanup:
368 	for (j = 0; j < i; j++)
369 		gve_tx_free_ring_gqi(priv, &tx[j], cfg);
370 	if (cfg->start_idx == 0)
371 		kvfree(tx);
372 	return err;
373 }
374 
375 void gve_tx_free_rings_gqi(struct gve_priv *priv,
376 			   struct gve_tx_alloc_rings_cfg *cfg)
377 {
378 	struct gve_tx_ring *tx = cfg->tx;
379 	int i;
380 
381 	if (!tx)
382 		return;
383 
384 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
385 		gve_tx_free_ring_gqi(priv, &tx[i], cfg);
386 
387 	if (cfg->start_idx == 0) {
388 		kvfree(tx);
389 		cfg->tx = NULL;
390 	}
391 }
392 
393 /* gve_tx_avail - Calculates the number of slots available in the ring
394  * @tx: tx ring to check
395  *
396  * Returns the number of slots available
397  *
398  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
399  **/
400 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
401 {
402 	return tx->mask + 1 - (tx->req - tx->done);
403 }
404 
405 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
406 					      struct sk_buff *skb)
407 {
408 	int pad_bytes, align_hdr_pad;
409 	int bytes;
410 	int hlen;
411 
412 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
413 				 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
414 
415 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
416 						   hlen);
417 	/* We need to take into account the header alignment padding. */
418 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
419 	bytes = align_hdr_pad + pad_bytes + skb->len;
420 
421 	return bytes;
422 }
423 
424 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
425  * 1 for each skb frag
426  * 1 for the skb linear portion
427  * 1 for when tcp hdr needs to be in separate descriptor
428  * 1 if the payload wraps to the beginning of the FIFO
429  * 1 for metadata descriptor
430  */
431 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 4)
432 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
433 {
434 	if (info->skb) {
435 		dma_unmap_single(dev, dma_unmap_addr(info, dma),
436 				 dma_unmap_len(info, len),
437 				 DMA_TO_DEVICE);
438 		dma_unmap_len_set(info, len, 0);
439 	} else {
440 		dma_unmap_page(dev, dma_unmap_addr(info, dma),
441 			       dma_unmap_len(info, len),
442 			       DMA_TO_DEVICE);
443 		dma_unmap_len_set(info, len, 0);
444 	}
445 }
446 
447 /* Check if sufficient resources (descriptor ring space, FIFO space) are
448  * available to transmit the given number of bytes.
449  */
450 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
451 {
452 	bool can_alloc = true;
453 
454 	if (!tx->raw_addressing)
455 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
456 
457 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
458 }
459 
460 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
461 
462 /* Stops the queue if the skb cannot be transmitted. */
463 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
464 			     struct sk_buff *skb)
465 {
466 	int bytes_required = 0;
467 	u32 nic_done;
468 	u32 to_do;
469 	int ret;
470 
471 	if (!tx->raw_addressing)
472 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
473 
474 	if (likely(gve_can_tx(tx, bytes_required)))
475 		return 0;
476 
477 	ret = -EBUSY;
478 	spin_lock(&tx->clean_lock);
479 	nic_done = gve_tx_load_event_counter(priv, tx);
480 	to_do = nic_done - tx->done;
481 
482 	/* Only try to clean if there is hope for TX */
483 	if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
484 		if (to_do > 0) {
485 			to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
486 			gve_clean_tx_done(priv, tx, to_do, false);
487 		}
488 		if (likely(gve_can_tx(tx, bytes_required)))
489 			ret = 0;
490 	}
491 	if (ret) {
492 		/* No space, so stop the queue */
493 		tx->stop_queue++;
494 		netif_tx_stop_queue(tx->netdev_txq);
495 	}
496 	spin_unlock(&tx->clean_lock);
497 
498 	return ret;
499 }
500 
501 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
502 				 u16 csum_offset, u8 ip_summed, bool is_gso,
503 				 int l4_hdr_offset, u32 desc_cnt,
504 				 u16 hlen, u64 addr, u16 pkt_len)
505 {
506 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
507 	if (is_gso) {
508 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
509 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
510 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
511 	} else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
512 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
513 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
514 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
515 	} else {
516 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
517 		pkt_desc->pkt.l4_csum_offset = 0;
518 		pkt_desc->pkt.l4_hdr_offset = 0;
519 	}
520 	pkt_desc->pkt.desc_cnt = desc_cnt;
521 	pkt_desc->pkt.len = cpu_to_be16(pkt_len);
522 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
523 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
524 }
525 
526 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
527 				 struct sk_buff *skb)
528 {
529 	BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
530 
531 	mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
532 	mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
533 				   GVE_MTD_PATH_HASH_L4;
534 	mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
535 	mtd_desc->mtd.reserved0 = 0;
536 	mtd_desc->mtd.reserved1 = 0;
537 }
538 
539 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
540 				 u16 l3_offset, u16 gso_size,
541 				 bool is_gso_v6, bool is_gso,
542 				 u16 len, u64 addr)
543 {
544 	seg_desc->seg.type_flags = GVE_TXD_SEG;
545 	if (is_gso) {
546 		if (is_gso_v6)
547 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
548 		seg_desc->seg.l3_offset = l3_offset >> 1;
549 		seg_desc->seg.mss = cpu_to_be16(gso_size);
550 	}
551 	seg_desc->seg.seg_len = cpu_to_be16(len);
552 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
553 }
554 
555 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
556 				    u64 iov_offset, u64 iov_len)
557 {
558 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
559 	u64 first_page = iov_offset / PAGE_SIZE;
560 	u64 page;
561 
562 	for (page = first_page; page <= last_page; page++)
563 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
564 }
565 
566 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
567 {
568 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
569 	union gve_tx_desc *pkt_desc, *seg_desc;
570 	struct gve_tx_buffer_state *info;
571 	int mtd_desc_nr = !!skb->l4_hash;
572 	bool is_gso = skb_is_gso(skb);
573 	u32 idx = tx->req & tx->mask;
574 	int payload_iov = 2;
575 	int copy_offset;
576 	u32 next_idx;
577 	int i;
578 
579 	info = &tx->info[idx];
580 	pkt_desc = &tx->desc[idx];
581 
582 	l4_hdr_offset = skb_checksum_start_offset(skb);
583 	/* If the skb is gso, then we want the tcp header alone in the first segment
584 	 * otherwise we want the minimum required by the gVNIC spec.
585 	 */
586 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
587 			min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
588 
589 	info->skb =  skb;
590 	/* We don't want to split the header, so if necessary, pad to the end
591 	 * of the fifo and then put the header at the beginning of the fifo.
592 	 */
593 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
594 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
595 				       &info->iov[0]);
596 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
597 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
598 					   &info->iov[payload_iov]);
599 
600 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
601 			     is_gso, l4_hdr_offset,
602 			     1 + mtd_desc_nr + payload_nfrags, hlen,
603 			     info->iov[hdr_nfrags - 1].iov_offset, skb->len);
604 
605 	skb_copy_bits(skb, 0,
606 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
607 		      hlen);
608 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
609 				info->iov[hdr_nfrags - 1].iov_offset,
610 				info->iov[hdr_nfrags - 1].iov_len);
611 	copy_offset = hlen;
612 
613 	if (mtd_desc_nr) {
614 		next_idx = (tx->req + 1) & tx->mask;
615 		gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
616 	}
617 
618 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
619 		next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
620 		seg_desc = &tx->desc[next_idx];
621 
622 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
623 				     skb_shinfo(skb)->gso_size,
624 				     skb_is_gso_v6(skb), is_gso,
625 				     info->iov[i].iov_len,
626 				     info->iov[i].iov_offset);
627 
628 		skb_copy_bits(skb, copy_offset,
629 			      tx->tx_fifo.base + info->iov[i].iov_offset,
630 			      info->iov[i].iov_len);
631 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
632 					info->iov[i].iov_offset,
633 					info->iov[i].iov_len);
634 		copy_offset += info->iov[i].iov_len;
635 	}
636 
637 	return 1 + mtd_desc_nr + payload_nfrags;
638 }
639 
640 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
641 				  struct sk_buff *skb)
642 {
643 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
644 	int hlen, num_descriptors, l4_hdr_offset;
645 	union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
646 	struct gve_tx_buffer_state *info;
647 	int mtd_desc_nr = !!skb->l4_hash;
648 	bool is_gso = skb_is_gso(skb);
649 	u32 idx = tx->req & tx->mask;
650 	u64 addr;
651 	u32 len;
652 	int i;
653 
654 	info = &tx->info[idx];
655 	pkt_desc = &tx->desc[idx];
656 
657 	l4_hdr_offset = skb_checksum_start_offset(skb);
658 	/* If the skb is gso, then we want only up to the tcp header in the first segment
659 	 * to efficiently replicate on each segment otherwise we want the linear portion
660 	 * of the skb (which will contain the checksum because skb->csum_start and
661 	 * skb->csum_offset are given relative to skb->head) in the first segment.
662 	 */
663 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
664 	len = skb_headlen(skb);
665 
666 	info->skb =  skb;
667 
668 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
669 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
670 		tx->dma_mapping_error++;
671 		goto drop;
672 	}
673 	dma_unmap_len_set(info, len, len);
674 	dma_unmap_addr_set(info, dma, addr);
675 
676 	num_descriptors = 1 + shinfo->nr_frags;
677 	if (hlen < len)
678 		num_descriptors++;
679 	if (mtd_desc_nr)
680 		num_descriptors++;
681 
682 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
683 			     is_gso, l4_hdr_offset,
684 			     num_descriptors, hlen, addr, skb->len);
685 
686 	if (mtd_desc_nr) {
687 		idx = (idx + 1) & tx->mask;
688 		mtd_desc = &tx->desc[idx];
689 		gve_tx_fill_mtd_desc(mtd_desc, skb);
690 	}
691 
692 	if (hlen < len) {
693 		/* For gso the rest of the linear portion of the skb needs to
694 		 * be in its own descriptor.
695 		 */
696 		len -= hlen;
697 		addr += hlen;
698 		idx = (idx + 1) & tx->mask;
699 		seg_desc = &tx->desc[idx];
700 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
701 				     skb_shinfo(skb)->gso_size,
702 				     skb_is_gso_v6(skb), is_gso, len, addr);
703 	}
704 
705 	for (i = 0; i < shinfo->nr_frags; i++) {
706 		const skb_frag_t *frag = &shinfo->frags[i];
707 
708 		idx = (idx + 1) & tx->mask;
709 		seg_desc = &tx->desc[idx];
710 		len = skb_frag_size(frag);
711 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
712 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
713 			tx->dma_mapping_error++;
714 			goto unmap_drop;
715 		}
716 		tx->info[idx].skb = NULL;
717 		dma_unmap_len_set(&tx->info[idx], len, len);
718 		dma_unmap_addr_set(&tx->info[idx], dma, addr);
719 
720 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
721 				     skb_shinfo(skb)->gso_size,
722 				     skb_is_gso_v6(skb), is_gso, len, addr);
723 	}
724 
725 	return num_descriptors;
726 
727 unmap_drop:
728 	i += num_descriptors - shinfo->nr_frags;
729 	while (i--) {
730 		/* Skip metadata descriptor, if set */
731 		if (i == 1 && mtd_desc_nr == 1)
732 			continue;
733 		idx--;
734 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
735 	}
736 drop:
737 	tx->dropped_pkt++;
738 	return 0;
739 }
740 
741 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
742 {
743 	struct gve_priv *priv = netdev_priv(dev);
744 	struct gve_tx_ring *tx;
745 	int nsegs;
746 
747 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
748 	     "skb queue index out of range");
749 	tx = &priv->tx[skb_get_queue_mapping(skb)];
750 	if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
751 		/* We need to ring the txq doorbell -- we have stopped the Tx
752 		 * queue for want of resources, but prior calls to gve_tx()
753 		 * may have added descriptors without ringing the doorbell.
754 		 */
755 
756 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
757 		return NETDEV_TX_BUSY;
758 	}
759 	if (tx->raw_addressing)
760 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
761 	else
762 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
763 
764 	/* If the packet is getting sent, we need to update the skb */
765 	if (nsegs) {
766 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
767 		skb_tx_timestamp(skb);
768 		tx->req += nsegs;
769 	} else {
770 		dev_kfree_skb_any(skb);
771 	}
772 
773 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
774 		return NETDEV_TX_OK;
775 
776 	/* Give packets to NIC. Even if this packet failed to send the doorbell
777 	 * might need to be rung because of xmit_more.
778 	 */
779 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
780 	return NETDEV_TX_OK;
781 }
782 
783 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
784 			   void *data, int len, void *frame_p, bool is_xsk)
785 {
786 	int pad, nfrags, ndescs, iovi, offset;
787 	struct gve_tx_buffer_state *info;
788 	u32 reqi = tx->req;
789 
790 	pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
791 	if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
792 		pad = 0;
793 	info = &tx->info[reqi & tx->mask];
794 	info->xdp_frame = frame_p;
795 	info->xdp.size = len;
796 	info->xdp.is_xsk = is_xsk;
797 
798 	nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
799 				   &info->iov[0]);
800 	iovi = pad > 0;
801 	ndescs = nfrags - iovi;
802 	offset = 0;
803 
804 	while (iovi < nfrags) {
805 		if (!offset)
806 			gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
807 					     CHECKSUM_NONE, false, 0, ndescs,
808 					     info->iov[iovi].iov_len,
809 					     info->iov[iovi].iov_offset, len);
810 		else
811 			gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
812 					     0, 0, false, false,
813 					     info->iov[iovi].iov_len,
814 					     info->iov[iovi].iov_offset);
815 
816 		memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
817 		       data + offset, info->iov[iovi].iov_len);
818 		gve_dma_sync_for_device(&priv->pdev->dev,
819 					tx->tx_fifo.qpl->page_buses,
820 					info->iov[iovi].iov_offset,
821 					info->iov[iovi].iov_len);
822 		offset += info->iov[iovi].iov_len;
823 		iovi++;
824 		reqi++;
825 	}
826 
827 	return ndescs;
828 }
829 
830 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
831 		 u32 flags)
832 {
833 	struct gve_priv *priv = netdev_priv(dev);
834 	struct gve_tx_ring *tx;
835 	int i, err = 0, qid;
836 
837 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
838 		return -EINVAL;
839 
840 	qid = gve_xdp_tx_queue_id(priv,
841 				  smp_processor_id() % priv->num_xdp_queues);
842 
843 	tx = &priv->tx[qid];
844 
845 	spin_lock(&tx->xdp_lock);
846 	for (i = 0; i < n; i++) {
847 		err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
848 				       frames[i]->len, frames[i]);
849 		if (err)
850 			break;
851 	}
852 
853 	if (flags & XDP_XMIT_FLUSH)
854 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
855 
856 	spin_unlock(&tx->xdp_lock);
857 
858 	u64_stats_update_begin(&tx->statss);
859 	tx->xdp_xmit += n;
860 	tx->xdp_xmit_errors += n - i;
861 	u64_stats_update_end(&tx->statss);
862 
863 	return i ? i : err;
864 }
865 
866 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
867 		     void *data, int len, void *frame_p)
868 {
869 	int nsegs;
870 
871 	if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
872 		return -EBUSY;
873 
874 	nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
875 	tx->req += nsegs;
876 
877 	return 0;
878 }
879 
880 #define GVE_TX_START_THRESH	4096
881 
882 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
883 			     u32 to_do, bool try_to_wake)
884 {
885 	struct gve_tx_buffer_state *info;
886 	u64 pkts = 0, bytes = 0;
887 	size_t space_freed = 0;
888 	struct sk_buff *skb;
889 	u32 idx;
890 	int j;
891 
892 	for (j = 0; j < to_do; j++) {
893 		idx = tx->done & tx->mask;
894 		netif_info(priv, tx_done, priv->dev,
895 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
896 			   tx->q_num, __func__, idx, tx->req, tx->done);
897 		info = &tx->info[idx];
898 		skb = info->skb;
899 
900 		/* Unmap the buffer */
901 		if (tx->raw_addressing)
902 			gve_tx_unmap_buf(tx->dev, info);
903 		tx->done++;
904 		/* Mark as free */
905 		if (skb) {
906 			info->skb = NULL;
907 			bytes += skb->len;
908 			pkts++;
909 			dev_consume_skb_any(skb);
910 			if (tx->raw_addressing)
911 				continue;
912 			space_freed += gve_tx_clear_buffer_state(info);
913 		}
914 	}
915 
916 	if (!tx->raw_addressing)
917 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
918 	u64_stats_update_begin(&tx->statss);
919 	tx->bytes_done += bytes;
920 	tx->pkt_done += pkts;
921 	u64_stats_update_end(&tx->statss);
922 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
923 
924 	/* start the queue if we've stopped it */
925 #ifndef CONFIG_BQL
926 	/* Make sure that the doorbells are synced */
927 	smp_mb();
928 #endif
929 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
930 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
931 		tx->wake_queue++;
932 		netif_tx_wake_queue(tx->netdev_txq);
933 	}
934 
935 	return pkts;
936 }
937 
938 u32 gve_tx_load_event_counter(struct gve_priv *priv,
939 			      struct gve_tx_ring *tx)
940 {
941 	u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
942 	__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
943 
944 	return be32_to_cpu(counter);
945 }
946 
947 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
948 		      int budget)
949 {
950 	struct xdp_desc desc;
951 	int sent = 0, nsegs;
952 	void *data;
953 
954 	spin_lock(&tx->xdp_lock);
955 	while (sent < budget) {
956 		if (!gve_can_tx(tx, GVE_TX_START_THRESH))
957 			goto out;
958 
959 		if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
960 			tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
961 			goto out;
962 		}
963 
964 		data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
965 		nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
966 		tx->req += nsegs;
967 		sent++;
968 	}
969 out:
970 	if (sent > 0) {
971 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
972 		xsk_tx_release(tx->xsk_pool);
973 	}
974 	spin_unlock(&tx->xdp_lock);
975 	return sent;
976 }
977 
978 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
979 {
980 	struct gve_priv *priv = block->priv;
981 	struct gve_tx_ring *tx = block->tx;
982 	u32 nic_done;
983 	bool repoll;
984 	u32 to_do;
985 
986 	/* Find out how much work there is to be done */
987 	nic_done = gve_tx_load_event_counter(priv, tx);
988 	to_do = min_t(u32, (nic_done - tx->done), budget);
989 	gve_clean_xdp_done(priv, tx, to_do);
990 	repoll = nic_done != tx->done;
991 
992 	if (tx->xsk_pool) {
993 		int sent = gve_xsk_tx(priv, tx, budget);
994 
995 		u64_stats_update_begin(&tx->statss);
996 		tx->xdp_xsk_sent += sent;
997 		u64_stats_update_end(&tx->statss);
998 		repoll |= (sent == budget);
999 		if (xsk_uses_need_wakeup(tx->xsk_pool))
1000 			xsk_set_tx_need_wakeup(tx->xsk_pool);
1001 	}
1002 
1003 	/* If we still have work we want to repoll */
1004 	return repoll;
1005 }
1006 
1007 bool gve_tx_poll(struct gve_notify_block *block, int budget)
1008 {
1009 	struct gve_priv *priv = block->priv;
1010 	struct gve_tx_ring *tx = block->tx;
1011 	u32 nic_done;
1012 	u32 to_do;
1013 
1014 	/* If budget is 0, do all the work */
1015 	if (budget == 0)
1016 		budget = INT_MAX;
1017 
1018 	/* In TX path, it may try to clean completed pkts in order to xmit,
1019 	 * to avoid cleaning conflict, use spin_lock(), it yields better
1020 	 * concurrency between xmit/clean than netif's lock.
1021 	 */
1022 	spin_lock(&tx->clean_lock);
1023 	/* Find out how much work there is to be done */
1024 	nic_done = gve_tx_load_event_counter(priv, tx);
1025 	to_do = min_t(u32, (nic_done - tx->done), budget);
1026 	gve_clean_tx_done(priv, tx, to_do, true);
1027 	spin_unlock(&tx->clean_lock);
1028 	/* If we still have work we want to repoll */
1029 	return nic_done != tx->done;
1030 }
1031 
1032 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
1033 {
1034 	u32 nic_done = gve_tx_load_event_counter(priv, tx);
1035 
1036 	return nic_done != tx->done;
1037 }
1038