1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include <linux/ip.h> 11 #include <linux/tcp.h> 12 #include <linux/vmalloc.h> 13 #include <linux/skbuff.h> 14 #include <net/xdp_sock_drv.h> 15 16 static inline void gve_tx_put_doorbell(struct gve_priv *priv, 17 struct gve_queue_resources *q_resources, 18 u32 val) 19 { 20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); 21 } 22 23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) 24 { 25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); 26 struct gve_tx_ring *tx = &priv->tx[tx_qid]; 27 28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 29 } 30 31 /* gvnic can only transmit from a Registered Segment. 32 * We copy skb payloads into the registered segment before writing Tx 33 * descriptors and ringing the Tx doorbell. 34 * 35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must 36 * free allocations in the order they were allocated. 37 */ 38 39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) 40 { 41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, 42 PAGE_KERNEL); 43 if (unlikely(!fifo->base)) { 44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", 45 fifo->qpl->id); 46 return -ENOMEM; 47 } 48 49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE; 50 atomic_set(&fifo->available, fifo->size); 51 fifo->head = 0; 52 return 0; 53 } 54 55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) 56 { 57 WARN(atomic_read(&fifo->available) != fifo->size, 58 "Releasing non-empty fifo"); 59 60 vunmap(fifo->base); 61 } 62 63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, 64 size_t bytes) 65 { 66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; 67 } 68 69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) 70 { 71 return (atomic_read(&fifo->available) <= bytes) ? false : true; 72 } 73 74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO 75 * @fifo: FIFO to allocate from 76 * @bytes: Allocation size 77 * @iov: Scatter-gather elements to fill with allocation fragment base/len 78 * 79 * Returns number of valid elements in iov[] or negative on error. 80 * 81 * Allocations from a given FIFO must be externally synchronized but concurrent 82 * allocation and frees are allowed. 83 */ 84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, 85 struct gve_tx_iovec iov[2]) 86 { 87 size_t overflow, padding; 88 u32 aligned_head; 89 int nfrags = 0; 90 91 if (!bytes) 92 return 0; 93 94 /* This check happens before we know how much padding is needed to 95 * align to a cacheline boundary for the payload, but that is fine, 96 * because the FIFO head always start aligned, and the FIFO's boundaries 97 * are aligned, so if there is space for the data, there is space for 98 * the padding to the next alignment. 99 */ 100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes), 101 "Reached %s when there's not enough space in the fifo", __func__); 102 103 nfrags++; 104 105 iov[0].iov_offset = fifo->head; 106 iov[0].iov_len = bytes; 107 fifo->head += bytes; 108 109 if (fifo->head > fifo->size) { 110 /* If the allocation did not fit in the tail fragment of the 111 * FIFO, also use the head fragment. 112 */ 113 nfrags++; 114 overflow = fifo->head - fifo->size; 115 iov[0].iov_len -= overflow; 116 iov[1].iov_offset = 0; /* Start of fifo*/ 117 iov[1].iov_len = overflow; 118 119 fifo->head = overflow; 120 } 121 122 /* Re-align to a cacheline boundary */ 123 aligned_head = L1_CACHE_ALIGN(fifo->head); 124 padding = aligned_head - fifo->head; 125 iov[nfrags - 1].iov_padding = padding; 126 atomic_sub(bytes + padding, &fifo->available); 127 fifo->head = aligned_head; 128 129 if (fifo->head == fifo->size) 130 fifo->head = 0; 131 132 return nfrags; 133 } 134 135 /* gve_tx_free_fifo - Return space to Tx FIFO 136 * @fifo: FIFO to return fragments to 137 * @bytes: Bytes to free 138 */ 139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) 140 { 141 atomic_add(bytes, &fifo->available); 142 } 143 144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) 145 { 146 size_t space_freed = 0; 147 int i; 148 149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) { 150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; 151 info->iov[i].iov_len = 0; 152 info->iov[i].iov_padding = 0; 153 } 154 return space_freed; 155 } 156 157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, 158 u32 to_do) 159 { 160 struct gve_tx_buffer_state *info; 161 u64 pkts = 0, bytes = 0; 162 size_t space_freed = 0; 163 u32 xsk_complete = 0; 164 u32 idx; 165 int i; 166 167 for (i = 0; i < to_do; i++) { 168 idx = tx->done & tx->mask; 169 info = &tx->info[idx]; 170 tx->done++; 171 172 if (unlikely(!info->xdp.size)) 173 continue; 174 175 bytes += info->xdp.size; 176 pkts++; 177 xsk_complete += info->xdp.is_xsk; 178 179 info->xdp.size = 0; 180 if (info->xdp_frame) { 181 xdp_return_frame(info->xdp_frame); 182 info->xdp_frame = NULL; 183 } 184 space_freed += gve_tx_clear_buffer_state(info); 185 } 186 187 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 188 if (xsk_complete > 0 && tx->xsk_pool) 189 xsk_tx_completed(tx->xsk_pool, xsk_complete); 190 u64_stats_update_begin(&tx->statss); 191 tx->bytes_done += bytes; 192 tx->pkt_done += pkts; 193 u64_stats_update_end(&tx->statss); 194 return pkts; 195 } 196 197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 198 u32 to_do, bool try_to_wake); 199 200 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx) 201 { 202 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 203 struct gve_tx_ring *tx = &priv->tx[idx]; 204 205 if (!gve_tx_was_added_to_block(priv, idx)) 206 return; 207 208 gve_remove_napi(priv, ntfy_idx); 209 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); 210 netdev_tx_reset_queue(tx->netdev_txq); 211 gve_tx_remove_from_block(priv, idx); 212 } 213 214 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx, 215 struct gve_tx_alloc_rings_cfg *cfg) 216 { 217 struct device *hdev = &priv->pdev->dev; 218 int idx = tx->q_num; 219 size_t bytes; 220 u32 qpl_id; 221 u32 slots; 222 223 slots = tx->mask + 1; 224 dma_free_coherent(hdev, sizeof(*tx->q_resources), 225 tx->q_resources, tx->q_resources_bus); 226 tx->q_resources = NULL; 227 228 if (tx->tx_fifo.qpl) { 229 if (tx->tx_fifo.base) 230 gve_tx_fifo_release(priv, &tx->tx_fifo); 231 232 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 233 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); 234 tx->tx_fifo.qpl = NULL; 235 } 236 237 bytes = sizeof(*tx->desc) * slots; 238 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 239 tx->desc = NULL; 240 241 vfree(tx->info); 242 tx->info = NULL; 243 244 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 245 } 246 247 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx) 248 { 249 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 250 struct gve_tx_ring *tx = &priv->tx[idx]; 251 252 gve_tx_add_to_block(priv, idx); 253 254 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 255 gve_add_napi(priv, ntfy_idx, gve_napi_poll); 256 } 257 258 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv, 259 struct gve_tx_alloc_rings_cfg *cfg, 260 struct gve_tx_ring *tx, 261 int idx) 262 { 263 struct device *hdev = &priv->pdev->dev; 264 int qpl_page_cnt; 265 u32 qpl_id = 0; 266 size_t bytes; 267 268 /* Make sure everything is zeroed to start */ 269 memset(tx, 0, sizeof(*tx)); 270 spin_lock_init(&tx->clean_lock); 271 spin_lock_init(&tx->xdp_lock); 272 tx->q_num = idx; 273 274 tx->mask = cfg->ring_size - 1; 275 276 /* alloc metadata */ 277 tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info)); 278 if (!tx->info) 279 return -ENOMEM; 280 281 /* alloc tx queue */ 282 bytes = sizeof(*tx->desc) * cfg->ring_size; 283 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 284 if (!tx->desc) 285 goto abort_with_info; 286 287 tx->raw_addressing = cfg->raw_addressing; 288 tx->dev = hdev; 289 if (!tx->raw_addressing) { 290 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 291 qpl_page_cnt = priv->tx_pages_per_qpl; 292 293 tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 294 qpl_page_cnt); 295 if (!tx->tx_fifo.qpl) 296 goto abort_with_desc; 297 298 /* map Tx FIFO */ 299 if (gve_tx_fifo_init(priv, &tx->tx_fifo)) 300 goto abort_with_qpl; 301 } 302 303 tx->q_resources = 304 dma_alloc_coherent(hdev, 305 sizeof(*tx->q_resources), 306 &tx->q_resources_bus, 307 GFP_KERNEL); 308 if (!tx->q_resources) 309 goto abort_with_fifo; 310 311 return 0; 312 313 abort_with_fifo: 314 if (!tx->raw_addressing) 315 gve_tx_fifo_release(priv, &tx->tx_fifo); 316 abort_with_qpl: 317 if (!tx->raw_addressing) { 318 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); 319 tx->tx_fifo.qpl = NULL; 320 } 321 abort_with_desc: 322 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 323 tx->desc = NULL; 324 abort_with_info: 325 vfree(tx->info); 326 tx->info = NULL; 327 return -ENOMEM; 328 } 329 330 int gve_tx_alloc_rings_gqi(struct gve_priv *priv, 331 struct gve_tx_alloc_rings_cfg *cfg) 332 { 333 struct gve_tx_ring *tx = cfg->tx; 334 int err = 0; 335 int i, j; 336 337 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 338 netif_err(priv, drv, priv->dev, 339 "Cannot alloc more than the max num of Tx rings\n"); 340 return -EINVAL; 341 } 342 343 if (cfg->start_idx == 0) { 344 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 345 GFP_KERNEL); 346 if (!tx) 347 return -ENOMEM; 348 } else if (!tx) { 349 netif_err(priv, drv, priv->dev, 350 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 351 return -EINVAL; 352 } 353 354 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 355 err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i); 356 if (err) { 357 netif_err(priv, drv, priv->dev, 358 "Failed to alloc tx ring=%d: err=%d\n", 359 i, err); 360 goto cleanup; 361 } 362 } 363 364 cfg->tx = tx; 365 return 0; 366 367 cleanup: 368 for (j = 0; j < i; j++) 369 gve_tx_free_ring_gqi(priv, &tx[j], cfg); 370 if (cfg->start_idx == 0) 371 kvfree(tx); 372 return err; 373 } 374 375 void gve_tx_free_rings_gqi(struct gve_priv *priv, 376 struct gve_tx_alloc_rings_cfg *cfg) 377 { 378 struct gve_tx_ring *tx = cfg->tx; 379 int i; 380 381 if (!tx) 382 return; 383 384 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 385 gve_tx_free_ring_gqi(priv, &tx[i], cfg); 386 387 if (cfg->start_idx == 0) { 388 kvfree(tx); 389 cfg->tx = NULL; 390 } 391 } 392 393 /* gve_tx_avail - Calculates the number of slots available in the ring 394 * @tx: tx ring to check 395 * 396 * Returns the number of slots available 397 * 398 * The capacity of the queue is mask + 1. We don't need to reserve an entry. 399 **/ 400 static inline u32 gve_tx_avail(struct gve_tx_ring *tx) 401 { 402 return tx->mask + 1 - (tx->req - tx->done); 403 } 404 405 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, 406 struct sk_buff *skb) 407 { 408 int pad_bytes, align_hdr_pad; 409 int bytes; 410 int hlen; 411 412 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : 413 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 414 415 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, 416 hlen); 417 /* We need to take into account the header alignment padding. */ 418 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; 419 bytes = align_hdr_pad + pad_bytes + skb->len; 420 421 return bytes; 422 } 423 424 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : 425 * 1 for each skb frag 426 * 1 for the skb linear portion 427 * 1 for when tcp hdr needs to be in separate descriptor 428 * 1 if the payload wraps to the beginning of the FIFO 429 * 1 for metadata descriptor 430 */ 431 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) 432 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) 433 { 434 if (info->skb) { 435 dma_unmap_single(dev, dma_unmap_addr(info, dma), 436 dma_unmap_len(info, len), 437 DMA_TO_DEVICE); 438 dma_unmap_len_set(info, len, 0); 439 } else { 440 dma_unmap_page(dev, dma_unmap_addr(info, dma), 441 dma_unmap_len(info, len), 442 DMA_TO_DEVICE); 443 dma_unmap_len_set(info, len, 0); 444 } 445 } 446 447 /* Check if sufficient resources (descriptor ring space, FIFO space) are 448 * available to transmit the given number of bytes. 449 */ 450 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) 451 { 452 bool can_alloc = true; 453 454 if (!tx->raw_addressing) 455 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); 456 457 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); 458 } 459 460 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); 461 462 /* Stops the queue if the skb cannot be transmitted. */ 463 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 464 struct sk_buff *skb) 465 { 466 int bytes_required = 0; 467 u32 nic_done; 468 u32 to_do; 469 int ret; 470 471 if (!tx->raw_addressing) 472 bytes_required = gve_skb_fifo_bytes_required(tx, skb); 473 474 if (likely(gve_can_tx(tx, bytes_required))) 475 return 0; 476 477 ret = -EBUSY; 478 spin_lock(&tx->clean_lock); 479 nic_done = gve_tx_load_event_counter(priv, tx); 480 to_do = nic_done - tx->done; 481 482 /* Only try to clean if there is hope for TX */ 483 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { 484 if (to_do > 0) { 485 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); 486 gve_clean_tx_done(priv, tx, to_do, false); 487 } 488 if (likely(gve_can_tx(tx, bytes_required))) 489 ret = 0; 490 } 491 if (ret) { 492 /* No space, so stop the queue */ 493 tx->stop_queue++; 494 netif_tx_stop_queue(tx->netdev_txq); 495 } 496 spin_unlock(&tx->clean_lock); 497 498 return ret; 499 } 500 501 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, 502 u16 csum_offset, u8 ip_summed, bool is_gso, 503 int l4_hdr_offset, u32 desc_cnt, 504 u16 hlen, u64 addr, u16 pkt_len) 505 { 506 /* l4_hdr_offset and csum_offset are in units of 16-bit words */ 507 if (is_gso) { 508 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; 509 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 510 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 511 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { 512 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; 513 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 514 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 515 } else { 516 pkt_desc->pkt.type_flags = GVE_TXD_STD; 517 pkt_desc->pkt.l4_csum_offset = 0; 518 pkt_desc->pkt.l4_hdr_offset = 0; 519 } 520 pkt_desc->pkt.desc_cnt = desc_cnt; 521 pkt_desc->pkt.len = cpu_to_be16(pkt_len); 522 pkt_desc->pkt.seg_len = cpu_to_be16(hlen); 523 pkt_desc->pkt.seg_addr = cpu_to_be64(addr); 524 } 525 526 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, 527 struct sk_buff *skb) 528 { 529 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); 530 531 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; 532 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | 533 GVE_MTD_PATH_HASH_L4; 534 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); 535 mtd_desc->mtd.reserved0 = 0; 536 mtd_desc->mtd.reserved1 = 0; 537 } 538 539 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, 540 u16 l3_offset, u16 gso_size, 541 bool is_gso_v6, bool is_gso, 542 u16 len, u64 addr) 543 { 544 seg_desc->seg.type_flags = GVE_TXD_SEG; 545 if (is_gso) { 546 if (is_gso_v6) 547 seg_desc->seg.type_flags |= GVE_TXSF_IPV6; 548 seg_desc->seg.l3_offset = l3_offset >> 1; 549 seg_desc->seg.mss = cpu_to_be16(gso_size); 550 } 551 seg_desc->seg.seg_len = cpu_to_be16(len); 552 seg_desc->seg.seg_addr = cpu_to_be64(addr); 553 } 554 555 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, 556 u64 iov_offset, u64 iov_len) 557 { 558 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; 559 u64 first_page = iov_offset / PAGE_SIZE; 560 u64 page; 561 562 for (page = first_page; page <= last_page; page++) 563 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); 564 } 565 566 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) 567 { 568 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; 569 union gve_tx_desc *pkt_desc, *seg_desc; 570 struct gve_tx_buffer_state *info; 571 int mtd_desc_nr = !!skb->l4_hash; 572 bool is_gso = skb_is_gso(skb); 573 u32 idx = tx->req & tx->mask; 574 int payload_iov = 2; 575 int copy_offset; 576 u32 next_idx; 577 int i; 578 579 info = &tx->info[idx]; 580 pkt_desc = &tx->desc[idx]; 581 582 l4_hdr_offset = skb_checksum_start_offset(skb); 583 /* If the skb is gso, then we want the tcp header alone in the first segment 584 * otherwise we want the minimum required by the gVNIC spec. 585 */ 586 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : 587 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 588 589 info->skb = skb; 590 /* We don't want to split the header, so if necessary, pad to the end 591 * of the fifo and then put the header at the beginning of the fifo. 592 */ 593 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); 594 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, 595 &info->iov[0]); 596 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); 597 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, 598 &info->iov[payload_iov]); 599 600 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 601 is_gso, l4_hdr_offset, 602 1 + mtd_desc_nr + payload_nfrags, hlen, 603 info->iov[hdr_nfrags - 1].iov_offset, skb->len); 604 605 skb_copy_bits(skb, 0, 606 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, 607 hlen); 608 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 609 info->iov[hdr_nfrags - 1].iov_offset, 610 info->iov[hdr_nfrags - 1].iov_len); 611 copy_offset = hlen; 612 613 if (mtd_desc_nr) { 614 next_idx = (tx->req + 1) & tx->mask; 615 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); 616 } 617 618 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { 619 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; 620 seg_desc = &tx->desc[next_idx]; 621 622 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 623 skb_shinfo(skb)->gso_size, 624 skb_is_gso_v6(skb), is_gso, 625 info->iov[i].iov_len, 626 info->iov[i].iov_offset); 627 628 skb_copy_bits(skb, copy_offset, 629 tx->tx_fifo.base + info->iov[i].iov_offset, 630 info->iov[i].iov_len); 631 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 632 info->iov[i].iov_offset, 633 info->iov[i].iov_len); 634 copy_offset += info->iov[i].iov_len; 635 } 636 637 return 1 + mtd_desc_nr + payload_nfrags; 638 } 639 640 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, 641 struct sk_buff *skb) 642 { 643 const struct skb_shared_info *shinfo = skb_shinfo(skb); 644 int hlen, num_descriptors, l4_hdr_offset; 645 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; 646 struct gve_tx_buffer_state *info; 647 int mtd_desc_nr = !!skb->l4_hash; 648 bool is_gso = skb_is_gso(skb); 649 u32 idx = tx->req & tx->mask; 650 u64 addr; 651 u32 len; 652 int i; 653 654 info = &tx->info[idx]; 655 pkt_desc = &tx->desc[idx]; 656 657 l4_hdr_offset = skb_checksum_start_offset(skb); 658 /* If the skb is gso, then we want only up to the tcp header in the first segment 659 * to efficiently replicate on each segment otherwise we want the linear portion 660 * of the skb (which will contain the checksum because skb->csum_start and 661 * skb->csum_offset are given relative to skb->head) in the first segment. 662 */ 663 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); 664 len = skb_headlen(skb); 665 666 info->skb = skb; 667 668 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 669 if (unlikely(dma_mapping_error(tx->dev, addr))) { 670 tx->dma_mapping_error++; 671 goto drop; 672 } 673 dma_unmap_len_set(info, len, len); 674 dma_unmap_addr_set(info, dma, addr); 675 676 num_descriptors = 1 + shinfo->nr_frags; 677 if (hlen < len) 678 num_descriptors++; 679 if (mtd_desc_nr) 680 num_descriptors++; 681 682 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 683 is_gso, l4_hdr_offset, 684 num_descriptors, hlen, addr, skb->len); 685 686 if (mtd_desc_nr) { 687 idx = (idx + 1) & tx->mask; 688 mtd_desc = &tx->desc[idx]; 689 gve_tx_fill_mtd_desc(mtd_desc, skb); 690 } 691 692 if (hlen < len) { 693 /* For gso the rest of the linear portion of the skb needs to 694 * be in its own descriptor. 695 */ 696 len -= hlen; 697 addr += hlen; 698 idx = (idx + 1) & tx->mask; 699 seg_desc = &tx->desc[idx]; 700 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 701 skb_shinfo(skb)->gso_size, 702 skb_is_gso_v6(skb), is_gso, len, addr); 703 } 704 705 for (i = 0; i < shinfo->nr_frags; i++) { 706 const skb_frag_t *frag = &shinfo->frags[i]; 707 708 idx = (idx + 1) & tx->mask; 709 seg_desc = &tx->desc[idx]; 710 len = skb_frag_size(frag); 711 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 712 if (unlikely(dma_mapping_error(tx->dev, addr))) { 713 tx->dma_mapping_error++; 714 goto unmap_drop; 715 } 716 tx->info[idx].skb = NULL; 717 dma_unmap_len_set(&tx->info[idx], len, len); 718 dma_unmap_addr_set(&tx->info[idx], dma, addr); 719 720 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 721 skb_shinfo(skb)->gso_size, 722 skb_is_gso_v6(skb), is_gso, len, addr); 723 } 724 725 return num_descriptors; 726 727 unmap_drop: 728 i += num_descriptors - shinfo->nr_frags; 729 while (i--) { 730 /* Skip metadata descriptor, if set */ 731 if (i == 1 && mtd_desc_nr == 1) 732 continue; 733 idx--; 734 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); 735 } 736 drop: 737 tx->dropped_pkt++; 738 return 0; 739 } 740 741 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) 742 { 743 struct gve_priv *priv = netdev_priv(dev); 744 struct gve_tx_ring *tx; 745 int nsegs; 746 747 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, 748 "skb queue index out of range"); 749 tx = &priv->tx[skb_get_queue_mapping(skb)]; 750 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { 751 /* We need to ring the txq doorbell -- we have stopped the Tx 752 * queue for want of resources, but prior calls to gve_tx() 753 * may have added descriptors without ringing the doorbell. 754 */ 755 756 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 757 return NETDEV_TX_BUSY; 758 } 759 if (tx->raw_addressing) 760 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); 761 else 762 nsegs = gve_tx_add_skb_copy(priv, tx, skb); 763 764 /* If the packet is getting sent, we need to update the skb */ 765 if (nsegs) { 766 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 767 skb_tx_timestamp(skb); 768 tx->req += nsegs; 769 } else { 770 dev_kfree_skb_any(skb); 771 } 772 773 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 774 return NETDEV_TX_OK; 775 776 /* Give packets to NIC. Even if this packet failed to send the doorbell 777 * might need to be rung because of xmit_more. 778 */ 779 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 780 return NETDEV_TX_OK; 781 } 782 783 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, 784 void *data, int len, void *frame_p, bool is_xsk) 785 { 786 int pad, nfrags, ndescs, iovi, offset; 787 struct gve_tx_buffer_state *info; 788 u32 reqi = tx->req; 789 790 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); 791 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) 792 pad = 0; 793 info = &tx->info[reqi & tx->mask]; 794 info->xdp_frame = frame_p; 795 info->xdp.size = len; 796 info->xdp.is_xsk = is_xsk; 797 798 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, 799 &info->iov[0]); 800 iovi = pad > 0; 801 ndescs = nfrags - iovi; 802 offset = 0; 803 804 while (iovi < nfrags) { 805 if (!offset) 806 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, 807 CHECKSUM_NONE, false, 0, ndescs, 808 info->iov[iovi].iov_len, 809 info->iov[iovi].iov_offset, len); 810 else 811 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 812 0, 0, false, false, 813 info->iov[iovi].iov_len, 814 info->iov[iovi].iov_offset); 815 816 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, 817 data + offset, info->iov[iovi].iov_len); 818 gve_dma_sync_for_device(&priv->pdev->dev, 819 tx->tx_fifo.qpl->page_buses, 820 info->iov[iovi].iov_offset, 821 info->iov[iovi].iov_len); 822 offset += info->iov[iovi].iov_len; 823 iovi++; 824 reqi++; 825 } 826 827 return ndescs; 828 } 829 830 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 831 u32 flags) 832 { 833 struct gve_priv *priv = netdev_priv(dev); 834 struct gve_tx_ring *tx; 835 int i, err = 0, qid; 836 837 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 838 return -EINVAL; 839 840 qid = gve_xdp_tx_queue_id(priv, 841 smp_processor_id() % priv->num_xdp_queues); 842 843 tx = &priv->tx[qid]; 844 845 spin_lock(&tx->xdp_lock); 846 for (i = 0; i < n; i++) { 847 err = gve_xdp_xmit_one(priv, tx, frames[i]->data, 848 frames[i]->len, frames[i]); 849 if (err) 850 break; 851 } 852 853 if (flags & XDP_XMIT_FLUSH) 854 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 855 856 spin_unlock(&tx->xdp_lock); 857 858 u64_stats_update_begin(&tx->statss); 859 tx->xdp_xmit += n; 860 tx->xdp_xmit_errors += n - i; 861 u64_stats_update_end(&tx->statss); 862 863 return i ? i : err; 864 } 865 866 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, 867 void *data, int len, void *frame_p) 868 { 869 int nsegs; 870 871 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) 872 return -EBUSY; 873 874 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); 875 tx->req += nsegs; 876 877 return 0; 878 } 879 880 #define GVE_TX_START_THRESH 4096 881 882 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 883 u32 to_do, bool try_to_wake) 884 { 885 struct gve_tx_buffer_state *info; 886 u64 pkts = 0, bytes = 0; 887 size_t space_freed = 0; 888 struct sk_buff *skb; 889 u32 idx; 890 int j; 891 892 for (j = 0; j < to_do; j++) { 893 idx = tx->done & tx->mask; 894 netif_info(priv, tx_done, priv->dev, 895 "[%d] %s: idx=%d (req=%u done=%u)\n", 896 tx->q_num, __func__, idx, tx->req, tx->done); 897 info = &tx->info[idx]; 898 skb = info->skb; 899 900 /* Unmap the buffer */ 901 if (tx->raw_addressing) 902 gve_tx_unmap_buf(tx->dev, info); 903 tx->done++; 904 /* Mark as free */ 905 if (skb) { 906 info->skb = NULL; 907 bytes += skb->len; 908 pkts++; 909 dev_consume_skb_any(skb); 910 if (tx->raw_addressing) 911 continue; 912 space_freed += gve_tx_clear_buffer_state(info); 913 } 914 } 915 916 if (!tx->raw_addressing) 917 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 918 u64_stats_update_begin(&tx->statss); 919 tx->bytes_done += bytes; 920 tx->pkt_done += pkts; 921 u64_stats_update_end(&tx->statss); 922 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); 923 924 /* start the queue if we've stopped it */ 925 #ifndef CONFIG_BQL 926 /* Make sure that the doorbells are synced */ 927 smp_mb(); 928 #endif 929 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && 930 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { 931 tx->wake_queue++; 932 netif_tx_wake_queue(tx->netdev_txq); 933 } 934 935 return pkts; 936 } 937 938 u32 gve_tx_load_event_counter(struct gve_priv *priv, 939 struct gve_tx_ring *tx) 940 { 941 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); 942 __be32 counter = READ_ONCE(priv->counter_array[counter_index]); 943 944 return be32_to_cpu(counter); 945 } 946 947 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 948 int budget) 949 { 950 struct xdp_desc desc; 951 int sent = 0, nsegs; 952 void *data; 953 954 spin_lock(&tx->xdp_lock); 955 while (sent < budget) { 956 if (!gve_can_tx(tx, GVE_TX_START_THRESH)) 957 goto out; 958 959 if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { 960 tx->xdp_xsk_done = tx->xdp_xsk_wakeup; 961 goto out; 962 } 963 964 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); 965 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); 966 tx->req += nsegs; 967 sent++; 968 } 969 out: 970 if (sent > 0) { 971 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 972 xsk_tx_release(tx->xsk_pool); 973 } 974 spin_unlock(&tx->xdp_lock); 975 return sent; 976 } 977 978 bool gve_xdp_poll(struct gve_notify_block *block, int budget) 979 { 980 struct gve_priv *priv = block->priv; 981 struct gve_tx_ring *tx = block->tx; 982 u32 nic_done; 983 bool repoll; 984 u32 to_do; 985 986 /* Find out how much work there is to be done */ 987 nic_done = gve_tx_load_event_counter(priv, tx); 988 to_do = min_t(u32, (nic_done - tx->done), budget); 989 gve_clean_xdp_done(priv, tx, to_do); 990 repoll = nic_done != tx->done; 991 992 if (tx->xsk_pool) { 993 int sent = gve_xsk_tx(priv, tx, budget); 994 995 u64_stats_update_begin(&tx->statss); 996 tx->xdp_xsk_sent += sent; 997 u64_stats_update_end(&tx->statss); 998 repoll |= (sent == budget); 999 if (xsk_uses_need_wakeup(tx->xsk_pool)) 1000 xsk_set_tx_need_wakeup(tx->xsk_pool); 1001 } 1002 1003 /* If we still have work we want to repoll */ 1004 return repoll; 1005 } 1006 1007 bool gve_tx_poll(struct gve_notify_block *block, int budget) 1008 { 1009 struct gve_priv *priv = block->priv; 1010 struct gve_tx_ring *tx = block->tx; 1011 u32 nic_done; 1012 u32 to_do; 1013 1014 /* If budget is 0, do all the work */ 1015 if (budget == 0) 1016 budget = INT_MAX; 1017 1018 /* In TX path, it may try to clean completed pkts in order to xmit, 1019 * to avoid cleaning conflict, use spin_lock(), it yields better 1020 * concurrency between xmit/clean than netif's lock. 1021 */ 1022 spin_lock(&tx->clean_lock); 1023 /* Find out how much work there is to be done */ 1024 nic_done = gve_tx_load_event_counter(priv, tx); 1025 to_do = min_t(u32, (nic_done - tx->done), budget); 1026 gve_clean_tx_done(priv, tx, to_do, true); 1027 spin_unlock(&tx->clean_lock); 1028 /* If we still have work we want to repoll */ 1029 return nic_done != tx->done; 1030 } 1031 1032 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) 1033 { 1034 u32 nic_done = gve_tx_load_event_counter(priv, tx); 1035 1036 return nic_done != tx->done; 1037 } 1038