1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include <linux/ip.h> 11 #include <linux/tcp.h> 12 #include <linux/vmalloc.h> 13 #include <linux/skbuff.h> 14 #include <net/xdp_sock_drv.h> 15 16 static inline void gve_tx_put_doorbell(struct gve_priv *priv, 17 struct gve_queue_resources *q_resources, 18 u32 val) 19 { 20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); 21 } 22 23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) 24 { 25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); 26 struct gve_tx_ring *tx = &priv->tx[tx_qid]; 27 28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 29 } 30 31 /* gvnic can only transmit from a Registered Segment. 32 * We copy skb payloads into the registered segment before writing Tx 33 * descriptors and ringing the Tx doorbell. 34 * 35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must 36 * free allocations in the order they were allocated. 37 */ 38 39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) 40 { 41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, 42 PAGE_KERNEL); 43 if (unlikely(!fifo->base)) { 44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", 45 fifo->qpl->id); 46 return -ENOMEM; 47 } 48 49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE; 50 atomic_set(&fifo->available, fifo->size); 51 fifo->head = 0; 52 return 0; 53 } 54 55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) 56 { 57 WARN(atomic_read(&fifo->available) != fifo->size, 58 "Releasing non-empty fifo"); 59 60 vunmap(fifo->base); 61 } 62 63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, 64 size_t bytes) 65 { 66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; 67 } 68 69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) 70 { 71 return (atomic_read(&fifo->available) <= bytes) ? false : true; 72 } 73 74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO 75 * @fifo: FIFO to allocate from 76 * @bytes: Allocation size 77 * @iov: Scatter-gather elements to fill with allocation fragment base/len 78 * 79 * Returns number of valid elements in iov[] or negative on error. 80 * 81 * Allocations from a given FIFO must be externally synchronized but concurrent 82 * allocation and frees are allowed. 83 */ 84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, 85 struct gve_tx_iovec iov[2]) 86 { 87 size_t overflow, padding; 88 u32 aligned_head; 89 int nfrags = 0; 90 91 if (!bytes) 92 return 0; 93 94 /* This check happens before we know how much padding is needed to 95 * align to a cacheline boundary for the payload, but that is fine, 96 * because the FIFO head always start aligned, and the FIFO's boundaries 97 * are aligned, so if there is space for the data, there is space for 98 * the padding to the next alignment. 99 */ 100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes), 101 "Reached %s when there's not enough space in the fifo", __func__); 102 103 nfrags++; 104 105 iov[0].iov_offset = fifo->head; 106 iov[0].iov_len = bytes; 107 fifo->head += bytes; 108 109 if (fifo->head > fifo->size) { 110 /* If the allocation did not fit in the tail fragment of the 111 * FIFO, also use the head fragment. 112 */ 113 nfrags++; 114 overflow = fifo->head - fifo->size; 115 iov[0].iov_len -= overflow; 116 iov[1].iov_offset = 0; /* Start of fifo*/ 117 iov[1].iov_len = overflow; 118 119 fifo->head = overflow; 120 } 121 122 /* Re-align to a cacheline boundary */ 123 aligned_head = L1_CACHE_ALIGN(fifo->head); 124 padding = aligned_head - fifo->head; 125 iov[nfrags - 1].iov_padding = padding; 126 atomic_sub(bytes + padding, &fifo->available); 127 fifo->head = aligned_head; 128 129 if (fifo->head == fifo->size) 130 fifo->head = 0; 131 132 return nfrags; 133 } 134 135 /* gve_tx_free_fifo - Return space to Tx FIFO 136 * @fifo: FIFO to return fragments to 137 * @bytes: Bytes to free 138 */ 139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) 140 { 141 atomic_add(bytes, &fifo->available); 142 } 143 144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) 145 { 146 size_t space_freed = 0; 147 int i; 148 149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) { 150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; 151 info->iov[i].iov_len = 0; 152 info->iov[i].iov_padding = 0; 153 } 154 return space_freed; 155 } 156 157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, 158 u32 to_do) 159 { 160 struct gve_tx_buffer_state *info; 161 u32 clean_end = tx->done + to_do; 162 u64 pkts = 0, bytes = 0; 163 size_t space_freed = 0; 164 u32 xsk_complete = 0; 165 u32 idx; 166 167 for (; tx->done < clean_end; tx->done++) { 168 idx = tx->done & tx->mask; 169 info = &tx->info[idx]; 170 171 if (unlikely(!info->xdp.size)) 172 continue; 173 174 bytes += info->xdp.size; 175 pkts++; 176 xsk_complete += info->xdp.is_xsk; 177 178 info->xdp.size = 0; 179 if (info->xdp_frame) { 180 xdp_return_frame(info->xdp_frame); 181 info->xdp_frame = NULL; 182 } 183 space_freed += gve_tx_clear_buffer_state(info); 184 } 185 186 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 187 if (xsk_complete > 0 && tx->xsk_pool) 188 xsk_tx_completed(tx->xsk_pool, xsk_complete); 189 u64_stats_update_begin(&tx->statss); 190 tx->bytes_done += bytes; 191 tx->pkt_done += pkts; 192 u64_stats_update_end(&tx->statss); 193 return pkts; 194 } 195 196 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 197 u32 to_do, bool try_to_wake); 198 199 static void gve_tx_free_ring(struct gve_priv *priv, int idx) 200 { 201 struct gve_tx_ring *tx = &priv->tx[idx]; 202 struct device *hdev = &priv->pdev->dev; 203 size_t bytes; 204 u32 slots; 205 206 gve_tx_remove_from_block(priv, idx); 207 slots = tx->mask + 1; 208 if (tx->q_num < priv->tx_cfg.num_queues) { 209 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); 210 netdev_tx_reset_queue(tx->netdev_txq); 211 } else { 212 gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt); 213 } 214 215 dma_free_coherent(hdev, sizeof(*tx->q_resources), 216 tx->q_resources, tx->q_resources_bus); 217 tx->q_resources = NULL; 218 219 if (!tx->raw_addressing) { 220 gve_tx_fifo_release(priv, &tx->tx_fifo); 221 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); 222 tx->tx_fifo.qpl = NULL; 223 } 224 225 bytes = sizeof(*tx->desc) * slots; 226 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 227 tx->desc = NULL; 228 229 vfree(tx->info); 230 tx->info = NULL; 231 232 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 233 } 234 235 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx) 236 { 237 struct gve_tx_ring *tx = &priv->tx[idx]; 238 struct device *hdev = &priv->pdev->dev; 239 u32 slots = priv->tx_desc_cnt; 240 size_t bytes; 241 242 /* Make sure everything is zeroed to start */ 243 memset(tx, 0, sizeof(*tx)); 244 spin_lock_init(&tx->clean_lock); 245 spin_lock_init(&tx->xdp_lock); 246 tx->q_num = idx; 247 248 tx->mask = slots - 1; 249 250 /* alloc metadata */ 251 tx->info = vcalloc(slots, sizeof(*tx->info)); 252 if (!tx->info) 253 return -ENOMEM; 254 255 /* alloc tx queue */ 256 bytes = sizeof(*tx->desc) * slots; 257 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 258 if (!tx->desc) 259 goto abort_with_info; 260 261 tx->raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT; 262 tx->dev = &priv->pdev->dev; 263 if (!tx->raw_addressing) { 264 tx->tx_fifo.qpl = gve_assign_tx_qpl(priv, idx); 265 if (!tx->tx_fifo.qpl) 266 goto abort_with_desc; 267 /* map Tx FIFO */ 268 if (gve_tx_fifo_init(priv, &tx->tx_fifo)) 269 goto abort_with_qpl; 270 } 271 272 tx->q_resources = 273 dma_alloc_coherent(hdev, 274 sizeof(*tx->q_resources), 275 &tx->q_resources_bus, 276 GFP_KERNEL); 277 if (!tx->q_resources) 278 goto abort_with_fifo; 279 280 netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx, 281 (unsigned long)tx->bus); 282 if (idx < priv->tx_cfg.num_queues) 283 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 284 gve_tx_add_to_block(priv, idx); 285 286 return 0; 287 288 abort_with_fifo: 289 if (!tx->raw_addressing) 290 gve_tx_fifo_release(priv, &tx->tx_fifo); 291 abort_with_qpl: 292 if (!tx->raw_addressing) 293 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); 294 abort_with_desc: 295 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 296 tx->desc = NULL; 297 abort_with_info: 298 vfree(tx->info); 299 tx->info = NULL; 300 return -ENOMEM; 301 } 302 303 int gve_tx_alloc_rings(struct gve_priv *priv, int start_id, int num_rings) 304 { 305 int err = 0; 306 int i; 307 308 for (i = start_id; i < start_id + num_rings; i++) { 309 err = gve_tx_alloc_ring(priv, i); 310 if (err) { 311 netif_err(priv, drv, priv->dev, 312 "Failed to alloc tx ring=%d: err=%d\n", 313 i, err); 314 break; 315 } 316 } 317 /* Unallocate if there was an error */ 318 if (err) { 319 int j; 320 321 for (j = start_id; j < i; j++) 322 gve_tx_free_ring(priv, j); 323 } 324 return err; 325 } 326 327 void gve_tx_free_rings_gqi(struct gve_priv *priv, int start_id, int num_rings) 328 { 329 int i; 330 331 for (i = start_id; i < start_id + num_rings; i++) 332 gve_tx_free_ring(priv, i); 333 } 334 335 /* gve_tx_avail - Calculates the number of slots available in the ring 336 * @tx: tx ring to check 337 * 338 * Returns the number of slots available 339 * 340 * The capacity of the queue is mask + 1. We don't need to reserve an entry. 341 **/ 342 static inline u32 gve_tx_avail(struct gve_tx_ring *tx) 343 { 344 return tx->mask + 1 - (tx->req - tx->done); 345 } 346 347 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, 348 struct sk_buff *skb) 349 { 350 int pad_bytes, align_hdr_pad; 351 int bytes; 352 int hlen; 353 354 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : 355 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 356 357 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, 358 hlen); 359 /* We need to take into account the header alignment padding. */ 360 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; 361 bytes = align_hdr_pad + pad_bytes + skb->len; 362 363 return bytes; 364 } 365 366 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : 367 * 1 for each skb frag 368 * 1 for the skb linear portion 369 * 1 for when tcp hdr needs to be in separate descriptor 370 * 1 if the payload wraps to the beginning of the FIFO 371 * 1 for metadata descriptor 372 */ 373 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) 374 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) 375 { 376 if (info->skb) { 377 dma_unmap_single(dev, dma_unmap_addr(info, dma), 378 dma_unmap_len(info, len), 379 DMA_TO_DEVICE); 380 dma_unmap_len_set(info, len, 0); 381 } else { 382 dma_unmap_page(dev, dma_unmap_addr(info, dma), 383 dma_unmap_len(info, len), 384 DMA_TO_DEVICE); 385 dma_unmap_len_set(info, len, 0); 386 } 387 } 388 389 /* Check if sufficient resources (descriptor ring space, FIFO space) are 390 * available to transmit the given number of bytes. 391 */ 392 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) 393 { 394 bool can_alloc = true; 395 396 if (!tx->raw_addressing) 397 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); 398 399 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); 400 } 401 402 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); 403 404 /* Stops the queue if the skb cannot be transmitted. */ 405 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 406 struct sk_buff *skb) 407 { 408 int bytes_required = 0; 409 u32 nic_done; 410 u32 to_do; 411 int ret; 412 413 if (!tx->raw_addressing) 414 bytes_required = gve_skb_fifo_bytes_required(tx, skb); 415 416 if (likely(gve_can_tx(tx, bytes_required))) 417 return 0; 418 419 ret = -EBUSY; 420 spin_lock(&tx->clean_lock); 421 nic_done = gve_tx_load_event_counter(priv, tx); 422 to_do = nic_done - tx->done; 423 424 /* Only try to clean if there is hope for TX */ 425 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { 426 if (to_do > 0) { 427 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); 428 gve_clean_tx_done(priv, tx, to_do, false); 429 } 430 if (likely(gve_can_tx(tx, bytes_required))) 431 ret = 0; 432 } 433 if (ret) { 434 /* No space, so stop the queue */ 435 tx->stop_queue++; 436 netif_tx_stop_queue(tx->netdev_txq); 437 } 438 spin_unlock(&tx->clean_lock); 439 440 return ret; 441 } 442 443 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, 444 u16 csum_offset, u8 ip_summed, bool is_gso, 445 int l4_hdr_offset, u32 desc_cnt, 446 u16 hlen, u64 addr, u16 pkt_len) 447 { 448 /* l4_hdr_offset and csum_offset are in units of 16-bit words */ 449 if (is_gso) { 450 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; 451 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 452 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 453 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { 454 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; 455 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 456 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 457 } else { 458 pkt_desc->pkt.type_flags = GVE_TXD_STD; 459 pkt_desc->pkt.l4_csum_offset = 0; 460 pkt_desc->pkt.l4_hdr_offset = 0; 461 } 462 pkt_desc->pkt.desc_cnt = desc_cnt; 463 pkt_desc->pkt.len = cpu_to_be16(pkt_len); 464 pkt_desc->pkt.seg_len = cpu_to_be16(hlen); 465 pkt_desc->pkt.seg_addr = cpu_to_be64(addr); 466 } 467 468 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, 469 struct sk_buff *skb) 470 { 471 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); 472 473 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; 474 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | 475 GVE_MTD_PATH_HASH_L4; 476 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); 477 mtd_desc->mtd.reserved0 = 0; 478 mtd_desc->mtd.reserved1 = 0; 479 } 480 481 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, 482 u16 l3_offset, u16 gso_size, 483 bool is_gso_v6, bool is_gso, 484 u16 len, u64 addr) 485 { 486 seg_desc->seg.type_flags = GVE_TXD_SEG; 487 if (is_gso) { 488 if (is_gso_v6) 489 seg_desc->seg.type_flags |= GVE_TXSF_IPV6; 490 seg_desc->seg.l3_offset = l3_offset >> 1; 491 seg_desc->seg.mss = cpu_to_be16(gso_size); 492 } 493 seg_desc->seg.seg_len = cpu_to_be16(len); 494 seg_desc->seg.seg_addr = cpu_to_be64(addr); 495 } 496 497 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, 498 u64 iov_offset, u64 iov_len) 499 { 500 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; 501 u64 first_page = iov_offset / PAGE_SIZE; 502 u64 page; 503 504 for (page = first_page; page <= last_page; page++) 505 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); 506 } 507 508 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) 509 { 510 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; 511 union gve_tx_desc *pkt_desc, *seg_desc; 512 struct gve_tx_buffer_state *info; 513 int mtd_desc_nr = !!skb->l4_hash; 514 bool is_gso = skb_is_gso(skb); 515 u32 idx = tx->req & tx->mask; 516 int payload_iov = 2; 517 int copy_offset; 518 u32 next_idx; 519 int i; 520 521 info = &tx->info[idx]; 522 pkt_desc = &tx->desc[idx]; 523 524 l4_hdr_offset = skb_checksum_start_offset(skb); 525 /* If the skb is gso, then we want the tcp header alone in the first segment 526 * otherwise we want the minimum required by the gVNIC spec. 527 */ 528 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : 529 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 530 531 info->skb = skb; 532 /* We don't want to split the header, so if necessary, pad to the end 533 * of the fifo and then put the header at the beginning of the fifo. 534 */ 535 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); 536 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, 537 &info->iov[0]); 538 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); 539 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, 540 &info->iov[payload_iov]); 541 542 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 543 is_gso, l4_hdr_offset, 544 1 + mtd_desc_nr + payload_nfrags, hlen, 545 info->iov[hdr_nfrags - 1].iov_offset, skb->len); 546 547 skb_copy_bits(skb, 0, 548 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, 549 hlen); 550 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 551 info->iov[hdr_nfrags - 1].iov_offset, 552 info->iov[hdr_nfrags - 1].iov_len); 553 copy_offset = hlen; 554 555 if (mtd_desc_nr) { 556 next_idx = (tx->req + 1) & tx->mask; 557 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); 558 } 559 560 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { 561 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; 562 seg_desc = &tx->desc[next_idx]; 563 564 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 565 skb_shinfo(skb)->gso_size, 566 skb_is_gso_v6(skb), is_gso, 567 info->iov[i].iov_len, 568 info->iov[i].iov_offset); 569 570 skb_copy_bits(skb, copy_offset, 571 tx->tx_fifo.base + info->iov[i].iov_offset, 572 info->iov[i].iov_len); 573 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 574 info->iov[i].iov_offset, 575 info->iov[i].iov_len); 576 copy_offset += info->iov[i].iov_len; 577 } 578 579 return 1 + mtd_desc_nr + payload_nfrags; 580 } 581 582 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, 583 struct sk_buff *skb) 584 { 585 const struct skb_shared_info *shinfo = skb_shinfo(skb); 586 int hlen, num_descriptors, l4_hdr_offset; 587 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; 588 struct gve_tx_buffer_state *info; 589 int mtd_desc_nr = !!skb->l4_hash; 590 bool is_gso = skb_is_gso(skb); 591 u32 idx = tx->req & tx->mask; 592 u64 addr; 593 u32 len; 594 int i; 595 596 info = &tx->info[idx]; 597 pkt_desc = &tx->desc[idx]; 598 599 l4_hdr_offset = skb_checksum_start_offset(skb); 600 /* If the skb is gso, then we want only up to the tcp header in the first segment 601 * to efficiently replicate on each segment otherwise we want the linear portion 602 * of the skb (which will contain the checksum because skb->csum_start and 603 * skb->csum_offset are given relative to skb->head) in the first segment. 604 */ 605 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); 606 len = skb_headlen(skb); 607 608 info->skb = skb; 609 610 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 611 if (unlikely(dma_mapping_error(tx->dev, addr))) { 612 tx->dma_mapping_error++; 613 goto drop; 614 } 615 dma_unmap_len_set(info, len, len); 616 dma_unmap_addr_set(info, dma, addr); 617 618 num_descriptors = 1 + shinfo->nr_frags; 619 if (hlen < len) 620 num_descriptors++; 621 if (mtd_desc_nr) 622 num_descriptors++; 623 624 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 625 is_gso, l4_hdr_offset, 626 num_descriptors, hlen, addr, skb->len); 627 628 if (mtd_desc_nr) { 629 idx = (idx + 1) & tx->mask; 630 mtd_desc = &tx->desc[idx]; 631 gve_tx_fill_mtd_desc(mtd_desc, skb); 632 } 633 634 if (hlen < len) { 635 /* For gso the rest of the linear portion of the skb needs to 636 * be in its own descriptor. 637 */ 638 len -= hlen; 639 addr += hlen; 640 idx = (idx + 1) & tx->mask; 641 seg_desc = &tx->desc[idx]; 642 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 643 skb_shinfo(skb)->gso_size, 644 skb_is_gso_v6(skb), is_gso, len, addr); 645 } 646 647 for (i = 0; i < shinfo->nr_frags; i++) { 648 const skb_frag_t *frag = &shinfo->frags[i]; 649 650 idx = (idx + 1) & tx->mask; 651 seg_desc = &tx->desc[idx]; 652 len = skb_frag_size(frag); 653 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 654 if (unlikely(dma_mapping_error(tx->dev, addr))) { 655 tx->dma_mapping_error++; 656 goto unmap_drop; 657 } 658 tx->info[idx].skb = NULL; 659 dma_unmap_len_set(&tx->info[idx], len, len); 660 dma_unmap_addr_set(&tx->info[idx], dma, addr); 661 662 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 663 skb_shinfo(skb)->gso_size, 664 skb_is_gso_v6(skb), is_gso, len, addr); 665 } 666 667 return num_descriptors; 668 669 unmap_drop: 670 i += num_descriptors - shinfo->nr_frags; 671 while (i--) { 672 /* Skip metadata descriptor, if set */ 673 if (i == 1 && mtd_desc_nr == 1) 674 continue; 675 idx--; 676 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); 677 } 678 drop: 679 tx->dropped_pkt++; 680 return 0; 681 } 682 683 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) 684 { 685 struct gve_priv *priv = netdev_priv(dev); 686 struct gve_tx_ring *tx; 687 int nsegs; 688 689 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, 690 "skb queue index out of range"); 691 tx = &priv->tx[skb_get_queue_mapping(skb)]; 692 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { 693 /* We need to ring the txq doorbell -- we have stopped the Tx 694 * queue for want of resources, but prior calls to gve_tx() 695 * may have added descriptors without ringing the doorbell. 696 */ 697 698 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 699 return NETDEV_TX_BUSY; 700 } 701 if (tx->raw_addressing) 702 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); 703 else 704 nsegs = gve_tx_add_skb_copy(priv, tx, skb); 705 706 /* If the packet is getting sent, we need to update the skb */ 707 if (nsegs) { 708 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 709 skb_tx_timestamp(skb); 710 tx->req += nsegs; 711 } else { 712 dev_kfree_skb_any(skb); 713 } 714 715 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 716 return NETDEV_TX_OK; 717 718 /* Give packets to NIC. Even if this packet failed to send the doorbell 719 * might need to be rung because of xmit_more. 720 */ 721 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 722 return NETDEV_TX_OK; 723 } 724 725 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, 726 void *data, int len, void *frame_p, bool is_xsk) 727 { 728 int pad, nfrags, ndescs, iovi, offset; 729 struct gve_tx_buffer_state *info; 730 u32 reqi = tx->req; 731 732 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); 733 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) 734 pad = 0; 735 info = &tx->info[reqi & tx->mask]; 736 info->xdp_frame = frame_p; 737 info->xdp.size = len; 738 info->xdp.is_xsk = is_xsk; 739 740 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, 741 &info->iov[0]); 742 iovi = pad > 0; 743 ndescs = nfrags - iovi; 744 offset = 0; 745 746 while (iovi < nfrags) { 747 if (!offset) 748 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, 749 CHECKSUM_NONE, false, 0, ndescs, 750 info->iov[iovi].iov_len, 751 info->iov[iovi].iov_offset, len); 752 else 753 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 754 0, 0, false, false, 755 info->iov[iovi].iov_len, 756 info->iov[iovi].iov_offset); 757 758 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, 759 data + offset, info->iov[iovi].iov_len); 760 gve_dma_sync_for_device(&priv->pdev->dev, 761 tx->tx_fifo.qpl->page_buses, 762 info->iov[iovi].iov_offset, 763 info->iov[iovi].iov_len); 764 offset += info->iov[iovi].iov_len; 765 iovi++; 766 reqi++; 767 } 768 769 return ndescs; 770 } 771 772 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 773 u32 flags) 774 { 775 struct gve_priv *priv = netdev_priv(dev); 776 struct gve_tx_ring *tx; 777 int i, err = 0, qid; 778 779 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 780 return -EINVAL; 781 782 qid = gve_xdp_tx_queue_id(priv, 783 smp_processor_id() % priv->num_xdp_queues); 784 785 tx = &priv->tx[qid]; 786 787 spin_lock(&tx->xdp_lock); 788 for (i = 0; i < n; i++) { 789 err = gve_xdp_xmit_one(priv, tx, frames[i]->data, 790 frames[i]->len, frames[i]); 791 if (err) 792 break; 793 } 794 795 if (flags & XDP_XMIT_FLUSH) 796 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 797 798 spin_unlock(&tx->xdp_lock); 799 800 u64_stats_update_begin(&tx->statss); 801 tx->xdp_xmit += n; 802 tx->xdp_xmit_errors += n - i; 803 u64_stats_update_end(&tx->statss); 804 805 return i ? i : err; 806 } 807 808 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, 809 void *data, int len, void *frame_p) 810 { 811 int nsegs; 812 813 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) 814 return -EBUSY; 815 816 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); 817 tx->req += nsegs; 818 819 return 0; 820 } 821 822 #define GVE_TX_START_THRESH 4096 823 824 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 825 u32 to_do, bool try_to_wake) 826 { 827 struct gve_tx_buffer_state *info; 828 u64 pkts = 0, bytes = 0; 829 size_t space_freed = 0; 830 struct sk_buff *skb; 831 u32 idx; 832 int j; 833 834 for (j = 0; j < to_do; j++) { 835 idx = tx->done & tx->mask; 836 netif_info(priv, tx_done, priv->dev, 837 "[%d] %s: idx=%d (req=%u done=%u)\n", 838 tx->q_num, __func__, idx, tx->req, tx->done); 839 info = &tx->info[idx]; 840 skb = info->skb; 841 842 /* Unmap the buffer */ 843 if (tx->raw_addressing) 844 gve_tx_unmap_buf(tx->dev, info); 845 tx->done++; 846 /* Mark as free */ 847 if (skb) { 848 info->skb = NULL; 849 bytes += skb->len; 850 pkts++; 851 dev_consume_skb_any(skb); 852 if (tx->raw_addressing) 853 continue; 854 space_freed += gve_tx_clear_buffer_state(info); 855 } 856 } 857 858 if (!tx->raw_addressing) 859 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 860 u64_stats_update_begin(&tx->statss); 861 tx->bytes_done += bytes; 862 tx->pkt_done += pkts; 863 u64_stats_update_end(&tx->statss); 864 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); 865 866 /* start the queue if we've stopped it */ 867 #ifndef CONFIG_BQL 868 /* Make sure that the doorbells are synced */ 869 smp_mb(); 870 #endif 871 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && 872 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { 873 tx->wake_queue++; 874 netif_tx_wake_queue(tx->netdev_txq); 875 } 876 877 return pkts; 878 } 879 880 u32 gve_tx_load_event_counter(struct gve_priv *priv, 881 struct gve_tx_ring *tx) 882 { 883 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); 884 __be32 counter = READ_ONCE(priv->counter_array[counter_index]); 885 886 return be32_to_cpu(counter); 887 } 888 889 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 890 int budget) 891 { 892 struct xdp_desc desc; 893 int sent = 0, nsegs; 894 void *data; 895 896 spin_lock(&tx->xdp_lock); 897 while (sent < budget) { 898 if (!gve_can_tx(tx, GVE_TX_START_THRESH)) 899 goto out; 900 901 if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { 902 tx->xdp_xsk_done = tx->xdp_xsk_wakeup; 903 goto out; 904 } 905 906 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); 907 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); 908 tx->req += nsegs; 909 sent++; 910 } 911 out: 912 if (sent > 0) { 913 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 914 xsk_tx_release(tx->xsk_pool); 915 } 916 spin_unlock(&tx->xdp_lock); 917 return sent; 918 } 919 920 bool gve_xdp_poll(struct gve_notify_block *block, int budget) 921 { 922 struct gve_priv *priv = block->priv; 923 struct gve_tx_ring *tx = block->tx; 924 u32 nic_done; 925 bool repoll; 926 u32 to_do; 927 928 /* Find out how much work there is to be done */ 929 nic_done = gve_tx_load_event_counter(priv, tx); 930 to_do = min_t(u32, (nic_done - tx->done), budget); 931 gve_clean_xdp_done(priv, tx, to_do); 932 repoll = nic_done != tx->done; 933 934 if (tx->xsk_pool) { 935 int sent = gve_xsk_tx(priv, tx, budget); 936 937 u64_stats_update_begin(&tx->statss); 938 tx->xdp_xsk_sent += sent; 939 u64_stats_update_end(&tx->statss); 940 repoll |= (sent == budget); 941 if (xsk_uses_need_wakeup(tx->xsk_pool)) 942 xsk_set_tx_need_wakeup(tx->xsk_pool); 943 } 944 945 /* If we still have work we want to repoll */ 946 return repoll; 947 } 948 949 bool gve_tx_poll(struct gve_notify_block *block, int budget) 950 { 951 struct gve_priv *priv = block->priv; 952 struct gve_tx_ring *tx = block->tx; 953 u32 nic_done; 954 u32 to_do; 955 956 /* If budget is 0, do all the work */ 957 if (budget == 0) 958 budget = INT_MAX; 959 960 /* In TX path, it may try to clean completed pkts in order to xmit, 961 * to avoid cleaning conflict, use spin_lock(), it yields better 962 * concurrency between xmit/clean than netif's lock. 963 */ 964 spin_lock(&tx->clean_lock); 965 /* Find out how much work there is to be done */ 966 nic_done = gve_tx_load_event_counter(priv, tx); 967 to_do = min_t(u32, (nic_done - tx->done), budget); 968 gve_clean_tx_done(priv, tx, to_do, true); 969 spin_unlock(&tx->clean_lock); 970 /* If we still have work we want to repoll */ 971 return nic_done != tx->done; 972 } 973 974 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) 975 { 976 u32 nic_done = gve_tx_load_event_counter(priv, tx); 977 978 return nic_done != tx->done; 979 } 980