xref: /linux/drivers/net/ethernet/google/gve/gve_tx.c (revision 429508c84d95811dd1300181dfe84743caff9a38)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15 
16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 				       struct gve_queue_resources *q_resources,
18 				       u32 val)
19 {
20 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22 
23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
27 
28 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30 
31 /* gvnic can only transmit from a Registered Segment.
32  * We copy skb payloads into the registered segment before writing Tx
33  * descriptors and ringing the Tx doorbell.
34  *
35  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36  * free allocations in the order they were allocated.
37  */
38 
39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 			  PAGE_KERNEL);
43 	if (unlikely(!fifo->base)) {
44 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 			  fifo->qpl->id);
46 		return -ENOMEM;
47 	}
48 
49 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 	atomic_set(&fifo->available, fifo->size);
51 	fifo->head = 0;
52 	return 0;
53 }
54 
55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 	WARN(atomic_read(&fifo->available) != fifo->size,
58 	     "Releasing non-empty fifo");
59 
60 	vunmap(fifo->base);
61 }
62 
63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 					  size_t bytes)
65 {
66 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68 
69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73 
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75  * @fifo: FIFO to allocate from
76  * @bytes: Allocation size
77  * @iov: Scatter-gather elements to fill with allocation fragment base/len
78  *
79  * Returns number of valid elements in iov[] or negative on error.
80  *
81  * Allocations from a given FIFO must be externally synchronized but concurrent
82  * allocation and frees are allowed.
83  */
84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 			     struct gve_tx_iovec iov[2])
86 {
87 	size_t overflow, padding;
88 	u32 aligned_head;
89 	int nfrags = 0;
90 
91 	if (!bytes)
92 		return 0;
93 
94 	/* This check happens before we know how much padding is needed to
95 	 * align to a cacheline boundary for the payload, but that is fine,
96 	 * because the FIFO head always start aligned, and the FIFO's boundaries
97 	 * are aligned, so if there is space for the data, there is space for
98 	 * the padding to the next alignment.
99 	 */
100 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 	     "Reached %s when there's not enough space in the fifo", __func__);
102 
103 	nfrags++;
104 
105 	iov[0].iov_offset = fifo->head;
106 	iov[0].iov_len = bytes;
107 	fifo->head += bytes;
108 
109 	if (fifo->head > fifo->size) {
110 		/* If the allocation did not fit in the tail fragment of the
111 		 * FIFO, also use the head fragment.
112 		 */
113 		nfrags++;
114 		overflow = fifo->head - fifo->size;
115 		iov[0].iov_len -= overflow;
116 		iov[1].iov_offset = 0;	/* Start of fifo*/
117 		iov[1].iov_len = overflow;
118 
119 		fifo->head = overflow;
120 	}
121 
122 	/* Re-align to a cacheline boundary */
123 	aligned_head = L1_CACHE_ALIGN(fifo->head);
124 	padding = aligned_head - fifo->head;
125 	iov[nfrags - 1].iov_padding = padding;
126 	atomic_sub(bytes + padding, &fifo->available);
127 	fifo->head = aligned_head;
128 
129 	if (fifo->head == fifo->size)
130 		fifo->head = 0;
131 
132 	return nfrags;
133 }
134 
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136  * @fifo: FIFO to return fragments to
137  * @bytes: Bytes to free
138  */
139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 	atomic_add(bytes, &fifo->available);
142 }
143 
144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 	size_t space_freed = 0;
147 	int i;
148 
149 	for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 		space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 		info->iov[i].iov_len = 0;
152 		info->iov[i].iov_padding = 0;
153 	}
154 	return space_freed;
155 }
156 
157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 			      u32 to_do)
159 {
160 	struct gve_tx_buffer_state *info;
161 	u32 clean_end = tx->done + to_do;
162 	u64 pkts = 0, bytes = 0;
163 	size_t space_freed = 0;
164 	u32 xsk_complete = 0;
165 	u32 idx;
166 
167 	for (; tx->done < clean_end; tx->done++) {
168 		idx = tx->done & tx->mask;
169 		info = &tx->info[idx];
170 
171 		if (unlikely(!info->xdp.size))
172 			continue;
173 
174 		bytes += info->xdp.size;
175 		pkts++;
176 		xsk_complete += info->xdp.is_xsk;
177 
178 		info->xdp.size = 0;
179 		if (info->xdp_frame) {
180 			xdp_return_frame(info->xdp_frame);
181 			info->xdp_frame = NULL;
182 		}
183 		space_freed += gve_tx_clear_buffer_state(info);
184 	}
185 
186 	gve_tx_free_fifo(&tx->tx_fifo, space_freed);
187 	if (xsk_complete > 0 && tx->xsk_pool)
188 		xsk_tx_completed(tx->xsk_pool, xsk_complete);
189 	u64_stats_update_begin(&tx->statss);
190 	tx->bytes_done += bytes;
191 	tx->pkt_done += pkts;
192 	u64_stats_update_end(&tx->statss);
193 	return pkts;
194 }
195 
196 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
197 			     u32 to_do, bool try_to_wake);
198 
199 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx)
200 {
201 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
202 	struct gve_tx_ring *tx = &priv->tx[idx];
203 
204 	if (!gve_tx_was_added_to_block(priv, idx))
205 		return;
206 
207 	gve_remove_napi(priv, ntfy_idx);
208 	gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
209 	netdev_tx_reset_queue(tx->netdev_txq);
210 	gve_tx_remove_from_block(priv, idx);
211 }
212 
213 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx,
214 				 struct gve_tx_alloc_rings_cfg *cfg)
215 {
216 	struct device *hdev = &priv->pdev->dev;
217 	int idx = tx->q_num;
218 	size_t bytes;
219 	u32 qpl_id;
220 	u32 slots;
221 
222 	slots = tx->mask + 1;
223 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
224 			  tx->q_resources, tx->q_resources_bus);
225 	tx->q_resources = NULL;
226 
227 	if (tx->tx_fifo.qpl) {
228 		if (tx->tx_fifo.base)
229 			gve_tx_fifo_release(priv, &tx->tx_fifo);
230 
231 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
232 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
233 		tx->tx_fifo.qpl = NULL;
234 	}
235 
236 	bytes = sizeof(*tx->desc) * slots;
237 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
238 	tx->desc = NULL;
239 
240 	vfree(tx->info);
241 	tx->info = NULL;
242 
243 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
244 }
245 
246 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx)
247 {
248 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
249 	struct gve_tx_ring *tx = &priv->tx[idx];
250 
251 	gve_tx_add_to_block(priv, idx);
252 
253 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
254 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
255 }
256 
257 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv,
258 				 struct gve_tx_alloc_rings_cfg *cfg,
259 				 struct gve_tx_ring *tx,
260 				 int idx)
261 {
262 	struct device *hdev = &priv->pdev->dev;
263 	int qpl_page_cnt;
264 	u32 qpl_id = 0;
265 	size_t bytes;
266 
267 	/* Make sure everything is zeroed to start */
268 	memset(tx, 0, sizeof(*tx));
269 	spin_lock_init(&tx->clean_lock);
270 	spin_lock_init(&tx->xdp_lock);
271 	tx->q_num = idx;
272 
273 	tx->mask = cfg->ring_size - 1;
274 
275 	/* alloc metadata */
276 	tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info));
277 	if (!tx->info)
278 		return -ENOMEM;
279 
280 	/* alloc tx queue */
281 	bytes = sizeof(*tx->desc) * cfg->ring_size;
282 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
283 	if (!tx->desc)
284 		goto abort_with_info;
285 
286 	tx->raw_addressing = cfg->raw_addressing;
287 	tx->dev = hdev;
288 	if (!tx->raw_addressing) {
289 		qpl_id = gve_tx_qpl_id(priv, tx->q_num);
290 		qpl_page_cnt = priv->tx_pages_per_qpl;
291 
292 		tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id,
293 							    qpl_page_cnt);
294 		if (!tx->tx_fifo.qpl)
295 			goto abort_with_desc;
296 
297 		/* map Tx FIFO */
298 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
299 			goto abort_with_qpl;
300 	}
301 
302 	tx->q_resources =
303 		dma_alloc_coherent(hdev,
304 				   sizeof(*tx->q_resources),
305 				   &tx->q_resources_bus,
306 				   GFP_KERNEL);
307 	if (!tx->q_resources)
308 		goto abort_with_fifo;
309 
310 	return 0;
311 
312 abort_with_fifo:
313 	if (!tx->raw_addressing)
314 		gve_tx_fifo_release(priv, &tx->tx_fifo);
315 abort_with_qpl:
316 	if (!tx->raw_addressing) {
317 		gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id);
318 		tx->tx_fifo.qpl = NULL;
319 	}
320 abort_with_desc:
321 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
322 	tx->desc = NULL;
323 abort_with_info:
324 	vfree(tx->info);
325 	tx->info = NULL;
326 	return -ENOMEM;
327 }
328 
329 int gve_tx_alloc_rings_gqi(struct gve_priv *priv,
330 			   struct gve_tx_alloc_rings_cfg *cfg)
331 {
332 	struct gve_tx_ring *tx = cfg->tx;
333 	int err = 0;
334 	int i, j;
335 
336 	if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) {
337 		netif_err(priv, drv, priv->dev,
338 			  "Cannot alloc more than the max num of Tx rings\n");
339 		return -EINVAL;
340 	}
341 
342 	if (cfg->start_idx == 0) {
343 		tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring),
344 			      GFP_KERNEL);
345 		if (!tx)
346 			return -ENOMEM;
347 	} else if (!tx) {
348 		netif_err(priv, drv, priv->dev,
349 			  "Cannot alloc tx rings from a nonzero start idx without tx array\n");
350 		return -EINVAL;
351 	}
352 
353 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) {
354 		err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i);
355 		if (err) {
356 			netif_err(priv, drv, priv->dev,
357 				  "Failed to alloc tx ring=%d: err=%d\n",
358 				  i, err);
359 			goto cleanup;
360 		}
361 	}
362 
363 	cfg->tx = tx;
364 	return 0;
365 
366 cleanup:
367 	for (j = 0; j < i; j++)
368 		gve_tx_free_ring_gqi(priv, &tx[j], cfg);
369 	if (cfg->start_idx == 0)
370 		kvfree(tx);
371 	return err;
372 }
373 
374 void gve_tx_free_rings_gqi(struct gve_priv *priv,
375 			   struct gve_tx_alloc_rings_cfg *cfg)
376 {
377 	struct gve_tx_ring *tx = cfg->tx;
378 	int i;
379 
380 	if (!tx)
381 		return;
382 
383 	for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++)
384 		gve_tx_free_ring_gqi(priv, &tx[i], cfg);
385 
386 	if (cfg->start_idx == 0) {
387 		kvfree(tx);
388 		cfg->tx = NULL;
389 	}
390 }
391 
392 /* gve_tx_avail - Calculates the number of slots available in the ring
393  * @tx: tx ring to check
394  *
395  * Returns the number of slots available
396  *
397  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
398  **/
399 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
400 {
401 	return tx->mask + 1 - (tx->req - tx->done);
402 }
403 
404 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
405 					      struct sk_buff *skb)
406 {
407 	int pad_bytes, align_hdr_pad;
408 	int bytes;
409 	int hlen;
410 
411 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
412 				 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
413 
414 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
415 						   hlen);
416 	/* We need to take into account the header alignment padding. */
417 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
418 	bytes = align_hdr_pad + pad_bytes + skb->len;
419 
420 	return bytes;
421 }
422 
423 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
424  * 1 for each skb frag
425  * 1 for the skb linear portion
426  * 1 for when tcp hdr needs to be in separate descriptor
427  * 1 if the payload wraps to the beginning of the FIFO
428  * 1 for metadata descriptor
429  */
430 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 4)
431 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
432 {
433 	if (info->skb) {
434 		dma_unmap_single(dev, dma_unmap_addr(info, dma),
435 				 dma_unmap_len(info, len),
436 				 DMA_TO_DEVICE);
437 		dma_unmap_len_set(info, len, 0);
438 	} else {
439 		dma_unmap_page(dev, dma_unmap_addr(info, dma),
440 			       dma_unmap_len(info, len),
441 			       DMA_TO_DEVICE);
442 		dma_unmap_len_set(info, len, 0);
443 	}
444 }
445 
446 /* Check if sufficient resources (descriptor ring space, FIFO space) are
447  * available to transmit the given number of bytes.
448  */
449 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
450 {
451 	bool can_alloc = true;
452 
453 	if (!tx->raw_addressing)
454 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
455 
456 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
457 }
458 
459 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
460 
461 /* Stops the queue if the skb cannot be transmitted. */
462 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
463 			     struct sk_buff *skb)
464 {
465 	int bytes_required = 0;
466 	u32 nic_done;
467 	u32 to_do;
468 	int ret;
469 
470 	if (!tx->raw_addressing)
471 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
472 
473 	if (likely(gve_can_tx(tx, bytes_required)))
474 		return 0;
475 
476 	ret = -EBUSY;
477 	spin_lock(&tx->clean_lock);
478 	nic_done = gve_tx_load_event_counter(priv, tx);
479 	to_do = nic_done - tx->done;
480 
481 	/* Only try to clean if there is hope for TX */
482 	if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
483 		if (to_do > 0) {
484 			to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
485 			gve_clean_tx_done(priv, tx, to_do, false);
486 		}
487 		if (likely(gve_can_tx(tx, bytes_required)))
488 			ret = 0;
489 	}
490 	if (ret) {
491 		/* No space, so stop the queue */
492 		tx->stop_queue++;
493 		netif_tx_stop_queue(tx->netdev_txq);
494 	}
495 	spin_unlock(&tx->clean_lock);
496 
497 	return ret;
498 }
499 
500 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
501 				 u16 csum_offset, u8 ip_summed, bool is_gso,
502 				 int l4_hdr_offset, u32 desc_cnt,
503 				 u16 hlen, u64 addr, u16 pkt_len)
504 {
505 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
506 	if (is_gso) {
507 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
508 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
509 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
510 	} else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
511 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
512 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
513 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
514 	} else {
515 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
516 		pkt_desc->pkt.l4_csum_offset = 0;
517 		pkt_desc->pkt.l4_hdr_offset = 0;
518 	}
519 	pkt_desc->pkt.desc_cnt = desc_cnt;
520 	pkt_desc->pkt.len = cpu_to_be16(pkt_len);
521 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
522 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
523 }
524 
525 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
526 				 struct sk_buff *skb)
527 {
528 	BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
529 
530 	mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
531 	mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
532 				   GVE_MTD_PATH_HASH_L4;
533 	mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
534 	mtd_desc->mtd.reserved0 = 0;
535 	mtd_desc->mtd.reserved1 = 0;
536 }
537 
538 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
539 				 u16 l3_offset, u16 gso_size,
540 				 bool is_gso_v6, bool is_gso,
541 				 u16 len, u64 addr)
542 {
543 	seg_desc->seg.type_flags = GVE_TXD_SEG;
544 	if (is_gso) {
545 		if (is_gso_v6)
546 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
547 		seg_desc->seg.l3_offset = l3_offset >> 1;
548 		seg_desc->seg.mss = cpu_to_be16(gso_size);
549 	}
550 	seg_desc->seg.seg_len = cpu_to_be16(len);
551 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
552 }
553 
554 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
555 				    u64 iov_offset, u64 iov_len)
556 {
557 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
558 	u64 first_page = iov_offset / PAGE_SIZE;
559 	u64 page;
560 
561 	for (page = first_page; page <= last_page; page++)
562 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
563 }
564 
565 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
566 {
567 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
568 	union gve_tx_desc *pkt_desc, *seg_desc;
569 	struct gve_tx_buffer_state *info;
570 	int mtd_desc_nr = !!skb->l4_hash;
571 	bool is_gso = skb_is_gso(skb);
572 	u32 idx = tx->req & tx->mask;
573 	int payload_iov = 2;
574 	int copy_offset;
575 	u32 next_idx;
576 	int i;
577 
578 	info = &tx->info[idx];
579 	pkt_desc = &tx->desc[idx];
580 
581 	l4_hdr_offset = skb_checksum_start_offset(skb);
582 	/* If the skb is gso, then we want the tcp header alone in the first segment
583 	 * otherwise we want the minimum required by the gVNIC spec.
584 	 */
585 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
586 			min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
587 
588 	info->skb =  skb;
589 	/* We don't want to split the header, so if necessary, pad to the end
590 	 * of the fifo and then put the header at the beginning of the fifo.
591 	 */
592 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
593 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
594 				       &info->iov[0]);
595 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
596 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
597 					   &info->iov[payload_iov]);
598 
599 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
600 			     is_gso, l4_hdr_offset,
601 			     1 + mtd_desc_nr + payload_nfrags, hlen,
602 			     info->iov[hdr_nfrags - 1].iov_offset, skb->len);
603 
604 	skb_copy_bits(skb, 0,
605 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
606 		      hlen);
607 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
608 				info->iov[hdr_nfrags - 1].iov_offset,
609 				info->iov[hdr_nfrags - 1].iov_len);
610 	copy_offset = hlen;
611 
612 	if (mtd_desc_nr) {
613 		next_idx = (tx->req + 1) & tx->mask;
614 		gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
615 	}
616 
617 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
618 		next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
619 		seg_desc = &tx->desc[next_idx];
620 
621 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
622 				     skb_shinfo(skb)->gso_size,
623 				     skb_is_gso_v6(skb), is_gso,
624 				     info->iov[i].iov_len,
625 				     info->iov[i].iov_offset);
626 
627 		skb_copy_bits(skb, copy_offset,
628 			      tx->tx_fifo.base + info->iov[i].iov_offset,
629 			      info->iov[i].iov_len);
630 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
631 					info->iov[i].iov_offset,
632 					info->iov[i].iov_len);
633 		copy_offset += info->iov[i].iov_len;
634 	}
635 
636 	return 1 + mtd_desc_nr + payload_nfrags;
637 }
638 
639 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
640 				  struct sk_buff *skb)
641 {
642 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
643 	int hlen, num_descriptors, l4_hdr_offset;
644 	union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
645 	struct gve_tx_buffer_state *info;
646 	int mtd_desc_nr = !!skb->l4_hash;
647 	bool is_gso = skb_is_gso(skb);
648 	u32 idx = tx->req & tx->mask;
649 	u64 addr;
650 	u32 len;
651 	int i;
652 
653 	info = &tx->info[idx];
654 	pkt_desc = &tx->desc[idx];
655 
656 	l4_hdr_offset = skb_checksum_start_offset(skb);
657 	/* If the skb is gso, then we want only up to the tcp header in the first segment
658 	 * to efficiently replicate on each segment otherwise we want the linear portion
659 	 * of the skb (which will contain the checksum because skb->csum_start and
660 	 * skb->csum_offset are given relative to skb->head) in the first segment.
661 	 */
662 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
663 	len = skb_headlen(skb);
664 
665 	info->skb =  skb;
666 
667 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
668 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
669 		tx->dma_mapping_error++;
670 		goto drop;
671 	}
672 	dma_unmap_len_set(info, len, len);
673 	dma_unmap_addr_set(info, dma, addr);
674 
675 	num_descriptors = 1 + shinfo->nr_frags;
676 	if (hlen < len)
677 		num_descriptors++;
678 	if (mtd_desc_nr)
679 		num_descriptors++;
680 
681 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
682 			     is_gso, l4_hdr_offset,
683 			     num_descriptors, hlen, addr, skb->len);
684 
685 	if (mtd_desc_nr) {
686 		idx = (idx + 1) & tx->mask;
687 		mtd_desc = &tx->desc[idx];
688 		gve_tx_fill_mtd_desc(mtd_desc, skb);
689 	}
690 
691 	if (hlen < len) {
692 		/* For gso the rest of the linear portion of the skb needs to
693 		 * be in its own descriptor.
694 		 */
695 		len -= hlen;
696 		addr += hlen;
697 		idx = (idx + 1) & tx->mask;
698 		seg_desc = &tx->desc[idx];
699 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
700 				     skb_shinfo(skb)->gso_size,
701 				     skb_is_gso_v6(skb), is_gso, len, addr);
702 	}
703 
704 	for (i = 0; i < shinfo->nr_frags; i++) {
705 		const skb_frag_t *frag = &shinfo->frags[i];
706 
707 		idx = (idx + 1) & tx->mask;
708 		seg_desc = &tx->desc[idx];
709 		len = skb_frag_size(frag);
710 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
711 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
712 			tx->dma_mapping_error++;
713 			goto unmap_drop;
714 		}
715 		tx->info[idx].skb = NULL;
716 		dma_unmap_len_set(&tx->info[idx], len, len);
717 		dma_unmap_addr_set(&tx->info[idx], dma, addr);
718 
719 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
720 				     skb_shinfo(skb)->gso_size,
721 				     skb_is_gso_v6(skb), is_gso, len, addr);
722 	}
723 
724 	return num_descriptors;
725 
726 unmap_drop:
727 	i += num_descriptors - shinfo->nr_frags;
728 	while (i--) {
729 		/* Skip metadata descriptor, if set */
730 		if (i == 1 && mtd_desc_nr == 1)
731 			continue;
732 		idx--;
733 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
734 	}
735 drop:
736 	tx->dropped_pkt++;
737 	return 0;
738 }
739 
740 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
741 {
742 	struct gve_priv *priv = netdev_priv(dev);
743 	struct gve_tx_ring *tx;
744 	int nsegs;
745 
746 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
747 	     "skb queue index out of range");
748 	tx = &priv->tx[skb_get_queue_mapping(skb)];
749 	if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
750 		/* We need to ring the txq doorbell -- we have stopped the Tx
751 		 * queue for want of resources, but prior calls to gve_tx()
752 		 * may have added descriptors without ringing the doorbell.
753 		 */
754 
755 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
756 		return NETDEV_TX_BUSY;
757 	}
758 	if (tx->raw_addressing)
759 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
760 	else
761 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
762 
763 	/* If the packet is getting sent, we need to update the skb */
764 	if (nsegs) {
765 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
766 		skb_tx_timestamp(skb);
767 		tx->req += nsegs;
768 	} else {
769 		dev_kfree_skb_any(skb);
770 	}
771 
772 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
773 		return NETDEV_TX_OK;
774 
775 	/* Give packets to NIC. Even if this packet failed to send the doorbell
776 	 * might need to be rung because of xmit_more.
777 	 */
778 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
779 	return NETDEV_TX_OK;
780 }
781 
782 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
783 			   void *data, int len, void *frame_p, bool is_xsk)
784 {
785 	int pad, nfrags, ndescs, iovi, offset;
786 	struct gve_tx_buffer_state *info;
787 	u32 reqi = tx->req;
788 
789 	pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
790 	if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
791 		pad = 0;
792 	info = &tx->info[reqi & tx->mask];
793 	info->xdp_frame = frame_p;
794 	info->xdp.size = len;
795 	info->xdp.is_xsk = is_xsk;
796 
797 	nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
798 				   &info->iov[0]);
799 	iovi = pad > 0;
800 	ndescs = nfrags - iovi;
801 	offset = 0;
802 
803 	while (iovi < nfrags) {
804 		if (!offset)
805 			gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
806 					     CHECKSUM_NONE, false, 0, ndescs,
807 					     info->iov[iovi].iov_len,
808 					     info->iov[iovi].iov_offset, len);
809 		else
810 			gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
811 					     0, 0, false, false,
812 					     info->iov[iovi].iov_len,
813 					     info->iov[iovi].iov_offset);
814 
815 		memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
816 		       data + offset, info->iov[iovi].iov_len);
817 		gve_dma_sync_for_device(&priv->pdev->dev,
818 					tx->tx_fifo.qpl->page_buses,
819 					info->iov[iovi].iov_offset,
820 					info->iov[iovi].iov_len);
821 		offset += info->iov[iovi].iov_len;
822 		iovi++;
823 		reqi++;
824 	}
825 
826 	return ndescs;
827 }
828 
829 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
830 		 u32 flags)
831 {
832 	struct gve_priv *priv = netdev_priv(dev);
833 	struct gve_tx_ring *tx;
834 	int i, err = 0, qid;
835 
836 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
837 		return -EINVAL;
838 
839 	qid = gve_xdp_tx_queue_id(priv,
840 				  smp_processor_id() % priv->num_xdp_queues);
841 
842 	tx = &priv->tx[qid];
843 
844 	spin_lock(&tx->xdp_lock);
845 	for (i = 0; i < n; i++) {
846 		err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
847 				       frames[i]->len, frames[i]);
848 		if (err)
849 			break;
850 	}
851 
852 	if (flags & XDP_XMIT_FLUSH)
853 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
854 
855 	spin_unlock(&tx->xdp_lock);
856 
857 	u64_stats_update_begin(&tx->statss);
858 	tx->xdp_xmit += n;
859 	tx->xdp_xmit_errors += n - i;
860 	u64_stats_update_end(&tx->statss);
861 
862 	return i ? i : err;
863 }
864 
865 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
866 		     void *data, int len, void *frame_p)
867 {
868 	int nsegs;
869 
870 	if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
871 		return -EBUSY;
872 
873 	nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
874 	tx->req += nsegs;
875 
876 	return 0;
877 }
878 
879 #define GVE_TX_START_THRESH	4096
880 
881 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
882 			     u32 to_do, bool try_to_wake)
883 {
884 	struct gve_tx_buffer_state *info;
885 	u64 pkts = 0, bytes = 0;
886 	size_t space_freed = 0;
887 	struct sk_buff *skb;
888 	u32 idx;
889 	int j;
890 
891 	for (j = 0; j < to_do; j++) {
892 		idx = tx->done & tx->mask;
893 		netif_info(priv, tx_done, priv->dev,
894 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
895 			   tx->q_num, __func__, idx, tx->req, tx->done);
896 		info = &tx->info[idx];
897 		skb = info->skb;
898 
899 		/* Unmap the buffer */
900 		if (tx->raw_addressing)
901 			gve_tx_unmap_buf(tx->dev, info);
902 		tx->done++;
903 		/* Mark as free */
904 		if (skb) {
905 			info->skb = NULL;
906 			bytes += skb->len;
907 			pkts++;
908 			dev_consume_skb_any(skb);
909 			if (tx->raw_addressing)
910 				continue;
911 			space_freed += gve_tx_clear_buffer_state(info);
912 		}
913 	}
914 
915 	if (!tx->raw_addressing)
916 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
917 	u64_stats_update_begin(&tx->statss);
918 	tx->bytes_done += bytes;
919 	tx->pkt_done += pkts;
920 	u64_stats_update_end(&tx->statss);
921 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
922 
923 	/* start the queue if we've stopped it */
924 #ifndef CONFIG_BQL
925 	/* Make sure that the doorbells are synced */
926 	smp_mb();
927 #endif
928 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
929 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
930 		tx->wake_queue++;
931 		netif_tx_wake_queue(tx->netdev_txq);
932 	}
933 
934 	return pkts;
935 }
936 
937 u32 gve_tx_load_event_counter(struct gve_priv *priv,
938 			      struct gve_tx_ring *tx)
939 {
940 	u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
941 	__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
942 
943 	return be32_to_cpu(counter);
944 }
945 
946 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
947 		      int budget)
948 {
949 	struct xdp_desc desc;
950 	int sent = 0, nsegs;
951 	void *data;
952 
953 	spin_lock(&tx->xdp_lock);
954 	while (sent < budget) {
955 		if (!gve_can_tx(tx, GVE_TX_START_THRESH))
956 			goto out;
957 
958 		if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
959 			tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
960 			goto out;
961 		}
962 
963 		data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
964 		nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
965 		tx->req += nsegs;
966 		sent++;
967 	}
968 out:
969 	if (sent > 0) {
970 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
971 		xsk_tx_release(tx->xsk_pool);
972 	}
973 	spin_unlock(&tx->xdp_lock);
974 	return sent;
975 }
976 
977 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
978 {
979 	struct gve_priv *priv = block->priv;
980 	struct gve_tx_ring *tx = block->tx;
981 	u32 nic_done;
982 	bool repoll;
983 	u32 to_do;
984 
985 	/* Find out how much work there is to be done */
986 	nic_done = gve_tx_load_event_counter(priv, tx);
987 	to_do = min_t(u32, (nic_done - tx->done), budget);
988 	gve_clean_xdp_done(priv, tx, to_do);
989 	repoll = nic_done != tx->done;
990 
991 	if (tx->xsk_pool) {
992 		int sent = gve_xsk_tx(priv, tx, budget);
993 
994 		u64_stats_update_begin(&tx->statss);
995 		tx->xdp_xsk_sent += sent;
996 		u64_stats_update_end(&tx->statss);
997 		repoll |= (sent == budget);
998 		if (xsk_uses_need_wakeup(tx->xsk_pool))
999 			xsk_set_tx_need_wakeup(tx->xsk_pool);
1000 	}
1001 
1002 	/* If we still have work we want to repoll */
1003 	return repoll;
1004 }
1005 
1006 bool gve_tx_poll(struct gve_notify_block *block, int budget)
1007 {
1008 	struct gve_priv *priv = block->priv;
1009 	struct gve_tx_ring *tx = block->tx;
1010 	u32 nic_done;
1011 	u32 to_do;
1012 
1013 	/* If budget is 0, do all the work */
1014 	if (budget == 0)
1015 		budget = INT_MAX;
1016 
1017 	/* In TX path, it may try to clean completed pkts in order to xmit,
1018 	 * to avoid cleaning conflict, use spin_lock(), it yields better
1019 	 * concurrency between xmit/clean than netif's lock.
1020 	 */
1021 	spin_lock(&tx->clean_lock);
1022 	/* Find out how much work there is to be done */
1023 	nic_done = gve_tx_load_event_counter(priv, tx);
1024 	to_do = min_t(u32, (nic_done - tx->done), budget);
1025 	gve_clean_tx_done(priv, tx, to_do, true);
1026 	spin_unlock(&tx->clean_lock);
1027 	/* If we still have work we want to repoll */
1028 	return nic_done != tx->done;
1029 }
1030 
1031 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
1032 {
1033 	u32 nic_done = gve_tx_load_event_counter(priv, tx);
1034 
1035 	return nic_done != tx->done;
1036 }
1037