1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include "gve_utils.h" 10 #include <linux/ip.h> 11 #include <linux/tcp.h> 12 #include <linux/vmalloc.h> 13 #include <linux/skbuff.h> 14 #include <net/xdp_sock_drv.h> 15 16 static inline void gve_tx_put_doorbell(struct gve_priv *priv, 17 struct gve_queue_resources *q_resources, 18 u32 val) 19 { 20 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); 21 } 22 23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid) 24 { 25 u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid); 26 struct gve_tx_ring *tx = &priv->tx[tx_qid]; 27 28 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 29 } 30 31 /* gvnic can only transmit from a Registered Segment. 32 * We copy skb payloads into the registered segment before writing Tx 33 * descriptors and ringing the Tx doorbell. 34 * 35 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must 36 * free allocations in the order they were allocated. 37 */ 38 39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) 40 { 41 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, 42 PAGE_KERNEL); 43 if (unlikely(!fifo->base)) { 44 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", 45 fifo->qpl->id); 46 return -ENOMEM; 47 } 48 49 fifo->size = fifo->qpl->num_entries * PAGE_SIZE; 50 atomic_set(&fifo->available, fifo->size); 51 fifo->head = 0; 52 return 0; 53 } 54 55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) 56 { 57 WARN(atomic_read(&fifo->available) != fifo->size, 58 "Releasing non-empty fifo"); 59 60 vunmap(fifo->base); 61 } 62 63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, 64 size_t bytes) 65 { 66 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; 67 } 68 69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) 70 { 71 return (atomic_read(&fifo->available) <= bytes) ? false : true; 72 } 73 74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO 75 * @fifo: FIFO to allocate from 76 * @bytes: Allocation size 77 * @iov: Scatter-gather elements to fill with allocation fragment base/len 78 * 79 * Returns number of valid elements in iov[] or negative on error. 80 * 81 * Allocations from a given FIFO must be externally synchronized but concurrent 82 * allocation and frees are allowed. 83 */ 84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, 85 struct gve_tx_iovec iov[2]) 86 { 87 size_t overflow, padding; 88 u32 aligned_head; 89 int nfrags = 0; 90 91 if (!bytes) 92 return 0; 93 94 /* This check happens before we know how much padding is needed to 95 * align to a cacheline boundary for the payload, but that is fine, 96 * because the FIFO head always start aligned, and the FIFO's boundaries 97 * are aligned, so if there is space for the data, there is space for 98 * the padding to the next alignment. 99 */ 100 WARN(!gve_tx_fifo_can_alloc(fifo, bytes), 101 "Reached %s when there's not enough space in the fifo", __func__); 102 103 nfrags++; 104 105 iov[0].iov_offset = fifo->head; 106 iov[0].iov_len = bytes; 107 fifo->head += bytes; 108 109 if (fifo->head > fifo->size) { 110 /* If the allocation did not fit in the tail fragment of the 111 * FIFO, also use the head fragment. 112 */ 113 nfrags++; 114 overflow = fifo->head - fifo->size; 115 iov[0].iov_len -= overflow; 116 iov[1].iov_offset = 0; /* Start of fifo*/ 117 iov[1].iov_len = overflow; 118 119 fifo->head = overflow; 120 } 121 122 /* Re-align to a cacheline boundary */ 123 aligned_head = L1_CACHE_ALIGN(fifo->head); 124 padding = aligned_head - fifo->head; 125 iov[nfrags - 1].iov_padding = padding; 126 atomic_sub(bytes + padding, &fifo->available); 127 fifo->head = aligned_head; 128 129 if (fifo->head == fifo->size) 130 fifo->head = 0; 131 132 return nfrags; 133 } 134 135 /* gve_tx_free_fifo - Return space to Tx FIFO 136 * @fifo: FIFO to return fragments to 137 * @bytes: Bytes to free 138 */ 139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) 140 { 141 atomic_add(bytes, &fifo->available); 142 } 143 144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info) 145 { 146 size_t space_freed = 0; 147 int i; 148 149 for (i = 0; i < ARRAY_SIZE(info->iov); i++) { 150 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; 151 info->iov[i].iov_len = 0; 152 info->iov[i].iov_padding = 0; 153 } 154 return space_freed; 155 } 156 157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx, 158 u32 to_do) 159 { 160 struct gve_tx_buffer_state *info; 161 u64 pkts = 0, bytes = 0; 162 size_t space_freed = 0; 163 u32 xsk_complete = 0; 164 u32 idx; 165 int i; 166 167 for (i = 0; i < to_do; i++) { 168 idx = tx->done & tx->mask; 169 info = &tx->info[idx]; 170 tx->done++; 171 172 if (unlikely(!info->xdp.size)) 173 continue; 174 175 bytes += info->xdp.size; 176 pkts++; 177 xsk_complete += info->xdp.is_xsk; 178 179 info->xdp.size = 0; 180 if (info->xdp_frame) { 181 xdp_return_frame(info->xdp_frame); 182 info->xdp_frame = NULL; 183 } 184 space_freed += gve_tx_clear_buffer_state(info); 185 } 186 187 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 188 if (xsk_complete > 0 && tx->xsk_pool) 189 xsk_tx_completed(tx->xsk_pool, xsk_complete); 190 u64_stats_update_begin(&tx->statss); 191 tx->bytes_done += bytes; 192 tx->pkt_done += pkts; 193 u64_stats_update_end(&tx->statss); 194 return pkts; 195 } 196 197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 198 u32 to_do, bool try_to_wake); 199 200 void gve_tx_stop_ring_gqi(struct gve_priv *priv, int idx) 201 { 202 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 203 struct gve_tx_ring *tx = &priv->tx[idx]; 204 205 if (!gve_tx_was_added_to_block(priv, idx)) 206 return; 207 208 gve_remove_napi(priv, ntfy_idx); 209 if (tx->q_num < priv->tx_cfg.num_queues) 210 gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false); 211 else 212 gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt); 213 netdev_tx_reset_queue(tx->netdev_txq); 214 gve_tx_remove_from_block(priv, idx); 215 } 216 217 static void gve_tx_free_ring_gqi(struct gve_priv *priv, struct gve_tx_ring *tx, 218 struct gve_tx_alloc_rings_cfg *cfg) 219 { 220 struct device *hdev = &priv->pdev->dev; 221 int idx = tx->q_num; 222 size_t bytes; 223 u32 qpl_id; 224 u32 slots; 225 226 slots = tx->mask + 1; 227 dma_free_coherent(hdev, sizeof(*tx->q_resources), 228 tx->q_resources, tx->q_resources_bus); 229 tx->q_resources = NULL; 230 231 if (tx->tx_fifo.qpl) { 232 if (tx->tx_fifo.base) 233 gve_tx_fifo_release(priv, &tx->tx_fifo); 234 235 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 236 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); 237 tx->tx_fifo.qpl = NULL; 238 } 239 240 bytes = sizeof(*tx->desc) * slots; 241 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 242 tx->desc = NULL; 243 244 vfree(tx->info); 245 tx->info = NULL; 246 247 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 248 } 249 250 void gve_tx_start_ring_gqi(struct gve_priv *priv, int idx) 251 { 252 int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx); 253 struct gve_tx_ring *tx = &priv->tx[idx]; 254 255 gve_tx_add_to_block(priv, idx); 256 257 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 258 gve_add_napi(priv, ntfy_idx, gve_napi_poll); 259 } 260 261 static int gve_tx_alloc_ring_gqi(struct gve_priv *priv, 262 struct gve_tx_alloc_rings_cfg *cfg, 263 struct gve_tx_ring *tx, 264 int idx) 265 { 266 struct device *hdev = &priv->pdev->dev; 267 int qpl_page_cnt; 268 u32 qpl_id = 0; 269 size_t bytes; 270 271 /* Make sure everything is zeroed to start */ 272 memset(tx, 0, sizeof(*tx)); 273 spin_lock_init(&tx->clean_lock); 274 spin_lock_init(&tx->xdp_lock); 275 tx->q_num = idx; 276 277 tx->mask = cfg->ring_size - 1; 278 279 /* alloc metadata */ 280 tx->info = vcalloc(cfg->ring_size, sizeof(*tx->info)); 281 if (!tx->info) 282 return -ENOMEM; 283 284 /* alloc tx queue */ 285 bytes = sizeof(*tx->desc) * cfg->ring_size; 286 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 287 if (!tx->desc) 288 goto abort_with_info; 289 290 tx->raw_addressing = cfg->raw_addressing; 291 tx->dev = hdev; 292 if (!tx->raw_addressing) { 293 qpl_id = gve_tx_qpl_id(priv, tx->q_num); 294 qpl_page_cnt = priv->tx_pages_per_qpl; 295 296 tx->tx_fifo.qpl = gve_alloc_queue_page_list(priv, qpl_id, 297 qpl_page_cnt); 298 if (!tx->tx_fifo.qpl) 299 goto abort_with_desc; 300 301 /* map Tx FIFO */ 302 if (gve_tx_fifo_init(priv, &tx->tx_fifo)) 303 goto abort_with_qpl; 304 } 305 306 tx->q_resources = 307 dma_alloc_coherent(hdev, 308 sizeof(*tx->q_resources), 309 &tx->q_resources_bus, 310 GFP_KERNEL); 311 if (!tx->q_resources) 312 goto abort_with_fifo; 313 314 return 0; 315 316 abort_with_fifo: 317 if (!tx->raw_addressing) 318 gve_tx_fifo_release(priv, &tx->tx_fifo); 319 abort_with_qpl: 320 if (!tx->raw_addressing) { 321 gve_free_queue_page_list(priv, tx->tx_fifo.qpl, qpl_id); 322 tx->tx_fifo.qpl = NULL; 323 } 324 abort_with_desc: 325 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 326 tx->desc = NULL; 327 abort_with_info: 328 vfree(tx->info); 329 tx->info = NULL; 330 return -ENOMEM; 331 } 332 333 int gve_tx_alloc_rings_gqi(struct gve_priv *priv, 334 struct gve_tx_alloc_rings_cfg *cfg) 335 { 336 struct gve_tx_ring *tx = cfg->tx; 337 int err = 0; 338 int i, j; 339 340 if (cfg->start_idx + cfg->num_rings > cfg->qcfg->max_queues) { 341 netif_err(priv, drv, priv->dev, 342 "Cannot alloc more than the max num of Tx rings\n"); 343 return -EINVAL; 344 } 345 346 if (cfg->start_idx == 0) { 347 tx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_tx_ring), 348 GFP_KERNEL); 349 if (!tx) 350 return -ENOMEM; 351 } else if (!tx) { 352 netif_err(priv, drv, priv->dev, 353 "Cannot alloc tx rings from a nonzero start idx without tx array\n"); 354 return -EINVAL; 355 } 356 357 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) { 358 err = gve_tx_alloc_ring_gqi(priv, cfg, &tx[i], i); 359 if (err) { 360 netif_err(priv, drv, priv->dev, 361 "Failed to alloc tx ring=%d: err=%d\n", 362 i, err); 363 goto cleanup; 364 } 365 } 366 367 cfg->tx = tx; 368 return 0; 369 370 cleanup: 371 for (j = 0; j < i; j++) 372 gve_tx_free_ring_gqi(priv, &tx[j], cfg); 373 if (cfg->start_idx == 0) 374 kvfree(tx); 375 return err; 376 } 377 378 void gve_tx_free_rings_gqi(struct gve_priv *priv, 379 struct gve_tx_alloc_rings_cfg *cfg) 380 { 381 struct gve_tx_ring *tx = cfg->tx; 382 int i; 383 384 if (!tx) 385 return; 386 387 for (i = cfg->start_idx; i < cfg->start_idx + cfg->num_rings; i++) 388 gve_tx_free_ring_gqi(priv, &tx[i], cfg); 389 390 if (cfg->start_idx == 0) { 391 kvfree(tx); 392 cfg->tx = NULL; 393 } 394 } 395 396 /* gve_tx_avail - Calculates the number of slots available in the ring 397 * @tx: tx ring to check 398 * 399 * Returns the number of slots available 400 * 401 * The capacity of the queue is mask + 1. We don't need to reserve an entry. 402 **/ 403 static inline u32 gve_tx_avail(struct gve_tx_ring *tx) 404 { 405 return tx->mask + 1 - (tx->req - tx->done); 406 } 407 408 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, 409 struct sk_buff *skb) 410 { 411 int pad_bytes, align_hdr_pad; 412 int bytes; 413 int hlen; 414 415 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) : 416 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 417 418 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, 419 hlen); 420 /* We need to take into account the header alignment padding. */ 421 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; 422 bytes = align_hdr_pad + pad_bytes + skb->len; 423 424 return bytes; 425 } 426 427 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 : 428 * 1 for each skb frag 429 * 1 for the skb linear portion 430 * 1 for when tcp hdr needs to be in separate descriptor 431 * 1 if the payload wraps to the beginning of the FIFO 432 * 1 for metadata descriptor 433 */ 434 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 4) 435 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) 436 { 437 if (info->skb) { 438 dma_unmap_single(dev, dma_unmap_addr(info, dma), 439 dma_unmap_len(info, len), 440 DMA_TO_DEVICE); 441 dma_unmap_len_set(info, len, 0); 442 } else { 443 dma_unmap_page(dev, dma_unmap_addr(info, dma), 444 dma_unmap_len(info, len), 445 DMA_TO_DEVICE); 446 dma_unmap_len_set(info, len, 0); 447 } 448 } 449 450 /* Check if sufficient resources (descriptor ring space, FIFO space) are 451 * available to transmit the given number of bytes. 452 */ 453 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) 454 { 455 bool can_alloc = true; 456 457 if (!tx->raw_addressing) 458 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); 459 460 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); 461 } 462 463 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED); 464 465 /* Stops the queue if the skb cannot be transmitted. */ 466 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 467 struct sk_buff *skb) 468 { 469 int bytes_required = 0; 470 u32 nic_done; 471 u32 to_do; 472 int ret; 473 474 if (!tx->raw_addressing) 475 bytes_required = gve_skb_fifo_bytes_required(tx, skb); 476 477 if (likely(gve_can_tx(tx, bytes_required))) 478 return 0; 479 480 ret = -EBUSY; 481 spin_lock(&tx->clean_lock); 482 nic_done = gve_tx_load_event_counter(priv, tx); 483 to_do = nic_done - tx->done; 484 485 /* Only try to clean if there is hope for TX */ 486 if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) { 487 if (to_do > 0) { 488 to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT); 489 gve_clean_tx_done(priv, tx, to_do, false); 490 } 491 if (likely(gve_can_tx(tx, bytes_required))) 492 ret = 0; 493 } 494 if (ret) { 495 /* No space, so stop the queue */ 496 tx->stop_queue++; 497 netif_tx_stop_queue(tx->netdev_txq); 498 } 499 spin_unlock(&tx->clean_lock); 500 501 return ret; 502 } 503 504 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, 505 u16 csum_offset, u8 ip_summed, bool is_gso, 506 int l4_hdr_offset, u32 desc_cnt, 507 u16 hlen, u64 addr, u16 pkt_len) 508 { 509 /* l4_hdr_offset and csum_offset are in units of 16-bit words */ 510 if (is_gso) { 511 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; 512 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 513 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 514 } else if (likely(ip_summed == CHECKSUM_PARTIAL)) { 515 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; 516 pkt_desc->pkt.l4_csum_offset = csum_offset >> 1; 517 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 518 } else { 519 pkt_desc->pkt.type_flags = GVE_TXD_STD; 520 pkt_desc->pkt.l4_csum_offset = 0; 521 pkt_desc->pkt.l4_hdr_offset = 0; 522 } 523 pkt_desc->pkt.desc_cnt = desc_cnt; 524 pkt_desc->pkt.len = cpu_to_be16(pkt_len); 525 pkt_desc->pkt.seg_len = cpu_to_be16(hlen); 526 pkt_desc->pkt.seg_addr = cpu_to_be64(addr); 527 } 528 529 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc, 530 struct sk_buff *skb) 531 { 532 BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt)); 533 534 mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH; 535 mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT | 536 GVE_MTD_PATH_HASH_L4; 537 mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash); 538 mtd_desc->mtd.reserved0 = 0; 539 mtd_desc->mtd.reserved1 = 0; 540 } 541 542 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, 543 u16 l3_offset, u16 gso_size, 544 bool is_gso_v6, bool is_gso, 545 u16 len, u64 addr) 546 { 547 seg_desc->seg.type_flags = GVE_TXD_SEG; 548 if (is_gso) { 549 if (is_gso_v6) 550 seg_desc->seg.type_flags |= GVE_TXSF_IPV6; 551 seg_desc->seg.l3_offset = l3_offset >> 1; 552 seg_desc->seg.mss = cpu_to_be16(gso_size); 553 } 554 seg_desc->seg.seg_len = cpu_to_be16(len); 555 seg_desc->seg.seg_addr = cpu_to_be64(addr); 556 } 557 558 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, 559 u64 iov_offset, u64 iov_len) 560 { 561 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; 562 u64 first_page = iov_offset / PAGE_SIZE; 563 u64 page; 564 565 for (page = first_page; page <= last_page; page++) 566 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); 567 } 568 569 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) 570 { 571 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; 572 union gve_tx_desc *pkt_desc, *seg_desc; 573 struct gve_tx_buffer_state *info; 574 int mtd_desc_nr = !!skb->l4_hash; 575 bool is_gso = skb_is_gso(skb); 576 u32 idx = tx->req & tx->mask; 577 int payload_iov = 2; 578 int copy_offset; 579 u32 next_idx; 580 int i; 581 582 info = &tx->info[idx]; 583 pkt_desc = &tx->desc[idx]; 584 585 l4_hdr_offset = skb_checksum_start_offset(skb); 586 /* If the skb is gso, then we want the tcp header alone in the first segment 587 * otherwise we want the minimum required by the gVNIC spec. 588 */ 589 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : 590 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len); 591 592 info->skb = skb; 593 /* We don't want to split the header, so if necessary, pad to the end 594 * of the fifo and then put the header at the beginning of the fifo. 595 */ 596 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); 597 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, 598 &info->iov[0]); 599 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); 600 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, 601 &info->iov[payload_iov]); 602 603 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 604 is_gso, l4_hdr_offset, 605 1 + mtd_desc_nr + payload_nfrags, hlen, 606 info->iov[hdr_nfrags - 1].iov_offset, skb->len); 607 608 skb_copy_bits(skb, 0, 609 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, 610 hlen); 611 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 612 info->iov[hdr_nfrags - 1].iov_offset, 613 info->iov[hdr_nfrags - 1].iov_len); 614 copy_offset = hlen; 615 616 if (mtd_desc_nr) { 617 next_idx = (tx->req + 1) & tx->mask; 618 gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb); 619 } 620 621 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { 622 next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask; 623 seg_desc = &tx->desc[next_idx]; 624 625 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 626 skb_shinfo(skb)->gso_size, 627 skb_is_gso_v6(skb), is_gso, 628 info->iov[i].iov_len, 629 info->iov[i].iov_offset); 630 631 skb_copy_bits(skb, copy_offset, 632 tx->tx_fifo.base + info->iov[i].iov_offset, 633 info->iov[i].iov_len); 634 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 635 info->iov[i].iov_offset, 636 info->iov[i].iov_len); 637 copy_offset += info->iov[i].iov_len; 638 } 639 640 return 1 + mtd_desc_nr + payload_nfrags; 641 } 642 643 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, 644 struct sk_buff *skb) 645 { 646 const struct skb_shared_info *shinfo = skb_shinfo(skb); 647 int hlen, num_descriptors, l4_hdr_offset; 648 union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc; 649 struct gve_tx_buffer_state *info; 650 int mtd_desc_nr = !!skb->l4_hash; 651 bool is_gso = skb_is_gso(skb); 652 u32 idx = tx->req & tx->mask; 653 u64 addr; 654 u32 len; 655 int i; 656 657 info = &tx->info[idx]; 658 pkt_desc = &tx->desc[idx]; 659 660 l4_hdr_offset = skb_checksum_start_offset(skb); 661 /* If the skb is gso, then we want only up to the tcp header in the first segment 662 * to efficiently replicate on each segment otherwise we want the linear portion 663 * of the skb (which will contain the checksum because skb->csum_start and 664 * skb->csum_offset are given relative to skb->head) in the first segment. 665 */ 666 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); 667 len = skb_headlen(skb); 668 669 info->skb = skb; 670 671 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 672 if (unlikely(dma_mapping_error(tx->dev, addr))) { 673 tx->dma_mapping_error++; 674 goto drop; 675 } 676 dma_unmap_len_set(info, len, len); 677 dma_unmap_addr_set(info, dma, addr); 678 679 num_descriptors = 1 + shinfo->nr_frags; 680 if (hlen < len) 681 num_descriptors++; 682 if (mtd_desc_nr) 683 num_descriptors++; 684 685 gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed, 686 is_gso, l4_hdr_offset, 687 num_descriptors, hlen, addr, skb->len); 688 689 if (mtd_desc_nr) { 690 idx = (idx + 1) & tx->mask; 691 mtd_desc = &tx->desc[idx]; 692 gve_tx_fill_mtd_desc(mtd_desc, skb); 693 } 694 695 if (hlen < len) { 696 /* For gso the rest of the linear portion of the skb needs to 697 * be in its own descriptor. 698 */ 699 len -= hlen; 700 addr += hlen; 701 idx = (idx + 1) & tx->mask; 702 seg_desc = &tx->desc[idx]; 703 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 704 skb_shinfo(skb)->gso_size, 705 skb_is_gso_v6(skb), is_gso, len, addr); 706 } 707 708 for (i = 0; i < shinfo->nr_frags; i++) { 709 const skb_frag_t *frag = &shinfo->frags[i]; 710 711 idx = (idx + 1) & tx->mask; 712 seg_desc = &tx->desc[idx]; 713 len = skb_frag_size(frag); 714 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 715 if (unlikely(dma_mapping_error(tx->dev, addr))) { 716 tx->dma_mapping_error++; 717 goto unmap_drop; 718 } 719 tx->info[idx].skb = NULL; 720 dma_unmap_len_set(&tx->info[idx], len, len); 721 dma_unmap_addr_set(&tx->info[idx], dma, addr); 722 723 gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb), 724 skb_shinfo(skb)->gso_size, 725 skb_is_gso_v6(skb), is_gso, len, addr); 726 } 727 728 return num_descriptors; 729 730 unmap_drop: 731 i += num_descriptors - shinfo->nr_frags; 732 while (i--) { 733 /* Skip metadata descriptor, if set */ 734 if (i == 1 && mtd_desc_nr == 1) 735 continue; 736 idx--; 737 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); 738 } 739 drop: 740 tx->dropped_pkt++; 741 return 0; 742 } 743 744 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) 745 { 746 struct gve_priv *priv = netdev_priv(dev); 747 struct gve_tx_ring *tx; 748 int nsegs; 749 750 WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues, 751 "skb queue index out of range"); 752 tx = &priv->tx[skb_get_queue_mapping(skb)]; 753 if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) { 754 /* We need to ring the txq doorbell -- we have stopped the Tx 755 * queue for want of resources, but prior calls to gve_tx() 756 * may have added descriptors without ringing the doorbell. 757 */ 758 759 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 760 return NETDEV_TX_BUSY; 761 } 762 if (tx->raw_addressing) 763 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); 764 else 765 nsegs = gve_tx_add_skb_copy(priv, tx, skb); 766 767 /* If the packet is getting sent, we need to update the skb */ 768 if (nsegs) { 769 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 770 skb_tx_timestamp(skb); 771 tx->req += nsegs; 772 } else { 773 dev_kfree_skb_any(skb); 774 } 775 776 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 777 return NETDEV_TX_OK; 778 779 /* Give packets to NIC. Even if this packet failed to send the doorbell 780 * might need to be rung because of xmit_more. 781 */ 782 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 783 return NETDEV_TX_OK; 784 } 785 786 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx, 787 void *data, int len, void *frame_p, bool is_xsk) 788 { 789 int pad, nfrags, ndescs, iovi, offset; 790 struct gve_tx_buffer_state *info; 791 u32 reqi = tx->req; 792 793 pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len); 794 if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES) 795 pad = 0; 796 info = &tx->info[reqi & tx->mask]; 797 info->xdp_frame = frame_p; 798 info->xdp.size = len; 799 info->xdp.is_xsk = is_xsk; 800 801 nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len, 802 &info->iov[0]); 803 iovi = pad > 0; 804 ndescs = nfrags - iovi; 805 offset = 0; 806 807 while (iovi < nfrags) { 808 if (!offset) 809 gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0, 810 CHECKSUM_NONE, false, 0, ndescs, 811 info->iov[iovi].iov_len, 812 info->iov[iovi].iov_offset, len); 813 else 814 gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask], 815 0, 0, false, false, 816 info->iov[iovi].iov_len, 817 info->iov[iovi].iov_offset); 818 819 memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset, 820 data + offset, info->iov[iovi].iov_len); 821 gve_dma_sync_for_device(&priv->pdev->dev, 822 tx->tx_fifo.qpl->page_buses, 823 info->iov[iovi].iov_offset, 824 info->iov[iovi].iov_len); 825 offset += info->iov[iovi].iov_len; 826 iovi++; 827 reqi++; 828 } 829 830 return ndescs; 831 } 832 833 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, 834 u32 flags) 835 { 836 struct gve_priv *priv = netdev_priv(dev); 837 struct gve_tx_ring *tx; 838 int i, err = 0, qid; 839 840 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK) || !priv->xdp_prog) 841 return -EINVAL; 842 843 if (!gve_get_napi_enabled(priv)) 844 return -ENETDOWN; 845 846 qid = gve_xdp_tx_queue_id(priv, 847 smp_processor_id() % priv->num_xdp_queues); 848 849 tx = &priv->tx[qid]; 850 851 spin_lock(&tx->xdp_lock); 852 for (i = 0; i < n; i++) { 853 err = gve_xdp_xmit_one(priv, tx, frames[i]->data, 854 frames[i]->len, frames[i]); 855 if (err) 856 break; 857 } 858 859 if (flags & XDP_XMIT_FLUSH) 860 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 861 862 spin_unlock(&tx->xdp_lock); 863 864 u64_stats_update_begin(&tx->statss); 865 tx->xdp_xmit += n; 866 tx->xdp_xmit_errors += n - i; 867 u64_stats_update_end(&tx->statss); 868 869 return i ? i : err; 870 } 871 872 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx, 873 void *data, int len, void *frame_p) 874 { 875 int nsegs; 876 877 if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1)) 878 return -EBUSY; 879 880 nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false); 881 tx->req += nsegs; 882 883 return 0; 884 } 885 886 #define GVE_TX_START_THRESH 4096 887 888 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 889 u32 to_do, bool try_to_wake) 890 { 891 struct gve_tx_buffer_state *info; 892 u64 pkts = 0, bytes = 0; 893 size_t space_freed = 0; 894 struct sk_buff *skb; 895 u32 idx; 896 int j; 897 898 for (j = 0; j < to_do; j++) { 899 idx = tx->done & tx->mask; 900 netif_info(priv, tx_done, priv->dev, 901 "[%d] %s: idx=%d (req=%u done=%u)\n", 902 tx->q_num, __func__, idx, tx->req, tx->done); 903 info = &tx->info[idx]; 904 skb = info->skb; 905 906 /* Unmap the buffer */ 907 if (tx->raw_addressing) 908 gve_tx_unmap_buf(tx->dev, info); 909 tx->done++; 910 /* Mark as free */ 911 if (skb) { 912 info->skb = NULL; 913 bytes += skb->len; 914 pkts++; 915 dev_consume_skb_any(skb); 916 if (tx->raw_addressing) 917 continue; 918 space_freed += gve_tx_clear_buffer_state(info); 919 } 920 } 921 922 if (!tx->raw_addressing) 923 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 924 u64_stats_update_begin(&tx->statss); 925 tx->bytes_done += bytes; 926 tx->pkt_done += pkts; 927 u64_stats_update_end(&tx->statss); 928 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); 929 930 /* start the queue if we've stopped it */ 931 #ifndef CONFIG_BQL 932 /* Make sure that the doorbells are synced */ 933 smp_mb(); 934 #endif 935 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && 936 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { 937 tx->wake_queue++; 938 netif_tx_wake_queue(tx->netdev_txq); 939 } 940 941 return pkts; 942 } 943 944 u32 gve_tx_load_event_counter(struct gve_priv *priv, 945 struct gve_tx_ring *tx) 946 { 947 u32 counter_index = be32_to_cpu(tx->q_resources->counter_index); 948 __be32 counter = READ_ONCE(priv->counter_array[counter_index]); 949 950 return be32_to_cpu(counter); 951 } 952 953 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx, 954 int budget) 955 { 956 struct xdp_desc desc; 957 int sent = 0, nsegs; 958 void *data; 959 960 spin_lock(&tx->xdp_lock); 961 while (sent < budget) { 962 if (!gve_can_tx(tx, GVE_TX_START_THRESH)) 963 goto out; 964 965 if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) { 966 tx->xdp_xsk_done = tx->xdp_xsk_wakeup; 967 goto out; 968 } 969 970 data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr); 971 nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true); 972 tx->req += nsegs; 973 sent++; 974 } 975 out: 976 if (sent > 0) { 977 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 978 xsk_tx_release(tx->xsk_pool); 979 } 980 spin_unlock(&tx->xdp_lock); 981 return sent; 982 } 983 984 int gve_xsk_tx_poll(struct gve_notify_block *rx_block, int budget) 985 { 986 struct gve_rx_ring *rx = rx_block->rx; 987 struct gve_priv *priv = rx->gve; 988 struct gve_tx_ring *tx; 989 int sent = 0; 990 991 tx = &priv->tx[gve_xdp_tx_queue_id(priv, rx->q_num)]; 992 if (tx->xsk_pool) { 993 sent = gve_xsk_tx(priv, tx, budget); 994 995 u64_stats_update_begin(&tx->statss); 996 tx->xdp_xsk_sent += sent; 997 u64_stats_update_end(&tx->statss); 998 if (xsk_uses_need_wakeup(tx->xsk_pool)) 999 xsk_set_tx_need_wakeup(tx->xsk_pool); 1000 } 1001 1002 return sent; 1003 } 1004 1005 bool gve_xdp_poll(struct gve_notify_block *block, int budget) 1006 { 1007 struct gve_priv *priv = block->priv; 1008 struct gve_tx_ring *tx = block->tx; 1009 u32 nic_done; 1010 u32 to_do; 1011 1012 /* Find out how much work there is to be done */ 1013 nic_done = gve_tx_load_event_counter(priv, tx); 1014 to_do = min_t(u32, (nic_done - tx->done), budget); 1015 gve_clean_xdp_done(priv, tx, to_do); 1016 1017 /* If we still have work we want to repoll */ 1018 return nic_done != tx->done; 1019 } 1020 1021 bool gve_tx_poll(struct gve_notify_block *block, int budget) 1022 { 1023 struct gve_priv *priv = block->priv; 1024 struct gve_tx_ring *tx = block->tx; 1025 u32 nic_done; 1026 u32 to_do; 1027 1028 /* If budget is 0, do all the work */ 1029 if (budget == 0) 1030 budget = INT_MAX; 1031 1032 /* In TX path, it may try to clean completed pkts in order to xmit, 1033 * to avoid cleaning conflict, use spin_lock(), it yields better 1034 * concurrency between xmit/clean than netif's lock. 1035 */ 1036 spin_lock(&tx->clean_lock); 1037 /* Find out how much work there is to be done */ 1038 nic_done = gve_tx_load_event_counter(priv, tx); 1039 to_do = min_t(u32, (nic_done - tx->done), budget); 1040 gve_clean_tx_done(priv, tx, to_do, true); 1041 spin_unlock(&tx->clean_lock); 1042 /* If we still have work we want to repoll */ 1043 return nic_done != tx->done; 1044 } 1045 1046 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx) 1047 { 1048 u32 nic_done = gve_tx_load_event_counter(priv, tx); 1049 1050 return nic_done != tx->done; 1051 } 1052