1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2021 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_dqo.h" 9 #include "gve_adminq.h" 10 #include "gve_utils.h" 11 #include <linux/ip.h> 12 #include <linux/ipv6.h> 13 #include <linux/skbuff.h> 14 #include <linux/slab.h> 15 #include <net/ip6_checksum.h> 16 #include <net/ipv6.h> 17 #include <net/tcp.h> 18 19 static int gve_buf_ref_cnt(struct gve_rx_buf_state_dqo *bs) 20 { 21 return page_count(bs->page_info.page) - bs->page_info.pagecnt_bias; 22 } 23 24 static void gve_free_page_dqo(struct gve_priv *priv, 25 struct gve_rx_buf_state_dqo *bs, 26 bool free_page) 27 { 28 page_ref_sub(bs->page_info.page, bs->page_info.pagecnt_bias - 1); 29 if (free_page) 30 gve_free_page(&priv->pdev->dev, bs->page_info.page, bs->addr, 31 DMA_FROM_DEVICE); 32 bs->page_info.page = NULL; 33 } 34 35 static struct gve_rx_buf_state_dqo *gve_alloc_buf_state(struct gve_rx_ring *rx) 36 { 37 struct gve_rx_buf_state_dqo *buf_state; 38 s16 buffer_id; 39 40 buffer_id = rx->dqo.free_buf_states; 41 if (unlikely(buffer_id == -1)) 42 return NULL; 43 44 buf_state = &rx->dqo.buf_states[buffer_id]; 45 46 /* Remove buf_state from free list */ 47 rx->dqo.free_buf_states = buf_state->next; 48 49 /* Point buf_state to itself to mark it as allocated */ 50 buf_state->next = buffer_id; 51 52 return buf_state; 53 } 54 55 static bool gve_buf_state_is_allocated(struct gve_rx_ring *rx, 56 struct gve_rx_buf_state_dqo *buf_state) 57 { 58 s16 buffer_id = buf_state - rx->dqo.buf_states; 59 60 return buf_state->next == buffer_id; 61 } 62 63 static void gve_free_buf_state(struct gve_rx_ring *rx, 64 struct gve_rx_buf_state_dqo *buf_state) 65 { 66 s16 buffer_id = buf_state - rx->dqo.buf_states; 67 68 buf_state->next = rx->dqo.free_buf_states; 69 rx->dqo.free_buf_states = buffer_id; 70 } 71 72 static struct gve_rx_buf_state_dqo * 73 gve_dequeue_buf_state(struct gve_rx_ring *rx, struct gve_index_list *list) 74 { 75 struct gve_rx_buf_state_dqo *buf_state; 76 s16 buffer_id; 77 78 buffer_id = list->head; 79 if (unlikely(buffer_id == -1)) 80 return NULL; 81 82 buf_state = &rx->dqo.buf_states[buffer_id]; 83 84 /* Remove buf_state from list */ 85 list->head = buf_state->next; 86 if (buf_state->next == -1) 87 list->tail = -1; 88 89 /* Point buf_state to itself to mark it as allocated */ 90 buf_state->next = buffer_id; 91 92 return buf_state; 93 } 94 95 static void gve_enqueue_buf_state(struct gve_rx_ring *rx, 96 struct gve_index_list *list, 97 struct gve_rx_buf_state_dqo *buf_state) 98 { 99 s16 buffer_id = buf_state - rx->dqo.buf_states; 100 101 buf_state->next = -1; 102 103 if (list->head == -1) { 104 list->head = buffer_id; 105 list->tail = buffer_id; 106 } else { 107 int tail = list->tail; 108 109 rx->dqo.buf_states[tail].next = buffer_id; 110 list->tail = buffer_id; 111 } 112 } 113 114 static struct gve_rx_buf_state_dqo * 115 gve_get_recycled_buf_state(struct gve_rx_ring *rx) 116 { 117 struct gve_rx_buf_state_dqo *buf_state; 118 int i; 119 120 /* Recycled buf states are immediately usable. */ 121 buf_state = gve_dequeue_buf_state(rx, &rx->dqo.recycled_buf_states); 122 if (likely(buf_state)) 123 return buf_state; 124 125 if (unlikely(rx->dqo.used_buf_states.head == -1)) 126 return NULL; 127 128 /* Used buf states are only usable when ref count reaches 0, which means 129 * no SKBs refer to them. 130 * 131 * Search a limited number before giving up. 132 */ 133 for (i = 0; i < 5; i++) { 134 buf_state = gve_dequeue_buf_state(rx, &rx->dqo.used_buf_states); 135 if (gve_buf_ref_cnt(buf_state) == 0) { 136 rx->dqo.used_buf_states_cnt--; 137 return buf_state; 138 } 139 140 gve_enqueue_buf_state(rx, &rx->dqo.used_buf_states, buf_state); 141 } 142 143 /* For QPL, we cannot allocate any new buffers and must 144 * wait for the existing ones to be available. 145 */ 146 if (rx->dqo.qpl) 147 return NULL; 148 149 /* If there are no free buf states discard an entry from 150 * `used_buf_states` so it can be used. 151 */ 152 if (unlikely(rx->dqo.free_buf_states == -1)) { 153 buf_state = gve_dequeue_buf_state(rx, &rx->dqo.used_buf_states); 154 if (gve_buf_ref_cnt(buf_state) == 0) 155 return buf_state; 156 157 gve_free_page_dqo(rx->gve, buf_state, true); 158 gve_free_buf_state(rx, buf_state); 159 } 160 161 return NULL; 162 } 163 164 static int gve_alloc_page_dqo(struct gve_rx_ring *rx, 165 struct gve_rx_buf_state_dqo *buf_state) 166 { 167 struct gve_priv *priv = rx->gve; 168 u32 idx; 169 170 if (!rx->dqo.qpl) { 171 int err; 172 173 err = gve_alloc_page(priv, &priv->pdev->dev, 174 &buf_state->page_info.page, 175 &buf_state->addr, 176 DMA_FROM_DEVICE, GFP_ATOMIC); 177 if (err) 178 return err; 179 } else { 180 idx = rx->dqo.next_qpl_page_idx; 181 if (idx >= priv->rx_pages_per_qpl) { 182 net_err_ratelimited("%s: Out of QPL pages\n", 183 priv->dev->name); 184 return -ENOMEM; 185 } 186 buf_state->page_info.page = rx->dqo.qpl->pages[idx]; 187 buf_state->addr = rx->dqo.qpl->page_buses[idx]; 188 rx->dqo.next_qpl_page_idx++; 189 } 190 buf_state->page_info.page_offset = 0; 191 buf_state->page_info.page_address = 192 page_address(buf_state->page_info.page); 193 buf_state->last_single_ref_offset = 0; 194 195 /* The page already has 1 ref. */ 196 page_ref_add(buf_state->page_info.page, INT_MAX - 1); 197 buf_state->page_info.pagecnt_bias = INT_MAX; 198 199 return 0; 200 } 201 202 static void gve_rx_free_hdr_bufs(struct gve_priv *priv, struct gve_rx_ring *rx) 203 { 204 struct device *hdev = &priv->pdev->dev; 205 int buf_count = rx->dqo.bufq.mask + 1; 206 207 if (rx->dqo.hdr_bufs.data) { 208 dma_free_coherent(hdev, priv->header_buf_size * buf_count, 209 rx->dqo.hdr_bufs.data, rx->dqo.hdr_bufs.addr); 210 rx->dqo.hdr_bufs.data = NULL; 211 } 212 } 213 214 void gve_rx_stop_ring_dqo(struct gve_priv *priv, int idx) 215 { 216 int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx); 217 218 if (!gve_rx_was_added_to_block(priv, idx)) 219 return; 220 221 gve_remove_napi(priv, ntfy_idx); 222 gve_rx_remove_from_block(priv, idx); 223 } 224 225 static void gve_rx_free_ring_dqo(struct gve_priv *priv, struct gve_rx_ring *rx, 226 struct gve_rx_alloc_rings_cfg *cfg) 227 { 228 struct device *hdev = &priv->pdev->dev; 229 size_t completion_queue_slots; 230 size_t buffer_queue_slots; 231 int idx = rx->q_num; 232 size_t size; 233 int i; 234 235 completion_queue_slots = rx->dqo.complq.mask + 1; 236 buffer_queue_slots = rx->dqo.bufq.mask + 1; 237 238 if (rx->q_resources) { 239 dma_free_coherent(hdev, sizeof(*rx->q_resources), 240 rx->q_resources, rx->q_resources_bus); 241 rx->q_resources = NULL; 242 } 243 244 for (i = 0; i < rx->dqo.num_buf_states; i++) { 245 struct gve_rx_buf_state_dqo *bs = &rx->dqo.buf_states[i]; 246 /* Only free page for RDA. QPL pages are freed in gve_main. */ 247 if (bs->page_info.page) 248 gve_free_page_dqo(priv, bs, !rx->dqo.qpl); 249 } 250 if (rx->dqo.qpl) { 251 gve_unassign_qpl(cfg->qpl_cfg, rx->dqo.qpl->id); 252 rx->dqo.qpl = NULL; 253 } 254 255 if (rx->dqo.bufq.desc_ring) { 256 size = sizeof(rx->dqo.bufq.desc_ring[0]) * buffer_queue_slots; 257 dma_free_coherent(hdev, size, rx->dqo.bufq.desc_ring, 258 rx->dqo.bufq.bus); 259 rx->dqo.bufq.desc_ring = NULL; 260 } 261 262 if (rx->dqo.complq.desc_ring) { 263 size = sizeof(rx->dqo.complq.desc_ring[0]) * 264 completion_queue_slots; 265 dma_free_coherent(hdev, size, rx->dqo.complq.desc_ring, 266 rx->dqo.complq.bus); 267 rx->dqo.complq.desc_ring = NULL; 268 } 269 270 kvfree(rx->dqo.buf_states); 271 rx->dqo.buf_states = NULL; 272 273 gve_rx_free_hdr_bufs(priv, rx); 274 275 netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx); 276 } 277 278 static int gve_rx_alloc_hdr_bufs(struct gve_priv *priv, struct gve_rx_ring *rx) 279 { 280 struct device *hdev = &priv->pdev->dev; 281 int buf_count = rx->dqo.bufq.mask + 1; 282 283 rx->dqo.hdr_bufs.data = dma_alloc_coherent(hdev, priv->header_buf_size * buf_count, 284 &rx->dqo.hdr_bufs.addr, GFP_KERNEL); 285 if (!rx->dqo.hdr_bufs.data) 286 return -ENOMEM; 287 288 return 0; 289 } 290 291 void gve_rx_start_ring_dqo(struct gve_priv *priv, int idx) 292 { 293 int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx); 294 295 gve_rx_add_to_block(priv, idx); 296 gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo); 297 } 298 299 static int gve_rx_alloc_ring_dqo(struct gve_priv *priv, 300 struct gve_rx_alloc_rings_cfg *cfg, 301 struct gve_rx_ring *rx, 302 int idx) 303 { 304 struct device *hdev = &priv->pdev->dev; 305 size_t size; 306 int i; 307 308 const u32 buffer_queue_slots = cfg->raw_addressing ? 309 priv->options_dqo_rda.rx_buff_ring_entries : cfg->ring_size; 310 const u32 completion_queue_slots = cfg->ring_size; 311 312 netif_dbg(priv, drv, priv->dev, "allocating rx ring DQO\n"); 313 314 memset(rx, 0, sizeof(*rx)); 315 rx->gve = priv; 316 rx->q_num = idx; 317 rx->dqo.bufq.mask = buffer_queue_slots - 1; 318 rx->dqo.complq.num_free_slots = completion_queue_slots; 319 rx->dqo.complq.mask = completion_queue_slots - 1; 320 rx->ctx.skb_head = NULL; 321 rx->ctx.skb_tail = NULL; 322 323 rx->dqo.num_buf_states = cfg->raw_addressing ? 324 min_t(s16, S16_MAX, buffer_queue_slots * 4) : 325 priv->rx_pages_per_qpl; 326 rx->dqo.buf_states = kvcalloc(rx->dqo.num_buf_states, 327 sizeof(rx->dqo.buf_states[0]), 328 GFP_KERNEL); 329 if (!rx->dqo.buf_states) 330 return -ENOMEM; 331 332 /* Allocate header buffers for header-split */ 333 if (cfg->enable_header_split) 334 if (gve_rx_alloc_hdr_bufs(priv, rx)) 335 goto err; 336 337 /* Set up linked list of buffer IDs */ 338 for (i = 0; i < rx->dqo.num_buf_states - 1; i++) 339 rx->dqo.buf_states[i].next = i + 1; 340 341 rx->dqo.buf_states[rx->dqo.num_buf_states - 1].next = -1; 342 rx->dqo.recycled_buf_states.head = -1; 343 rx->dqo.recycled_buf_states.tail = -1; 344 rx->dqo.used_buf_states.head = -1; 345 rx->dqo.used_buf_states.tail = -1; 346 347 /* Allocate RX completion queue */ 348 size = sizeof(rx->dqo.complq.desc_ring[0]) * 349 completion_queue_slots; 350 rx->dqo.complq.desc_ring = 351 dma_alloc_coherent(hdev, size, &rx->dqo.complq.bus, GFP_KERNEL); 352 if (!rx->dqo.complq.desc_ring) 353 goto err; 354 355 /* Allocate RX buffer queue */ 356 size = sizeof(rx->dqo.bufq.desc_ring[0]) * buffer_queue_slots; 357 rx->dqo.bufq.desc_ring = 358 dma_alloc_coherent(hdev, size, &rx->dqo.bufq.bus, GFP_KERNEL); 359 if (!rx->dqo.bufq.desc_ring) 360 goto err; 361 362 if (!cfg->raw_addressing) { 363 rx->dqo.qpl = gve_assign_rx_qpl(cfg, rx->q_num); 364 if (!rx->dqo.qpl) 365 goto err; 366 rx->dqo.next_qpl_page_idx = 0; 367 } 368 369 rx->q_resources = dma_alloc_coherent(hdev, sizeof(*rx->q_resources), 370 &rx->q_resources_bus, GFP_KERNEL); 371 if (!rx->q_resources) 372 goto err; 373 374 return 0; 375 376 err: 377 gve_rx_free_ring_dqo(priv, rx, cfg); 378 return -ENOMEM; 379 } 380 381 void gve_rx_write_doorbell_dqo(const struct gve_priv *priv, int queue_idx) 382 { 383 const struct gve_rx_ring *rx = &priv->rx[queue_idx]; 384 u64 index = be32_to_cpu(rx->q_resources->db_index); 385 386 iowrite32(rx->dqo.bufq.tail, &priv->db_bar2[index]); 387 } 388 389 int gve_rx_alloc_rings_dqo(struct gve_priv *priv, 390 struct gve_rx_alloc_rings_cfg *cfg) 391 { 392 struct gve_rx_ring *rx; 393 int err; 394 int i; 395 396 if (!cfg->raw_addressing && !cfg->qpls) { 397 netif_err(priv, drv, priv->dev, 398 "Cannot alloc QPL ring before allocing QPLs\n"); 399 return -EINVAL; 400 } 401 402 rx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_rx_ring), 403 GFP_KERNEL); 404 if (!rx) 405 return -ENOMEM; 406 407 for (i = 0; i < cfg->qcfg->num_queues; i++) { 408 err = gve_rx_alloc_ring_dqo(priv, cfg, &rx[i], i); 409 if (err) { 410 netif_err(priv, drv, priv->dev, 411 "Failed to alloc rx ring=%d: err=%d\n", 412 i, err); 413 goto err; 414 } 415 } 416 417 cfg->rx = rx; 418 return 0; 419 420 err: 421 for (i--; i >= 0; i--) 422 gve_rx_free_ring_dqo(priv, &rx[i], cfg); 423 kvfree(rx); 424 return err; 425 } 426 427 void gve_rx_free_rings_dqo(struct gve_priv *priv, 428 struct gve_rx_alloc_rings_cfg *cfg) 429 { 430 struct gve_rx_ring *rx = cfg->rx; 431 int i; 432 433 if (!rx) 434 return; 435 436 for (i = 0; i < cfg->qcfg->num_queues; i++) 437 gve_rx_free_ring_dqo(priv, &rx[i], cfg); 438 439 kvfree(rx); 440 cfg->rx = NULL; 441 } 442 443 void gve_rx_post_buffers_dqo(struct gve_rx_ring *rx) 444 { 445 struct gve_rx_compl_queue_dqo *complq = &rx->dqo.complq; 446 struct gve_rx_buf_queue_dqo *bufq = &rx->dqo.bufq; 447 struct gve_priv *priv = rx->gve; 448 u32 num_avail_slots; 449 u32 num_full_slots; 450 u32 num_posted = 0; 451 452 num_full_slots = (bufq->tail - bufq->head) & bufq->mask; 453 num_avail_slots = bufq->mask - num_full_slots; 454 455 num_avail_slots = min_t(u32, num_avail_slots, complq->num_free_slots); 456 while (num_posted < num_avail_slots) { 457 struct gve_rx_desc_dqo *desc = &bufq->desc_ring[bufq->tail]; 458 struct gve_rx_buf_state_dqo *buf_state; 459 460 buf_state = gve_get_recycled_buf_state(rx); 461 if (unlikely(!buf_state)) { 462 buf_state = gve_alloc_buf_state(rx); 463 if (unlikely(!buf_state)) 464 break; 465 466 if (unlikely(gve_alloc_page_dqo(rx, buf_state))) { 467 u64_stats_update_begin(&rx->statss); 468 rx->rx_buf_alloc_fail++; 469 u64_stats_update_end(&rx->statss); 470 gve_free_buf_state(rx, buf_state); 471 break; 472 } 473 } 474 475 desc->buf_id = cpu_to_le16(buf_state - rx->dqo.buf_states); 476 desc->buf_addr = cpu_to_le64(buf_state->addr + 477 buf_state->page_info.page_offset); 478 if (rx->dqo.hdr_bufs.data) 479 desc->header_buf_addr = 480 cpu_to_le64(rx->dqo.hdr_bufs.addr + 481 priv->header_buf_size * bufq->tail); 482 483 bufq->tail = (bufq->tail + 1) & bufq->mask; 484 complq->num_free_slots--; 485 num_posted++; 486 487 if ((bufq->tail & (GVE_RX_BUF_THRESH_DQO - 1)) == 0) 488 gve_rx_write_doorbell_dqo(priv, rx->q_num); 489 } 490 491 rx->fill_cnt += num_posted; 492 } 493 494 static void gve_try_recycle_buf(struct gve_priv *priv, struct gve_rx_ring *rx, 495 struct gve_rx_buf_state_dqo *buf_state) 496 { 497 const u16 data_buffer_size = priv->data_buffer_size_dqo; 498 int pagecount; 499 500 /* Can't reuse if we only fit one buffer per page */ 501 if (data_buffer_size * 2 > PAGE_SIZE) 502 goto mark_used; 503 504 pagecount = gve_buf_ref_cnt(buf_state); 505 506 /* Record the offset when we have a single remaining reference. 507 * 508 * When this happens, we know all of the other offsets of the page are 509 * usable. 510 */ 511 if (pagecount == 1) { 512 buf_state->last_single_ref_offset = 513 buf_state->page_info.page_offset; 514 } 515 516 /* Use the next buffer sized chunk in the page. */ 517 buf_state->page_info.page_offset += data_buffer_size; 518 buf_state->page_info.page_offset &= (PAGE_SIZE - 1); 519 520 /* If we wrap around to the same offset without ever dropping to 1 521 * reference, then we don't know if this offset was ever freed. 522 */ 523 if (buf_state->page_info.page_offset == 524 buf_state->last_single_ref_offset) { 525 goto mark_used; 526 } 527 528 gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state); 529 return; 530 531 mark_used: 532 gve_enqueue_buf_state(rx, &rx->dqo.used_buf_states, buf_state); 533 rx->dqo.used_buf_states_cnt++; 534 } 535 536 static void gve_rx_skb_csum(struct sk_buff *skb, 537 const struct gve_rx_compl_desc_dqo *desc, 538 struct gve_ptype ptype) 539 { 540 skb->ip_summed = CHECKSUM_NONE; 541 542 /* HW did not identify and process L3 and L4 headers. */ 543 if (unlikely(!desc->l3_l4_processed)) 544 return; 545 546 if (ptype.l3_type == GVE_L3_TYPE_IPV4) { 547 if (unlikely(desc->csum_ip_err || desc->csum_external_ip_err)) 548 return; 549 } else if (ptype.l3_type == GVE_L3_TYPE_IPV6) { 550 /* Checksum should be skipped if this flag is set. */ 551 if (unlikely(desc->ipv6_ex_add)) 552 return; 553 } 554 555 if (unlikely(desc->csum_l4_err)) 556 return; 557 558 switch (ptype.l4_type) { 559 case GVE_L4_TYPE_TCP: 560 case GVE_L4_TYPE_UDP: 561 case GVE_L4_TYPE_ICMP: 562 case GVE_L4_TYPE_SCTP: 563 skb->ip_summed = CHECKSUM_UNNECESSARY; 564 break; 565 default: 566 break; 567 } 568 } 569 570 static void gve_rx_skb_hash(struct sk_buff *skb, 571 const struct gve_rx_compl_desc_dqo *compl_desc, 572 struct gve_ptype ptype) 573 { 574 enum pkt_hash_types hash_type = PKT_HASH_TYPE_L2; 575 576 if (ptype.l4_type != GVE_L4_TYPE_UNKNOWN) 577 hash_type = PKT_HASH_TYPE_L4; 578 else if (ptype.l3_type != GVE_L3_TYPE_UNKNOWN) 579 hash_type = PKT_HASH_TYPE_L3; 580 581 skb_set_hash(skb, le32_to_cpu(compl_desc->hash), hash_type); 582 } 583 584 static void gve_rx_free_skb(struct gve_rx_ring *rx) 585 { 586 if (!rx->ctx.skb_head) 587 return; 588 589 dev_kfree_skb_any(rx->ctx.skb_head); 590 rx->ctx.skb_head = NULL; 591 rx->ctx.skb_tail = NULL; 592 } 593 594 static bool gve_rx_should_trigger_copy_ondemand(struct gve_rx_ring *rx) 595 { 596 if (!rx->dqo.qpl) 597 return false; 598 if (rx->dqo.used_buf_states_cnt < 599 (rx->dqo.num_buf_states - 600 GVE_DQO_QPL_ONDEMAND_ALLOC_THRESHOLD)) 601 return false; 602 return true; 603 } 604 605 static int gve_rx_copy_ondemand(struct gve_rx_ring *rx, 606 struct gve_rx_buf_state_dqo *buf_state, 607 u16 buf_len) 608 { 609 struct page *page = alloc_page(GFP_ATOMIC); 610 int num_frags; 611 612 if (!page) 613 return -ENOMEM; 614 615 memcpy(page_address(page), 616 buf_state->page_info.page_address + 617 buf_state->page_info.page_offset, 618 buf_len); 619 num_frags = skb_shinfo(rx->ctx.skb_tail)->nr_frags; 620 skb_add_rx_frag(rx->ctx.skb_tail, num_frags, page, 621 0, buf_len, PAGE_SIZE); 622 623 u64_stats_update_begin(&rx->statss); 624 rx->rx_frag_alloc_cnt++; 625 u64_stats_update_end(&rx->statss); 626 /* Return unused buffer. */ 627 gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state); 628 return 0; 629 } 630 631 /* Chains multi skbs for single rx packet. 632 * Returns 0 if buffer is appended, -1 otherwise. 633 */ 634 static int gve_rx_append_frags(struct napi_struct *napi, 635 struct gve_rx_buf_state_dqo *buf_state, 636 u16 buf_len, struct gve_rx_ring *rx, 637 struct gve_priv *priv) 638 { 639 int num_frags = skb_shinfo(rx->ctx.skb_tail)->nr_frags; 640 641 if (unlikely(num_frags == MAX_SKB_FRAGS)) { 642 struct sk_buff *skb; 643 644 skb = napi_alloc_skb(napi, 0); 645 if (!skb) 646 return -1; 647 648 if (rx->ctx.skb_tail == rx->ctx.skb_head) 649 skb_shinfo(rx->ctx.skb_head)->frag_list = skb; 650 else 651 rx->ctx.skb_tail->next = skb; 652 rx->ctx.skb_tail = skb; 653 num_frags = 0; 654 } 655 if (rx->ctx.skb_tail != rx->ctx.skb_head) { 656 rx->ctx.skb_head->len += buf_len; 657 rx->ctx.skb_head->data_len += buf_len; 658 rx->ctx.skb_head->truesize += priv->data_buffer_size_dqo; 659 } 660 661 /* Trigger ondemand page allocation if we are running low on buffers */ 662 if (gve_rx_should_trigger_copy_ondemand(rx)) 663 return gve_rx_copy_ondemand(rx, buf_state, buf_len); 664 665 skb_add_rx_frag(rx->ctx.skb_tail, num_frags, 666 buf_state->page_info.page, 667 buf_state->page_info.page_offset, 668 buf_len, priv->data_buffer_size_dqo); 669 gve_dec_pagecnt_bias(&buf_state->page_info); 670 671 /* Advances buffer page-offset if page is partially used. 672 * Marks buffer as used if page is full. 673 */ 674 gve_try_recycle_buf(priv, rx, buf_state); 675 return 0; 676 } 677 678 /* Returns 0 if descriptor is completed successfully. 679 * Returns -EINVAL if descriptor is invalid. 680 * Returns -ENOMEM if data cannot be copied to skb. 681 */ 682 static int gve_rx_dqo(struct napi_struct *napi, struct gve_rx_ring *rx, 683 const struct gve_rx_compl_desc_dqo *compl_desc, 684 u32 desc_idx, int queue_idx) 685 { 686 const u16 buffer_id = le16_to_cpu(compl_desc->buf_id); 687 const bool hbo = compl_desc->header_buffer_overflow; 688 const bool eop = compl_desc->end_of_packet != 0; 689 const bool hsplit = compl_desc->split_header; 690 struct gve_rx_buf_state_dqo *buf_state; 691 struct gve_priv *priv = rx->gve; 692 u16 buf_len; 693 u16 hdr_len; 694 695 if (unlikely(buffer_id >= rx->dqo.num_buf_states)) { 696 net_err_ratelimited("%s: Invalid RX buffer_id=%u\n", 697 priv->dev->name, buffer_id); 698 return -EINVAL; 699 } 700 buf_state = &rx->dqo.buf_states[buffer_id]; 701 if (unlikely(!gve_buf_state_is_allocated(rx, buf_state))) { 702 net_err_ratelimited("%s: RX buffer_id is not allocated: %u\n", 703 priv->dev->name, buffer_id); 704 return -EINVAL; 705 } 706 707 if (unlikely(compl_desc->rx_error)) { 708 gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, 709 buf_state); 710 return -EINVAL; 711 } 712 713 buf_len = compl_desc->packet_len; 714 hdr_len = compl_desc->header_len; 715 716 /* Page might have not been used for awhile and was likely last written 717 * by a different thread. 718 */ 719 prefetch(buf_state->page_info.page); 720 721 /* Copy the header into the skb in the case of header split */ 722 if (hsplit) { 723 int unsplit = 0; 724 725 if (hdr_len && !hbo) { 726 rx->ctx.skb_head = gve_rx_copy_data(priv->dev, napi, 727 rx->dqo.hdr_bufs.data + 728 desc_idx * priv->header_buf_size, 729 hdr_len); 730 if (unlikely(!rx->ctx.skb_head)) 731 goto error; 732 rx->ctx.skb_tail = rx->ctx.skb_head; 733 } else { 734 unsplit = 1; 735 } 736 u64_stats_update_begin(&rx->statss); 737 rx->rx_hsplit_pkt++; 738 rx->rx_hsplit_unsplit_pkt += unsplit; 739 rx->rx_hsplit_bytes += hdr_len; 740 u64_stats_update_end(&rx->statss); 741 } 742 743 /* Sync the portion of dma buffer for CPU to read. */ 744 dma_sync_single_range_for_cpu(&priv->pdev->dev, buf_state->addr, 745 buf_state->page_info.page_offset, 746 buf_len, DMA_FROM_DEVICE); 747 748 /* Append to current skb if one exists. */ 749 if (rx->ctx.skb_head) { 750 if (unlikely(gve_rx_append_frags(napi, buf_state, buf_len, rx, 751 priv)) != 0) { 752 goto error; 753 } 754 return 0; 755 } 756 757 if (eop && buf_len <= priv->rx_copybreak) { 758 rx->ctx.skb_head = gve_rx_copy(priv->dev, napi, 759 &buf_state->page_info, buf_len); 760 if (unlikely(!rx->ctx.skb_head)) 761 goto error; 762 rx->ctx.skb_tail = rx->ctx.skb_head; 763 764 u64_stats_update_begin(&rx->statss); 765 rx->rx_copied_pkt++; 766 rx->rx_copybreak_pkt++; 767 u64_stats_update_end(&rx->statss); 768 769 gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, 770 buf_state); 771 return 0; 772 } 773 774 rx->ctx.skb_head = napi_get_frags(napi); 775 if (unlikely(!rx->ctx.skb_head)) 776 goto error; 777 rx->ctx.skb_tail = rx->ctx.skb_head; 778 779 if (gve_rx_should_trigger_copy_ondemand(rx)) { 780 if (gve_rx_copy_ondemand(rx, buf_state, buf_len) < 0) 781 goto error; 782 return 0; 783 } 784 785 skb_add_rx_frag(rx->ctx.skb_head, 0, buf_state->page_info.page, 786 buf_state->page_info.page_offset, buf_len, 787 priv->data_buffer_size_dqo); 788 gve_dec_pagecnt_bias(&buf_state->page_info); 789 790 gve_try_recycle_buf(priv, rx, buf_state); 791 return 0; 792 793 error: 794 gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state); 795 return -ENOMEM; 796 } 797 798 static int gve_rx_complete_rsc(struct sk_buff *skb, 799 const struct gve_rx_compl_desc_dqo *desc, 800 struct gve_ptype ptype) 801 { 802 struct skb_shared_info *shinfo = skb_shinfo(skb); 803 804 /* Only TCP is supported right now. */ 805 if (ptype.l4_type != GVE_L4_TYPE_TCP) 806 return -EINVAL; 807 808 switch (ptype.l3_type) { 809 case GVE_L3_TYPE_IPV4: 810 shinfo->gso_type = SKB_GSO_TCPV4; 811 break; 812 case GVE_L3_TYPE_IPV6: 813 shinfo->gso_type = SKB_GSO_TCPV6; 814 break; 815 default: 816 return -EINVAL; 817 } 818 819 shinfo->gso_size = le16_to_cpu(desc->rsc_seg_len); 820 return 0; 821 } 822 823 /* Returns 0 if skb is completed successfully, -1 otherwise. */ 824 static int gve_rx_complete_skb(struct gve_rx_ring *rx, struct napi_struct *napi, 825 const struct gve_rx_compl_desc_dqo *desc, 826 netdev_features_t feat) 827 { 828 struct gve_ptype ptype = 829 rx->gve->ptype_lut_dqo->ptypes[desc->packet_type]; 830 int err; 831 832 skb_record_rx_queue(rx->ctx.skb_head, rx->q_num); 833 834 if (feat & NETIF_F_RXHASH) 835 gve_rx_skb_hash(rx->ctx.skb_head, desc, ptype); 836 837 if (feat & NETIF_F_RXCSUM) 838 gve_rx_skb_csum(rx->ctx.skb_head, desc, ptype); 839 840 /* RSC packets must set gso_size otherwise the TCP stack will complain 841 * that packets are larger than MTU. 842 */ 843 if (desc->rsc) { 844 err = gve_rx_complete_rsc(rx->ctx.skb_head, desc, ptype); 845 if (err < 0) 846 return err; 847 } 848 849 if (skb_headlen(rx->ctx.skb_head) == 0) 850 napi_gro_frags(napi); 851 else 852 napi_gro_receive(napi, rx->ctx.skb_head); 853 854 return 0; 855 } 856 857 int gve_rx_poll_dqo(struct gve_notify_block *block, int budget) 858 { 859 struct napi_struct *napi = &block->napi; 860 netdev_features_t feat = napi->dev->features; 861 862 struct gve_rx_ring *rx = block->rx; 863 struct gve_rx_compl_queue_dqo *complq = &rx->dqo.complq; 864 865 u32 work_done = 0; 866 u64 bytes = 0; 867 int err; 868 869 while (work_done < budget) { 870 struct gve_rx_compl_desc_dqo *compl_desc = 871 &complq->desc_ring[complq->head]; 872 u32 pkt_bytes; 873 874 /* No more new packets */ 875 if (compl_desc->generation == complq->cur_gen_bit) 876 break; 877 878 /* Prefetch the next two descriptors. */ 879 prefetch(&complq->desc_ring[(complq->head + 1) & complq->mask]); 880 prefetch(&complq->desc_ring[(complq->head + 2) & complq->mask]); 881 882 /* Do not read data until we own the descriptor */ 883 dma_rmb(); 884 885 err = gve_rx_dqo(napi, rx, compl_desc, complq->head, rx->q_num); 886 if (err < 0) { 887 gve_rx_free_skb(rx); 888 u64_stats_update_begin(&rx->statss); 889 if (err == -ENOMEM) 890 rx->rx_skb_alloc_fail++; 891 else if (err == -EINVAL) 892 rx->rx_desc_err_dropped_pkt++; 893 u64_stats_update_end(&rx->statss); 894 } 895 896 complq->head = (complq->head + 1) & complq->mask; 897 complq->num_free_slots++; 898 899 /* When the ring wraps, the generation bit is flipped. */ 900 complq->cur_gen_bit ^= (complq->head == 0); 901 902 /* Receiving a completion means we have space to post another 903 * buffer on the buffer queue. 904 */ 905 { 906 struct gve_rx_buf_queue_dqo *bufq = &rx->dqo.bufq; 907 908 bufq->head = (bufq->head + 1) & bufq->mask; 909 } 910 911 /* Free running counter of completed descriptors */ 912 rx->cnt++; 913 914 if (!rx->ctx.skb_head) 915 continue; 916 917 if (!compl_desc->end_of_packet) 918 continue; 919 920 work_done++; 921 pkt_bytes = rx->ctx.skb_head->len; 922 /* The ethernet header (first ETH_HLEN bytes) is snipped off 923 * by eth_type_trans. 924 */ 925 if (skb_headlen(rx->ctx.skb_head)) 926 pkt_bytes += ETH_HLEN; 927 928 /* gve_rx_complete_skb() will consume skb if successful */ 929 if (gve_rx_complete_skb(rx, napi, compl_desc, feat) != 0) { 930 gve_rx_free_skb(rx); 931 u64_stats_update_begin(&rx->statss); 932 rx->rx_desc_err_dropped_pkt++; 933 u64_stats_update_end(&rx->statss); 934 continue; 935 } 936 937 bytes += pkt_bytes; 938 rx->ctx.skb_head = NULL; 939 rx->ctx.skb_tail = NULL; 940 } 941 942 gve_rx_post_buffers_dqo(rx); 943 944 u64_stats_update_begin(&rx->statss); 945 rx->rpackets += work_done; 946 rx->rbytes += bytes; 947 u64_stats_update_end(&rx->statss); 948 949 return work_done; 950 } 951