xref: /linux/drivers/net/ethernet/google/gve/gve_rx_dqo.c (revision 9fc31a9251de4acaab2d0704450d70ddc99f5ea2)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_dqo.h"
9 #include "gve_adminq.h"
10 #include "gve_utils.h"
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/skbuff.h>
14 #include <linux/slab.h>
15 #include <net/ip6_checksum.h>
16 #include <net/ipv6.h>
17 #include <net/tcp.h>
18 
19 static int gve_buf_ref_cnt(struct gve_rx_buf_state_dqo *bs)
20 {
21 	return page_count(bs->page_info.page) - bs->page_info.pagecnt_bias;
22 }
23 
24 static void gve_free_page_dqo(struct gve_priv *priv,
25 			      struct gve_rx_buf_state_dqo *bs,
26 			      bool free_page)
27 {
28 	page_ref_sub(bs->page_info.page, bs->page_info.pagecnt_bias - 1);
29 	if (free_page)
30 		gve_free_page(&priv->pdev->dev, bs->page_info.page, bs->addr,
31 			      DMA_FROM_DEVICE);
32 	bs->page_info.page = NULL;
33 }
34 
35 static struct gve_rx_buf_state_dqo *gve_alloc_buf_state(struct gve_rx_ring *rx)
36 {
37 	struct gve_rx_buf_state_dqo *buf_state;
38 	s16 buffer_id;
39 
40 	buffer_id = rx->dqo.free_buf_states;
41 	if (unlikely(buffer_id == -1))
42 		return NULL;
43 
44 	buf_state = &rx->dqo.buf_states[buffer_id];
45 
46 	/* Remove buf_state from free list */
47 	rx->dqo.free_buf_states = buf_state->next;
48 
49 	/* Point buf_state to itself to mark it as allocated */
50 	buf_state->next = buffer_id;
51 
52 	return buf_state;
53 }
54 
55 static bool gve_buf_state_is_allocated(struct gve_rx_ring *rx,
56 				       struct gve_rx_buf_state_dqo *buf_state)
57 {
58 	s16 buffer_id = buf_state - rx->dqo.buf_states;
59 
60 	return buf_state->next == buffer_id;
61 }
62 
63 static void gve_free_buf_state(struct gve_rx_ring *rx,
64 			       struct gve_rx_buf_state_dqo *buf_state)
65 {
66 	s16 buffer_id = buf_state - rx->dqo.buf_states;
67 
68 	buf_state->next = rx->dqo.free_buf_states;
69 	rx->dqo.free_buf_states = buffer_id;
70 }
71 
72 static struct gve_rx_buf_state_dqo *
73 gve_dequeue_buf_state(struct gve_rx_ring *rx, struct gve_index_list *list)
74 {
75 	struct gve_rx_buf_state_dqo *buf_state;
76 	s16 buffer_id;
77 
78 	buffer_id = list->head;
79 	if (unlikely(buffer_id == -1))
80 		return NULL;
81 
82 	buf_state = &rx->dqo.buf_states[buffer_id];
83 
84 	/* Remove buf_state from list */
85 	list->head = buf_state->next;
86 	if (buf_state->next == -1)
87 		list->tail = -1;
88 
89 	/* Point buf_state to itself to mark it as allocated */
90 	buf_state->next = buffer_id;
91 
92 	return buf_state;
93 }
94 
95 static void gve_enqueue_buf_state(struct gve_rx_ring *rx,
96 				  struct gve_index_list *list,
97 				  struct gve_rx_buf_state_dqo *buf_state)
98 {
99 	s16 buffer_id = buf_state - rx->dqo.buf_states;
100 
101 	buf_state->next = -1;
102 
103 	if (list->head == -1) {
104 		list->head = buffer_id;
105 		list->tail = buffer_id;
106 	} else {
107 		int tail = list->tail;
108 
109 		rx->dqo.buf_states[tail].next = buffer_id;
110 		list->tail = buffer_id;
111 	}
112 }
113 
114 static struct gve_rx_buf_state_dqo *
115 gve_get_recycled_buf_state(struct gve_rx_ring *rx)
116 {
117 	struct gve_rx_buf_state_dqo *buf_state;
118 	int i;
119 
120 	/* Recycled buf states are immediately usable. */
121 	buf_state = gve_dequeue_buf_state(rx, &rx->dqo.recycled_buf_states);
122 	if (likely(buf_state))
123 		return buf_state;
124 
125 	if (unlikely(rx->dqo.used_buf_states.head == -1))
126 		return NULL;
127 
128 	/* Used buf states are only usable when ref count reaches 0, which means
129 	 * no SKBs refer to them.
130 	 *
131 	 * Search a limited number before giving up.
132 	 */
133 	for (i = 0; i < 5; i++) {
134 		buf_state = gve_dequeue_buf_state(rx, &rx->dqo.used_buf_states);
135 		if (gve_buf_ref_cnt(buf_state) == 0) {
136 			rx->dqo.used_buf_states_cnt--;
137 			return buf_state;
138 		}
139 
140 		gve_enqueue_buf_state(rx, &rx->dqo.used_buf_states, buf_state);
141 	}
142 
143 	/* For QPL, we cannot allocate any new buffers and must
144 	 * wait for the existing ones to be available.
145 	 */
146 	if (rx->dqo.qpl)
147 		return NULL;
148 
149 	/* If there are no free buf states discard an entry from
150 	 * `used_buf_states` so it can be used.
151 	 */
152 	if (unlikely(rx->dqo.free_buf_states == -1)) {
153 		buf_state = gve_dequeue_buf_state(rx, &rx->dqo.used_buf_states);
154 		if (gve_buf_ref_cnt(buf_state) == 0)
155 			return buf_state;
156 
157 		gve_free_page_dqo(rx->gve, buf_state, true);
158 		gve_free_buf_state(rx, buf_state);
159 	}
160 
161 	return NULL;
162 }
163 
164 static int gve_alloc_page_dqo(struct gve_rx_ring *rx,
165 			      struct gve_rx_buf_state_dqo *buf_state)
166 {
167 	struct gve_priv *priv = rx->gve;
168 	u32 idx;
169 
170 	if (!rx->dqo.qpl) {
171 		int err;
172 
173 		err = gve_alloc_page(priv, &priv->pdev->dev,
174 				     &buf_state->page_info.page,
175 				     &buf_state->addr,
176 				     DMA_FROM_DEVICE, GFP_ATOMIC);
177 		if (err)
178 			return err;
179 	} else {
180 		idx = rx->dqo.next_qpl_page_idx;
181 		if (idx >= gve_get_rx_pages_per_qpl_dqo(priv->rx_desc_cnt)) {
182 			net_err_ratelimited("%s: Out of QPL pages\n",
183 					    priv->dev->name);
184 			return -ENOMEM;
185 		}
186 		buf_state->page_info.page = rx->dqo.qpl->pages[idx];
187 		buf_state->addr = rx->dqo.qpl->page_buses[idx];
188 		rx->dqo.next_qpl_page_idx++;
189 	}
190 	buf_state->page_info.page_offset = 0;
191 	buf_state->page_info.page_address =
192 		page_address(buf_state->page_info.page);
193 	buf_state->last_single_ref_offset = 0;
194 
195 	/* The page already has 1 ref. */
196 	page_ref_add(buf_state->page_info.page, INT_MAX - 1);
197 	buf_state->page_info.pagecnt_bias = INT_MAX;
198 
199 	return 0;
200 }
201 
202 static void gve_rx_free_hdr_bufs(struct gve_priv *priv, struct gve_rx_ring *rx)
203 {
204 	struct device *hdev = &priv->pdev->dev;
205 	int buf_count = rx->dqo.bufq.mask + 1;
206 
207 	if (rx->dqo.hdr_bufs.data) {
208 		dma_free_coherent(hdev, priv->header_buf_size * buf_count,
209 				  rx->dqo.hdr_bufs.data, rx->dqo.hdr_bufs.addr);
210 		rx->dqo.hdr_bufs.data = NULL;
211 	}
212 }
213 
214 void gve_rx_stop_ring_dqo(struct gve_priv *priv, int idx)
215 {
216 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
217 
218 	if (!gve_rx_was_added_to_block(priv, idx))
219 		return;
220 
221 	gve_remove_napi(priv, ntfy_idx);
222 	gve_rx_remove_from_block(priv, idx);
223 }
224 
225 static void gve_rx_free_ring_dqo(struct gve_priv *priv, struct gve_rx_ring *rx,
226 				 struct gve_rx_alloc_rings_cfg *cfg)
227 {
228 	struct device *hdev = &priv->pdev->dev;
229 	size_t completion_queue_slots;
230 	size_t buffer_queue_slots;
231 	int idx = rx->q_num;
232 	size_t size;
233 	int i;
234 
235 	completion_queue_slots = rx->dqo.complq.mask + 1;
236 	buffer_queue_slots = rx->dqo.bufq.mask + 1;
237 
238 	if (rx->q_resources) {
239 		dma_free_coherent(hdev, sizeof(*rx->q_resources),
240 				  rx->q_resources, rx->q_resources_bus);
241 		rx->q_resources = NULL;
242 	}
243 
244 	for (i = 0; i < rx->dqo.num_buf_states; i++) {
245 		struct gve_rx_buf_state_dqo *bs = &rx->dqo.buf_states[i];
246 		/* Only free page for RDA. QPL pages are freed in gve_main. */
247 		if (bs->page_info.page)
248 			gve_free_page_dqo(priv, bs, !rx->dqo.qpl);
249 	}
250 
251 	rx->dqo.qpl = NULL;
252 
253 	if (rx->dqo.bufq.desc_ring) {
254 		size = sizeof(rx->dqo.bufq.desc_ring[0]) * buffer_queue_slots;
255 		dma_free_coherent(hdev, size, rx->dqo.bufq.desc_ring,
256 				  rx->dqo.bufq.bus);
257 		rx->dqo.bufq.desc_ring = NULL;
258 	}
259 
260 	if (rx->dqo.complq.desc_ring) {
261 		size = sizeof(rx->dqo.complq.desc_ring[0]) *
262 			completion_queue_slots;
263 		dma_free_coherent(hdev, size, rx->dqo.complq.desc_ring,
264 				  rx->dqo.complq.bus);
265 		rx->dqo.complq.desc_ring = NULL;
266 	}
267 
268 	kvfree(rx->dqo.buf_states);
269 	rx->dqo.buf_states = NULL;
270 
271 	gve_rx_free_hdr_bufs(priv, rx);
272 
273 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
274 }
275 
276 static int gve_rx_alloc_hdr_bufs(struct gve_priv *priv, struct gve_rx_ring *rx)
277 {
278 	struct device *hdev = &priv->pdev->dev;
279 	int buf_count = rx->dqo.bufq.mask + 1;
280 
281 	rx->dqo.hdr_bufs.data = dma_alloc_coherent(hdev, priv->header_buf_size * buf_count,
282 						   &rx->dqo.hdr_bufs.addr, GFP_KERNEL);
283 	if (!rx->dqo.hdr_bufs.data)
284 		return -ENOMEM;
285 
286 	return 0;
287 }
288 
289 void gve_rx_start_ring_dqo(struct gve_priv *priv, int idx)
290 {
291 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
292 
293 	gve_rx_add_to_block(priv, idx);
294 	gve_add_napi(priv, ntfy_idx, gve_napi_poll_dqo);
295 }
296 
297 static int gve_rx_alloc_ring_dqo(struct gve_priv *priv,
298 				 struct gve_rx_alloc_rings_cfg *cfg,
299 				 struct gve_rx_ring *rx,
300 				 int idx)
301 {
302 	struct device *hdev = &priv->pdev->dev;
303 	size_t size;
304 	int i;
305 
306 	const u32 buffer_queue_slots = cfg->ring_size;
307 	const u32 completion_queue_slots = cfg->ring_size;
308 
309 	netif_dbg(priv, drv, priv->dev, "allocating rx ring DQO\n");
310 
311 	memset(rx, 0, sizeof(*rx));
312 	rx->gve = priv;
313 	rx->q_num = idx;
314 	rx->dqo.bufq.mask = buffer_queue_slots - 1;
315 	rx->dqo.complq.num_free_slots = completion_queue_slots;
316 	rx->dqo.complq.mask = completion_queue_slots - 1;
317 	rx->ctx.skb_head = NULL;
318 	rx->ctx.skb_tail = NULL;
319 
320 	rx->dqo.num_buf_states = cfg->raw_addressing ?
321 		min_t(s16, S16_MAX, buffer_queue_slots * 4) :
322 		gve_get_rx_pages_per_qpl_dqo(cfg->ring_size);
323 	rx->dqo.buf_states = kvcalloc(rx->dqo.num_buf_states,
324 				      sizeof(rx->dqo.buf_states[0]),
325 				      GFP_KERNEL);
326 	if (!rx->dqo.buf_states)
327 		return -ENOMEM;
328 
329 	/* Allocate header buffers for header-split */
330 	if (cfg->enable_header_split)
331 		if (gve_rx_alloc_hdr_bufs(priv, rx))
332 			goto err;
333 
334 	/* Set up linked list of buffer IDs */
335 	for (i = 0; i < rx->dqo.num_buf_states - 1; i++)
336 		rx->dqo.buf_states[i].next = i + 1;
337 
338 	rx->dqo.buf_states[rx->dqo.num_buf_states - 1].next = -1;
339 	rx->dqo.recycled_buf_states.head = -1;
340 	rx->dqo.recycled_buf_states.tail = -1;
341 	rx->dqo.used_buf_states.head = -1;
342 	rx->dqo.used_buf_states.tail = -1;
343 
344 	/* Allocate RX completion queue */
345 	size = sizeof(rx->dqo.complq.desc_ring[0]) *
346 		completion_queue_slots;
347 	rx->dqo.complq.desc_ring =
348 		dma_alloc_coherent(hdev, size, &rx->dqo.complq.bus, GFP_KERNEL);
349 	if (!rx->dqo.complq.desc_ring)
350 		goto err;
351 
352 	/* Allocate RX buffer queue */
353 	size = sizeof(rx->dqo.bufq.desc_ring[0]) * buffer_queue_slots;
354 	rx->dqo.bufq.desc_ring =
355 		dma_alloc_coherent(hdev, size, &rx->dqo.bufq.bus, GFP_KERNEL);
356 	if (!rx->dqo.bufq.desc_ring)
357 		goto err;
358 
359 	if (!cfg->raw_addressing) {
360 		u32 qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, rx->q_num);
361 
362 		rx->dqo.qpl = &cfg->qpls[qpl_id];
363 		rx->dqo.next_qpl_page_idx = 0;
364 	}
365 
366 	rx->q_resources = dma_alloc_coherent(hdev, sizeof(*rx->q_resources),
367 					     &rx->q_resources_bus, GFP_KERNEL);
368 	if (!rx->q_resources)
369 		goto err;
370 
371 	return 0;
372 
373 err:
374 	gve_rx_free_ring_dqo(priv, rx, cfg);
375 	return -ENOMEM;
376 }
377 
378 void gve_rx_write_doorbell_dqo(const struct gve_priv *priv, int queue_idx)
379 {
380 	const struct gve_rx_ring *rx = &priv->rx[queue_idx];
381 	u64 index = be32_to_cpu(rx->q_resources->db_index);
382 
383 	iowrite32(rx->dqo.bufq.tail, &priv->db_bar2[index]);
384 }
385 
386 int gve_rx_alloc_rings_dqo(struct gve_priv *priv,
387 			   struct gve_rx_alloc_rings_cfg *cfg)
388 {
389 	struct gve_rx_ring *rx;
390 	int err;
391 	int i;
392 
393 	if (!cfg->raw_addressing && !cfg->qpls) {
394 		netif_err(priv, drv, priv->dev,
395 			  "Cannot alloc QPL ring before allocing QPLs\n");
396 		return -EINVAL;
397 	}
398 
399 	rx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_rx_ring),
400 		      GFP_KERNEL);
401 	if (!rx)
402 		return -ENOMEM;
403 
404 	for (i = 0; i < cfg->qcfg->num_queues; i++) {
405 		err = gve_rx_alloc_ring_dqo(priv, cfg, &rx[i], i);
406 		if (err) {
407 			netif_err(priv, drv, priv->dev,
408 				  "Failed to alloc rx ring=%d: err=%d\n",
409 				  i, err);
410 			goto err;
411 		}
412 	}
413 
414 	cfg->rx = rx;
415 	return 0;
416 
417 err:
418 	for (i--; i >= 0; i--)
419 		gve_rx_free_ring_dqo(priv, &rx[i], cfg);
420 	kvfree(rx);
421 	return err;
422 }
423 
424 void gve_rx_free_rings_dqo(struct gve_priv *priv,
425 			   struct gve_rx_alloc_rings_cfg *cfg)
426 {
427 	struct gve_rx_ring *rx = cfg->rx;
428 	int i;
429 
430 	if (!rx)
431 		return;
432 
433 	for (i = 0; i < cfg->qcfg->num_queues;  i++)
434 		gve_rx_free_ring_dqo(priv, &rx[i], cfg);
435 
436 	kvfree(rx);
437 	cfg->rx = NULL;
438 }
439 
440 void gve_rx_post_buffers_dqo(struct gve_rx_ring *rx)
441 {
442 	struct gve_rx_compl_queue_dqo *complq = &rx->dqo.complq;
443 	struct gve_rx_buf_queue_dqo *bufq = &rx->dqo.bufq;
444 	struct gve_priv *priv = rx->gve;
445 	u32 num_avail_slots;
446 	u32 num_full_slots;
447 	u32 num_posted = 0;
448 
449 	num_full_slots = (bufq->tail - bufq->head) & bufq->mask;
450 	num_avail_slots = bufq->mask - num_full_slots;
451 
452 	num_avail_slots = min_t(u32, num_avail_slots, complq->num_free_slots);
453 	while (num_posted < num_avail_slots) {
454 		struct gve_rx_desc_dqo *desc = &bufq->desc_ring[bufq->tail];
455 		struct gve_rx_buf_state_dqo *buf_state;
456 
457 		buf_state = gve_get_recycled_buf_state(rx);
458 		if (unlikely(!buf_state)) {
459 			buf_state = gve_alloc_buf_state(rx);
460 			if (unlikely(!buf_state))
461 				break;
462 
463 			if (unlikely(gve_alloc_page_dqo(rx, buf_state))) {
464 				u64_stats_update_begin(&rx->statss);
465 				rx->rx_buf_alloc_fail++;
466 				u64_stats_update_end(&rx->statss);
467 				gve_free_buf_state(rx, buf_state);
468 				break;
469 			}
470 		}
471 
472 		desc->buf_id = cpu_to_le16(buf_state - rx->dqo.buf_states);
473 		desc->buf_addr = cpu_to_le64(buf_state->addr +
474 					     buf_state->page_info.page_offset);
475 		if (rx->dqo.hdr_bufs.data)
476 			desc->header_buf_addr =
477 				cpu_to_le64(rx->dqo.hdr_bufs.addr +
478 					    priv->header_buf_size * bufq->tail);
479 
480 		bufq->tail = (bufq->tail + 1) & bufq->mask;
481 		complq->num_free_slots--;
482 		num_posted++;
483 
484 		if ((bufq->tail & (GVE_RX_BUF_THRESH_DQO - 1)) == 0)
485 			gve_rx_write_doorbell_dqo(priv, rx->q_num);
486 	}
487 
488 	rx->fill_cnt += num_posted;
489 }
490 
491 static void gve_try_recycle_buf(struct gve_priv *priv, struct gve_rx_ring *rx,
492 				struct gve_rx_buf_state_dqo *buf_state)
493 {
494 	const u16 data_buffer_size = priv->data_buffer_size_dqo;
495 	int pagecount;
496 
497 	/* Can't reuse if we only fit one buffer per page */
498 	if (data_buffer_size * 2 > PAGE_SIZE)
499 		goto mark_used;
500 
501 	pagecount = gve_buf_ref_cnt(buf_state);
502 
503 	/* Record the offset when we have a single remaining reference.
504 	 *
505 	 * When this happens, we know all of the other offsets of the page are
506 	 * usable.
507 	 */
508 	if (pagecount == 1) {
509 		buf_state->last_single_ref_offset =
510 			buf_state->page_info.page_offset;
511 	}
512 
513 	/* Use the next buffer sized chunk in the page. */
514 	buf_state->page_info.page_offset += data_buffer_size;
515 	buf_state->page_info.page_offset &= (PAGE_SIZE - 1);
516 
517 	/* If we wrap around to the same offset without ever dropping to 1
518 	 * reference, then we don't know if this offset was ever freed.
519 	 */
520 	if (buf_state->page_info.page_offset ==
521 	    buf_state->last_single_ref_offset) {
522 		goto mark_used;
523 	}
524 
525 	gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state);
526 	return;
527 
528 mark_used:
529 	gve_enqueue_buf_state(rx, &rx->dqo.used_buf_states, buf_state);
530 	rx->dqo.used_buf_states_cnt++;
531 }
532 
533 static void gve_rx_skb_csum(struct sk_buff *skb,
534 			    const struct gve_rx_compl_desc_dqo *desc,
535 			    struct gve_ptype ptype)
536 {
537 	skb->ip_summed = CHECKSUM_NONE;
538 
539 	/* HW did not identify and process L3 and L4 headers. */
540 	if (unlikely(!desc->l3_l4_processed))
541 		return;
542 
543 	if (ptype.l3_type == GVE_L3_TYPE_IPV4) {
544 		if (unlikely(desc->csum_ip_err || desc->csum_external_ip_err))
545 			return;
546 	} else if (ptype.l3_type == GVE_L3_TYPE_IPV6) {
547 		/* Checksum should be skipped if this flag is set. */
548 		if (unlikely(desc->ipv6_ex_add))
549 			return;
550 	}
551 
552 	if (unlikely(desc->csum_l4_err))
553 		return;
554 
555 	switch (ptype.l4_type) {
556 	case GVE_L4_TYPE_TCP:
557 	case GVE_L4_TYPE_UDP:
558 	case GVE_L4_TYPE_ICMP:
559 	case GVE_L4_TYPE_SCTP:
560 		skb->ip_summed = CHECKSUM_UNNECESSARY;
561 		break;
562 	default:
563 		break;
564 	}
565 }
566 
567 static void gve_rx_skb_hash(struct sk_buff *skb,
568 			    const struct gve_rx_compl_desc_dqo *compl_desc,
569 			    struct gve_ptype ptype)
570 {
571 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_L2;
572 
573 	if (ptype.l4_type != GVE_L4_TYPE_UNKNOWN)
574 		hash_type = PKT_HASH_TYPE_L4;
575 	else if (ptype.l3_type != GVE_L3_TYPE_UNKNOWN)
576 		hash_type = PKT_HASH_TYPE_L3;
577 
578 	skb_set_hash(skb, le32_to_cpu(compl_desc->hash), hash_type);
579 }
580 
581 static void gve_rx_free_skb(struct gve_rx_ring *rx)
582 {
583 	if (!rx->ctx.skb_head)
584 		return;
585 
586 	dev_kfree_skb_any(rx->ctx.skb_head);
587 	rx->ctx.skb_head = NULL;
588 	rx->ctx.skb_tail = NULL;
589 }
590 
591 static bool gve_rx_should_trigger_copy_ondemand(struct gve_rx_ring *rx)
592 {
593 	if (!rx->dqo.qpl)
594 		return false;
595 	if (rx->dqo.used_buf_states_cnt <
596 		     (rx->dqo.num_buf_states -
597 		     GVE_DQO_QPL_ONDEMAND_ALLOC_THRESHOLD))
598 		return false;
599 	return true;
600 }
601 
602 static int gve_rx_copy_ondemand(struct gve_rx_ring *rx,
603 				struct gve_rx_buf_state_dqo *buf_state,
604 				u16 buf_len)
605 {
606 	struct page *page = alloc_page(GFP_ATOMIC);
607 	int num_frags;
608 
609 	if (!page)
610 		return -ENOMEM;
611 
612 	memcpy(page_address(page),
613 	       buf_state->page_info.page_address +
614 	       buf_state->page_info.page_offset,
615 	       buf_len);
616 	num_frags = skb_shinfo(rx->ctx.skb_tail)->nr_frags;
617 	skb_add_rx_frag(rx->ctx.skb_tail, num_frags, page,
618 			0, buf_len, PAGE_SIZE);
619 
620 	u64_stats_update_begin(&rx->statss);
621 	rx->rx_frag_alloc_cnt++;
622 	u64_stats_update_end(&rx->statss);
623 	/* Return unused buffer. */
624 	gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state);
625 	return 0;
626 }
627 
628 /* Chains multi skbs for single rx packet.
629  * Returns 0 if buffer is appended, -1 otherwise.
630  */
631 static int gve_rx_append_frags(struct napi_struct *napi,
632 			       struct gve_rx_buf_state_dqo *buf_state,
633 			       u16 buf_len, struct gve_rx_ring *rx,
634 			       struct gve_priv *priv)
635 {
636 	int num_frags = skb_shinfo(rx->ctx.skb_tail)->nr_frags;
637 
638 	if (unlikely(num_frags == MAX_SKB_FRAGS)) {
639 		struct sk_buff *skb;
640 
641 		skb = napi_alloc_skb(napi, 0);
642 		if (!skb)
643 			return -1;
644 
645 		if (rx->ctx.skb_tail == rx->ctx.skb_head)
646 			skb_shinfo(rx->ctx.skb_head)->frag_list = skb;
647 		else
648 			rx->ctx.skb_tail->next = skb;
649 		rx->ctx.skb_tail = skb;
650 		num_frags = 0;
651 	}
652 	if (rx->ctx.skb_tail != rx->ctx.skb_head) {
653 		rx->ctx.skb_head->len += buf_len;
654 		rx->ctx.skb_head->data_len += buf_len;
655 		rx->ctx.skb_head->truesize += priv->data_buffer_size_dqo;
656 	}
657 
658 	/* Trigger ondemand page allocation if we are running low on buffers */
659 	if (gve_rx_should_trigger_copy_ondemand(rx))
660 		return gve_rx_copy_ondemand(rx, buf_state, buf_len);
661 
662 	skb_add_rx_frag(rx->ctx.skb_tail, num_frags,
663 			buf_state->page_info.page,
664 			buf_state->page_info.page_offset,
665 			buf_len, priv->data_buffer_size_dqo);
666 	gve_dec_pagecnt_bias(&buf_state->page_info);
667 
668 	/* Advances buffer page-offset if page is partially used.
669 	 * Marks buffer as used if page is full.
670 	 */
671 	gve_try_recycle_buf(priv, rx, buf_state);
672 	return 0;
673 }
674 
675 /* Returns 0 if descriptor is completed successfully.
676  * Returns -EINVAL if descriptor is invalid.
677  * Returns -ENOMEM if data cannot be copied to skb.
678  */
679 static int gve_rx_dqo(struct napi_struct *napi, struct gve_rx_ring *rx,
680 		      const struct gve_rx_compl_desc_dqo *compl_desc,
681 		      u32 desc_idx, int queue_idx)
682 {
683 	const u16 buffer_id = le16_to_cpu(compl_desc->buf_id);
684 	const bool hbo = compl_desc->header_buffer_overflow;
685 	const bool eop = compl_desc->end_of_packet != 0;
686 	const bool hsplit = compl_desc->split_header;
687 	struct gve_rx_buf_state_dqo *buf_state;
688 	struct gve_priv *priv = rx->gve;
689 	u16 buf_len;
690 	u16 hdr_len;
691 
692 	if (unlikely(buffer_id >= rx->dqo.num_buf_states)) {
693 		net_err_ratelimited("%s: Invalid RX buffer_id=%u\n",
694 				    priv->dev->name, buffer_id);
695 		return -EINVAL;
696 	}
697 	buf_state = &rx->dqo.buf_states[buffer_id];
698 	if (unlikely(!gve_buf_state_is_allocated(rx, buf_state))) {
699 		net_err_ratelimited("%s: RX buffer_id is not allocated: %u\n",
700 				    priv->dev->name, buffer_id);
701 		return -EINVAL;
702 	}
703 
704 	if (unlikely(compl_desc->rx_error)) {
705 		gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states,
706 				      buf_state);
707 		return -EINVAL;
708 	}
709 
710 	buf_len = compl_desc->packet_len;
711 	hdr_len = compl_desc->header_len;
712 
713 	/* Page might have not been used for awhile and was likely last written
714 	 * by a different thread.
715 	 */
716 	prefetch(buf_state->page_info.page);
717 
718 	/* Copy the header into the skb in the case of header split */
719 	if (hsplit) {
720 		int unsplit = 0;
721 
722 		if (hdr_len && !hbo) {
723 			rx->ctx.skb_head = gve_rx_copy_data(priv->dev, napi,
724 							    rx->dqo.hdr_bufs.data +
725 							    desc_idx * priv->header_buf_size,
726 							    hdr_len);
727 			if (unlikely(!rx->ctx.skb_head))
728 				goto error;
729 			rx->ctx.skb_tail = rx->ctx.skb_head;
730 		} else {
731 			unsplit = 1;
732 		}
733 		u64_stats_update_begin(&rx->statss);
734 		rx->rx_hsplit_pkt++;
735 		rx->rx_hsplit_unsplit_pkt += unsplit;
736 		rx->rx_hsplit_bytes += hdr_len;
737 		u64_stats_update_end(&rx->statss);
738 	}
739 
740 	/* Sync the portion of dma buffer for CPU to read. */
741 	dma_sync_single_range_for_cpu(&priv->pdev->dev, buf_state->addr,
742 				      buf_state->page_info.page_offset,
743 				      buf_len, DMA_FROM_DEVICE);
744 
745 	/* Append to current skb if one exists. */
746 	if (rx->ctx.skb_head) {
747 		if (unlikely(gve_rx_append_frags(napi, buf_state, buf_len, rx,
748 						 priv)) != 0) {
749 			goto error;
750 		}
751 		return 0;
752 	}
753 
754 	if (eop && buf_len <= priv->rx_copybreak) {
755 		rx->ctx.skb_head = gve_rx_copy(priv->dev, napi,
756 					       &buf_state->page_info, buf_len);
757 		if (unlikely(!rx->ctx.skb_head))
758 			goto error;
759 		rx->ctx.skb_tail = rx->ctx.skb_head;
760 
761 		u64_stats_update_begin(&rx->statss);
762 		rx->rx_copied_pkt++;
763 		rx->rx_copybreak_pkt++;
764 		u64_stats_update_end(&rx->statss);
765 
766 		gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states,
767 				      buf_state);
768 		return 0;
769 	}
770 
771 	rx->ctx.skb_head = napi_get_frags(napi);
772 	if (unlikely(!rx->ctx.skb_head))
773 		goto error;
774 	rx->ctx.skb_tail = rx->ctx.skb_head;
775 
776 	if (gve_rx_should_trigger_copy_ondemand(rx)) {
777 		if (gve_rx_copy_ondemand(rx, buf_state, buf_len) < 0)
778 			goto error;
779 		return 0;
780 	}
781 
782 	skb_add_rx_frag(rx->ctx.skb_head, 0, buf_state->page_info.page,
783 			buf_state->page_info.page_offset, buf_len,
784 			priv->data_buffer_size_dqo);
785 	gve_dec_pagecnt_bias(&buf_state->page_info);
786 
787 	gve_try_recycle_buf(priv, rx, buf_state);
788 	return 0;
789 
790 error:
791 	gve_enqueue_buf_state(rx, &rx->dqo.recycled_buf_states, buf_state);
792 	return -ENOMEM;
793 }
794 
795 static int gve_rx_complete_rsc(struct sk_buff *skb,
796 			       const struct gve_rx_compl_desc_dqo *desc,
797 			       struct gve_ptype ptype)
798 {
799 	struct skb_shared_info *shinfo = skb_shinfo(skb);
800 
801 	/* Only TCP is supported right now. */
802 	if (ptype.l4_type != GVE_L4_TYPE_TCP)
803 		return -EINVAL;
804 
805 	switch (ptype.l3_type) {
806 	case GVE_L3_TYPE_IPV4:
807 		shinfo->gso_type = SKB_GSO_TCPV4;
808 		break;
809 	case GVE_L3_TYPE_IPV6:
810 		shinfo->gso_type = SKB_GSO_TCPV6;
811 		break;
812 	default:
813 		return -EINVAL;
814 	}
815 
816 	shinfo->gso_size = le16_to_cpu(desc->rsc_seg_len);
817 	return 0;
818 }
819 
820 /* Returns 0 if skb is completed successfully, -1 otherwise. */
821 static int gve_rx_complete_skb(struct gve_rx_ring *rx, struct napi_struct *napi,
822 			       const struct gve_rx_compl_desc_dqo *desc,
823 			       netdev_features_t feat)
824 {
825 	struct gve_ptype ptype =
826 		rx->gve->ptype_lut_dqo->ptypes[desc->packet_type];
827 	int err;
828 
829 	skb_record_rx_queue(rx->ctx.skb_head, rx->q_num);
830 
831 	if (feat & NETIF_F_RXHASH)
832 		gve_rx_skb_hash(rx->ctx.skb_head, desc, ptype);
833 
834 	if (feat & NETIF_F_RXCSUM)
835 		gve_rx_skb_csum(rx->ctx.skb_head, desc, ptype);
836 
837 	/* RSC packets must set gso_size otherwise the TCP stack will complain
838 	 * that packets are larger than MTU.
839 	 */
840 	if (desc->rsc) {
841 		err = gve_rx_complete_rsc(rx->ctx.skb_head, desc, ptype);
842 		if (err < 0)
843 			return err;
844 	}
845 
846 	if (skb_headlen(rx->ctx.skb_head) == 0)
847 		napi_gro_frags(napi);
848 	else
849 		napi_gro_receive(napi, rx->ctx.skb_head);
850 
851 	return 0;
852 }
853 
854 int gve_rx_poll_dqo(struct gve_notify_block *block, int budget)
855 {
856 	struct napi_struct *napi = &block->napi;
857 	netdev_features_t feat = napi->dev->features;
858 
859 	struct gve_rx_ring *rx = block->rx;
860 	struct gve_rx_compl_queue_dqo *complq = &rx->dqo.complq;
861 
862 	u32 work_done = 0;
863 	u64 bytes = 0;
864 	int err;
865 
866 	while (work_done < budget) {
867 		struct gve_rx_compl_desc_dqo *compl_desc =
868 			&complq->desc_ring[complq->head];
869 		u32 pkt_bytes;
870 
871 		/* No more new packets */
872 		if (compl_desc->generation == complq->cur_gen_bit)
873 			break;
874 
875 		/* Prefetch the next two descriptors. */
876 		prefetch(&complq->desc_ring[(complq->head + 1) & complq->mask]);
877 		prefetch(&complq->desc_ring[(complq->head + 2) & complq->mask]);
878 
879 		/* Do not read data until we own the descriptor */
880 		dma_rmb();
881 
882 		err = gve_rx_dqo(napi, rx, compl_desc, complq->head, rx->q_num);
883 		if (err < 0) {
884 			gve_rx_free_skb(rx);
885 			u64_stats_update_begin(&rx->statss);
886 			if (err == -ENOMEM)
887 				rx->rx_skb_alloc_fail++;
888 			else if (err == -EINVAL)
889 				rx->rx_desc_err_dropped_pkt++;
890 			u64_stats_update_end(&rx->statss);
891 		}
892 
893 		complq->head = (complq->head + 1) & complq->mask;
894 		complq->num_free_slots++;
895 
896 		/* When the ring wraps, the generation bit is flipped. */
897 		complq->cur_gen_bit ^= (complq->head == 0);
898 
899 		/* Receiving a completion means we have space to post another
900 		 * buffer on the buffer queue.
901 		 */
902 		{
903 			struct gve_rx_buf_queue_dqo *bufq = &rx->dqo.bufq;
904 
905 			bufq->head = (bufq->head + 1) & bufq->mask;
906 		}
907 
908 		/* Free running counter of completed descriptors */
909 		rx->cnt++;
910 
911 		if (!rx->ctx.skb_head)
912 			continue;
913 
914 		if (!compl_desc->end_of_packet)
915 			continue;
916 
917 		work_done++;
918 		pkt_bytes = rx->ctx.skb_head->len;
919 		/* The ethernet header (first ETH_HLEN bytes) is snipped off
920 		 * by eth_type_trans.
921 		 */
922 		if (skb_headlen(rx->ctx.skb_head))
923 			pkt_bytes += ETH_HLEN;
924 
925 		/* gve_rx_complete_skb() will consume skb if successful */
926 		if (gve_rx_complete_skb(rx, napi, compl_desc, feat) != 0) {
927 			gve_rx_free_skb(rx);
928 			u64_stats_update_begin(&rx->statss);
929 			rx->rx_desc_err_dropped_pkt++;
930 			u64_stats_update_end(&rx->statss);
931 			continue;
932 		}
933 
934 		bytes += pkt_bytes;
935 		rx->ctx.skb_head = NULL;
936 		rx->ctx.skb_tail = NULL;
937 	}
938 
939 	gve_rx_post_buffers_dqo(rx);
940 
941 	u64_stats_update_begin(&rx->statss);
942 	rx->rpackets += work_done;
943 	rx->rbytes += bytes;
944 	u64_stats_update_end(&rx->statss);
945 
946 	return work_done;
947 }
948