xref: /linux/drivers/net/ethernet/google/gve/gve_rx.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/etherdevice.h>
11 #include <linux/filter.h>
12 #include <net/xdp.h>
13 #include <net/xdp_sock_drv.h>
14 
15 static void gve_rx_free_buffer(struct device *dev,
16 			       struct gve_rx_slot_page_info *page_info,
17 			       union gve_rx_data_slot *data_slot)
18 {
19 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
20 				      GVE_DATA_SLOT_ADDR_PAGE_MASK);
21 
22 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
23 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
24 }
25 
26 static void gve_rx_unfill_pages(struct gve_priv *priv,
27 				struct gve_rx_ring *rx,
28 				struct gve_rx_alloc_rings_cfg *cfg)
29 {
30 	u32 slots = rx->mask + 1;
31 	int i;
32 
33 	if (rx->data.raw_addressing) {
34 		for (i = 0; i < slots; i++)
35 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
36 					   &rx->data.data_ring[i]);
37 	} else {
38 		for (i = 0; i < slots; i++)
39 			page_ref_sub(rx->data.page_info[i].page,
40 				     rx->data.page_info[i].pagecnt_bias - 1);
41 		gve_unassign_qpl(cfg->qpl_cfg, rx->data.qpl->id);
42 		rx->data.qpl = NULL;
43 
44 		for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
45 			page_ref_sub(rx->qpl_copy_pool[i].page,
46 				     rx->qpl_copy_pool[i].pagecnt_bias - 1);
47 			put_page(rx->qpl_copy_pool[i].page);
48 		}
49 	}
50 	kvfree(rx->data.page_info);
51 	rx->data.page_info = NULL;
52 }
53 
54 void gve_rx_stop_ring_gqi(struct gve_priv *priv, int idx)
55 {
56 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
57 
58 	if (!gve_rx_was_added_to_block(priv, idx))
59 		return;
60 
61 	gve_remove_napi(priv, ntfy_idx);
62 	gve_rx_remove_from_block(priv, idx);
63 }
64 
65 static void gve_rx_free_ring_gqi(struct gve_priv *priv, struct gve_rx_ring *rx,
66 				 struct gve_rx_alloc_rings_cfg *cfg)
67 {
68 	struct device *dev = &priv->pdev->dev;
69 	u32 slots = rx->mask + 1;
70 	int idx = rx->q_num;
71 	size_t bytes;
72 
73 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
74 	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
75 	rx->desc.desc_ring = NULL;
76 
77 	dma_free_coherent(dev, sizeof(*rx->q_resources),
78 			  rx->q_resources, rx->q_resources_bus);
79 	rx->q_resources = NULL;
80 
81 	gve_rx_unfill_pages(priv, rx, cfg);
82 
83 	bytes = sizeof(*rx->data.data_ring) * slots;
84 	dma_free_coherent(dev, bytes, rx->data.data_ring,
85 			  rx->data.data_bus);
86 	rx->data.data_ring = NULL;
87 
88 	kvfree(rx->qpl_copy_pool);
89 	rx->qpl_copy_pool = NULL;
90 
91 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
92 }
93 
94 static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
95 			     dma_addr_t addr, struct page *page, __be64 *slot_addr)
96 {
97 	page_info->page = page;
98 	page_info->page_offset = 0;
99 	page_info->page_address = page_address(page);
100 	*slot_addr = cpu_to_be64(addr);
101 	/* The page already has 1 ref */
102 	page_ref_add(page, INT_MAX - 1);
103 	page_info->pagecnt_bias = INT_MAX;
104 }
105 
106 static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
107 			       struct gve_rx_slot_page_info *page_info,
108 			       union gve_rx_data_slot *data_slot,
109 			       struct gve_rx_ring *rx)
110 {
111 	struct page *page;
112 	dma_addr_t dma;
113 	int err;
114 
115 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
116 			     GFP_ATOMIC);
117 	if (err) {
118 		u64_stats_update_begin(&rx->statss);
119 		rx->rx_buf_alloc_fail++;
120 		u64_stats_update_end(&rx->statss);
121 		return err;
122 	}
123 
124 	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
125 	return 0;
126 }
127 
128 static int gve_rx_prefill_pages(struct gve_rx_ring *rx,
129 				struct gve_rx_alloc_rings_cfg *cfg)
130 {
131 	struct gve_priv *priv = rx->gve;
132 	u32 slots;
133 	int err;
134 	int i;
135 	int j;
136 
137 	/* Allocate one page per Rx queue slot. Each page is split into two
138 	 * packet buffers, when possible we "page flip" between the two.
139 	 */
140 	slots = rx->mask + 1;
141 
142 	rx->data.page_info = kvzalloc(slots *
143 				      sizeof(*rx->data.page_info), GFP_KERNEL);
144 	if (!rx->data.page_info)
145 		return -ENOMEM;
146 
147 	if (!rx->data.raw_addressing) {
148 		rx->data.qpl = gve_assign_rx_qpl(cfg, rx->q_num);
149 		if (!rx->data.qpl) {
150 			kvfree(rx->data.page_info);
151 			rx->data.page_info = NULL;
152 			return -ENOMEM;
153 		}
154 	}
155 	for (i = 0; i < slots; i++) {
156 		if (!rx->data.raw_addressing) {
157 			struct page *page = rx->data.qpl->pages[i];
158 			dma_addr_t addr = i * PAGE_SIZE;
159 
160 			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
161 					    &rx->data.data_ring[i].qpl_offset);
162 			continue;
163 		}
164 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev,
165 					  &rx->data.page_info[i],
166 					  &rx->data.data_ring[i], rx);
167 		if (err)
168 			goto alloc_err_rda;
169 	}
170 
171 	if (!rx->data.raw_addressing) {
172 		for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
173 			struct page *page = alloc_page(GFP_KERNEL);
174 
175 			if (!page) {
176 				err = -ENOMEM;
177 				goto alloc_err_qpl;
178 			}
179 
180 			rx->qpl_copy_pool[j].page = page;
181 			rx->qpl_copy_pool[j].page_offset = 0;
182 			rx->qpl_copy_pool[j].page_address = page_address(page);
183 
184 			/* The page already has 1 ref. */
185 			page_ref_add(page, INT_MAX - 1);
186 			rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
187 		}
188 	}
189 
190 	return slots;
191 
192 alloc_err_qpl:
193 	/* Fully free the copy pool pages. */
194 	while (j--) {
195 		page_ref_sub(rx->qpl_copy_pool[j].page,
196 			     rx->qpl_copy_pool[j].pagecnt_bias - 1);
197 		put_page(rx->qpl_copy_pool[j].page);
198 	}
199 
200 	/* Do not fully free QPL pages - only remove the bias added in this
201 	 * function with gve_setup_rx_buffer.
202 	 */
203 	while (i--)
204 		page_ref_sub(rx->data.page_info[i].page,
205 			     rx->data.page_info[i].pagecnt_bias - 1);
206 
207 	gve_unassign_qpl(cfg->qpl_cfg, rx->data.qpl->id);
208 	rx->data.qpl = NULL;
209 
210 	return err;
211 
212 alloc_err_rda:
213 	while (i--)
214 		gve_rx_free_buffer(&priv->pdev->dev,
215 				   &rx->data.page_info[i],
216 				   &rx->data.data_ring[i]);
217 	return err;
218 }
219 
220 static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
221 {
222 	ctx->skb_head = NULL;
223 	ctx->skb_tail = NULL;
224 	ctx->total_size = 0;
225 	ctx->frag_cnt = 0;
226 	ctx->drop_pkt = false;
227 }
228 
229 void gve_rx_start_ring_gqi(struct gve_priv *priv, int idx)
230 {
231 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
232 
233 	gve_rx_add_to_block(priv, idx);
234 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
235 }
236 
237 static int gve_rx_alloc_ring_gqi(struct gve_priv *priv,
238 				 struct gve_rx_alloc_rings_cfg *cfg,
239 				 struct gve_rx_ring *rx,
240 				 int idx)
241 {
242 	struct device *hdev = &priv->pdev->dev;
243 	u32 slots = priv->rx_data_slot_cnt;
244 	int filled_pages;
245 	size_t bytes;
246 	int err;
247 
248 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
249 	/* Make sure everything is zeroed to start with */
250 	memset(rx, 0, sizeof(*rx));
251 
252 	rx->gve = priv;
253 	rx->q_num = idx;
254 
255 	rx->mask = slots - 1;
256 	rx->data.raw_addressing = cfg->raw_addressing;
257 
258 	/* alloc rx data ring */
259 	bytes = sizeof(*rx->data.data_ring) * slots;
260 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
261 						&rx->data.data_bus,
262 						GFP_KERNEL);
263 	if (!rx->data.data_ring)
264 		return -ENOMEM;
265 
266 	rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
267 	rx->qpl_copy_pool_head = 0;
268 	rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
269 				     sizeof(rx->qpl_copy_pool[0]),
270 				     GFP_KERNEL);
271 
272 	if (!rx->qpl_copy_pool) {
273 		err = -ENOMEM;
274 		goto abort_with_slots;
275 	}
276 
277 	filled_pages = gve_rx_prefill_pages(rx, cfg);
278 	if (filled_pages < 0) {
279 		err = -ENOMEM;
280 		goto abort_with_copy_pool;
281 	}
282 	rx->fill_cnt = filled_pages;
283 	/* Ensure data ring slots (packet buffers) are visible. */
284 	dma_wmb();
285 
286 	/* Alloc gve_queue_resources */
287 	rx->q_resources =
288 		dma_alloc_coherent(hdev,
289 				   sizeof(*rx->q_resources),
290 				   &rx->q_resources_bus,
291 				   GFP_KERNEL);
292 	if (!rx->q_resources) {
293 		err = -ENOMEM;
294 		goto abort_filled;
295 	}
296 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
297 		  (unsigned long)rx->data.data_bus);
298 
299 	/* alloc rx desc ring */
300 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
301 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
302 						GFP_KERNEL);
303 	if (!rx->desc.desc_ring) {
304 		err = -ENOMEM;
305 		goto abort_with_q_resources;
306 	}
307 	rx->cnt = 0;
308 	rx->db_threshold = slots / 2;
309 	rx->desc.seqno = 1;
310 
311 	rx->packet_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
312 	gve_rx_ctx_clear(&rx->ctx);
313 
314 	return 0;
315 
316 abort_with_q_resources:
317 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
318 			  rx->q_resources, rx->q_resources_bus);
319 	rx->q_resources = NULL;
320 abort_filled:
321 	gve_rx_unfill_pages(priv, rx, cfg);
322 abort_with_copy_pool:
323 	kvfree(rx->qpl_copy_pool);
324 	rx->qpl_copy_pool = NULL;
325 abort_with_slots:
326 	bytes = sizeof(*rx->data.data_ring) * slots;
327 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
328 	rx->data.data_ring = NULL;
329 
330 	return err;
331 }
332 
333 int gve_rx_alloc_rings_gqi(struct gve_priv *priv,
334 			   struct gve_rx_alloc_rings_cfg *cfg)
335 {
336 	struct gve_rx_ring *rx;
337 	int err = 0;
338 	int i, j;
339 
340 	if (!cfg->raw_addressing && !cfg->qpls) {
341 		netif_err(priv, drv, priv->dev,
342 			  "Cannot alloc QPL ring before allocing QPLs\n");
343 		return -EINVAL;
344 	}
345 
346 	rx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_rx_ring),
347 		      GFP_KERNEL);
348 	if (!rx)
349 		return -ENOMEM;
350 
351 	for (i = 0; i < cfg->qcfg->num_queues; i++) {
352 		err = gve_rx_alloc_ring_gqi(priv, cfg, &rx[i], i);
353 		if (err) {
354 			netif_err(priv, drv, priv->dev,
355 				  "Failed to alloc rx ring=%d: err=%d\n",
356 				  i, err);
357 			goto cleanup;
358 		}
359 	}
360 
361 	cfg->rx = rx;
362 	return 0;
363 
364 cleanup:
365 	for (j = 0; j < i; j++)
366 		gve_rx_free_ring_gqi(priv, &rx[j], cfg);
367 	kvfree(rx);
368 	return err;
369 }
370 
371 void gve_rx_free_rings_gqi(struct gve_priv *priv,
372 			   struct gve_rx_alloc_rings_cfg *cfg)
373 {
374 	struct gve_rx_ring *rx = cfg->rx;
375 	int i;
376 
377 	if (!rx)
378 		return;
379 
380 	for (i = 0; i < cfg->qcfg->num_queues;  i++)
381 		gve_rx_free_ring_gqi(priv, &rx[i], cfg);
382 
383 	kvfree(rx);
384 	cfg->rx = NULL;
385 }
386 
387 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
388 {
389 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
390 
391 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
392 }
393 
394 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
395 {
396 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
397 		return PKT_HASH_TYPE_L4;
398 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
399 		return PKT_HASH_TYPE_L3;
400 	return PKT_HASH_TYPE_L2;
401 }
402 
403 static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
404 					struct gve_rx_slot_page_info *page_info,
405 					unsigned int truesize, u16 len,
406 					struct gve_rx_ctx *ctx)
407 {
408 	u32 offset = page_info->page_offset + page_info->pad;
409 	struct sk_buff *skb = ctx->skb_tail;
410 	int num_frags = 0;
411 
412 	if (!skb) {
413 		skb = napi_get_frags(napi);
414 		if (unlikely(!skb))
415 			return NULL;
416 
417 		ctx->skb_head = skb;
418 		ctx->skb_tail = skb;
419 	} else {
420 		num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
421 		if (num_frags == MAX_SKB_FRAGS) {
422 			skb = napi_alloc_skb(napi, 0);
423 			if (!skb)
424 				return NULL;
425 
426 			// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
427 			// which is why we do not need to chain by using skb->next
428 			skb_shinfo(ctx->skb_tail)->frag_list = skb;
429 
430 			ctx->skb_tail = skb;
431 			num_frags = 0;
432 		}
433 	}
434 
435 	if (skb != ctx->skb_head) {
436 		ctx->skb_head->len += len;
437 		ctx->skb_head->data_len += len;
438 		ctx->skb_head->truesize += truesize;
439 	}
440 	skb_add_rx_frag(skb, num_frags, page_info->page,
441 			offset, len, truesize);
442 
443 	return ctx->skb_head;
444 }
445 
446 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
447 {
448 	const __be64 offset = cpu_to_be64(GVE_DEFAULT_RX_BUFFER_OFFSET);
449 
450 	/* "flip" to other packet buffer on this page */
451 	page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
452 	*(slot_addr) ^= offset;
453 }
454 
455 static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
456 {
457 	int pagecount = page_count(page_info->page);
458 
459 	/* This page is not being used by any SKBs - reuse */
460 	if (pagecount == page_info->pagecnt_bias)
461 		return 1;
462 	/* This page is still being used by an SKB - we can't reuse */
463 	else if (pagecount > page_info->pagecnt_bias)
464 		return 0;
465 	WARN(pagecount < page_info->pagecnt_bias,
466 	     "Pagecount should never be less than the bias.");
467 	return -1;
468 }
469 
470 static struct sk_buff *
471 gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
472 		      struct gve_rx_slot_page_info *page_info, u16 len,
473 		      struct napi_struct *napi,
474 		      union gve_rx_data_slot *data_slot,
475 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx)
476 {
477 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
478 
479 	if (!skb)
480 		return NULL;
481 
482 	/* Optimistically stop the kernel from freeing the page.
483 	 * We will check again in refill to determine if we need to alloc a
484 	 * new page.
485 	 */
486 	gve_dec_pagecnt_bias(page_info);
487 
488 	return skb;
489 }
490 
491 static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
492 					   struct gve_rx_slot_page_info *page_info,
493 					   u16 len, struct napi_struct *napi)
494 {
495 	u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
496 	void *src = page_info->page_address + page_info->page_offset;
497 	struct gve_rx_slot_page_info *copy_page_info;
498 	struct gve_rx_ctx *ctx = &rx->ctx;
499 	bool alloc_page = false;
500 	struct sk_buff *skb;
501 	void *dst;
502 
503 	copy_page_info = &rx->qpl_copy_pool[pool_idx];
504 	if (!copy_page_info->can_flip) {
505 		int recycle = gve_rx_can_recycle_buffer(copy_page_info);
506 
507 		if (unlikely(recycle < 0)) {
508 			gve_schedule_reset(rx->gve);
509 			return NULL;
510 		}
511 		alloc_page = !recycle;
512 	}
513 
514 	if (alloc_page) {
515 		struct gve_rx_slot_page_info alloc_page_info;
516 		struct page *page;
517 
518 		/* The least recently used page turned out to be
519 		 * still in use by the kernel. Ignoring it and moving
520 		 * on alleviates head-of-line blocking.
521 		 */
522 		rx->qpl_copy_pool_head++;
523 
524 		page = alloc_page(GFP_ATOMIC);
525 		if (!page)
526 			return NULL;
527 
528 		alloc_page_info.page = page;
529 		alloc_page_info.page_offset = 0;
530 		alloc_page_info.page_address = page_address(page);
531 		alloc_page_info.pad = page_info->pad;
532 
533 		memcpy(alloc_page_info.page_address, src, page_info->pad + len);
534 		skb = gve_rx_add_frags(napi, &alloc_page_info,
535 				       PAGE_SIZE,
536 				       len, ctx);
537 
538 		u64_stats_update_begin(&rx->statss);
539 		rx->rx_frag_copy_cnt++;
540 		rx->rx_frag_alloc_cnt++;
541 		u64_stats_update_end(&rx->statss);
542 
543 		return skb;
544 	}
545 
546 	dst = copy_page_info->page_address + copy_page_info->page_offset;
547 	memcpy(dst, src, page_info->pad + len);
548 	copy_page_info->pad = page_info->pad;
549 
550 	skb = gve_rx_add_frags(napi, copy_page_info,
551 			       rx->packet_buffer_size, len, ctx);
552 	if (unlikely(!skb))
553 		return NULL;
554 
555 	gve_dec_pagecnt_bias(copy_page_info);
556 	copy_page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
557 
558 	if (copy_page_info->can_flip) {
559 		/* We have used both halves of this copy page, it
560 		 * is time for it to go to the back of the queue.
561 		 */
562 		copy_page_info->can_flip = false;
563 		rx->qpl_copy_pool_head++;
564 		prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
565 	} else {
566 		copy_page_info->can_flip = true;
567 	}
568 
569 	u64_stats_update_begin(&rx->statss);
570 	rx->rx_frag_copy_cnt++;
571 	u64_stats_update_end(&rx->statss);
572 
573 	return skb;
574 }
575 
576 static struct sk_buff *
577 gve_rx_qpl(struct device *dev, struct net_device *netdev,
578 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
579 	   u16 len, struct napi_struct *napi,
580 	   union gve_rx_data_slot *data_slot)
581 {
582 	struct gve_rx_ctx *ctx = &rx->ctx;
583 	struct sk_buff *skb;
584 
585 	/* if raw_addressing mode is not enabled gvnic can only receive into
586 	 * registered segments. If the buffer can't be recycled, our only
587 	 * choice is to copy the data out of it so that we can return it to the
588 	 * device.
589 	 */
590 	if (page_info->can_flip) {
591 		skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
592 		/* No point in recycling if we didn't get the skb */
593 		if (skb) {
594 			/* Make sure that the page isn't freed. */
595 			gve_dec_pagecnt_bias(page_info);
596 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
597 		}
598 	} else {
599 		skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
600 	}
601 	return skb;
602 }
603 
604 static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
605 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
606 				  u16 len, union gve_rx_data_slot *data_slot,
607 				  bool is_only_frag)
608 {
609 	struct net_device *netdev = priv->dev;
610 	struct gve_rx_ctx *ctx = &rx->ctx;
611 	struct sk_buff *skb = NULL;
612 
613 	if (len <= priv->rx_copybreak && is_only_frag)  {
614 		/* Just copy small packets */
615 		skb = gve_rx_copy(netdev, napi, page_info, len);
616 		if (skb) {
617 			u64_stats_update_begin(&rx->statss);
618 			rx->rx_copied_pkt++;
619 			rx->rx_frag_copy_cnt++;
620 			rx->rx_copybreak_pkt++;
621 			u64_stats_update_end(&rx->statss);
622 		}
623 	} else {
624 		int recycle = gve_rx_can_recycle_buffer(page_info);
625 
626 		if (unlikely(recycle < 0)) {
627 			gve_schedule_reset(priv);
628 			return NULL;
629 		}
630 		page_info->can_flip = recycle;
631 		if (page_info->can_flip) {
632 			u64_stats_update_begin(&rx->statss);
633 			rx->rx_frag_flip_cnt++;
634 			u64_stats_update_end(&rx->statss);
635 		}
636 
637 		if (rx->data.raw_addressing) {
638 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
639 						    page_info, len, napi,
640 						    data_slot,
641 						    rx->packet_buffer_size, ctx);
642 		} else {
643 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
644 					 page_info, len, napi, data_slot);
645 		}
646 	}
647 	return skb;
648 }
649 
650 static int gve_xsk_pool_redirect(struct net_device *dev,
651 				 struct gve_rx_ring *rx,
652 				 void *data, int len,
653 				 struct bpf_prog *xdp_prog)
654 {
655 	struct xdp_buff *xdp;
656 	int err;
657 
658 	if (rx->xsk_pool->frame_len < len)
659 		return -E2BIG;
660 	xdp = xsk_buff_alloc(rx->xsk_pool);
661 	if (!xdp) {
662 		u64_stats_update_begin(&rx->statss);
663 		rx->xdp_alloc_fails++;
664 		u64_stats_update_end(&rx->statss);
665 		return -ENOMEM;
666 	}
667 	xdp->data_end = xdp->data + len;
668 	memcpy(xdp->data, data, len);
669 	err = xdp_do_redirect(dev, xdp, xdp_prog);
670 	if (err)
671 		xsk_buff_free(xdp);
672 	return err;
673 }
674 
675 static int gve_xdp_redirect(struct net_device *dev, struct gve_rx_ring *rx,
676 			    struct xdp_buff *orig, struct bpf_prog *xdp_prog)
677 {
678 	int total_len, len = orig->data_end - orig->data;
679 	int headroom = XDP_PACKET_HEADROOM;
680 	struct xdp_buff new;
681 	void *frame;
682 	int err;
683 
684 	if (rx->xsk_pool)
685 		return gve_xsk_pool_redirect(dev, rx, orig->data,
686 					     len, xdp_prog);
687 
688 	total_len = headroom + SKB_DATA_ALIGN(len) +
689 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
690 	frame = page_frag_alloc(&rx->page_cache, total_len, GFP_ATOMIC);
691 	if (!frame) {
692 		u64_stats_update_begin(&rx->statss);
693 		rx->xdp_alloc_fails++;
694 		u64_stats_update_end(&rx->statss);
695 		return -ENOMEM;
696 	}
697 	xdp_init_buff(&new, total_len, &rx->xdp_rxq);
698 	xdp_prepare_buff(&new, frame, headroom, len, false);
699 	memcpy(new.data, orig->data, len);
700 
701 	err = xdp_do_redirect(dev, &new, xdp_prog);
702 	if (err)
703 		page_frag_free(frame);
704 
705 	return err;
706 }
707 
708 static void gve_xdp_done(struct gve_priv *priv, struct gve_rx_ring *rx,
709 			 struct xdp_buff *xdp, struct bpf_prog *xprog,
710 			 int xdp_act)
711 {
712 	struct gve_tx_ring *tx;
713 	int tx_qid;
714 	int err;
715 
716 	switch (xdp_act) {
717 	case XDP_ABORTED:
718 	case XDP_DROP:
719 	default:
720 		break;
721 	case XDP_TX:
722 		tx_qid = gve_xdp_tx_queue_id(priv, rx->q_num);
723 		tx = &priv->tx[tx_qid];
724 		spin_lock(&tx->xdp_lock);
725 		err = gve_xdp_xmit_one(priv, tx, xdp->data,
726 				       xdp->data_end - xdp->data, NULL);
727 		spin_unlock(&tx->xdp_lock);
728 
729 		if (unlikely(err)) {
730 			u64_stats_update_begin(&rx->statss);
731 			rx->xdp_tx_errors++;
732 			u64_stats_update_end(&rx->statss);
733 		}
734 		break;
735 	case XDP_REDIRECT:
736 		err = gve_xdp_redirect(priv->dev, rx, xdp, xprog);
737 
738 		if (unlikely(err)) {
739 			u64_stats_update_begin(&rx->statss);
740 			rx->xdp_redirect_errors++;
741 			u64_stats_update_end(&rx->statss);
742 		}
743 		break;
744 	}
745 	u64_stats_update_begin(&rx->statss);
746 	if ((u32)xdp_act < GVE_XDP_ACTIONS)
747 		rx->xdp_actions[xdp_act]++;
748 	u64_stats_update_end(&rx->statss);
749 }
750 
751 #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
752 static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
753 		   struct gve_rx_desc *desc, u32 idx,
754 		   struct gve_rx_cnts *cnts)
755 {
756 	bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
757 	struct gve_rx_slot_page_info *page_info;
758 	u16 frag_size = be16_to_cpu(desc->len);
759 	struct gve_rx_ctx *ctx = &rx->ctx;
760 	union gve_rx_data_slot *data_slot;
761 	struct gve_priv *priv = rx->gve;
762 	struct sk_buff *skb = NULL;
763 	struct bpf_prog *xprog;
764 	struct xdp_buff xdp;
765 	dma_addr_t page_bus;
766 	void *va;
767 
768 	u16 len = frag_size;
769 	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
770 	bool is_first_frag = ctx->frag_cnt == 0;
771 
772 	bool is_only_frag = is_first_frag && is_last_frag;
773 
774 	if (unlikely(ctx->drop_pkt))
775 		goto finish_frag;
776 
777 	if (desc->flags_seq & GVE_RXF_ERR) {
778 		ctx->drop_pkt = true;
779 		cnts->desc_err_pkt_cnt++;
780 		napi_free_frags(napi);
781 		goto finish_frag;
782 	}
783 
784 	if (unlikely(frag_size > rx->packet_buffer_size)) {
785 		netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
786 			    frag_size, rx->packet_buffer_size);
787 		ctx->drop_pkt = true;
788 		napi_free_frags(napi);
789 		gve_schedule_reset(rx->gve);
790 		goto finish_frag;
791 	}
792 
793 	/* Prefetch two packet buffers ahead, we will need it soon. */
794 	page_info = &rx->data.page_info[(idx + 2) & rx->mask];
795 	va = page_info->page_address + page_info->page_offset;
796 	prefetch(page_info->page); /* Kernel page struct. */
797 	prefetch(va);              /* Packet header. */
798 	prefetch(va + 64);         /* Next cacheline too. */
799 
800 	page_info = &rx->data.page_info[idx];
801 	data_slot = &rx->data.data_ring[idx];
802 	page_bus = (rx->data.raw_addressing) ?
803 		be64_to_cpu(data_slot->addr) - page_info->page_offset :
804 		rx->data.qpl->page_buses[idx];
805 	dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
806 				PAGE_SIZE, DMA_FROM_DEVICE);
807 	page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
808 	len -= page_info->pad;
809 	frag_size -= page_info->pad;
810 
811 	xprog = READ_ONCE(priv->xdp_prog);
812 	if (xprog && is_only_frag) {
813 		void *old_data;
814 		int xdp_act;
815 
816 		xdp_init_buff(&xdp, rx->packet_buffer_size, &rx->xdp_rxq);
817 		xdp_prepare_buff(&xdp, page_info->page_address +
818 				 page_info->page_offset, GVE_RX_PAD,
819 				 len, false);
820 		old_data = xdp.data;
821 		xdp_act = bpf_prog_run_xdp(xprog, &xdp);
822 		if (xdp_act != XDP_PASS) {
823 			gve_xdp_done(priv, rx, &xdp, xprog, xdp_act);
824 			ctx->total_size += frag_size;
825 			goto finish_ok_pkt;
826 		}
827 
828 		page_info->pad += xdp.data - old_data;
829 		len = xdp.data_end - xdp.data;
830 
831 		u64_stats_update_begin(&rx->statss);
832 		rx->xdp_actions[XDP_PASS]++;
833 		u64_stats_update_end(&rx->statss);
834 	}
835 
836 	skb = gve_rx_skb(priv, rx, page_info, napi, len,
837 			 data_slot, is_only_frag);
838 	if (!skb) {
839 		u64_stats_update_begin(&rx->statss);
840 		rx->rx_skb_alloc_fail++;
841 		u64_stats_update_end(&rx->statss);
842 
843 		napi_free_frags(napi);
844 		ctx->drop_pkt = true;
845 		goto finish_frag;
846 	}
847 	ctx->total_size += frag_size;
848 
849 	if (is_first_frag) {
850 		if (likely(feat & NETIF_F_RXCSUM)) {
851 			/* NIC passes up the partial sum */
852 			if (desc->csum)
853 				skb->ip_summed = CHECKSUM_COMPLETE;
854 			else
855 				skb->ip_summed = CHECKSUM_NONE;
856 			skb->csum = csum_unfold(desc->csum);
857 		}
858 
859 		/* parse flags & pass relevant info up */
860 		if (likely(feat & NETIF_F_RXHASH) &&
861 		    gve_needs_rss(desc->flags_seq))
862 			skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
863 				     gve_rss_type(desc->flags_seq));
864 	}
865 
866 	if (is_last_frag) {
867 		skb_record_rx_queue(skb, rx->q_num);
868 		if (skb_is_nonlinear(skb))
869 			napi_gro_frags(napi);
870 		else
871 			napi_gro_receive(napi, skb);
872 		goto finish_ok_pkt;
873 	}
874 
875 	goto finish_frag;
876 
877 finish_ok_pkt:
878 	cnts->ok_pkt_bytes += ctx->total_size;
879 	cnts->ok_pkt_cnt++;
880 finish_frag:
881 	ctx->frag_cnt++;
882 	if (is_last_frag) {
883 		cnts->total_pkt_cnt++;
884 		cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
885 		gve_rx_ctx_clear(ctx);
886 	}
887 }
888 
889 bool gve_rx_work_pending(struct gve_rx_ring *rx)
890 {
891 	struct gve_rx_desc *desc;
892 	__be16 flags_seq;
893 	u32 next_idx;
894 
895 	next_idx = rx->cnt & rx->mask;
896 	desc = rx->desc.desc_ring + next_idx;
897 
898 	flags_seq = desc->flags_seq;
899 
900 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
901 }
902 
903 static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
904 {
905 	int refill_target = rx->mask + 1;
906 	u32 fill_cnt = rx->fill_cnt;
907 
908 	while (fill_cnt - rx->cnt < refill_target) {
909 		struct gve_rx_slot_page_info *page_info;
910 		u32 idx = fill_cnt & rx->mask;
911 
912 		page_info = &rx->data.page_info[idx];
913 		if (page_info->can_flip) {
914 			/* The other half of the page is free because it was
915 			 * free when we processed the descriptor. Flip to it.
916 			 */
917 			union gve_rx_data_slot *data_slot =
918 						&rx->data.data_ring[idx];
919 
920 			gve_rx_flip_buff(page_info, &data_slot->addr);
921 			page_info->can_flip = 0;
922 		} else {
923 			/* It is possible that the networking stack has already
924 			 * finished processing all outstanding packets in the buffer
925 			 * and it can be reused.
926 			 * Flipping is unnecessary here - if the networking stack still
927 			 * owns half the page it is impossible to tell which half. Either
928 			 * the whole page is free or it needs to be replaced.
929 			 */
930 			int recycle = gve_rx_can_recycle_buffer(page_info);
931 
932 			if (recycle < 0) {
933 				if (!rx->data.raw_addressing)
934 					gve_schedule_reset(priv);
935 				return false;
936 			}
937 			if (!recycle) {
938 				/* We can't reuse the buffer - alloc a new one*/
939 				union gve_rx_data_slot *data_slot =
940 						&rx->data.data_ring[idx];
941 				struct device *dev = &priv->pdev->dev;
942 				gve_rx_free_buffer(dev, page_info, data_slot);
943 				page_info->page = NULL;
944 				if (gve_rx_alloc_buffer(priv, dev, page_info,
945 							data_slot, rx)) {
946 					break;
947 				}
948 			}
949 		}
950 		fill_cnt++;
951 	}
952 	rx->fill_cnt = fill_cnt;
953 	return true;
954 }
955 
956 static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
957 			     netdev_features_t feat)
958 {
959 	u64 xdp_redirects = rx->xdp_actions[XDP_REDIRECT];
960 	u64 xdp_txs = rx->xdp_actions[XDP_TX];
961 	struct gve_rx_ctx *ctx = &rx->ctx;
962 	struct gve_priv *priv = rx->gve;
963 	struct gve_rx_cnts cnts = {0};
964 	struct gve_rx_desc *next_desc;
965 	u32 idx = rx->cnt & rx->mask;
966 	u32 work_done = 0;
967 
968 	struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
969 
970 	// Exceed budget only if (and till) the inflight packet is consumed.
971 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
972 	       (work_done < budget || ctx->frag_cnt)) {
973 		next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
974 		prefetch(next_desc);
975 
976 		gve_rx(rx, feat, desc, idx, &cnts);
977 
978 		rx->cnt++;
979 		idx = rx->cnt & rx->mask;
980 		desc = &rx->desc.desc_ring[idx];
981 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
982 		work_done++;
983 	}
984 
985 	// The device will only send whole packets.
986 	if (unlikely(ctx->frag_cnt)) {
987 		struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
988 
989 		napi_free_frags(napi);
990 		gve_rx_ctx_clear(&rx->ctx);
991 		netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
992 			    GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
993 		gve_schedule_reset(rx->gve);
994 	}
995 
996 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
997 		return 0;
998 
999 	if (work_done) {
1000 		u64_stats_update_begin(&rx->statss);
1001 		rx->rpackets += cnts.ok_pkt_cnt;
1002 		rx->rbytes += cnts.ok_pkt_bytes;
1003 		rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
1004 		rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
1005 		u64_stats_update_end(&rx->statss);
1006 	}
1007 
1008 	if (xdp_txs != rx->xdp_actions[XDP_TX])
1009 		gve_xdp_tx_flush(priv, rx->q_num);
1010 
1011 	if (xdp_redirects != rx->xdp_actions[XDP_REDIRECT])
1012 		xdp_do_flush();
1013 
1014 	/* restock ring slots */
1015 	if (!rx->data.raw_addressing) {
1016 		/* In QPL mode buffs are refilled as the desc are processed */
1017 		rx->fill_cnt += work_done;
1018 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1019 		/* In raw addressing mode buffs are only refilled if the avail
1020 		 * falls below a threshold.
1021 		 */
1022 		if (!gve_rx_refill_buffers(priv, rx))
1023 			return 0;
1024 
1025 		/* If we were not able to completely refill buffers, we'll want
1026 		 * to schedule this queue for work again to refill buffers.
1027 		 */
1028 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1029 			gve_rx_write_doorbell(priv, rx);
1030 			return budget;
1031 		}
1032 	}
1033 
1034 	gve_rx_write_doorbell(priv, rx);
1035 	return cnts.total_pkt_cnt;
1036 }
1037 
1038 int gve_rx_poll(struct gve_notify_block *block, int budget)
1039 {
1040 	struct gve_rx_ring *rx = block->rx;
1041 	netdev_features_t feat;
1042 	int work_done = 0;
1043 
1044 	feat = block->napi.dev->features;
1045 
1046 	if (budget > 0)
1047 		work_done = gve_clean_rx_done(rx, budget, feat);
1048 
1049 	return work_done;
1050 }
1051