xref: /linux/drivers/net/ethernet/google/gve/gve_rx.c (revision 9fc31a9251de4acaab2d0704450d70ddc99f5ea2)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/etherdevice.h>
11 #include <linux/filter.h>
12 #include <net/xdp.h>
13 #include <net/xdp_sock_drv.h>
14 
15 static void gve_rx_free_buffer(struct device *dev,
16 			       struct gve_rx_slot_page_info *page_info,
17 			       union gve_rx_data_slot *data_slot)
18 {
19 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
20 				      GVE_DATA_SLOT_ADDR_PAGE_MASK);
21 
22 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
23 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
24 }
25 
26 static void gve_rx_unfill_pages(struct gve_priv *priv,
27 				struct gve_rx_ring *rx,
28 				struct gve_rx_alloc_rings_cfg *cfg)
29 {
30 	u32 slots = rx->mask + 1;
31 	int i;
32 
33 	if (rx->data.raw_addressing) {
34 		for (i = 0; i < slots; i++)
35 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
36 					   &rx->data.data_ring[i]);
37 	} else {
38 		for (i = 0; i < slots; i++)
39 			page_ref_sub(rx->data.page_info[i].page,
40 				     rx->data.page_info[i].pagecnt_bias - 1);
41 		rx->data.qpl = NULL;
42 
43 		for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
44 			page_ref_sub(rx->qpl_copy_pool[i].page,
45 				     rx->qpl_copy_pool[i].pagecnt_bias - 1);
46 			put_page(rx->qpl_copy_pool[i].page);
47 		}
48 	}
49 	kvfree(rx->data.page_info);
50 	rx->data.page_info = NULL;
51 }
52 
53 void gve_rx_stop_ring_gqi(struct gve_priv *priv, int idx)
54 {
55 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
56 
57 	if (!gve_rx_was_added_to_block(priv, idx))
58 		return;
59 
60 	gve_remove_napi(priv, ntfy_idx);
61 	gve_rx_remove_from_block(priv, idx);
62 }
63 
64 static void gve_rx_free_ring_gqi(struct gve_priv *priv, struct gve_rx_ring *rx,
65 				 struct gve_rx_alloc_rings_cfg *cfg)
66 {
67 	struct device *dev = &priv->pdev->dev;
68 	u32 slots = rx->mask + 1;
69 	int idx = rx->q_num;
70 	size_t bytes;
71 
72 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
73 	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
74 	rx->desc.desc_ring = NULL;
75 
76 	dma_free_coherent(dev, sizeof(*rx->q_resources),
77 			  rx->q_resources, rx->q_resources_bus);
78 	rx->q_resources = NULL;
79 
80 	gve_rx_unfill_pages(priv, rx, cfg);
81 
82 	bytes = sizeof(*rx->data.data_ring) * slots;
83 	dma_free_coherent(dev, bytes, rx->data.data_ring,
84 			  rx->data.data_bus);
85 	rx->data.data_ring = NULL;
86 
87 	kvfree(rx->qpl_copy_pool);
88 	rx->qpl_copy_pool = NULL;
89 
90 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
91 }
92 
93 static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
94 			     dma_addr_t addr, struct page *page, __be64 *slot_addr)
95 {
96 	page_info->page = page;
97 	page_info->page_offset = 0;
98 	page_info->page_address = page_address(page);
99 	*slot_addr = cpu_to_be64(addr);
100 	/* The page already has 1 ref */
101 	page_ref_add(page, INT_MAX - 1);
102 	page_info->pagecnt_bias = INT_MAX;
103 }
104 
105 static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
106 			       struct gve_rx_slot_page_info *page_info,
107 			       union gve_rx_data_slot *data_slot,
108 			       struct gve_rx_ring *rx)
109 {
110 	struct page *page;
111 	dma_addr_t dma;
112 	int err;
113 
114 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
115 			     GFP_ATOMIC);
116 	if (err) {
117 		u64_stats_update_begin(&rx->statss);
118 		rx->rx_buf_alloc_fail++;
119 		u64_stats_update_end(&rx->statss);
120 		return err;
121 	}
122 
123 	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
124 	return 0;
125 }
126 
127 static int gve_rx_prefill_pages(struct gve_rx_ring *rx,
128 				struct gve_rx_alloc_rings_cfg *cfg)
129 {
130 	struct gve_priv *priv = rx->gve;
131 	u32 slots;
132 	int err;
133 	int i;
134 	int j;
135 
136 	/* Allocate one page per Rx queue slot. Each page is split into two
137 	 * packet buffers, when possible we "page flip" between the two.
138 	 */
139 	slots = rx->mask + 1;
140 
141 	rx->data.page_info = kvzalloc(slots *
142 				      sizeof(*rx->data.page_info), GFP_KERNEL);
143 	if (!rx->data.page_info)
144 		return -ENOMEM;
145 
146 	if (!rx->data.raw_addressing) {
147 		u32 qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, rx->q_num);
148 
149 		rx->data.qpl = &cfg->qpls[qpl_id];
150 	}
151 
152 	for (i = 0; i < slots; i++) {
153 		if (!rx->data.raw_addressing) {
154 			struct page *page = rx->data.qpl->pages[i];
155 			dma_addr_t addr = i * PAGE_SIZE;
156 
157 			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
158 					    &rx->data.data_ring[i].qpl_offset);
159 			continue;
160 		}
161 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev,
162 					  &rx->data.page_info[i],
163 					  &rx->data.data_ring[i], rx);
164 		if (err)
165 			goto alloc_err_rda;
166 	}
167 
168 	if (!rx->data.raw_addressing) {
169 		for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
170 			struct page *page = alloc_page(GFP_KERNEL);
171 
172 			if (!page) {
173 				err = -ENOMEM;
174 				goto alloc_err_qpl;
175 			}
176 
177 			rx->qpl_copy_pool[j].page = page;
178 			rx->qpl_copy_pool[j].page_offset = 0;
179 			rx->qpl_copy_pool[j].page_address = page_address(page);
180 
181 			/* The page already has 1 ref. */
182 			page_ref_add(page, INT_MAX - 1);
183 			rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
184 		}
185 	}
186 
187 	return slots;
188 
189 alloc_err_qpl:
190 	/* Fully free the copy pool pages. */
191 	while (j--) {
192 		page_ref_sub(rx->qpl_copy_pool[j].page,
193 			     rx->qpl_copy_pool[j].pagecnt_bias - 1);
194 		put_page(rx->qpl_copy_pool[j].page);
195 	}
196 
197 	/* Do not fully free QPL pages - only remove the bias added in this
198 	 * function with gve_setup_rx_buffer.
199 	 */
200 	while (i--)
201 		page_ref_sub(rx->data.page_info[i].page,
202 			     rx->data.page_info[i].pagecnt_bias - 1);
203 
204 	rx->data.qpl = NULL;
205 
206 	return err;
207 
208 alloc_err_rda:
209 	while (i--)
210 		gve_rx_free_buffer(&priv->pdev->dev,
211 				   &rx->data.page_info[i],
212 				   &rx->data.data_ring[i]);
213 	return err;
214 }
215 
216 static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
217 {
218 	ctx->skb_head = NULL;
219 	ctx->skb_tail = NULL;
220 	ctx->total_size = 0;
221 	ctx->frag_cnt = 0;
222 	ctx->drop_pkt = false;
223 }
224 
225 void gve_rx_start_ring_gqi(struct gve_priv *priv, int idx)
226 {
227 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
228 
229 	gve_rx_add_to_block(priv, idx);
230 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
231 }
232 
233 static int gve_rx_alloc_ring_gqi(struct gve_priv *priv,
234 				 struct gve_rx_alloc_rings_cfg *cfg,
235 				 struct gve_rx_ring *rx,
236 				 int idx)
237 {
238 	struct device *hdev = &priv->pdev->dev;
239 	u32 slots = cfg->ring_size;
240 	int filled_pages;
241 	size_t bytes;
242 	int err;
243 
244 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
245 	/* Make sure everything is zeroed to start with */
246 	memset(rx, 0, sizeof(*rx));
247 
248 	rx->gve = priv;
249 	rx->q_num = idx;
250 
251 	rx->mask = slots - 1;
252 	rx->data.raw_addressing = cfg->raw_addressing;
253 
254 	/* alloc rx data ring */
255 	bytes = sizeof(*rx->data.data_ring) * slots;
256 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
257 						&rx->data.data_bus,
258 						GFP_KERNEL);
259 	if (!rx->data.data_ring)
260 		return -ENOMEM;
261 
262 	rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
263 	rx->qpl_copy_pool_head = 0;
264 	rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
265 				     sizeof(rx->qpl_copy_pool[0]),
266 				     GFP_KERNEL);
267 
268 	if (!rx->qpl_copy_pool) {
269 		err = -ENOMEM;
270 		goto abort_with_slots;
271 	}
272 
273 	filled_pages = gve_rx_prefill_pages(rx, cfg);
274 	if (filled_pages < 0) {
275 		err = -ENOMEM;
276 		goto abort_with_copy_pool;
277 	}
278 	rx->fill_cnt = filled_pages;
279 	/* Ensure data ring slots (packet buffers) are visible. */
280 	dma_wmb();
281 
282 	/* Alloc gve_queue_resources */
283 	rx->q_resources =
284 		dma_alloc_coherent(hdev,
285 				   sizeof(*rx->q_resources),
286 				   &rx->q_resources_bus,
287 				   GFP_KERNEL);
288 	if (!rx->q_resources) {
289 		err = -ENOMEM;
290 		goto abort_filled;
291 	}
292 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
293 		  (unsigned long)rx->data.data_bus);
294 
295 	/* alloc rx desc ring */
296 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
297 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
298 						GFP_KERNEL);
299 	if (!rx->desc.desc_ring) {
300 		err = -ENOMEM;
301 		goto abort_with_q_resources;
302 	}
303 	rx->cnt = 0;
304 	rx->db_threshold = slots / 2;
305 	rx->desc.seqno = 1;
306 
307 	rx->packet_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
308 	gve_rx_ctx_clear(&rx->ctx);
309 
310 	return 0;
311 
312 abort_with_q_resources:
313 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
314 			  rx->q_resources, rx->q_resources_bus);
315 	rx->q_resources = NULL;
316 abort_filled:
317 	gve_rx_unfill_pages(priv, rx, cfg);
318 abort_with_copy_pool:
319 	kvfree(rx->qpl_copy_pool);
320 	rx->qpl_copy_pool = NULL;
321 abort_with_slots:
322 	bytes = sizeof(*rx->data.data_ring) * slots;
323 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
324 	rx->data.data_ring = NULL;
325 
326 	return err;
327 }
328 
329 int gve_rx_alloc_rings_gqi(struct gve_priv *priv,
330 			   struct gve_rx_alloc_rings_cfg *cfg)
331 {
332 	struct gve_rx_ring *rx;
333 	int err = 0;
334 	int i, j;
335 
336 	if (!cfg->raw_addressing && !cfg->qpls) {
337 		netif_err(priv, drv, priv->dev,
338 			  "Cannot alloc QPL ring before allocing QPLs\n");
339 		return -EINVAL;
340 	}
341 
342 	rx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_rx_ring),
343 		      GFP_KERNEL);
344 	if (!rx)
345 		return -ENOMEM;
346 
347 	for (i = 0; i < cfg->qcfg->num_queues; i++) {
348 		err = gve_rx_alloc_ring_gqi(priv, cfg, &rx[i], i);
349 		if (err) {
350 			netif_err(priv, drv, priv->dev,
351 				  "Failed to alloc rx ring=%d: err=%d\n",
352 				  i, err);
353 			goto cleanup;
354 		}
355 	}
356 
357 	cfg->rx = rx;
358 	return 0;
359 
360 cleanup:
361 	for (j = 0; j < i; j++)
362 		gve_rx_free_ring_gqi(priv, &rx[j], cfg);
363 	kvfree(rx);
364 	return err;
365 }
366 
367 void gve_rx_free_rings_gqi(struct gve_priv *priv,
368 			   struct gve_rx_alloc_rings_cfg *cfg)
369 {
370 	struct gve_rx_ring *rx = cfg->rx;
371 	int i;
372 
373 	if (!rx)
374 		return;
375 
376 	for (i = 0; i < cfg->qcfg->num_queues;  i++)
377 		gve_rx_free_ring_gqi(priv, &rx[i], cfg);
378 
379 	kvfree(rx);
380 	cfg->rx = NULL;
381 }
382 
383 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
384 {
385 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
386 
387 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
388 }
389 
390 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
391 {
392 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
393 		return PKT_HASH_TYPE_L4;
394 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
395 		return PKT_HASH_TYPE_L3;
396 	return PKT_HASH_TYPE_L2;
397 }
398 
399 static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
400 					struct gve_rx_slot_page_info *page_info,
401 					unsigned int truesize, u16 len,
402 					struct gve_rx_ctx *ctx)
403 {
404 	u32 offset = page_info->page_offset + page_info->pad;
405 	struct sk_buff *skb = ctx->skb_tail;
406 	int num_frags = 0;
407 
408 	if (!skb) {
409 		skb = napi_get_frags(napi);
410 		if (unlikely(!skb))
411 			return NULL;
412 
413 		ctx->skb_head = skb;
414 		ctx->skb_tail = skb;
415 	} else {
416 		num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
417 		if (num_frags == MAX_SKB_FRAGS) {
418 			skb = napi_alloc_skb(napi, 0);
419 			if (!skb)
420 				return NULL;
421 
422 			// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
423 			// which is why we do not need to chain by using skb->next
424 			skb_shinfo(ctx->skb_tail)->frag_list = skb;
425 
426 			ctx->skb_tail = skb;
427 			num_frags = 0;
428 		}
429 	}
430 
431 	if (skb != ctx->skb_head) {
432 		ctx->skb_head->len += len;
433 		ctx->skb_head->data_len += len;
434 		ctx->skb_head->truesize += truesize;
435 	}
436 	skb_add_rx_frag(skb, num_frags, page_info->page,
437 			offset, len, truesize);
438 
439 	return ctx->skb_head;
440 }
441 
442 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
443 {
444 	const __be64 offset = cpu_to_be64(GVE_DEFAULT_RX_BUFFER_OFFSET);
445 
446 	/* "flip" to other packet buffer on this page */
447 	page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
448 	*(slot_addr) ^= offset;
449 }
450 
451 static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
452 {
453 	int pagecount = page_count(page_info->page);
454 
455 	/* This page is not being used by any SKBs - reuse */
456 	if (pagecount == page_info->pagecnt_bias)
457 		return 1;
458 	/* This page is still being used by an SKB - we can't reuse */
459 	else if (pagecount > page_info->pagecnt_bias)
460 		return 0;
461 	WARN(pagecount < page_info->pagecnt_bias,
462 	     "Pagecount should never be less than the bias.");
463 	return -1;
464 }
465 
466 static struct sk_buff *
467 gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
468 		      struct gve_rx_slot_page_info *page_info, u16 len,
469 		      struct napi_struct *napi,
470 		      union gve_rx_data_slot *data_slot,
471 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx)
472 {
473 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
474 
475 	if (!skb)
476 		return NULL;
477 
478 	/* Optimistically stop the kernel from freeing the page.
479 	 * We will check again in refill to determine if we need to alloc a
480 	 * new page.
481 	 */
482 	gve_dec_pagecnt_bias(page_info);
483 
484 	return skb;
485 }
486 
487 static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
488 					   struct gve_rx_slot_page_info *page_info,
489 					   u16 len, struct napi_struct *napi)
490 {
491 	u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
492 	void *src = page_info->page_address + page_info->page_offset;
493 	struct gve_rx_slot_page_info *copy_page_info;
494 	struct gve_rx_ctx *ctx = &rx->ctx;
495 	bool alloc_page = false;
496 	struct sk_buff *skb;
497 	void *dst;
498 
499 	copy_page_info = &rx->qpl_copy_pool[pool_idx];
500 	if (!copy_page_info->can_flip) {
501 		int recycle = gve_rx_can_recycle_buffer(copy_page_info);
502 
503 		if (unlikely(recycle < 0)) {
504 			gve_schedule_reset(rx->gve);
505 			return NULL;
506 		}
507 		alloc_page = !recycle;
508 	}
509 
510 	if (alloc_page) {
511 		struct gve_rx_slot_page_info alloc_page_info;
512 		struct page *page;
513 
514 		/* The least recently used page turned out to be
515 		 * still in use by the kernel. Ignoring it and moving
516 		 * on alleviates head-of-line blocking.
517 		 */
518 		rx->qpl_copy_pool_head++;
519 
520 		page = alloc_page(GFP_ATOMIC);
521 		if (!page)
522 			return NULL;
523 
524 		alloc_page_info.page = page;
525 		alloc_page_info.page_offset = 0;
526 		alloc_page_info.page_address = page_address(page);
527 		alloc_page_info.pad = page_info->pad;
528 
529 		memcpy(alloc_page_info.page_address, src, page_info->pad + len);
530 		skb = gve_rx_add_frags(napi, &alloc_page_info,
531 				       PAGE_SIZE,
532 				       len, ctx);
533 
534 		u64_stats_update_begin(&rx->statss);
535 		rx->rx_frag_copy_cnt++;
536 		rx->rx_frag_alloc_cnt++;
537 		u64_stats_update_end(&rx->statss);
538 
539 		return skb;
540 	}
541 
542 	dst = copy_page_info->page_address + copy_page_info->page_offset;
543 	memcpy(dst, src, page_info->pad + len);
544 	copy_page_info->pad = page_info->pad;
545 
546 	skb = gve_rx_add_frags(napi, copy_page_info,
547 			       rx->packet_buffer_size, len, ctx);
548 	if (unlikely(!skb))
549 		return NULL;
550 
551 	gve_dec_pagecnt_bias(copy_page_info);
552 	copy_page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
553 
554 	if (copy_page_info->can_flip) {
555 		/* We have used both halves of this copy page, it
556 		 * is time for it to go to the back of the queue.
557 		 */
558 		copy_page_info->can_flip = false;
559 		rx->qpl_copy_pool_head++;
560 		prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
561 	} else {
562 		copy_page_info->can_flip = true;
563 	}
564 
565 	u64_stats_update_begin(&rx->statss);
566 	rx->rx_frag_copy_cnt++;
567 	u64_stats_update_end(&rx->statss);
568 
569 	return skb;
570 }
571 
572 static struct sk_buff *
573 gve_rx_qpl(struct device *dev, struct net_device *netdev,
574 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
575 	   u16 len, struct napi_struct *napi,
576 	   union gve_rx_data_slot *data_slot)
577 {
578 	struct gve_rx_ctx *ctx = &rx->ctx;
579 	struct sk_buff *skb;
580 
581 	/* if raw_addressing mode is not enabled gvnic can only receive into
582 	 * registered segments. If the buffer can't be recycled, our only
583 	 * choice is to copy the data out of it so that we can return it to the
584 	 * device.
585 	 */
586 	if (page_info->can_flip) {
587 		skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
588 		/* No point in recycling if we didn't get the skb */
589 		if (skb) {
590 			/* Make sure that the page isn't freed. */
591 			gve_dec_pagecnt_bias(page_info);
592 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
593 		}
594 	} else {
595 		skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
596 	}
597 	return skb;
598 }
599 
600 static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
601 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
602 				  u16 len, union gve_rx_data_slot *data_slot,
603 				  bool is_only_frag)
604 {
605 	struct net_device *netdev = priv->dev;
606 	struct gve_rx_ctx *ctx = &rx->ctx;
607 	struct sk_buff *skb = NULL;
608 
609 	if (len <= priv->rx_copybreak && is_only_frag)  {
610 		/* Just copy small packets */
611 		skb = gve_rx_copy(netdev, napi, page_info, len);
612 		if (skb) {
613 			u64_stats_update_begin(&rx->statss);
614 			rx->rx_copied_pkt++;
615 			rx->rx_frag_copy_cnt++;
616 			rx->rx_copybreak_pkt++;
617 			u64_stats_update_end(&rx->statss);
618 		}
619 	} else {
620 		int recycle = gve_rx_can_recycle_buffer(page_info);
621 
622 		if (unlikely(recycle < 0)) {
623 			gve_schedule_reset(priv);
624 			return NULL;
625 		}
626 		page_info->can_flip = recycle;
627 		if (page_info->can_flip) {
628 			u64_stats_update_begin(&rx->statss);
629 			rx->rx_frag_flip_cnt++;
630 			u64_stats_update_end(&rx->statss);
631 		}
632 
633 		if (rx->data.raw_addressing) {
634 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
635 						    page_info, len, napi,
636 						    data_slot,
637 						    rx->packet_buffer_size, ctx);
638 		} else {
639 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
640 					 page_info, len, napi, data_slot);
641 		}
642 	}
643 	return skb;
644 }
645 
646 static int gve_xsk_pool_redirect(struct net_device *dev,
647 				 struct gve_rx_ring *rx,
648 				 void *data, int len,
649 				 struct bpf_prog *xdp_prog)
650 {
651 	struct xdp_buff *xdp;
652 	int err;
653 
654 	if (rx->xsk_pool->frame_len < len)
655 		return -E2BIG;
656 	xdp = xsk_buff_alloc(rx->xsk_pool);
657 	if (!xdp) {
658 		u64_stats_update_begin(&rx->statss);
659 		rx->xdp_alloc_fails++;
660 		u64_stats_update_end(&rx->statss);
661 		return -ENOMEM;
662 	}
663 	xdp->data_end = xdp->data + len;
664 	memcpy(xdp->data, data, len);
665 	err = xdp_do_redirect(dev, xdp, xdp_prog);
666 	if (err)
667 		xsk_buff_free(xdp);
668 	return err;
669 }
670 
671 static int gve_xdp_redirect(struct net_device *dev, struct gve_rx_ring *rx,
672 			    struct xdp_buff *orig, struct bpf_prog *xdp_prog)
673 {
674 	int total_len, len = orig->data_end - orig->data;
675 	int headroom = XDP_PACKET_HEADROOM;
676 	struct xdp_buff new;
677 	void *frame;
678 	int err;
679 
680 	if (rx->xsk_pool)
681 		return gve_xsk_pool_redirect(dev, rx, orig->data,
682 					     len, xdp_prog);
683 
684 	total_len = headroom + SKB_DATA_ALIGN(len) +
685 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
686 	frame = page_frag_alloc(&rx->page_cache, total_len, GFP_ATOMIC);
687 	if (!frame) {
688 		u64_stats_update_begin(&rx->statss);
689 		rx->xdp_alloc_fails++;
690 		u64_stats_update_end(&rx->statss);
691 		return -ENOMEM;
692 	}
693 	xdp_init_buff(&new, total_len, &rx->xdp_rxq);
694 	xdp_prepare_buff(&new, frame, headroom, len, false);
695 	memcpy(new.data, orig->data, len);
696 
697 	err = xdp_do_redirect(dev, &new, xdp_prog);
698 	if (err)
699 		page_frag_free(frame);
700 
701 	return err;
702 }
703 
704 static void gve_xdp_done(struct gve_priv *priv, struct gve_rx_ring *rx,
705 			 struct xdp_buff *xdp, struct bpf_prog *xprog,
706 			 int xdp_act)
707 {
708 	struct gve_tx_ring *tx;
709 	int tx_qid;
710 	int err;
711 
712 	switch (xdp_act) {
713 	case XDP_ABORTED:
714 	case XDP_DROP:
715 	default:
716 		break;
717 	case XDP_TX:
718 		tx_qid = gve_xdp_tx_queue_id(priv, rx->q_num);
719 		tx = &priv->tx[tx_qid];
720 		spin_lock(&tx->xdp_lock);
721 		err = gve_xdp_xmit_one(priv, tx, xdp->data,
722 				       xdp->data_end - xdp->data, NULL);
723 		spin_unlock(&tx->xdp_lock);
724 
725 		if (unlikely(err)) {
726 			u64_stats_update_begin(&rx->statss);
727 			rx->xdp_tx_errors++;
728 			u64_stats_update_end(&rx->statss);
729 		}
730 		break;
731 	case XDP_REDIRECT:
732 		err = gve_xdp_redirect(priv->dev, rx, xdp, xprog);
733 
734 		if (unlikely(err)) {
735 			u64_stats_update_begin(&rx->statss);
736 			rx->xdp_redirect_errors++;
737 			u64_stats_update_end(&rx->statss);
738 		}
739 		break;
740 	}
741 	u64_stats_update_begin(&rx->statss);
742 	if ((u32)xdp_act < GVE_XDP_ACTIONS)
743 		rx->xdp_actions[xdp_act]++;
744 	u64_stats_update_end(&rx->statss);
745 }
746 
747 #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
748 static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
749 		   struct gve_rx_desc *desc, u32 idx,
750 		   struct gve_rx_cnts *cnts)
751 {
752 	bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
753 	struct gve_rx_slot_page_info *page_info;
754 	u16 frag_size = be16_to_cpu(desc->len);
755 	struct gve_rx_ctx *ctx = &rx->ctx;
756 	union gve_rx_data_slot *data_slot;
757 	struct gve_priv *priv = rx->gve;
758 	struct sk_buff *skb = NULL;
759 	struct bpf_prog *xprog;
760 	struct xdp_buff xdp;
761 	dma_addr_t page_bus;
762 	void *va;
763 
764 	u16 len = frag_size;
765 	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
766 	bool is_first_frag = ctx->frag_cnt == 0;
767 
768 	bool is_only_frag = is_first_frag && is_last_frag;
769 
770 	if (unlikely(ctx->drop_pkt))
771 		goto finish_frag;
772 
773 	if (desc->flags_seq & GVE_RXF_ERR) {
774 		ctx->drop_pkt = true;
775 		cnts->desc_err_pkt_cnt++;
776 		napi_free_frags(napi);
777 		goto finish_frag;
778 	}
779 
780 	if (unlikely(frag_size > rx->packet_buffer_size)) {
781 		netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
782 			    frag_size, rx->packet_buffer_size);
783 		ctx->drop_pkt = true;
784 		napi_free_frags(napi);
785 		gve_schedule_reset(rx->gve);
786 		goto finish_frag;
787 	}
788 
789 	/* Prefetch two packet buffers ahead, we will need it soon. */
790 	page_info = &rx->data.page_info[(idx + 2) & rx->mask];
791 	va = page_info->page_address + page_info->page_offset;
792 	prefetch(page_info->page); /* Kernel page struct. */
793 	prefetch(va);              /* Packet header. */
794 	prefetch(va + 64);         /* Next cacheline too. */
795 
796 	page_info = &rx->data.page_info[idx];
797 	data_slot = &rx->data.data_ring[idx];
798 	page_bus = (rx->data.raw_addressing) ?
799 		be64_to_cpu(data_slot->addr) - page_info->page_offset :
800 		rx->data.qpl->page_buses[idx];
801 	dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
802 				PAGE_SIZE, DMA_FROM_DEVICE);
803 	page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
804 	len -= page_info->pad;
805 	frag_size -= page_info->pad;
806 
807 	xprog = READ_ONCE(priv->xdp_prog);
808 	if (xprog && is_only_frag) {
809 		void *old_data;
810 		int xdp_act;
811 
812 		xdp_init_buff(&xdp, rx->packet_buffer_size, &rx->xdp_rxq);
813 		xdp_prepare_buff(&xdp, page_info->page_address +
814 				 page_info->page_offset, GVE_RX_PAD,
815 				 len, false);
816 		old_data = xdp.data;
817 		xdp_act = bpf_prog_run_xdp(xprog, &xdp);
818 		if (xdp_act != XDP_PASS) {
819 			gve_xdp_done(priv, rx, &xdp, xprog, xdp_act);
820 			ctx->total_size += frag_size;
821 			goto finish_ok_pkt;
822 		}
823 
824 		page_info->pad += xdp.data - old_data;
825 		len = xdp.data_end - xdp.data;
826 
827 		u64_stats_update_begin(&rx->statss);
828 		rx->xdp_actions[XDP_PASS]++;
829 		u64_stats_update_end(&rx->statss);
830 	}
831 
832 	skb = gve_rx_skb(priv, rx, page_info, napi, len,
833 			 data_slot, is_only_frag);
834 	if (!skb) {
835 		u64_stats_update_begin(&rx->statss);
836 		rx->rx_skb_alloc_fail++;
837 		u64_stats_update_end(&rx->statss);
838 
839 		napi_free_frags(napi);
840 		ctx->drop_pkt = true;
841 		goto finish_frag;
842 	}
843 	ctx->total_size += frag_size;
844 
845 	if (is_first_frag) {
846 		if (likely(feat & NETIF_F_RXCSUM)) {
847 			/* NIC passes up the partial sum */
848 			if (desc->csum)
849 				skb->ip_summed = CHECKSUM_COMPLETE;
850 			else
851 				skb->ip_summed = CHECKSUM_NONE;
852 			skb->csum = csum_unfold(desc->csum);
853 		}
854 
855 		/* parse flags & pass relevant info up */
856 		if (likely(feat & NETIF_F_RXHASH) &&
857 		    gve_needs_rss(desc->flags_seq))
858 			skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
859 				     gve_rss_type(desc->flags_seq));
860 	}
861 
862 	if (is_last_frag) {
863 		skb_record_rx_queue(skb, rx->q_num);
864 		if (skb_is_nonlinear(skb))
865 			napi_gro_frags(napi);
866 		else
867 			napi_gro_receive(napi, skb);
868 		goto finish_ok_pkt;
869 	}
870 
871 	goto finish_frag;
872 
873 finish_ok_pkt:
874 	cnts->ok_pkt_bytes += ctx->total_size;
875 	cnts->ok_pkt_cnt++;
876 finish_frag:
877 	ctx->frag_cnt++;
878 	if (is_last_frag) {
879 		cnts->total_pkt_cnt++;
880 		cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
881 		gve_rx_ctx_clear(ctx);
882 	}
883 }
884 
885 bool gve_rx_work_pending(struct gve_rx_ring *rx)
886 {
887 	struct gve_rx_desc *desc;
888 	__be16 flags_seq;
889 	u32 next_idx;
890 
891 	next_idx = rx->cnt & rx->mask;
892 	desc = rx->desc.desc_ring + next_idx;
893 
894 	flags_seq = desc->flags_seq;
895 
896 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
897 }
898 
899 static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
900 {
901 	int refill_target = rx->mask + 1;
902 	u32 fill_cnt = rx->fill_cnt;
903 
904 	while (fill_cnt - rx->cnt < refill_target) {
905 		struct gve_rx_slot_page_info *page_info;
906 		u32 idx = fill_cnt & rx->mask;
907 
908 		page_info = &rx->data.page_info[idx];
909 		if (page_info->can_flip) {
910 			/* The other half of the page is free because it was
911 			 * free when we processed the descriptor. Flip to it.
912 			 */
913 			union gve_rx_data_slot *data_slot =
914 						&rx->data.data_ring[idx];
915 
916 			gve_rx_flip_buff(page_info, &data_slot->addr);
917 			page_info->can_flip = 0;
918 		} else {
919 			/* It is possible that the networking stack has already
920 			 * finished processing all outstanding packets in the buffer
921 			 * and it can be reused.
922 			 * Flipping is unnecessary here - if the networking stack still
923 			 * owns half the page it is impossible to tell which half. Either
924 			 * the whole page is free or it needs to be replaced.
925 			 */
926 			int recycle = gve_rx_can_recycle_buffer(page_info);
927 
928 			if (recycle < 0) {
929 				if (!rx->data.raw_addressing)
930 					gve_schedule_reset(priv);
931 				return false;
932 			}
933 			if (!recycle) {
934 				/* We can't reuse the buffer - alloc a new one*/
935 				union gve_rx_data_slot *data_slot =
936 						&rx->data.data_ring[idx];
937 				struct device *dev = &priv->pdev->dev;
938 				gve_rx_free_buffer(dev, page_info, data_slot);
939 				page_info->page = NULL;
940 				if (gve_rx_alloc_buffer(priv, dev, page_info,
941 							data_slot, rx)) {
942 					break;
943 				}
944 			}
945 		}
946 		fill_cnt++;
947 	}
948 	rx->fill_cnt = fill_cnt;
949 	return true;
950 }
951 
952 static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
953 			     netdev_features_t feat)
954 {
955 	u64 xdp_redirects = rx->xdp_actions[XDP_REDIRECT];
956 	u64 xdp_txs = rx->xdp_actions[XDP_TX];
957 	struct gve_rx_ctx *ctx = &rx->ctx;
958 	struct gve_priv *priv = rx->gve;
959 	struct gve_rx_cnts cnts = {0};
960 	struct gve_rx_desc *next_desc;
961 	u32 idx = rx->cnt & rx->mask;
962 	u32 work_done = 0;
963 
964 	struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
965 
966 	// Exceed budget only if (and till) the inflight packet is consumed.
967 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
968 	       (work_done < budget || ctx->frag_cnt)) {
969 		next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
970 		prefetch(next_desc);
971 
972 		gve_rx(rx, feat, desc, idx, &cnts);
973 
974 		rx->cnt++;
975 		idx = rx->cnt & rx->mask;
976 		desc = &rx->desc.desc_ring[idx];
977 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
978 		work_done++;
979 	}
980 
981 	// The device will only send whole packets.
982 	if (unlikely(ctx->frag_cnt)) {
983 		struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
984 
985 		napi_free_frags(napi);
986 		gve_rx_ctx_clear(&rx->ctx);
987 		netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
988 			    GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
989 		gve_schedule_reset(rx->gve);
990 	}
991 
992 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
993 		return 0;
994 
995 	if (work_done) {
996 		u64_stats_update_begin(&rx->statss);
997 		rx->rpackets += cnts.ok_pkt_cnt;
998 		rx->rbytes += cnts.ok_pkt_bytes;
999 		rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
1000 		rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
1001 		u64_stats_update_end(&rx->statss);
1002 	}
1003 
1004 	if (xdp_txs != rx->xdp_actions[XDP_TX])
1005 		gve_xdp_tx_flush(priv, rx->q_num);
1006 
1007 	if (xdp_redirects != rx->xdp_actions[XDP_REDIRECT])
1008 		xdp_do_flush();
1009 
1010 	/* restock ring slots */
1011 	if (!rx->data.raw_addressing) {
1012 		/* In QPL mode buffs are refilled as the desc are processed */
1013 		rx->fill_cnt += work_done;
1014 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1015 		/* In raw addressing mode buffs are only refilled if the avail
1016 		 * falls below a threshold.
1017 		 */
1018 		if (!gve_rx_refill_buffers(priv, rx))
1019 			return 0;
1020 
1021 		/* If we were not able to completely refill buffers, we'll want
1022 		 * to schedule this queue for work again to refill buffers.
1023 		 */
1024 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1025 			gve_rx_write_doorbell(priv, rx);
1026 			return budget;
1027 		}
1028 	}
1029 
1030 	gve_rx_write_doorbell(priv, rx);
1031 	return cnts.total_pkt_cnt;
1032 }
1033 
1034 int gve_rx_poll(struct gve_notify_block *block, int budget)
1035 {
1036 	struct gve_rx_ring *rx = block->rx;
1037 	netdev_features_t feat;
1038 	int work_done = 0;
1039 
1040 	feat = block->napi.dev->features;
1041 
1042 	if (budget > 0)
1043 		work_done = gve_clean_rx_done(rx, budget, feat);
1044 
1045 	return work_done;
1046 }
1047