xref: /linux/drivers/net/ethernet/google/gve/gve_rx.c (revision 95298d63c67673c654c08952672d016212b26054)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2019 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include <linux/etherdevice.h>
10 
11 static void gve_rx_remove_from_block(struct gve_priv *priv, int queue_idx)
12 {
13 	struct gve_notify_block *block =
14 			&priv->ntfy_blocks[gve_rx_idx_to_ntfy(priv, queue_idx)];
15 
16 	block->rx = NULL;
17 }
18 
19 static void gve_rx_free_ring(struct gve_priv *priv, int idx)
20 {
21 	struct gve_rx_ring *rx = &priv->rx[idx];
22 	struct device *dev = &priv->pdev->dev;
23 	size_t bytes;
24 	u32 slots;
25 
26 	gve_rx_remove_from_block(priv, idx);
27 
28 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
29 	dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
30 	rx->desc.desc_ring = NULL;
31 
32 	dma_free_coherent(dev, sizeof(*rx->q_resources),
33 			  rx->q_resources, rx->q_resources_bus);
34 	rx->q_resources = NULL;
35 
36 	gve_unassign_qpl(priv, rx->data.qpl->id);
37 	rx->data.qpl = NULL;
38 	kvfree(rx->data.page_info);
39 
40 	slots = rx->mask + 1;
41 	bytes = sizeof(*rx->data.data_ring) * slots;
42 	dma_free_coherent(dev, bytes, rx->data.data_ring,
43 			  rx->data.data_bus);
44 	rx->data.data_ring = NULL;
45 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
46 }
47 
48 static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
49 				struct gve_rx_data_slot *slot,
50 				dma_addr_t addr, struct page *page)
51 {
52 	page_info->page = page;
53 	page_info->page_offset = 0;
54 	page_info->page_address = page_address(page);
55 	slot->qpl_offset = cpu_to_be64(addr);
56 }
57 
58 static int gve_prefill_rx_pages(struct gve_rx_ring *rx)
59 {
60 	struct gve_priv *priv = rx->gve;
61 	u32 slots;
62 	int i;
63 
64 	/* Allocate one page per Rx queue slot. Each page is split into two
65 	 * packet buffers, when possible we "page flip" between the two.
66 	 */
67 	slots = rx->mask + 1;
68 
69 	rx->data.page_info = kvzalloc(slots *
70 				      sizeof(*rx->data.page_info), GFP_KERNEL);
71 	if (!rx->data.page_info)
72 		return -ENOMEM;
73 
74 	rx->data.qpl = gve_assign_rx_qpl(priv);
75 
76 	for (i = 0; i < slots; i++) {
77 		struct page *page = rx->data.qpl->pages[i];
78 		dma_addr_t addr = i * PAGE_SIZE;
79 
80 		gve_setup_rx_buffer(&rx->data.page_info[i],
81 				    &rx->data.data_ring[i], addr, page);
82 	}
83 
84 	return slots;
85 }
86 
87 static void gve_rx_add_to_block(struct gve_priv *priv, int queue_idx)
88 {
89 	u32 ntfy_idx = gve_rx_idx_to_ntfy(priv, queue_idx);
90 	struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
91 	struct gve_rx_ring *rx = &priv->rx[queue_idx];
92 
93 	block->rx = rx;
94 	rx->ntfy_id = ntfy_idx;
95 }
96 
97 static int gve_rx_alloc_ring(struct gve_priv *priv, int idx)
98 {
99 	struct gve_rx_ring *rx = &priv->rx[idx];
100 	struct device *hdev = &priv->pdev->dev;
101 	u32 slots, npages;
102 	int filled_pages;
103 	size_t bytes;
104 	int err;
105 
106 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
107 	/* Make sure everything is zeroed to start with */
108 	memset(rx, 0, sizeof(*rx));
109 
110 	rx->gve = priv;
111 	rx->q_num = idx;
112 
113 	slots = priv->rx_pages_per_qpl;
114 	rx->mask = slots - 1;
115 
116 	/* alloc rx data ring */
117 	bytes = sizeof(*rx->data.data_ring) * slots;
118 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
119 						&rx->data.data_bus,
120 						GFP_KERNEL);
121 	if (!rx->data.data_ring)
122 		return -ENOMEM;
123 	filled_pages = gve_prefill_rx_pages(rx);
124 	if (filled_pages < 0) {
125 		err = -ENOMEM;
126 		goto abort_with_slots;
127 	}
128 	rx->fill_cnt = filled_pages;
129 	/* Ensure data ring slots (packet buffers) are visible. */
130 	dma_wmb();
131 
132 	/* Alloc gve_queue_resources */
133 	rx->q_resources =
134 		dma_alloc_coherent(hdev,
135 				   sizeof(*rx->q_resources),
136 				   &rx->q_resources_bus,
137 				   GFP_KERNEL);
138 	if (!rx->q_resources) {
139 		err = -ENOMEM;
140 		goto abort_filled;
141 	}
142 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
143 		  (unsigned long)rx->data.data_bus);
144 
145 	/* alloc rx desc ring */
146 	bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt;
147 	npages = bytes / PAGE_SIZE;
148 	if (npages * PAGE_SIZE != bytes) {
149 		err = -EIO;
150 		goto abort_with_q_resources;
151 	}
152 
153 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
154 						GFP_KERNEL);
155 	if (!rx->desc.desc_ring) {
156 		err = -ENOMEM;
157 		goto abort_with_q_resources;
158 	}
159 	rx->mask = slots - 1;
160 	rx->cnt = 0;
161 	rx->desc.seqno = 1;
162 	gve_rx_add_to_block(priv, idx);
163 
164 	return 0;
165 
166 abort_with_q_resources:
167 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
168 			  rx->q_resources, rx->q_resources_bus);
169 	rx->q_resources = NULL;
170 abort_filled:
171 	kvfree(rx->data.page_info);
172 abort_with_slots:
173 	bytes = sizeof(*rx->data.data_ring) * slots;
174 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
175 	rx->data.data_ring = NULL;
176 
177 	return err;
178 }
179 
180 int gve_rx_alloc_rings(struct gve_priv *priv)
181 {
182 	int err = 0;
183 	int i;
184 
185 	for (i = 0; i < priv->rx_cfg.num_queues; i++) {
186 		err = gve_rx_alloc_ring(priv, i);
187 		if (err) {
188 			netif_err(priv, drv, priv->dev,
189 				  "Failed to alloc rx ring=%d: err=%d\n",
190 				  i, err);
191 			break;
192 		}
193 	}
194 	/* Unallocate if there was an error */
195 	if (err) {
196 		int j;
197 
198 		for (j = 0; j < i; j++)
199 			gve_rx_free_ring(priv, j);
200 	}
201 	return err;
202 }
203 
204 void gve_rx_free_rings(struct gve_priv *priv)
205 {
206 	int i;
207 
208 	for (i = 0; i < priv->rx_cfg.num_queues; i++)
209 		gve_rx_free_ring(priv, i);
210 }
211 
212 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
213 {
214 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
215 
216 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
217 }
218 
219 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
220 {
221 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
222 		return PKT_HASH_TYPE_L4;
223 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
224 		return PKT_HASH_TYPE_L3;
225 	return PKT_HASH_TYPE_L2;
226 }
227 
228 static struct sk_buff *gve_rx_copy(struct net_device *dev,
229 				   struct napi_struct *napi,
230 				   struct gve_rx_slot_page_info *page_info,
231 				   u16 len)
232 {
233 	struct sk_buff *skb = napi_alloc_skb(napi, len);
234 	void *va = page_info->page_address + GVE_RX_PAD +
235 		   page_info->page_offset;
236 
237 	if (unlikely(!skb))
238 		return NULL;
239 
240 	__skb_put(skb, len);
241 
242 	skb_copy_to_linear_data(skb, va, len);
243 
244 	skb->protocol = eth_type_trans(skb, dev);
245 	return skb;
246 }
247 
248 static struct sk_buff *gve_rx_add_frags(struct net_device *dev,
249 					struct napi_struct *napi,
250 					struct gve_rx_slot_page_info *page_info,
251 					u16 len)
252 {
253 	struct sk_buff *skb = napi_get_frags(napi);
254 
255 	if (unlikely(!skb))
256 		return NULL;
257 
258 	skb_add_rx_frag(skb, 0, page_info->page,
259 			page_info->page_offset +
260 			GVE_RX_PAD, len, PAGE_SIZE / 2);
261 
262 	return skb;
263 }
264 
265 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info,
266 			     struct gve_rx_data_slot *data_ring)
267 {
268 	u64 addr = be64_to_cpu(data_ring->qpl_offset);
269 
270 	page_info->page_offset ^= PAGE_SIZE / 2;
271 	addr ^= PAGE_SIZE / 2;
272 	data_ring->qpl_offset = cpu_to_be64(addr);
273 }
274 
275 static bool gve_rx(struct gve_rx_ring *rx, struct gve_rx_desc *rx_desc,
276 		   netdev_features_t feat, u32 idx)
277 {
278 	struct gve_rx_slot_page_info *page_info;
279 	struct gve_priv *priv = rx->gve;
280 	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
281 	struct net_device *dev = priv->dev;
282 	struct sk_buff *skb;
283 	int pagecount;
284 	u16 len;
285 
286 	/* drop this packet */
287 	if (unlikely(rx_desc->flags_seq & GVE_RXF_ERR))
288 		return true;
289 
290 	len = be16_to_cpu(rx_desc->len) - GVE_RX_PAD;
291 	page_info = &rx->data.page_info[idx];
292 	dma_sync_single_for_cpu(&priv->pdev->dev, rx->data.qpl->page_buses[idx],
293 				PAGE_SIZE, DMA_FROM_DEVICE);
294 
295 	/* gvnic can only receive into registered segments. If the buffer
296 	 * can't be recycled, our only choice is to copy the data out of
297 	 * it so that we can return it to the device.
298 	 */
299 
300 	if (PAGE_SIZE == 4096) {
301 		if (len <= priv->rx_copybreak) {
302 			/* Just copy small packets */
303 			skb = gve_rx_copy(dev, napi, page_info, len);
304 			goto have_skb;
305 		}
306 		if (unlikely(!gve_can_recycle_pages(dev))) {
307 			skb = gve_rx_copy(dev, napi, page_info, len);
308 			goto have_skb;
309 		}
310 		pagecount = page_count(page_info->page);
311 		if (pagecount == 1) {
312 			/* No part of this page is used by any SKBs; we attach
313 			 * the page fragment to a new SKB and pass it up the
314 			 * stack.
315 			 */
316 			skb = gve_rx_add_frags(dev, napi, page_info, len);
317 			if (!skb)
318 				return true;
319 			/* Make sure the kernel stack can't release the page */
320 			get_page(page_info->page);
321 			/* "flip" to other packet buffer on this page */
322 			gve_rx_flip_buff(page_info, &rx->data.data_ring[idx]);
323 		} else if (pagecount >= 2) {
324 			/* We have previously passed the other half of this
325 			 * page up the stack, but it has not yet been freed.
326 			 */
327 			skb = gve_rx_copy(dev, napi, page_info, len);
328 		} else {
329 			WARN(pagecount < 1, "Pagecount should never be < 1");
330 			return false;
331 		}
332 	} else {
333 		skb = gve_rx_copy(dev, napi, page_info, len);
334 	}
335 
336 have_skb:
337 	/* We didn't manage to allocate an skb but we haven't had any
338 	 * reset worthy failures.
339 	 */
340 	if (!skb)
341 		return true;
342 
343 	if (likely(feat & NETIF_F_RXCSUM)) {
344 		/* NIC passes up the partial sum */
345 		if (rx_desc->csum)
346 			skb->ip_summed = CHECKSUM_COMPLETE;
347 		else
348 			skb->ip_summed = CHECKSUM_NONE;
349 		skb->csum = csum_unfold(rx_desc->csum);
350 	}
351 
352 	/* parse flags & pass relevant info up */
353 	if (likely(feat & NETIF_F_RXHASH) &&
354 	    gve_needs_rss(rx_desc->flags_seq))
355 		skb_set_hash(skb, be32_to_cpu(rx_desc->rss_hash),
356 			     gve_rss_type(rx_desc->flags_seq));
357 
358 	if (skb_is_nonlinear(skb))
359 		napi_gro_frags(napi);
360 	else
361 		napi_gro_receive(napi, skb);
362 	return true;
363 }
364 
365 static bool gve_rx_work_pending(struct gve_rx_ring *rx)
366 {
367 	struct gve_rx_desc *desc;
368 	__be16 flags_seq;
369 	u32 next_idx;
370 
371 	next_idx = rx->cnt & rx->mask;
372 	desc = rx->desc.desc_ring + next_idx;
373 
374 	flags_seq = desc->flags_seq;
375 	/* Make sure we have synchronized the seq no with the device */
376 	smp_rmb();
377 
378 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
379 }
380 
381 bool gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
382 		       netdev_features_t feat)
383 {
384 	struct gve_priv *priv = rx->gve;
385 	struct gve_rx_desc *desc;
386 	u32 cnt = rx->cnt;
387 	u32 idx = cnt & rx->mask;
388 	u32 work_done = 0;
389 	u64 bytes = 0;
390 
391 	desc = rx->desc.desc_ring + idx;
392 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
393 	       work_done < budget) {
394 		netif_info(priv, rx_status, priv->dev,
395 			   "[%d] idx=%d desc=%p desc->flags_seq=0x%x\n",
396 			   rx->q_num, idx, desc, desc->flags_seq);
397 		netif_info(priv, rx_status, priv->dev,
398 			   "[%d] seqno=%d rx->desc.seqno=%d\n",
399 			   rx->q_num, GVE_SEQNO(desc->flags_seq),
400 			   rx->desc.seqno);
401 		bytes += be16_to_cpu(desc->len) - GVE_RX_PAD;
402 		if (!gve_rx(rx, desc, feat, idx))
403 			gve_schedule_reset(priv);
404 		cnt++;
405 		idx = cnt & rx->mask;
406 		desc = rx->desc.desc_ring + idx;
407 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
408 		work_done++;
409 	}
410 
411 	if (!work_done)
412 		return false;
413 
414 	u64_stats_update_begin(&rx->statss);
415 	rx->rpackets += work_done;
416 	rx->rbytes += bytes;
417 	u64_stats_update_end(&rx->statss);
418 	rx->cnt = cnt;
419 	rx->fill_cnt += work_done;
420 
421 	gve_rx_write_doorbell(priv, rx);
422 	return gve_rx_work_pending(rx);
423 }
424 
425 bool gve_rx_poll(struct gve_notify_block *block, int budget)
426 {
427 	struct gve_rx_ring *rx = block->rx;
428 	netdev_features_t feat;
429 	bool repoll = false;
430 
431 	feat = block->napi.dev->features;
432 
433 	/* If budget is 0, do all the work */
434 	if (budget == 0)
435 		budget = INT_MAX;
436 
437 	if (budget > 0)
438 		repoll |= gve_clean_rx_done(rx, budget, feat);
439 	else
440 		repoll |= gve_rx_work_pending(rx);
441 	return repoll;
442 }
443