xref: /linux/drivers/net/ethernet/google/gve/gve_rx.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/etherdevice.h>
11 #include <linux/filter.h>
12 #include <net/xdp.h>
13 #include <net/xdp_sock_drv.h>
14 
15 static void gve_rx_free_buffer(struct device *dev,
16 			       struct gve_rx_slot_page_info *page_info,
17 			       union gve_rx_data_slot *data_slot)
18 {
19 	dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) &
20 				      GVE_DATA_SLOT_ADDR_PAGE_MASK);
21 
22 	page_ref_sub(page_info->page, page_info->pagecnt_bias - 1);
23 	gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE);
24 }
25 
26 static void gve_rx_unfill_pages(struct gve_priv *priv,
27 				struct gve_rx_ring *rx,
28 				struct gve_rx_alloc_rings_cfg *cfg)
29 {
30 	u32 slots = rx->mask + 1;
31 	int i;
32 
33 	if (!rx->data.page_info)
34 		return;
35 
36 	if (rx->data.raw_addressing) {
37 		for (i = 0; i < slots; i++)
38 			gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i],
39 					   &rx->data.data_ring[i]);
40 	} else {
41 		for (i = 0; i < slots; i++)
42 			page_ref_sub(rx->data.page_info[i].page,
43 				     rx->data.page_info[i].pagecnt_bias - 1);
44 
45 		for (i = 0; i < rx->qpl_copy_pool_mask + 1; i++) {
46 			page_ref_sub(rx->qpl_copy_pool[i].page,
47 				     rx->qpl_copy_pool[i].pagecnt_bias - 1);
48 			put_page(rx->qpl_copy_pool[i].page);
49 		}
50 	}
51 	kvfree(rx->data.page_info);
52 	rx->data.page_info = NULL;
53 }
54 
55 static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx)
56 {
57 	ctx->skb_head = NULL;
58 	ctx->skb_tail = NULL;
59 	ctx->total_size = 0;
60 	ctx->frag_cnt = 0;
61 	ctx->drop_pkt = false;
62 }
63 
64 static void gve_rx_init_ring_state_gqi(struct gve_rx_ring *rx)
65 {
66 	rx->desc.seqno = 1;
67 	rx->cnt = 0;
68 	gve_rx_ctx_clear(&rx->ctx);
69 }
70 
71 static void gve_rx_reset_ring_gqi(struct gve_priv *priv, int idx)
72 {
73 	struct gve_rx_ring *rx = &priv->rx[idx];
74 	const u32 slots = priv->rx_desc_cnt;
75 	size_t size;
76 
77 	/* Reset desc ring */
78 	if (rx->desc.desc_ring) {
79 		size = slots * sizeof(rx->desc.desc_ring[0]);
80 		memset(rx->desc.desc_ring, 0, size);
81 	}
82 
83 	/* Reset q_resources */
84 	if (rx->q_resources)
85 		memset(rx->q_resources, 0, sizeof(*rx->q_resources));
86 
87 	gve_rx_init_ring_state_gqi(rx);
88 }
89 
90 void gve_rx_stop_ring_gqi(struct gve_priv *priv, int idx)
91 {
92 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
93 
94 	if (!gve_rx_was_added_to_block(priv, idx))
95 		return;
96 
97 	gve_remove_napi(priv, ntfy_idx);
98 	gve_rx_remove_from_block(priv, idx);
99 	gve_rx_reset_ring_gqi(priv, idx);
100 }
101 
102 void gve_rx_free_ring_gqi(struct gve_priv *priv, struct gve_rx_ring *rx,
103 			  struct gve_rx_alloc_rings_cfg *cfg)
104 {
105 	struct device *dev = &priv->pdev->dev;
106 	u32 slots = rx->mask + 1;
107 	int idx = rx->q_num;
108 	size_t bytes;
109 	u32 qpl_id;
110 
111 	if (rx->desc.desc_ring) {
112 		bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
113 		dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus);
114 		rx->desc.desc_ring = NULL;
115 	}
116 
117 	if (rx->q_resources) {
118 		dma_free_coherent(dev, sizeof(*rx->q_resources),
119 				  rx->q_resources, rx->q_resources_bus);
120 		rx->q_resources = NULL;
121 	}
122 
123 	gve_rx_unfill_pages(priv, rx, cfg);
124 
125 	if (rx->data.data_ring) {
126 		bytes = sizeof(*rx->data.data_ring) * slots;
127 		dma_free_coherent(dev, bytes, rx->data.data_ring,
128 				  rx->data.data_bus);
129 		rx->data.data_ring = NULL;
130 	}
131 
132 	kvfree(rx->qpl_copy_pool);
133 	rx->qpl_copy_pool = NULL;
134 
135 	if (rx->data.qpl) {
136 		qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, idx);
137 		gve_free_queue_page_list(priv, rx->data.qpl, qpl_id);
138 		rx->data.qpl = NULL;
139 	}
140 
141 	netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx);
142 }
143 
144 static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info,
145 			     dma_addr_t addr, struct page *page, __be64 *slot_addr)
146 {
147 	page_info->page = page;
148 	page_info->page_offset = 0;
149 	page_info->page_address = page_address(page);
150 	*slot_addr = cpu_to_be64(addr);
151 	/* The page already has 1 ref */
152 	page_ref_add(page, INT_MAX - 1);
153 	page_info->pagecnt_bias = INT_MAX;
154 }
155 
156 static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev,
157 			       struct gve_rx_slot_page_info *page_info,
158 			       union gve_rx_data_slot *data_slot,
159 			       struct gve_rx_ring *rx)
160 {
161 	struct page *page;
162 	dma_addr_t dma;
163 	int err;
164 
165 	err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE,
166 			     GFP_ATOMIC);
167 	if (err) {
168 		u64_stats_update_begin(&rx->statss);
169 		rx->rx_buf_alloc_fail++;
170 		u64_stats_update_end(&rx->statss);
171 		return err;
172 	}
173 
174 	gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr);
175 	return 0;
176 }
177 
178 static int gve_rx_prefill_pages(struct gve_rx_ring *rx,
179 				struct gve_rx_alloc_rings_cfg *cfg)
180 {
181 	struct gve_priv *priv = rx->gve;
182 	u32 slots;
183 	int err;
184 	int i;
185 	int j;
186 
187 	/* Allocate one page per Rx queue slot. Each page is split into two
188 	 * packet buffers, when possible we "page flip" between the two.
189 	 */
190 	slots = rx->mask + 1;
191 
192 	rx->data.page_info = kvzalloc(slots *
193 				      sizeof(*rx->data.page_info), GFP_KERNEL);
194 	if (!rx->data.page_info)
195 		return -ENOMEM;
196 
197 	for (i = 0; i < slots; i++) {
198 		if (!rx->data.raw_addressing) {
199 			struct page *page = rx->data.qpl->pages[i];
200 			dma_addr_t addr = i * PAGE_SIZE;
201 
202 			gve_setup_rx_buffer(&rx->data.page_info[i], addr, page,
203 					    &rx->data.data_ring[i].qpl_offset);
204 			continue;
205 		}
206 		err = gve_rx_alloc_buffer(priv, &priv->pdev->dev,
207 					  &rx->data.page_info[i],
208 					  &rx->data.data_ring[i], rx);
209 		if (err)
210 			goto alloc_err_rda;
211 	}
212 
213 	if (!rx->data.raw_addressing) {
214 		for (j = 0; j < rx->qpl_copy_pool_mask + 1; j++) {
215 			struct page *page = alloc_page(GFP_KERNEL);
216 
217 			if (!page) {
218 				err = -ENOMEM;
219 				goto alloc_err_qpl;
220 			}
221 
222 			rx->qpl_copy_pool[j].page = page;
223 			rx->qpl_copy_pool[j].page_offset = 0;
224 			rx->qpl_copy_pool[j].page_address = page_address(page);
225 
226 			/* The page already has 1 ref. */
227 			page_ref_add(page, INT_MAX - 1);
228 			rx->qpl_copy_pool[j].pagecnt_bias = INT_MAX;
229 		}
230 	}
231 
232 	return slots;
233 
234 alloc_err_qpl:
235 	/* Fully free the copy pool pages. */
236 	while (j--) {
237 		page_ref_sub(rx->qpl_copy_pool[j].page,
238 			     rx->qpl_copy_pool[j].pagecnt_bias - 1);
239 		put_page(rx->qpl_copy_pool[j].page);
240 	}
241 
242 	/* Do not fully free QPL pages - only remove the bias added in this
243 	 * function with gve_setup_rx_buffer.
244 	 */
245 	while (i--)
246 		page_ref_sub(rx->data.page_info[i].page,
247 			     rx->data.page_info[i].pagecnt_bias - 1);
248 
249 	return err;
250 
251 alloc_err_rda:
252 	while (i--)
253 		gve_rx_free_buffer(&priv->pdev->dev,
254 				   &rx->data.page_info[i],
255 				   &rx->data.data_ring[i]);
256 	return err;
257 }
258 
259 void gve_rx_start_ring_gqi(struct gve_priv *priv, int idx)
260 {
261 	int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
262 
263 	gve_rx_add_to_block(priv, idx);
264 	gve_add_napi(priv, ntfy_idx, gve_napi_poll);
265 }
266 
267 int gve_rx_alloc_ring_gqi(struct gve_priv *priv,
268 			  struct gve_rx_alloc_rings_cfg *cfg,
269 			  struct gve_rx_ring *rx,
270 			  int idx)
271 {
272 	struct device *hdev = &priv->pdev->dev;
273 	u32 slots = cfg->ring_size;
274 	int filled_pages;
275 	int qpl_page_cnt;
276 	u32 qpl_id = 0;
277 	size_t bytes;
278 	int err;
279 
280 	netif_dbg(priv, drv, priv->dev, "allocating rx ring\n");
281 	/* Make sure everything is zeroed to start with */
282 	memset(rx, 0, sizeof(*rx));
283 
284 	rx->gve = priv;
285 	rx->q_num = idx;
286 
287 	rx->mask = slots - 1;
288 	rx->data.raw_addressing = cfg->raw_addressing;
289 
290 	/* alloc rx data ring */
291 	bytes = sizeof(*rx->data.data_ring) * slots;
292 	rx->data.data_ring = dma_alloc_coherent(hdev, bytes,
293 						&rx->data.data_bus,
294 						GFP_KERNEL);
295 	if (!rx->data.data_ring)
296 		return -ENOMEM;
297 
298 	rx->qpl_copy_pool_mask = min_t(u32, U32_MAX, slots * 2) - 1;
299 	rx->qpl_copy_pool_head = 0;
300 	rx->qpl_copy_pool = kvcalloc(rx->qpl_copy_pool_mask + 1,
301 				     sizeof(rx->qpl_copy_pool[0]),
302 				     GFP_KERNEL);
303 
304 	if (!rx->qpl_copy_pool) {
305 		err = -ENOMEM;
306 		goto abort_with_slots;
307 	}
308 
309 	if (!rx->data.raw_addressing) {
310 		qpl_id = gve_get_rx_qpl_id(cfg->qcfg_tx, rx->q_num);
311 		qpl_page_cnt = cfg->ring_size;
312 
313 		rx->data.qpl = gve_alloc_queue_page_list(priv, qpl_id,
314 							 qpl_page_cnt);
315 		if (!rx->data.qpl) {
316 			err = -ENOMEM;
317 			goto abort_with_copy_pool;
318 		}
319 	}
320 
321 	filled_pages = gve_rx_prefill_pages(rx, cfg);
322 	if (filled_pages < 0) {
323 		err = -ENOMEM;
324 		goto abort_with_qpl;
325 	}
326 	rx->fill_cnt = filled_pages;
327 	/* Ensure data ring slots (packet buffers) are visible. */
328 	dma_wmb();
329 
330 	/* Alloc gve_queue_resources */
331 	rx->q_resources =
332 		dma_alloc_coherent(hdev,
333 				   sizeof(*rx->q_resources),
334 				   &rx->q_resources_bus,
335 				   GFP_KERNEL);
336 	if (!rx->q_resources) {
337 		err = -ENOMEM;
338 		goto abort_filled;
339 	}
340 	netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx,
341 		  (unsigned long)rx->data.data_bus);
342 
343 	/* alloc rx desc ring */
344 	bytes = sizeof(struct gve_rx_desc) * cfg->ring_size;
345 	rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus,
346 						GFP_KERNEL);
347 	if (!rx->desc.desc_ring) {
348 		err = -ENOMEM;
349 		goto abort_with_q_resources;
350 	}
351 	rx->db_threshold = slots / 2;
352 	gve_rx_init_ring_state_gqi(rx);
353 
354 	rx->packet_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
355 	gve_rx_ctx_clear(&rx->ctx);
356 
357 	return 0;
358 
359 abort_with_q_resources:
360 	dma_free_coherent(hdev, sizeof(*rx->q_resources),
361 			  rx->q_resources, rx->q_resources_bus);
362 	rx->q_resources = NULL;
363 abort_filled:
364 	gve_rx_unfill_pages(priv, rx, cfg);
365 abort_with_qpl:
366 	if (!rx->data.raw_addressing) {
367 		gve_free_queue_page_list(priv, rx->data.qpl, qpl_id);
368 		rx->data.qpl = NULL;
369 	}
370 abort_with_copy_pool:
371 	kvfree(rx->qpl_copy_pool);
372 	rx->qpl_copy_pool = NULL;
373 abort_with_slots:
374 	bytes = sizeof(*rx->data.data_ring) * slots;
375 	dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus);
376 	rx->data.data_ring = NULL;
377 
378 	return err;
379 }
380 
381 int gve_rx_alloc_rings_gqi(struct gve_priv *priv,
382 			   struct gve_rx_alloc_rings_cfg *cfg)
383 {
384 	struct gve_rx_ring *rx;
385 	int err = 0;
386 	int i, j;
387 
388 	rx = kvcalloc(cfg->qcfg->max_queues, sizeof(struct gve_rx_ring),
389 		      GFP_KERNEL);
390 	if (!rx)
391 		return -ENOMEM;
392 
393 	for (i = 0; i < cfg->qcfg->num_queues; i++) {
394 		err = gve_rx_alloc_ring_gqi(priv, cfg, &rx[i], i);
395 		if (err) {
396 			netif_err(priv, drv, priv->dev,
397 				  "Failed to alloc rx ring=%d: err=%d\n",
398 				  i, err);
399 			goto cleanup;
400 		}
401 	}
402 
403 	cfg->rx = rx;
404 	return 0;
405 
406 cleanup:
407 	for (j = 0; j < i; j++)
408 		gve_rx_free_ring_gqi(priv, &rx[j], cfg);
409 	kvfree(rx);
410 	return err;
411 }
412 
413 void gve_rx_free_rings_gqi(struct gve_priv *priv,
414 			   struct gve_rx_alloc_rings_cfg *cfg)
415 {
416 	struct gve_rx_ring *rx = cfg->rx;
417 	int i;
418 
419 	if (!rx)
420 		return;
421 
422 	for (i = 0; i < cfg->qcfg->num_queues;  i++)
423 		gve_rx_free_ring_gqi(priv, &rx[i], cfg);
424 
425 	kvfree(rx);
426 	cfg->rx = NULL;
427 }
428 
429 void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx)
430 {
431 	u32 db_idx = be32_to_cpu(rx->q_resources->db_index);
432 
433 	iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]);
434 }
435 
436 static enum pkt_hash_types gve_rss_type(__be16 pkt_flags)
437 {
438 	if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP)))
439 		return PKT_HASH_TYPE_L4;
440 	if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6))
441 		return PKT_HASH_TYPE_L3;
442 	return PKT_HASH_TYPE_L2;
443 }
444 
445 static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi,
446 					struct gve_rx_slot_page_info *page_info,
447 					unsigned int truesize, u16 len,
448 					struct gve_rx_ctx *ctx)
449 {
450 	u32 offset = page_info->page_offset + page_info->pad;
451 	struct sk_buff *skb = ctx->skb_tail;
452 	int num_frags = 0;
453 
454 	if (!skb) {
455 		skb = napi_get_frags(napi);
456 		if (unlikely(!skb))
457 			return NULL;
458 
459 		ctx->skb_head = skb;
460 		ctx->skb_tail = skb;
461 	} else {
462 		num_frags = skb_shinfo(ctx->skb_tail)->nr_frags;
463 		if (num_frags == MAX_SKB_FRAGS) {
464 			skb = napi_alloc_skb(napi, 0);
465 			if (!skb)
466 				return NULL;
467 
468 			// We will never chain more than two SKBs: 2 * 16 * 2k > 64k
469 			// which is why we do not need to chain by using skb->next
470 			skb_shinfo(ctx->skb_tail)->frag_list = skb;
471 
472 			ctx->skb_tail = skb;
473 			num_frags = 0;
474 		}
475 	}
476 
477 	if (skb != ctx->skb_head) {
478 		ctx->skb_head->len += len;
479 		ctx->skb_head->data_len += len;
480 		ctx->skb_head->truesize += truesize;
481 	}
482 	skb_add_rx_frag(skb, num_frags, page_info->page,
483 			offset, len, truesize);
484 
485 	return ctx->skb_head;
486 }
487 
488 static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr)
489 {
490 	const __be64 offset = cpu_to_be64(GVE_DEFAULT_RX_BUFFER_OFFSET);
491 
492 	/* "flip" to other packet buffer on this page */
493 	page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
494 	*(slot_addr) ^= offset;
495 }
496 
497 static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info)
498 {
499 	int pagecount = page_count(page_info->page);
500 
501 	/* This page is not being used by any SKBs - reuse */
502 	if (pagecount == page_info->pagecnt_bias)
503 		return 1;
504 	/* This page is still being used by an SKB - we can't reuse */
505 	else if (pagecount > page_info->pagecnt_bias)
506 		return 0;
507 	WARN(pagecount < page_info->pagecnt_bias,
508 	     "Pagecount should never be less than the bias.");
509 	return -1;
510 }
511 
512 static struct sk_buff *
513 gve_rx_raw_addressing(struct device *dev, struct net_device *netdev,
514 		      struct gve_rx_slot_page_info *page_info, u16 len,
515 		      struct napi_struct *napi,
516 		      union gve_rx_data_slot *data_slot,
517 		      u16 packet_buffer_size, struct gve_rx_ctx *ctx)
518 {
519 	struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx);
520 
521 	if (!skb)
522 		return NULL;
523 
524 	/* Optimistically stop the kernel from freeing the page.
525 	 * We will check again in refill to determine if we need to alloc a
526 	 * new page.
527 	 */
528 	gve_dec_pagecnt_bias(page_info);
529 
530 	return skb;
531 }
532 
533 static struct sk_buff *gve_rx_copy_to_pool(struct gve_rx_ring *rx,
534 					   struct gve_rx_slot_page_info *page_info,
535 					   u16 len, struct napi_struct *napi)
536 {
537 	u32 pool_idx = rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask;
538 	void *src = page_info->page_address + page_info->page_offset;
539 	struct gve_rx_slot_page_info *copy_page_info;
540 	struct gve_rx_ctx *ctx = &rx->ctx;
541 	bool alloc_page = false;
542 	struct sk_buff *skb;
543 	void *dst;
544 
545 	copy_page_info = &rx->qpl_copy_pool[pool_idx];
546 	if (!copy_page_info->can_flip) {
547 		int recycle = gve_rx_can_recycle_buffer(copy_page_info);
548 
549 		if (unlikely(recycle < 0)) {
550 			gve_schedule_reset(rx->gve);
551 			return NULL;
552 		}
553 		alloc_page = !recycle;
554 	}
555 
556 	if (alloc_page) {
557 		struct gve_rx_slot_page_info alloc_page_info;
558 		struct page *page;
559 
560 		/* The least recently used page turned out to be
561 		 * still in use by the kernel. Ignoring it and moving
562 		 * on alleviates head-of-line blocking.
563 		 */
564 		rx->qpl_copy_pool_head++;
565 
566 		page = alloc_page(GFP_ATOMIC);
567 		if (!page)
568 			return NULL;
569 
570 		alloc_page_info.page = page;
571 		alloc_page_info.page_offset = 0;
572 		alloc_page_info.page_address = page_address(page);
573 		alloc_page_info.pad = page_info->pad;
574 
575 		memcpy(alloc_page_info.page_address, src, page_info->pad + len);
576 		skb = gve_rx_add_frags(napi, &alloc_page_info,
577 				       PAGE_SIZE,
578 				       len, ctx);
579 
580 		u64_stats_update_begin(&rx->statss);
581 		rx->rx_frag_copy_cnt++;
582 		rx->rx_frag_alloc_cnt++;
583 		u64_stats_update_end(&rx->statss);
584 
585 		return skb;
586 	}
587 
588 	dst = copy_page_info->page_address + copy_page_info->page_offset;
589 	memcpy(dst, src, page_info->pad + len);
590 	copy_page_info->pad = page_info->pad;
591 
592 	skb = gve_rx_add_frags(napi, copy_page_info,
593 			       rx->packet_buffer_size, len, ctx);
594 	if (unlikely(!skb))
595 		return NULL;
596 
597 	gve_dec_pagecnt_bias(copy_page_info);
598 	copy_page_info->page_offset ^= GVE_DEFAULT_RX_BUFFER_OFFSET;
599 
600 	if (copy_page_info->can_flip) {
601 		/* We have used both halves of this copy page, it
602 		 * is time for it to go to the back of the queue.
603 		 */
604 		copy_page_info->can_flip = false;
605 		rx->qpl_copy_pool_head++;
606 		prefetch(rx->qpl_copy_pool[rx->qpl_copy_pool_head & rx->qpl_copy_pool_mask].page);
607 	} else {
608 		copy_page_info->can_flip = true;
609 	}
610 
611 	u64_stats_update_begin(&rx->statss);
612 	rx->rx_frag_copy_cnt++;
613 	u64_stats_update_end(&rx->statss);
614 
615 	return skb;
616 }
617 
618 static struct sk_buff *
619 gve_rx_qpl(struct device *dev, struct net_device *netdev,
620 	   struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info,
621 	   u16 len, struct napi_struct *napi,
622 	   union gve_rx_data_slot *data_slot)
623 {
624 	struct gve_rx_ctx *ctx = &rx->ctx;
625 	struct sk_buff *skb;
626 
627 	/* if raw_addressing mode is not enabled gvnic can only receive into
628 	 * registered segments. If the buffer can't be recycled, our only
629 	 * choice is to copy the data out of it so that we can return it to the
630 	 * device.
631 	 */
632 	if (page_info->can_flip) {
633 		skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx);
634 		/* No point in recycling if we didn't get the skb */
635 		if (skb) {
636 			/* Make sure that the page isn't freed. */
637 			gve_dec_pagecnt_bias(page_info);
638 			gve_rx_flip_buff(page_info, &data_slot->qpl_offset);
639 		}
640 	} else {
641 		skb = gve_rx_copy_to_pool(rx, page_info, len, napi);
642 	}
643 	return skb;
644 }
645 
646 static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx,
647 				  struct gve_rx_slot_page_info *page_info, struct napi_struct *napi,
648 				  u16 len, union gve_rx_data_slot *data_slot,
649 				  bool is_only_frag)
650 {
651 	struct net_device *netdev = priv->dev;
652 	struct gve_rx_ctx *ctx = &rx->ctx;
653 	struct sk_buff *skb = NULL;
654 
655 	if (len <= priv->rx_copybreak && is_only_frag)  {
656 		/* Just copy small packets */
657 		skb = gve_rx_copy(netdev, napi, page_info, len);
658 		if (skb) {
659 			u64_stats_update_begin(&rx->statss);
660 			rx->rx_copied_pkt++;
661 			rx->rx_frag_copy_cnt++;
662 			rx->rx_copybreak_pkt++;
663 			u64_stats_update_end(&rx->statss);
664 		}
665 	} else {
666 		int recycle = gve_rx_can_recycle_buffer(page_info);
667 
668 		if (unlikely(recycle < 0)) {
669 			gve_schedule_reset(priv);
670 			return NULL;
671 		}
672 		page_info->can_flip = recycle;
673 		if (page_info->can_flip) {
674 			u64_stats_update_begin(&rx->statss);
675 			rx->rx_frag_flip_cnt++;
676 			u64_stats_update_end(&rx->statss);
677 		}
678 
679 		if (rx->data.raw_addressing) {
680 			skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev,
681 						    page_info, len, napi,
682 						    data_slot,
683 						    rx->packet_buffer_size, ctx);
684 		} else {
685 			skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx,
686 					 page_info, len, napi, data_slot);
687 		}
688 	}
689 	return skb;
690 }
691 
692 static int gve_xsk_pool_redirect(struct net_device *dev,
693 				 struct gve_rx_ring *rx,
694 				 void *data, int len,
695 				 struct bpf_prog *xdp_prog)
696 {
697 	struct xdp_buff *xdp;
698 	int err;
699 
700 	if (rx->xsk_pool->frame_len < len)
701 		return -E2BIG;
702 	xdp = xsk_buff_alloc(rx->xsk_pool);
703 	if (!xdp) {
704 		u64_stats_update_begin(&rx->statss);
705 		rx->xdp_alloc_fails++;
706 		u64_stats_update_end(&rx->statss);
707 		return -ENOMEM;
708 	}
709 	xdp->data_end = xdp->data + len;
710 	memcpy(xdp->data, data, len);
711 	err = xdp_do_redirect(dev, xdp, xdp_prog);
712 	if (err)
713 		xsk_buff_free(xdp);
714 	return err;
715 }
716 
717 static int gve_xdp_redirect(struct net_device *dev, struct gve_rx_ring *rx,
718 			    struct xdp_buff *orig, struct bpf_prog *xdp_prog)
719 {
720 	int total_len, len = orig->data_end - orig->data;
721 	int headroom = XDP_PACKET_HEADROOM;
722 	struct xdp_buff new;
723 	void *frame;
724 	int err;
725 
726 	if (rx->xsk_pool)
727 		return gve_xsk_pool_redirect(dev, rx, orig->data,
728 					     len, xdp_prog);
729 
730 	total_len = headroom + SKB_DATA_ALIGN(len) +
731 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
732 	frame = page_frag_alloc(&rx->page_cache, total_len, GFP_ATOMIC);
733 	if (!frame) {
734 		u64_stats_update_begin(&rx->statss);
735 		rx->xdp_alloc_fails++;
736 		u64_stats_update_end(&rx->statss);
737 		return -ENOMEM;
738 	}
739 	xdp_init_buff(&new, total_len, &rx->xdp_rxq);
740 	xdp_prepare_buff(&new, frame, headroom, len, false);
741 	memcpy(new.data, orig->data, len);
742 
743 	err = xdp_do_redirect(dev, &new, xdp_prog);
744 	if (err)
745 		page_frag_free(frame);
746 
747 	return err;
748 }
749 
750 static void gve_xdp_done(struct gve_priv *priv, struct gve_rx_ring *rx,
751 			 struct xdp_buff *xdp, struct bpf_prog *xprog,
752 			 int xdp_act)
753 {
754 	struct gve_tx_ring *tx;
755 	int tx_qid;
756 	int err;
757 
758 	switch (xdp_act) {
759 	case XDP_ABORTED:
760 	case XDP_DROP:
761 	default:
762 		break;
763 	case XDP_TX:
764 		tx_qid = gve_xdp_tx_queue_id(priv, rx->q_num);
765 		tx = &priv->tx[tx_qid];
766 		spin_lock(&tx->xdp_lock);
767 		err = gve_xdp_xmit_one(priv, tx, xdp->data,
768 				       xdp->data_end - xdp->data, NULL);
769 		spin_unlock(&tx->xdp_lock);
770 
771 		if (unlikely(err)) {
772 			u64_stats_update_begin(&rx->statss);
773 			rx->xdp_tx_errors++;
774 			u64_stats_update_end(&rx->statss);
775 		}
776 		break;
777 	case XDP_REDIRECT:
778 		err = gve_xdp_redirect(priv->dev, rx, xdp, xprog);
779 
780 		if (unlikely(err)) {
781 			u64_stats_update_begin(&rx->statss);
782 			rx->xdp_redirect_errors++;
783 			u64_stats_update_end(&rx->statss);
784 		}
785 		break;
786 	}
787 	u64_stats_update_begin(&rx->statss);
788 	if ((u32)xdp_act < GVE_XDP_ACTIONS)
789 		rx->xdp_actions[xdp_act]++;
790 	u64_stats_update_end(&rx->statss);
791 }
792 
793 #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x))
794 static void gve_rx(struct gve_rx_ring *rx, netdev_features_t feat,
795 		   struct gve_rx_desc *desc, u32 idx,
796 		   struct gve_rx_cnts *cnts)
797 {
798 	bool is_last_frag = !GVE_PKTCONT_BIT_IS_SET(desc->flags_seq);
799 	struct gve_rx_slot_page_info *page_info;
800 	u16 frag_size = be16_to_cpu(desc->len);
801 	struct gve_rx_ctx *ctx = &rx->ctx;
802 	union gve_rx_data_slot *data_slot;
803 	struct gve_priv *priv = rx->gve;
804 	struct sk_buff *skb = NULL;
805 	struct bpf_prog *xprog;
806 	struct xdp_buff xdp;
807 	dma_addr_t page_bus;
808 	void *va;
809 
810 	u16 len = frag_size;
811 	struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
812 	bool is_first_frag = ctx->frag_cnt == 0;
813 
814 	bool is_only_frag = is_first_frag && is_last_frag;
815 
816 	if (unlikely(ctx->drop_pkt))
817 		goto finish_frag;
818 
819 	if (desc->flags_seq & GVE_RXF_ERR) {
820 		ctx->drop_pkt = true;
821 		cnts->desc_err_pkt_cnt++;
822 		napi_free_frags(napi);
823 		goto finish_frag;
824 	}
825 
826 	if (unlikely(frag_size > rx->packet_buffer_size)) {
827 		netdev_warn(priv->dev, "Unexpected frag size %d, can't exceed %d, scheduling reset",
828 			    frag_size, rx->packet_buffer_size);
829 		ctx->drop_pkt = true;
830 		napi_free_frags(napi);
831 		gve_schedule_reset(rx->gve);
832 		goto finish_frag;
833 	}
834 
835 	/* Prefetch two packet buffers ahead, we will need it soon. */
836 	page_info = &rx->data.page_info[(idx + 2) & rx->mask];
837 	va = page_info->page_address + page_info->page_offset;
838 	prefetch(page_info->page); /* Kernel page struct. */
839 	prefetch(va);              /* Packet header. */
840 	prefetch(va + 64);         /* Next cacheline too. */
841 
842 	page_info = &rx->data.page_info[idx];
843 	data_slot = &rx->data.data_ring[idx];
844 	page_bus = (rx->data.raw_addressing) ?
845 		be64_to_cpu(data_slot->addr) - page_info->page_offset :
846 		rx->data.qpl->page_buses[idx];
847 	dma_sync_single_for_cpu(&priv->pdev->dev, page_bus,
848 				PAGE_SIZE, DMA_FROM_DEVICE);
849 	page_info->pad = is_first_frag ? GVE_RX_PAD : 0;
850 	len -= page_info->pad;
851 	frag_size -= page_info->pad;
852 
853 	xprog = READ_ONCE(priv->xdp_prog);
854 	if (xprog && is_only_frag) {
855 		void *old_data;
856 		int xdp_act;
857 
858 		xdp_init_buff(&xdp, rx->packet_buffer_size, &rx->xdp_rxq);
859 		xdp_prepare_buff(&xdp, page_info->page_address +
860 				 page_info->page_offset, GVE_RX_PAD,
861 				 len, false);
862 		old_data = xdp.data;
863 		xdp_act = bpf_prog_run_xdp(xprog, &xdp);
864 		if (xdp_act != XDP_PASS) {
865 			gve_xdp_done(priv, rx, &xdp, xprog, xdp_act);
866 			ctx->total_size += frag_size;
867 			goto finish_ok_pkt;
868 		}
869 
870 		page_info->pad += xdp.data - old_data;
871 		len = xdp.data_end - xdp.data;
872 
873 		u64_stats_update_begin(&rx->statss);
874 		rx->xdp_actions[XDP_PASS]++;
875 		u64_stats_update_end(&rx->statss);
876 	}
877 
878 	skb = gve_rx_skb(priv, rx, page_info, napi, len,
879 			 data_slot, is_only_frag);
880 	if (!skb) {
881 		u64_stats_update_begin(&rx->statss);
882 		rx->rx_skb_alloc_fail++;
883 		u64_stats_update_end(&rx->statss);
884 
885 		napi_free_frags(napi);
886 		ctx->drop_pkt = true;
887 		goto finish_frag;
888 	}
889 	ctx->total_size += frag_size;
890 
891 	if (is_first_frag) {
892 		if (likely(feat & NETIF_F_RXCSUM)) {
893 			/* NIC passes up the partial sum */
894 			if (desc->csum)
895 				skb->ip_summed = CHECKSUM_COMPLETE;
896 			else
897 				skb->ip_summed = CHECKSUM_NONE;
898 			skb->csum = csum_unfold(desc->csum);
899 		}
900 
901 		/* parse flags & pass relevant info up */
902 		if (likely(feat & NETIF_F_RXHASH) &&
903 		    gve_needs_rss(desc->flags_seq))
904 			skb_set_hash(skb, be32_to_cpu(desc->rss_hash),
905 				     gve_rss_type(desc->flags_seq));
906 	}
907 
908 	if (is_last_frag) {
909 		skb_record_rx_queue(skb, rx->q_num);
910 		if (skb_is_nonlinear(skb))
911 			napi_gro_frags(napi);
912 		else
913 			napi_gro_receive(napi, skb);
914 		goto finish_ok_pkt;
915 	}
916 
917 	goto finish_frag;
918 
919 finish_ok_pkt:
920 	cnts->ok_pkt_bytes += ctx->total_size;
921 	cnts->ok_pkt_cnt++;
922 finish_frag:
923 	ctx->frag_cnt++;
924 	if (is_last_frag) {
925 		cnts->total_pkt_cnt++;
926 		cnts->cont_pkt_cnt += (ctx->frag_cnt > 1);
927 		gve_rx_ctx_clear(ctx);
928 	}
929 }
930 
931 bool gve_rx_work_pending(struct gve_rx_ring *rx)
932 {
933 	struct gve_rx_desc *desc;
934 	__be16 flags_seq;
935 	u32 next_idx;
936 
937 	next_idx = rx->cnt & rx->mask;
938 	desc = rx->desc.desc_ring + next_idx;
939 
940 	flags_seq = desc->flags_seq;
941 
942 	return (GVE_SEQNO(flags_seq) == rx->desc.seqno);
943 }
944 
945 static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx)
946 {
947 	int refill_target = rx->mask + 1;
948 	u32 fill_cnt = rx->fill_cnt;
949 
950 	while (fill_cnt - rx->cnt < refill_target) {
951 		struct gve_rx_slot_page_info *page_info;
952 		u32 idx = fill_cnt & rx->mask;
953 
954 		page_info = &rx->data.page_info[idx];
955 		if (page_info->can_flip) {
956 			/* The other half of the page is free because it was
957 			 * free when we processed the descriptor. Flip to it.
958 			 */
959 			union gve_rx_data_slot *data_slot =
960 						&rx->data.data_ring[idx];
961 
962 			gve_rx_flip_buff(page_info, &data_slot->addr);
963 			page_info->can_flip = 0;
964 		} else {
965 			/* It is possible that the networking stack has already
966 			 * finished processing all outstanding packets in the buffer
967 			 * and it can be reused.
968 			 * Flipping is unnecessary here - if the networking stack still
969 			 * owns half the page it is impossible to tell which half. Either
970 			 * the whole page is free or it needs to be replaced.
971 			 */
972 			int recycle = gve_rx_can_recycle_buffer(page_info);
973 
974 			if (recycle < 0) {
975 				if (!rx->data.raw_addressing)
976 					gve_schedule_reset(priv);
977 				return false;
978 			}
979 			if (!recycle) {
980 				/* We can't reuse the buffer - alloc a new one*/
981 				union gve_rx_data_slot *data_slot =
982 						&rx->data.data_ring[idx];
983 				struct device *dev = &priv->pdev->dev;
984 				gve_rx_free_buffer(dev, page_info, data_slot);
985 				page_info->page = NULL;
986 				if (gve_rx_alloc_buffer(priv, dev, page_info,
987 							data_slot, rx)) {
988 					break;
989 				}
990 			}
991 		}
992 		fill_cnt++;
993 	}
994 	rx->fill_cnt = fill_cnt;
995 	return true;
996 }
997 
998 static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget,
999 			     netdev_features_t feat)
1000 {
1001 	u64 xdp_redirects = rx->xdp_actions[XDP_REDIRECT];
1002 	u64 xdp_txs = rx->xdp_actions[XDP_TX];
1003 	struct gve_rx_ctx *ctx = &rx->ctx;
1004 	struct gve_priv *priv = rx->gve;
1005 	struct gve_rx_cnts cnts = {0};
1006 	struct gve_rx_desc *next_desc;
1007 	u32 idx = rx->cnt & rx->mask;
1008 	u32 work_done = 0;
1009 
1010 	struct gve_rx_desc *desc = &rx->desc.desc_ring[idx];
1011 
1012 	// Exceed budget only if (and till) the inflight packet is consumed.
1013 	while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) &&
1014 	       (work_done < budget || ctx->frag_cnt)) {
1015 		next_desc = &rx->desc.desc_ring[(idx + 1) & rx->mask];
1016 		prefetch(next_desc);
1017 
1018 		gve_rx(rx, feat, desc, idx, &cnts);
1019 
1020 		rx->cnt++;
1021 		idx = rx->cnt & rx->mask;
1022 		desc = &rx->desc.desc_ring[idx];
1023 		rx->desc.seqno = gve_next_seqno(rx->desc.seqno);
1024 		work_done++;
1025 	}
1026 
1027 	// The device will only send whole packets.
1028 	if (unlikely(ctx->frag_cnt)) {
1029 		struct napi_struct *napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
1030 
1031 		napi_free_frags(napi);
1032 		gve_rx_ctx_clear(&rx->ctx);
1033 		netdev_warn(priv->dev, "Unexpected seq number %d with incomplete packet, expected %d, scheduling reset",
1034 			    GVE_SEQNO(desc->flags_seq), rx->desc.seqno);
1035 		gve_schedule_reset(rx->gve);
1036 	}
1037 
1038 	if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold)
1039 		return 0;
1040 
1041 	if (work_done) {
1042 		u64_stats_update_begin(&rx->statss);
1043 		rx->rpackets += cnts.ok_pkt_cnt;
1044 		rx->rbytes += cnts.ok_pkt_bytes;
1045 		rx->rx_cont_packet_cnt += cnts.cont_pkt_cnt;
1046 		rx->rx_desc_err_dropped_pkt += cnts.desc_err_pkt_cnt;
1047 		u64_stats_update_end(&rx->statss);
1048 	}
1049 
1050 	if (xdp_txs != rx->xdp_actions[XDP_TX])
1051 		gve_xdp_tx_flush(priv, rx->q_num);
1052 
1053 	if (xdp_redirects != rx->xdp_actions[XDP_REDIRECT])
1054 		xdp_do_flush();
1055 
1056 	/* restock ring slots */
1057 	if (!rx->data.raw_addressing) {
1058 		/* In QPL mode buffs are refilled as the desc are processed */
1059 		rx->fill_cnt += work_done;
1060 	} else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1061 		/* In raw addressing mode buffs are only refilled if the avail
1062 		 * falls below a threshold.
1063 		 */
1064 		if (!gve_rx_refill_buffers(priv, rx))
1065 			return 0;
1066 
1067 		/* If we were not able to completely refill buffers, we'll want
1068 		 * to schedule this queue for work again to refill buffers.
1069 		 */
1070 		if (rx->fill_cnt - rx->cnt <= rx->db_threshold) {
1071 			gve_rx_write_doorbell(priv, rx);
1072 			return budget;
1073 		}
1074 	}
1075 
1076 	gve_rx_write_doorbell(priv, rx);
1077 	return cnts.total_pkt_cnt;
1078 }
1079 
1080 int gve_rx_poll(struct gve_notify_block *block, int budget)
1081 {
1082 	struct gve_rx_ring *rx = block->rx;
1083 	netdev_features_t feat;
1084 	int work_done = 0;
1085 
1086 	feat = block->napi.dev->features;
1087 
1088 	if (budget > 0)
1089 		work_done = gve_clean_rx_done(rx, budget, feat);
1090 
1091 	return work_done;
1092 }
1093