xref: /linux/drivers/net/ethernet/google/gve/gve_main.c (revision a202f24b08587021a39eade5aa5444d5714689fb)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2024 Google LLC
5  */
6 
7 #include <linux/bpf.h>
8 #include <linux/cpumask.h>
9 #include <linux/etherdevice.h>
10 #include <linux/filter.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/sched.h>
16 #include <linux/timer.h>
17 #include <linux/workqueue.h>
18 #include <linux/utsname.h>
19 #include <linux/version.h>
20 #include <net/netdev_queues.h>
21 #include <net/sch_generic.h>
22 #include <net/xdp_sock_drv.h>
23 #include "gve.h"
24 #include "gve_dqo.h"
25 #include "gve_adminq.h"
26 #include "gve_register.h"
27 #include "gve_utils.h"
28 
29 #define GVE_DEFAULT_RX_COPYBREAK	(256)
30 
31 #define DEFAULT_MSG_LEVEL	(NETIF_MSG_DRV | NETIF_MSG_LINK)
32 #define GVE_VERSION		"1.0.0"
33 #define GVE_VERSION_PREFIX	"GVE-"
34 
35 // Minimum amount of time between queue kicks in msec (10 seconds)
36 #define MIN_TX_TIMEOUT_GAP (1000 * 10)
37 
38 char gve_driver_name[] = "gve";
39 const char gve_version_str[] = GVE_VERSION;
40 static const char gve_version_prefix[] = GVE_VERSION_PREFIX;
41 
42 static int gve_verify_driver_compatibility(struct gve_priv *priv)
43 {
44 	int err;
45 	struct gve_driver_info *driver_info;
46 	dma_addr_t driver_info_bus;
47 
48 	driver_info = dma_alloc_coherent(&priv->pdev->dev,
49 					 sizeof(struct gve_driver_info),
50 					 &driver_info_bus, GFP_KERNEL);
51 	if (!driver_info)
52 		return -ENOMEM;
53 
54 	*driver_info = (struct gve_driver_info) {
55 		.os_type = 1, /* Linux */
56 		.os_version_major = cpu_to_be32(LINUX_VERSION_MAJOR),
57 		.os_version_minor = cpu_to_be32(LINUX_VERSION_SUBLEVEL),
58 		.os_version_sub = cpu_to_be32(LINUX_VERSION_PATCHLEVEL),
59 		.driver_capability_flags = {
60 			cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS1),
61 			cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS2),
62 			cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS3),
63 			cpu_to_be64(GVE_DRIVER_CAPABILITY_FLAGS4),
64 		},
65 	};
66 	strscpy(driver_info->os_version_str1, utsname()->release,
67 		sizeof(driver_info->os_version_str1));
68 	strscpy(driver_info->os_version_str2, utsname()->version,
69 		sizeof(driver_info->os_version_str2));
70 
71 	err = gve_adminq_verify_driver_compatibility(priv,
72 						     sizeof(struct gve_driver_info),
73 						     driver_info_bus);
74 
75 	/* It's ok if the device doesn't support this */
76 	if (err == -EOPNOTSUPP)
77 		err = 0;
78 
79 	dma_free_coherent(&priv->pdev->dev,
80 			  sizeof(struct gve_driver_info),
81 			  driver_info, driver_info_bus);
82 	return err;
83 }
84 
85 static netdev_features_t gve_features_check(struct sk_buff *skb,
86 					    struct net_device *dev,
87 					    netdev_features_t features)
88 {
89 	struct gve_priv *priv = netdev_priv(dev);
90 
91 	if (!gve_is_gqi(priv))
92 		return gve_features_check_dqo(skb, dev, features);
93 
94 	return features;
95 }
96 
97 static netdev_tx_t gve_start_xmit(struct sk_buff *skb, struct net_device *dev)
98 {
99 	struct gve_priv *priv = netdev_priv(dev);
100 
101 	if (gve_is_gqi(priv))
102 		return gve_tx(skb, dev);
103 	else
104 		return gve_tx_dqo(skb, dev);
105 }
106 
107 static void gve_get_stats(struct net_device *dev, struct rtnl_link_stats64 *s)
108 {
109 	struct gve_priv *priv = netdev_priv(dev);
110 	unsigned int start;
111 	u64 packets, bytes;
112 	int num_tx_queues;
113 	int ring;
114 
115 	num_tx_queues = gve_num_tx_queues(priv);
116 	if (priv->rx) {
117 		for (ring = 0; ring < priv->rx_cfg.num_queues; ring++) {
118 			do {
119 				start =
120 				  u64_stats_fetch_begin(&priv->rx[ring].statss);
121 				packets = priv->rx[ring].rpackets;
122 				bytes = priv->rx[ring].rbytes;
123 			} while (u64_stats_fetch_retry(&priv->rx[ring].statss,
124 						       start));
125 			s->rx_packets += packets;
126 			s->rx_bytes += bytes;
127 		}
128 	}
129 	if (priv->tx) {
130 		for (ring = 0; ring < num_tx_queues; ring++) {
131 			do {
132 				start =
133 				  u64_stats_fetch_begin(&priv->tx[ring].statss);
134 				packets = priv->tx[ring].pkt_done;
135 				bytes = priv->tx[ring].bytes_done;
136 			} while (u64_stats_fetch_retry(&priv->tx[ring].statss,
137 						       start));
138 			s->tx_packets += packets;
139 			s->tx_bytes += bytes;
140 		}
141 	}
142 }
143 
144 static int gve_alloc_flow_rule_caches(struct gve_priv *priv)
145 {
146 	struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
147 	int err = 0;
148 
149 	if (!priv->max_flow_rules)
150 		return 0;
151 
152 	flow_rules_cache->rules_cache =
153 		kvcalloc(GVE_FLOW_RULES_CACHE_SIZE, sizeof(*flow_rules_cache->rules_cache),
154 			 GFP_KERNEL);
155 	if (!flow_rules_cache->rules_cache) {
156 		dev_err(&priv->pdev->dev, "Cannot alloc flow rules cache\n");
157 		return -ENOMEM;
158 	}
159 
160 	flow_rules_cache->rule_ids_cache =
161 		kvcalloc(GVE_FLOW_RULE_IDS_CACHE_SIZE, sizeof(*flow_rules_cache->rule_ids_cache),
162 			 GFP_KERNEL);
163 	if (!flow_rules_cache->rule_ids_cache) {
164 		dev_err(&priv->pdev->dev, "Cannot alloc flow rule ids cache\n");
165 		err = -ENOMEM;
166 		goto free_rules_cache;
167 	}
168 
169 	return 0;
170 
171 free_rules_cache:
172 	kvfree(flow_rules_cache->rules_cache);
173 	flow_rules_cache->rules_cache = NULL;
174 	return err;
175 }
176 
177 static void gve_free_flow_rule_caches(struct gve_priv *priv)
178 {
179 	struct gve_flow_rules_cache *flow_rules_cache = &priv->flow_rules_cache;
180 
181 	kvfree(flow_rules_cache->rule_ids_cache);
182 	flow_rules_cache->rule_ids_cache = NULL;
183 	kvfree(flow_rules_cache->rules_cache);
184 	flow_rules_cache->rules_cache = NULL;
185 }
186 
187 static int gve_alloc_rss_config_cache(struct gve_priv *priv)
188 {
189 	struct gve_rss_config *rss_config = &priv->rss_config;
190 
191 	if (!priv->cache_rss_config)
192 		return 0;
193 
194 	rss_config->hash_key = kcalloc(priv->rss_key_size,
195 				       sizeof(rss_config->hash_key[0]),
196 				       GFP_KERNEL);
197 	if (!rss_config->hash_key)
198 		return -ENOMEM;
199 
200 	rss_config->hash_lut = kcalloc(priv->rss_lut_size,
201 				       sizeof(rss_config->hash_lut[0]),
202 				       GFP_KERNEL);
203 	if (!rss_config->hash_lut)
204 		goto free_rss_key_cache;
205 
206 	return 0;
207 
208 free_rss_key_cache:
209 	kfree(rss_config->hash_key);
210 	rss_config->hash_key = NULL;
211 	return -ENOMEM;
212 }
213 
214 static void gve_free_rss_config_cache(struct gve_priv *priv)
215 {
216 	struct gve_rss_config *rss_config = &priv->rss_config;
217 
218 	kfree(rss_config->hash_key);
219 	kfree(rss_config->hash_lut);
220 
221 	memset(rss_config, 0, sizeof(*rss_config));
222 }
223 
224 static int gve_alloc_counter_array(struct gve_priv *priv)
225 {
226 	priv->counter_array =
227 		dma_alloc_coherent(&priv->pdev->dev,
228 				   priv->num_event_counters *
229 				   sizeof(*priv->counter_array),
230 				   &priv->counter_array_bus, GFP_KERNEL);
231 	if (!priv->counter_array)
232 		return -ENOMEM;
233 
234 	return 0;
235 }
236 
237 static void gve_free_counter_array(struct gve_priv *priv)
238 {
239 	if (!priv->counter_array)
240 		return;
241 
242 	dma_free_coherent(&priv->pdev->dev,
243 			  priv->num_event_counters *
244 			  sizeof(*priv->counter_array),
245 			  priv->counter_array, priv->counter_array_bus);
246 	priv->counter_array = NULL;
247 }
248 
249 /* NIC requests to report stats */
250 static void gve_stats_report_task(struct work_struct *work)
251 {
252 	struct gve_priv *priv = container_of(work, struct gve_priv,
253 					     stats_report_task);
254 	if (gve_get_do_report_stats(priv)) {
255 		gve_handle_report_stats(priv);
256 		gve_clear_do_report_stats(priv);
257 	}
258 }
259 
260 static void gve_stats_report_schedule(struct gve_priv *priv)
261 {
262 	if (!gve_get_probe_in_progress(priv) &&
263 	    !gve_get_reset_in_progress(priv)) {
264 		gve_set_do_report_stats(priv);
265 		queue_work(priv->gve_wq, &priv->stats_report_task);
266 	}
267 }
268 
269 static void gve_stats_report_timer(struct timer_list *t)
270 {
271 	struct gve_priv *priv = timer_container_of(priv, t,
272 						   stats_report_timer);
273 
274 	mod_timer(&priv->stats_report_timer,
275 		  round_jiffies(jiffies +
276 		  msecs_to_jiffies(priv->stats_report_timer_period)));
277 	gve_stats_report_schedule(priv);
278 }
279 
280 static int gve_alloc_stats_report(struct gve_priv *priv)
281 {
282 	int tx_stats_num, rx_stats_num;
283 
284 	tx_stats_num = (GVE_TX_STATS_REPORT_NUM + NIC_TX_STATS_REPORT_NUM) *
285 		       gve_num_tx_queues(priv);
286 	rx_stats_num = (GVE_RX_STATS_REPORT_NUM + NIC_RX_STATS_REPORT_NUM) *
287 		       priv->rx_cfg.num_queues;
288 	priv->stats_report_len = struct_size(priv->stats_report, stats,
289 					     size_add(tx_stats_num, rx_stats_num));
290 	priv->stats_report =
291 		dma_alloc_coherent(&priv->pdev->dev, priv->stats_report_len,
292 				   &priv->stats_report_bus, GFP_KERNEL);
293 	if (!priv->stats_report)
294 		return -ENOMEM;
295 	/* Set up timer for the report-stats task */
296 	timer_setup(&priv->stats_report_timer, gve_stats_report_timer, 0);
297 	priv->stats_report_timer_period = GVE_STATS_REPORT_TIMER_PERIOD;
298 	return 0;
299 }
300 
301 static void gve_free_stats_report(struct gve_priv *priv)
302 {
303 	if (!priv->stats_report)
304 		return;
305 
306 	timer_delete_sync(&priv->stats_report_timer);
307 	dma_free_coherent(&priv->pdev->dev, priv->stats_report_len,
308 			  priv->stats_report, priv->stats_report_bus);
309 	priv->stats_report = NULL;
310 }
311 
312 static irqreturn_t gve_mgmnt_intr(int irq, void *arg)
313 {
314 	struct gve_priv *priv = arg;
315 
316 	queue_work(priv->gve_wq, &priv->service_task);
317 	return IRQ_HANDLED;
318 }
319 
320 static irqreturn_t gve_intr(int irq, void *arg)
321 {
322 	struct gve_notify_block *block = arg;
323 	struct gve_priv *priv = block->priv;
324 
325 	iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
326 	napi_schedule_irqoff(&block->napi);
327 	return IRQ_HANDLED;
328 }
329 
330 static irqreturn_t gve_intr_dqo(int irq, void *arg)
331 {
332 	struct gve_notify_block *block = arg;
333 
334 	/* Interrupts are automatically masked */
335 	napi_schedule_irqoff(&block->napi);
336 	return IRQ_HANDLED;
337 }
338 
339 static int gve_is_napi_on_home_cpu(struct gve_priv *priv, u32 irq)
340 {
341 	int cpu_curr = smp_processor_id();
342 	const struct cpumask *aff_mask;
343 
344 	aff_mask = irq_get_effective_affinity_mask(irq);
345 	if (unlikely(!aff_mask))
346 		return 1;
347 
348 	return cpumask_test_cpu(cpu_curr, aff_mask);
349 }
350 
351 int gve_napi_poll(struct napi_struct *napi, int budget)
352 {
353 	struct gve_notify_block *block;
354 	__be32 __iomem *irq_doorbell;
355 	bool reschedule = false;
356 	struct gve_priv *priv;
357 	int work_done = 0;
358 
359 	block = container_of(napi, struct gve_notify_block, napi);
360 	priv = block->priv;
361 
362 	if (block->tx) {
363 		if (block->tx->q_num < priv->tx_cfg.num_queues)
364 			reschedule |= gve_tx_poll(block, budget);
365 		else if (budget)
366 			reschedule |= gve_xdp_poll(block, budget);
367 	}
368 
369 	if (!budget)
370 		return 0;
371 
372 	if (block->rx) {
373 		work_done = gve_rx_poll(block, budget);
374 
375 		/* Poll XSK TX as part of RX NAPI. Setup re-poll based on max of
376 		 * TX and RX work done.
377 		 */
378 		if (priv->xdp_prog)
379 			work_done = max_t(int, work_done,
380 					  gve_xsk_tx_poll(block, budget));
381 
382 		reschedule |= work_done == budget;
383 	}
384 
385 	if (reschedule)
386 		return budget;
387 
388        /* Complete processing - don't unmask irq if busy polling is enabled */
389 	if (likely(napi_complete_done(napi, work_done))) {
390 		irq_doorbell = gve_irq_doorbell(priv, block);
391 		iowrite32be(GVE_IRQ_ACK | GVE_IRQ_EVENT, irq_doorbell);
392 
393 		/* Ensure IRQ ACK is visible before we check pending work.
394 		 * If queue had issued updates, it would be truly visible.
395 		 */
396 		mb();
397 
398 		if (block->tx)
399 			reschedule |= gve_tx_clean_pending(priv, block->tx);
400 		if (block->rx)
401 			reschedule |= gve_rx_work_pending(block->rx);
402 
403 		if (reschedule && napi_schedule(napi))
404 			iowrite32be(GVE_IRQ_MASK, irq_doorbell);
405 	}
406 	return work_done;
407 }
408 
409 int gve_napi_poll_dqo(struct napi_struct *napi, int budget)
410 {
411 	struct gve_notify_block *block =
412 		container_of(napi, struct gve_notify_block, napi);
413 	struct gve_priv *priv = block->priv;
414 	bool reschedule = false;
415 	int work_done = 0;
416 
417 	if (block->tx)
418 		reschedule |= gve_tx_poll_dqo(block, /*do_clean=*/true);
419 
420 	if (!budget)
421 		return 0;
422 
423 	if (block->rx) {
424 		work_done = gve_rx_poll_dqo(block, budget);
425 		reschedule |= work_done == budget;
426 	}
427 
428 	if (reschedule) {
429 		/* Reschedule by returning budget only if already on the correct
430 		 * cpu.
431 		 */
432 		if (likely(gve_is_napi_on_home_cpu(priv, block->irq)))
433 			return budget;
434 
435 		/* If not on the cpu with which this queue's irq has affinity
436 		 * with, we avoid rescheduling napi and arm the irq instead so
437 		 * that napi gets rescheduled back eventually onto the right
438 		 * cpu.
439 		 */
440 		if (work_done == budget)
441 			work_done--;
442 	}
443 
444 	if (likely(napi_complete_done(napi, work_done))) {
445 		/* Enable interrupts again.
446 		 *
447 		 * We don't need to repoll afterwards because HW supports the
448 		 * PCI MSI-X PBA feature.
449 		 *
450 		 * Another interrupt would be triggered if a new event came in
451 		 * since the last one.
452 		 */
453 		gve_write_irq_doorbell_dqo(priv, block,
454 					   GVE_ITR_NO_UPDATE_DQO | GVE_ITR_ENABLE_BIT_DQO);
455 	}
456 
457 	return work_done;
458 }
459 
460 static int gve_alloc_notify_blocks(struct gve_priv *priv)
461 {
462 	int num_vecs_requested = priv->num_ntfy_blks + 1;
463 	unsigned int active_cpus;
464 	int vecs_enabled;
465 	int i, j;
466 	int err;
467 
468 	priv->msix_vectors = kvcalloc(num_vecs_requested,
469 				      sizeof(*priv->msix_vectors), GFP_KERNEL);
470 	if (!priv->msix_vectors)
471 		return -ENOMEM;
472 	for (i = 0; i < num_vecs_requested; i++)
473 		priv->msix_vectors[i].entry = i;
474 	vecs_enabled = pci_enable_msix_range(priv->pdev, priv->msix_vectors,
475 					     GVE_MIN_MSIX, num_vecs_requested);
476 	if (vecs_enabled < 0) {
477 		dev_err(&priv->pdev->dev, "Could not enable min msix %d/%d\n",
478 			GVE_MIN_MSIX, vecs_enabled);
479 		err = vecs_enabled;
480 		goto abort_with_msix_vectors;
481 	}
482 	if (vecs_enabled != num_vecs_requested) {
483 		int new_num_ntfy_blks = (vecs_enabled - 1) & ~0x1;
484 		int vecs_per_type = new_num_ntfy_blks / 2;
485 		int vecs_left = new_num_ntfy_blks % 2;
486 
487 		priv->num_ntfy_blks = new_num_ntfy_blks;
488 		priv->mgmt_msix_idx = priv->num_ntfy_blks;
489 		priv->tx_cfg.max_queues = min_t(int, priv->tx_cfg.max_queues,
490 						vecs_per_type);
491 		priv->rx_cfg.max_queues = min_t(int, priv->rx_cfg.max_queues,
492 						vecs_per_type + vecs_left);
493 		dev_err(&priv->pdev->dev,
494 			"Could not enable desired msix, only enabled %d, adjusting tx max queues to %d, and rx max queues to %d\n",
495 			vecs_enabled, priv->tx_cfg.max_queues,
496 			priv->rx_cfg.max_queues);
497 		if (priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)
498 			priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
499 		if (priv->rx_cfg.num_queues > priv->rx_cfg.max_queues)
500 			priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
501 	}
502 	/* Half the notification blocks go to TX and half to RX */
503 	active_cpus = min_t(int, priv->num_ntfy_blks / 2, num_online_cpus());
504 
505 	/* Setup Management Vector  - the last vector */
506 	snprintf(priv->mgmt_msix_name, sizeof(priv->mgmt_msix_name), "gve-mgmnt@pci:%s",
507 		 pci_name(priv->pdev));
508 	err = request_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector,
509 			  gve_mgmnt_intr, 0, priv->mgmt_msix_name, priv);
510 	if (err) {
511 		dev_err(&priv->pdev->dev, "Did not receive management vector.\n");
512 		goto abort_with_msix_enabled;
513 	}
514 	priv->irq_db_indices =
515 		dma_alloc_coherent(&priv->pdev->dev,
516 				   priv->num_ntfy_blks *
517 				   sizeof(*priv->irq_db_indices),
518 				   &priv->irq_db_indices_bus, GFP_KERNEL);
519 	if (!priv->irq_db_indices) {
520 		err = -ENOMEM;
521 		goto abort_with_mgmt_vector;
522 	}
523 
524 	priv->ntfy_blocks = kvzalloc(priv->num_ntfy_blks *
525 				     sizeof(*priv->ntfy_blocks), GFP_KERNEL);
526 	if (!priv->ntfy_blocks) {
527 		err = -ENOMEM;
528 		goto abort_with_irq_db_indices;
529 	}
530 
531 	/* Setup the other blocks - the first n-1 vectors */
532 	for (i = 0; i < priv->num_ntfy_blks; i++) {
533 		struct gve_notify_block *block = &priv->ntfy_blocks[i];
534 		int msix_idx = i;
535 
536 		snprintf(block->name, sizeof(block->name), "gve-ntfy-blk%d@pci:%s",
537 			 i, pci_name(priv->pdev));
538 		block->priv = priv;
539 		err = request_irq(priv->msix_vectors[msix_idx].vector,
540 				  gve_is_gqi(priv) ? gve_intr : gve_intr_dqo,
541 				  0, block->name, block);
542 		if (err) {
543 			dev_err(&priv->pdev->dev,
544 				"Failed to receive msix vector %d\n", i);
545 			goto abort_with_some_ntfy_blocks;
546 		}
547 		block->irq = priv->msix_vectors[msix_idx].vector;
548 		irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
549 				      get_cpu_mask(i % active_cpus));
550 		block->irq_db_index = &priv->irq_db_indices[i].index;
551 	}
552 	return 0;
553 abort_with_some_ntfy_blocks:
554 	for (j = 0; j < i; j++) {
555 		struct gve_notify_block *block = &priv->ntfy_blocks[j];
556 		int msix_idx = j;
557 
558 		irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
559 				      NULL);
560 		free_irq(priv->msix_vectors[msix_idx].vector, block);
561 		block->irq = 0;
562 	}
563 	kvfree(priv->ntfy_blocks);
564 	priv->ntfy_blocks = NULL;
565 abort_with_irq_db_indices:
566 	dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
567 			  sizeof(*priv->irq_db_indices),
568 			  priv->irq_db_indices, priv->irq_db_indices_bus);
569 	priv->irq_db_indices = NULL;
570 abort_with_mgmt_vector:
571 	free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
572 abort_with_msix_enabled:
573 	pci_disable_msix(priv->pdev);
574 abort_with_msix_vectors:
575 	kvfree(priv->msix_vectors);
576 	priv->msix_vectors = NULL;
577 	return err;
578 }
579 
580 static void gve_free_notify_blocks(struct gve_priv *priv)
581 {
582 	int i;
583 
584 	if (!priv->msix_vectors)
585 		return;
586 
587 	/* Free the irqs */
588 	for (i = 0; i < priv->num_ntfy_blks; i++) {
589 		struct gve_notify_block *block = &priv->ntfy_blocks[i];
590 		int msix_idx = i;
591 
592 		irq_set_affinity_hint(priv->msix_vectors[msix_idx].vector,
593 				      NULL);
594 		free_irq(priv->msix_vectors[msix_idx].vector, block);
595 		block->irq = 0;
596 	}
597 	free_irq(priv->msix_vectors[priv->mgmt_msix_idx].vector, priv);
598 	kvfree(priv->ntfy_blocks);
599 	priv->ntfy_blocks = NULL;
600 	dma_free_coherent(&priv->pdev->dev, priv->num_ntfy_blks *
601 			  sizeof(*priv->irq_db_indices),
602 			  priv->irq_db_indices, priv->irq_db_indices_bus);
603 	priv->irq_db_indices = NULL;
604 	pci_disable_msix(priv->pdev);
605 	kvfree(priv->msix_vectors);
606 	priv->msix_vectors = NULL;
607 }
608 
609 static int gve_setup_device_resources(struct gve_priv *priv)
610 {
611 	int err;
612 
613 	err = gve_alloc_flow_rule_caches(priv);
614 	if (err)
615 		return err;
616 	err = gve_alloc_rss_config_cache(priv);
617 	if (err)
618 		goto abort_with_flow_rule_caches;
619 	err = gve_alloc_counter_array(priv);
620 	if (err)
621 		goto abort_with_rss_config_cache;
622 	err = gve_init_clock(priv);
623 	if (err)
624 		goto abort_with_counter;
625 	err = gve_alloc_notify_blocks(priv);
626 	if (err)
627 		goto abort_with_clock;
628 	err = gve_alloc_stats_report(priv);
629 	if (err)
630 		goto abort_with_ntfy_blocks;
631 	err = gve_adminq_configure_device_resources(priv,
632 						    priv->counter_array_bus,
633 						    priv->num_event_counters,
634 						    priv->irq_db_indices_bus,
635 						    priv->num_ntfy_blks);
636 	if (unlikely(err)) {
637 		dev_err(&priv->pdev->dev,
638 			"could not setup device_resources: err=%d\n", err);
639 		err = -ENXIO;
640 		goto abort_with_stats_report;
641 	}
642 
643 	if (!gve_is_gqi(priv)) {
644 		priv->ptype_lut_dqo = kvzalloc(sizeof(*priv->ptype_lut_dqo),
645 					       GFP_KERNEL);
646 		if (!priv->ptype_lut_dqo) {
647 			err = -ENOMEM;
648 			goto abort_with_stats_report;
649 		}
650 		err = gve_adminq_get_ptype_map_dqo(priv, priv->ptype_lut_dqo);
651 		if (err) {
652 			dev_err(&priv->pdev->dev,
653 				"Failed to get ptype map: err=%d\n", err);
654 			goto abort_with_ptype_lut;
655 		}
656 	}
657 
658 	err = gve_init_rss_config(priv, priv->rx_cfg.num_queues);
659 	if (err) {
660 		dev_err(&priv->pdev->dev, "Failed to init RSS config");
661 		goto abort_with_ptype_lut;
662 	}
663 
664 	err = gve_adminq_report_stats(priv, priv->stats_report_len,
665 				      priv->stats_report_bus,
666 				      GVE_STATS_REPORT_TIMER_PERIOD);
667 	if (err)
668 		dev_err(&priv->pdev->dev,
669 			"Failed to report stats: err=%d\n", err);
670 	gve_set_device_resources_ok(priv);
671 	return 0;
672 
673 abort_with_ptype_lut:
674 	kvfree(priv->ptype_lut_dqo);
675 	priv->ptype_lut_dqo = NULL;
676 abort_with_stats_report:
677 	gve_free_stats_report(priv);
678 abort_with_ntfy_blocks:
679 	gve_free_notify_blocks(priv);
680 abort_with_clock:
681 	gve_teardown_clock(priv);
682 abort_with_counter:
683 	gve_free_counter_array(priv);
684 abort_with_rss_config_cache:
685 	gve_free_rss_config_cache(priv);
686 abort_with_flow_rule_caches:
687 	gve_free_flow_rule_caches(priv);
688 
689 	return err;
690 }
691 
692 static void gve_trigger_reset(struct gve_priv *priv);
693 
694 static void gve_teardown_device_resources(struct gve_priv *priv)
695 {
696 	int err;
697 
698 	/* Tell device its resources are being freed */
699 	if (gve_get_device_resources_ok(priv)) {
700 		err = gve_flow_rules_reset(priv);
701 		if (err) {
702 			dev_err(&priv->pdev->dev,
703 				"Failed to reset flow rules: err=%d\n", err);
704 			gve_trigger_reset(priv);
705 		}
706 		/* detach the stats report */
707 		err = gve_adminq_report_stats(priv, 0, 0x0, GVE_STATS_REPORT_TIMER_PERIOD);
708 		if (err) {
709 			dev_err(&priv->pdev->dev,
710 				"Failed to detach stats report: err=%d\n", err);
711 			gve_trigger_reset(priv);
712 		}
713 		err = gve_adminq_deconfigure_device_resources(priv);
714 		if (err) {
715 			dev_err(&priv->pdev->dev,
716 				"Could not deconfigure device resources: err=%d\n",
717 				err);
718 			gve_trigger_reset(priv);
719 		}
720 	}
721 
722 	kvfree(priv->ptype_lut_dqo);
723 	priv->ptype_lut_dqo = NULL;
724 
725 	gve_free_flow_rule_caches(priv);
726 	gve_free_rss_config_cache(priv);
727 	gve_free_counter_array(priv);
728 	gve_free_notify_blocks(priv);
729 	gve_free_stats_report(priv);
730 	gve_teardown_clock(priv);
731 	gve_clear_device_resources_ok(priv);
732 }
733 
734 static int gve_unregister_qpl(struct gve_priv *priv,
735 			      struct gve_queue_page_list *qpl)
736 {
737 	int err;
738 
739 	if (!qpl)
740 		return 0;
741 
742 	err = gve_adminq_unregister_page_list(priv, qpl->id);
743 	if (err) {
744 		netif_err(priv, drv, priv->dev,
745 			  "Failed to unregister queue page list %d\n",
746 			  qpl->id);
747 		return err;
748 	}
749 
750 	priv->num_registered_pages -= qpl->num_entries;
751 	return 0;
752 }
753 
754 static int gve_register_qpl(struct gve_priv *priv,
755 			    struct gve_queue_page_list *qpl)
756 {
757 	int pages;
758 	int err;
759 
760 	if (!qpl)
761 		return 0;
762 
763 	pages = qpl->num_entries;
764 
765 	if (pages + priv->num_registered_pages > priv->max_registered_pages) {
766 		netif_err(priv, drv, priv->dev,
767 			  "Reached max number of registered pages %llu > %llu\n",
768 			  pages + priv->num_registered_pages,
769 			  priv->max_registered_pages);
770 		return -EINVAL;
771 	}
772 
773 	err = gve_adminq_register_page_list(priv, qpl);
774 	if (err) {
775 		netif_err(priv, drv, priv->dev,
776 			  "failed to register queue page list %d\n",
777 			  qpl->id);
778 		return err;
779 	}
780 
781 	priv->num_registered_pages += pages;
782 	return 0;
783 }
784 
785 static struct gve_queue_page_list *gve_tx_get_qpl(struct gve_priv *priv, int idx)
786 {
787 	struct gve_tx_ring *tx = &priv->tx[idx];
788 
789 	if (gve_is_gqi(priv))
790 		return tx->tx_fifo.qpl;
791 	else
792 		return tx->dqo.qpl;
793 }
794 
795 static struct gve_queue_page_list *gve_rx_get_qpl(struct gve_priv *priv, int idx)
796 {
797 	struct gve_rx_ring *rx = &priv->rx[idx];
798 
799 	if (gve_is_gqi(priv))
800 		return rx->data.qpl;
801 	else
802 		return rx->dqo.qpl;
803 }
804 
805 static int gve_register_qpls(struct gve_priv *priv)
806 {
807 	int num_tx_qpls, num_rx_qpls;
808 	int err;
809 	int i;
810 
811 	num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_is_qpl(priv));
812 	num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
813 
814 	for (i = 0; i < num_tx_qpls; i++) {
815 		err = gve_register_qpl(priv, gve_tx_get_qpl(priv, i));
816 		if (err)
817 			return err;
818 	}
819 
820 	for (i = 0; i < num_rx_qpls; i++) {
821 		err = gve_register_qpl(priv, gve_rx_get_qpl(priv, i));
822 		if (err)
823 			return err;
824 	}
825 
826 	return 0;
827 }
828 
829 static int gve_unregister_qpls(struct gve_priv *priv)
830 {
831 	int num_tx_qpls, num_rx_qpls;
832 	int err;
833 	int i;
834 
835 	num_tx_qpls = gve_num_tx_qpls(&priv->tx_cfg, gve_is_qpl(priv));
836 	num_rx_qpls = gve_num_rx_qpls(&priv->rx_cfg, gve_is_qpl(priv));
837 
838 	for (i = 0; i < num_tx_qpls; i++) {
839 		err = gve_unregister_qpl(priv, gve_tx_get_qpl(priv, i));
840 		/* This failure will trigger a reset - no need to clean */
841 		if (err)
842 			return err;
843 	}
844 
845 	for (i = 0; i < num_rx_qpls; i++) {
846 		err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, i));
847 		/* This failure will trigger a reset - no need to clean */
848 		if (err)
849 			return err;
850 	}
851 	return 0;
852 }
853 
854 static int gve_create_rings(struct gve_priv *priv)
855 {
856 	int num_tx_queues = gve_num_tx_queues(priv);
857 	int err;
858 	int i;
859 
860 	err = gve_adminq_create_tx_queues(priv, 0, num_tx_queues);
861 	if (err) {
862 		netif_err(priv, drv, priv->dev, "failed to create %d tx queues\n",
863 			  num_tx_queues);
864 		/* This failure will trigger a reset - no need to clean
865 		 * up
866 		 */
867 		return err;
868 	}
869 	netif_dbg(priv, drv, priv->dev, "created %d tx queues\n",
870 		  num_tx_queues);
871 
872 	err = gve_adminq_create_rx_queues(priv, priv->rx_cfg.num_queues);
873 	if (err) {
874 		netif_err(priv, drv, priv->dev, "failed to create %d rx queues\n",
875 			  priv->rx_cfg.num_queues);
876 		/* This failure will trigger a reset - no need to clean
877 		 * up
878 		 */
879 		return err;
880 	}
881 	netif_dbg(priv, drv, priv->dev, "created %d rx queues\n",
882 		  priv->rx_cfg.num_queues);
883 
884 	if (gve_is_gqi(priv)) {
885 		/* Rx data ring has been prefilled with packet buffers at queue
886 		 * allocation time.
887 		 *
888 		 * Write the doorbell to provide descriptor slots and packet
889 		 * buffers to the NIC.
890 		 */
891 		for (i = 0; i < priv->rx_cfg.num_queues; i++)
892 			gve_rx_write_doorbell(priv, &priv->rx[i]);
893 	} else {
894 		for (i = 0; i < priv->rx_cfg.num_queues; i++) {
895 			/* Post buffers and ring doorbell. */
896 			gve_rx_post_buffers_dqo(&priv->rx[i]);
897 		}
898 	}
899 
900 	return 0;
901 }
902 
903 static void init_xdp_sync_stats(struct gve_priv *priv)
904 {
905 	int start_id = gve_xdp_tx_start_queue_id(priv);
906 	int i;
907 
908 	/* Init stats */
909 	for (i = start_id; i < start_id + priv->tx_cfg.num_xdp_queues; i++) {
910 		int ntfy_idx = gve_tx_idx_to_ntfy(priv, i);
911 
912 		u64_stats_init(&priv->tx[i].statss);
913 		priv->tx[i].ntfy_id = ntfy_idx;
914 	}
915 }
916 
917 static void gve_init_sync_stats(struct gve_priv *priv)
918 {
919 	int i;
920 
921 	for (i = 0; i < priv->tx_cfg.num_queues; i++)
922 		u64_stats_init(&priv->tx[i].statss);
923 
924 	/* Init stats for XDP TX queues */
925 	init_xdp_sync_stats(priv);
926 
927 	for (i = 0; i < priv->rx_cfg.num_queues; i++)
928 		u64_stats_init(&priv->rx[i].statss);
929 }
930 
931 static void gve_tx_get_curr_alloc_cfg(struct gve_priv *priv,
932 				      struct gve_tx_alloc_rings_cfg *cfg)
933 {
934 	cfg->qcfg = &priv->tx_cfg;
935 	cfg->raw_addressing = !gve_is_qpl(priv);
936 	cfg->ring_size = priv->tx_desc_cnt;
937 	cfg->num_xdp_rings = cfg->qcfg->num_xdp_queues;
938 	cfg->tx = priv->tx;
939 }
940 
941 static void gve_tx_stop_rings(struct gve_priv *priv, int num_rings)
942 {
943 	int i;
944 
945 	if (!priv->tx)
946 		return;
947 
948 	for (i = 0; i < num_rings; i++) {
949 		if (gve_is_gqi(priv))
950 			gve_tx_stop_ring_gqi(priv, i);
951 		else
952 			gve_tx_stop_ring_dqo(priv, i);
953 	}
954 }
955 
956 static void gve_tx_start_rings(struct gve_priv *priv, int num_rings)
957 {
958 	int i;
959 
960 	for (i = 0; i < num_rings; i++) {
961 		if (gve_is_gqi(priv))
962 			gve_tx_start_ring_gqi(priv, i);
963 		else
964 			gve_tx_start_ring_dqo(priv, i);
965 	}
966 }
967 
968 static int gve_queues_mem_alloc(struct gve_priv *priv,
969 				struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
970 				struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
971 {
972 	int err;
973 
974 	if (gve_is_gqi(priv))
975 		err = gve_tx_alloc_rings_gqi(priv, tx_alloc_cfg);
976 	else
977 		err = gve_tx_alloc_rings_dqo(priv, tx_alloc_cfg);
978 	if (err)
979 		return err;
980 
981 	if (gve_is_gqi(priv))
982 		err = gve_rx_alloc_rings_gqi(priv, rx_alloc_cfg);
983 	else
984 		err = gve_rx_alloc_rings_dqo(priv, rx_alloc_cfg);
985 	if (err)
986 		goto free_tx;
987 
988 	return 0;
989 
990 free_tx:
991 	if (gve_is_gqi(priv))
992 		gve_tx_free_rings_gqi(priv, tx_alloc_cfg);
993 	else
994 		gve_tx_free_rings_dqo(priv, tx_alloc_cfg);
995 	return err;
996 }
997 
998 static int gve_destroy_rings(struct gve_priv *priv)
999 {
1000 	int num_tx_queues = gve_num_tx_queues(priv);
1001 	int err;
1002 
1003 	err = gve_adminq_destroy_tx_queues(priv, 0, num_tx_queues);
1004 	if (err) {
1005 		netif_err(priv, drv, priv->dev,
1006 			  "failed to destroy tx queues\n");
1007 		/* This failure will trigger a reset - no need to clean up */
1008 		return err;
1009 	}
1010 	netif_dbg(priv, drv, priv->dev, "destroyed tx queues\n");
1011 	err = gve_adminq_destroy_rx_queues(priv, priv->rx_cfg.num_queues);
1012 	if (err) {
1013 		netif_err(priv, drv, priv->dev,
1014 			  "failed to destroy rx queues\n");
1015 		/* This failure will trigger a reset - no need to clean up */
1016 		return err;
1017 	}
1018 	netif_dbg(priv, drv, priv->dev, "destroyed rx queues\n");
1019 	return 0;
1020 }
1021 
1022 static void gve_queues_mem_free(struct gve_priv *priv,
1023 				struct gve_tx_alloc_rings_cfg *tx_cfg,
1024 				struct gve_rx_alloc_rings_cfg *rx_cfg)
1025 {
1026 	if (gve_is_gqi(priv)) {
1027 		gve_tx_free_rings_gqi(priv, tx_cfg);
1028 		gve_rx_free_rings_gqi(priv, rx_cfg);
1029 	} else {
1030 		gve_tx_free_rings_dqo(priv, tx_cfg);
1031 		gve_rx_free_rings_dqo(priv, rx_cfg);
1032 	}
1033 }
1034 
1035 int gve_alloc_page(struct gve_priv *priv, struct device *dev,
1036 		   struct page **page, dma_addr_t *dma,
1037 		   enum dma_data_direction dir, gfp_t gfp_flags)
1038 {
1039 	*page = alloc_page(gfp_flags);
1040 	if (!*page) {
1041 		priv->page_alloc_fail++;
1042 		return -ENOMEM;
1043 	}
1044 	*dma = dma_map_page(dev, *page, 0, PAGE_SIZE, dir);
1045 	if (dma_mapping_error(dev, *dma)) {
1046 		priv->dma_mapping_error++;
1047 		put_page(*page);
1048 		return -ENOMEM;
1049 	}
1050 	return 0;
1051 }
1052 
1053 struct gve_queue_page_list *gve_alloc_queue_page_list(struct gve_priv *priv,
1054 						      u32 id, int pages)
1055 {
1056 	struct gve_queue_page_list *qpl;
1057 	int err;
1058 	int i;
1059 
1060 	qpl = kvzalloc(sizeof(*qpl), GFP_KERNEL);
1061 	if (!qpl)
1062 		return NULL;
1063 
1064 	qpl->id = id;
1065 	qpl->num_entries = 0;
1066 	qpl->pages = kvcalloc(pages, sizeof(*qpl->pages), GFP_KERNEL);
1067 	if (!qpl->pages)
1068 		goto abort;
1069 
1070 	qpl->page_buses = kvcalloc(pages, sizeof(*qpl->page_buses), GFP_KERNEL);
1071 	if (!qpl->page_buses)
1072 		goto abort;
1073 
1074 	for (i = 0; i < pages; i++) {
1075 		err = gve_alloc_page(priv, &priv->pdev->dev, &qpl->pages[i],
1076 				     &qpl->page_buses[i],
1077 				     gve_qpl_dma_dir(priv, id), GFP_KERNEL);
1078 		if (err)
1079 			goto abort;
1080 		qpl->num_entries++;
1081 	}
1082 
1083 	return qpl;
1084 
1085 abort:
1086 	gve_free_queue_page_list(priv, qpl, id);
1087 	return NULL;
1088 }
1089 
1090 void gve_free_page(struct device *dev, struct page *page, dma_addr_t dma,
1091 		   enum dma_data_direction dir)
1092 {
1093 	if (!dma_mapping_error(dev, dma))
1094 		dma_unmap_page(dev, dma, PAGE_SIZE, dir);
1095 	if (page)
1096 		put_page(page);
1097 }
1098 
1099 void gve_free_queue_page_list(struct gve_priv *priv,
1100 			      struct gve_queue_page_list *qpl,
1101 			      u32 id)
1102 {
1103 	int i;
1104 
1105 	if (!qpl)
1106 		return;
1107 	if (!qpl->pages)
1108 		goto free_qpl;
1109 	if (!qpl->page_buses)
1110 		goto free_pages;
1111 
1112 	for (i = 0; i < qpl->num_entries; i++)
1113 		gve_free_page(&priv->pdev->dev, qpl->pages[i],
1114 			      qpl->page_buses[i], gve_qpl_dma_dir(priv, id));
1115 
1116 	kvfree(qpl->page_buses);
1117 	qpl->page_buses = NULL;
1118 free_pages:
1119 	kvfree(qpl->pages);
1120 	qpl->pages = NULL;
1121 free_qpl:
1122 	kvfree(qpl);
1123 }
1124 
1125 /* Use this to schedule a reset when the device is capable of continuing
1126  * to handle other requests in its current state. If it is not, do a reset
1127  * in thread instead.
1128  */
1129 void gve_schedule_reset(struct gve_priv *priv)
1130 {
1131 	gve_set_do_reset(priv);
1132 	queue_work(priv->gve_wq, &priv->service_task);
1133 }
1134 
1135 static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up);
1136 static int gve_reset_recovery(struct gve_priv *priv, bool was_up);
1137 static void gve_turndown(struct gve_priv *priv);
1138 static void gve_turnup(struct gve_priv *priv);
1139 
1140 static int gve_reg_xdp_info(struct gve_priv *priv, struct net_device *dev)
1141 {
1142 	struct napi_struct *napi;
1143 	struct gve_rx_ring *rx;
1144 	int err = 0;
1145 	int i, j;
1146 	u32 tx_qid;
1147 
1148 	if (!priv->tx_cfg.num_xdp_queues)
1149 		return 0;
1150 
1151 	for (i = 0; i < priv->rx_cfg.num_queues; i++) {
1152 		rx = &priv->rx[i];
1153 		napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
1154 
1155 		err = xdp_rxq_info_reg(&rx->xdp_rxq, dev, i,
1156 				       napi->napi_id);
1157 		if (err)
1158 			goto err;
1159 		if (gve_is_qpl(priv))
1160 			err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1161 							 MEM_TYPE_PAGE_SHARED,
1162 							 NULL);
1163 		else
1164 			err = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1165 							 MEM_TYPE_PAGE_POOL,
1166 							 rx->dqo.page_pool);
1167 		if (err)
1168 			goto err;
1169 		rx->xsk_pool = xsk_get_pool_from_qid(dev, i);
1170 		if (rx->xsk_pool) {
1171 			err = xdp_rxq_info_reg(&rx->xsk_rxq, dev, i,
1172 					       napi->napi_id);
1173 			if (err)
1174 				goto err;
1175 			err = xdp_rxq_info_reg_mem_model(&rx->xsk_rxq,
1176 							 MEM_TYPE_XSK_BUFF_POOL, NULL);
1177 			if (err)
1178 				goto err;
1179 			xsk_pool_set_rxq_info(rx->xsk_pool,
1180 					      &rx->xsk_rxq);
1181 		}
1182 	}
1183 
1184 	for (i = 0; i < priv->tx_cfg.num_xdp_queues; i++) {
1185 		tx_qid = gve_xdp_tx_queue_id(priv, i);
1186 		priv->tx[tx_qid].xsk_pool = xsk_get_pool_from_qid(dev, i);
1187 	}
1188 	return 0;
1189 
1190 err:
1191 	for (j = i; j >= 0; j--) {
1192 		rx = &priv->rx[j];
1193 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1194 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1195 		if (xdp_rxq_info_is_reg(&rx->xsk_rxq))
1196 			xdp_rxq_info_unreg(&rx->xsk_rxq);
1197 	}
1198 	return err;
1199 }
1200 
1201 static void gve_unreg_xdp_info(struct gve_priv *priv)
1202 {
1203 	int i, tx_qid;
1204 
1205 	if (!priv->tx_cfg.num_xdp_queues || !priv->rx || !priv->tx)
1206 		return;
1207 
1208 	for (i = 0; i < priv->rx_cfg.num_queues; i++) {
1209 		struct gve_rx_ring *rx = &priv->rx[i];
1210 
1211 		xdp_rxq_info_unreg(&rx->xdp_rxq);
1212 		if (rx->xsk_pool) {
1213 			xdp_rxq_info_unreg(&rx->xsk_rxq);
1214 			rx->xsk_pool = NULL;
1215 		}
1216 	}
1217 
1218 	for (i = 0; i < priv->tx_cfg.num_xdp_queues; i++) {
1219 		tx_qid = gve_xdp_tx_queue_id(priv, i);
1220 		priv->tx[tx_qid].xsk_pool = NULL;
1221 	}
1222 }
1223 
1224 static void gve_drain_page_cache(struct gve_priv *priv)
1225 {
1226 	int i;
1227 
1228 	for (i = 0; i < priv->rx_cfg.num_queues; i++)
1229 		page_frag_cache_drain(&priv->rx[i].page_cache);
1230 }
1231 
1232 static void gve_rx_get_curr_alloc_cfg(struct gve_priv *priv,
1233 				      struct gve_rx_alloc_rings_cfg *cfg)
1234 {
1235 	cfg->qcfg_rx = &priv->rx_cfg;
1236 	cfg->qcfg_tx = &priv->tx_cfg;
1237 	cfg->raw_addressing = !gve_is_qpl(priv);
1238 	cfg->enable_header_split = priv->header_split_enabled;
1239 	cfg->ring_size = priv->rx_desc_cnt;
1240 	cfg->packet_buffer_size = priv->rx_cfg.packet_buffer_size;
1241 	cfg->rx = priv->rx;
1242 	cfg->xdp = !!cfg->qcfg_tx->num_xdp_queues;
1243 }
1244 
1245 void gve_get_curr_alloc_cfgs(struct gve_priv *priv,
1246 			     struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1247 			     struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1248 {
1249 	gve_tx_get_curr_alloc_cfg(priv, tx_alloc_cfg);
1250 	gve_rx_get_curr_alloc_cfg(priv, rx_alloc_cfg);
1251 }
1252 
1253 static void gve_rx_start_ring(struct gve_priv *priv, int i)
1254 {
1255 	if (gve_is_gqi(priv))
1256 		gve_rx_start_ring_gqi(priv, i);
1257 	else
1258 		gve_rx_start_ring_dqo(priv, i);
1259 }
1260 
1261 static void gve_rx_start_rings(struct gve_priv *priv, int num_rings)
1262 {
1263 	int i;
1264 
1265 	for (i = 0; i < num_rings; i++)
1266 		gve_rx_start_ring(priv, i);
1267 }
1268 
1269 static void gve_rx_stop_ring(struct gve_priv *priv, int i)
1270 {
1271 	if (gve_is_gqi(priv))
1272 		gve_rx_stop_ring_gqi(priv, i);
1273 	else
1274 		gve_rx_stop_ring_dqo(priv, i);
1275 }
1276 
1277 static void gve_rx_stop_rings(struct gve_priv *priv, int num_rings)
1278 {
1279 	int i;
1280 
1281 	if (!priv->rx)
1282 		return;
1283 
1284 	for (i = 0; i < num_rings; i++)
1285 		gve_rx_stop_ring(priv, i);
1286 }
1287 
1288 static void gve_queues_mem_remove(struct gve_priv *priv)
1289 {
1290 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1291 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1292 
1293 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1294 	gve_queues_mem_free(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1295 	priv->tx = NULL;
1296 	priv->rx = NULL;
1297 }
1298 
1299 /* The passed-in queue memory is stored into priv and the queues are made live.
1300  * No memory is allocated. Passed-in memory is freed on errors.
1301  */
1302 static int gve_queues_start(struct gve_priv *priv,
1303 			    struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1304 			    struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1305 {
1306 	struct net_device *dev = priv->dev;
1307 	int err;
1308 
1309 	/* Record new resources into priv */
1310 	priv->tx = tx_alloc_cfg->tx;
1311 	priv->rx = rx_alloc_cfg->rx;
1312 
1313 	/* Record new configs into priv */
1314 	priv->tx_cfg = *tx_alloc_cfg->qcfg;
1315 	priv->tx_cfg.num_xdp_queues = tx_alloc_cfg->num_xdp_rings;
1316 	priv->rx_cfg = *rx_alloc_cfg->qcfg_rx;
1317 	priv->tx_desc_cnt = tx_alloc_cfg->ring_size;
1318 	priv->rx_desc_cnt = rx_alloc_cfg->ring_size;
1319 
1320 	gve_tx_start_rings(priv, gve_num_tx_queues(priv));
1321 	gve_rx_start_rings(priv, rx_alloc_cfg->qcfg_rx->num_queues);
1322 	gve_init_sync_stats(priv);
1323 
1324 	err = netif_set_real_num_tx_queues(dev, priv->tx_cfg.num_queues);
1325 	if (err)
1326 		goto stop_and_free_rings;
1327 	err = netif_set_real_num_rx_queues(dev, priv->rx_cfg.num_queues);
1328 	if (err)
1329 		goto stop_and_free_rings;
1330 
1331 	err = gve_reg_xdp_info(priv, dev);
1332 	if (err)
1333 		goto stop_and_free_rings;
1334 
1335 	if (rx_alloc_cfg->reset_rss) {
1336 		err = gve_init_rss_config(priv, priv->rx_cfg.num_queues);
1337 		if (err)
1338 			goto reset;
1339 	}
1340 
1341 	err = gve_register_qpls(priv);
1342 	if (err)
1343 		goto reset;
1344 
1345 	priv->header_split_enabled = rx_alloc_cfg->enable_header_split;
1346 	priv->rx_cfg.packet_buffer_size = rx_alloc_cfg->packet_buffer_size;
1347 
1348 	err = gve_create_rings(priv);
1349 	if (err)
1350 		goto reset;
1351 
1352 	gve_set_device_rings_ok(priv);
1353 
1354 	if (gve_get_report_stats(priv))
1355 		mod_timer(&priv->stats_report_timer,
1356 			  round_jiffies(jiffies +
1357 				msecs_to_jiffies(priv->stats_report_timer_period)));
1358 
1359 	gve_turnup(priv);
1360 	queue_work(priv->gve_wq, &priv->service_task);
1361 	priv->interface_up_cnt++;
1362 	return 0;
1363 
1364 reset:
1365 	if (gve_get_reset_in_progress(priv))
1366 		goto stop_and_free_rings;
1367 	gve_reset_and_teardown(priv, true);
1368 	/* if this fails there is nothing we can do so just ignore the return */
1369 	gve_reset_recovery(priv, false);
1370 	/* return the original error */
1371 	return err;
1372 stop_and_free_rings:
1373 	gve_tx_stop_rings(priv, gve_num_tx_queues(priv));
1374 	gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
1375 	gve_queues_mem_remove(priv);
1376 	return err;
1377 }
1378 
1379 static int gve_open(struct net_device *dev)
1380 {
1381 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1382 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1383 	struct gve_priv *priv = netdev_priv(dev);
1384 	int err;
1385 
1386 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1387 
1388 	err = gve_queues_mem_alloc(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1389 	if (err)
1390 		return err;
1391 
1392 	/* No need to free on error: ownership of resources is lost after
1393 	 * calling gve_queues_start.
1394 	 */
1395 	err = gve_queues_start(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1396 	if (err)
1397 		return err;
1398 
1399 	return 0;
1400 }
1401 
1402 static int gve_queues_stop(struct gve_priv *priv)
1403 {
1404 	int err;
1405 
1406 	netif_carrier_off(priv->dev);
1407 	if (gve_get_device_rings_ok(priv)) {
1408 		gve_turndown(priv);
1409 		gve_drain_page_cache(priv);
1410 		err = gve_destroy_rings(priv);
1411 		if (err)
1412 			goto err;
1413 		err = gve_unregister_qpls(priv);
1414 		if (err)
1415 			goto err;
1416 		gve_clear_device_rings_ok(priv);
1417 	}
1418 	timer_delete_sync(&priv->stats_report_timer);
1419 
1420 	gve_unreg_xdp_info(priv);
1421 
1422 	gve_tx_stop_rings(priv, gve_num_tx_queues(priv));
1423 	gve_rx_stop_rings(priv, priv->rx_cfg.num_queues);
1424 
1425 	priv->interface_down_cnt++;
1426 	return 0;
1427 
1428 err:
1429 	/* This must have been called from a reset due to the rtnl lock
1430 	 * so just return at this point.
1431 	 */
1432 	if (gve_get_reset_in_progress(priv))
1433 		return err;
1434 	/* Otherwise reset before returning */
1435 	gve_reset_and_teardown(priv, true);
1436 	return gve_reset_recovery(priv, false);
1437 }
1438 
1439 static int gve_close(struct net_device *dev)
1440 {
1441 	struct gve_priv *priv = netdev_priv(dev);
1442 	int err;
1443 
1444 	err = gve_queues_stop(priv);
1445 	if (err)
1446 		return err;
1447 
1448 	gve_queues_mem_remove(priv);
1449 	return 0;
1450 }
1451 
1452 static void gve_handle_link_status(struct gve_priv *priv, bool link_status)
1453 {
1454 	if (!gve_get_napi_enabled(priv))
1455 		return;
1456 
1457 	if (link_status == netif_carrier_ok(priv->dev))
1458 		return;
1459 
1460 	if (link_status) {
1461 		netdev_info(priv->dev, "Device link is up.\n");
1462 		netif_carrier_on(priv->dev);
1463 	} else {
1464 		netdev_info(priv->dev, "Device link is down.\n");
1465 		netif_carrier_off(priv->dev);
1466 	}
1467 }
1468 
1469 static int gve_configure_rings_xdp(struct gve_priv *priv,
1470 				   u16 num_xdp_rings)
1471 {
1472 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1473 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1474 
1475 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1476 	tx_alloc_cfg.num_xdp_rings = num_xdp_rings;
1477 
1478 	rx_alloc_cfg.xdp = !!num_xdp_rings;
1479 	return gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1480 }
1481 
1482 static int gve_set_xdp(struct gve_priv *priv, struct bpf_prog *prog,
1483 		       struct netlink_ext_ack *extack)
1484 {
1485 	struct bpf_prog *old_prog;
1486 	int err = 0;
1487 	u32 status;
1488 
1489 	old_prog = READ_ONCE(priv->xdp_prog);
1490 	if (!netif_running(priv->dev)) {
1491 		WRITE_ONCE(priv->xdp_prog, prog);
1492 		if (old_prog)
1493 			bpf_prog_put(old_prog);
1494 
1495 		/* Update priv XDP queue configuration */
1496 		priv->tx_cfg.num_xdp_queues = priv->xdp_prog ?
1497 			priv->rx_cfg.num_queues : 0;
1498 		return 0;
1499 	}
1500 
1501 	if (!old_prog && prog)
1502 		err = gve_configure_rings_xdp(priv, priv->rx_cfg.num_queues);
1503 	else if (old_prog && !prog)
1504 		err = gve_configure_rings_xdp(priv, 0);
1505 
1506 	if (err)
1507 		goto out;
1508 
1509 	WRITE_ONCE(priv->xdp_prog, prog);
1510 	if (old_prog)
1511 		bpf_prog_put(old_prog);
1512 
1513 out:
1514 	status = ioread32be(&priv->reg_bar0->device_status);
1515 	gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
1516 	return err;
1517 }
1518 
1519 static int gve_xsk_pool_enable(struct net_device *dev,
1520 			       struct xsk_buff_pool *pool,
1521 			       u16 qid)
1522 {
1523 	struct gve_priv *priv = netdev_priv(dev);
1524 	struct napi_struct *napi;
1525 	struct gve_rx_ring *rx;
1526 	int tx_qid;
1527 	int err;
1528 
1529 	if (qid >= priv->rx_cfg.num_queues) {
1530 		dev_err(&priv->pdev->dev, "xsk pool invalid qid %d", qid);
1531 		return -EINVAL;
1532 	}
1533 	if (xsk_pool_get_rx_frame_size(pool) <
1534 	     priv->dev->max_mtu + sizeof(struct ethhdr)) {
1535 		dev_err(&priv->pdev->dev, "xsk pool frame_len too small");
1536 		return -EINVAL;
1537 	}
1538 
1539 	err = xsk_pool_dma_map(pool, &priv->pdev->dev,
1540 			       DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
1541 	if (err)
1542 		return err;
1543 
1544 	/* If XDP prog is not installed or interface is down, return. */
1545 	if (!priv->xdp_prog || !netif_running(dev))
1546 		return 0;
1547 
1548 	rx = &priv->rx[qid];
1549 	napi = &priv->ntfy_blocks[rx->ntfy_id].napi;
1550 	err = xdp_rxq_info_reg(&rx->xsk_rxq, dev, qid, napi->napi_id);
1551 	if (err)
1552 		goto err;
1553 
1554 	err = xdp_rxq_info_reg_mem_model(&rx->xsk_rxq,
1555 					 MEM_TYPE_XSK_BUFF_POOL, NULL);
1556 	if (err)
1557 		goto err;
1558 
1559 	xsk_pool_set_rxq_info(pool, &rx->xsk_rxq);
1560 	rx->xsk_pool = pool;
1561 
1562 	tx_qid = gve_xdp_tx_queue_id(priv, qid);
1563 	priv->tx[tx_qid].xsk_pool = pool;
1564 
1565 	return 0;
1566 err:
1567 	if (xdp_rxq_info_is_reg(&rx->xsk_rxq))
1568 		xdp_rxq_info_unreg(&rx->xsk_rxq);
1569 
1570 	xsk_pool_dma_unmap(pool,
1571 			   DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
1572 	return err;
1573 }
1574 
1575 static int gve_xsk_pool_disable(struct net_device *dev,
1576 				u16 qid)
1577 {
1578 	struct gve_priv *priv = netdev_priv(dev);
1579 	struct napi_struct *napi_rx;
1580 	struct napi_struct *napi_tx;
1581 	struct xsk_buff_pool *pool;
1582 	int tx_qid;
1583 
1584 	pool = xsk_get_pool_from_qid(dev, qid);
1585 	if (!pool)
1586 		return -EINVAL;
1587 	if (qid >= priv->rx_cfg.num_queues)
1588 		return -EINVAL;
1589 
1590 	/* If XDP prog is not installed or interface is down, unmap DMA and
1591 	 * return.
1592 	 */
1593 	if (!priv->xdp_prog || !netif_running(dev))
1594 		goto done;
1595 
1596 	napi_rx = &priv->ntfy_blocks[priv->rx[qid].ntfy_id].napi;
1597 	napi_disable(napi_rx); /* make sure current rx poll is done */
1598 
1599 	tx_qid = gve_xdp_tx_queue_id(priv, qid);
1600 	napi_tx = &priv->ntfy_blocks[priv->tx[tx_qid].ntfy_id].napi;
1601 	napi_disable(napi_tx); /* make sure current tx poll is done */
1602 
1603 	priv->rx[qid].xsk_pool = NULL;
1604 	xdp_rxq_info_unreg(&priv->rx[qid].xsk_rxq);
1605 	priv->tx[tx_qid].xsk_pool = NULL;
1606 	smp_mb(); /* Make sure it is visible to the workers on datapath */
1607 
1608 	napi_enable(napi_rx);
1609 	if (gve_rx_work_pending(&priv->rx[qid]))
1610 		napi_schedule(napi_rx);
1611 
1612 	napi_enable(napi_tx);
1613 	if (gve_tx_clean_pending(priv, &priv->tx[tx_qid]))
1614 		napi_schedule(napi_tx);
1615 
1616 done:
1617 	xsk_pool_dma_unmap(pool,
1618 			   DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
1619 	return 0;
1620 }
1621 
1622 static int gve_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
1623 {
1624 	struct gve_priv *priv = netdev_priv(dev);
1625 	struct napi_struct *napi;
1626 
1627 	if (!gve_get_napi_enabled(priv))
1628 		return -ENETDOWN;
1629 
1630 	if (queue_id >= priv->rx_cfg.num_queues || !priv->xdp_prog)
1631 		return -EINVAL;
1632 
1633 	napi = &priv->ntfy_blocks[gve_rx_idx_to_ntfy(priv, queue_id)].napi;
1634 	if (!napi_if_scheduled_mark_missed(napi)) {
1635 		/* Call local_bh_enable to trigger SoftIRQ processing */
1636 		local_bh_disable();
1637 		napi_schedule(napi);
1638 		local_bh_enable();
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static int verify_xdp_configuration(struct net_device *dev)
1645 {
1646 	struct gve_priv *priv = netdev_priv(dev);
1647 	u16 max_xdp_mtu;
1648 
1649 	if (dev->features & NETIF_F_LRO) {
1650 		netdev_warn(dev, "XDP is not supported when LRO is on.\n");
1651 		return -EOPNOTSUPP;
1652 	}
1653 
1654 	if (priv->queue_format != GVE_GQI_QPL_FORMAT) {
1655 		netdev_warn(dev, "XDP is not supported in mode %d.\n",
1656 			    priv->queue_format);
1657 		return -EOPNOTSUPP;
1658 	}
1659 
1660 	max_xdp_mtu = priv->rx_cfg.packet_buffer_size - sizeof(struct ethhdr);
1661 	if (priv->queue_format == GVE_GQI_QPL_FORMAT)
1662 		max_xdp_mtu -= GVE_RX_PAD;
1663 
1664 	if (dev->mtu > max_xdp_mtu) {
1665 		netdev_warn(dev, "XDP is not supported for mtu %d.\n",
1666 			    dev->mtu);
1667 		return -EOPNOTSUPP;
1668 	}
1669 
1670 	if (priv->rx_cfg.num_queues != priv->tx_cfg.num_queues ||
1671 	    (2 * priv->tx_cfg.num_queues > priv->tx_cfg.max_queues)) {
1672 		netdev_warn(dev, "XDP load failed: The number of configured RX queues %d should be equal to the number of configured TX queues %d and the number of configured RX/TX queues should be less than or equal to half the maximum number of RX/TX queues %d",
1673 			    priv->rx_cfg.num_queues,
1674 			    priv->tx_cfg.num_queues,
1675 			    priv->tx_cfg.max_queues);
1676 		return -EINVAL;
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int gve_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1682 {
1683 	struct gve_priv *priv = netdev_priv(dev);
1684 	int err;
1685 
1686 	err = verify_xdp_configuration(dev);
1687 	if (err)
1688 		return err;
1689 	switch (xdp->command) {
1690 	case XDP_SETUP_PROG:
1691 		return gve_set_xdp(priv, xdp->prog, xdp->extack);
1692 	case XDP_SETUP_XSK_POOL:
1693 		if (xdp->xsk.pool)
1694 			return gve_xsk_pool_enable(dev, xdp->xsk.pool, xdp->xsk.queue_id);
1695 		else
1696 			return gve_xsk_pool_disable(dev, xdp->xsk.queue_id);
1697 	default:
1698 		return -EINVAL;
1699 	}
1700 }
1701 
1702 int gve_init_rss_config(struct gve_priv *priv, u16 num_queues)
1703 {
1704 	struct gve_rss_config *rss_config = &priv->rss_config;
1705 	struct ethtool_rxfh_param rxfh = {0};
1706 	u16 i;
1707 
1708 	if (!priv->cache_rss_config)
1709 		return 0;
1710 
1711 	for (i = 0; i < priv->rss_lut_size; i++)
1712 		rss_config->hash_lut[i] =
1713 			ethtool_rxfh_indir_default(i, num_queues);
1714 
1715 	netdev_rss_key_fill(rss_config->hash_key, priv->rss_key_size);
1716 
1717 	rxfh.hfunc = ETH_RSS_HASH_TOP;
1718 
1719 	return gve_adminq_configure_rss(priv, &rxfh);
1720 }
1721 
1722 int gve_flow_rules_reset(struct gve_priv *priv)
1723 {
1724 	if (!priv->max_flow_rules)
1725 		return 0;
1726 
1727 	return gve_adminq_reset_flow_rules(priv);
1728 }
1729 
1730 int gve_adjust_config(struct gve_priv *priv,
1731 		      struct gve_tx_alloc_rings_cfg *tx_alloc_cfg,
1732 		      struct gve_rx_alloc_rings_cfg *rx_alloc_cfg)
1733 {
1734 	int err;
1735 
1736 	/* Allocate resources for the new configuration */
1737 	err = gve_queues_mem_alloc(priv, tx_alloc_cfg, rx_alloc_cfg);
1738 	if (err) {
1739 		netif_err(priv, drv, priv->dev,
1740 			  "Adjust config failed to alloc new queues");
1741 		return err;
1742 	}
1743 
1744 	/* Teardown the device and free existing resources */
1745 	err = gve_close(priv->dev);
1746 	if (err) {
1747 		netif_err(priv, drv, priv->dev,
1748 			  "Adjust config failed to close old queues");
1749 		gve_queues_mem_free(priv, tx_alloc_cfg, rx_alloc_cfg);
1750 		return err;
1751 	}
1752 
1753 	/* Bring the device back up again with the new resources. */
1754 	err = gve_queues_start(priv, tx_alloc_cfg, rx_alloc_cfg);
1755 	if (err) {
1756 		netif_err(priv, drv, priv->dev,
1757 			  "Adjust config failed to start new queues, !!! DISABLING ALL QUEUES !!!\n");
1758 		/* No need to free on error: ownership of resources is lost after
1759 		 * calling gve_queues_start.
1760 		 */
1761 		gve_turndown(priv);
1762 		return err;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 int gve_adjust_queues(struct gve_priv *priv,
1769 		      struct gve_rx_queue_config new_rx_config,
1770 		      struct gve_tx_queue_config new_tx_config,
1771 		      bool reset_rss)
1772 {
1773 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1774 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1775 	int err;
1776 
1777 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1778 
1779 	/* Relay the new config from ethtool */
1780 	tx_alloc_cfg.qcfg = &new_tx_config;
1781 	rx_alloc_cfg.qcfg_tx = &new_tx_config;
1782 	rx_alloc_cfg.qcfg_rx = &new_rx_config;
1783 	rx_alloc_cfg.reset_rss = reset_rss;
1784 
1785 	if (netif_running(priv->dev)) {
1786 		err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
1787 		return err;
1788 	}
1789 	/* Set the config for the next up. */
1790 	if (reset_rss) {
1791 		err = gve_init_rss_config(priv, new_rx_config.num_queues);
1792 		if (err)
1793 			return err;
1794 	}
1795 	priv->tx_cfg = new_tx_config;
1796 	priv->rx_cfg = new_rx_config;
1797 
1798 	return 0;
1799 }
1800 
1801 static void gve_turndown(struct gve_priv *priv)
1802 {
1803 	int idx;
1804 
1805 	if (netif_carrier_ok(priv->dev))
1806 		netif_carrier_off(priv->dev);
1807 
1808 	if (!gve_get_napi_enabled(priv))
1809 		return;
1810 
1811 	/* Disable napi to prevent more work from coming in */
1812 	for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
1813 		int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
1814 		struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1815 
1816 		if (!gve_tx_was_added_to_block(priv, idx))
1817 			continue;
1818 
1819 		if (idx < priv->tx_cfg.num_queues)
1820 			netif_queue_set_napi(priv->dev, idx,
1821 					     NETDEV_QUEUE_TYPE_TX, NULL);
1822 
1823 		napi_disable_locked(&block->napi);
1824 	}
1825 	for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
1826 		int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
1827 		struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1828 
1829 		if (!gve_rx_was_added_to_block(priv, idx))
1830 			continue;
1831 
1832 		netif_queue_set_napi(priv->dev, idx, NETDEV_QUEUE_TYPE_RX,
1833 				     NULL);
1834 		napi_disable_locked(&block->napi);
1835 	}
1836 
1837 	/* Stop tx queues */
1838 	netif_tx_disable(priv->dev);
1839 
1840 	xdp_features_clear_redirect_target_locked(priv->dev);
1841 
1842 	gve_clear_napi_enabled(priv);
1843 	gve_clear_report_stats(priv);
1844 
1845 	/* Make sure that all traffic is finished processing. */
1846 	synchronize_net();
1847 }
1848 
1849 static void gve_turnup(struct gve_priv *priv)
1850 {
1851 	int idx;
1852 
1853 	/* Start the tx queues */
1854 	netif_tx_start_all_queues(priv->dev);
1855 
1856 	/* Enable napi and unmask interrupts for all queues */
1857 	for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
1858 		int ntfy_idx = gve_tx_idx_to_ntfy(priv, idx);
1859 		struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1860 
1861 		if (!gve_tx_was_added_to_block(priv, idx))
1862 			continue;
1863 
1864 		napi_enable_locked(&block->napi);
1865 
1866 		if (idx < priv->tx_cfg.num_queues)
1867 			netif_queue_set_napi(priv->dev, idx,
1868 					     NETDEV_QUEUE_TYPE_TX,
1869 					     &block->napi);
1870 
1871 		if (gve_is_gqi(priv)) {
1872 			iowrite32be(0, gve_irq_doorbell(priv, block));
1873 		} else {
1874 			gve_set_itr_coalesce_usecs_dqo(priv, block,
1875 						       priv->tx_coalesce_usecs);
1876 		}
1877 
1878 		/* Any descs written by the NIC before this barrier will be
1879 		 * handled by the one-off napi schedule below. Whereas any
1880 		 * descs after the barrier will generate interrupts.
1881 		 */
1882 		mb();
1883 		napi_schedule(&block->napi);
1884 	}
1885 	for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
1886 		int ntfy_idx = gve_rx_idx_to_ntfy(priv, idx);
1887 		struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
1888 
1889 		if (!gve_rx_was_added_to_block(priv, idx))
1890 			continue;
1891 
1892 		napi_enable_locked(&block->napi);
1893 		netif_queue_set_napi(priv->dev, idx, NETDEV_QUEUE_TYPE_RX,
1894 				     &block->napi);
1895 
1896 		if (gve_is_gqi(priv)) {
1897 			iowrite32be(0, gve_irq_doorbell(priv, block));
1898 		} else {
1899 			gve_set_itr_coalesce_usecs_dqo(priv, block,
1900 						       priv->rx_coalesce_usecs);
1901 		}
1902 
1903 		/* Any descs written by the NIC before this barrier will be
1904 		 * handled by the one-off napi schedule below. Whereas any
1905 		 * descs after the barrier will generate interrupts.
1906 		 */
1907 		mb();
1908 		napi_schedule(&block->napi);
1909 	}
1910 
1911 	if (priv->tx_cfg.num_xdp_queues && gve_supports_xdp_xmit(priv))
1912 		xdp_features_set_redirect_target_locked(priv->dev, false);
1913 
1914 	gve_set_napi_enabled(priv);
1915 }
1916 
1917 static void gve_turnup_and_check_status(struct gve_priv *priv)
1918 {
1919 	u32 status;
1920 
1921 	gve_turnup(priv);
1922 	status = ioread32be(&priv->reg_bar0->device_status);
1923 	gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
1924 }
1925 
1926 static void gve_tx_timeout(struct net_device *dev, unsigned int txqueue)
1927 {
1928 	struct gve_notify_block *block;
1929 	struct gve_tx_ring *tx = NULL;
1930 	struct gve_priv *priv;
1931 	u32 last_nic_done;
1932 	u32 current_time;
1933 	u32 ntfy_idx;
1934 
1935 	netdev_info(dev, "Timeout on tx queue, %d", txqueue);
1936 	priv = netdev_priv(dev);
1937 	if (txqueue > priv->tx_cfg.num_queues)
1938 		goto reset;
1939 
1940 	ntfy_idx = gve_tx_idx_to_ntfy(priv, txqueue);
1941 	if (ntfy_idx >= priv->num_ntfy_blks)
1942 		goto reset;
1943 
1944 	block = &priv->ntfy_blocks[ntfy_idx];
1945 	tx = block->tx;
1946 
1947 	current_time = jiffies_to_msecs(jiffies);
1948 	if (tx->last_kick_msec + MIN_TX_TIMEOUT_GAP > current_time)
1949 		goto reset;
1950 
1951 	/* Check to see if there are missed completions, which will allow us to
1952 	 * kick the queue.
1953 	 */
1954 	last_nic_done = gve_tx_load_event_counter(priv, tx);
1955 	if (last_nic_done - tx->done) {
1956 		netdev_info(dev, "Kicking queue %d", txqueue);
1957 		iowrite32be(GVE_IRQ_MASK, gve_irq_doorbell(priv, block));
1958 		napi_schedule(&block->napi);
1959 		tx->last_kick_msec = current_time;
1960 		goto out;
1961 	} // Else reset.
1962 
1963 reset:
1964 	gve_schedule_reset(priv);
1965 
1966 out:
1967 	if (tx)
1968 		tx->queue_timeout++;
1969 	priv->tx_timeo_cnt++;
1970 }
1971 
1972 u16 gve_get_pkt_buf_size(const struct gve_priv *priv, bool enable_hsplit)
1973 {
1974 	if (enable_hsplit && priv->max_rx_buffer_size >= GVE_MAX_RX_BUFFER_SIZE)
1975 		return GVE_MAX_RX_BUFFER_SIZE;
1976 	else
1977 		return GVE_DEFAULT_RX_BUFFER_SIZE;
1978 }
1979 
1980 /* header-split is not supported on non-DQO_RDA yet even if device advertises it */
1981 bool gve_header_split_supported(const struct gve_priv *priv)
1982 {
1983 	return priv->header_buf_size && priv->queue_format == GVE_DQO_RDA_FORMAT;
1984 }
1985 
1986 int gve_set_hsplit_config(struct gve_priv *priv, u8 tcp_data_split)
1987 {
1988 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
1989 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
1990 	bool enable_hdr_split;
1991 	int err = 0;
1992 
1993 	if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_UNKNOWN)
1994 		return 0;
1995 
1996 	if (!gve_header_split_supported(priv)) {
1997 		dev_err(&priv->pdev->dev, "Header-split not supported\n");
1998 		return -EOPNOTSUPP;
1999 	}
2000 
2001 	if (tcp_data_split == ETHTOOL_TCP_DATA_SPLIT_ENABLED)
2002 		enable_hdr_split = true;
2003 	else
2004 		enable_hdr_split = false;
2005 
2006 	if (enable_hdr_split == priv->header_split_enabled)
2007 		return 0;
2008 
2009 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2010 
2011 	rx_alloc_cfg.enable_header_split = enable_hdr_split;
2012 	rx_alloc_cfg.packet_buffer_size = gve_get_pkt_buf_size(priv, enable_hdr_split);
2013 
2014 	if (netif_running(priv->dev))
2015 		err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2016 	return err;
2017 }
2018 
2019 static int gve_set_features(struct net_device *netdev,
2020 			    netdev_features_t features)
2021 {
2022 	const netdev_features_t orig_features = netdev->features;
2023 	struct gve_tx_alloc_rings_cfg tx_alloc_cfg = {0};
2024 	struct gve_rx_alloc_rings_cfg rx_alloc_cfg = {0};
2025 	struct gve_priv *priv = netdev_priv(netdev);
2026 	int err;
2027 
2028 	gve_get_curr_alloc_cfgs(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2029 
2030 	if ((netdev->features & NETIF_F_LRO) != (features & NETIF_F_LRO)) {
2031 		netdev->features ^= NETIF_F_LRO;
2032 		if (netif_running(netdev)) {
2033 			err = gve_adjust_config(priv, &tx_alloc_cfg, &rx_alloc_cfg);
2034 			if (err)
2035 				goto revert_features;
2036 		}
2037 	}
2038 	if ((netdev->features & NETIF_F_NTUPLE) && !(features & NETIF_F_NTUPLE)) {
2039 		err = gve_flow_rules_reset(priv);
2040 		if (err)
2041 			goto revert_features;
2042 	}
2043 
2044 	return 0;
2045 
2046 revert_features:
2047 	netdev->features = orig_features;
2048 	return err;
2049 }
2050 
2051 static int gve_get_ts_config(struct net_device *dev,
2052 			     struct kernel_hwtstamp_config *kernel_config)
2053 {
2054 	struct gve_priv *priv = netdev_priv(dev);
2055 
2056 	*kernel_config = priv->ts_config;
2057 	return 0;
2058 }
2059 
2060 static int gve_set_ts_config(struct net_device *dev,
2061 			     struct kernel_hwtstamp_config *kernel_config,
2062 			     struct netlink_ext_ack *extack)
2063 {
2064 	struct gve_priv *priv = netdev_priv(dev);
2065 
2066 	if (kernel_config->tx_type != HWTSTAMP_TX_OFF) {
2067 		NL_SET_ERR_MSG_MOD(extack, "TX timestamping is not supported");
2068 		return -ERANGE;
2069 	}
2070 
2071 	if (kernel_config->rx_filter != HWTSTAMP_FILTER_NONE) {
2072 		if (!priv->nic_ts_report) {
2073 			NL_SET_ERR_MSG_MOD(extack,
2074 					   "RX timestamping is not supported");
2075 			kernel_config->rx_filter = HWTSTAMP_FILTER_NONE;
2076 			return -EOPNOTSUPP;
2077 		}
2078 
2079 		kernel_config->rx_filter = HWTSTAMP_FILTER_ALL;
2080 		gve_clock_nic_ts_read(priv);
2081 		ptp_schedule_worker(priv->ptp->clock, 0);
2082 	} else {
2083 		ptp_cancel_worker_sync(priv->ptp->clock);
2084 	}
2085 
2086 	priv->ts_config.rx_filter = kernel_config->rx_filter;
2087 
2088 	return 0;
2089 }
2090 
2091 static const struct net_device_ops gve_netdev_ops = {
2092 	.ndo_start_xmit		=	gve_start_xmit,
2093 	.ndo_features_check	=	gve_features_check,
2094 	.ndo_open		=	gve_open,
2095 	.ndo_stop		=	gve_close,
2096 	.ndo_get_stats64	=	gve_get_stats,
2097 	.ndo_tx_timeout         =       gve_tx_timeout,
2098 	.ndo_set_features	=	gve_set_features,
2099 	.ndo_bpf		=	gve_xdp,
2100 	.ndo_xdp_xmit		=	gve_xdp_xmit,
2101 	.ndo_xsk_wakeup		=	gve_xsk_wakeup,
2102 	.ndo_hwtstamp_get	=	gve_get_ts_config,
2103 	.ndo_hwtstamp_set	=	gve_set_ts_config,
2104 };
2105 
2106 static void gve_handle_status(struct gve_priv *priv, u32 status)
2107 {
2108 	if (GVE_DEVICE_STATUS_RESET_MASK & status) {
2109 		dev_info(&priv->pdev->dev, "Device requested reset.\n");
2110 		gve_set_do_reset(priv);
2111 	}
2112 	if (GVE_DEVICE_STATUS_REPORT_STATS_MASK & status) {
2113 		priv->stats_report_trigger_cnt++;
2114 		gve_set_do_report_stats(priv);
2115 	}
2116 }
2117 
2118 static void gve_handle_reset(struct gve_priv *priv)
2119 {
2120 	/* A service task will be scheduled at the end of probe to catch any
2121 	 * resets that need to happen, and we don't want to reset until
2122 	 * probe is done.
2123 	 */
2124 	if (gve_get_probe_in_progress(priv))
2125 		return;
2126 
2127 	if (gve_get_do_reset(priv)) {
2128 		rtnl_lock();
2129 		netdev_lock(priv->dev);
2130 		gve_reset(priv, false);
2131 		netdev_unlock(priv->dev);
2132 		rtnl_unlock();
2133 	}
2134 }
2135 
2136 void gve_handle_report_stats(struct gve_priv *priv)
2137 {
2138 	struct stats *stats = priv->stats_report->stats;
2139 	int idx, stats_idx = 0;
2140 	unsigned int start = 0;
2141 	u64 tx_bytes;
2142 
2143 	if (!gve_get_report_stats(priv))
2144 		return;
2145 
2146 	be64_add_cpu(&priv->stats_report->written_count, 1);
2147 	/* tx stats */
2148 	if (priv->tx) {
2149 		for (idx = 0; idx < gve_num_tx_queues(priv); idx++) {
2150 			u32 last_completion = 0;
2151 			u32 tx_frames = 0;
2152 
2153 			/* DQO doesn't currently support these metrics. */
2154 			if (gve_is_gqi(priv)) {
2155 				last_completion = priv->tx[idx].done;
2156 				tx_frames = priv->tx[idx].req;
2157 			}
2158 
2159 			do {
2160 				start = u64_stats_fetch_begin(&priv->tx[idx].statss);
2161 				tx_bytes = priv->tx[idx].bytes_done;
2162 			} while (u64_stats_fetch_retry(&priv->tx[idx].statss, start));
2163 			stats[stats_idx++] = (struct stats) {
2164 				.stat_name = cpu_to_be32(TX_WAKE_CNT),
2165 				.value = cpu_to_be64(priv->tx[idx].wake_queue),
2166 				.queue_id = cpu_to_be32(idx),
2167 			};
2168 			stats[stats_idx++] = (struct stats) {
2169 				.stat_name = cpu_to_be32(TX_STOP_CNT),
2170 				.value = cpu_to_be64(priv->tx[idx].stop_queue),
2171 				.queue_id = cpu_to_be32(idx),
2172 			};
2173 			stats[stats_idx++] = (struct stats) {
2174 				.stat_name = cpu_to_be32(TX_FRAMES_SENT),
2175 				.value = cpu_to_be64(tx_frames),
2176 				.queue_id = cpu_to_be32(idx),
2177 			};
2178 			stats[stats_idx++] = (struct stats) {
2179 				.stat_name = cpu_to_be32(TX_BYTES_SENT),
2180 				.value = cpu_to_be64(tx_bytes),
2181 				.queue_id = cpu_to_be32(idx),
2182 			};
2183 			stats[stats_idx++] = (struct stats) {
2184 				.stat_name = cpu_to_be32(TX_LAST_COMPLETION_PROCESSED),
2185 				.value = cpu_to_be64(last_completion),
2186 				.queue_id = cpu_to_be32(idx),
2187 			};
2188 			stats[stats_idx++] = (struct stats) {
2189 				.stat_name = cpu_to_be32(TX_TIMEOUT_CNT),
2190 				.value = cpu_to_be64(priv->tx[idx].queue_timeout),
2191 				.queue_id = cpu_to_be32(idx),
2192 			};
2193 		}
2194 	}
2195 	/* rx stats */
2196 	if (priv->rx) {
2197 		for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
2198 			stats[stats_idx++] = (struct stats) {
2199 				.stat_name = cpu_to_be32(RX_NEXT_EXPECTED_SEQUENCE),
2200 				.value = cpu_to_be64(priv->rx[idx].desc.seqno),
2201 				.queue_id = cpu_to_be32(idx),
2202 			};
2203 			stats[stats_idx++] = (struct stats) {
2204 				.stat_name = cpu_to_be32(RX_BUFFERS_POSTED),
2205 				.value = cpu_to_be64(priv->rx[idx].fill_cnt),
2206 				.queue_id = cpu_to_be32(idx),
2207 			};
2208 		}
2209 	}
2210 }
2211 
2212 /* Handle NIC status register changes, reset requests and report stats */
2213 static void gve_service_task(struct work_struct *work)
2214 {
2215 	struct gve_priv *priv = container_of(work, struct gve_priv,
2216 					     service_task);
2217 	u32 status = ioread32be(&priv->reg_bar0->device_status);
2218 
2219 	gve_handle_status(priv, status);
2220 
2221 	gve_handle_reset(priv);
2222 	gve_handle_link_status(priv, GVE_DEVICE_STATUS_LINK_STATUS_MASK & status);
2223 }
2224 
2225 static void gve_set_netdev_xdp_features(struct gve_priv *priv)
2226 {
2227 	xdp_features_t xdp_features;
2228 
2229 	if (priv->queue_format == GVE_GQI_QPL_FORMAT) {
2230 		xdp_features = NETDEV_XDP_ACT_BASIC;
2231 		xdp_features |= NETDEV_XDP_ACT_REDIRECT;
2232 		xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY;
2233 	} else {
2234 		xdp_features = 0;
2235 	}
2236 
2237 	xdp_set_features_flag_locked(priv->dev, xdp_features);
2238 }
2239 
2240 static int gve_init_priv(struct gve_priv *priv, bool skip_describe_device)
2241 {
2242 	int num_ntfy;
2243 	int err;
2244 
2245 	/* Set up the adminq */
2246 	err = gve_adminq_alloc(&priv->pdev->dev, priv);
2247 	if (err) {
2248 		dev_err(&priv->pdev->dev,
2249 			"Failed to alloc admin queue: err=%d\n", err);
2250 		return err;
2251 	}
2252 
2253 	err = gve_verify_driver_compatibility(priv);
2254 	if (err) {
2255 		dev_err(&priv->pdev->dev,
2256 			"Could not verify driver compatibility: err=%d\n", err);
2257 		goto err;
2258 	}
2259 
2260 	priv->num_registered_pages = 0;
2261 
2262 	if (skip_describe_device)
2263 		goto setup_device;
2264 
2265 	priv->queue_format = GVE_QUEUE_FORMAT_UNSPECIFIED;
2266 	/* Get the initial information we need from the device */
2267 	err = gve_adminq_describe_device(priv);
2268 	if (err) {
2269 		dev_err(&priv->pdev->dev,
2270 			"Could not get device information: err=%d\n", err);
2271 		goto err;
2272 	}
2273 	priv->dev->mtu = priv->dev->max_mtu;
2274 	num_ntfy = pci_msix_vec_count(priv->pdev);
2275 	if (num_ntfy <= 0) {
2276 		dev_err(&priv->pdev->dev,
2277 			"could not count MSI-x vectors: err=%d\n", num_ntfy);
2278 		err = num_ntfy;
2279 		goto err;
2280 	} else if (num_ntfy < GVE_MIN_MSIX) {
2281 		dev_err(&priv->pdev->dev, "gve needs at least %d MSI-x vectors, but only has %d\n",
2282 			GVE_MIN_MSIX, num_ntfy);
2283 		err = -EINVAL;
2284 		goto err;
2285 	}
2286 
2287 	/* Big TCP is only supported on DQO */
2288 	if (!gve_is_gqi(priv))
2289 		netif_set_tso_max_size(priv->dev, GVE_DQO_TX_MAX);
2290 
2291 	priv->rx_copybreak = GVE_DEFAULT_RX_COPYBREAK;
2292 	/* gvnic has one Notification Block per MSI-x vector, except for the
2293 	 * management vector
2294 	 */
2295 	priv->num_ntfy_blks = (num_ntfy - 1) & ~0x1;
2296 	priv->mgmt_msix_idx = priv->num_ntfy_blks;
2297 
2298 	priv->tx_cfg.max_queues =
2299 		min_t(int, priv->tx_cfg.max_queues, priv->num_ntfy_blks / 2);
2300 	priv->rx_cfg.max_queues =
2301 		min_t(int, priv->rx_cfg.max_queues, priv->num_ntfy_blks / 2);
2302 
2303 	priv->tx_cfg.num_queues = priv->tx_cfg.max_queues;
2304 	priv->rx_cfg.num_queues = priv->rx_cfg.max_queues;
2305 	if (priv->default_num_queues > 0) {
2306 		priv->tx_cfg.num_queues = min_t(int, priv->default_num_queues,
2307 						priv->tx_cfg.num_queues);
2308 		priv->rx_cfg.num_queues = min_t(int, priv->default_num_queues,
2309 						priv->rx_cfg.num_queues);
2310 	}
2311 	priv->tx_cfg.num_xdp_queues = 0;
2312 
2313 	dev_info(&priv->pdev->dev, "TX queues %d, RX queues %d\n",
2314 		 priv->tx_cfg.num_queues, priv->rx_cfg.num_queues);
2315 	dev_info(&priv->pdev->dev, "Max TX queues %d, Max RX queues %d\n",
2316 		 priv->tx_cfg.max_queues, priv->rx_cfg.max_queues);
2317 
2318 	if (!gve_is_gqi(priv)) {
2319 		priv->tx_coalesce_usecs = GVE_TX_IRQ_RATELIMIT_US_DQO;
2320 		priv->rx_coalesce_usecs = GVE_RX_IRQ_RATELIMIT_US_DQO;
2321 	}
2322 
2323 	priv->ts_config.tx_type = HWTSTAMP_TX_OFF;
2324 	priv->ts_config.rx_filter = HWTSTAMP_FILTER_NONE;
2325 
2326 setup_device:
2327 	gve_set_netdev_xdp_features(priv);
2328 	err = gve_setup_device_resources(priv);
2329 	if (!err)
2330 		return 0;
2331 err:
2332 	gve_adminq_free(&priv->pdev->dev, priv);
2333 	return err;
2334 }
2335 
2336 static void gve_teardown_priv_resources(struct gve_priv *priv)
2337 {
2338 	gve_teardown_device_resources(priv);
2339 	gve_adminq_free(&priv->pdev->dev, priv);
2340 }
2341 
2342 static void gve_trigger_reset(struct gve_priv *priv)
2343 {
2344 	/* Reset the device by releasing the AQ */
2345 	gve_adminq_release(priv);
2346 }
2347 
2348 static void gve_reset_and_teardown(struct gve_priv *priv, bool was_up)
2349 {
2350 	gve_trigger_reset(priv);
2351 	/* With the reset having already happened, close cannot fail */
2352 	if (was_up)
2353 		gve_close(priv->dev);
2354 	gve_teardown_priv_resources(priv);
2355 }
2356 
2357 static int gve_reset_recovery(struct gve_priv *priv, bool was_up)
2358 {
2359 	int err;
2360 
2361 	err = gve_init_priv(priv, true);
2362 	if (err)
2363 		goto err;
2364 	if (was_up) {
2365 		err = gve_open(priv->dev);
2366 		if (err)
2367 			goto err;
2368 	}
2369 	return 0;
2370 err:
2371 	dev_err(&priv->pdev->dev, "Reset failed! !!! DISABLING ALL QUEUES !!!\n");
2372 	gve_turndown(priv);
2373 	return err;
2374 }
2375 
2376 int gve_reset(struct gve_priv *priv, bool attempt_teardown)
2377 {
2378 	bool was_up = netif_running(priv->dev);
2379 	int err;
2380 
2381 	dev_info(&priv->pdev->dev, "Performing reset\n");
2382 	gve_clear_do_reset(priv);
2383 	gve_set_reset_in_progress(priv);
2384 	/* If we aren't attempting to teardown normally, just go turndown and
2385 	 * reset right away.
2386 	 */
2387 	if (!attempt_teardown) {
2388 		gve_turndown(priv);
2389 		gve_reset_and_teardown(priv, was_up);
2390 	} else {
2391 		/* Otherwise attempt to close normally */
2392 		if (was_up) {
2393 			err = gve_close(priv->dev);
2394 			/* If that fails reset as we did above */
2395 			if (err)
2396 				gve_reset_and_teardown(priv, was_up);
2397 		}
2398 		/* Clean up any remaining resources */
2399 		gve_teardown_priv_resources(priv);
2400 	}
2401 
2402 	/* Set it all back up */
2403 	err = gve_reset_recovery(priv, was_up);
2404 	gve_clear_reset_in_progress(priv);
2405 	priv->reset_cnt++;
2406 	priv->interface_up_cnt = 0;
2407 	priv->interface_down_cnt = 0;
2408 	priv->stats_report_trigger_cnt = 0;
2409 	return err;
2410 }
2411 
2412 static void gve_write_version(u8 __iomem *driver_version_register)
2413 {
2414 	const char *c = gve_version_prefix;
2415 
2416 	while (*c) {
2417 		writeb(*c, driver_version_register);
2418 		c++;
2419 	}
2420 
2421 	c = gve_version_str;
2422 	while (*c) {
2423 		writeb(*c, driver_version_register);
2424 		c++;
2425 	}
2426 	writeb('\n', driver_version_register);
2427 }
2428 
2429 static int gve_rx_queue_stop(struct net_device *dev, void *per_q_mem, int idx)
2430 {
2431 	struct gve_priv *priv = netdev_priv(dev);
2432 	struct gve_rx_ring *gve_per_q_mem;
2433 	int err;
2434 
2435 	if (!priv->rx)
2436 		return -EAGAIN;
2437 
2438 	/* Destroying queue 0 while other queues exist is not supported in DQO */
2439 	if (!gve_is_gqi(priv) && idx == 0)
2440 		return -ERANGE;
2441 
2442 	/* Single-queue destruction requires quiescence on all queues */
2443 	gve_turndown(priv);
2444 
2445 	/* This failure will trigger a reset - no need to clean up */
2446 	err = gve_adminq_destroy_single_rx_queue(priv, idx);
2447 	if (err)
2448 		return err;
2449 
2450 	if (gve_is_qpl(priv)) {
2451 		/* This failure will trigger a reset - no need to clean up */
2452 		err = gve_unregister_qpl(priv, gve_rx_get_qpl(priv, idx));
2453 		if (err)
2454 			return err;
2455 	}
2456 
2457 	gve_rx_stop_ring(priv, idx);
2458 
2459 	/* Turn the unstopped queues back up */
2460 	gve_turnup_and_check_status(priv);
2461 
2462 	gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2463 	*gve_per_q_mem = priv->rx[idx];
2464 	memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
2465 	return 0;
2466 }
2467 
2468 static void gve_rx_queue_mem_free(struct net_device *dev, void *per_q_mem)
2469 {
2470 	struct gve_priv *priv = netdev_priv(dev);
2471 	struct gve_rx_alloc_rings_cfg cfg = {0};
2472 	struct gve_rx_ring *gve_per_q_mem;
2473 
2474 	gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2475 	gve_rx_get_curr_alloc_cfg(priv, &cfg);
2476 
2477 	if (gve_is_gqi(priv))
2478 		gve_rx_free_ring_gqi(priv, gve_per_q_mem, &cfg);
2479 	else
2480 		gve_rx_free_ring_dqo(priv, gve_per_q_mem, &cfg);
2481 }
2482 
2483 static int gve_rx_queue_mem_alloc(struct net_device *dev, void *per_q_mem,
2484 				  int idx)
2485 {
2486 	struct gve_priv *priv = netdev_priv(dev);
2487 	struct gve_rx_alloc_rings_cfg cfg = {0};
2488 	struct gve_rx_ring *gve_per_q_mem;
2489 	int err;
2490 
2491 	if (!priv->rx)
2492 		return -EAGAIN;
2493 
2494 	gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2495 	gve_rx_get_curr_alloc_cfg(priv, &cfg);
2496 
2497 	if (gve_is_gqi(priv))
2498 		err = gve_rx_alloc_ring_gqi(priv, &cfg, gve_per_q_mem, idx);
2499 	else
2500 		err = gve_rx_alloc_ring_dqo(priv, &cfg, gve_per_q_mem, idx);
2501 
2502 	return err;
2503 }
2504 
2505 static int gve_rx_queue_start(struct net_device *dev, void *per_q_mem, int idx)
2506 {
2507 	struct gve_priv *priv = netdev_priv(dev);
2508 	struct gve_rx_ring *gve_per_q_mem;
2509 	int err;
2510 
2511 	if (!priv->rx)
2512 		return -EAGAIN;
2513 
2514 	gve_per_q_mem = (struct gve_rx_ring *)per_q_mem;
2515 	priv->rx[idx] = *gve_per_q_mem;
2516 
2517 	/* Single-queue creation requires quiescence on all queues */
2518 	gve_turndown(priv);
2519 
2520 	gve_rx_start_ring(priv, idx);
2521 
2522 	if (gve_is_qpl(priv)) {
2523 		/* This failure will trigger a reset - no need to clean up */
2524 		err = gve_register_qpl(priv, gve_rx_get_qpl(priv, idx));
2525 		if (err)
2526 			goto abort;
2527 	}
2528 
2529 	/* This failure will trigger a reset - no need to clean up */
2530 	err = gve_adminq_create_single_rx_queue(priv, idx);
2531 	if (err)
2532 		goto abort;
2533 
2534 	if (gve_is_gqi(priv))
2535 		gve_rx_write_doorbell(priv, &priv->rx[idx]);
2536 	else
2537 		gve_rx_post_buffers_dqo(&priv->rx[idx]);
2538 
2539 	/* Turn the unstopped queues back up */
2540 	gve_turnup_and_check_status(priv);
2541 	return 0;
2542 
2543 abort:
2544 	gve_rx_stop_ring(priv, idx);
2545 
2546 	/* All failures in this func result in a reset, by clearing the struct
2547 	 * at idx, we prevent a double free when that reset runs. The reset,
2548 	 * which needs the rtnl lock, will not run till this func returns and
2549 	 * its caller gives up the lock.
2550 	 */
2551 	memset(&priv->rx[idx], 0, sizeof(priv->rx[idx]));
2552 	return err;
2553 }
2554 
2555 static const struct netdev_queue_mgmt_ops gve_queue_mgmt_ops = {
2556 	.ndo_queue_mem_size	=	sizeof(struct gve_rx_ring),
2557 	.ndo_queue_mem_alloc	=	gve_rx_queue_mem_alloc,
2558 	.ndo_queue_mem_free	=	gve_rx_queue_mem_free,
2559 	.ndo_queue_start	=	gve_rx_queue_start,
2560 	.ndo_queue_stop		=	gve_rx_queue_stop,
2561 };
2562 
2563 static void gve_get_rx_queue_stats(struct net_device *dev, int idx,
2564 				   struct netdev_queue_stats_rx *rx_stats)
2565 {
2566 	struct gve_priv *priv = netdev_priv(dev);
2567 	struct gve_rx_ring *rx = &priv->rx[idx];
2568 	unsigned int start;
2569 
2570 	do {
2571 		start = u64_stats_fetch_begin(&rx->statss);
2572 		rx_stats->packets = rx->rpackets;
2573 		rx_stats->bytes = rx->rbytes;
2574 		rx_stats->alloc_fail = rx->rx_skb_alloc_fail +
2575 				       rx->rx_buf_alloc_fail;
2576 	} while (u64_stats_fetch_retry(&rx->statss, start));
2577 }
2578 
2579 static void gve_get_tx_queue_stats(struct net_device *dev, int idx,
2580 				   struct netdev_queue_stats_tx *tx_stats)
2581 {
2582 	struct gve_priv *priv = netdev_priv(dev);
2583 	struct gve_tx_ring *tx = &priv->tx[idx];
2584 	unsigned int start;
2585 
2586 	do {
2587 		start = u64_stats_fetch_begin(&tx->statss);
2588 		tx_stats->packets = tx->pkt_done;
2589 		tx_stats->bytes = tx->bytes_done;
2590 	} while (u64_stats_fetch_retry(&tx->statss, start));
2591 }
2592 
2593 static void gve_get_base_stats(struct net_device *dev,
2594 			       struct netdev_queue_stats_rx *rx,
2595 			       struct netdev_queue_stats_tx *tx)
2596 {
2597 	rx->packets = 0;
2598 	rx->bytes = 0;
2599 	rx->alloc_fail = 0;
2600 
2601 	tx->packets = 0;
2602 	tx->bytes = 0;
2603 }
2604 
2605 static const struct netdev_stat_ops gve_stat_ops = {
2606 	.get_queue_stats_rx	= gve_get_rx_queue_stats,
2607 	.get_queue_stats_tx	= gve_get_tx_queue_stats,
2608 	.get_base_stats		= gve_get_base_stats,
2609 };
2610 
2611 static int gve_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2612 {
2613 	int max_tx_queues, max_rx_queues;
2614 	struct net_device *dev;
2615 	__be32 __iomem *db_bar;
2616 	struct gve_registers __iomem *reg_bar;
2617 	struct gve_priv *priv;
2618 	int err;
2619 
2620 	err = pci_enable_device(pdev);
2621 	if (err)
2622 		return err;
2623 
2624 	err = pci_request_regions(pdev, gve_driver_name);
2625 	if (err)
2626 		goto abort_with_enabled;
2627 
2628 	pci_set_master(pdev);
2629 
2630 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2631 	if (err) {
2632 		dev_err(&pdev->dev, "Failed to set dma mask: err=%d\n", err);
2633 		goto abort_with_pci_region;
2634 	}
2635 
2636 	reg_bar = pci_iomap(pdev, GVE_REGISTER_BAR, 0);
2637 	if (!reg_bar) {
2638 		dev_err(&pdev->dev, "Failed to map pci bar!\n");
2639 		err = -ENOMEM;
2640 		goto abort_with_pci_region;
2641 	}
2642 
2643 	db_bar = pci_iomap(pdev, GVE_DOORBELL_BAR, 0);
2644 	if (!db_bar) {
2645 		dev_err(&pdev->dev, "Failed to map doorbell bar!\n");
2646 		err = -ENOMEM;
2647 		goto abort_with_reg_bar;
2648 	}
2649 
2650 	gve_write_version(&reg_bar->driver_version);
2651 	/* Get max queues to alloc etherdev */
2652 	max_tx_queues = ioread32be(&reg_bar->max_tx_queues);
2653 	max_rx_queues = ioread32be(&reg_bar->max_rx_queues);
2654 	/* Alloc and setup the netdev and priv */
2655 	dev = alloc_etherdev_mqs(sizeof(*priv), max_tx_queues, max_rx_queues);
2656 	if (!dev) {
2657 		dev_err(&pdev->dev, "could not allocate netdev\n");
2658 		err = -ENOMEM;
2659 		goto abort_with_db_bar;
2660 	}
2661 	SET_NETDEV_DEV(dev, &pdev->dev);
2662 	pci_set_drvdata(pdev, dev);
2663 	dev->ethtool_ops = &gve_ethtool_ops;
2664 	dev->netdev_ops = &gve_netdev_ops;
2665 	dev->queue_mgmt_ops = &gve_queue_mgmt_ops;
2666 	dev->stat_ops = &gve_stat_ops;
2667 
2668 	/* Set default and supported features.
2669 	 *
2670 	 * Features might be set in other locations as well (such as
2671 	 * `gve_adminq_describe_device`).
2672 	 */
2673 	dev->hw_features = NETIF_F_HIGHDMA;
2674 	dev->hw_features |= NETIF_F_SG;
2675 	dev->hw_features |= NETIF_F_HW_CSUM;
2676 	dev->hw_features |= NETIF_F_TSO;
2677 	dev->hw_features |= NETIF_F_TSO6;
2678 	dev->hw_features |= NETIF_F_TSO_ECN;
2679 	dev->hw_features |= NETIF_F_RXCSUM;
2680 	dev->hw_features |= NETIF_F_RXHASH;
2681 	dev->features = dev->hw_features;
2682 	dev->watchdog_timeo = 5 * HZ;
2683 	dev->min_mtu = ETH_MIN_MTU;
2684 	netif_carrier_off(dev);
2685 
2686 	priv = netdev_priv(dev);
2687 	priv->dev = dev;
2688 	priv->pdev = pdev;
2689 	priv->msg_enable = DEFAULT_MSG_LEVEL;
2690 	priv->reg_bar0 = reg_bar;
2691 	priv->db_bar2 = db_bar;
2692 	priv->service_task_flags = 0x0;
2693 	priv->state_flags = 0x0;
2694 	priv->ethtool_flags = 0x0;
2695 	priv->rx_cfg.packet_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
2696 	priv->max_rx_buffer_size = GVE_DEFAULT_RX_BUFFER_SIZE;
2697 
2698 	gve_set_probe_in_progress(priv);
2699 	priv->gve_wq = alloc_ordered_workqueue("gve", 0);
2700 	if (!priv->gve_wq) {
2701 		dev_err(&pdev->dev, "Could not allocate workqueue");
2702 		err = -ENOMEM;
2703 		goto abort_with_netdev;
2704 	}
2705 	INIT_WORK(&priv->service_task, gve_service_task);
2706 	INIT_WORK(&priv->stats_report_task, gve_stats_report_task);
2707 	priv->tx_cfg.max_queues = max_tx_queues;
2708 	priv->rx_cfg.max_queues = max_rx_queues;
2709 
2710 	err = gve_init_priv(priv, false);
2711 	if (err)
2712 		goto abort_with_wq;
2713 
2714 	if (!gve_is_gqi(priv) && !gve_is_qpl(priv))
2715 		dev->netmem_tx = true;
2716 
2717 	err = register_netdev(dev);
2718 	if (err)
2719 		goto abort_with_gve_init;
2720 
2721 	dev_info(&pdev->dev, "GVE version %s\n", gve_version_str);
2722 	dev_info(&pdev->dev, "GVE queue format %d\n", (int)priv->queue_format);
2723 	gve_clear_probe_in_progress(priv);
2724 	queue_work(priv->gve_wq, &priv->service_task);
2725 	return 0;
2726 
2727 abort_with_gve_init:
2728 	gve_teardown_priv_resources(priv);
2729 
2730 abort_with_wq:
2731 	destroy_workqueue(priv->gve_wq);
2732 
2733 abort_with_netdev:
2734 	free_netdev(dev);
2735 
2736 abort_with_db_bar:
2737 	pci_iounmap(pdev, db_bar);
2738 
2739 abort_with_reg_bar:
2740 	pci_iounmap(pdev, reg_bar);
2741 
2742 abort_with_pci_region:
2743 	pci_release_regions(pdev);
2744 
2745 abort_with_enabled:
2746 	pci_disable_device(pdev);
2747 	return err;
2748 }
2749 
2750 static void gve_remove(struct pci_dev *pdev)
2751 {
2752 	struct net_device *netdev = pci_get_drvdata(pdev);
2753 	struct gve_priv *priv = netdev_priv(netdev);
2754 	__be32 __iomem *db_bar = priv->db_bar2;
2755 	void __iomem *reg_bar = priv->reg_bar0;
2756 
2757 	unregister_netdev(netdev);
2758 	gve_teardown_priv_resources(priv);
2759 	destroy_workqueue(priv->gve_wq);
2760 	free_netdev(netdev);
2761 	pci_iounmap(pdev, db_bar);
2762 	pci_iounmap(pdev, reg_bar);
2763 	pci_release_regions(pdev);
2764 	pci_disable_device(pdev);
2765 }
2766 
2767 static void gve_shutdown(struct pci_dev *pdev)
2768 {
2769 	struct net_device *netdev = pci_get_drvdata(pdev);
2770 	struct gve_priv *priv = netdev_priv(netdev);
2771 	bool was_up = netif_running(priv->dev);
2772 
2773 	rtnl_lock();
2774 	netdev_lock(netdev);
2775 	if (was_up && gve_close(priv->dev)) {
2776 		/* If the dev was up, attempt to close, if close fails, reset */
2777 		gve_reset_and_teardown(priv, was_up);
2778 	} else {
2779 		/* If the dev wasn't up or close worked, finish tearing down */
2780 		gve_teardown_priv_resources(priv);
2781 	}
2782 	netdev_unlock(netdev);
2783 	rtnl_unlock();
2784 }
2785 
2786 #ifdef CONFIG_PM
2787 static int gve_suspend(struct pci_dev *pdev, pm_message_t state)
2788 {
2789 	struct net_device *netdev = pci_get_drvdata(pdev);
2790 	struct gve_priv *priv = netdev_priv(netdev);
2791 	bool was_up = netif_running(priv->dev);
2792 
2793 	priv->suspend_cnt++;
2794 	rtnl_lock();
2795 	netdev_lock(netdev);
2796 	if (was_up && gve_close(priv->dev)) {
2797 		/* If the dev was up, attempt to close, if close fails, reset */
2798 		gve_reset_and_teardown(priv, was_up);
2799 	} else {
2800 		/* If the dev wasn't up or close worked, finish tearing down */
2801 		gve_teardown_priv_resources(priv);
2802 	}
2803 	priv->up_before_suspend = was_up;
2804 	netdev_unlock(netdev);
2805 	rtnl_unlock();
2806 	return 0;
2807 }
2808 
2809 static int gve_resume(struct pci_dev *pdev)
2810 {
2811 	struct net_device *netdev = pci_get_drvdata(pdev);
2812 	struct gve_priv *priv = netdev_priv(netdev);
2813 	int err;
2814 
2815 	priv->resume_cnt++;
2816 	rtnl_lock();
2817 	netdev_lock(netdev);
2818 	err = gve_reset_recovery(priv, priv->up_before_suspend);
2819 	netdev_unlock(netdev);
2820 	rtnl_unlock();
2821 	return err;
2822 }
2823 #endif /* CONFIG_PM */
2824 
2825 static const struct pci_device_id gve_id_table[] = {
2826 	{ PCI_DEVICE(PCI_VENDOR_ID_GOOGLE, PCI_DEV_ID_GVNIC) },
2827 	{ }
2828 };
2829 
2830 static struct pci_driver gve_driver = {
2831 	.name		= gve_driver_name,
2832 	.id_table	= gve_id_table,
2833 	.probe		= gve_probe,
2834 	.remove		= gve_remove,
2835 	.shutdown	= gve_shutdown,
2836 #ifdef CONFIG_PM
2837 	.suspend        = gve_suspend,
2838 	.resume         = gve_resume,
2839 #endif
2840 };
2841 
2842 module_pci_driver(gve_driver);
2843 
2844 MODULE_DEVICE_TABLE(pci, gve_id_table);
2845 MODULE_AUTHOR("Google, Inc.");
2846 MODULE_DESCRIPTION("Google Virtual NIC Driver");
2847 MODULE_LICENSE("Dual MIT/GPL");
2848 MODULE_VERSION(GVE_VERSION);
2849