1 /* 2 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved. 3 * 4 * Author: Shlomi Gridish <gridish@freescale.com> 5 * Li Yang <leoli@freescale.com> 6 * 7 * Description: 8 * QE UCC Gigabit Ethernet Driver 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/stddef.h> 23 #include <linux/module.h> 24 #include <linux/interrupt.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/spinlock.h> 29 #include <linux/mm.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/mii.h> 32 #include <linux/phy.h> 33 #include <linux/workqueue.h> 34 #include <linux/of_address.h> 35 #include <linux/of_irq.h> 36 #include <linux/of_mdio.h> 37 #include <linux/of_net.h> 38 #include <linux/of_platform.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/irq.h> 42 #include <asm/io.h> 43 #include <asm/immap_qe.h> 44 #include <asm/qe.h> 45 #include <asm/ucc.h> 46 #include <asm/ucc_fast.h> 47 #include <asm/machdep.h> 48 49 #include "ucc_geth.h" 50 51 #undef DEBUG 52 53 #define ugeth_printk(level, format, arg...) \ 54 printk(level format "\n", ## arg) 55 56 #define ugeth_dbg(format, arg...) \ 57 ugeth_printk(KERN_DEBUG , format , ## arg) 58 59 #ifdef UGETH_VERBOSE_DEBUG 60 #define ugeth_vdbg ugeth_dbg 61 #else 62 #define ugeth_vdbg(fmt, args...) do { } while (0) 63 #endif /* UGETH_VERBOSE_DEBUG */ 64 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1 65 66 67 static DEFINE_SPINLOCK(ugeth_lock); 68 69 static struct { 70 u32 msg_enable; 71 } debug = { -1 }; 72 73 module_param_named(debug, debug.msg_enable, int, 0); 74 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)"); 75 76 static struct ucc_geth_info ugeth_primary_info = { 77 .uf_info = { 78 .bd_mem_part = MEM_PART_SYSTEM, 79 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES, 80 .max_rx_buf_length = 1536, 81 /* adjusted at startup if max-speed 1000 */ 82 .urfs = UCC_GETH_URFS_INIT, 83 .urfet = UCC_GETH_URFET_INIT, 84 .urfset = UCC_GETH_URFSET_INIT, 85 .utfs = UCC_GETH_UTFS_INIT, 86 .utfet = UCC_GETH_UTFET_INIT, 87 .utftt = UCC_GETH_UTFTT_INIT, 88 .ufpt = 256, 89 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET, 90 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 91 .tenc = UCC_FAST_TX_ENCODING_NRZ, 92 .renc = UCC_FAST_RX_ENCODING_NRZ, 93 .tcrc = UCC_FAST_16_BIT_CRC, 94 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 95 }, 96 .numQueuesTx = 1, 97 .numQueuesRx = 1, 98 .extendedFilteringChainPointer = ((uint32_t) NULL), 99 .typeorlen = 3072 /*1536 */ , 100 .nonBackToBackIfgPart1 = 0x40, 101 .nonBackToBackIfgPart2 = 0x60, 102 .miminumInterFrameGapEnforcement = 0x50, 103 .backToBackInterFrameGap = 0x60, 104 .mblinterval = 128, 105 .nortsrbytetime = 5, 106 .fracsiz = 1, 107 .strictpriorityq = 0xff, 108 .altBebTruncation = 0xa, 109 .excessDefer = 1, 110 .maxRetransmission = 0xf, 111 .collisionWindow = 0x37, 112 .receiveFlowControl = 1, 113 .transmitFlowControl = 1, 114 .maxGroupAddrInHash = 4, 115 .maxIndAddrInHash = 4, 116 .prel = 7, 117 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */ 118 .minFrameLength = 64, 119 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */ 120 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */ 121 .vlantype = 0x8100, 122 .ecamptr = ((uint32_t) NULL), 123 .eventRegMask = UCCE_OTHER, 124 .pausePeriod = 0xf000, 125 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1}, 126 .bdRingLenTx = { 127 TX_BD_RING_LEN, 128 TX_BD_RING_LEN, 129 TX_BD_RING_LEN, 130 TX_BD_RING_LEN, 131 TX_BD_RING_LEN, 132 TX_BD_RING_LEN, 133 TX_BD_RING_LEN, 134 TX_BD_RING_LEN}, 135 136 .bdRingLenRx = { 137 RX_BD_RING_LEN, 138 RX_BD_RING_LEN, 139 RX_BD_RING_LEN, 140 RX_BD_RING_LEN, 141 RX_BD_RING_LEN, 142 RX_BD_RING_LEN, 143 RX_BD_RING_LEN, 144 RX_BD_RING_LEN}, 145 146 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1, 147 .largestexternallookupkeysize = 148 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE, 149 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE | 150 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX | 151 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX, 152 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP, 153 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP, 154 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT, 155 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE, 156 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC, 157 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1, 158 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1, 159 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 160 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 161 }; 162 163 static struct ucc_geth_info ugeth_info[8]; 164 165 #ifdef DEBUG 166 static void mem_disp(u8 *addr, int size) 167 { 168 u8 *i; 169 int size16Aling = (size >> 4) << 4; 170 int size4Aling = (size >> 2) << 2; 171 int notAlign = 0; 172 if (size % 16) 173 notAlign = 1; 174 175 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16) 176 printk("0x%08x: %08x %08x %08x %08x\r\n", 177 (u32) i, 178 *((u32 *) (i)), 179 *((u32 *) (i + 4)), 180 *((u32 *) (i + 8)), *((u32 *) (i + 12))); 181 if (notAlign == 1) 182 printk("0x%08x: ", (u32) i); 183 for (; (u32) i < (u32) addr + size4Aling; i += 4) 184 printk("%08x ", *((u32 *) (i))); 185 for (; (u32) i < (u32) addr + size; i++) 186 printk("%02x", *((i))); 187 if (notAlign == 1) 188 printk("\r\n"); 189 } 190 #endif /* DEBUG */ 191 192 static struct list_head *dequeue(struct list_head *lh) 193 { 194 unsigned long flags; 195 196 spin_lock_irqsave(&ugeth_lock, flags); 197 if (!list_empty(lh)) { 198 struct list_head *node = lh->next; 199 list_del(node); 200 spin_unlock_irqrestore(&ugeth_lock, flags); 201 return node; 202 } else { 203 spin_unlock_irqrestore(&ugeth_lock, flags); 204 return NULL; 205 } 206 } 207 208 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth, 209 u8 __iomem *bd) 210 { 211 struct sk_buff *skb; 212 213 skb = netdev_alloc_skb(ugeth->ndev, 214 ugeth->ug_info->uf_info.max_rx_buf_length + 215 UCC_GETH_RX_DATA_BUF_ALIGNMENT); 216 if (!skb) 217 return NULL; 218 219 /* We need the data buffer to be aligned properly. We will reserve 220 * as many bytes as needed to align the data properly 221 */ 222 skb_reserve(skb, 223 UCC_GETH_RX_DATA_BUF_ALIGNMENT - 224 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT - 225 1))); 226 227 out_be32(&((struct qe_bd __iomem *)bd)->buf, 228 dma_map_single(ugeth->dev, 229 skb->data, 230 ugeth->ug_info->uf_info.max_rx_buf_length + 231 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 232 DMA_FROM_DEVICE)); 233 234 out_be32((u32 __iomem *)bd, 235 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W))); 236 237 return skb; 238 } 239 240 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ) 241 { 242 u8 __iomem *bd; 243 u32 bd_status; 244 struct sk_buff *skb; 245 int i; 246 247 bd = ugeth->p_rx_bd_ring[rxQ]; 248 i = 0; 249 250 do { 251 bd_status = in_be32((u32 __iomem *)bd); 252 skb = get_new_skb(ugeth, bd); 253 254 if (!skb) /* If can not allocate data buffer, 255 abort. Cleanup will be elsewhere */ 256 return -ENOMEM; 257 258 ugeth->rx_skbuff[rxQ][i] = skb; 259 260 /* advance the BD pointer */ 261 bd += sizeof(struct qe_bd); 262 i++; 263 } while (!(bd_status & R_W)); 264 265 return 0; 266 } 267 268 static int fill_init_enet_entries(struct ucc_geth_private *ugeth, 269 u32 *p_start, 270 u8 num_entries, 271 u32 thread_size, 272 u32 thread_alignment, 273 unsigned int risc, 274 int skip_page_for_first_entry) 275 { 276 u32 init_enet_offset; 277 u8 i; 278 int snum; 279 280 for (i = 0; i < num_entries; i++) { 281 if ((snum = qe_get_snum()) < 0) { 282 if (netif_msg_ifup(ugeth)) 283 pr_err("Can not get SNUM\n"); 284 return snum; 285 } 286 if ((i == 0) && skip_page_for_first_entry) 287 /* First entry of Rx does not have page */ 288 init_enet_offset = 0; 289 else { 290 init_enet_offset = 291 qe_muram_alloc(thread_size, thread_alignment); 292 if (IS_ERR_VALUE(init_enet_offset)) { 293 if (netif_msg_ifup(ugeth)) 294 pr_err("Can not allocate DPRAM memory\n"); 295 qe_put_snum((u8) snum); 296 return -ENOMEM; 297 } 298 } 299 *(p_start++) = 300 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset 301 | risc; 302 } 303 304 return 0; 305 } 306 307 static int return_init_enet_entries(struct ucc_geth_private *ugeth, 308 u32 *p_start, 309 u8 num_entries, 310 unsigned int risc, 311 int skip_page_for_first_entry) 312 { 313 u32 init_enet_offset; 314 u8 i; 315 int snum; 316 317 for (i = 0; i < num_entries; i++) { 318 u32 val = *p_start; 319 320 /* Check that this entry was actually valid -- 321 needed in case failed in allocations */ 322 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 323 snum = 324 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 325 ENET_INIT_PARAM_SNUM_SHIFT; 326 qe_put_snum((u8) snum); 327 if (!((i == 0) && skip_page_for_first_entry)) { 328 /* First entry of Rx does not have page */ 329 init_enet_offset = 330 (val & ENET_INIT_PARAM_PTR_MASK); 331 qe_muram_free(init_enet_offset); 332 } 333 *p_start++ = 0; 334 } 335 } 336 337 return 0; 338 } 339 340 #ifdef DEBUG 341 static int dump_init_enet_entries(struct ucc_geth_private *ugeth, 342 u32 __iomem *p_start, 343 u8 num_entries, 344 u32 thread_size, 345 unsigned int risc, 346 int skip_page_for_first_entry) 347 { 348 u32 init_enet_offset; 349 u8 i; 350 int snum; 351 352 for (i = 0; i < num_entries; i++) { 353 u32 val = in_be32(p_start); 354 355 /* Check that this entry was actually valid -- 356 needed in case failed in allocations */ 357 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 358 snum = 359 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 360 ENET_INIT_PARAM_SNUM_SHIFT; 361 qe_put_snum((u8) snum); 362 if (!((i == 0) && skip_page_for_first_entry)) { 363 /* First entry of Rx does not have page */ 364 init_enet_offset = 365 (in_be32(p_start) & 366 ENET_INIT_PARAM_PTR_MASK); 367 pr_info("Init enet entry %d:\n", i); 368 pr_info("Base address: 0x%08x\n", 369 (u32)qe_muram_addr(init_enet_offset)); 370 mem_disp(qe_muram_addr(init_enet_offset), 371 thread_size); 372 } 373 p_start++; 374 } 375 } 376 377 return 0; 378 } 379 #endif 380 381 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont) 382 { 383 kfree(enet_addr_cont); 384 } 385 386 static void set_mac_addr(__be16 __iomem *reg, u8 *mac) 387 { 388 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]); 389 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]); 390 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]); 391 } 392 393 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num) 394 { 395 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 396 397 if (paddr_num >= NUM_OF_PADDRS) { 398 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num); 399 return -EINVAL; 400 } 401 402 p_82xx_addr_filt = 403 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 404 addressfiltering; 405 406 /* Writing address ff.ff.ff.ff.ff.ff disables address 407 recognition for this register */ 408 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff); 409 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff); 410 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff); 411 412 return 0; 413 } 414 415 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth, 416 u8 *p_enet_addr) 417 { 418 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 419 u32 cecr_subblock; 420 421 p_82xx_addr_filt = 422 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 423 addressfiltering; 424 425 cecr_subblock = 426 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 427 428 /* Ethernet frames are defined in Little Endian mode, 429 therefore to insert */ 430 /* the address to the hash (Big Endian mode), we reverse the bytes.*/ 431 432 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr); 433 434 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock, 435 QE_CR_PROTOCOL_ETHERNET, 0); 436 } 437 438 #ifdef DEBUG 439 static void get_statistics(struct ucc_geth_private *ugeth, 440 struct ucc_geth_tx_firmware_statistics * 441 tx_firmware_statistics, 442 struct ucc_geth_rx_firmware_statistics * 443 rx_firmware_statistics, 444 struct ucc_geth_hardware_statistics *hardware_statistics) 445 { 446 struct ucc_fast __iomem *uf_regs; 447 struct ucc_geth __iomem *ug_regs; 448 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram; 449 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram; 450 451 ug_regs = ugeth->ug_regs; 452 uf_regs = (struct ucc_fast __iomem *) ug_regs; 453 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram; 454 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram; 455 456 /* Tx firmware only if user handed pointer and driver actually 457 gathers Tx firmware statistics */ 458 if (tx_firmware_statistics && p_tx_fw_statistics_pram) { 459 tx_firmware_statistics->sicoltx = 460 in_be32(&p_tx_fw_statistics_pram->sicoltx); 461 tx_firmware_statistics->mulcoltx = 462 in_be32(&p_tx_fw_statistics_pram->mulcoltx); 463 tx_firmware_statistics->latecoltxfr = 464 in_be32(&p_tx_fw_statistics_pram->latecoltxfr); 465 tx_firmware_statistics->frabortduecol = 466 in_be32(&p_tx_fw_statistics_pram->frabortduecol); 467 tx_firmware_statistics->frlostinmactxer = 468 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer); 469 tx_firmware_statistics->carriersenseertx = 470 in_be32(&p_tx_fw_statistics_pram->carriersenseertx); 471 tx_firmware_statistics->frtxok = 472 in_be32(&p_tx_fw_statistics_pram->frtxok); 473 tx_firmware_statistics->txfrexcessivedefer = 474 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer); 475 tx_firmware_statistics->txpkts256 = 476 in_be32(&p_tx_fw_statistics_pram->txpkts256); 477 tx_firmware_statistics->txpkts512 = 478 in_be32(&p_tx_fw_statistics_pram->txpkts512); 479 tx_firmware_statistics->txpkts1024 = 480 in_be32(&p_tx_fw_statistics_pram->txpkts1024); 481 tx_firmware_statistics->txpktsjumbo = 482 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo); 483 } 484 485 /* Rx firmware only if user handed pointer and driver actually 486 * gathers Rx firmware statistics */ 487 if (rx_firmware_statistics && p_rx_fw_statistics_pram) { 488 int i; 489 rx_firmware_statistics->frrxfcser = 490 in_be32(&p_rx_fw_statistics_pram->frrxfcser); 491 rx_firmware_statistics->fraligner = 492 in_be32(&p_rx_fw_statistics_pram->fraligner); 493 rx_firmware_statistics->inrangelenrxer = 494 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer); 495 rx_firmware_statistics->outrangelenrxer = 496 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer); 497 rx_firmware_statistics->frtoolong = 498 in_be32(&p_rx_fw_statistics_pram->frtoolong); 499 rx_firmware_statistics->runt = 500 in_be32(&p_rx_fw_statistics_pram->runt); 501 rx_firmware_statistics->verylongevent = 502 in_be32(&p_rx_fw_statistics_pram->verylongevent); 503 rx_firmware_statistics->symbolerror = 504 in_be32(&p_rx_fw_statistics_pram->symbolerror); 505 rx_firmware_statistics->dropbsy = 506 in_be32(&p_rx_fw_statistics_pram->dropbsy); 507 for (i = 0; i < 0x8; i++) 508 rx_firmware_statistics->res0[i] = 509 p_rx_fw_statistics_pram->res0[i]; 510 rx_firmware_statistics->mismatchdrop = 511 in_be32(&p_rx_fw_statistics_pram->mismatchdrop); 512 rx_firmware_statistics->underpkts = 513 in_be32(&p_rx_fw_statistics_pram->underpkts); 514 rx_firmware_statistics->pkts256 = 515 in_be32(&p_rx_fw_statistics_pram->pkts256); 516 rx_firmware_statistics->pkts512 = 517 in_be32(&p_rx_fw_statistics_pram->pkts512); 518 rx_firmware_statistics->pkts1024 = 519 in_be32(&p_rx_fw_statistics_pram->pkts1024); 520 rx_firmware_statistics->pktsjumbo = 521 in_be32(&p_rx_fw_statistics_pram->pktsjumbo); 522 rx_firmware_statistics->frlossinmacer = 523 in_be32(&p_rx_fw_statistics_pram->frlossinmacer); 524 rx_firmware_statistics->pausefr = 525 in_be32(&p_rx_fw_statistics_pram->pausefr); 526 for (i = 0; i < 0x4; i++) 527 rx_firmware_statistics->res1[i] = 528 p_rx_fw_statistics_pram->res1[i]; 529 rx_firmware_statistics->removevlan = 530 in_be32(&p_rx_fw_statistics_pram->removevlan); 531 rx_firmware_statistics->replacevlan = 532 in_be32(&p_rx_fw_statistics_pram->replacevlan); 533 rx_firmware_statistics->insertvlan = 534 in_be32(&p_rx_fw_statistics_pram->insertvlan); 535 } 536 537 /* Hardware only if user handed pointer and driver actually 538 gathers hardware statistics */ 539 if (hardware_statistics && 540 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) { 541 hardware_statistics->tx64 = in_be32(&ug_regs->tx64); 542 hardware_statistics->tx127 = in_be32(&ug_regs->tx127); 543 hardware_statistics->tx255 = in_be32(&ug_regs->tx255); 544 hardware_statistics->rx64 = in_be32(&ug_regs->rx64); 545 hardware_statistics->rx127 = in_be32(&ug_regs->rx127); 546 hardware_statistics->rx255 = in_be32(&ug_regs->rx255); 547 hardware_statistics->txok = in_be32(&ug_regs->txok); 548 hardware_statistics->txcf = in_be16(&ug_regs->txcf); 549 hardware_statistics->tmca = in_be32(&ug_regs->tmca); 550 hardware_statistics->tbca = in_be32(&ug_regs->tbca); 551 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok); 552 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok); 553 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt); 554 hardware_statistics->rmca = in_be32(&ug_regs->rmca); 555 hardware_statistics->rbca = in_be32(&ug_regs->rbca); 556 } 557 } 558 559 static void dump_bds(struct ucc_geth_private *ugeth) 560 { 561 int i; 562 int length; 563 564 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 565 if (ugeth->p_tx_bd_ring[i]) { 566 length = 567 (ugeth->ug_info->bdRingLenTx[i] * 568 sizeof(struct qe_bd)); 569 pr_info("TX BDs[%d]\n", i); 570 mem_disp(ugeth->p_tx_bd_ring[i], length); 571 } 572 } 573 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 574 if (ugeth->p_rx_bd_ring[i]) { 575 length = 576 (ugeth->ug_info->bdRingLenRx[i] * 577 sizeof(struct qe_bd)); 578 pr_info("RX BDs[%d]\n", i); 579 mem_disp(ugeth->p_rx_bd_ring[i], length); 580 } 581 } 582 } 583 584 static void dump_regs(struct ucc_geth_private *ugeth) 585 { 586 int i; 587 588 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1); 589 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs); 590 591 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n", 592 (u32)&ugeth->ug_regs->maccfg1, 593 in_be32(&ugeth->ug_regs->maccfg1)); 594 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n", 595 (u32)&ugeth->ug_regs->maccfg2, 596 in_be32(&ugeth->ug_regs->maccfg2)); 597 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n", 598 (u32)&ugeth->ug_regs->ipgifg, 599 in_be32(&ugeth->ug_regs->ipgifg)); 600 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n", 601 (u32)&ugeth->ug_regs->hafdup, 602 in_be32(&ugeth->ug_regs->hafdup)); 603 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n", 604 (u32)&ugeth->ug_regs->ifctl, 605 in_be32(&ugeth->ug_regs->ifctl)); 606 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n", 607 (u32)&ugeth->ug_regs->ifstat, 608 in_be32(&ugeth->ug_regs->ifstat)); 609 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n", 610 (u32)&ugeth->ug_regs->macstnaddr1, 611 in_be32(&ugeth->ug_regs->macstnaddr1)); 612 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n", 613 (u32)&ugeth->ug_regs->macstnaddr2, 614 in_be32(&ugeth->ug_regs->macstnaddr2)); 615 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n", 616 (u32)&ugeth->ug_regs->uempr, 617 in_be32(&ugeth->ug_regs->uempr)); 618 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n", 619 (u32)&ugeth->ug_regs->utbipar, 620 in_be32(&ugeth->ug_regs->utbipar)); 621 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n", 622 (u32)&ugeth->ug_regs->uescr, 623 in_be16(&ugeth->ug_regs->uescr)); 624 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n", 625 (u32)&ugeth->ug_regs->tx64, 626 in_be32(&ugeth->ug_regs->tx64)); 627 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n", 628 (u32)&ugeth->ug_regs->tx127, 629 in_be32(&ugeth->ug_regs->tx127)); 630 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n", 631 (u32)&ugeth->ug_regs->tx255, 632 in_be32(&ugeth->ug_regs->tx255)); 633 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n", 634 (u32)&ugeth->ug_regs->rx64, 635 in_be32(&ugeth->ug_regs->rx64)); 636 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n", 637 (u32)&ugeth->ug_regs->rx127, 638 in_be32(&ugeth->ug_regs->rx127)); 639 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n", 640 (u32)&ugeth->ug_regs->rx255, 641 in_be32(&ugeth->ug_regs->rx255)); 642 pr_info("txok : addr - 0x%08x, val - 0x%08x\n", 643 (u32)&ugeth->ug_regs->txok, 644 in_be32(&ugeth->ug_regs->txok)); 645 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n", 646 (u32)&ugeth->ug_regs->txcf, 647 in_be16(&ugeth->ug_regs->txcf)); 648 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n", 649 (u32)&ugeth->ug_regs->tmca, 650 in_be32(&ugeth->ug_regs->tmca)); 651 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n", 652 (u32)&ugeth->ug_regs->tbca, 653 in_be32(&ugeth->ug_regs->tbca)); 654 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n", 655 (u32)&ugeth->ug_regs->rxfok, 656 in_be32(&ugeth->ug_regs->rxfok)); 657 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n", 658 (u32)&ugeth->ug_regs->rxbok, 659 in_be32(&ugeth->ug_regs->rxbok)); 660 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n", 661 (u32)&ugeth->ug_regs->rbyt, 662 in_be32(&ugeth->ug_regs->rbyt)); 663 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n", 664 (u32)&ugeth->ug_regs->rmca, 665 in_be32(&ugeth->ug_regs->rmca)); 666 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n", 667 (u32)&ugeth->ug_regs->rbca, 668 in_be32(&ugeth->ug_regs->rbca)); 669 pr_info("scar : addr - 0x%08x, val - 0x%08x\n", 670 (u32)&ugeth->ug_regs->scar, 671 in_be32(&ugeth->ug_regs->scar)); 672 pr_info("scam : addr - 0x%08x, val - 0x%08x\n", 673 (u32)&ugeth->ug_regs->scam, 674 in_be32(&ugeth->ug_regs->scam)); 675 676 if (ugeth->p_thread_data_tx) { 677 int numThreadsTxNumerical; 678 switch (ugeth->ug_info->numThreadsTx) { 679 case UCC_GETH_NUM_OF_THREADS_1: 680 numThreadsTxNumerical = 1; 681 break; 682 case UCC_GETH_NUM_OF_THREADS_2: 683 numThreadsTxNumerical = 2; 684 break; 685 case UCC_GETH_NUM_OF_THREADS_4: 686 numThreadsTxNumerical = 4; 687 break; 688 case UCC_GETH_NUM_OF_THREADS_6: 689 numThreadsTxNumerical = 6; 690 break; 691 case UCC_GETH_NUM_OF_THREADS_8: 692 numThreadsTxNumerical = 8; 693 break; 694 default: 695 numThreadsTxNumerical = 0; 696 break; 697 } 698 699 pr_info("Thread data TXs:\n"); 700 pr_info("Base address: 0x%08x\n", 701 (u32)ugeth->p_thread_data_tx); 702 for (i = 0; i < numThreadsTxNumerical; i++) { 703 pr_info("Thread data TX[%d]:\n", i); 704 pr_info("Base address: 0x%08x\n", 705 (u32)&ugeth->p_thread_data_tx[i]); 706 mem_disp((u8 *) & ugeth->p_thread_data_tx[i], 707 sizeof(struct ucc_geth_thread_data_tx)); 708 } 709 } 710 if (ugeth->p_thread_data_rx) { 711 int numThreadsRxNumerical; 712 switch (ugeth->ug_info->numThreadsRx) { 713 case UCC_GETH_NUM_OF_THREADS_1: 714 numThreadsRxNumerical = 1; 715 break; 716 case UCC_GETH_NUM_OF_THREADS_2: 717 numThreadsRxNumerical = 2; 718 break; 719 case UCC_GETH_NUM_OF_THREADS_4: 720 numThreadsRxNumerical = 4; 721 break; 722 case UCC_GETH_NUM_OF_THREADS_6: 723 numThreadsRxNumerical = 6; 724 break; 725 case UCC_GETH_NUM_OF_THREADS_8: 726 numThreadsRxNumerical = 8; 727 break; 728 default: 729 numThreadsRxNumerical = 0; 730 break; 731 } 732 733 pr_info("Thread data RX:\n"); 734 pr_info("Base address: 0x%08x\n", 735 (u32)ugeth->p_thread_data_rx); 736 for (i = 0; i < numThreadsRxNumerical; i++) { 737 pr_info("Thread data RX[%d]:\n", i); 738 pr_info("Base address: 0x%08x\n", 739 (u32)&ugeth->p_thread_data_rx[i]); 740 mem_disp((u8 *) & ugeth->p_thread_data_rx[i], 741 sizeof(struct ucc_geth_thread_data_rx)); 742 } 743 } 744 if (ugeth->p_exf_glbl_param) { 745 pr_info("EXF global param:\n"); 746 pr_info("Base address: 0x%08x\n", 747 (u32)ugeth->p_exf_glbl_param); 748 mem_disp((u8 *) ugeth->p_exf_glbl_param, 749 sizeof(*ugeth->p_exf_glbl_param)); 750 } 751 if (ugeth->p_tx_glbl_pram) { 752 pr_info("TX global param:\n"); 753 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram); 754 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n", 755 (u32)&ugeth->p_tx_glbl_pram->temoder, 756 in_be16(&ugeth->p_tx_glbl_pram->temoder)); 757 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n", 758 (u32)&ugeth->p_tx_glbl_pram->sqptr, 759 in_be32(&ugeth->p_tx_glbl_pram->sqptr)); 760 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n", 761 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer, 762 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer)); 763 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n", 764 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr, 765 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr)); 766 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n", 767 (u32)&ugeth->p_tx_glbl_pram->tstate, 768 in_be32(&ugeth->p_tx_glbl_pram->tstate)); 769 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n", 770 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0], 771 ugeth->p_tx_glbl_pram->iphoffset[0]); 772 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n", 773 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1], 774 ugeth->p_tx_glbl_pram->iphoffset[1]); 775 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n", 776 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2], 777 ugeth->p_tx_glbl_pram->iphoffset[2]); 778 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n", 779 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3], 780 ugeth->p_tx_glbl_pram->iphoffset[3]); 781 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n", 782 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4], 783 ugeth->p_tx_glbl_pram->iphoffset[4]); 784 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n", 785 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5], 786 ugeth->p_tx_glbl_pram->iphoffset[5]); 787 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n", 788 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6], 789 ugeth->p_tx_glbl_pram->iphoffset[6]); 790 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n", 791 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7], 792 ugeth->p_tx_glbl_pram->iphoffset[7]); 793 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n", 794 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0], 795 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0])); 796 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n", 797 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1], 798 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1])); 799 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n", 800 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2], 801 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2])); 802 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n", 803 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3], 804 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3])); 805 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n", 806 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4], 807 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4])); 808 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n", 809 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5], 810 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5])); 811 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n", 812 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6], 813 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6])); 814 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n", 815 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7], 816 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7])); 817 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n", 818 (u32)&ugeth->p_tx_glbl_pram->tqptr, 819 in_be32(&ugeth->p_tx_glbl_pram->tqptr)); 820 } 821 if (ugeth->p_rx_glbl_pram) { 822 pr_info("RX global param:\n"); 823 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram); 824 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n", 825 (u32)&ugeth->p_rx_glbl_pram->remoder, 826 in_be32(&ugeth->p_rx_glbl_pram->remoder)); 827 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n", 828 (u32)&ugeth->p_rx_glbl_pram->rqptr, 829 in_be32(&ugeth->p_rx_glbl_pram->rqptr)); 830 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n", 831 (u32)&ugeth->p_rx_glbl_pram->typeorlen, 832 in_be16(&ugeth->p_rx_glbl_pram->typeorlen)); 833 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n", 834 (u32)&ugeth->p_rx_glbl_pram->rxgstpack, 835 ugeth->p_rx_glbl_pram->rxgstpack); 836 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n", 837 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr, 838 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr)); 839 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n", 840 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr, 841 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr)); 842 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n", 843 (u32)&ugeth->p_rx_glbl_pram->rstate, 844 ugeth->p_rx_glbl_pram->rstate); 845 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n", 846 (u32)&ugeth->p_rx_glbl_pram->mrblr, 847 in_be16(&ugeth->p_rx_glbl_pram->mrblr)); 848 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n", 849 (u32)&ugeth->p_rx_glbl_pram->rbdqptr, 850 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr)); 851 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n", 852 (u32)&ugeth->p_rx_glbl_pram->mflr, 853 in_be16(&ugeth->p_rx_glbl_pram->mflr)); 854 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n", 855 (u32)&ugeth->p_rx_glbl_pram->minflr, 856 in_be16(&ugeth->p_rx_glbl_pram->minflr)); 857 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n", 858 (u32)&ugeth->p_rx_glbl_pram->maxd1, 859 in_be16(&ugeth->p_rx_glbl_pram->maxd1)); 860 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n", 861 (u32)&ugeth->p_rx_glbl_pram->maxd2, 862 in_be16(&ugeth->p_rx_glbl_pram->maxd2)); 863 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n", 864 (u32)&ugeth->p_rx_glbl_pram->ecamptr, 865 in_be32(&ugeth->p_rx_glbl_pram->ecamptr)); 866 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n", 867 (u32)&ugeth->p_rx_glbl_pram->l2qt, 868 in_be32(&ugeth->p_rx_glbl_pram->l2qt)); 869 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n", 870 (u32)&ugeth->p_rx_glbl_pram->l3qt[0], 871 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0])); 872 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n", 873 (u32)&ugeth->p_rx_glbl_pram->l3qt[1], 874 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1])); 875 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n", 876 (u32)&ugeth->p_rx_glbl_pram->l3qt[2], 877 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2])); 878 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n", 879 (u32)&ugeth->p_rx_glbl_pram->l3qt[3], 880 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3])); 881 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n", 882 (u32)&ugeth->p_rx_glbl_pram->l3qt[4], 883 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4])); 884 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n", 885 (u32)&ugeth->p_rx_glbl_pram->l3qt[5], 886 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5])); 887 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n", 888 (u32)&ugeth->p_rx_glbl_pram->l3qt[6], 889 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6])); 890 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n", 891 (u32)&ugeth->p_rx_glbl_pram->l3qt[7], 892 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7])); 893 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n", 894 (u32)&ugeth->p_rx_glbl_pram->vlantype, 895 in_be16(&ugeth->p_rx_glbl_pram->vlantype)); 896 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n", 897 (u32)&ugeth->p_rx_glbl_pram->vlantci, 898 in_be16(&ugeth->p_rx_glbl_pram->vlantci)); 899 for (i = 0; i < 64; i++) 900 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n", 901 i, 902 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i], 903 ugeth->p_rx_glbl_pram->addressfiltering[i]); 904 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n", 905 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam, 906 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam)); 907 } 908 if (ugeth->p_send_q_mem_reg) { 909 pr_info("Send Q memory registers:\n"); 910 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg); 911 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 912 pr_info("SQQD[%d]:\n", i); 913 pr_info("Base address: 0x%08x\n", 914 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]); 915 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i], 916 sizeof(struct ucc_geth_send_queue_qd)); 917 } 918 } 919 if (ugeth->p_scheduler) { 920 pr_info("Scheduler:\n"); 921 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler); 922 mem_disp((u8 *) ugeth->p_scheduler, 923 sizeof(*ugeth->p_scheduler)); 924 } 925 if (ugeth->p_tx_fw_statistics_pram) { 926 pr_info("TX FW statistics pram:\n"); 927 pr_info("Base address: 0x%08x\n", 928 (u32)ugeth->p_tx_fw_statistics_pram); 929 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram, 930 sizeof(*ugeth->p_tx_fw_statistics_pram)); 931 } 932 if (ugeth->p_rx_fw_statistics_pram) { 933 pr_info("RX FW statistics pram:\n"); 934 pr_info("Base address: 0x%08x\n", 935 (u32)ugeth->p_rx_fw_statistics_pram); 936 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram, 937 sizeof(*ugeth->p_rx_fw_statistics_pram)); 938 } 939 if (ugeth->p_rx_irq_coalescing_tbl) { 940 pr_info("RX IRQ coalescing tables:\n"); 941 pr_info("Base address: 0x%08x\n", 942 (u32)ugeth->p_rx_irq_coalescing_tbl); 943 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 944 pr_info("RX IRQ coalescing table entry[%d]:\n", i); 945 pr_info("Base address: 0x%08x\n", 946 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 947 coalescingentry[i]); 948 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n", 949 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 950 coalescingentry[i].interruptcoalescingmaxvalue, 951 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 952 coalescingentry[i]. 953 interruptcoalescingmaxvalue)); 954 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n", 955 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 956 coalescingentry[i].interruptcoalescingcounter, 957 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 958 coalescingentry[i]. 959 interruptcoalescingcounter)); 960 } 961 } 962 if (ugeth->p_rx_bd_qs_tbl) { 963 pr_info("RX BD QS tables:\n"); 964 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl); 965 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 966 pr_info("RX BD QS table[%d]:\n", i); 967 pr_info("Base address: 0x%08x\n", 968 (u32)&ugeth->p_rx_bd_qs_tbl[i]); 969 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n", 970 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr, 971 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr)); 972 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n", 973 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr, 974 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr)); 975 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n", 976 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 977 in_be32(&ugeth->p_rx_bd_qs_tbl[i]. 978 externalbdbaseptr)); 979 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n", 980 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr, 981 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr)); 982 pr_info("ucode RX Prefetched BDs:\n"); 983 pr_info("Base address: 0x%08x\n", 984 (u32)qe_muram_addr(in_be32 985 (&ugeth->p_rx_bd_qs_tbl[i]. 986 bdbaseptr))); 987 mem_disp((u8 *) 988 qe_muram_addr(in_be32 989 (&ugeth->p_rx_bd_qs_tbl[i]. 990 bdbaseptr)), 991 sizeof(struct ucc_geth_rx_prefetched_bds)); 992 } 993 } 994 if (ugeth->p_init_enet_param_shadow) { 995 int size; 996 pr_info("Init enet param shadow:\n"); 997 pr_info("Base address: 0x%08x\n", 998 (u32) ugeth->p_init_enet_param_shadow); 999 mem_disp((u8 *) ugeth->p_init_enet_param_shadow, 1000 sizeof(*ugeth->p_init_enet_param_shadow)); 1001 1002 size = sizeof(struct ucc_geth_thread_rx_pram); 1003 if (ugeth->ug_info->rxExtendedFiltering) { 1004 size += 1005 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 1006 if (ugeth->ug_info->largestexternallookupkeysize == 1007 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 1008 size += 1009 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 1010 if (ugeth->ug_info->largestexternallookupkeysize == 1011 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 1012 size += 1013 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 1014 } 1015 1016 dump_init_enet_entries(ugeth, 1017 &(ugeth->p_init_enet_param_shadow-> 1018 txthread[0]), 1019 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1020 sizeof(struct ucc_geth_thread_tx_pram), 1021 ugeth->ug_info->riscTx, 0); 1022 dump_init_enet_entries(ugeth, 1023 &(ugeth->p_init_enet_param_shadow-> 1024 rxthread[0]), 1025 ENET_INIT_PARAM_MAX_ENTRIES_RX, size, 1026 ugeth->ug_info->riscRx, 1); 1027 } 1028 } 1029 #endif /* DEBUG */ 1030 1031 static void init_default_reg_vals(u32 __iomem *upsmr_register, 1032 u32 __iomem *maccfg1_register, 1033 u32 __iomem *maccfg2_register) 1034 { 1035 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT); 1036 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT); 1037 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT); 1038 } 1039 1040 static int init_half_duplex_params(int alt_beb, 1041 int back_pressure_no_backoff, 1042 int no_backoff, 1043 int excess_defer, 1044 u8 alt_beb_truncation, 1045 u8 max_retransmissions, 1046 u8 collision_window, 1047 u32 __iomem *hafdup_register) 1048 { 1049 u32 value = 0; 1050 1051 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) || 1052 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) || 1053 (collision_window > HALFDUP_COLLISION_WINDOW_MAX)) 1054 return -EINVAL; 1055 1056 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT); 1057 1058 if (alt_beb) 1059 value |= HALFDUP_ALT_BEB; 1060 if (back_pressure_no_backoff) 1061 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF; 1062 if (no_backoff) 1063 value |= HALFDUP_NO_BACKOFF; 1064 if (excess_defer) 1065 value |= HALFDUP_EXCESSIVE_DEFER; 1066 1067 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT); 1068 1069 value |= collision_window; 1070 1071 out_be32(hafdup_register, value); 1072 return 0; 1073 } 1074 1075 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg, 1076 u8 non_btb_ipg, 1077 u8 min_ifg, 1078 u8 btb_ipg, 1079 u32 __iomem *ipgifg_register) 1080 { 1081 u32 value = 0; 1082 1083 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back 1084 IPG part 2 */ 1085 if (non_btb_cs_ipg > non_btb_ipg) 1086 return -EINVAL; 1087 1088 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) || 1089 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) || 1090 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */ 1091 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX)) 1092 return -EINVAL; 1093 1094 value |= 1095 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) & 1096 IPGIFG_NBTB_CS_IPG_MASK); 1097 value |= 1098 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) & 1099 IPGIFG_NBTB_IPG_MASK); 1100 value |= 1101 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) & 1102 IPGIFG_MIN_IFG_MASK); 1103 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK); 1104 1105 out_be32(ipgifg_register, value); 1106 return 0; 1107 } 1108 1109 int init_flow_control_params(u32 automatic_flow_control_mode, 1110 int rx_flow_control_enable, 1111 int tx_flow_control_enable, 1112 u16 pause_period, 1113 u16 extension_field, 1114 u32 __iomem *upsmr_register, 1115 u32 __iomem *uempr_register, 1116 u32 __iomem *maccfg1_register) 1117 { 1118 u32 value = 0; 1119 1120 /* Set UEMPR register */ 1121 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT; 1122 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT; 1123 out_be32(uempr_register, value); 1124 1125 /* Set UPSMR register */ 1126 setbits32(upsmr_register, automatic_flow_control_mode); 1127 1128 value = in_be32(maccfg1_register); 1129 if (rx_flow_control_enable) 1130 value |= MACCFG1_FLOW_RX; 1131 if (tx_flow_control_enable) 1132 value |= MACCFG1_FLOW_TX; 1133 out_be32(maccfg1_register, value); 1134 1135 return 0; 1136 } 1137 1138 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics, 1139 int auto_zero_hardware_statistics, 1140 u32 __iomem *upsmr_register, 1141 u16 __iomem *uescr_register) 1142 { 1143 u16 uescr_value = 0; 1144 1145 /* Enable hardware statistics gathering if requested */ 1146 if (enable_hardware_statistics) 1147 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE); 1148 1149 /* Clear hardware statistics counters */ 1150 uescr_value = in_be16(uescr_register); 1151 uescr_value |= UESCR_CLRCNT; 1152 /* Automatically zero hardware statistics counters on read, 1153 if requested */ 1154 if (auto_zero_hardware_statistics) 1155 uescr_value |= UESCR_AUTOZ; 1156 out_be16(uescr_register, uescr_value); 1157 1158 return 0; 1159 } 1160 1161 static int init_firmware_statistics_gathering_mode(int 1162 enable_tx_firmware_statistics, 1163 int enable_rx_firmware_statistics, 1164 u32 __iomem *tx_rmon_base_ptr, 1165 u32 tx_firmware_statistics_structure_address, 1166 u32 __iomem *rx_rmon_base_ptr, 1167 u32 rx_firmware_statistics_structure_address, 1168 u16 __iomem *temoder_register, 1169 u32 __iomem *remoder_register) 1170 { 1171 /* Note: this function does not check if */ 1172 /* the parameters it receives are NULL */ 1173 1174 if (enable_tx_firmware_statistics) { 1175 out_be32(tx_rmon_base_ptr, 1176 tx_firmware_statistics_structure_address); 1177 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE); 1178 } 1179 1180 if (enable_rx_firmware_statistics) { 1181 out_be32(rx_rmon_base_ptr, 1182 rx_firmware_statistics_structure_address); 1183 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE); 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int init_mac_station_addr_regs(u8 address_byte_0, 1190 u8 address_byte_1, 1191 u8 address_byte_2, 1192 u8 address_byte_3, 1193 u8 address_byte_4, 1194 u8 address_byte_5, 1195 u32 __iomem *macstnaddr1_register, 1196 u32 __iomem *macstnaddr2_register) 1197 { 1198 u32 value = 0; 1199 1200 /* Example: for a station address of 0x12345678ABCD, */ 1201 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */ 1202 1203 /* MACSTNADDR1 Register: */ 1204 1205 /* 0 7 8 15 */ 1206 /* station address byte 5 station address byte 4 */ 1207 /* 16 23 24 31 */ 1208 /* station address byte 3 station address byte 2 */ 1209 value |= (u32) ((address_byte_2 << 0) & 0x000000FF); 1210 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00); 1211 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000); 1212 value |= (u32) ((address_byte_5 << 24) & 0xFF000000); 1213 1214 out_be32(macstnaddr1_register, value); 1215 1216 /* MACSTNADDR2 Register: */ 1217 1218 /* 0 7 8 15 */ 1219 /* station address byte 1 station address byte 0 */ 1220 /* 16 23 24 31 */ 1221 /* reserved reserved */ 1222 value = 0; 1223 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000); 1224 value |= (u32) ((address_byte_1 << 24) & 0xFF000000); 1225 1226 out_be32(macstnaddr2_register, value); 1227 1228 return 0; 1229 } 1230 1231 static int init_check_frame_length_mode(int length_check, 1232 u32 __iomem *maccfg2_register) 1233 { 1234 u32 value = 0; 1235 1236 value = in_be32(maccfg2_register); 1237 1238 if (length_check) 1239 value |= MACCFG2_LC; 1240 else 1241 value &= ~MACCFG2_LC; 1242 1243 out_be32(maccfg2_register, value); 1244 return 0; 1245 } 1246 1247 static int init_preamble_length(u8 preamble_length, 1248 u32 __iomem *maccfg2_register) 1249 { 1250 if ((preamble_length < 3) || (preamble_length > 7)) 1251 return -EINVAL; 1252 1253 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK, 1254 preamble_length << MACCFG2_PREL_SHIFT); 1255 1256 return 0; 1257 } 1258 1259 static int init_rx_parameters(int reject_broadcast, 1260 int receive_short_frames, 1261 int promiscuous, u32 __iomem *upsmr_register) 1262 { 1263 u32 value = 0; 1264 1265 value = in_be32(upsmr_register); 1266 1267 if (reject_broadcast) 1268 value |= UCC_GETH_UPSMR_BRO; 1269 else 1270 value &= ~UCC_GETH_UPSMR_BRO; 1271 1272 if (receive_short_frames) 1273 value |= UCC_GETH_UPSMR_RSH; 1274 else 1275 value &= ~UCC_GETH_UPSMR_RSH; 1276 1277 if (promiscuous) 1278 value |= UCC_GETH_UPSMR_PRO; 1279 else 1280 value &= ~UCC_GETH_UPSMR_PRO; 1281 1282 out_be32(upsmr_register, value); 1283 1284 return 0; 1285 } 1286 1287 static int init_max_rx_buff_len(u16 max_rx_buf_len, 1288 u16 __iomem *mrblr_register) 1289 { 1290 /* max_rx_buf_len value must be a multiple of 128 */ 1291 if ((max_rx_buf_len == 0) || 1292 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT)) 1293 return -EINVAL; 1294 1295 out_be16(mrblr_register, max_rx_buf_len); 1296 return 0; 1297 } 1298 1299 static int init_min_frame_len(u16 min_frame_length, 1300 u16 __iomem *minflr_register, 1301 u16 __iomem *mrblr_register) 1302 { 1303 u16 mrblr_value = 0; 1304 1305 mrblr_value = in_be16(mrblr_register); 1306 if (min_frame_length >= (mrblr_value - 4)) 1307 return -EINVAL; 1308 1309 out_be16(minflr_register, min_frame_length); 1310 return 0; 1311 } 1312 1313 static int adjust_enet_interface(struct ucc_geth_private *ugeth) 1314 { 1315 struct ucc_geth_info *ug_info; 1316 struct ucc_geth __iomem *ug_regs; 1317 struct ucc_fast __iomem *uf_regs; 1318 int ret_val; 1319 u32 upsmr, maccfg2; 1320 u16 value; 1321 1322 ugeth_vdbg("%s: IN", __func__); 1323 1324 ug_info = ugeth->ug_info; 1325 ug_regs = ugeth->ug_regs; 1326 uf_regs = ugeth->uccf->uf_regs; 1327 1328 /* Set MACCFG2 */ 1329 maccfg2 = in_be32(&ug_regs->maccfg2); 1330 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK; 1331 if ((ugeth->max_speed == SPEED_10) || 1332 (ugeth->max_speed == SPEED_100)) 1333 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; 1334 else if (ugeth->max_speed == SPEED_1000) 1335 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; 1336 maccfg2 |= ug_info->padAndCrc; 1337 out_be32(&ug_regs->maccfg2, maccfg2); 1338 1339 /* Set UPSMR */ 1340 upsmr = in_be32(&uf_regs->upsmr); 1341 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M | 1342 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM); 1343 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1344 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1345 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1346 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1347 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1348 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1349 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII) 1350 upsmr |= UCC_GETH_UPSMR_RPM; 1351 switch (ugeth->max_speed) { 1352 case SPEED_10: 1353 upsmr |= UCC_GETH_UPSMR_R10M; 1354 /* FALLTHROUGH */ 1355 case SPEED_100: 1356 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI) 1357 upsmr |= UCC_GETH_UPSMR_RMM; 1358 } 1359 } 1360 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1361 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1362 upsmr |= UCC_GETH_UPSMR_TBIM; 1363 } 1364 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII)) 1365 upsmr |= UCC_GETH_UPSMR_SGMM; 1366 1367 out_be32(&uf_regs->upsmr, upsmr); 1368 1369 /* Disable autonegotiation in tbi mode, because by default it 1370 comes up in autonegotiation mode. */ 1371 /* Note that this depends on proper setting in utbipar register. */ 1372 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1373 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1374 struct ucc_geth_info *ug_info = ugeth->ug_info; 1375 struct phy_device *tbiphy; 1376 1377 if (!ug_info->tbi_node) 1378 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n"); 1379 1380 tbiphy = of_phy_find_device(ug_info->tbi_node); 1381 if (!tbiphy) 1382 pr_warn("Could not get TBI device\n"); 1383 1384 value = phy_read(tbiphy, ENET_TBI_MII_CR); 1385 value &= ~0x1000; /* Turn off autonegotiation */ 1386 phy_write(tbiphy, ENET_TBI_MII_CR, value); 1387 1388 put_device(&tbiphy->dev); 1389 } 1390 1391 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2); 1392 1393 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2); 1394 if (ret_val != 0) { 1395 if (netif_msg_probe(ugeth)) 1396 pr_err("Preamble length must be between 3 and 7 inclusive\n"); 1397 return ret_val; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth) 1404 { 1405 struct ucc_fast_private *uccf; 1406 u32 cecr_subblock; 1407 u32 temp; 1408 int i = 10; 1409 1410 uccf = ugeth->uccf; 1411 1412 /* Mask GRACEFUL STOP TX interrupt bit and clear it */ 1413 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA); 1414 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */ 1415 1416 /* Issue host command */ 1417 cecr_subblock = 1418 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1419 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 1420 QE_CR_PROTOCOL_ETHERNET, 0); 1421 1422 /* Wait for command to complete */ 1423 do { 1424 msleep(10); 1425 temp = in_be32(uccf->p_ucce); 1426 } while (!(temp & UCC_GETH_UCCE_GRA) && --i); 1427 1428 uccf->stopped_tx = 1; 1429 1430 return 0; 1431 } 1432 1433 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth) 1434 { 1435 struct ucc_fast_private *uccf; 1436 u32 cecr_subblock; 1437 u8 temp; 1438 int i = 10; 1439 1440 uccf = ugeth->uccf; 1441 1442 /* Clear acknowledge bit */ 1443 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1444 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX; 1445 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp); 1446 1447 /* Keep issuing command and checking acknowledge bit until 1448 it is asserted, according to spec */ 1449 do { 1450 /* Issue host command */ 1451 cecr_subblock = 1452 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info. 1453 ucc_num); 1454 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock, 1455 QE_CR_PROTOCOL_ETHERNET, 0); 1456 msleep(10); 1457 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1458 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i); 1459 1460 uccf->stopped_rx = 1; 1461 1462 return 0; 1463 } 1464 1465 static int ugeth_restart_tx(struct ucc_geth_private *ugeth) 1466 { 1467 struct ucc_fast_private *uccf; 1468 u32 cecr_subblock; 1469 1470 uccf = ugeth->uccf; 1471 1472 cecr_subblock = 1473 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1474 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0); 1475 uccf->stopped_tx = 0; 1476 1477 return 0; 1478 } 1479 1480 static int ugeth_restart_rx(struct ucc_geth_private *ugeth) 1481 { 1482 struct ucc_fast_private *uccf; 1483 u32 cecr_subblock; 1484 1485 uccf = ugeth->uccf; 1486 1487 cecr_subblock = 1488 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1489 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 1490 0); 1491 uccf->stopped_rx = 0; 1492 1493 return 0; 1494 } 1495 1496 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1497 { 1498 struct ucc_fast_private *uccf; 1499 int enabled_tx, enabled_rx; 1500 1501 uccf = ugeth->uccf; 1502 1503 /* check if the UCC number is in range. */ 1504 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1505 if (netif_msg_probe(ugeth)) 1506 pr_err("ucc_num out of range\n"); 1507 return -EINVAL; 1508 } 1509 1510 enabled_tx = uccf->enabled_tx; 1511 enabled_rx = uccf->enabled_rx; 1512 1513 /* Get Tx and Rx going again, in case this channel was actively 1514 disabled. */ 1515 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx) 1516 ugeth_restart_tx(ugeth); 1517 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx) 1518 ugeth_restart_rx(ugeth); 1519 1520 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */ 1521 1522 return 0; 1523 1524 } 1525 1526 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1527 { 1528 struct ucc_fast_private *uccf; 1529 1530 uccf = ugeth->uccf; 1531 1532 /* check if the UCC number is in range. */ 1533 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1534 if (netif_msg_probe(ugeth)) 1535 pr_err("ucc_num out of range\n"); 1536 return -EINVAL; 1537 } 1538 1539 /* Stop any transmissions */ 1540 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx) 1541 ugeth_graceful_stop_tx(ugeth); 1542 1543 /* Stop any receptions */ 1544 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx) 1545 ugeth_graceful_stop_rx(ugeth); 1546 1547 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */ 1548 1549 return 0; 1550 } 1551 1552 static void ugeth_quiesce(struct ucc_geth_private *ugeth) 1553 { 1554 /* Prevent any further xmits, plus detach the device. */ 1555 netif_device_detach(ugeth->ndev); 1556 1557 /* Wait for any current xmits to finish. */ 1558 netif_tx_disable(ugeth->ndev); 1559 1560 /* Disable the interrupt to avoid NAPI rescheduling. */ 1561 disable_irq(ugeth->ug_info->uf_info.irq); 1562 1563 /* Stop NAPI, and possibly wait for its completion. */ 1564 napi_disable(&ugeth->napi); 1565 } 1566 1567 static void ugeth_activate(struct ucc_geth_private *ugeth) 1568 { 1569 napi_enable(&ugeth->napi); 1570 enable_irq(ugeth->ug_info->uf_info.irq); 1571 netif_device_attach(ugeth->ndev); 1572 } 1573 1574 /* Called every time the controller might need to be made 1575 * aware of new link state. The PHY code conveys this 1576 * information through variables in the ugeth structure, and this 1577 * function converts those variables into the appropriate 1578 * register values, and can bring down the device if needed. 1579 */ 1580 1581 static void adjust_link(struct net_device *dev) 1582 { 1583 struct ucc_geth_private *ugeth = netdev_priv(dev); 1584 struct ucc_geth __iomem *ug_regs; 1585 struct ucc_fast __iomem *uf_regs; 1586 struct phy_device *phydev = ugeth->phydev; 1587 int new_state = 0; 1588 1589 ug_regs = ugeth->ug_regs; 1590 uf_regs = ugeth->uccf->uf_regs; 1591 1592 if (phydev->link) { 1593 u32 tempval = in_be32(&ug_regs->maccfg2); 1594 u32 upsmr = in_be32(&uf_regs->upsmr); 1595 /* Now we make sure that we can be in full duplex mode. 1596 * If not, we operate in half-duplex mode. */ 1597 if (phydev->duplex != ugeth->oldduplex) { 1598 new_state = 1; 1599 if (!(phydev->duplex)) 1600 tempval &= ~(MACCFG2_FDX); 1601 else 1602 tempval |= MACCFG2_FDX; 1603 ugeth->oldduplex = phydev->duplex; 1604 } 1605 1606 if (phydev->speed != ugeth->oldspeed) { 1607 new_state = 1; 1608 switch (phydev->speed) { 1609 case SPEED_1000: 1610 tempval = ((tempval & 1611 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1612 MACCFG2_INTERFACE_MODE_BYTE); 1613 break; 1614 case SPEED_100: 1615 case SPEED_10: 1616 tempval = ((tempval & 1617 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1618 MACCFG2_INTERFACE_MODE_NIBBLE); 1619 /* if reduced mode, re-set UPSMR.R10M */ 1620 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1621 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1623 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1624 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1625 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1626 if (phydev->speed == SPEED_10) 1627 upsmr |= UCC_GETH_UPSMR_R10M; 1628 else 1629 upsmr &= ~UCC_GETH_UPSMR_R10M; 1630 } 1631 break; 1632 default: 1633 if (netif_msg_link(ugeth)) 1634 pr_warn( 1635 "%s: Ack! Speed (%d) is not 10/100/1000!", 1636 dev->name, phydev->speed); 1637 break; 1638 } 1639 ugeth->oldspeed = phydev->speed; 1640 } 1641 1642 if (!ugeth->oldlink) { 1643 new_state = 1; 1644 ugeth->oldlink = 1; 1645 } 1646 1647 if (new_state) { 1648 /* 1649 * To change the MAC configuration we need to disable 1650 * the controller. To do so, we have to either grab 1651 * ugeth->lock, which is a bad idea since 'graceful 1652 * stop' commands might take quite a while, or we can 1653 * quiesce driver's activity. 1654 */ 1655 ugeth_quiesce(ugeth); 1656 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 1657 1658 out_be32(&ug_regs->maccfg2, tempval); 1659 out_be32(&uf_regs->upsmr, upsmr); 1660 1661 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 1662 ugeth_activate(ugeth); 1663 } 1664 } else if (ugeth->oldlink) { 1665 new_state = 1; 1666 ugeth->oldlink = 0; 1667 ugeth->oldspeed = 0; 1668 ugeth->oldduplex = -1; 1669 } 1670 1671 if (new_state && netif_msg_link(ugeth)) 1672 phy_print_status(phydev); 1673 } 1674 1675 /* Initialize TBI PHY interface for communicating with the 1676 * SERDES lynx PHY on the chip. We communicate with this PHY 1677 * through the MDIO bus on each controller, treating it as a 1678 * "normal" PHY at the address found in the UTBIPA register. We assume 1679 * that the UTBIPA register is valid. Either the MDIO bus code will set 1680 * it to a value that doesn't conflict with other PHYs on the bus, or the 1681 * value doesn't matter, as there are no other PHYs on the bus. 1682 */ 1683 static void uec_configure_serdes(struct net_device *dev) 1684 { 1685 struct ucc_geth_private *ugeth = netdev_priv(dev); 1686 struct ucc_geth_info *ug_info = ugeth->ug_info; 1687 struct phy_device *tbiphy; 1688 1689 if (!ug_info->tbi_node) { 1690 dev_warn(&dev->dev, "SGMII mode requires that the device " 1691 "tree specify a tbi-handle\n"); 1692 return; 1693 } 1694 1695 tbiphy = of_phy_find_device(ug_info->tbi_node); 1696 if (!tbiphy) { 1697 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1698 return; 1699 } 1700 1701 /* 1702 * If the link is already up, we must already be ok, and don't need to 1703 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1704 * everything for us? Resetting it takes the link down and requires 1705 * several seconds for it to come back. 1706 */ 1707 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) { 1708 put_device(&tbiphy->dev); 1709 return; 1710 } 1711 1712 /* Single clk mode, mii mode off(for serdes communication) */ 1713 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS); 1714 1715 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT); 1716 1717 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS); 1718 1719 put_device(&tbiphy->dev); 1720 } 1721 1722 /* Configure the PHY for dev. 1723 * returns 0 if success. -1 if failure 1724 */ 1725 static int init_phy(struct net_device *dev) 1726 { 1727 struct ucc_geth_private *priv = netdev_priv(dev); 1728 struct ucc_geth_info *ug_info = priv->ug_info; 1729 struct phy_device *phydev; 1730 1731 priv->oldlink = 0; 1732 priv->oldspeed = 0; 1733 priv->oldduplex = -1; 1734 1735 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0, 1736 priv->phy_interface); 1737 if (!phydev) { 1738 dev_err(&dev->dev, "Could not attach to PHY\n"); 1739 return -ENODEV; 1740 } 1741 1742 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII) 1743 uec_configure_serdes(dev); 1744 1745 phydev->supported &= (SUPPORTED_MII | 1746 SUPPORTED_Autoneg | 1747 ADVERTISED_10baseT_Half | 1748 ADVERTISED_10baseT_Full | 1749 ADVERTISED_100baseT_Half | 1750 ADVERTISED_100baseT_Full); 1751 1752 if (priv->max_speed == SPEED_1000) 1753 phydev->supported |= ADVERTISED_1000baseT_Full; 1754 1755 phydev->advertising = phydev->supported; 1756 1757 priv->phydev = phydev; 1758 1759 return 0; 1760 } 1761 1762 static void ugeth_dump_regs(struct ucc_geth_private *ugeth) 1763 { 1764 #ifdef DEBUG 1765 ucc_fast_dump_regs(ugeth->uccf); 1766 dump_regs(ugeth); 1767 dump_bds(ugeth); 1768 #endif 1769 } 1770 1771 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * 1772 ugeth, 1773 enum enet_addr_type 1774 enet_addr_type) 1775 { 1776 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 1777 struct ucc_fast_private *uccf; 1778 enum comm_dir comm_dir; 1779 struct list_head *p_lh; 1780 u16 i, num; 1781 u32 __iomem *addr_h; 1782 u32 __iomem *addr_l; 1783 u8 *p_counter; 1784 1785 uccf = ugeth->uccf; 1786 1787 p_82xx_addr_filt = 1788 (struct ucc_geth_82xx_address_filtering_pram __iomem *) 1789 ugeth->p_rx_glbl_pram->addressfiltering; 1790 1791 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) { 1792 addr_h = &(p_82xx_addr_filt->gaddr_h); 1793 addr_l = &(p_82xx_addr_filt->gaddr_l); 1794 p_lh = &ugeth->group_hash_q; 1795 p_counter = &(ugeth->numGroupAddrInHash); 1796 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) { 1797 addr_h = &(p_82xx_addr_filt->iaddr_h); 1798 addr_l = &(p_82xx_addr_filt->iaddr_l); 1799 p_lh = &ugeth->ind_hash_q; 1800 p_counter = &(ugeth->numIndAddrInHash); 1801 } else 1802 return -EINVAL; 1803 1804 comm_dir = 0; 1805 if (uccf->enabled_tx) 1806 comm_dir |= COMM_DIR_TX; 1807 if (uccf->enabled_rx) 1808 comm_dir |= COMM_DIR_RX; 1809 if (comm_dir) 1810 ugeth_disable(ugeth, comm_dir); 1811 1812 /* Clear the hash table. */ 1813 out_be32(addr_h, 0x00000000); 1814 out_be32(addr_l, 0x00000000); 1815 1816 if (!p_lh) 1817 return 0; 1818 1819 num = *p_counter; 1820 1821 /* Delete all remaining CQ elements */ 1822 for (i = 0; i < num; i++) 1823 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh))); 1824 1825 *p_counter = 0; 1826 1827 if (comm_dir) 1828 ugeth_enable(ugeth, comm_dir); 1829 1830 return 0; 1831 } 1832 1833 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth, 1834 u8 paddr_num) 1835 { 1836 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */ 1837 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */ 1838 } 1839 1840 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth) 1841 { 1842 struct ucc_geth_info *ug_info; 1843 struct ucc_fast_info *uf_info; 1844 u16 i, j; 1845 u8 __iomem *bd; 1846 1847 1848 ug_info = ugeth->ug_info; 1849 uf_info = &ug_info->uf_info; 1850 1851 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 1852 if (ugeth->p_rx_bd_ring[i]) { 1853 /* Return existing data buffers in ring */ 1854 bd = ugeth->p_rx_bd_ring[i]; 1855 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) { 1856 if (ugeth->rx_skbuff[i][j]) { 1857 dma_unmap_single(ugeth->dev, 1858 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1859 ugeth->ug_info-> 1860 uf_info.max_rx_buf_length + 1861 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 1862 DMA_FROM_DEVICE); 1863 dev_kfree_skb_any( 1864 ugeth->rx_skbuff[i][j]); 1865 ugeth->rx_skbuff[i][j] = NULL; 1866 } 1867 bd += sizeof(struct qe_bd); 1868 } 1869 1870 kfree(ugeth->rx_skbuff[i]); 1871 1872 if (ugeth->ug_info->uf_info.bd_mem_part == 1873 MEM_PART_SYSTEM) 1874 kfree((void *)ugeth->rx_bd_ring_offset[i]); 1875 else if (ugeth->ug_info->uf_info.bd_mem_part == 1876 MEM_PART_MURAM) 1877 qe_muram_free(ugeth->rx_bd_ring_offset[i]); 1878 ugeth->p_rx_bd_ring[i] = NULL; 1879 } 1880 } 1881 1882 } 1883 1884 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth) 1885 { 1886 struct ucc_geth_info *ug_info; 1887 struct ucc_fast_info *uf_info; 1888 u16 i, j; 1889 u8 __iomem *bd; 1890 1891 ug_info = ugeth->ug_info; 1892 uf_info = &ug_info->uf_info; 1893 1894 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 1895 bd = ugeth->p_tx_bd_ring[i]; 1896 if (!bd) 1897 continue; 1898 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) { 1899 if (ugeth->tx_skbuff[i][j]) { 1900 dma_unmap_single(ugeth->dev, 1901 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1902 (in_be32((u32 __iomem *)bd) & 1903 BD_LENGTH_MASK), 1904 DMA_TO_DEVICE); 1905 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]); 1906 ugeth->tx_skbuff[i][j] = NULL; 1907 } 1908 } 1909 1910 kfree(ugeth->tx_skbuff[i]); 1911 1912 if (ugeth->p_tx_bd_ring[i]) { 1913 if (ugeth->ug_info->uf_info.bd_mem_part == 1914 MEM_PART_SYSTEM) 1915 kfree((void *)ugeth->tx_bd_ring_offset[i]); 1916 else if (ugeth->ug_info->uf_info.bd_mem_part == 1917 MEM_PART_MURAM) 1918 qe_muram_free(ugeth->tx_bd_ring_offset[i]); 1919 ugeth->p_tx_bd_ring[i] = NULL; 1920 } 1921 } 1922 1923 } 1924 1925 static void ucc_geth_memclean(struct ucc_geth_private *ugeth) 1926 { 1927 if (!ugeth) 1928 return; 1929 1930 if (ugeth->uccf) { 1931 ucc_fast_free(ugeth->uccf); 1932 ugeth->uccf = NULL; 1933 } 1934 1935 if (ugeth->p_thread_data_tx) { 1936 qe_muram_free(ugeth->thread_dat_tx_offset); 1937 ugeth->p_thread_data_tx = NULL; 1938 } 1939 if (ugeth->p_thread_data_rx) { 1940 qe_muram_free(ugeth->thread_dat_rx_offset); 1941 ugeth->p_thread_data_rx = NULL; 1942 } 1943 if (ugeth->p_exf_glbl_param) { 1944 qe_muram_free(ugeth->exf_glbl_param_offset); 1945 ugeth->p_exf_glbl_param = NULL; 1946 } 1947 if (ugeth->p_rx_glbl_pram) { 1948 qe_muram_free(ugeth->rx_glbl_pram_offset); 1949 ugeth->p_rx_glbl_pram = NULL; 1950 } 1951 if (ugeth->p_tx_glbl_pram) { 1952 qe_muram_free(ugeth->tx_glbl_pram_offset); 1953 ugeth->p_tx_glbl_pram = NULL; 1954 } 1955 if (ugeth->p_send_q_mem_reg) { 1956 qe_muram_free(ugeth->send_q_mem_reg_offset); 1957 ugeth->p_send_q_mem_reg = NULL; 1958 } 1959 if (ugeth->p_scheduler) { 1960 qe_muram_free(ugeth->scheduler_offset); 1961 ugeth->p_scheduler = NULL; 1962 } 1963 if (ugeth->p_tx_fw_statistics_pram) { 1964 qe_muram_free(ugeth->tx_fw_statistics_pram_offset); 1965 ugeth->p_tx_fw_statistics_pram = NULL; 1966 } 1967 if (ugeth->p_rx_fw_statistics_pram) { 1968 qe_muram_free(ugeth->rx_fw_statistics_pram_offset); 1969 ugeth->p_rx_fw_statistics_pram = NULL; 1970 } 1971 if (ugeth->p_rx_irq_coalescing_tbl) { 1972 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset); 1973 ugeth->p_rx_irq_coalescing_tbl = NULL; 1974 } 1975 if (ugeth->p_rx_bd_qs_tbl) { 1976 qe_muram_free(ugeth->rx_bd_qs_tbl_offset); 1977 ugeth->p_rx_bd_qs_tbl = NULL; 1978 } 1979 if (ugeth->p_init_enet_param_shadow) { 1980 return_init_enet_entries(ugeth, 1981 &(ugeth->p_init_enet_param_shadow-> 1982 rxthread[0]), 1983 ENET_INIT_PARAM_MAX_ENTRIES_RX, 1984 ugeth->ug_info->riscRx, 1); 1985 return_init_enet_entries(ugeth, 1986 &(ugeth->p_init_enet_param_shadow-> 1987 txthread[0]), 1988 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1989 ugeth->ug_info->riscTx, 0); 1990 kfree(ugeth->p_init_enet_param_shadow); 1991 ugeth->p_init_enet_param_shadow = NULL; 1992 } 1993 ucc_geth_free_tx(ugeth); 1994 ucc_geth_free_rx(ugeth); 1995 while (!list_empty(&ugeth->group_hash_q)) 1996 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 1997 (dequeue(&ugeth->group_hash_q))); 1998 while (!list_empty(&ugeth->ind_hash_q)) 1999 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 2000 (dequeue(&ugeth->ind_hash_q))); 2001 if (ugeth->ug_regs) { 2002 iounmap(ugeth->ug_regs); 2003 ugeth->ug_regs = NULL; 2004 } 2005 } 2006 2007 static void ucc_geth_set_multi(struct net_device *dev) 2008 { 2009 struct ucc_geth_private *ugeth; 2010 struct netdev_hw_addr *ha; 2011 struct ucc_fast __iomem *uf_regs; 2012 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2013 2014 ugeth = netdev_priv(dev); 2015 2016 uf_regs = ugeth->uccf->uf_regs; 2017 2018 if (dev->flags & IFF_PROMISC) { 2019 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2020 } else { 2021 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2022 2023 p_82xx_addr_filt = 2024 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2025 p_rx_glbl_pram->addressfiltering; 2026 2027 if (dev->flags & IFF_ALLMULTI) { 2028 /* Catch all multicast addresses, so set the 2029 * filter to all 1's. 2030 */ 2031 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff); 2032 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff); 2033 } else { 2034 /* Clear filter and add the addresses in the list. 2035 */ 2036 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0); 2037 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0); 2038 2039 netdev_for_each_mc_addr(ha, dev) { 2040 /* Ask CPM to run CRC and set bit in 2041 * filter mask. 2042 */ 2043 hw_add_addr_in_hash(ugeth, ha->addr); 2044 } 2045 } 2046 } 2047 } 2048 2049 static void ucc_geth_stop(struct ucc_geth_private *ugeth) 2050 { 2051 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs; 2052 struct phy_device *phydev = ugeth->phydev; 2053 2054 ugeth_vdbg("%s: IN", __func__); 2055 2056 /* 2057 * Tell the kernel the link is down. 2058 * Must be done before disabling the controller 2059 * or deadlock may happen. 2060 */ 2061 phy_stop(phydev); 2062 2063 /* Disable the controller */ 2064 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 2065 2066 /* Mask all interrupts */ 2067 out_be32(ugeth->uccf->p_uccm, 0x00000000); 2068 2069 /* Clear all interrupts */ 2070 out_be32(ugeth->uccf->p_ucce, 0xffffffff); 2071 2072 /* Disable Rx and Tx */ 2073 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2074 2075 ucc_geth_memclean(ugeth); 2076 } 2077 2078 static int ucc_struct_init(struct ucc_geth_private *ugeth) 2079 { 2080 struct ucc_geth_info *ug_info; 2081 struct ucc_fast_info *uf_info; 2082 int i; 2083 2084 ug_info = ugeth->ug_info; 2085 uf_info = &ug_info->uf_info; 2086 2087 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) || 2088 (uf_info->bd_mem_part == MEM_PART_MURAM))) { 2089 if (netif_msg_probe(ugeth)) 2090 pr_err("Bad memory partition value\n"); 2091 return -EINVAL; 2092 } 2093 2094 /* Rx BD lengths */ 2095 for (i = 0; i < ug_info->numQueuesRx; i++) { 2096 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) || 2097 (ug_info->bdRingLenRx[i] % 2098 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) { 2099 if (netif_msg_probe(ugeth)) 2100 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n"); 2101 return -EINVAL; 2102 } 2103 } 2104 2105 /* Tx BD lengths */ 2106 for (i = 0; i < ug_info->numQueuesTx; i++) { 2107 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) { 2108 if (netif_msg_probe(ugeth)) 2109 pr_err("Tx BD ring length must be no smaller than 2\n"); 2110 return -EINVAL; 2111 } 2112 } 2113 2114 /* mrblr */ 2115 if ((uf_info->max_rx_buf_length == 0) || 2116 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) { 2117 if (netif_msg_probe(ugeth)) 2118 pr_err("max_rx_buf_length must be non-zero multiple of 128\n"); 2119 return -EINVAL; 2120 } 2121 2122 /* num Tx queues */ 2123 if (ug_info->numQueuesTx > NUM_TX_QUEUES) { 2124 if (netif_msg_probe(ugeth)) 2125 pr_err("number of tx queues too large\n"); 2126 return -EINVAL; 2127 } 2128 2129 /* num Rx queues */ 2130 if (ug_info->numQueuesRx > NUM_RX_QUEUES) { 2131 if (netif_msg_probe(ugeth)) 2132 pr_err("number of rx queues too large\n"); 2133 return -EINVAL; 2134 } 2135 2136 /* l2qt */ 2137 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) { 2138 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) { 2139 if (netif_msg_probe(ugeth)) 2140 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n"); 2141 return -EINVAL; 2142 } 2143 } 2144 2145 /* l3qt */ 2146 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) { 2147 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) { 2148 if (netif_msg_probe(ugeth)) 2149 pr_err("IP priority table entry must not be larger than number of Rx queues\n"); 2150 return -EINVAL; 2151 } 2152 } 2153 2154 if (ug_info->cam && !ug_info->ecamptr) { 2155 if (netif_msg_probe(ugeth)) 2156 pr_err("If cam mode is chosen, must supply cam ptr\n"); 2157 return -EINVAL; 2158 } 2159 2160 if ((ug_info->numStationAddresses != 2161 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) && 2162 ug_info->rxExtendedFiltering) { 2163 if (netif_msg_probe(ugeth)) 2164 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n"); 2165 return -EINVAL; 2166 } 2167 2168 /* Generate uccm_mask for receive */ 2169 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */ 2170 for (i = 0; i < ug_info->numQueuesRx; i++) 2171 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i); 2172 2173 for (i = 0; i < ug_info->numQueuesTx; i++) 2174 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i); 2175 /* Initialize the general fast UCC block. */ 2176 if (ucc_fast_init(uf_info, &ugeth->uccf)) { 2177 if (netif_msg_probe(ugeth)) 2178 pr_err("Failed to init uccf\n"); 2179 return -ENOMEM; 2180 } 2181 2182 /* read the number of risc engines, update the riscTx and riscRx 2183 * if there are 4 riscs in QE 2184 */ 2185 if (qe_get_num_of_risc() == 4) { 2186 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS; 2187 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS; 2188 } 2189 2190 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs)); 2191 if (!ugeth->ug_regs) { 2192 if (netif_msg_probe(ugeth)) 2193 pr_err("Failed to ioremap regs\n"); 2194 return -ENOMEM; 2195 } 2196 2197 return 0; 2198 } 2199 2200 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth) 2201 { 2202 struct ucc_geth_info *ug_info; 2203 struct ucc_fast_info *uf_info; 2204 int length; 2205 u16 i, j; 2206 u8 __iomem *bd; 2207 2208 ug_info = ugeth->ug_info; 2209 uf_info = &ug_info->uf_info; 2210 2211 /* Allocate Tx bds */ 2212 for (j = 0; j < ug_info->numQueuesTx; j++) { 2213 /* Allocate in multiple of 2214 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT, 2215 according to spec */ 2216 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) 2217 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2218 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2219 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) % 2220 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2221 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2222 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2223 u32 align = 4; 2224 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4) 2225 align = UCC_GETH_TX_BD_RING_ALIGNMENT; 2226 ugeth->tx_bd_ring_offset[j] = 2227 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2228 2229 if (ugeth->tx_bd_ring_offset[j] != 0) 2230 ugeth->p_tx_bd_ring[j] = 2231 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] + 2232 align) & ~(align - 1)); 2233 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2234 ugeth->tx_bd_ring_offset[j] = 2235 qe_muram_alloc(length, 2236 UCC_GETH_TX_BD_RING_ALIGNMENT); 2237 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j])) 2238 ugeth->p_tx_bd_ring[j] = 2239 (u8 __iomem *) qe_muram_addr(ugeth-> 2240 tx_bd_ring_offset[j]); 2241 } 2242 if (!ugeth->p_tx_bd_ring[j]) { 2243 if (netif_msg_ifup(ugeth)) 2244 pr_err("Can not allocate memory for Tx bd rings\n"); 2245 return -ENOMEM; 2246 } 2247 /* Zero unused end of bd ring, according to spec */ 2248 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] + 2249 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0, 2250 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)); 2251 } 2252 2253 /* Init Tx bds */ 2254 for (j = 0; j < ug_info->numQueuesTx; j++) { 2255 /* Setup the skbuff rings */ 2256 ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) * 2257 ugeth->ug_info->bdRingLenTx[j], 2258 GFP_KERNEL); 2259 2260 if (ugeth->tx_skbuff[j] == NULL) { 2261 if (netif_msg_ifup(ugeth)) 2262 pr_err("Could not allocate tx_skbuff\n"); 2263 return -ENOMEM; 2264 } 2265 2266 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++) 2267 ugeth->tx_skbuff[j][i] = NULL; 2268 2269 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0; 2270 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j]; 2271 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) { 2272 /* clear bd buffer */ 2273 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2274 /* set bd status and length */ 2275 out_be32((u32 __iomem *)bd, 0); 2276 bd += sizeof(struct qe_bd); 2277 } 2278 bd -= sizeof(struct qe_bd); 2279 /* set bd status and length */ 2280 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */ 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth) 2287 { 2288 struct ucc_geth_info *ug_info; 2289 struct ucc_fast_info *uf_info; 2290 int length; 2291 u16 i, j; 2292 u8 __iomem *bd; 2293 2294 ug_info = ugeth->ug_info; 2295 uf_info = &ug_info->uf_info; 2296 2297 /* Allocate Rx bds */ 2298 for (j = 0; j < ug_info->numQueuesRx; j++) { 2299 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd); 2300 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2301 u32 align = 4; 2302 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4) 2303 align = UCC_GETH_RX_BD_RING_ALIGNMENT; 2304 ugeth->rx_bd_ring_offset[j] = 2305 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2306 if (ugeth->rx_bd_ring_offset[j] != 0) 2307 ugeth->p_rx_bd_ring[j] = 2308 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] + 2309 align) & ~(align - 1)); 2310 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2311 ugeth->rx_bd_ring_offset[j] = 2312 qe_muram_alloc(length, 2313 UCC_GETH_RX_BD_RING_ALIGNMENT); 2314 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j])) 2315 ugeth->p_rx_bd_ring[j] = 2316 (u8 __iomem *) qe_muram_addr(ugeth-> 2317 rx_bd_ring_offset[j]); 2318 } 2319 if (!ugeth->p_rx_bd_ring[j]) { 2320 if (netif_msg_ifup(ugeth)) 2321 pr_err("Can not allocate memory for Rx bd rings\n"); 2322 return -ENOMEM; 2323 } 2324 } 2325 2326 /* Init Rx bds */ 2327 for (j = 0; j < ug_info->numQueuesRx; j++) { 2328 /* Setup the skbuff rings */ 2329 ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) * 2330 ugeth->ug_info->bdRingLenRx[j], 2331 GFP_KERNEL); 2332 2333 if (ugeth->rx_skbuff[j] == NULL) { 2334 if (netif_msg_ifup(ugeth)) 2335 pr_err("Could not allocate rx_skbuff\n"); 2336 return -ENOMEM; 2337 } 2338 2339 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++) 2340 ugeth->rx_skbuff[j][i] = NULL; 2341 2342 ugeth->skb_currx[j] = 0; 2343 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j]; 2344 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) { 2345 /* set bd status and length */ 2346 out_be32((u32 __iomem *)bd, R_I); 2347 /* clear bd buffer */ 2348 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2349 bd += sizeof(struct qe_bd); 2350 } 2351 bd -= sizeof(struct qe_bd); 2352 /* set bd status and length */ 2353 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */ 2354 } 2355 2356 return 0; 2357 } 2358 2359 static int ucc_geth_startup(struct ucc_geth_private *ugeth) 2360 { 2361 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2362 struct ucc_geth_init_pram __iomem *p_init_enet_pram; 2363 struct ucc_fast_private *uccf; 2364 struct ucc_geth_info *ug_info; 2365 struct ucc_fast_info *uf_info; 2366 struct ucc_fast __iomem *uf_regs; 2367 struct ucc_geth __iomem *ug_regs; 2368 int ret_val = -EINVAL; 2369 u32 remoder = UCC_GETH_REMODER_INIT; 2370 u32 init_enet_pram_offset, cecr_subblock, command; 2371 u32 ifstat, i, j, size, l2qt, l3qt; 2372 u16 temoder = UCC_GETH_TEMODER_INIT; 2373 u16 test; 2374 u8 function_code = 0; 2375 u8 __iomem *endOfRing; 2376 u8 numThreadsRxNumerical, numThreadsTxNumerical; 2377 2378 ugeth_vdbg("%s: IN", __func__); 2379 uccf = ugeth->uccf; 2380 ug_info = ugeth->ug_info; 2381 uf_info = &ug_info->uf_info; 2382 uf_regs = uccf->uf_regs; 2383 ug_regs = ugeth->ug_regs; 2384 2385 switch (ug_info->numThreadsRx) { 2386 case UCC_GETH_NUM_OF_THREADS_1: 2387 numThreadsRxNumerical = 1; 2388 break; 2389 case UCC_GETH_NUM_OF_THREADS_2: 2390 numThreadsRxNumerical = 2; 2391 break; 2392 case UCC_GETH_NUM_OF_THREADS_4: 2393 numThreadsRxNumerical = 4; 2394 break; 2395 case UCC_GETH_NUM_OF_THREADS_6: 2396 numThreadsRxNumerical = 6; 2397 break; 2398 case UCC_GETH_NUM_OF_THREADS_8: 2399 numThreadsRxNumerical = 8; 2400 break; 2401 default: 2402 if (netif_msg_ifup(ugeth)) 2403 pr_err("Bad number of Rx threads value\n"); 2404 return -EINVAL; 2405 } 2406 2407 switch (ug_info->numThreadsTx) { 2408 case UCC_GETH_NUM_OF_THREADS_1: 2409 numThreadsTxNumerical = 1; 2410 break; 2411 case UCC_GETH_NUM_OF_THREADS_2: 2412 numThreadsTxNumerical = 2; 2413 break; 2414 case UCC_GETH_NUM_OF_THREADS_4: 2415 numThreadsTxNumerical = 4; 2416 break; 2417 case UCC_GETH_NUM_OF_THREADS_6: 2418 numThreadsTxNumerical = 6; 2419 break; 2420 case UCC_GETH_NUM_OF_THREADS_8: 2421 numThreadsTxNumerical = 8; 2422 break; 2423 default: 2424 if (netif_msg_ifup(ugeth)) 2425 pr_err("Bad number of Tx threads value\n"); 2426 return -EINVAL; 2427 } 2428 2429 /* Calculate rx_extended_features */ 2430 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck || 2431 ug_info->ipAddressAlignment || 2432 (ug_info->numStationAddresses != 2433 UCC_GETH_NUM_OF_STATION_ADDRESSES_1); 2434 2435 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features || 2436 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) || 2437 (ug_info->vlanOperationNonTagged != 2438 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP); 2439 2440 init_default_reg_vals(&uf_regs->upsmr, 2441 &ug_regs->maccfg1, &ug_regs->maccfg2); 2442 2443 /* Set UPSMR */ 2444 /* For more details see the hardware spec. */ 2445 init_rx_parameters(ug_info->bro, 2446 ug_info->rsh, ug_info->pro, &uf_regs->upsmr); 2447 2448 /* We're going to ignore other registers for now, */ 2449 /* except as needed to get up and running */ 2450 2451 /* Set MACCFG1 */ 2452 /* For more details see the hardware spec. */ 2453 init_flow_control_params(ug_info->aufc, 2454 ug_info->receiveFlowControl, 2455 ug_info->transmitFlowControl, 2456 ug_info->pausePeriod, 2457 ug_info->extensionField, 2458 &uf_regs->upsmr, 2459 &ug_regs->uempr, &ug_regs->maccfg1); 2460 2461 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2462 2463 /* Set IPGIFG */ 2464 /* For more details see the hardware spec. */ 2465 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1, 2466 ug_info->nonBackToBackIfgPart2, 2467 ug_info-> 2468 miminumInterFrameGapEnforcement, 2469 ug_info->backToBackInterFrameGap, 2470 &ug_regs->ipgifg); 2471 if (ret_val != 0) { 2472 if (netif_msg_ifup(ugeth)) 2473 pr_err("IPGIFG initialization parameter too large\n"); 2474 return ret_val; 2475 } 2476 2477 /* Set HAFDUP */ 2478 /* For more details see the hardware spec. */ 2479 ret_val = init_half_duplex_params(ug_info->altBeb, 2480 ug_info->backPressureNoBackoff, 2481 ug_info->noBackoff, 2482 ug_info->excessDefer, 2483 ug_info->altBebTruncation, 2484 ug_info->maxRetransmission, 2485 ug_info->collisionWindow, 2486 &ug_regs->hafdup); 2487 if (ret_val != 0) { 2488 if (netif_msg_ifup(ugeth)) 2489 pr_err("Half Duplex initialization parameter too large\n"); 2490 return ret_val; 2491 } 2492 2493 /* Set IFSTAT */ 2494 /* For more details see the hardware spec. */ 2495 /* Read only - resets upon read */ 2496 ifstat = in_be32(&ug_regs->ifstat); 2497 2498 /* Clear UEMPR */ 2499 /* For more details see the hardware spec. */ 2500 out_be32(&ug_regs->uempr, 0); 2501 2502 /* Set UESCR */ 2503 /* For more details see the hardware spec. */ 2504 init_hw_statistics_gathering_mode((ug_info->statisticsMode & 2505 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE), 2506 0, &uf_regs->upsmr, &ug_regs->uescr); 2507 2508 ret_val = ucc_geth_alloc_tx(ugeth); 2509 if (ret_val != 0) 2510 return ret_val; 2511 2512 ret_val = ucc_geth_alloc_rx(ugeth); 2513 if (ret_val != 0) 2514 return ret_val; 2515 2516 /* 2517 * Global PRAM 2518 */ 2519 /* Tx global PRAM */ 2520 /* Allocate global tx parameter RAM page */ 2521 ugeth->tx_glbl_pram_offset = 2522 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram), 2523 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT); 2524 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) { 2525 if (netif_msg_ifup(ugeth)) 2526 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n"); 2527 return -ENOMEM; 2528 } 2529 ugeth->p_tx_glbl_pram = 2530 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth-> 2531 tx_glbl_pram_offset); 2532 /* Zero out p_tx_glbl_pram */ 2533 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram)); 2534 2535 /* Fill global PRAM */ 2536 2537 /* TQPTR */ 2538 /* Size varies with number of Tx threads */ 2539 ugeth->thread_dat_tx_offset = 2540 qe_muram_alloc(numThreadsTxNumerical * 2541 sizeof(struct ucc_geth_thread_data_tx) + 2542 32 * (numThreadsTxNumerical == 1), 2543 UCC_GETH_THREAD_DATA_ALIGNMENT); 2544 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) { 2545 if (netif_msg_ifup(ugeth)) 2546 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n"); 2547 return -ENOMEM; 2548 } 2549 2550 ugeth->p_thread_data_tx = 2551 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth-> 2552 thread_dat_tx_offset); 2553 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset); 2554 2555 /* vtagtable */ 2556 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++) 2557 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i], 2558 ug_info->vtagtable[i]); 2559 2560 /* iphoffset */ 2561 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++) 2562 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i], 2563 ug_info->iphoffset[i]); 2564 2565 /* SQPTR */ 2566 /* Size varies with number of Tx queues */ 2567 ugeth->send_q_mem_reg_offset = 2568 qe_muram_alloc(ug_info->numQueuesTx * 2569 sizeof(struct ucc_geth_send_queue_qd), 2570 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT); 2571 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) { 2572 if (netif_msg_ifup(ugeth)) 2573 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n"); 2574 return -ENOMEM; 2575 } 2576 2577 ugeth->p_send_q_mem_reg = 2578 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth-> 2579 send_q_mem_reg_offset); 2580 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset); 2581 2582 /* Setup the table */ 2583 /* Assume BD rings are already established */ 2584 for (i = 0; i < ug_info->numQueuesTx; i++) { 2585 endOfRing = 2586 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] - 2587 1) * sizeof(struct qe_bd); 2588 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2589 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2590 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i])); 2591 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2592 last_bd_completed_address, 2593 (u32) virt_to_phys(endOfRing)); 2594 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2595 MEM_PART_MURAM) { 2596 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2597 (u32) immrbar_virt_to_phys(ugeth-> 2598 p_tx_bd_ring[i])); 2599 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2600 last_bd_completed_address, 2601 (u32) immrbar_virt_to_phys(endOfRing)); 2602 } 2603 } 2604 2605 /* schedulerbasepointer */ 2606 2607 if (ug_info->numQueuesTx > 1) { 2608 /* scheduler exists only if more than 1 tx queue */ 2609 ugeth->scheduler_offset = 2610 qe_muram_alloc(sizeof(struct ucc_geth_scheduler), 2611 UCC_GETH_SCHEDULER_ALIGNMENT); 2612 if (IS_ERR_VALUE(ugeth->scheduler_offset)) { 2613 if (netif_msg_ifup(ugeth)) 2614 pr_err("Can not allocate DPRAM memory for p_scheduler\n"); 2615 return -ENOMEM; 2616 } 2617 2618 ugeth->p_scheduler = 2619 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth-> 2620 scheduler_offset); 2621 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer, 2622 ugeth->scheduler_offset); 2623 /* Zero out p_scheduler */ 2624 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler)); 2625 2626 /* Set values in scheduler */ 2627 out_be32(&ugeth->p_scheduler->mblinterval, 2628 ug_info->mblinterval); 2629 out_be16(&ugeth->p_scheduler->nortsrbytetime, 2630 ug_info->nortsrbytetime); 2631 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz); 2632 out_8(&ugeth->p_scheduler->strictpriorityq, 2633 ug_info->strictpriorityq); 2634 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap); 2635 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw); 2636 for (i = 0; i < NUM_TX_QUEUES; i++) 2637 out_8(&ugeth->p_scheduler->weightfactor[i], 2638 ug_info->weightfactor[i]); 2639 2640 /* Set pointers to cpucount registers in scheduler */ 2641 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0); 2642 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1); 2643 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2); 2644 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3); 2645 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4); 2646 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5); 2647 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6); 2648 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7); 2649 } 2650 2651 /* schedulerbasepointer */ 2652 /* TxRMON_PTR (statistics) */ 2653 if (ug_info-> 2654 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) { 2655 ugeth->tx_fw_statistics_pram_offset = 2656 qe_muram_alloc(sizeof 2657 (struct ucc_geth_tx_firmware_statistics_pram), 2658 UCC_GETH_TX_STATISTICS_ALIGNMENT); 2659 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) { 2660 if (netif_msg_ifup(ugeth)) 2661 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n"); 2662 return -ENOMEM; 2663 } 2664 ugeth->p_tx_fw_statistics_pram = 2665 (struct ucc_geth_tx_firmware_statistics_pram __iomem *) 2666 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset); 2667 /* Zero out p_tx_fw_statistics_pram */ 2668 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram, 2669 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram)); 2670 } 2671 2672 /* temoder */ 2673 /* Already has speed set */ 2674 2675 if (ug_info->numQueuesTx > 1) 2676 temoder |= TEMODER_SCHEDULER_ENABLE; 2677 if (ug_info->ipCheckSumGenerate) 2678 temoder |= TEMODER_IP_CHECKSUM_GENERATE; 2679 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT); 2680 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder); 2681 2682 test = in_be16(&ugeth->p_tx_glbl_pram->temoder); 2683 2684 /* Function code register value to be used later */ 2685 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL; 2686 /* Required for QE */ 2687 2688 /* function code register */ 2689 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24); 2690 2691 /* Rx global PRAM */ 2692 /* Allocate global rx parameter RAM page */ 2693 ugeth->rx_glbl_pram_offset = 2694 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram), 2695 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT); 2696 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) { 2697 if (netif_msg_ifup(ugeth)) 2698 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n"); 2699 return -ENOMEM; 2700 } 2701 ugeth->p_rx_glbl_pram = 2702 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth-> 2703 rx_glbl_pram_offset); 2704 /* Zero out p_rx_glbl_pram */ 2705 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram)); 2706 2707 /* Fill global PRAM */ 2708 2709 /* RQPTR */ 2710 /* Size varies with number of Rx threads */ 2711 ugeth->thread_dat_rx_offset = 2712 qe_muram_alloc(numThreadsRxNumerical * 2713 sizeof(struct ucc_geth_thread_data_rx), 2714 UCC_GETH_THREAD_DATA_ALIGNMENT); 2715 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) { 2716 if (netif_msg_ifup(ugeth)) 2717 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n"); 2718 return -ENOMEM; 2719 } 2720 2721 ugeth->p_thread_data_rx = 2722 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth-> 2723 thread_dat_rx_offset); 2724 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset); 2725 2726 /* typeorlen */ 2727 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen); 2728 2729 /* rxrmonbaseptr (statistics) */ 2730 if (ug_info-> 2731 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) { 2732 ugeth->rx_fw_statistics_pram_offset = 2733 qe_muram_alloc(sizeof 2734 (struct ucc_geth_rx_firmware_statistics_pram), 2735 UCC_GETH_RX_STATISTICS_ALIGNMENT); 2736 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) { 2737 if (netif_msg_ifup(ugeth)) 2738 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n"); 2739 return -ENOMEM; 2740 } 2741 ugeth->p_rx_fw_statistics_pram = 2742 (struct ucc_geth_rx_firmware_statistics_pram __iomem *) 2743 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset); 2744 /* Zero out p_rx_fw_statistics_pram */ 2745 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0, 2746 sizeof(struct ucc_geth_rx_firmware_statistics_pram)); 2747 } 2748 2749 /* intCoalescingPtr */ 2750 2751 /* Size varies with number of Rx queues */ 2752 ugeth->rx_irq_coalescing_tbl_offset = 2753 qe_muram_alloc(ug_info->numQueuesRx * 2754 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry) 2755 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT); 2756 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) { 2757 if (netif_msg_ifup(ugeth)) 2758 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n"); 2759 return -ENOMEM; 2760 } 2761 2762 ugeth->p_rx_irq_coalescing_tbl = 2763 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *) 2764 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset); 2765 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr, 2766 ugeth->rx_irq_coalescing_tbl_offset); 2767 2768 /* Fill interrupt coalescing table */ 2769 for (i = 0; i < ug_info->numQueuesRx; i++) { 2770 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2771 interruptcoalescingmaxvalue, 2772 ug_info->interruptcoalescingmaxvalue[i]); 2773 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2774 interruptcoalescingcounter, 2775 ug_info->interruptcoalescingmaxvalue[i]); 2776 } 2777 2778 /* MRBLR */ 2779 init_max_rx_buff_len(uf_info->max_rx_buf_length, 2780 &ugeth->p_rx_glbl_pram->mrblr); 2781 /* MFLR */ 2782 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength); 2783 /* MINFLR */ 2784 init_min_frame_len(ug_info->minFrameLength, 2785 &ugeth->p_rx_glbl_pram->minflr, 2786 &ugeth->p_rx_glbl_pram->mrblr); 2787 /* MAXD1 */ 2788 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length); 2789 /* MAXD2 */ 2790 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length); 2791 2792 /* l2qt */ 2793 l2qt = 0; 2794 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) 2795 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i)); 2796 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt); 2797 2798 /* l3qt */ 2799 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) { 2800 l3qt = 0; 2801 for (i = 0; i < 8; i++) 2802 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i)); 2803 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt); 2804 } 2805 2806 /* vlantype */ 2807 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype); 2808 2809 /* vlantci */ 2810 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci); 2811 2812 /* ecamptr */ 2813 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr); 2814 2815 /* RBDQPTR */ 2816 /* Size varies with number of Rx queues */ 2817 ugeth->rx_bd_qs_tbl_offset = 2818 qe_muram_alloc(ug_info->numQueuesRx * 2819 (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2820 sizeof(struct ucc_geth_rx_prefetched_bds)), 2821 UCC_GETH_RX_BD_QUEUES_ALIGNMENT); 2822 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) { 2823 if (netif_msg_ifup(ugeth)) 2824 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n"); 2825 return -ENOMEM; 2826 } 2827 2828 ugeth->p_rx_bd_qs_tbl = 2829 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth-> 2830 rx_bd_qs_tbl_offset); 2831 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset); 2832 /* Zero out p_rx_bd_qs_tbl */ 2833 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl, 2834 0, 2835 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2836 sizeof(struct ucc_geth_rx_prefetched_bds))); 2837 2838 /* Setup the table */ 2839 /* Assume BD rings are already established */ 2840 for (i = 0; i < ug_info->numQueuesRx; i++) { 2841 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2842 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2843 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i])); 2844 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2845 MEM_PART_MURAM) { 2846 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2847 (u32) immrbar_virt_to_phys(ugeth-> 2848 p_rx_bd_ring[i])); 2849 } 2850 /* rest of fields handled by QE */ 2851 } 2852 2853 /* remoder */ 2854 /* Already has speed set */ 2855 2856 if (ugeth->rx_extended_features) 2857 remoder |= REMODER_RX_EXTENDED_FEATURES; 2858 if (ug_info->rxExtendedFiltering) 2859 remoder |= REMODER_RX_EXTENDED_FILTERING; 2860 if (ug_info->dynamicMaxFrameLength) 2861 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH; 2862 if (ug_info->dynamicMinFrameLength) 2863 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH; 2864 remoder |= 2865 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT; 2866 remoder |= 2867 ug_info-> 2868 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT; 2869 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT; 2870 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT); 2871 if (ug_info->ipCheckSumCheck) 2872 remoder |= REMODER_IP_CHECKSUM_CHECK; 2873 if (ug_info->ipAddressAlignment) 2874 remoder |= REMODER_IP_ADDRESS_ALIGNMENT; 2875 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder); 2876 2877 /* Note that this function must be called */ 2878 /* ONLY AFTER p_tx_fw_statistics_pram */ 2879 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */ 2880 init_firmware_statistics_gathering_mode((ug_info-> 2881 statisticsMode & 2882 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX), 2883 (ug_info->statisticsMode & 2884 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX), 2885 &ugeth->p_tx_glbl_pram->txrmonbaseptr, 2886 ugeth->tx_fw_statistics_pram_offset, 2887 &ugeth->p_rx_glbl_pram->rxrmonbaseptr, 2888 ugeth->rx_fw_statistics_pram_offset, 2889 &ugeth->p_tx_glbl_pram->temoder, 2890 &ugeth->p_rx_glbl_pram->remoder); 2891 2892 /* function code register */ 2893 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code); 2894 2895 /* initialize extended filtering */ 2896 if (ug_info->rxExtendedFiltering) { 2897 if (!ug_info->extendedFilteringChainPointer) { 2898 if (netif_msg_ifup(ugeth)) 2899 pr_err("Null Extended Filtering Chain Pointer\n"); 2900 return -EINVAL; 2901 } 2902 2903 /* Allocate memory for extended filtering Mode Global 2904 Parameters */ 2905 ugeth->exf_glbl_param_offset = 2906 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram), 2907 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT); 2908 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) { 2909 if (netif_msg_ifup(ugeth)) 2910 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n"); 2911 return -ENOMEM; 2912 } 2913 2914 ugeth->p_exf_glbl_param = 2915 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth-> 2916 exf_glbl_param_offset); 2917 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam, 2918 ugeth->exf_glbl_param_offset); 2919 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr, 2920 (u32) ug_info->extendedFilteringChainPointer); 2921 2922 } else { /* initialize 82xx style address filtering */ 2923 2924 /* Init individual address recognition registers to disabled */ 2925 2926 for (j = 0; j < NUM_OF_PADDRS; j++) 2927 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j); 2928 2929 p_82xx_addr_filt = 2930 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2931 p_rx_glbl_pram->addressfiltering; 2932 2933 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2934 ENET_ADDR_TYPE_GROUP); 2935 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2936 ENET_ADDR_TYPE_INDIVIDUAL); 2937 } 2938 2939 /* 2940 * Initialize UCC at QE level 2941 */ 2942 2943 command = QE_INIT_TX_RX; 2944 2945 /* Allocate shadow InitEnet command parameter structure. 2946 * This is needed because after the InitEnet command is executed, 2947 * the structure in DPRAM is released, because DPRAM is a premium 2948 * resource. 2949 * This shadow structure keeps a copy of what was done so that the 2950 * allocated resources can be released when the channel is freed. 2951 */ 2952 if (!(ugeth->p_init_enet_param_shadow = 2953 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) { 2954 if (netif_msg_ifup(ugeth)) 2955 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n"); 2956 return -ENOMEM; 2957 } 2958 /* Zero out *p_init_enet_param_shadow */ 2959 memset((char *)ugeth->p_init_enet_param_shadow, 2960 0, sizeof(struct ucc_geth_init_pram)); 2961 2962 /* Fill shadow InitEnet command parameter structure */ 2963 2964 ugeth->p_init_enet_param_shadow->resinit1 = 2965 ENET_INIT_PARAM_MAGIC_RES_INIT1; 2966 ugeth->p_init_enet_param_shadow->resinit2 = 2967 ENET_INIT_PARAM_MAGIC_RES_INIT2; 2968 ugeth->p_init_enet_param_shadow->resinit3 = 2969 ENET_INIT_PARAM_MAGIC_RES_INIT3; 2970 ugeth->p_init_enet_param_shadow->resinit4 = 2971 ENET_INIT_PARAM_MAGIC_RES_INIT4; 2972 ugeth->p_init_enet_param_shadow->resinit5 = 2973 ENET_INIT_PARAM_MAGIC_RES_INIT5; 2974 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2975 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT; 2976 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2977 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT; 2978 2979 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2980 ugeth->rx_glbl_pram_offset | ug_info->riscRx; 2981 if ((ug_info->largestexternallookupkeysize != 2982 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) && 2983 (ug_info->largestexternallookupkeysize != 2984 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) && 2985 (ug_info->largestexternallookupkeysize != 2986 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) { 2987 if (netif_msg_ifup(ugeth)) 2988 pr_err("Invalid largest External Lookup Key Size\n"); 2989 return -EINVAL; 2990 } 2991 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize = 2992 ug_info->largestexternallookupkeysize; 2993 size = sizeof(struct ucc_geth_thread_rx_pram); 2994 if (ug_info->rxExtendedFiltering) { 2995 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 2996 if (ug_info->largestexternallookupkeysize == 2997 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 2998 size += 2999 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 3000 if (ug_info->largestexternallookupkeysize == 3001 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 3002 size += 3003 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 3004 } 3005 3006 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth-> 3007 p_init_enet_param_shadow->rxthread[0]), 3008 (u8) (numThreadsRxNumerical + 1) 3009 /* Rx needs one extra for terminator */ 3010 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT, 3011 ug_info->riscRx, 1)) != 0) { 3012 if (netif_msg_ifup(ugeth)) 3013 pr_err("Can not fill p_init_enet_param_shadow\n"); 3014 return ret_val; 3015 } 3016 3017 ugeth->p_init_enet_param_shadow->txglobal = 3018 ugeth->tx_glbl_pram_offset | ug_info->riscTx; 3019 if ((ret_val = 3020 fill_init_enet_entries(ugeth, 3021 &(ugeth->p_init_enet_param_shadow-> 3022 txthread[0]), numThreadsTxNumerical, 3023 sizeof(struct ucc_geth_thread_tx_pram), 3024 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT, 3025 ug_info->riscTx, 0)) != 0) { 3026 if (netif_msg_ifup(ugeth)) 3027 pr_err("Can not fill p_init_enet_param_shadow\n"); 3028 return ret_val; 3029 } 3030 3031 /* Load Rx bds with buffers */ 3032 for (i = 0; i < ug_info->numQueuesRx; i++) { 3033 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) { 3034 if (netif_msg_ifup(ugeth)) 3035 pr_err("Can not fill Rx bds with buffers\n"); 3036 return ret_val; 3037 } 3038 } 3039 3040 /* Allocate InitEnet command parameter structure */ 3041 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4); 3042 if (IS_ERR_VALUE(init_enet_pram_offset)) { 3043 if (netif_msg_ifup(ugeth)) 3044 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n"); 3045 return -ENOMEM; 3046 } 3047 p_init_enet_pram = 3048 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset); 3049 3050 /* Copy shadow InitEnet command parameter structure into PRAM */ 3051 out_8(&p_init_enet_pram->resinit1, 3052 ugeth->p_init_enet_param_shadow->resinit1); 3053 out_8(&p_init_enet_pram->resinit2, 3054 ugeth->p_init_enet_param_shadow->resinit2); 3055 out_8(&p_init_enet_pram->resinit3, 3056 ugeth->p_init_enet_param_shadow->resinit3); 3057 out_8(&p_init_enet_pram->resinit4, 3058 ugeth->p_init_enet_param_shadow->resinit4); 3059 out_be16(&p_init_enet_pram->resinit5, 3060 ugeth->p_init_enet_param_shadow->resinit5); 3061 out_8(&p_init_enet_pram->largestexternallookupkeysize, 3062 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize); 3063 out_be32(&p_init_enet_pram->rgftgfrxglobal, 3064 ugeth->p_init_enet_param_shadow->rgftgfrxglobal); 3065 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++) 3066 out_be32(&p_init_enet_pram->rxthread[i], 3067 ugeth->p_init_enet_param_shadow->rxthread[i]); 3068 out_be32(&p_init_enet_pram->txglobal, 3069 ugeth->p_init_enet_param_shadow->txglobal); 3070 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++) 3071 out_be32(&p_init_enet_pram->txthread[i], 3072 ugeth->p_init_enet_param_shadow->txthread[i]); 3073 3074 /* Issue QE command */ 3075 cecr_subblock = 3076 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 3077 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 3078 init_enet_pram_offset); 3079 3080 /* Free InitEnet command parameter */ 3081 qe_muram_free(init_enet_pram_offset); 3082 3083 return 0; 3084 } 3085 3086 /* This is called by the kernel when a frame is ready for transmission. */ 3087 /* It is pointed to by the dev->hard_start_xmit function pointer */ 3088 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev) 3089 { 3090 struct ucc_geth_private *ugeth = netdev_priv(dev); 3091 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3092 struct ucc_fast_private *uccf; 3093 #endif 3094 u8 __iomem *bd; /* BD pointer */ 3095 u32 bd_status; 3096 u8 txQ = 0; 3097 unsigned long flags; 3098 3099 ugeth_vdbg("%s: IN", __func__); 3100 3101 spin_lock_irqsave(&ugeth->lock, flags); 3102 3103 dev->stats.tx_bytes += skb->len; 3104 3105 /* Start from the next BD that should be filled */ 3106 bd = ugeth->txBd[txQ]; 3107 bd_status = in_be32((u32 __iomem *)bd); 3108 /* Save the skb pointer so we can free it later */ 3109 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb; 3110 3111 /* Update the current skb pointer (wrapping if this was the last) */ 3112 ugeth->skb_curtx[txQ] = 3113 (ugeth->skb_curtx[txQ] + 3114 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3115 3116 /* set up the buffer descriptor */ 3117 out_be32(&((struct qe_bd __iomem *)bd)->buf, 3118 dma_map_single(ugeth->dev, skb->data, 3119 skb->len, DMA_TO_DEVICE)); 3120 3121 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */ 3122 3123 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len; 3124 3125 /* set bd status and length */ 3126 out_be32((u32 __iomem *)bd, bd_status); 3127 3128 /* Move to next BD in the ring */ 3129 if (!(bd_status & T_W)) 3130 bd += sizeof(struct qe_bd); 3131 else 3132 bd = ugeth->p_tx_bd_ring[txQ]; 3133 3134 /* If the next BD still needs to be cleaned up, then the bds 3135 are full. We need to tell the kernel to stop sending us stuff. */ 3136 if (bd == ugeth->confBd[txQ]) { 3137 if (!netif_queue_stopped(dev)) 3138 netif_stop_queue(dev); 3139 } 3140 3141 ugeth->txBd[txQ] = bd; 3142 3143 skb_tx_timestamp(skb); 3144 3145 if (ugeth->p_scheduler) { 3146 ugeth->cpucount[txQ]++; 3147 /* Indicate to QE that there are more Tx bds ready for 3148 transmission */ 3149 /* This is done by writing a running counter of the bd 3150 count to the scheduler PRAM. */ 3151 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]); 3152 } 3153 3154 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3155 uccf = ugeth->uccf; 3156 out_be16(uccf->p_utodr, UCC_FAST_TOD); 3157 #endif 3158 spin_unlock_irqrestore(&ugeth->lock, flags); 3159 3160 return NETDEV_TX_OK; 3161 } 3162 3163 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit) 3164 { 3165 struct sk_buff *skb; 3166 u8 __iomem *bd; 3167 u16 length, howmany = 0; 3168 u32 bd_status; 3169 u8 *bdBuffer; 3170 struct net_device *dev; 3171 3172 ugeth_vdbg("%s: IN", __func__); 3173 3174 dev = ugeth->ndev; 3175 3176 /* collect received buffers */ 3177 bd = ugeth->rxBd[rxQ]; 3178 3179 bd_status = in_be32((u32 __iomem *)bd); 3180 3181 /* while there are received buffers and BD is full (~R_E) */ 3182 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) { 3183 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf); 3184 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4); 3185 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]]; 3186 3187 /* determine whether buffer is first, last, first and last 3188 (single buffer frame) or middle (not first and not last) */ 3189 if (!skb || 3190 (!(bd_status & (R_F | R_L))) || 3191 (bd_status & R_ERRORS_FATAL)) { 3192 if (netif_msg_rx_err(ugeth)) 3193 pr_err("%d: ERROR!!! skb - 0x%08x\n", 3194 __LINE__, (u32)skb); 3195 dev_kfree_skb(skb); 3196 3197 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL; 3198 dev->stats.rx_dropped++; 3199 } else { 3200 dev->stats.rx_packets++; 3201 howmany++; 3202 3203 /* Prep the skb for the packet */ 3204 skb_put(skb, length); 3205 3206 /* Tell the skb what kind of packet this is */ 3207 skb->protocol = eth_type_trans(skb, ugeth->ndev); 3208 3209 dev->stats.rx_bytes += length; 3210 /* Send the packet up the stack */ 3211 netif_receive_skb(skb); 3212 } 3213 3214 skb = get_new_skb(ugeth, bd); 3215 if (!skb) { 3216 if (netif_msg_rx_err(ugeth)) 3217 pr_warn("No Rx Data Buffer\n"); 3218 dev->stats.rx_dropped++; 3219 break; 3220 } 3221 3222 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb; 3223 3224 /* update to point at the next skb */ 3225 ugeth->skb_currx[rxQ] = 3226 (ugeth->skb_currx[rxQ] + 3227 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]); 3228 3229 if (bd_status & R_W) 3230 bd = ugeth->p_rx_bd_ring[rxQ]; 3231 else 3232 bd += sizeof(struct qe_bd); 3233 3234 bd_status = in_be32((u32 __iomem *)bd); 3235 } 3236 3237 ugeth->rxBd[rxQ] = bd; 3238 return howmany; 3239 } 3240 3241 static int ucc_geth_tx(struct net_device *dev, u8 txQ) 3242 { 3243 /* Start from the next BD that should be filled */ 3244 struct ucc_geth_private *ugeth = netdev_priv(dev); 3245 u8 __iomem *bd; /* BD pointer */ 3246 u32 bd_status; 3247 3248 bd = ugeth->confBd[txQ]; 3249 bd_status = in_be32((u32 __iomem *)bd); 3250 3251 /* Normal processing. */ 3252 while ((bd_status & T_R) == 0) { 3253 struct sk_buff *skb; 3254 3255 /* BD contains already transmitted buffer. */ 3256 /* Handle the transmitted buffer and release */ 3257 /* the BD to be used with the current frame */ 3258 3259 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]]; 3260 if (!skb) 3261 break; 3262 3263 dev->stats.tx_packets++; 3264 3265 dev_consume_skb_any(skb); 3266 3267 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL; 3268 ugeth->skb_dirtytx[txQ] = 3269 (ugeth->skb_dirtytx[txQ] + 3270 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3271 3272 /* We freed a buffer, so now we can restart transmission */ 3273 if (netif_queue_stopped(dev)) 3274 netif_wake_queue(dev); 3275 3276 /* Advance the confirmation BD pointer */ 3277 if (!(bd_status & T_W)) 3278 bd += sizeof(struct qe_bd); 3279 else 3280 bd = ugeth->p_tx_bd_ring[txQ]; 3281 bd_status = in_be32((u32 __iomem *)bd); 3282 } 3283 ugeth->confBd[txQ] = bd; 3284 return 0; 3285 } 3286 3287 static int ucc_geth_poll(struct napi_struct *napi, int budget) 3288 { 3289 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi); 3290 struct ucc_geth_info *ug_info; 3291 int howmany, i; 3292 3293 ug_info = ugeth->ug_info; 3294 3295 /* Tx event processing */ 3296 spin_lock(&ugeth->lock); 3297 for (i = 0; i < ug_info->numQueuesTx; i++) 3298 ucc_geth_tx(ugeth->ndev, i); 3299 spin_unlock(&ugeth->lock); 3300 3301 howmany = 0; 3302 for (i = 0; i < ug_info->numQueuesRx; i++) 3303 howmany += ucc_geth_rx(ugeth, i, budget - howmany); 3304 3305 if (howmany < budget) { 3306 napi_complete(napi); 3307 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3308 } 3309 3310 return howmany; 3311 } 3312 3313 static irqreturn_t ucc_geth_irq_handler(int irq, void *info) 3314 { 3315 struct net_device *dev = info; 3316 struct ucc_geth_private *ugeth = netdev_priv(dev); 3317 struct ucc_fast_private *uccf; 3318 struct ucc_geth_info *ug_info; 3319 register u32 ucce; 3320 register u32 uccm; 3321 3322 ugeth_vdbg("%s: IN", __func__); 3323 3324 uccf = ugeth->uccf; 3325 ug_info = ugeth->ug_info; 3326 3327 /* read and clear events */ 3328 ucce = (u32) in_be32(uccf->p_ucce); 3329 uccm = (u32) in_be32(uccf->p_uccm); 3330 ucce &= uccm; 3331 out_be32(uccf->p_ucce, ucce); 3332 3333 /* check for receive events that require processing */ 3334 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) { 3335 if (napi_schedule_prep(&ugeth->napi)) { 3336 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3337 out_be32(uccf->p_uccm, uccm); 3338 __napi_schedule(&ugeth->napi); 3339 } 3340 } 3341 3342 /* Errors and other events */ 3343 if (ucce & UCCE_OTHER) { 3344 if (ucce & UCC_GETH_UCCE_BSY) 3345 dev->stats.rx_errors++; 3346 if (ucce & UCC_GETH_UCCE_TXE) 3347 dev->stats.tx_errors++; 3348 } 3349 3350 return IRQ_HANDLED; 3351 } 3352 3353 #ifdef CONFIG_NET_POLL_CONTROLLER 3354 /* 3355 * Polling 'interrupt' - used by things like netconsole to send skbs 3356 * without having to re-enable interrupts. It's not called while 3357 * the interrupt routine is executing. 3358 */ 3359 static void ucc_netpoll(struct net_device *dev) 3360 { 3361 struct ucc_geth_private *ugeth = netdev_priv(dev); 3362 int irq = ugeth->ug_info->uf_info.irq; 3363 3364 disable_irq(irq); 3365 ucc_geth_irq_handler(irq, dev); 3366 enable_irq(irq); 3367 } 3368 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3369 3370 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p) 3371 { 3372 struct ucc_geth_private *ugeth = netdev_priv(dev); 3373 struct sockaddr *addr = p; 3374 3375 if (!is_valid_ether_addr(addr->sa_data)) 3376 return -EADDRNOTAVAIL; 3377 3378 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3379 3380 /* 3381 * If device is not running, we will set mac addr register 3382 * when opening the device. 3383 */ 3384 if (!netif_running(dev)) 3385 return 0; 3386 3387 spin_lock_irq(&ugeth->lock); 3388 init_mac_station_addr_regs(dev->dev_addr[0], 3389 dev->dev_addr[1], 3390 dev->dev_addr[2], 3391 dev->dev_addr[3], 3392 dev->dev_addr[4], 3393 dev->dev_addr[5], 3394 &ugeth->ug_regs->macstnaddr1, 3395 &ugeth->ug_regs->macstnaddr2); 3396 spin_unlock_irq(&ugeth->lock); 3397 3398 return 0; 3399 } 3400 3401 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth) 3402 { 3403 struct net_device *dev = ugeth->ndev; 3404 int err; 3405 3406 err = ucc_struct_init(ugeth); 3407 if (err) { 3408 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n"); 3409 goto err; 3410 } 3411 3412 err = ucc_geth_startup(ugeth); 3413 if (err) { 3414 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3415 goto err; 3416 } 3417 3418 err = adjust_enet_interface(ugeth); 3419 if (err) { 3420 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3421 goto err; 3422 } 3423 3424 /* Set MACSTNADDR1, MACSTNADDR2 */ 3425 /* For more details see the hardware spec. */ 3426 init_mac_station_addr_regs(dev->dev_addr[0], 3427 dev->dev_addr[1], 3428 dev->dev_addr[2], 3429 dev->dev_addr[3], 3430 dev->dev_addr[4], 3431 dev->dev_addr[5], 3432 &ugeth->ug_regs->macstnaddr1, 3433 &ugeth->ug_regs->macstnaddr2); 3434 3435 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3436 if (err) { 3437 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n"); 3438 goto err; 3439 } 3440 3441 return 0; 3442 err: 3443 ucc_geth_stop(ugeth); 3444 return err; 3445 } 3446 3447 /* Called when something needs to use the ethernet device */ 3448 /* Returns 0 for success. */ 3449 static int ucc_geth_open(struct net_device *dev) 3450 { 3451 struct ucc_geth_private *ugeth = netdev_priv(dev); 3452 int err; 3453 3454 ugeth_vdbg("%s: IN", __func__); 3455 3456 /* Test station address */ 3457 if (dev->dev_addr[0] & ENET_GROUP_ADDR) { 3458 netif_err(ugeth, ifup, dev, 3459 "Multicast address used for station address - is this what you wanted?\n"); 3460 return -EINVAL; 3461 } 3462 3463 err = init_phy(dev); 3464 if (err) { 3465 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n"); 3466 return err; 3467 } 3468 3469 err = ucc_geth_init_mac(ugeth); 3470 if (err) { 3471 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n"); 3472 goto err; 3473 } 3474 3475 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler, 3476 0, "UCC Geth", dev); 3477 if (err) { 3478 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n"); 3479 goto err; 3480 } 3481 3482 phy_start(ugeth->phydev); 3483 napi_enable(&ugeth->napi); 3484 netif_start_queue(dev); 3485 3486 device_set_wakeup_capable(&dev->dev, 3487 qe_alive_during_sleep() || ugeth->phydev->irq); 3488 device_set_wakeup_enable(&dev->dev, ugeth->wol_en); 3489 3490 return err; 3491 3492 err: 3493 ucc_geth_stop(ugeth); 3494 return err; 3495 } 3496 3497 /* Stops the kernel queue, and halts the controller */ 3498 static int ucc_geth_close(struct net_device *dev) 3499 { 3500 struct ucc_geth_private *ugeth = netdev_priv(dev); 3501 3502 ugeth_vdbg("%s: IN", __func__); 3503 3504 napi_disable(&ugeth->napi); 3505 3506 cancel_work_sync(&ugeth->timeout_work); 3507 ucc_geth_stop(ugeth); 3508 phy_disconnect(ugeth->phydev); 3509 ugeth->phydev = NULL; 3510 3511 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev); 3512 3513 netif_stop_queue(dev); 3514 3515 return 0; 3516 } 3517 3518 /* Reopen device. This will reset the MAC and PHY. */ 3519 static void ucc_geth_timeout_work(struct work_struct *work) 3520 { 3521 struct ucc_geth_private *ugeth; 3522 struct net_device *dev; 3523 3524 ugeth = container_of(work, struct ucc_geth_private, timeout_work); 3525 dev = ugeth->ndev; 3526 3527 ugeth_vdbg("%s: IN", __func__); 3528 3529 dev->stats.tx_errors++; 3530 3531 ugeth_dump_regs(ugeth); 3532 3533 if (dev->flags & IFF_UP) { 3534 /* 3535 * Must reset MAC *and* PHY. This is done by reopening 3536 * the device. 3537 */ 3538 netif_tx_stop_all_queues(dev); 3539 ucc_geth_stop(ugeth); 3540 ucc_geth_init_mac(ugeth); 3541 /* Must start PHY here */ 3542 phy_start(ugeth->phydev); 3543 netif_tx_start_all_queues(dev); 3544 } 3545 3546 netif_tx_schedule_all(dev); 3547 } 3548 3549 /* 3550 * ucc_geth_timeout gets called when a packet has not been 3551 * transmitted after a set amount of time. 3552 */ 3553 static void ucc_geth_timeout(struct net_device *dev) 3554 { 3555 struct ucc_geth_private *ugeth = netdev_priv(dev); 3556 3557 schedule_work(&ugeth->timeout_work); 3558 } 3559 3560 3561 #ifdef CONFIG_PM 3562 3563 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state) 3564 { 3565 struct net_device *ndev = platform_get_drvdata(ofdev); 3566 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3567 3568 if (!netif_running(ndev)) 3569 return 0; 3570 3571 netif_device_detach(ndev); 3572 napi_disable(&ugeth->napi); 3573 3574 /* 3575 * Disable the controller, otherwise we'll wakeup on any network 3576 * activity. 3577 */ 3578 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 3579 3580 if (ugeth->wol_en & WAKE_MAGIC) { 3581 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3582 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3583 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3584 } else if (!(ugeth->wol_en & WAKE_PHY)) { 3585 phy_stop(ugeth->phydev); 3586 } 3587 3588 return 0; 3589 } 3590 3591 static int ucc_geth_resume(struct platform_device *ofdev) 3592 { 3593 struct net_device *ndev = platform_get_drvdata(ofdev); 3594 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3595 int err; 3596 3597 if (!netif_running(ndev)) 3598 return 0; 3599 3600 if (qe_alive_during_sleep()) { 3601 if (ugeth->wol_en & WAKE_MAGIC) { 3602 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3603 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3604 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3605 } 3606 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3607 } else { 3608 /* 3609 * Full reinitialization is required if QE shuts down 3610 * during sleep. 3611 */ 3612 ucc_geth_memclean(ugeth); 3613 3614 err = ucc_geth_init_mac(ugeth); 3615 if (err) { 3616 netdev_err(ndev, "Cannot initialize MAC, aborting\n"); 3617 return err; 3618 } 3619 } 3620 3621 ugeth->oldlink = 0; 3622 ugeth->oldspeed = 0; 3623 ugeth->oldduplex = -1; 3624 3625 phy_stop(ugeth->phydev); 3626 phy_start(ugeth->phydev); 3627 3628 napi_enable(&ugeth->napi); 3629 netif_device_attach(ndev); 3630 3631 return 0; 3632 } 3633 3634 #else 3635 #define ucc_geth_suspend NULL 3636 #define ucc_geth_resume NULL 3637 #endif 3638 3639 static phy_interface_t to_phy_interface(const char *phy_connection_type) 3640 { 3641 if (strcasecmp(phy_connection_type, "mii") == 0) 3642 return PHY_INTERFACE_MODE_MII; 3643 if (strcasecmp(phy_connection_type, "gmii") == 0) 3644 return PHY_INTERFACE_MODE_GMII; 3645 if (strcasecmp(phy_connection_type, "tbi") == 0) 3646 return PHY_INTERFACE_MODE_TBI; 3647 if (strcasecmp(phy_connection_type, "rmii") == 0) 3648 return PHY_INTERFACE_MODE_RMII; 3649 if (strcasecmp(phy_connection_type, "rgmii") == 0) 3650 return PHY_INTERFACE_MODE_RGMII; 3651 if (strcasecmp(phy_connection_type, "rgmii-id") == 0) 3652 return PHY_INTERFACE_MODE_RGMII_ID; 3653 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0) 3654 return PHY_INTERFACE_MODE_RGMII_TXID; 3655 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0) 3656 return PHY_INTERFACE_MODE_RGMII_RXID; 3657 if (strcasecmp(phy_connection_type, "rtbi") == 0) 3658 return PHY_INTERFACE_MODE_RTBI; 3659 if (strcasecmp(phy_connection_type, "sgmii") == 0) 3660 return PHY_INTERFACE_MODE_SGMII; 3661 3662 return PHY_INTERFACE_MODE_MII; 3663 } 3664 3665 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3666 { 3667 struct ucc_geth_private *ugeth = netdev_priv(dev); 3668 3669 if (!netif_running(dev)) 3670 return -EINVAL; 3671 3672 if (!ugeth->phydev) 3673 return -ENODEV; 3674 3675 return phy_mii_ioctl(ugeth->phydev, rq, cmd); 3676 } 3677 3678 static const struct net_device_ops ucc_geth_netdev_ops = { 3679 .ndo_open = ucc_geth_open, 3680 .ndo_stop = ucc_geth_close, 3681 .ndo_start_xmit = ucc_geth_start_xmit, 3682 .ndo_validate_addr = eth_validate_addr, 3683 .ndo_set_mac_address = ucc_geth_set_mac_addr, 3684 .ndo_change_mtu = eth_change_mtu, 3685 .ndo_set_rx_mode = ucc_geth_set_multi, 3686 .ndo_tx_timeout = ucc_geth_timeout, 3687 .ndo_do_ioctl = ucc_geth_ioctl, 3688 #ifdef CONFIG_NET_POLL_CONTROLLER 3689 .ndo_poll_controller = ucc_netpoll, 3690 #endif 3691 }; 3692 3693 static int ucc_geth_probe(struct platform_device* ofdev) 3694 { 3695 struct device *device = &ofdev->dev; 3696 struct device_node *np = ofdev->dev.of_node; 3697 struct net_device *dev = NULL; 3698 struct ucc_geth_private *ugeth = NULL; 3699 struct ucc_geth_info *ug_info; 3700 struct resource res; 3701 int err, ucc_num, max_speed = 0; 3702 const unsigned int *prop; 3703 const char *sprop; 3704 const void *mac_addr; 3705 phy_interface_t phy_interface; 3706 static const int enet_to_speed[] = { 3707 SPEED_10, SPEED_10, SPEED_10, 3708 SPEED_100, SPEED_100, SPEED_100, 3709 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000, 3710 }; 3711 static const phy_interface_t enet_to_phy_interface[] = { 3712 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII, 3713 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII, 3714 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, 3715 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII, 3716 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI, 3717 PHY_INTERFACE_MODE_SGMII, 3718 }; 3719 3720 ugeth_vdbg("%s: IN", __func__); 3721 3722 prop = of_get_property(np, "cell-index", NULL); 3723 if (!prop) { 3724 prop = of_get_property(np, "device-id", NULL); 3725 if (!prop) 3726 return -ENODEV; 3727 } 3728 3729 ucc_num = *prop - 1; 3730 if ((ucc_num < 0) || (ucc_num > 7)) 3731 return -ENODEV; 3732 3733 ug_info = &ugeth_info[ucc_num]; 3734 if (ug_info == NULL) { 3735 if (netif_msg_probe(&debug)) 3736 pr_err("[%d] Missing additional data!\n", ucc_num); 3737 return -ENODEV; 3738 } 3739 3740 ug_info->uf_info.ucc_num = ucc_num; 3741 3742 sprop = of_get_property(np, "rx-clock-name", NULL); 3743 if (sprop) { 3744 ug_info->uf_info.rx_clock = qe_clock_source(sprop); 3745 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) || 3746 (ug_info->uf_info.rx_clock > QE_CLK24)) { 3747 pr_err("invalid rx-clock-name property\n"); 3748 return -EINVAL; 3749 } 3750 } else { 3751 prop = of_get_property(np, "rx-clock", NULL); 3752 if (!prop) { 3753 /* If both rx-clock-name and rx-clock are missing, 3754 we want to tell people to use rx-clock-name. */ 3755 pr_err("missing rx-clock-name property\n"); 3756 return -EINVAL; 3757 } 3758 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3759 pr_err("invalid rx-clock propperty\n"); 3760 return -EINVAL; 3761 } 3762 ug_info->uf_info.rx_clock = *prop; 3763 } 3764 3765 sprop = of_get_property(np, "tx-clock-name", NULL); 3766 if (sprop) { 3767 ug_info->uf_info.tx_clock = qe_clock_source(sprop); 3768 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) || 3769 (ug_info->uf_info.tx_clock > QE_CLK24)) { 3770 pr_err("invalid tx-clock-name property\n"); 3771 return -EINVAL; 3772 } 3773 } else { 3774 prop = of_get_property(np, "tx-clock", NULL); 3775 if (!prop) { 3776 pr_err("missing tx-clock-name property\n"); 3777 return -EINVAL; 3778 } 3779 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3780 pr_err("invalid tx-clock property\n"); 3781 return -EINVAL; 3782 } 3783 ug_info->uf_info.tx_clock = *prop; 3784 } 3785 3786 err = of_address_to_resource(np, 0, &res); 3787 if (err) 3788 return -EINVAL; 3789 3790 ug_info->uf_info.regs = res.start; 3791 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0); 3792 3793 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0); 3794 if (!ug_info->phy_node && of_phy_is_fixed_link(np)) { 3795 /* 3796 * In the case of a fixed PHY, the DT node associated 3797 * to the PHY is the Ethernet MAC DT node. 3798 */ 3799 err = of_phy_register_fixed_link(np); 3800 if (err) 3801 return err; 3802 ug_info->phy_node = of_node_get(np); 3803 } 3804 3805 /* Find the TBI PHY node. If it's not there, we don't support SGMII */ 3806 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 3807 3808 /* get the phy interface type, or default to MII */ 3809 prop = of_get_property(np, "phy-connection-type", NULL); 3810 if (!prop) { 3811 /* handle interface property present in old trees */ 3812 prop = of_get_property(ug_info->phy_node, "interface", NULL); 3813 if (prop != NULL) { 3814 phy_interface = enet_to_phy_interface[*prop]; 3815 max_speed = enet_to_speed[*prop]; 3816 } else 3817 phy_interface = PHY_INTERFACE_MODE_MII; 3818 } else { 3819 phy_interface = to_phy_interface((const char *)prop); 3820 } 3821 3822 /* get speed, or derive from PHY interface */ 3823 if (max_speed == 0) 3824 switch (phy_interface) { 3825 case PHY_INTERFACE_MODE_GMII: 3826 case PHY_INTERFACE_MODE_RGMII: 3827 case PHY_INTERFACE_MODE_RGMII_ID: 3828 case PHY_INTERFACE_MODE_RGMII_RXID: 3829 case PHY_INTERFACE_MODE_RGMII_TXID: 3830 case PHY_INTERFACE_MODE_TBI: 3831 case PHY_INTERFACE_MODE_RTBI: 3832 case PHY_INTERFACE_MODE_SGMII: 3833 max_speed = SPEED_1000; 3834 break; 3835 default: 3836 max_speed = SPEED_100; 3837 break; 3838 } 3839 3840 if (max_speed == SPEED_1000) { 3841 unsigned int snums = qe_get_num_of_snums(); 3842 3843 /* configure muram FIFOs for gigabit operation */ 3844 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT; 3845 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT; 3846 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT; 3847 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT; 3848 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT; 3849 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT; 3850 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4; 3851 3852 /* If QE's snum number is 46/76 which means we need to support 3853 * 4 UECs at 1000Base-T simultaneously, we need to allocate 3854 * more Threads to Rx. 3855 */ 3856 if ((snums == 76) || (snums == 46)) 3857 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6; 3858 else 3859 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4; 3860 } 3861 3862 if (netif_msg_probe(&debug)) 3863 pr_info("UCC%1d at 0x%8x (irq = %d)\n", 3864 ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs, 3865 ug_info->uf_info.irq); 3866 3867 /* Create an ethernet device instance */ 3868 dev = alloc_etherdev(sizeof(*ugeth)); 3869 3870 if (dev == NULL) { 3871 of_node_put(ug_info->tbi_node); 3872 of_node_put(ug_info->phy_node); 3873 return -ENOMEM; 3874 } 3875 3876 ugeth = netdev_priv(dev); 3877 spin_lock_init(&ugeth->lock); 3878 3879 /* Create CQs for hash tables */ 3880 INIT_LIST_HEAD(&ugeth->group_hash_q); 3881 INIT_LIST_HEAD(&ugeth->ind_hash_q); 3882 3883 dev_set_drvdata(device, dev); 3884 3885 /* Set the dev->base_addr to the gfar reg region */ 3886 dev->base_addr = (unsigned long)(ug_info->uf_info.regs); 3887 3888 SET_NETDEV_DEV(dev, device); 3889 3890 /* Fill in the dev structure */ 3891 uec_set_ethtool_ops(dev); 3892 dev->netdev_ops = &ucc_geth_netdev_ops; 3893 dev->watchdog_timeo = TX_TIMEOUT; 3894 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work); 3895 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64); 3896 dev->mtu = 1500; 3897 3898 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT); 3899 ugeth->phy_interface = phy_interface; 3900 ugeth->max_speed = max_speed; 3901 3902 /* Carrier starts down, phylib will bring it up */ 3903 netif_carrier_off(dev); 3904 3905 err = register_netdev(dev); 3906 if (err) { 3907 if (netif_msg_probe(ugeth)) 3908 pr_err("%s: Cannot register net device, aborting\n", 3909 dev->name); 3910 free_netdev(dev); 3911 of_node_put(ug_info->tbi_node); 3912 of_node_put(ug_info->phy_node); 3913 return err; 3914 } 3915 3916 mac_addr = of_get_mac_address(np); 3917 if (mac_addr) 3918 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 3919 3920 ugeth->ug_info = ug_info; 3921 ugeth->dev = device; 3922 ugeth->ndev = dev; 3923 ugeth->node = np; 3924 3925 return 0; 3926 } 3927 3928 static int ucc_geth_remove(struct platform_device* ofdev) 3929 { 3930 struct net_device *dev = platform_get_drvdata(ofdev); 3931 struct ucc_geth_private *ugeth = netdev_priv(dev); 3932 3933 unregister_netdev(dev); 3934 free_netdev(dev); 3935 ucc_geth_memclean(ugeth); 3936 of_node_put(ugeth->ug_info->tbi_node); 3937 of_node_put(ugeth->ug_info->phy_node); 3938 3939 return 0; 3940 } 3941 3942 static const struct of_device_id ucc_geth_match[] = { 3943 { 3944 .type = "network", 3945 .compatible = "ucc_geth", 3946 }, 3947 {}, 3948 }; 3949 3950 MODULE_DEVICE_TABLE(of, ucc_geth_match); 3951 3952 static struct platform_driver ucc_geth_driver = { 3953 .driver = { 3954 .name = DRV_NAME, 3955 .of_match_table = ucc_geth_match, 3956 }, 3957 .probe = ucc_geth_probe, 3958 .remove = ucc_geth_remove, 3959 .suspend = ucc_geth_suspend, 3960 .resume = ucc_geth_resume, 3961 }; 3962 3963 static int __init ucc_geth_init(void) 3964 { 3965 int i, ret; 3966 3967 if (netif_msg_drv(&debug)) 3968 pr_info(DRV_DESC "\n"); 3969 for (i = 0; i < 8; i++) 3970 memcpy(&(ugeth_info[i]), &ugeth_primary_info, 3971 sizeof(ugeth_primary_info)); 3972 3973 ret = platform_driver_register(&ucc_geth_driver); 3974 3975 return ret; 3976 } 3977 3978 static void __exit ucc_geth_exit(void) 3979 { 3980 platform_driver_unregister(&ucc_geth_driver); 3981 } 3982 3983 module_init(ucc_geth_init); 3984 module_exit(ucc_geth_exit); 3985 3986 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 3987 MODULE_DESCRIPTION(DRV_DESC); 3988 MODULE_VERSION(DRV_VERSION); 3989 MODULE_LICENSE("GPL"); 3990