xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision dc3e0896003ee9b3bcc34c53965dc4bbc8671c44)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 
106 #include "gianfar.h"
107 
108 #define TX_TIMEOUT      (5*HZ)
109 
110 const char gfar_driver_version[] = "2.0";
111 
112 static int gfar_enet_open(struct net_device *dev);
113 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
114 static void gfar_reset_task(struct work_struct *work);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
118 				int alloc_cnt);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static noinline void gfar_update_link_state(struct gfar_private *priv);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *ofdev);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll_rx(struct napi_struct *napi, int budget);
134 static int gfar_poll_tx(struct napi_struct *napi, int budget);
135 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
141 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
142 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
143 static void gfar_halt_nodisable(struct gfar_private *priv);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146 				  const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148 
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152 
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154 			    dma_addr_t buf)
155 {
156 	u32 lstatus;
157 
158 	bdp->bufPtr = cpu_to_be32(buf);
159 
160 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162 		lstatus |= BD_LFLAG(RXBD_WRAP);
163 
164 	gfar_wmb();
165 
166 	bdp->lstatus = cpu_to_be32(lstatus);
167 }
168 
169 static void gfar_init_bds(struct net_device *ndev)
170 {
171 	struct gfar_private *priv = netdev_priv(ndev);
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	struct gfar_priv_tx_q *tx_queue = NULL;
174 	struct gfar_priv_rx_q *rx_queue = NULL;
175 	struct txbd8 *txbdp;
176 	u32 __iomem *rfbptr;
177 	int i, j;
178 
179 	for (i = 0; i < priv->num_tx_queues; i++) {
180 		tx_queue = priv->tx_queue[i];
181 		/* Initialize some variables in our dev structure */
182 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
184 		tx_queue->cur_tx = tx_queue->tx_bd_base;
185 		tx_queue->skb_curtx = 0;
186 		tx_queue->skb_dirtytx = 0;
187 
188 		/* Initialize Transmit Descriptor Ring */
189 		txbdp = tx_queue->tx_bd_base;
190 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
191 			txbdp->lstatus = 0;
192 			txbdp->bufPtr = 0;
193 			txbdp++;
194 		}
195 
196 		/* Set the last descriptor in the ring to indicate wrap */
197 		txbdp--;
198 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
199 					    TXBD_WRAP);
200 	}
201 
202 	rfbptr = &regs->rfbptr0;
203 	for (i = 0; i < priv->num_rx_queues; i++) {
204 		rx_queue = priv->rx_queue[i];
205 
206 		rx_queue->next_to_clean = 0;
207 		rx_queue->next_to_use = 0;
208 		rx_queue->next_to_alloc = 0;
209 
210 		/* make sure next_to_clean != next_to_use after this
211 		 * by leaving at least 1 unused descriptor
212 		 */
213 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
214 
215 		rx_queue->rfbptr = rfbptr;
216 		rfbptr += 2;
217 	}
218 }
219 
220 static int gfar_alloc_skb_resources(struct net_device *ndev)
221 {
222 	void *vaddr;
223 	dma_addr_t addr;
224 	int i, j;
225 	struct gfar_private *priv = netdev_priv(ndev);
226 	struct device *dev = priv->dev;
227 	struct gfar_priv_tx_q *tx_queue = NULL;
228 	struct gfar_priv_rx_q *rx_queue = NULL;
229 
230 	priv->total_tx_ring_size = 0;
231 	for (i = 0; i < priv->num_tx_queues; i++)
232 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
233 
234 	priv->total_rx_ring_size = 0;
235 	for (i = 0; i < priv->num_rx_queues; i++)
236 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
237 
238 	/* Allocate memory for the buffer descriptors */
239 	vaddr = dma_alloc_coherent(dev,
240 				   (priv->total_tx_ring_size *
241 				    sizeof(struct txbd8)) +
242 				   (priv->total_rx_ring_size *
243 				    sizeof(struct rxbd8)),
244 				   &addr, GFP_KERNEL);
245 	if (!vaddr)
246 		return -ENOMEM;
247 
248 	for (i = 0; i < priv->num_tx_queues; i++) {
249 		tx_queue = priv->tx_queue[i];
250 		tx_queue->tx_bd_base = vaddr;
251 		tx_queue->tx_bd_dma_base = addr;
252 		tx_queue->dev = ndev;
253 		/* enet DMA only understands physical addresses */
254 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
255 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
256 	}
257 
258 	/* Start the rx descriptor ring where the tx ring leaves off */
259 	for (i = 0; i < priv->num_rx_queues; i++) {
260 		rx_queue = priv->rx_queue[i];
261 		rx_queue->rx_bd_base = vaddr;
262 		rx_queue->rx_bd_dma_base = addr;
263 		rx_queue->ndev = ndev;
264 		rx_queue->dev = dev;
265 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
266 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
267 	}
268 
269 	/* Setup the skbuff rings */
270 	for (i = 0; i < priv->num_tx_queues; i++) {
271 		tx_queue = priv->tx_queue[i];
272 		tx_queue->tx_skbuff =
273 			kmalloc_array(tx_queue->tx_ring_size,
274 				      sizeof(*tx_queue->tx_skbuff),
275 				      GFP_KERNEL);
276 		if (!tx_queue->tx_skbuff)
277 			goto cleanup;
278 
279 		for (j = 0; j < tx_queue->tx_ring_size; j++)
280 			tx_queue->tx_skbuff[j] = NULL;
281 	}
282 
283 	for (i = 0; i < priv->num_rx_queues; i++) {
284 		rx_queue = priv->rx_queue[i];
285 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
286 					    sizeof(*rx_queue->rx_buff),
287 					    GFP_KERNEL);
288 		if (!rx_queue->rx_buff)
289 			goto cleanup;
290 	}
291 
292 	gfar_init_bds(ndev);
293 
294 	return 0;
295 
296 cleanup:
297 	free_skb_resources(priv);
298 	return -ENOMEM;
299 }
300 
301 static void gfar_init_tx_rx_base(struct gfar_private *priv)
302 {
303 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
304 	u32 __iomem *baddr;
305 	int i;
306 
307 	baddr = &regs->tbase0;
308 	for (i = 0; i < priv->num_tx_queues; i++) {
309 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
310 		baddr += 2;
311 	}
312 
313 	baddr = &regs->rbase0;
314 	for (i = 0; i < priv->num_rx_queues; i++) {
315 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
316 		baddr += 2;
317 	}
318 }
319 
320 static void gfar_init_rqprm(struct gfar_private *priv)
321 {
322 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
323 	u32 __iomem *baddr;
324 	int i;
325 
326 	baddr = &regs->rqprm0;
327 	for (i = 0; i < priv->num_rx_queues; i++) {
328 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
329 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
330 		baddr++;
331 	}
332 }
333 
334 static void gfar_rx_offload_en(struct gfar_private *priv)
335 {
336 	/* set this when rx hw offload (TOE) functions are being used */
337 	priv->uses_rxfcb = 0;
338 
339 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
340 		priv->uses_rxfcb = 1;
341 
342 	if (priv->hwts_rx_en || priv->rx_filer_enable)
343 		priv->uses_rxfcb = 1;
344 }
345 
346 static void gfar_mac_rx_config(struct gfar_private *priv)
347 {
348 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
349 	u32 rctrl = 0;
350 
351 	if (priv->rx_filer_enable) {
352 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
353 		/* Program the RIR0 reg with the required distribution */
354 		if (priv->poll_mode == GFAR_SQ_POLLING)
355 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
356 		else /* GFAR_MQ_POLLING */
357 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
358 	}
359 
360 	/* Restore PROMISC mode */
361 	if (priv->ndev->flags & IFF_PROMISC)
362 		rctrl |= RCTRL_PROM;
363 
364 	if (priv->ndev->features & NETIF_F_RXCSUM)
365 		rctrl |= RCTRL_CHECKSUMMING;
366 
367 	if (priv->extended_hash)
368 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
369 
370 	if (priv->padding) {
371 		rctrl &= ~RCTRL_PAL_MASK;
372 		rctrl |= RCTRL_PADDING(priv->padding);
373 	}
374 
375 	/* Enable HW time stamping if requested from user space */
376 	if (priv->hwts_rx_en)
377 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
378 
379 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
380 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
381 
382 	/* Clear the LFC bit */
383 	gfar_write(&regs->rctrl, rctrl);
384 	/* Init flow control threshold values */
385 	gfar_init_rqprm(priv);
386 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
387 	rctrl |= RCTRL_LFC;
388 
389 	/* Init rctrl based on our settings */
390 	gfar_write(&regs->rctrl, rctrl);
391 }
392 
393 static void gfar_mac_tx_config(struct gfar_private *priv)
394 {
395 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
396 	u32 tctrl = 0;
397 
398 	if (priv->ndev->features & NETIF_F_IP_CSUM)
399 		tctrl |= TCTRL_INIT_CSUM;
400 
401 	if (priv->prio_sched_en)
402 		tctrl |= TCTRL_TXSCHED_PRIO;
403 	else {
404 		tctrl |= TCTRL_TXSCHED_WRRS;
405 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407 	}
408 
409 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
410 		tctrl |= TCTRL_VLINS;
411 
412 	gfar_write(&regs->tctrl, tctrl);
413 }
414 
415 static void gfar_configure_coalescing(struct gfar_private *priv,
416 			       unsigned long tx_mask, unsigned long rx_mask)
417 {
418 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
419 	u32 __iomem *baddr;
420 
421 	if (priv->mode == MQ_MG_MODE) {
422 		int i = 0;
423 
424 		baddr = &regs->txic0;
425 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
426 			gfar_write(baddr + i, 0);
427 			if (likely(priv->tx_queue[i]->txcoalescing))
428 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
429 		}
430 
431 		baddr = &regs->rxic0;
432 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
433 			gfar_write(baddr + i, 0);
434 			if (likely(priv->rx_queue[i]->rxcoalescing))
435 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
436 		}
437 	} else {
438 		/* Backward compatible case -- even if we enable
439 		 * multiple queues, there's only single reg to program
440 		 */
441 		gfar_write(&regs->txic, 0);
442 		if (likely(priv->tx_queue[0]->txcoalescing))
443 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
444 
445 		gfar_write(&regs->rxic, 0);
446 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
447 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
448 	}
449 }
450 
451 void gfar_configure_coalescing_all(struct gfar_private *priv)
452 {
453 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
454 }
455 
456 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
457 {
458 	struct gfar_private *priv = netdev_priv(dev);
459 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
460 	unsigned long tx_packets = 0, tx_bytes = 0;
461 	int i;
462 
463 	for (i = 0; i < priv->num_rx_queues; i++) {
464 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
465 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
466 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
467 	}
468 
469 	dev->stats.rx_packets = rx_packets;
470 	dev->stats.rx_bytes   = rx_bytes;
471 	dev->stats.rx_dropped = rx_dropped;
472 
473 	for (i = 0; i < priv->num_tx_queues; i++) {
474 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
475 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
476 	}
477 
478 	dev->stats.tx_bytes   = tx_bytes;
479 	dev->stats.tx_packets = tx_packets;
480 
481 	return &dev->stats;
482 }
483 
484 static int gfar_set_mac_addr(struct net_device *dev, void *p)
485 {
486 	eth_mac_addr(dev, p);
487 
488 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
489 
490 	return 0;
491 }
492 
493 static const struct net_device_ops gfar_netdev_ops = {
494 	.ndo_open = gfar_enet_open,
495 	.ndo_start_xmit = gfar_start_xmit,
496 	.ndo_stop = gfar_close,
497 	.ndo_change_mtu = gfar_change_mtu,
498 	.ndo_set_features = gfar_set_features,
499 	.ndo_set_rx_mode = gfar_set_multi,
500 	.ndo_tx_timeout = gfar_timeout,
501 	.ndo_do_ioctl = gfar_ioctl,
502 	.ndo_get_stats = gfar_get_stats,
503 	.ndo_set_mac_address = gfar_set_mac_addr,
504 	.ndo_validate_addr = eth_validate_addr,
505 #ifdef CONFIG_NET_POLL_CONTROLLER
506 	.ndo_poll_controller = gfar_netpoll,
507 #endif
508 };
509 
510 static void gfar_ints_disable(struct gfar_private *priv)
511 {
512 	int i;
513 	for (i = 0; i < priv->num_grps; i++) {
514 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
515 		/* Clear IEVENT */
516 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
517 
518 		/* Initialize IMASK */
519 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
520 	}
521 }
522 
523 static void gfar_ints_enable(struct gfar_private *priv)
524 {
525 	int i;
526 	for (i = 0; i < priv->num_grps; i++) {
527 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
528 		/* Unmask the interrupts we look for */
529 		gfar_write(&regs->imask, IMASK_DEFAULT);
530 	}
531 }
532 
533 static int gfar_alloc_tx_queues(struct gfar_private *priv)
534 {
535 	int i;
536 
537 	for (i = 0; i < priv->num_tx_queues; i++) {
538 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
539 					    GFP_KERNEL);
540 		if (!priv->tx_queue[i])
541 			return -ENOMEM;
542 
543 		priv->tx_queue[i]->tx_skbuff = NULL;
544 		priv->tx_queue[i]->qindex = i;
545 		priv->tx_queue[i]->dev = priv->ndev;
546 		spin_lock_init(&(priv->tx_queue[i]->txlock));
547 	}
548 	return 0;
549 }
550 
551 static int gfar_alloc_rx_queues(struct gfar_private *priv)
552 {
553 	int i;
554 
555 	for (i = 0; i < priv->num_rx_queues; i++) {
556 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
557 					    GFP_KERNEL);
558 		if (!priv->rx_queue[i])
559 			return -ENOMEM;
560 
561 		priv->rx_queue[i]->qindex = i;
562 		priv->rx_queue[i]->ndev = priv->ndev;
563 	}
564 	return 0;
565 }
566 
567 static void gfar_free_tx_queues(struct gfar_private *priv)
568 {
569 	int i;
570 
571 	for (i = 0; i < priv->num_tx_queues; i++)
572 		kfree(priv->tx_queue[i]);
573 }
574 
575 static void gfar_free_rx_queues(struct gfar_private *priv)
576 {
577 	int i;
578 
579 	for (i = 0; i < priv->num_rx_queues; i++)
580 		kfree(priv->rx_queue[i]);
581 }
582 
583 static void unmap_group_regs(struct gfar_private *priv)
584 {
585 	int i;
586 
587 	for (i = 0; i < MAXGROUPS; i++)
588 		if (priv->gfargrp[i].regs)
589 			iounmap(priv->gfargrp[i].regs);
590 }
591 
592 static void free_gfar_dev(struct gfar_private *priv)
593 {
594 	int i, j;
595 
596 	for (i = 0; i < priv->num_grps; i++)
597 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
598 			kfree(priv->gfargrp[i].irqinfo[j]);
599 			priv->gfargrp[i].irqinfo[j] = NULL;
600 		}
601 
602 	free_netdev(priv->ndev);
603 }
604 
605 static void disable_napi(struct gfar_private *priv)
606 {
607 	int i;
608 
609 	for (i = 0; i < priv->num_grps; i++) {
610 		napi_disable(&priv->gfargrp[i].napi_rx);
611 		napi_disable(&priv->gfargrp[i].napi_tx);
612 	}
613 }
614 
615 static void enable_napi(struct gfar_private *priv)
616 {
617 	int i;
618 
619 	for (i = 0; i < priv->num_grps; i++) {
620 		napi_enable(&priv->gfargrp[i].napi_rx);
621 		napi_enable(&priv->gfargrp[i].napi_tx);
622 	}
623 }
624 
625 static int gfar_parse_group(struct device_node *np,
626 			    struct gfar_private *priv, const char *model)
627 {
628 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
629 	int i;
630 
631 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
632 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
633 					  GFP_KERNEL);
634 		if (!grp->irqinfo[i])
635 			return -ENOMEM;
636 	}
637 
638 	grp->regs = of_iomap(np, 0);
639 	if (!grp->regs)
640 		return -ENOMEM;
641 
642 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
643 
644 	/* If we aren't the FEC we have multiple interrupts */
645 	if (model && strcasecmp(model, "FEC")) {
646 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
647 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
648 		if (!gfar_irq(grp, TX)->irq ||
649 		    !gfar_irq(grp, RX)->irq ||
650 		    !gfar_irq(grp, ER)->irq)
651 			return -EINVAL;
652 	}
653 
654 	grp->priv = priv;
655 	spin_lock_init(&grp->grplock);
656 	if (priv->mode == MQ_MG_MODE) {
657 		u32 rxq_mask, txq_mask;
658 		int ret;
659 
660 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
661 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
662 
663 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
664 		if (!ret) {
665 			grp->rx_bit_map = rxq_mask ?
666 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
667 		}
668 
669 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
670 		if (!ret) {
671 			grp->tx_bit_map = txq_mask ?
672 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
673 		}
674 
675 		if (priv->poll_mode == GFAR_SQ_POLLING) {
676 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
677 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
678 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
679 		}
680 	} else {
681 		grp->rx_bit_map = 0xFF;
682 		grp->tx_bit_map = 0xFF;
683 	}
684 
685 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
686 	 * right to left, so we need to revert the 8 bits to get the q index
687 	 */
688 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
689 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
690 
691 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
692 	 * also assign queues to groups
693 	 */
694 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
695 		if (!grp->rx_queue)
696 			grp->rx_queue = priv->rx_queue[i];
697 		grp->num_rx_queues++;
698 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
699 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
700 		priv->rx_queue[i]->grp = grp;
701 	}
702 
703 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
704 		if (!grp->tx_queue)
705 			grp->tx_queue = priv->tx_queue[i];
706 		grp->num_tx_queues++;
707 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
708 		priv->tqueue |= (TQUEUE_EN0 >> i);
709 		priv->tx_queue[i]->grp = grp;
710 	}
711 
712 	priv->num_grps++;
713 
714 	return 0;
715 }
716 
717 static int gfar_of_group_count(struct device_node *np)
718 {
719 	struct device_node *child;
720 	int num = 0;
721 
722 	for_each_available_child_of_node(np, child)
723 		if (!of_node_cmp(child->name, "queue-group"))
724 			num++;
725 
726 	return num;
727 }
728 
729 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
730 {
731 	const char *model;
732 	const char *ctype;
733 	const void *mac_addr;
734 	int err = 0, i;
735 	struct net_device *dev = NULL;
736 	struct gfar_private *priv = NULL;
737 	struct device_node *np = ofdev->dev.of_node;
738 	struct device_node *child = NULL;
739 	u32 stash_len = 0;
740 	u32 stash_idx = 0;
741 	unsigned int num_tx_qs, num_rx_qs;
742 	unsigned short mode, poll_mode;
743 
744 	if (!np)
745 		return -ENODEV;
746 
747 	if (of_device_is_compatible(np, "fsl,etsec2")) {
748 		mode = MQ_MG_MODE;
749 		poll_mode = GFAR_SQ_POLLING;
750 	} else {
751 		mode = SQ_SG_MODE;
752 		poll_mode = GFAR_SQ_POLLING;
753 	}
754 
755 	if (mode == SQ_SG_MODE) {
756 		num_tx_qs = 1;
757 		num_rx_qs = 1;
758 	} else { /* MQ_MG_MODE */
759 		/* get the actual number of supported groups */
760 		unsigned int num_grps = gfar_of_group_count(np);
761 
762 		if (num_grps == 0 || num_grps > MAXGROUPS) {
763 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
764 				num_grps);
765 			pr_err("Cannot do alloc_etherdev, aborting\n");
766 			return -EINVAL;
767 		}
768 
769 		if (poll_mode == GFAR_SQ_POLLING) {
770 			num_tx_qs = num_grps; /* one txq per int group */
771 			num_rx_qs = num_grps; /* one rxq per int group */
772 		} else { /* GFAR_MQ_POLLING */
773 			u32 tx_queues, rx_queues;
774 			int ret;
775 
776 			/* parse the num of HW tx and rx queues */
777 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
778 						   &tx_queues);
779 			num_tx_qs = ret ? 1 : tx_queues;
780 
781 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
782 						   &rx_queues);
783 			num_rx_qs = ret ? 1 : rx_queues;
784 		}
785 	}
786 
787 	if (num_tx_qs > MAX_TX_QS) {
788 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
789 		       num_tx_qs, MAX_TX_QS);
790 		pr_err("Cannot do alloc_etherdev, aborting\n");
791 		return -EINVAL;
792 	}
793 
794 	if (num_rx_qs > MAX_RX_QS) {
795 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
796 		       num_rx_qs, MAX_RX_QS);
797 		pr_err("Cannot do alloc_etherdev, aborting\n");
798 		return -EINVAL;
799 	}
800 
801 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
802 	dev = *pdev;
803 	if (NULL == dev)
804 		return -ENOMEM;
805 
806 	priv = netdev_priv(dev);
807 	priv->ndev = dev;
808 
809 	priv->mode = mode;
810 	priv->poll_mode = poll_mode;
811 
812 	priv->num_tx_queues = num_tx_qs;
813 	netif_set_real_num_rx_queues(dev, num_rx_qs);
814 	priv->num_rx_queues = num_rx_qs;
815 
816 	err = gfar_alloc_tx_queues(priv);
817 	if (err)
818 		goto tx_alloc_failed;
819 
820 	err = gfar_alloc_rx_queues(priv);
821 	if (err)
822 		goto rx_alloc_failed;
823 
824 	err = of_property_read_string(np, "model", &model);
825 	if (err) {
826 		pr_err("Device model property missing, aborting\n");
827 		goto rx_alloc_failed;
828 	}
829 
830 	/* Init Rx queue filer rule set linked list */
831 	INIT_LIST_HEAD(&priv->rx_list.list);
832 	priv->rx_list.count = 0;
833 	mutex_init(&priv->rx_queue_access);
834 
835 	for (i = 0; i < MAXGROUPS; i++)
836 		priv->gfargrp[i].regs = NULL;
837 
838 	/* Parse and initialize group specific information */
839 	if (priv->mode == MQ_MG_MODE) {
840 		for_each_available_child_of_node(np, child) {
841 			if (of_node_cmp(child->name, "queue-group"))
842 				continue;
843 
844 			err = gfar_parse_group(child, priv, model);
845 			if (err)
846 				goto err_grp_init;
847 		}
848 	} else { /* SQ_SG_MODE */
849 		err = gfar_parse_group(np, priv, model);
850 		if (err)
851 			goto err_grp_init;
852 	}
853 
854 	if (of_property_read_bool(np, "bd-stash")) {
855 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
856 		priv->bd_stash_en = 1;
857 	}
858 
859 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
860 
861 	if (err == 0)
862 		priv->rx_stash_size = stash_len;
863 
864 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
865 
866 	if (err == 0)
867 		priv->rx_stash_index = stash_idx;
868 
869 	if (stash_len || stash_idx)
870 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
871 
872 	mac_addr = of_get_mac_address(np);
873 
874 	if (mac_addr)
875 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
876 
877 	if (model && !strcasecmp(model, "TSEC"))
878 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
879 				     FSL_GIANFAR_DEV_HAS_COALESCE |
880 				     FSL_GIANFAR_DEV_HAS_RMON |
881 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
882 
883 	if (model && !strcasecmp(model, "eTSEC"))
884 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
885 				     FSL_GIANFAR_DEV_HAS_COALESCE |
886 				     FSL_GIANFAR_DEV_HAS_RMON |
887 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
888 				     FSL_GIANFAR_DEV_HAS_CSUM |
889 				     FSL_GIANFAR_DEV_HAS_VLAN |
890 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
891 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
892 				     FSL_GIANFAR_DEV_HAS_TIMER |
893 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
894 
895 	err = of_property_read_string(np, "phy-connection-type", &ctype);
896 
897 	/* We only care about rgmii-id.  The rest are autodetected */
898 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
899 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
900 	else
901 		priv->interface = PHY_INTERFACE_MODE_MII;
902 
903 	if (of_find_property(np, "fsl,magic-packet", NULL))
904 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
905 
906 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
907 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
908 
909 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
910 
911 	/* In the case of a fixed PHY, the DT node associated
912 	 * to the PHY is the Ethernet MAC DT node.
913 	 */
914 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
915 		err = of_phy_register_fixed_link(np);
916 		if (err)
917 			goto err_grp_init;
918 
919 		priv->phy_node = of_node_get(np);
920 	}
921 
922 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
923 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
924 
925 	return 0;
926 
927 err_grp_init:
928 	unmap_group_regs(priv);
929 rx_alloc_failed:
930 	gfar_free_rx_queues(priv);
931 tx_alloc_failed:
932 	gfar_free_tx_queues(priv);
933 	free_gfar_dev(priv);
934 	return err;
935 }
936 
937 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
938 {
939 	struct hwtstamp_config config;
940 	struct gfar_private *priv = netdev_priv(netdev);
941 
942 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
943 		return -EFAULT;
944 
945 	/* reserved for future extensions */
946 	if (config.flags)
947 		return -EINVAL;
948 
949 	switch (config.tx_type) {
950 	case HWTSTAMP_TX_OFF:
951 		priv->hwts_tx_en = 0;
952 		break;
953 	case HWTSTAMP_TX_ON:
954 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
955 			return -ERANGE;
956 		priv->hwts_tx_en = 1;
957 		break;
958 	default:
959 		return -ERANGE;
960 	}
961 
962 	switch (config.rx_filter) {
963 	case HWTSTAMP_FILTER_NONE:
964 		if (priv->hwts_rx_en) {
965 			priv->hwts_rx_en = 0;
966 			reset_gfar(netdev);
967 		}
968 		break;
969 	default:
970 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
971 			return -ERANGE;
972 		if (!priv->hwts_rx_en) {
973 			priv->hwts_rx_en = 1;
974 			reset_gfar(netdev);
975 		}
976 		config.rx_filter = HWTSTAMP_FILTER_ALL;
977 		break;
978 	}
979 
980 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
981 		-EFAULT : 0;
982 }
983 
984 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
985 {
986 	struct hwtstamp_config config;
987 	struct gfar_private *priv = netdev_priv(netdev);
988 
989 	config.flags = 0;
990 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
991 	config.rx_filter = (priv->hwts_rx_en ?
992 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
993 
994 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
995 		-EFAULT : 0;
996 }
997 
998 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
999 {
1000 	struct phy_device *phydev = dev->phydev;
1001 
1002 	if (!netif_running(dev))
1003 		return -EINVAL;
1004 
1005 	if (cmd == SIOCSHWTSTAMP)
1006 		return gfar_hwtstamp_set(dev, rq);
1007 	if (cmd == SIOCGHWTSTAMP)
1008 		return gfar_hwtstamp_get(dev, rq);
1009 
1010 	if (!phydev)
1011 		return -ENODEV;
1012 
1013 	return phy_mii_ioctl(phydev, rq, cmd);
1014 }
1015 
1016 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1017 				   u32 class)
1018 {
1019 	u32 rqfpr = FPR_FILER_MASK;
1020 	u32 rqfcr = 0x0;
1021 
1022 	rqfar--;
1023 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1024 	priv->ftp_rqfpr[rqfar] = rqfpr;
1025 	priv->ftp_rqfcr[rqfar] = rqfcr;
1026 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1027 
1028 	rqfar--;
1029 	rqfcr = RQFCR_CMP_NOMATCH;
1030 	priv->ftp_rqfpr[rqfar] = rqfpr;
1031 	priv->ftp_rqfcr[rqfar] = rqfcr;
1032 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1033 
1034 	rqfar--;
1035 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1036 	rqfpr = class;
1037 	priv->ftp_rqfcr[rqfar] = rqfcr;
1038 	priv->ftp_rqfpr[rqfar] = rqfpr;
1039 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1040 
1041 	rqfar--;
1042 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1043 	rqfpr = class;
1044 	priv->ftp_rqfcr[rqfar] = rqfcr;
1045 	priv->ftp_rqfpr[rqfar] = rqfpr;
1046 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1047 
1048 	return rqfar;
1049 }
1050 
1051 static void gfar_init_filer_table(struct gfar_private *priv)
1052 {
1053 	int i = 0x0;
1054 	u32 rqfar = MAX_FILER_IDX;
1055 	u32 rqfcr = 0x0;
1056 	u32 rqfpr = FPR_FILER_MASK;
1057 
1058 	/* Default rule */
1059 	rqfcr = RQFCR_CMP_MATCH;
1060 	priv->ftp_rqfcr[rqfar] = rqfcr;
1061 	priv->ftp_rqfpr[rqfar] = rqfpr;
1062 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1063 
1064 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1065 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1066 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1067 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1070 
1071 	/* cur_filer_idx indicated the first non-masked rule */
1072 	priv->cur_filer_idx = rqfar;
1073 
1074 	/* Rest are masked rules */
1075 	rqfcr = RQFCR_CMP_NOMATCH;
1076 	for (i = 0; i < rqfar; i++) {
1077 		priv->ftp_rqfcr[i] = rqfcr;
1078 		priv->ftp_rqfpr[i] = rqfpr;
1079 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1080 	}
1081 }
1082 
1083 #ifdef CONFIG_PPC
1084 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1085 {
1086 	unsigned int pvr = mfspr(SPRN_PVR);
1087 	unsigned int svr = mfspr(SPRN_SVR);
1088 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1089 	unsigned int rev = svr & 0xffff;
1090 
1091 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1092 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1093 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1094 		priv->errata |= GFAR_ERRATA_74;
1095 
1096 	/* MPC8313 and MPC837x all rev */
1097 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1098 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1099 		priv->errata |= GFAR_ERRATA_76;
1100 
1101 	/* MPC8313 Rev < 2.0 */
1102 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1103 		priv->errata |= GFAR_ERRATA_12;
1104 }
1105 
1106 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1107 {
1108 	unsigned int svr = mfspr(SPRN_SVR);
1109 
1110 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1111 		priv->errata |= GFAR_ERRATA_12;
1112 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1113 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1114 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1115 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1116 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1117 }
1118 #endif
1119 
1120 static void gfar_detect_errata(struct gfar_private *priv)
1121 {
1122 	struct device *dev = &priv->ofdev->dev;
1123 
1124 	/* no plans to fix */
1125 	priv->errata |= GFAR_ERRATA_A002;
1126 
1127 #ifdef CONFIG_PPC
1128 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1129 		__gfar_detect_errata_85xx(priv);
1130 	else /* non-mpc85xx parts, i.e. e300 core based */
1131 		__gfar_detect_errata_83xx(priv);
1132 #endif
1133 
1134 	if (priv->errata)
1135 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1136 			 priv->errata);
1137 }
1138 
1139 void gfar_mac_reset(struct gfar_private *priv)
1140 {
1141 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1142 	u32 tempval;
1143 
1144 	/* Reset MAC layer */
1145 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1146 
1147 	/* We need to delay at least 3 TX clocks */
1148 	udelay(3);
1149 
1150 	/* the soft reset bit is not self-resetting, so we need to
1151 	 * clear it before resuming normal operation
1152 	 */
1153 	gfar_write(&regs->maccfg1, 0);
1154 
1155 	udelay(3);
1156 
1157 	gfar_rx_offload_en(priv);
1158 
1159 	/* Initialize the max receive frame/buffer lengths */
1160 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1161 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1162 
1163 	/* Initialize the Minimum Frame Length Register */
1164 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1165 
1166 	/* Initialize MACCFG2. */
1167 	tempval = MACCFG2_INIT_SETTINGS;
1168 
1169 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1170 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1171 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1172 	 */
1173 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1174 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1175 
1176 	gfar_write(&regs->maccfg2, tempval);
1177 
1178 	/* Clear mac addr hash registers */
1179 	gfar_write(&regs->igaddr0, 0);
1180 	gfar_write(&regs->igaddr1, 0);
1181 	gfar_write(&regs->igaddr2, 0);
1182 	gfar_write(&regs->igaddr3, 0);
1183 	gfar_write(&regs->igaddr4, 0);
1184 	gfar_write(&regs->igaddr5, 0);
1185 	gfar_write(&regs->igaddr6, 0);
1186 	gfar_write(&regs->igaddr7, 0);
1187 
1188 	gfar_write(&regs->gaddr0, 0);
1189 	gfar_write(&regs->gaddr1, 0);
1190 	gfar_write(&regs->gaddr2, 0);
1191 	gfar_write(&regs->gaddr3, 0);
1192 	gfar_write(&regs->gaddr4, 0);
1193 	gfar_write(&regs->gaddr5, 0);
1194 	gfar_write(&regs->gaddr6, 0);
1195 	gfar_write(&regs->gaddr7, 0);
1196 
1197 	if (priv->extended_hash)
1198 		gfar_clear_exact_match(priv->ndev);
1199 
1200 	gfar_mac_rx_config(priv);
1201 
1202 	gfar_mac_tx_config(priv);
1203 
1204 	gfar_set_mac_address(priv->ndev);
1205 
1206 	gfar_set_multi(priv->ndev);
1207 
1208 	/* clear ievent and imask before configuring coalescing */
1209 	gfar_ints_disable(priv);
1210 
1211 	/* Configure the coalescing support */
1212 	gfar_configure_coalescing_all(priv);
1213 }
1214 
1215 static void gfar_hw_init(struct gfar_private *priv)
1216 {
1217 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1218 	u32 attrs;
1219 
1220 	/* Stop the DMA engine now, in case it was running before
1221 	 * (The firmware could have used it, and left it running).
1222 	 */
1223 	gfar_halt(priv);
1224 
1225 	gfar_mac_reset(priv);
1226 
1227 	/* Zero out the rmon mib registers if it has them */
1228 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1229 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1230 
1231 		/* Mask off the CAM interrupts */
1232 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1233 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1234 	}
1235 
1236 	/* Initialize ECNTRL */
1237 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1238 
1239 	/* Set the extraction length and index */
1240 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1241 		ATTRELI_EI(priv->rx_stash_index);
1242 
1243 	gfar_write(&regs->attreli, attrs);
1244 
1245 	/* Start with defaults, and add stashing
1246 	 * depending on driver parameters
1247 	 */
1248 	attrs = ATTR_INIT_SETTINGS;
1249 
1250 	if (priv->bd_stash_en)
1251 		attrs |= ATTR_BDSTASH;
1252 
1253 	if (priv->rx_stash_size != 0)
1254 		attrs |= ATTR_BUFSTASH;
1255 
1256 	gfar_write(&regs->attr, attrs);
1257 
1258 	/* FIFO configs */
1259 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1260 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1261 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1262 
1263 	/* Program the interrupt steering regs, only for MG devices */
1264 	if (priv->num_grps > 1)
1265 		gfar_write_isrg(priv);
1266 }
1267 
1268 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1269 {
1270 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1271 
1272 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1273 		priv->extended_hash = 1;
1274 		priv->hash_width = 9;
1275 
1276 		priv->hash_regs[0] = &regs->igaddr0;
1277 		priv->hash_regs[1] = &regs->igaddr1;
1278 		priv->hash_regs[2] = &regs->igaddr2;
1279 		priv->hash_regs[3] = &regs->igaddr3;
1280 		priv->hash_regs[4] = &regs->igaddr4;
1281 		priv->hash_regs[5] = &regs->igaddr5;
1282 		priv->hash_regs[6] = &regs->igaddr6;
1283 		priv->hash_regs[7] = &regs->igaddr7;
1284 		priv->hash_regs[8] = &regs->gaddr0;
1285 		priv->hash_regs[9] = &regs->gaddr1;
1286 		priv->hash_regs[10] = &regs->gaddr2;
1287 		priv->hash_regs[11] = &regs->gaddr3;
1288 		priv->hash_regs[12] = &regs->gaddr4;
1289 		priv->hash_regs[13] = &regs->gaddr5;
1290 		priv->hash_regs[14] = &regs->gaddr6;
1291 		priv->hash_regs[15] = &regs->gaddr7;
1292 
1293 	} else {
1294 		priv->extended_hash = 0;
1295 		priv->hash_width = 8;
1296 
1297 		priv->hash_regs[0] = &regs->gaddr0;
1298 		priv->hash_regs[1] = &regs->gaddr1;
1299 		priv->hash_regs[2] = &regs->gaddr2;
1300 		priv->hash_regs[3] = &regs->gaddr3;
1301 		priv->hash_regs[4] = &regs->gaddr4;
1302 		priv->hash_regs[5] = &regs->gaddr5;
1303 		priv->hash_regs[6] = &regs->gaddr6;
1304 		priv->hash_regs[7] = &regs->gaddr7;
1305 	}
1306 }
1307 
1308 /* Set up the ethernet device structure, private data,
1309  * and anything else we need before we start
1310  */
1311 static int gfar_probe(struct platform_device *ofdev)
1312 {
1313 	struct device_node *np = ofdev->dev.of_node;
1314 	struct net_device *dev = NULL;
1315 	struct gfar_private *priv = NULL;
1316 	int err = 0, i;
1317 
1318 	err = gfar_of_init(ofdev, &dev);
1319 
1320 	if (err)
1321 		return err;
1322 
1323 	priv = netdev_priv(dev);
1324 	priv->ndev = dev;
1325 	priv->ofdev = ofdev;
1326 	priv->dev = &ofdev->dev;
1327 	SET_NETDEV_DEV(dev, &ofdev->dev);
1328 
1329 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1330 
1331 	platform_set_drvdata(ofdev, priv);
1332 
1333 	gfar_detect_errata(priv);
1334 
1335 	/* Set the dev->base_addr to the gfar reg region */
1336 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1337 
1338 	/* Fill in the dev structure */
1339 	dev->watchdog_timeo = TX_TIMEOUT;
1340 	/* MTU range: 50 - 9586 */
1341 	dev->mtu = 1500;
1342 	dev->min_mtu = 50;
1343 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1344 	dev->netdev_ops = &gfar_netdev_ops;
1345 	dev->ethtool_ops = &gfar_ethtool_ops;
1346 
1347 	/* Register for napi ...We are registering NAPI for each grp */
1348 	for (i = 0; i < priv->num_grps; i++) {
1349 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1350 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1351 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1352 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1353 				       gfar_poll_tx_sq, 2);
1354 		} else {
1355 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1356 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1357 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1358 				       gfar_poll_tx, 2);
1359 		}
1360 	}
1361 
1362 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1363 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1364 				   NETIF_F_RXCSUM;
1365 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1366 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1367 	}
1368 
1369 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1370 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1371 				    NETIF_F_HW_VLAN_CTAG_RX;
1372 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1373 	}
1374 
1375 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1376 
1377 	gfar_init_addr_hash_table(priv);
1378 
1379 	/* Insert receive time stamps into padding alignment bytes, and
1380 	 * plus 2 bytes padding to ensure the cpu alignment.
1381 	 */
1382 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383 		priv->padding = 8 + DEFAULT_PADDING;
1384 
1385 	if (dev->features & NETIF_F_IP_CSUM ||
1386 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387 		dev->needed_headroom = GMAC_FCB_LEN;
1388 
1389 	/* Initializing some of the rx/tx queue level parameters */
1390 	for (i = 0; i < priv->num_tx_queues; i++) {
1391 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1392 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1393 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1394 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1395 	}
1396 
1397 	for (i = 0; i < priv->num_rx_queues; i++) {
1398 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1399 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1400 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1401 	}
1402 
1403 	/* Always enable rx filer if available */
1404 	priv->rx_filer_enable =
1405 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1406 	/* Enable most messages by default */
1407 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1408 	/* use pritority h/w tx queue scheduling for single queue devices */
1409 	if (priv->num_tx_queues == 1)
1410 		priv->prio_sched_en = 1;
1411 
1412 	set_bit(GFAR_DOWN, &priv->state);
1413 
1414 	gfar_hw_init(priv);
1415 
1416 	/* Carrier starts down, phylib will bring it up */
1417 	netif_carrier_off(dev);
1418 
1419 	err = register_netdev(dev);
1420 
1421 	if (err) {
1422 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1423 		goto register_fail;
1424 	}
1425 
1426 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1427 		priv->wol_supported |= GFAR_WOL_MAGIC;
1428 
1429 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1430 	    priv->rx_filer_enable)
1431 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1432 
1433 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1434 
1435 	/* fill out IRQ number and name fields */
1436 	for (i = 0; i < priv->num_grps; i++) {
1437 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1438 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1439 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1440 				dev->name, "_g", '0' + i, "_tx");
1441 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1442 				dev->name, "_g", '0' + i, "_rx");
1443 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1444 				dev->name, "_g", '0' + i, "_er");
1445 		} else
1446 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1447 	}
1448 
1449 	/* Initialize the filer table */
1450 	gfar_init_filer_table(priv);
1451 
1452 	/* Print out the device info */
1453 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1454 
1455 	/* Even more device info helps when determining which kernel
1456 	 * provided which set of benchmarks.
1457 	 */
1458 	netdev_info(dev, "Running with NAPI enabled\n");
1459 	for (i = 0; i < priv->num_rx_queues; i++)
1460 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1461 			    i, priv->rx_queue[i]->rx_ring_size);
1462 	for (i = 0; i < priv->num_tx_queues; i++)
1463 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1464 			    i, priv->tx_queue[i]->tx_ring_size);
1465 
1466 	return 0;
1467 
1468 register_fail:
1469 	if (of_phy_is_fixed_link(np))
1470 		of_phy_deregister_fixed_link(np);
1471 	unmap_group_regs(priv);
1472 	gfar_free_rx_queues(priv);
1473 	gfar_free_tx_queues(priv);
1474 	of_node_put(priv->phy_node);
1475 	of_node_put(priv->tbi_node);
1476 	free_gfar_dev(priv);
1477 	return err;
1478 }
1479 
1480 static int gfar_remove(struct platform_device *ofdev)
1481 {
1482 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1483 	struct device_node *np = ofdev->dev.of_node;
1484 
1485 	of_node_put(priv->phy_node);
1486 	of_node_put(priv->tbi_node);
1487 
1488 	unregister_netdev(priv->ndev);
1489 
1490 	if (of_phy_is_fixed_link(np))
1491 		of_phy_deregister_fixed_link(np);
1492 
1493 	unmap_group_regs(priv);
1494 	gfar_free_rx_queues(priv);
1495 	gfar_free_tx_queues(priv);
1496 	free_gfar_dev(priv);
1497 
1498 	return 0;
1499 }
1500 
1501 #ifdef CONFIG_PM
1502 
1503 static void __gfar_filer_disable(struct gfar_private *priv)
1504 {
1505 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506 	u32 temp;
1507 
1508 	temp = gfar_read(&regs->rctrl);
1509 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1510 	gfar_write(&regs->rctrl, temp);
1511 }
1512 
1513 static void __gfar_filer_enable(struct gfar_private *priv)
1514 {
1515 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516 	u32 temp;
1517 
1518 	temp = gfar_read(&regs->rctrl);
1519 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1520 	gfar_write(&regs->rctrl, temp);
1521 }
1522 
1523 /* Filer rules implementing wol capabilities */
1524 static void gfar_filer_config_wol(struct gfar_private *priv)
1525 {
1526 	unsigned int i;
1527 	u32 rqfcr;
1528 
1529 	__gfar_filer_disable(priv);
1530 
1531 	/* clear the filer table, reject any packet by default */
1532 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1533 	for (i = 0; i <= MAX_FILER_IDX; i++)
1534 		gfar_write_filer(priv, i, rqfcr, 0);
1535 
1536 	i = 0;
1537 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1538 		/* unicast packet, accept it */
1539 		struct net_device *ndev = priv->ndev;
1540 		/* get the default rx queue index */
1541 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1542 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1543 				    (ndev->dev_addr[1] << 8) |
1544 				     ndev->dev_addr[2];
1545 
1546 		rqfcr = (qindex << 10) | RQFCR_AND |
1547 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1548 
1549 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1550 
1551 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1552 				(ndev->dev_addr[4] << 8) |
1553 				 ndev->dev_addr[5];
1554 		rqfcr = (qindex << 10) | RQFCR_GPI |
1555 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1556 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1557 	}
1558 
1559 	__gfar_filer_enable(priv);
1560 }
1561 
1562 static void gfar_filer_restore_table(struct gfar_private *priv)
1563 {
1564 	u32 rqfcr, rqfpr;
1565 	unsigned int i;
1566 
1567 	__gfar_filer_disable(priv);
1568 
1569 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1570 		rqfcr = priv->ftp_rqfcr[i];
1571 		rqfpr = priv->ftp_rqfpr[i];
1572 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1573 	}
1574 
1575 	__gfar_filer_enable(priv);
1576 }
1577 
1578 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1579 static void gfar_start_wol_filer(struct gfar_private *priv)
1580 {
1581 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1582 	u32 tempval;
1583 	int i = 0;
1584 
1585 	/* Enable Rx hw queues */
1586 	gfar_write(&regs->rqueue, priv->rqueue);
1587 
1588 	/* Initialize DMACTRL to have WWR and WOP */
1589 	tempval = gfar_read(&regs->dmactrl);
1590 	tempval |= DMACTRL_INIT_SETTINGS;
1591 	gfar_write(&regs->dmactrl, tempval);
1592 
1593 	/* Make sure we aren't stopped */
1594 	tempval = gfar_read(&regs->dmactrl);
1595 	tempval &= ~DMACTRL_GRS;
1596 	gfar_write(&regs->dmactrl, tempval);
1597 
1598 	for (i = 0; i < priv->num_grps; i++) {
1599 		regs = priv->gfargrp[i].regs;
1600 		/* Clear RHLT, so that the DMA starts polling now */
1601 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1602 		/* enable the Filer General Purpose Interrupt */
1603 		gfar_write(&regs->imask, IMASK_FGPI);
1604 	}
1605 
1606 	/* Enable Rx DMA */
1607 	tempval = gfar_read(&regs->maccfg1);
1608 	tempval |= MACCFG1_RX_EN;
1609 	gfar_write(&regs->maccfg1, tempval);
1610 }
1611 
1612 static int gfar_suspend(struct device *dev)
1613 {
1614 	struct gfar_private *priv = dev_get_drvdata(dev);
1615 	struct net_device *ndev = priv->ndev;
1616 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1617 	u32 tempval;
1618 	u16 wol = priv->wol_opts;
1619 
1620 	if (!netif_running(ndev))
1621 		return 0;
1622 
1623 	disable_napi(priv);
1624 	netif_tx_lock(ndev);
1625 	netif_device_detach(ndev);
1626 	netif_tx_unlock(ndev);
1627 
1628 	gfar_halt(priv);
1629 
1630 	if (wol & GFAR_WOL_MAGIC) {
1631 		/* Enable interrupt on Magic Packet */
1632 		gfar_write(&regs->imask, IMASK_MAG);
1633 
1634 		/* Enable Magic Packet mode */
1635 		tempval = gfar_read(&regs->maccfg2);
1636 		tempval |= MACCFG2_MPEN;
1637 		gfar_write(&regs->maccfg2, tempval);
1638 
1639 		/* re-enable the Rx block */
1640 		tempval = gfar_read(&regs->maccfg1);
1641 		tempval |= MACCFG1_RX_EN;
1642 		gfar_write(&regs->maccfg1, tempval);
1643 
1644 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1645 		gfar_filer_config_wol(priv);
1646 		gfar_start_wol_filer(priv);
1647 
1648 	} else {
1649 		phy_stop(ndev->phydev);
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static int gfar_resume(struct device *dev)
1656 {
1657 	struct gfar_private *priv = dev_get_drvdata(dev);
1658 	struct net_device *ndev = priv->ndev;
1659 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1660 	u32 tempval;
1661 	u16 wol = priv->wol_opts;
1662 
1663 	if (!netif_running(ndev))
1664 		return 0;
1665 
1666 	if (wol & GFAR_WOL_MAGIC) {
1667 		/* Disable Magic Packet mode */
1668 		tempval = gfar_read(&regs->maccfg2);
1669 		tempval &= ~MACCFG2_MPEN;
1670 		gfar_write(&regs->maccfg2, tempval);
1671 
1672 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1673 		/* need to stop rx only, tx is already down */
1674 		gfar_halt(priv);
1675 		gfar_filer_restore_table(priv);
1676 
1677 	} else {
1678 		phy_start(ndev->phydev);
1679 	}
1680 
1681 	gfar_start(priv);
1682 
1683 	netif_device_attach(ndev);
1684 	enable_napi(priv);
1685 
1686 	return 0;
1687 }
1688 
1689 static int gfar_restore(struct device *dev)
1690 {
1691 	struct gfar_private *priv = dev_get_drvdata(dev);
1692 	struct net_device *ndev = priv->ndev;
1693 
1694 	if (!netif_running(ndev)) {
1695 		netif_device_attach(ndev);
1696 
1697 		return 0;
1698 	}
1699 
1700 	gfar_init_bds(ndev);
1701 
1702 	gfar_mac_reset(priv);
1703 
1704 	gfar_init_tx_rx_base(priv);
1705 
1706 	gfar_start(priv);
1707 
1708 	priv->oldlink = 0;
1709 	priv->oldspeed = 0;
1710 	priv->oldduplex = -1;
1711 
1712 	if (ndev->phydev)
1713 		phy_start(ndev->phydev);
1714 
1715 	netif_device_attach(ndev);
1716 	enable_napi(priv);
1717 
1718 	return 0;
1719 }
1720 
1721 static const struct dev_pm_ops gfar_pm_ops = {
1722 	.suspend = gfar_suspend,
1723 	.resume = gfar_resume,
1724 	.freeze = gfar_suspend,
1725 	.thaw = gfar_resume,
1726 	.restore = gfar_restore,
1727 };
1728 
1729 #define GFAR_PM_OPS (&gfar_pm_ops)
1730 
1731 #else
1732 
1733 #define GFAR_PM_OPS NULL
1734 
1735 #endif
1736 
1737 /* Reads the controller's registers to determine what interface
1738  * connects it to the PHY.
1739  */
1740 static phy_interface_t gfar_get_interface(struct net_device *dev)
1741 {
1742 	struct gfar_private *priv = netdev_priv(dev);
1743 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1744 	u32 ecntrl;
1745 
1746 	ecntrl = gfar_read(&regs->ecntrl);
1747 
1748 	if (ecntrl & ECNTRL_SGMII_MODE)
1749 		return PHY_INTERFACE_MODE_SGMII;
1750 
1751 	if (ecntrl & ECNTRL_TBI_MODE) {
1752 		if (ecntrl & ECNTRL_REDUCED_MODE)
1753 			return PHY_INTERFACE_MODE_RTBI;
1754 		else
1755 			return PHY_INTERFACE_MODE_TBI;
1756 	}
1757 
1758 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1759 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1760 			return PHY_INTERFACE_MODE_RMII;
1761 		}
1762 		else {
1763 			phy_interface_t interface = priv->interface;
1764 
1765 			/* This isn't autodetected right now, so it must
1766 			 * be set by the device tree or platform code.
1767 			 */
1768 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1769 				return PHY_INTERFACE_MODE_RGMII_ID;
1770 
1771 			return PHY_INTERFACE_MODE_RGMII;
1772 		}
1773 	}
1774 
1775 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1776 		return PHY_INTERFACE_MODE_GMII;
1777 
1778 	return PHY_INTERFACE_MODE_MII;
1779 }
1780 
1781 
1782 /* Initializes driver's PHY state, and attaches to the PHY.
1783  * Returns 0 on success.
1784  */
1785 static int init_phy(struct net_device *dev)
1786 {
1787 	struct gfar_private *priv = netdev_priv(dev);
1788 	uint gigabit_support =
1789 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1790 		GFAR_SUPPORTED_GBIT : 0;
1791 	phy_interface_t interface;
1792 	struct phy_device *phydev;
1793 	struct ethtool_eee edata;
1794 
1795 	priv->oldlink = 0;
1796 	priv->oldspeed = 0;
1797 	priv->oldduplex = -1;
1798 
1799 	interface = gfar_get_interface(dev);
1800 
1801 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1802 				interface);
1803 	if (!phydev) {
1804 		dev_err(&dev->dev, "could not attach to PHY\n");
1805 		return -ENODEV;
1806 	}
1807 
1808 	if (interface == PHY_INTERFACE_MODE_SGMII)
1809 		gfar_configure_serdes(dev);
1810 
1811 	/* Remove any features not supported by the controller */
1812 	phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1813 	phydev->advertising = phydev->supported;
1814 
1815 	/* Add support for flow control */
1816 	phy_support_asym_pause(phydev);
1817 
1818 	/* disable EEE autoneg, EEE not supported by eTSEC */
1819 	memset(&edata, 0, sizeof(struct ethtool_eee));
1820 	phy_ethtool_set_eee(phydev, &edata);
1821 
1822 	return 0;
1823 }
1824 
1825 /* Initialize TBI PHY interface for communicating with the
1826  * SERDES lynx PHY on the chip.  We communicate with this PHY
1827  * through the MDIO bus on each controller, treating it as a
1828  * "normal" PHY at the address found in the TBIPA register.  We assume
1829  * that the TBIPA register is valid.  Either the MDIO bus code will set
1830  * it to a value that doesn't conflict with other PHYs on the bus, or the
1831  * value doesn't matter, as there are no other PHYs on the bus.
1832  */
1833 static void gfar_configure_serdes(struct net_device *dev)
1834 {
1835 	struct gfar_private *priv = netdev_priv(dev);
1836 	struct phy_device *tbiphy;
1837 
1838 	if (!priv->tbi_node) {
1839 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1840 				    "device tree specify a tbi-handle\n");
1841 		return;
1842 	}
1843 
1844 	tbiphy = of_phy_find_device(priv->tbi_node);
1845 	if (!tbiphy) {
1846 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1847 		return;
1848 	}
1849 
1850 	/* If the link is already up, we must already be ok, and don't need to
1851 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1852 	 * everything for us?  Resetting it takes the link down and requires
1853 	 * several seconds for it to come back.
1854 	 */
1855 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1856 		put_device(&tbiphy->mdio.dev);
1857 		return;
1858 	}
1859 
1860 	/* Single clk mode, mii mode off(for serdes communication) */
1861 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1862 
1863 	phy_write(tbiphy, MII_ADVERTISE,
1864 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1865 		  ADVERTISE_1000XPSE_ASYM);
1866 
1867 	phy_write(tbiphy, MII_BMCR,
1868 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1869 		  BMCR_SPEED1000);
1870 
1871 	put_device(&tbiphy->mdio.dev);
1872 }
1873 
1874 static int __gfar_is_rx_idle(struct gfar_private *priv)
1875 {
1876 	u32 res;
1877 
1878 	/* Normaly TSEC should not hang on GRS commands, so we should
1879 	 * actually wait for IEVENT_GRSC flag.
1880 	 */
1881 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1882 		return 0;
1883 
1884 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1885 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1886 	 * and the Rx can be safely reset.
1887 	 */
1888 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1889 	res &= 0x7f807f80;
1890 	if ((res & 0xffff) == (res >> 16))
1891 		return 1;
1892 
1893 	return 0;
1894 }
1895 
1896 /* Halt the receive and transmit queues */
1897 static void gfar_halt_nodisable(struct gfar_private *priv)
1898 {
1899 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1900 	u32 tempval;
1901 	unsigned int timeout;
1902 	int stopped;
1903 
1904 	gfar_ints_disable(priv);
1905 
1906 	if (gfar_is_dma_stopped(priv))
1907 		return;
1908 
1909 	/* Stop the DMA, and wait for it to stop */
1910 	tempval = gfar_read(&regs->dmactrl);
1911 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1912 	gfar_write(&regs->dmactrl, tempval);
1913 
1914 retry:
1915 	timeout = 1000;
1916 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1917 		cpu_relax();
1918 		timeout--;
1919 	}
1920 
1921 	if (!timeout)
1922 		stopped = gfar_is_dma_stopped(priv);
1923 
1924 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1925 	    !__gfar_is_rx_idle(priv))
1926 		goto retry;
1927 }
1928 
1929 /* Halt the receive and transmit queues */
1930 void gfar_halt(struct gfar_private *priv)
1931 {
1932 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1933 	u32 tempval;
1934 
1935 	/* Dissable the Rx/Tx hw queues */
1936 	gfar_write(&regs->rqueue, 0);
1937 	gfar_write(&regs->tqueue, 0);
1938 
1939 	mdelay(10);
1940 
1941 	gfar_halt_nodisable(priv);
1942 
1943 	/* Disable Rx/Tx DMA */
1944 	tempval = gfar_read(&regs->maccfg1);
1945 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1946 	gfar_write(&regs->maccfg1, tempval);
1947 }
1948 
1949 void stop_gfar(struct net_device *dev)
1950 {
1951 	struct gfar_private *priv = netdev_priv(dev);
1952 
1953 	netif_tx_stop_all_queues(dev);
1954 
1955 	smp_mb__before_atomic();
1956 	set_bit(GFAR_DOWN, &priv->state);
1957 	smp_mb__after_atomic();
1958 
1959 	disable_napi(priv);
1960 
1961 	/* disable ints and gracefully shut down Rx/Tx DMA */
1962 	gfar_halt(priv);
1963 
1964 	phy_stop(dev->phydev);
1965 
1966 	free_skb_resources(priv);
1967 }
1968 
1969 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1970 {
1971 	struct txbd8 *txbdp;
1972 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1973 	int i, j;
1974 
1975 	txbdp = tx_queue->tx_bd_base;
1976 
1977 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1978 		if (!tx_queue->tx_skbuff[i])
1979 			continue;
1980 
1981 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1982 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1983 		txbdp->lstatus = 0;
1984 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1985 		     j++) {
1986 			txbdp++;
1987 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1988 				       be16_to_cpu(txbdp->length),
1989 				       DMA_TO_DEVICE);
1990 		}
1991 		txbdp++;
1992 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1993 		tx_queue->tx_skbuff[i] = NULL;
1994 	}
1995 	kfree(tx_queue->tx_skbuff);
1996 	tx_queue->tx_skbuff = NULL;
1997 }
1998 
1999 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2000 {
2001 	int i;
2002 
2003 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2004 
2005 	if (rx_queue->skb)
2006 		dev_kfree_skb(rx_queue->skb);
2007 
2008 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2009 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2010 
2011 		rxbdp->lstatus = 0;
2012 		rxbdp->bufPtr = 0;
2013 		rxbdp++;
2014 
2015 		if (!rxb->page)
2016 			continue;
2017 
2018 		dma_unmap_page(rx_queue->dev, rxb->dma,
2019 			       PAGE_SIZE, DMA_FROM_DEVICE);
2020 		__free_page(rxb->page);
2021 
2022 		rxb->page = NULL;
2023 	}
2024 
2025 	kfree(rx_queue->rx_buff);
2026 	rx_queue->rx_buff = NULL;
2027 }
2028 
2029 /* If there are any tx skbs or rx skbs still around, free them.
2030  * Then free tx_skbuff and rx_skbuff
2031  */
2032 static void free_skb_resources(struct gfar_private *priv)
2033 {
2034 	struct gfar_priv_tx_q *tx_queue = NULL;
2035 	struct gfar_priv_rx_q *rx_queue = NULL;
2036 	int i;
2037 
2038 	/* Go through all the buffer descriptors and free their data buffers */
2039 	for (i = 0; i < priv->num_tx_queues; i++) {
2040 		struct netdev_queue *txq;
2041 
2042 		tx_queue = priv->tx_queue[i];
2043 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2044 		if (tx_queue->tx_skbuff)
2045 			free_skb_tx_queue(tx_queue);
2046 		netdev_tx_reset_queue(txq);
2047 	}
2048 
2049 	for (i = 0; i < priv->num_rx_queues; i++) {
2050 		rx_queue = priv->rx_queue[i];
2051 		if (rx_queue->rx_buff)
2052 			free_skb_rx_queue(rx_queue);
2053 	}
2054 
2055 	dma_free_coherent(priv->dev,
2056 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2057 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2058 			  priv->tx_queue[0]->tx_bd_base,
2059 			  priv->tx_queue[0]->tx_bd_dma_base);
2060 }
2061 
2062 void gfar_start(struct gfar_private *priv)
2063 {
2064 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2065 	u32 tempval;
2066 	int i = 0;
2067 
2068 	/* Enable Rx/Tx hw queues */
2069 	gfar_write(&regs->rqueue, priv->rqueue);
2070 	gfar_write(&regs->tqueue, priv->tqueue);
2071 
2072 	/* Initialize DMACTRL to have WWR and WOP */
2073 	tempval = gfar_read(&regs->dmactrl);
2074 	tempval |= DMACTRL_INIT_SETTINGS;
2075 	gfar_write(&regs->dmactrl, tempval);
2076 
2077 	/* Make sure we aren't stopped */
2078 	tempval = gfar_read(&regs->dmactrl);
2079 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2080 	gfar_write(&regs->dmactrl, tempval);
2081 
2082 	for (i = 0; i < priv->num_grps; i++) {
2083 		regs = priv->gfargrp[i].regs;
2084 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2085 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2086 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2087 	}
2088 
2089 	/* Enable Rx/Tx DMA */
2090 	tempval = gfar_read(&regs->maccfg1);
2091 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2092 	gfar_write(&regs->maccfg1, tempval);
2093 
2094 	gfar_ints_enable(priv);
2095 
2096 	netif_trans_update(priv->ndev); /* prevent tx timeout */
2097 }
2098 
2099 static void free_grp_irqs(struct gfar_priv_grp *grp)
2100 {
2101 	free_irq(gfar_irq(grp, TX)->irq, grp);
2102 	free_irq(gfar_irq(grp, RX)->irq, grp);
2103 	free_irq(gfar_irq(grp, ER)->irq, grp);
2104 }
2105 
2106 static int register_grp_irqs(struct gfar_priv_grp *grp)
2107 {
2108 	struct gfar_private *priv = grp->priv;
2109 	struct net_device *dev = priv->ndev;
2110 	int err;
2111 
2112 	/* If the device has multiple interrupts, register for
2113 	 * them.  Otherwise, only register for the one
2114 	 */
2115 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2116 		/* Install our interrupt handlers for Error,
2117 		 * Transmit, and Receive
2118 		 */
2119 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2120 				  gfar_irq(grp, ER)->name, grp);
2121 		if (err < 0) {
2122 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2123 				  gfar_irq(grp, ER)->irq);
2124 
2125 			goto err_irq_fail;
2126 		}
2127 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2128 
2129 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2130 				  gfar_irq(grp, TX)->name, grp);
2131 		if (err < 0) {
2132 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2133 				  gfar_irq(grp, TX)->irq);
2134 			goto tx_irq_fail;
2135 		}
2136 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2137 				  gfar_irq(grp, RX)->name, grp);
2138 		if (err < 0) {
2139 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2140 				  gfar_irq(grp, RX)->irq);
2141 			goto rx_irq_fail;
2142 		}
2143 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2144 
2145 	} else {
2146 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2147 				  gfar_irq(grp, TX)->name, grp);
2148 		if (err < 0) {
2149 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2150 				  gfar_irq(grp, TX)->irq);
2151 			goto err_irq_fail;
2152 		}
2153 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2154 	}
2155 
2156 	return 0;
2157 
2158 rx_irq_fail:
2159 	free_irq(gfar_irq(grp, TX)->irq, grp);
2160 tx_irq_fail:
2161 	free_irq(gfar_irq(grp, ER)->irq, grp);
2162 err_irq_fail:
2163 	return err;
2164 
2165 }
2166 
2167 static void gfar_free_irq(struct gfar_private *priv)
2168 {
2169 	int i;
2170 
2171 	/* Free the IRQs */
2172 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2173 		for (i = 0; i < priv->num_grps; i++)
2174 			free_grp_irqs(&priv->gfargrp[i]);
2175 	} else {
2176 		for (i = 0; i < priv->num_grps; i++)
2177 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2178 				 &priv->gfargrp[i]);
2179 	}
2180 }
2181 
2182 static int gfar_request_irq(struct gfar_private *priv)
2183 {
2184 	int err, i, j;
2185 
2186 	for (i = 0; i < priv->num_grps; i++) {
2187 		err = register_grp_irqs(&priv->gfargrp[i]);
2188 		if (err) {
2189 			for (j = 0; j < i; j++)
2190 				free_grp_irqs(&priv->gfargrp[j]);
2191 			return err;
2192 		}
2193 	}
2194 
2195 	return 0;
2196 }
2197 
2198 /* Bring the controller up and running */
2199 int startup_gfar(struct net_device *ndev)
2200 {
2201 	struct gfar_private *priv = netdev_priv(ndev);
2202 	int err;
2203 
2204 	gfar_mac_reset(priv);
2205 
2206 	err = gfar_alloc_skb_resources(ndev);
2207 	if (err)
2208 		return err;
2209 
2210 	gfar_init_tx_rx_base(priv);
2211 
2212 	smp_mb__before_atomic();
2213 	clear_bit(GFAR_DOWN, &priv->state);
2214 	smp_mb__after_atomic();
2215 
2216 	/* Start Rx/Tx DMA and enable the interrupts */
2217 	gfar_start(priv);
2218 
2219 	/* force link state update after mac reset */
2220 	priv->oldlink = 0;
2221 	priv->oldspeed = 0;
2222 	priv->oldduplex = -1;
2223 
2224 	phy_start(ndev->phydev);
2225 
2226 	enable_napi(priv);
2227 
2228 	netif_tx_wake_all_queues(ndev);
2229 
2230 	return 0;
2231 }
2232 
2233 /* Called when something needs to use the ethernet device
2234  * Returns 0 for success.
2235  */
2236 static int gfar_enet_open(struct net_device *dev)
2237 {
2238 	struct gfar_private *priv = netdev_priv(dev);
2239 	int err;
2240 
2241 	err = init_phy(dev);
2242 	if (err)
2243 		return err;
2244 
2245 	err = gfar_request_irq(priv);
2246 	if (err)
2247 		return err;
2248 
2249 	err = startup_gfar(dev);
2250 	if (err)
2251 		return err;
2252 
2253 	return err;
2254 }
2255 
2256 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2257 {
2258 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2259 
2260 	memset(fcb, 0, GMAC_FCB_LEN);
2261 
2262 	return fcb;
2263 }
2264 
2265 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2266 				    int fcb_length)
2267 {
2268 	/* If we're here, it's a IP packet with a TCP or UDP
2269 	 * payload.  We set it to checksum, using a pseudo-header
2270 	 * we provide
2271 	 */
2272 	u8 flags = TXFCB_DEFAULT;
2273 
2274 	/* Tell the controller what the protocol is
2275 	 * And provide the already calculated phcs
2276 	 */
2277 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2278 		flags |= TXFCB_UDP;
2279 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2280 	} else
2281 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2282 
2283 	/* l3os is the distance between the start of the
2284 	 * frame (skb->data) and the start of the IP hdr.
2285 	 * l4os is the distance between the start of the
2286 	 * l3 hdr and the l4 hdr
2287 	 */
2288 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2289 	fcb->l4os = skb_network_header_len(skb);
2290 
2291 	fcb->flags = flags;
2292 }
2293 
2294 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2295 {
2296 	fcb->flags |= TXFCB_VLN;
2297 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2298 }
2299 
2300 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2301 				      struct txbd8 *base, int ring_size)
2302 {
2303 	struct txbd8 *new_bd = bdp + stride;
2304 
2305 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2306 }
2307 
2308 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2309 				      int ring_size)
2310 {
2311 	return skip_txbd(bdp, 1, base, ring_size);
2312 }
2313 
2314 /* eTSEC12: csum generation not supported for some fcb offsets */
2315 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2316 				       unsigned long fcb_addr)
2317 {
2318 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2319 	       (fcb_addr % 0x20) > 0x18);
2320 }
2321 
2322 /* eTSEC76: csum generation for frames larger than 2500 may
2323  * cause excess delays before start of transmission
2324  */
2325 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2326 				       unsigned int len)
2327 {
2328 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2329 	       (len > 2500));
2330 }
2331 
2332 /* This is called by the kernel when a frame is ready for transmission.
2333  * It is pointed to by the dev->hard_start_xmit function pointer
2334  */
2335 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2336 {
2337 	struct gfar_private *priv = netdev_priv(dev);
2338 	struct gfar_priv_tx_q *tx_queue = NULL;
2339 	struct netdev_queue *txq;
2340 	struct gfar __iomem *regs = NULL;
2341 	struct txfcb *fcb = NULL;
2342 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2343 	u32 lstatus;
2344 	skb_frag_t *frag;
2345 	int i, rq = 0;
2346 	int do_tstamp, do_csum, do_vlan;
2347 	u32 bufaddr;
2348 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2349 
2350 	rq = skb->queue_mapping;
2351 	tx_queue = priv->tx_queue[rq];
2352 	txq = netdev_get_tx_queue(dev, rq);
2353 	base = tx_queue->tx_bd_base;
2354 	regs = tx_queue->grp->regs;
2355 
2356 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2357 	do_vlan = skb_vlan_tag_present(skb);
2358 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2359 		    priv->hwts_tx_en;
2360 
2361 	if (do_csum || do_vlan)
2362 		fcb_len = GMAC_FCB_LEN;
2363 
2364 	/* check if time stamp should be generated */
2365 	if (unlikely(do_tstamp))
2366 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2367 
2368 	/* make space for additional header when fcb is needed */
2369 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2370 		struct sk_buff *skb_new;
2371 
2372 		skb_new = skb_realloc_headroom(skb, fcb_len);
2373 		if (!skb_new) {
2374 			dev->stats.tx_errors++;
2375 			dev_kfree_skb_any(skb);
2376 			return NETDEV_TX_OK;
2377 		}
2378 
2379 		if (skb->sk)
2380 			skb_set_owner_w(skb_new, skb->sk);
2381 		dev_consume_skb_any(skb);
2382 		skb = skb_new;
2383 	}
2384 
2385 	/* total number of fragments in the SKB */
2386 	nr_frags = skb_shinfo(skb)->nr_frags;
2387 
2388 	/* calculate the required number of TxBDs for this skb */
2389 	if (unlikely(do_tstamp))
2390 		nr_txbds = nr_frags + 2;
2391 	else
2392 		nr_txbds = nr_frags + 1;
2393 
2394 	/* check if there is space to queue this packet */
2395 	if (nr_txbds > tx_queue->num_txbdfree) {
2396 		/* no space, stop the queue */
2397 		netif_tx_stop_queue(txq);
2398 		dev->stats.tx_fifo_errors++;
2399 		return NETDEV_TX_BUSY;
2400 	}
2401 
2402 	/* Update transmit stats */
2403 	bytes_sent = skb->len;
2404 	tx_queue->stats.tx_bytes += bytes_sent;
2405 	/* keep Tx bytes on wire for BQL accounting */
2406 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2407 	tx_queue->stats.tx_packets++;
2408 
2409 	txbdp = txbdp_start = tx_queue->cur_tx;
2410 	lstatus = be32_to_cpu(txbdp->lstatus);
2411 
2412 	/* Add TxPAL between FCB and frame if required */
2413 	if (unlikely(do_tstamp)) {
2414 		skb_push(skb, GMAC_TXPAL_LEN);
2415 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2416 	}
2417 
2418 	/* Add TxFCB if required */
2419 	if (fcb_len) {
2420 		fcb = gfar_add_fcb(skb);
2421 		lstatus |= BD_LFLAG(TXBD_TOE);
2422 	}
2423 
2424 	/* Set up checksumming */
2425 	if (do_csum) {
2426 		gfar_tx_checksum(skb, fcb, fcb_len);
2427 
2428 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2429 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2430 			__skb_pull(skb, GMAC_FCB_LEN);
2431 			skb_checksum_help(skb);
2432 			if (do_vlan || do_tstamp) {
2433 				/* put back a new fcb for vlan/tstamp TOE */
2434 				fcb = gfar_add_fcb(skb);
2435 			} else {
2436 				/* Tx TOE not used */
2437 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2438 				fcb = NULL;
2439 			}
2440 		}
2441 	}
2442 
2443 	if (do_vlan)
2444 		gfar_tx_vlan(skb, fcb);
2445 
2446 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2447 				 DMA_TO_DEVICE);
2448 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2449 		goto dma_map_err;
2450 
2451 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2452 
2453 	/* Time stamp insertion requires one additional TxBD */
2454 	if (unlikely(do_tstamp))
2455 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2456 						 tx_queue->tx_ring_size);
2457 
2458 	if (likely(!nr_frags)) {
2459 		if (likely(!do_tstamp))
2460 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2461 	} else {
2462 		u32 lstatus_start = lstatus;
2463 
2464 		/* Place the fragment addresses and lengths into the TxBDs */
2465 		frag = &skb_shinfo(skb)->frags[0];
2466 		for (i = 0; i < nr_frags; i++, frag++) {
2467 			unsigned int size;
2468 
2469 			/* Point at the next BD, wrapping as needed */
2470 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2471 
2472 			size = skb_frag_size(frag);
2473 
2474 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2475 				  BD_LFLAG(TXBD_READY);
2476 
2477 			/* Handle the last BD specially */
2478 			if (i == nr_frags - 1)
2479 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2480 
2481 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2482 						   size, DMA_TO_DEVICE);
2483 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2484 				goto dma_map_err;
2485 
2486 			/* set the TxBD length and buffer pointer */
2487 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2488 			txbdp->lstatus = cpu_to_be32(lstatus);
2489 		}
2490 
2491 		lstatus = lstatus_start;
2492 	}
2493 
2494 	/* If time stamping is requested one additional TxBD must be set up. The
2495 	 * first TxBD points to the FCB and must have a data length of
2496 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2497 	 * the full frame length.
2498 	 */
2499 	if (unlikely(do_tstamp)) {
2500 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2501 
2502 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2503 		bufaddr += fcb_len;
2504 
2505 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2506 			      (skb_headlen(skb) - fcb_len);
2507 		if (!nr_frags)
2508 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2509 
2510 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2511 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2512 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2513 
2514 		/* Setup tx hardware time stamping */
2515 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2516 		fcb->ptp = 1;
2517 	} else {
2518 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2519 	}
2520 
2521 	netdev_tx_sent_queue(txq, bytes_sent);
2522 
2523 	gfar_wmb();
2524 
2525 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2526 
2527 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2528 
2529 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2530 
2531 	/* Update the current skb pointer to the next entry we will use
2532 	 * (wrapping if necessary)
2533 	 */
2534 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2535 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2536 
2537 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2538 
2539 	/* We can work in parallel with gfar_clean_tx_ring(), except
2540 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2541 	 * when we were reading the num_txbdfree and checking for available
2542 	 * space, that's because outside of this function it can only grow.
2543 	 */
2544 	spin_lock_bh(&tx_queue->txlock);
2545 	/* reduce TxBD free count */
2546 	tx_queue->num_txbdfree -= (nr_txbds);
2547 	spin_unlock_bh(&tx_queue->txlock);
2548 
2549 	/* If the next BD still needs to be cleaned up, then the bds
2550 	 * are full.  We need to tell the kernel to stop sending us stuff.
2551 	 */
2552 	if (!tx_queue->num_txbdfree) {
2553 		netif_tx_stop_queue(txq);
2554 
2555 		dev->stats.tx_fifo_errors++;
2556 	}
2557 
2558 	/* Tell the DMA to go go go */
2559 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2560 
2561 	return NETDEV_TX_OK;
2562 
2563 dma_map_err:
2564 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2565 	if (do_tstamp)
2566 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2567 	for (i = 0; i < nr_frags; i++) {
2568 		lstatus = be32_to_cpu(txbdp->lstatus);
2569 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2570 			break;
2571 
2572 		lstatus &= ~BD_LFLAG(TXBD_READY);
2573 		txbdp->lstatus = cpu_to_be32(lstatus);
2574 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2575 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2576 			       DMA_TO_DEVICE);
2577 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2578 	}
2579 	gfar_wmb();
2580 	dev_kfree_skb_any(skb);
2581 	return NETDEV_TX_OK;
2582 }
2583 
2584 /* Stops the kernel queue, and halts the controller */
2585 static int gfar_close(struct net_device *dev)
2586 {
2587 	struct gfar_private *priv = netdev_priv(dev);
2588 
2589 	cancel_work_sync(&priv->reset_task);
2590 	stop_gfar(dev);
2591 
2592 	/* Disconnect from the PHY */
2593 	phy_disconnect(dev->phydev);
2594 
2595 	gfar_free_irq(priv);
2596 
2597 	return 0;
2598 }
2599 
2600 /* Changes the mac address if the controller is not running. */
2601 static int gfar_set_mac_address(struct net_device *dev)
2602 {
2603 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2604 
2605 	return 0;
2606 }
2607 
2608 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2609 {
2610 	struct gfar_private *priv = netdev_priv(dev);
2611 
2612 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2613 		cpu_relax();
2614 
2615 	if (dev->flags & IFF_UP)
2616 		stop_gfar(dev);
2617 
2618 	dev->mtu = new_mtu;
2619 
2620 	if (dev->flags & IFF_UP)
2621 		startup_gfar(dev);
2622 
2623 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2624 
2625 	return 0;
2626 }
2627 
2628 void reset_gfar(struct net_device *ndev)
2629 {
2630 	struct gfar_private *priv = netdev_priv(ndev);
2631 
2632 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2633 		cpu_relax();
2634 
2635 	stop_gfar(ndev);
2636 	startup_gfar(ndev);
2637 
2638 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2639 }
2640 
2641 /* gfar_reset_task gets scheduled when a packet has not been
2642  * transmitted after a set amount of time.
2643  * For now, assume that clearing out all the structures, and
2644  * starting over will fix the problem.
2645  */
2646 static void gfar_reset_task(struct work_struct *work)
2647 {
2648 	struct gfar_private *priv = container_of(work, struct gfar_private,
2649 						 reset_task);
2650 	reset_gfar(priv->ndev);
2651 }
2652 
2653 static void gfar_timeout(struct net_device *dev)
2654 {
2655 	struct gfar_private *priv = netdev_priv(dev);
2656 
2657 	dev->stats.tx_errors++;
2658 	schedule_work(&priv->reset_task);
2659 }
2660 
2661 /* Interrupt Handler for Transmit complete */
2662 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2663 {
2664 	struct net_device *dev = tx_queue->dev;
2665 	struct netdev_queue *txq;
2666 	struct gfar_private *priv = netdev_priv(dev);
2667 	struct txbd8 *bdp, *next = NULL;
2668 	struct txbd8 *lbdp = NULL;
2669 	struct txbd8 *base = tx_queue->tx_bd_base;
2670 	struct sk_buff *skb;
2671 	int skb_dirtytx;
2672 	int tx_ring_size = tx_queue->tx_ring_size;
2673 	int frags = 0, nr_txbds = 0;
2674 	int i;
2675 	int howmany = 0;
2676 	int tqi = tx_queue->qindex;
2677 	unsigned int bytes_sent = 0;
2678 	u32 lstatus;
2679 	size_t buflen;
2680 
2681 	txq = netdev_get_tx_queue(dev, tqi);
2682 	bdp = tx_queue->dirty_tx;
2683 	skb_dirtytx = tx_queue->skb_dirtytx;
2684 
2685 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2686 
2687 		frags = skb_shinfo(skb)->nr_frags;
2688 
2689 		/* When time stamping, one additional TxBD must be freed.
2690 		 * Also, we need to dma_unmap_single() the TxPAL.
2691 		 */
2692 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2693 			nr_txbds = frags + 2;
2694 		else
2695 			nr_txbds = frags + 1;
2696 
2697 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2698 
2699 		lstatus = be32_to_cpu(lbdp->lstatus);
2700 
2701 		/* Only clean completed frames */
2702 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2703 		    (lstatus & BD_LENGTH_MASK))
2704 			break;
2705 
2706 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2707 			next = next_txbd(bdp, base, tx_ring_size);
2708 			buflen = be16_to_cpu(next->length) +
2709 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2710 		} else
2711 			buflen = be16_to_cpu(bdp->length);
2712 
2713 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2714 				 buflen, DMA_TO_DEVICE);
2715 
2716 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2717 			struct skb_shared_hwtstamps shhwtstamps;
2718 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2719 					  ~0x7UL);
2720 
2721 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2722 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2723 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2724 			skb_tstamp_tx(skb, &shhwtstamps);
2725 			gfar_clear_txbd_status(bdp);
2726 			bdp = next;
2727 		}
2728 
2729 		gfar_clear_txbd_status(bdp);
2730 		bdp = next_txbd(bdp, base, tx_ring_size);
2731 
2732 		for (i = 0; i < frags; i++) {
2733 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2734 				       be16_to_cpu(bdp->length),
2735 				       DMA_TO_DEVICE);
2736 			gfar_clear_txbd_status(bdp);
2737 			bdp = next_txbd(bdp, base, tx_ring_size);
2738 		}
2739 
2740 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2741 
2742 		dev_kfree_skb_any(skb);
2743 
2744 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2745 
2746 		skb_dirtytx = (skb_dirtytx + 1) &
2747 			      TX_RING_MOD_MASK(tx_ring_size);
2748 
2749 		howmany++;
2750 		spin_lock(&tx_queue->txlock);
2751 		tx_queue->num_txbdfree += nr_txbds;
2752 		spin_unlock(&tx_queue->txlock);
2753 	}
2754 
2755 	/* If we freed a buffer, we can restart transmission, if necessary */
2756 	if (tx_queue->num_txbdfree &&
2757 	    netif_tx_queue_stopped(txq) &&
2758 	    !(test_bit(GFAR_DOWN, &priv->state)))
2759 		netif_wake_subqueue(priv->ndev, tqi);
2760 
2761 	/* Update dirty indicators */
2762 	tx_queue->skb_dirtytx = skb_dirtytx;
2763 	tx_queue->dirty_tx = bdp;
2764 
2765 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2766 }
2767 
2768 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2769 {
2770 	struct page *page;
2771 	dma_addr_t addr;
2772 
2773 	page = dev_alloc_page();
2774 	if (unlikely(!page))
2775 		return false;
2776 
2777 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2778 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2779 		__free_page(page);
2780 
2781 		return false;
2782 	}
2783 
2784 	rxb->dma = addr;
2785 	rxb->page = page;
2786 	rxb->page_offset = 0;
2787 
2788 	return true;
2789 }
2790 
2791 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2792 {
2793 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2794 	struct gfar_extra_stats *estats = &priv->extra_stats;
2795 
2796 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2797 	atomic64_inc(&estats->rx_alloc_err);
2798 }
2799 
2800 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2801 				int alloc_cnt)
2802 {
2803 	struct rxbd8 *bdp;
2804 	struct gfar_rx_buff *rxb;
2805 	int i;
2806 
2807 	i = rx_queue->next_to_use;
2808 	bdp = &rx_queue->rx_bd_base[i];
2809 	rxb = &rx_queue->rx_buff[i];
2810 
2811 	while (alloc_cnt--) {
2812 		/* try reuse page */
2813 		if (unlikely(!rxb->page)) {
2814 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2815 				gfar_rx_alloc_err(rx_queue);
2816 				break;
2817 			}
2818 		}
2819 
2820 		/* Setup the new RxBD */
2821 		gfar_init_rxbdp(rx_queue, bdp,
2822 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2823 
2824 		/* Update to the next pointer */
2825 		bdp++;
2826 		rxb++;
2827 
2828 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2829 			i = 0;
2830 			bdp = rx_queue->rx_bd_base;
2831 			rxb = rx_queue->rx_buff;
2832 		}
2833 	}
2834 
2835 	rx_queue->next_to_use = i;
2836 	rx_queue->next_to_alloc = i;
2837 }
2838 
2839 static void count_errors(u32 lstatus, struct net_device *ndev)
2840 {
2841 	struct gfar_private *priv = netdev_priv(ndev);
2842 	struct net_device_stats *stats = &ndev->stats;
2843 	struct gfar_extra_stats *estats = &priv->extra_stats;
2844 
2845 	/* If the packet was truncated, none of the other errors matter */
2846 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2847 		stats->rx_length_errors++;
2848 
2849 		atomic64_inc(&estats->rx_trunc);
2850 
2851 		return;
2852 	}
2853 	/* Count the errors, if there were any */
2854 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2855 		stats->rx_length_errors++;
2856 
2857 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2858 			atomic64_inc(&estats->rx_large);
2859 		else
2860 			atomic64_inc(&estats->rx_short);
2861 	}
2862 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2863 		stats->rx_frame_errors++;
2864 		atomic64_inc(&estats->rx_nonoctet);
2865 	}
2866 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2867 		atomic64_inc(&estats->rx_crcerr);
2868 		stats->rx_crc_errors++;
2869 	}
2870 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2871 		atomic64_inc(&estats->rx_overrun);
2872 		stats->rx_over_errors++;
2873 	}
2874 }
2875 
2876 irqreturn_t gfar_receive(int irq, void *grp_id)
2877 {
2878 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2879 	unsigned long flags;
2880 	u32 imask, ievent;
2881 
2882 	ievent = gfar_read(&grp->regs->ievent);
2883 
2884 	if (unlikely(ievent & IEVENT_FGPI)) {
2885 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2886 		return IRQ_HANDLED;
2887 	}
2888 
2889 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2890 		spin_lock_irqsave(&grp->grplock, flags);
2891 		imask = gfar_read(&grp->regs->imask);
2892 		imask &= IMASK_RX_DISABLED;
2893 		gfar_write(&grp->regs->imask, imask);
2894 		spin_unlock_irqrestore(&grp->grplock, flags);
2895 		__napi_schedule(&grp->napi_rx);
2896 	} else {
2897 		/* Clear IEVENT, so interrupts aren't called again
2898 		 * because of the packets that have already arrived.
2899 		 */
2900 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2901 	}
2902 
2903 	return IRQ_HANDLED;
2904 }
2905 
2906 /* Interrupt Handler for Transmit complete */
2907 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2908 {
2909 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2910 	unsigned long flags;
2911 	u32 imask;
2912 
2913 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2914 		spin_lock_irqsave(&grp->grplock, flags);
2915 		imask = gfar_read(&grp->regs->imask);
2916 		imask &= IMASK_TX_DISABLED;
2917 		gfar_write(&grp->regs->imask, imask);
2918 		spin_unlock_irqrestore(&grp->grplock, flags);
2919 		__napi_schedule(&grp->napi_tx);
2920 	} else {
2921 		/* Clear IEVENT, so interrupts aren't called again
2922 		 * because of the packets that have already arrived.
2923 		 */
2924 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2925 	}
2926 
2927 	return IRQ_HANDLED;
2928 }
2929 
2930 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2931 			     struct sk_buff *skb, bool first)
2932 {
2933 	int size = lstatus & BD_LENGTH_MASK;
2934 	struct page *page = rxb->page;
2935 
2936 	if (likely(first)) {
2937 		skb_put(skb, size);
2938 	} else {
2939 		/* the last fragments' length contains the full frame length */
2940 		if (lstatus & BD_LFLAG(RXBD_LAST))
2941 			size -= skb->len;
2942 
2943 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2944 				rxb->page_offset + RXBUF_ALIGNMENT,
2945 				size, GFAR_RXB_TRUESIZE);
2946 	}
2947 
2948 	/* try reuse page */
2949 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2950 		return false;
2951 
2952 	/* change offset to the other half */
2953 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2954 
2955 	page_ref_inc(page);
2956 
2957 	return true;
2958 }
2959 
2960 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2961 			       struct gfar_rx_buff *old_rxb)
2962 {
2963 	struct gfar_rx_buff *new_rxb;
2964 	u16 nta = rxq->next_to_alloc;
2965 
2966 	new_rxb = &rxq->rx_buff[nta];
2967 
2968 	/* find next buf that can reuse a page */
2969 	nta++;
2970 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2971 
2972 	/* copy page reference */
2973 	*new_rxb = *old_rxb;
2974 
2975 	/* sync for use by the device */
2976 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2977 					 old_rxb->page_offset,
2978 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2979 }
2980 
2981 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2982 					    u32 lstatus, struct sk_buff *skb)
2983 {
2984 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2985 	struct page *page = rxb->page;
2986 	bool first = false;
2987 
2988 	if (likely(!skb)) {
2989 		void *buff_addr = page_address(page) + rxb->page_offset;
2990 
2991 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2992 		if (unlikely(!skb)) {
2993 			gfar_rx_alloc_err(rx_queue);
2994 			return NULL;
2995 		}
2996 		skb_reserve(skb, RXBUF_ALIGNMENT);
2997 		first = true;
2998 	}
2999 
3000 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3001 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3002 
3003 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3004 		/* reuse the free half of the page */
3005 		gfar_reuse_rx_page(rx_queue, rxb);
3006 	} else {
3007 		/* page cannot be reused, unmap it */
3008 		dma_unmap_page(rx_queue->dev, rxb->dma,
3009 			       PAGE_SIZE, DMA_FROM_DEVICE);
3010 	}
3011 
3012 	/* clear rxb content */
3013 	rxb->page = NULL;
3014 
3015 	return skb;
3016 }
3017 
3018 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3019 {
3020 	/* If valid headers were found, and valid sums
3021 	 * were verified, then we tell the kernel that no
3022 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3023 	 */
3024 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3025 	    (RXFCB_CIP | RXFCB_CTU))
3026 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3027 	else
3028 		skb_checksum_none_assert(skb);
3029 }
3030 
3031 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3032 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3033 {
3034 	struct gfar_private *priv = netdev_priv(ndev);
3035 	struct rxfcb *fcb = NULL;
3036 
3037 	/* fcb is at the beginning if exists */
3038 	fcb = (struct rxfcb *)skb->data;
3039 
3040 	/* Remove the FCB from the skb
3041 	 * Remove the padded bytes, if there are any
3042 	 */
3043 	if (priv->uses_rxfcb)
3044 		skb_pull(skb, GMAC_FCB_LEN);
3045 
3046 	/* Get receive timestamp from the skb */
3047 	if (priv->hwts_rx_en) {
3048 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3049 		u64 *ns = (u64 *) skb->data;
3050 
3051 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3052 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3053 	}
3054 
3055 	if (priv->padding)
3056 		skb_pull(skb, priv->padding);
3057 
3058 	/* Trim off the FCS */
3059 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
3060 
3061 	if (ndev->features & NETIF_F_RXCSUM)
3062 		gfar_rx_checksum(skb, fcb);
3063 
3064 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3065 	 * Even if vlan rx accel is disabled, on some chips
3066 	 * RXFCB_VLN is pseudo randomly set.
3067 	 */
3068 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3069 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3070 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3071 				       be16_to_cpu(fcb->vlctl));
3072 }
3073 
3074 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3075  * until the budget/quota has been reached. Returns the number
3076  * of frames handled
3077  */
3078 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3079 {
3080 	struct net_device *ndev = rx_queue->ndev;
3081 	struct gfar_private *priv = netdev_priv(ndev);
3082 	struct rxbd8 *bdp;
3083 	int i, howmany = 0;
3084 	struct sk_buff *skb = rx_queue->skb;
3085 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3086 	unsigned int total_bytes = 0, total_pkts = 0;
3087 
3088 	/* Get the first full descriptor */
3089 	i = rx_queue->next_to_clean;
3090 
3091 	while (rx_work_limit--) {
3092 		u32 lstatus;
3093 
3094 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3095 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3096 			cleaned_cnt = 0;
3097 		}
3098 
3099 		bdp = &rx_queue->rx_bd_base[i];
3100 		lstatus = be32_to_cpu(bdp->lstatus);
3101 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3102 			break;
3103 
3104 		/* order rx buffer descriptor reads */
3105 		rmb();
3106 
3107 		/* fetch next to clean buffer from the ring */
3108 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3109 		if (unlikely(!skb))
3110 			break;
3111 
3112 		cleaned_cnt++;
3113 		howmany++;
3114 
3115 		if (unlikely(++i == rx_queue->rx_ring_size))
3116 			i = 0;
3117 
3118 		rx_queue->next_to_clean = i;
3119 
3120 		/* fetch next buffer if not the last in frame */
3121 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3122 			continue;
3123 
3124 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3125 			count_errors(lstatus, ndev);
3126 
3127 			/* discard faulty buffer */
3128 			dev_kfree_skb(skb);
3129 			skb = NULL;
3130 			rx_queue->stats.rx_dropped++;
3131 			continue;
3132 		}
3133 
3134 		gfar_process_frame(ndev, skb);
3135 
3136 		/* Increment the number of packets */
3137 		total_pkts++;
3138 		total_bytes += skb->len;
3139 
3140 		skb_record_rx_queue(skb, rx_queue->qindex);
3141 
3142 		skb->protocol = eth_type_trans(skb, ndev);
3143 
3144 		/* Send the packet up the stack */
3145 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3146 
3147 		skb = NULL;
3148 	}
3149 
3150 	/* Store incomplete frames for completion */
3151 	rx_queue->skb = skb;
3152 
3153 	rx_queue->stats.rx_packets += total_pkts;
3154 	rx_queue->stats.rx_bytes += total_bytes;
3155 
3156 	if (cleaned_cnt)
3157 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3158 
3159 	/* Update Last Free RxBD pointer for LFC */
3160 	if (unlikely(priv->tx_actual_en)) {
3161 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3162 
3163 		gfar_write(rx_queue->rfbptr, bdp_dma);
3164 	}
3165 
3166 	return howmany;
3167 }
3168 
3169 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3170 {
3171 	struct gfar_priv_grp *gfargrp =
3172 		container_of(napi, struct gfar_priv_grp, napi_rx);
3173 	struct gfar __iomem *regs = gfargrp->regs;
3174 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3175 	int work_done = 0;
3176 
3177 	/* Clear IEVENT, so interrupts aren't called again
3178 	 * because of the packets that have already arrived
3179 	 */
3180 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3181 
3182 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3183 
3184 	if (work_done < budget) {
3185 		u32 imask;
3186 		napi_complete_done(napi, work_done);
3187 		/* Clear the halt bit in RSTAT */
3188 		gfar_write(&regs->rstat, gfargrp->rstat);
3189 
3190 		spin_lock_irq(&gfargrp->grplock);
3191 		imask = gfar_read(&regs->imask);
3192 		imask |= IMASK_RX_DEFAULT;
3193 		gfar_write(&regs->imask, imask);
3194 		spin_unlock_irq(&gfargrp->grplock);
3195 	}
3196 
3197 	return work_done;
3198 }
3199 
3200 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3201 {
3202 	struct gfar_priv_grp *gfargrp =
3203 		container_of(napi, struct gfar_priv_grp, napi_tx);
3204 	struct gfar __iomem *regs = gfargrp->regs;
3205 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3206 	u32 imask;
3207 
3208 	/* Clear IEVENT, so interrupts aren't called again
3209 	 * because of the packets that have already arrived
3210 	 */
3211 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3212 
3213 	/* run Tx cleanup to completion */
3214 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3215 		gfar_clean_tx_ring(tx_queue);
3216 
3217 	napi_complete(napi);
3218 
3219 	spin_lock_irq(&gfargrp->grplock);
3220 	imask = gfar_read(&regs->imask);
3221 	imask |= IMASK_TX_DEFAULT;
3222 	gfar_write(&regs->imask, imask);
3223 	spin_unlock_irq(&gfargrp->grplock);
3224 
3225 	return 0;
3226 }
3227 
3228 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3229 {
3230 	struct gfar_priv_grp *gfargrp =
3231 		container_of(napi, struct gfar_priv_grp, napi_rx);
3232 	struct gfar_private *priv = gfargrp->priv;
3233 	struct gfar __iomem *regs = gfargrp->regs;
3234 	struct gfar_priv_rx_q *rx_queue = NULL;
3235 	int work_done = 0, work_done_per_q = 0;
3236 	int i, budget_per_q = 0;
3237 	unsigned long rstat_rxf;
3238 	int num_act_queues;
3239 
3240 	/* Clear IEVENT, so interrupts aren't called again
3241 	 * because of the packets that have already arrived
3242 	 */
3243 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3244 
3245 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3246 
3247 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3248 	if (num_act_queues)
3249 		budget_per_q = budget/num_act_queues;
3250 
3251 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3252 		/* skip queue if not active */
3253 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3254 			continue;
3255 
3256 		rx_queue = priv->rx_queue[i];
3257 		work_done_per_q =
3258 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3259 		work_done += work_done_per_q;
3260 
3261 		/* finished processing this queue */
3262 		if (work_done_per_q < budget_per_q) {
3263 			/* clear active queue hw indication */
3264 			gfar_write(&regs->rstat,
3265 				   RSTAT_CLEAR_RXF0 >> i);
3266 			num_act_queues--;
3267 
3268 			if (!num_act_queues)
3269 				break;
3270 		}
3271 	}
3272 
3273 	if (!num_act_queues) {
3274 		u32 imask;
3275 		napi_complete_done(napi, work_done);
3276 
3277 		/* Clear the halt bit in RSTAT */
3278 		gfar_write(&regs->rstat, gfargrp->rstat);
3279 
3280 		spin_lock_irq(&gfargrp->grplock);
3281 		imask = gfar_read(&regs->imask);
3282 		imask |= IMASK_RX_DEFAULT;
3283 		gfar_write(&regs->imask, imask);
3284 		spin_unlock_irq(&gfargrp->grplock);
3285 	}
3286 
3287 	return work_done;
3288 }
3289 
3290 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3291 {
3292 	struct gfar_priv_grp *gfargrp =
3293 		container_of(napi, struct gfar_priv_grp, napi_tx);
3294 	struct gfar_private *priv = gfargrp->priv;
3295 	struct gfar __iomem *regs = gfargrp->regs;
3296 	struct gfar_priv_tx_q *tx_queue = NULL;
3297 	int has_tx_work = 0;
3298 	int i;
3299 
3300 	/* Clear IEVENT, so interrupts aren't called again
3301 	 * because of the packets that have already arrived
3302 	 */
3303 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3304 
3305 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3306 		tx_queue = priv->tx_queue[i];
3307 		/* run Tx cleanup to completion */
3308 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3309 			gfar_clean_tx_ring(tx_queue);
3310 			has_tx_work = 1;
3311 		}
3312 	}
3313 
3314 	if (!has_tx_work) {
3315 		u32 imask;
3316 		napi_complete(napi);
3317 
3318 		spin_lock_irq(&gfargrp->grplock);
3319 		imask = gfar_read(&regs->imask);
3320 		imask |= IMASK_TX_DEFAULT;
3321 		gfar_write(&regs->imask, imask);
3322 		spin_unlock_irq(&gfargrp->grplock);
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 
3329 #ifdef CONFIG_NET_POLL_CONTROLLER
3330 /* Polling 'interrupt' - used by things like netconsole to send skbs
3331  * without having to re-enable interrupts. It's not called while
3332  * the interrupt routine is executing.
3333  */
3334 static void gfar_netpoll(struct net_device *dev)
3335 {
3336 	struct gfar_private *priv = netdev_priv(dev);
3337 	int i;
3338 
3339 	/* If the device has multiple interrupts, run tx/rx */
3340 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3341 		for (i = 0; i < priv->num_grps; i++) {
3342 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343 
3344 			disable_irq(gfar_irq(grp, TX)->irq);
3345 			disable_irq(gfar_irq(grp, RX)->irq);
3346 			disable_irq(gfar_irq(grp, ER)->irq);
3347 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3348 			enable_irq(gfar_irq(grp, ER)->irq);
3349 			enable_irq(gfar_irq(grp, RX)->irq);
3350 			enable_irq(gfar_irq(grp, TX)->irq);
3351 		}
3352 	} else {
3353 		for (i = 0; i < priv->num_grps; i++) {
3354 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3355 
3356 			disable_irq(gfar_irq(grp, TX)->irq);
3357 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3358 			enable_irq(gfar_irq(grp, TX)->irq);
3359 		}
3360 	}
3361 }
3362 #endif
3363 
3364 /* The interrupt handler for devices with one interrupt */
3365 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3366 {
3367 	struct gfar_priv_grp *gfargrp = grp_id;
3368 
3369 	/* Save ievent for future reference */
3370 	u32 events = gfar_read(&gfargrp->regs->ievent);
3371 
3372 	/* Check for reception */
3373 	if (events & IEVENT_RX_MASK)
3374 		gfar_receive(irq, grp_id);
3375 
3376 	/* Check for transmit completion */
3377 	if (events & IEVENT_TX_MASK)
3378 		gfar_transmit(irq, grp_id);
3379 
3380 	/* Check for errors */
3381 	if (events & IEVENT_ERR_MASK)
3382 		gfar_error(irq, grp_id);
3383 
3384 	return IRQ_HANDLED;
3385 }
3386 
3387 /* Called every time the controller might need to be made
3388  * aware of new link state.  The PHY code conveys this
3389  * information through variables in the phydev structure, and this
3390  * function converts those variables into the appropriate
3391  * register values, and can bring down the device if needed.
3392  */
3393 static void adjust_link(struct net_device *dev)
3394 {
3395 	struct gfar_private *priv = netdev_priv(dev);
3396 	struct phy_device *phydev = dev->phydev;
3397 
3398 	if (unlikely(phydev->link != priv->oldlink ||
3399 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3400 				       phydev->speed != priv->oldspeed))))
3401 		gfar_update_link_state(priv);
3402 }
3403 
3404 /* Update the hash table based on the current list of multicast
3405  * addresses we subscribe to.  Also, change the promiscuity of
3406  * the device based on the flags (this function is called
3407  * whenever dev->flags is changed
3408  */
3409 static void gfar_set_multi(struct net_device *dev)
3410 {
3411 	struct netdev_hw_addr *ha;
3412 	struct gfar_private *priv = netdev_priv(dev);
3413 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3414 	u32 tempval;
3415 
3416 	if (dev->flags & IFF_PROMISC) {
3417 		/* Set RCTRL to PROM */
3418 		tempval = gfar_read(&regs->rctrl);
3419 		tempval |= RCTRL_PROM;
3420 		gfar_write(&regs->rctrl, tempval);
3421 	} else {
3422 		/* Set RCTRL to not PROM */
3423 		tempval = gfar_read(&regs->rctrl);
3424 		tempval &= ~(RCTRL_PROM);
3425 		gfar_write(&regs->rctrl, tempval);
3426 	}
3427 
3428 	if (dev->flags & IFF_ALLMULTI) {
3429 		/* Set the hash to rx all multicast frames */
3430 		gfar_write(&regs->igaddr0, 0xffffffff);
3431 		gfar_write(&regs->igaddr1, 0xffffffff);
3432 		gfar_write(&regs->igaddr2, 0xffffffff);
3433 		gfar_write(&regs->igaddr3, 0xffffffff);
3434 		gfar_write(&regs->igaddr4, 0xffffffff);
3435 		gfar_write(&regs->igaddr5, 0xffffffff);
3436 		gfar_write(&regs->igaddr6, 0xffffffff);
3437 		gfar_write(&regs->igaddr7, 0xffffffff);
3438 		gfar_write(&regs->gaddr0, 0xffffffff);
3439 		gfar_write(&regs->gaddr1, 0xffffffff);
3440 		gfar_write(&regs->gaddr2, 0xffffffff);
3441 		gfar_write(&regs->gaddr3, 0xffffffff);
3442 		gfar_write(&regs->gaddr4, 0xffffffff);
3443 		gfar_write(&regs->gaddr5, 0xffffffff);
3444 		gfar_write(&regs->gaddr6, 0xffffffff);
3445 		gfar_write(&regs->gaddr7, 0xffffffff);
3446 	} else {
3447 		int em_num;
3448 		int idx;
3449 
3450 		/* zero out the hash */
3451 		gfar_write(&regs->igaddr0, 0x0);
3452 		gfar_write(&regs->igaddr1, 0x0);
3453 		gfar_write(&regs->igaddr2, 0x0);
3454 		gfar_write(&regs->igaddr3, 0x0);
3455 		gfar_write(&regs->igaddr4, 0x0);
3456 		gfar_write(&regs->igaddr5, 0x0);
3457 		gfar_write(&regs->igaddr6, 0x0);
3458 		gfar_write(&regs->igaddr7, 0x0);
3459 		gfar_write(&regs->gaddr0, 0x0);
3460 		gfar_write(&regs->gaddr1, 0x0);
3461 		gfar_write(&regs->gaddr2, 0x0);
3462 		gfar_write(&regs->gaddr3, 0x0);
3463 		gfar_write(&regs->gaddr4, 0x0);
3464 		gfar_write(&regs->gaddr5, 0x0);
3465 		gfar_write(&regs->gaddr6, 0x0);
3466 		gfar_write(&regs->gaddr7, 0x0);
3467 
3468 		/* If we have extended hash tables, we need to
3469 		 * clear the exact match registers to prepare for
3470 		 * setting them
3471 		 */
3472 		if (priv->extended_hash) {
3473 			em_num = GFAR_EM_NUM + 1;
3474 			gfar_clear_exact_match(dev);
3475 			idx = 1;
3476 		} else {
3477 			idx = 0;
3478 			em_num = 0;
3479 		}
3480 
3481 		if (netdev_mc_empty(dev))
3482 			return;
3483 
3484 		/* Parse the list, and set the appropriate bits */
3485 		netdev_for_each_mc_addr(ha, dev) {
3486 			if (idx < em_num) {
3487 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3488 				idx++;
3489 			} else
3490 				gfar_set_hash_for_addr(dev, ha->addr);
3491 		}
3492 	}
3493 }
3494 
3495 
3496 /* Clears each of the exact match registers to zero, so they
3497  * don't interfere with normal reception
3498  */
3499 static void gfar_clear_exact_match(struct net_device *dev)
3500 {
3501 	int idx;
3502 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3503 
3504 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3505 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3506 }
3507 
3508 /* Set the appropriate hash bit for the given addr */
3509 /* The algorithm works like so:
3510  * 1) Take the Destination Address (ie the multicast address), and
3511  * do a CRC on it (little endian), and reverse the bits of the
3512  * result.
3513  * 2) Use the 8 most significant bits as a hash into a 256-entry
3514  * table.  The table is controlled through 8 32-bit registers:
3515  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3516  * gaddr7.  This means that the 3 most significant bits in the
3517  * hash index which gaddr register to use, and the 5 other bits
3518  * indicate which bit (assuming an IBM numbering scheme, which
3519  * for PowerPC (tm) is usually the case) in the register holds
3520  * the entry.
3521  */
3522 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3523 {
3524 	u32 tempval;
3525 	struct gfar_private *priv = netdev_priv(dev);
3526 	u32 result = ether_crc(ETH_ALEN, addr);
3527 	int width = priv->hash_width;
3528 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3529 	u8 whichreg = result >> (32 - width + 5);
3530 	u32 value = (1 << (31-whichbit));
3531 
3532 	tempval = gfar_read(priv->hash_regs[whichreg]);
3533 	tempval |= value;
3534 	gfar_write(priv->hash_regs[whichreg], tempval);
3535 }
3536 
3537 
3538 /* There are multiple MAC Address register pairs on some controllers
3539  * This function sets the numth pair to a given address
3540  */
3541 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3542 				  const u8 *addr)
3543 {
3544 	struct gfar_private *priv = netdev_priv(dev);
3545 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3546 	u32 tempval;
3547 	u32 __iomem *macptr = &regs->macstnaddr1;
3548 
3549 	macptr += num*2;
3550 
3551 	/* For a station address of 0x12345678ABCD in transmission
3552 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3553 	 * MACnADDR2 is set to 0x34120000.
3554 	 */
3555 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3556 		  (addr[3] << 8)  |  addr[2];
3557 
3558 	gfar_write(macptr, tempval);
3559 
3560 	tempval = (addr[1] << 24) | (addr[0] << 16);
3561 
3562 	gfar_write(macptr+1, tempval);
3563 }
3564 
3565 /* GFAR error interrupt handler */
3566 static irqreturn_t gfar_error(int irq, void *grp_id)
3567 {
3568 	struct gfar_priv_grp *gfargrp = grp_id;
3569 	struct gfar __iomem *regs = gfargrp->regs;
3570 	struct gfar_private *priv= gfargrp->priv;
3571 	struct net_device *dev = priv->ndev;
3572 
3573 	/* Save ievent for future reference */
3574 	u32 events = gfar_read(&regs->ievent);
3575 
3576 	/* Clear IEVENT */
3577 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3578 
3579 	/* Magic Packet is not an error. */
3580 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3581 	    (events & IEVENT_MAG))
3582 		events &= ~IEVENT_MAG;
3583 
3584 	/* Hmm... */
3585 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3586 		netdev_dbg(dev,
3587 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3588 			   events, gfar_read(&regs->imask));
3589 
3590 	/* Update the error counters */
3591 	if (events & IEVENT_TXE) {
3592 		dev->stats.tx_errors++;
3593 
3594 		if (events & IEVENT_LC)
3595 			dev->stats.tx_window_errors++;
3596 		if (events & IEVENT_CRL)
3597 			dev->stats.tx_aborted_errors++;
3598 		if (events & IEVENT_XFUN) {
3599 			netif_dbg(priv, tx_err, dev,
3600 				  "TX FIFO underrun, packet dropped\n");
3601 			dev->stats.tx_dropped++;
3602 			atomic64_inc(&priv->extra_stats.tx_underrun);
3603 
3604 			schedule_work(&priv->reset_task);
3605 		}
3606 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3607 	}
3608 	if (events & IEVENT_BSY) {
3609 		dev->stats.rx_over_errors++;
3610 		atomic64_inc(&priv->extra_stats.rx_bsy);
3611 
3612 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3613 			  gfar_read(&regs->rstat));
3614 	}
3615 	if (events & IEVENT_BABR) {
3616 		dev->stats.rx_errors++;
3617 		atomic64_inc(&priv->extra_stats.rx_babr);
3618 
3619 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3620 	}
3621 	if (events & IEVENT_EBERR) {
3622 		atomic64_inc(&priv->extra_stats.eberr);
3623 		netif_dbg(priv, rx_err, dev, "bus error\n");
3624 	}
3625 	if (events & IEVENT_RXC)
3626 		netif_dbg(priv, rx_status, dev, "control frame\n");
3627 
3628 	if (events & IEVENT_BABT) {
3629 		atomic64_inc(&priv->extra_stats.tx_babt);
3630 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3631 	}
3632 	return IRQ_HANDLED;
3633 }
3634 
3635 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3636 {
3637 	struct net_device *ndev = priv->ndev;
3638 	struct phy_device *phydev = ndev->phydev;
3639 	u32 val = 0;
3640 
3641 	if (!phydev->duplex)
3642 		return val;
3643 
3644 	if (!priv->pause_aneg_en) {
3645 		if (priv->tx_pause_en)
3646 			val |= MACCFG1_TX_FLOW;
3647 		if (priv->rx_pause_en)
3648 			val |= MACCFG1_RX_FLOW;
3649 	} else {
3650 		u16 lcl_adv, rmt_adv;
3651 		u8 flowctrl;
3652 		/* get link partner capabilities */
3653 		rmt_adv = 0;
3654 		if (phydev->pause)
3655 			rmt_adv = LPA_PAUSE_CAP;
3656 		if (phydev->asym_pause)
3657 			rmt_adv |= LPA_PAUSE_ASYM;
3658 
3659 		lcl_adv = ethtool_adv_to_lcl_adv_t(phydev->advertising);
3660 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3661 		if (flowctrl & FLOW_CTRL_TX)
3662 			val |= MACCFG1_TX_FLOW;
3663 		if (flowctrl & FLOW_CTRL_RX)
3664 			val |= MACCFG1_RX_FLOW;
3665 	}
3666 
3667 	return val;
3668 }
3669 
3670 static noinline void gfar_update_link_state(struct gfar_private *priv)
3671 {
3672 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3673 	struct net_device *ndev = priv->ndev;
3674 	struct phy_device *phydev = ndev->phydev;
3675 	struct gfar_priv_rx_q *rx_queue = NULL;
3676 	int i;
3677 
3678 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3679 		return;
3680 
3681 	if (phydev->link) {
3682 		u32 tempval1 = gfar_read(&regs->maccfg1);
3683 		u32 tempval = gfar_read(&regs->maccfg2);
3684 		u32 ecntrl = gfar_read(&regs->ecntrl);
3685 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3686 
3687 		if (phydev->duplex != priv->oldduplex) {
3688 			if (!(phydev->duplex))
3689 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3690 			else
3691 				tempval |= MACCFG2_FULL_DUPLEX;
3692 
3693 			priv->oldduplex = phydev->duplex;
3694 		}
3695 
3696 		if (phydev->speed != priv->oldspeed) {
3697 			switch (phydev->speed) {
3698 			case 1000:
3699 				tempval =
3700 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3701 
3702 				ecntrl &= ~(ECNTRL_R100);
3703 				break;
3704 			case 100:
3705 			case 10:
3706 				tempval =
3707 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3708 
3709 				/* Reduced mode distinguishes
3710 				 * between 10 and 100
3711 				 */
3712 				if (phydev->speed == SPEED_100)
3713 					ecntrl |= ECNTRL_R100;
3714 				else
3715 					ecntrl &= ~(ECNTRL_R100);
3716 				break;
3717 			default:
3718 				netif_warn(priv, link, priv->ndev,
3719 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3720 					   phydev->speed);
3721 				break;
3722 			}
3723 
3724 			priv->oldspeed = phydev->speed;
3725 		}
3726 
3727 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3728 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3729 
3730 		/* Turn last free buffer recording on */
3731 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3732 			for (i = 0; i < priv->num_rx_queues; i++) {
3733 				u32 bdp_dma;
3734 
3735 				rx_queue = priv->rx_queue[i];
3736 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3737 				gfar_write(rx_queue->rfbptr, bdp_dma);
3738 			}
3739 
3740 			priv->tx_actual_en = 1;
3741 		}
3742 
3743 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3744 			priv->tx_actual_en = 0;
3745 
3746 		gfar_write(&regs->maccfg1, tempval1);
3747 		gfar_write(&regs->maccfg2, tempval);
3748 		gfar_write(&regs->ecntrl, ecntrl);
3749 
3750 		if (!priv->oldlink)
3751 			priv->oldlink = 1;
3752 
3753 	} else if (priv->oldlink) {
3754 		priv->oldlink = 0;
3755 		priv->oldspeed = 0;
3756 		priv->oldduplex = -1;
3757 	}
3758 
3759 	if (netif_msg_link(priv))
3760 		phy_print_status(phydev);
3761 }
3762 
3763 static const struct of_device_id gfar_match[] =
3764 {
3765 	{
3766 		.type = "network",
3767 		.compatible = "gianfar",
3768 	},
3769 	{
3770 		.compatible = "fsl,etsec2",
3771 	},
3772 	{},
3773 };
3774 MODULE_DEVICE_TABLE(of, gfar_match);
3775 
3776 /* Structure for a device driver */
3777 static struct platform_driver gfar_driver = {
3778 	.driver = {
3779 		.name = "fsl-gianfar",
3780 		.pm = GFAR_PM_OPS,
3781 		.of_match_table = gfar_match,
3782 	},
3783 	.probe = gfar_probe,
3784 	.remove = gfar_remove,
3785 };
3786 
3787 module_platform_driver(gfar_driver);
3788