xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (1*HZ)
111 
112 const char gfar_driver_version[] = "1.3";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 				    dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 			       int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 				  const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151 
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155 
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 			    dma_addr_t buf)
158 {
159 	u32 lstatus;
160 
161 	bdp->bufPtr = cpu_to_be32(buf);
162 
163 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 		lstatus |= BD_LFLAG(RXBD_WRAP);
166 
167 	gfar_wmb();
168 
169 	bdp->lstatus = cpu_to_be32(lstatus);
170 }
171 
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 	struct gfar_private *priv = netdev_priv(ndev);
175 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 	struct gfar_priv_tx_q *tx_queue = NULL;
177 	struct gfar_priv_rx_q *rx_queue = NULL;
178 	struct txbd8 *txbdp;
179 	struct rxbd8 *rxbdp;
180 	u32 __iomem *rfbptr;
181 	int i, j;
182 	dma_addr_t bufaddr;
183 
184 	for (i = 0; i < priv->num_tx_queues; i++) {
185 		tx_queue = priv->tx_queue[i];
186 		/* Initialize some variables in our dev structure */
187 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 		tx_queue->cur_tx = tx_queue->tx_bd_base;
190 		tx_queue->skb_curtx = 0;
191 		tx_queue->skb_dirtytx = 0;
192 
193 		/* Initialize Transmit Descriptor Ring */
194 		txbdp = tx_queue->tx_bd_base;
195 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 			txbdp->lstatus = 0;
197 			txbdp->bufPtr = 0;
198 			txbdp++;
199 		}
200 
201 		/* Set the last descriptor in the ring to indicate wrap */
202 		txbdp--;
203 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204 					    TXBD_WRAP);
205 	}
206 
207 	rfbptr = &regs->rfbptr0;
208 	for (i = 0; i < priv->num_rx_queues; i++) {
209 		rx_queue = priv->rx_queue[i];
210 		rx_queue->cur_rx = rx_queue->rx_bd_base;
211 		rx_queue->skb_currx = 0;
212 		rxbdp = rx_queue->rx_bd_base;
213 
214 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
215 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
216 
217 			if (skb) {
218 				bufaddr = be32_to_cpu(rxbdp->bufPtr);
219 			} else {
220 				skb = gfar_new_skb(ndev, &bufaddr);
221 				if (!skb) {
222 					netdev_err(ndev, "Can't allocate RX buffers\n");
223 					return -ENOMEM;
224 				}
225 				rx_queue->rx_skbuff[j] = skb;
226 			}
227 
228 			gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229 			rxbdp++;
230 		}
231 
232 		rx_queue->rfbptr = rfbptr;
233 		rfbptr += 2;
234 	}
235 
236 	return 0;
237 }
238 
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241 	void *vaddr;
242 	dma_addr_t addr;
243 	int i, j, k;
244 	struct gfar_private *priv = netdev_priv(ndev);
245 	struct device *dev = priv->dev;
246 	struct gfar_priv_tx_q *tx_queue = NULL;
247 	struct gfar_priv_rx_q *rx_queue = NULL;
248 
249 	priv->total_tx_ring_size = 0;
250 	for (i = 0; i < priv->num_tx_queues; i++)
251 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252 
253 	priv->total_rx_ring_size = 0;
254 	for (i = 0; i < priv->num_rx_queues; i++)
255 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256 
257 	/* Allocate memory for the buffer descriptors */
258 	vaddr = dma_alloc_coherent(dev,
259 				   (priv->total_tx_ring_size *
260 				    sizeof(struct txbd8)) +
261 				   (priv->total_rx_ring_size *
262 				    sizeof(struct rxbd8)),
263 				   &addr, GFP_KERNEL);
264 	if (!vaddr)
265 		return -ENOMEM;
266 
267 	for (i = 0; i < priv->num_tx_queues; i++) {
268 		tx_queue = priv->tx_queue[i];
269 		tx_queue->tx_bd_base = vaddr;
270 		tx_queue->tx_bd_dma_base = addr;
271 		tx_queue->dev = ndev;
272 		/* enet DMA only understands physical addresses */
273 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275 	}
276 
277 	/* Start the rx descriptor ring where the tx ring leaves off */
278 	for (i = 0; i < priv->num_rx_queues; i++) {
279 		rx_queue = priv->rx_queue[i];
280 		rx_queue->rx_bd_base = vaddr;
281 		rx_queue->rx_bd_dma_base = addr;
282 		rx_queue->dev = ndev;
283 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285 	}
286 
287 	/* Setup the skbuff rings */
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		tx_queue = priv->tx_queue[i];
290 		tx_queue->tx_skbuff =
291 			kmalloc_array(tx_queue->tx_ring_size,
292 				      sizeof(*tx_queue->tx_skbuff),
293 				      GFP_KERNEL);
294 		if (!tx_queue->tx_skbuff)
295 			goto cleanup;
296 
297 		for (k = 0; k < tx_queue->tx_ring_size; k++)
298 			tx_queue->tx_skbuff[k] = NULL;
299 	}
300 
301 	for (i = 0; i < priv->num_rx_queues; i++) {
302 		rx_queue = priv->rx_queue[i];
303 		rx_queue->rx_skbuff =
304 			kmalloc_array(rx_queue->rx_ring_size,
305 				      sizeof(*rx_queue->rx_skbuff),
306 				      GFP_KERNEL);
307 		if (!rx_queue->rx_skbuff)
308 			goto cleanup;
309 
310 		for (j = 0; j < rx_queue->rx_ring_size; j++)
311 			rx_queue->rx_skbuff[j] = NULL;
312 	}
313 
314 	if (gfar_init_bds(ndev))
315 		goto cleanup;
316 
317 	return 0;
318 
319 cleanup:
320 	free_skb_resources(priv);
321 	return -ENOMEM;
322 }
323 
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 	u32 __iomem *baddr;
328 	int i;
329 
330 	baddr = &regs->tbase0;
331 	for (i = 0; i < priv->num_tx_queues; i++) {
332 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 		baddr += 2;
334 	}
335 
336 	baddr = &regs->rbase0;
337 	for (i = 0; i < priv->num_rx_queues; i++) {
338 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 		baddr += 2;
340 	}
341 }
342 
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 __iomem *baddr;
347 	int i;
348 
349 	baddr = &regs->rqprm0;
350 	for (i = 0; i < priv->num_rx_queues; i++) {
351 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353 		baddr++;
354 	}
355 }
356 
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359 	int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360 
361 	/* set this when rx hw offload (TOE) functions are being used */
362 	priv->uses_rxfcb = 0;
363 
364 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365 		priv->uses_rxfcb = 1;
366 
367 	if (priv->hwts_rx_en)
368 		priv->uses_rxfcb = 1;
369 
370 	if (priv->uses_rxfcb)
371 		frame_size += GMAC_FCB_LEN;
372 
373 	frame_size += priv->padding;
374 
375 	frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376 		     INCREMENTAL_BUFFER_SIZE;
377 
378 	priv->rx_buffer_size = frame_size;
379 }
380 
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
384 	u32 rctrl = 0;
385 
386 	if (priv->rx_filer_enable) {
387 		rctrl |= RCTRL_FILREN;
388 		/* Program the RIR0 reg with the required distribution */
389 		if (priv->poll_mode == GFAR_SQ_POLLING)
390 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391 		else /* GFAR_MQ_POLLING */
392 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393 	}
394 
395 	/* Restore PROMISC mode */
396 	if (priv->ndev->flags & IFF_PROMISC)
397 		rctrl |= RCTRL_PROM;
398 
399 	if (priv->ndev->features & NETIF_F_RXCSUM)
400 		rctrl |= RCTRL_CHECKSUMMING;
401 
402 	if (priv->extended_hash)
403 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404 
405 	if (priv->padding) {
406 		rctrl &= ~RCTRL_PAL_MASK;
407 		rctrl |= RCTRL_PADDING(priv->padding);
408 	}
409 
410 	/* Enable HW time stamping if requested from user space */
411 	if (priv->hwts_rx_en)
412 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413 
414 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416 
417 	/* Clear the LFC bit */
418 	gfar_write(&regs->rctrl, rctrl);
419 	/* Init flow control threshold values */
420 	gfar_init_rqprm(priv);
421 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422 	rctrl |= RCTRL_LFC;
423 
424 	/* Init rctrl based on our settings */
425 	gfar_write(&regs->rctrl, rctrl);
426 }
427 
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
431 	u32 tctrl = 0;
432 
433 	if (priv->ndev->features & NETIF_F_IP_CSUM)
434 		tctrl |= TCTRL_INIT_CSUM;
435 
436 	if (priv->prio_sched_en)
437 		tctrl |= TCTRL_TXSCHED_PRIO;
438 	else {
439 		tctrl |= TCTRL_TXSCHED_WRRS;
440 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442 	}
443 
444 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445 		tctrl |= TCTRL_VLINS;
446 
447 	gfar_write(&regs->tctrl, tctrl);
448 }
449 
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451 			       unsigned long tx_mask, unsigned long rx_mask)
452 {
453 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
454 	u32 __iomem *baddr;
455 
456 	if (priv->mode == MQ_MG_MODE) {
457 		int i = 0;
458 
459 		baddr = &regs->txic0;
460 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461 			gfar_write(baddr + i, 0);
462 			if (likely(priv->tx_queue[i]->txcoalescing))
463 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
464 		}
465 
466 		baddr = &regs->rxic0;
467 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468 			gfar_write(baddr + i, 0);
469 			if (likely(priv->rx_queue[i]->rxcoalescing))
470 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 		}
472 	} else {
473 		/* Backward compatible case -- even if we enable
474 		 * multiple queues, there's only single reg to program
475 		 */
476 		gfar_write(&regs->txic, 0);
477 		if (likely(priv->tx_queue[0]->txcoalescing))
478 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479 
480 		gfar_write(&regs->rxic, 0);
481 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
482 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483 	}
484 }
485 
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490 
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493 	struct gfar_private *priv = netdev_priv(dev);
494 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495 	unsigned long tx_packets = 0, tx_bytes = 0;
496 	int i;
497 
498 	for (i = 0; i < priv->num_rx_queues; i++) {
499 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
500 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
501 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502 	}
503 
504 	dev->stats.rx_packets = rx_packets;
505 	dev->stats.rx_bytes   = rx_bytes;
506 	dev->stats.rx_dropped = rx_dropped;
507 
508 	for (i = 0; i < priv->num_tx_queues; i++) {
509 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
511 	}
512 
513 	dev->stats.tx_bytes   = tx_bytes;
514 	dev->stats.tx_packets = tx_packets;
515 
516 	return &dev->stats;
517 }
518 
519 static int gfar_set_mac_addr(struct net_device *dev, void *p)
520 {
521 	eth_mac_addr(dev, p);
522 
523 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
524 
525 	return 0;
526 }
527 
528 static const struct net_device_ops gfar_netdev_ops = {
529 	.ndo_open = gfar_enet_open,
530 	.ndo_start_xmit = gfar_start_xmit,
531 	.ndo_stop = gfar_close,
532 	.ndo_change_mtu = gfar_change_mtu,
533 	.ndo_set_features = gfar_set_features,
534 	.ndo_set_rx_mode = gfar_set_multi,
535 	.ndo_tx_timeout = gfar_timeout,
536 	.ndo_do_ioctl = gfar_ioctl,
537 	.ndo_get_stats = gfar_get_stats,
538 	.ndo_set_mac_address = gfar_set_mac_addr,
539 	.ndo_validate_addr = eth_validate_addr,
540 #ifdef CONFIG_NET_POLL_CONTROLLER
541 	.ndo_poll_controller = gfar_netpoll,
542 #endif
543 };
544 
545 static void gfar_ints_disable(struct gfar_private *priv)
546 {
547 	int i;
548 	for (i = 0; i < priv->num_grps; i++) {
549 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
550 		/* Clear IEVENT */
551 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
552 
553 		/* Initialize IMASK */
554 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
555 	}
556 }
557 
558 static void gfar_ints_enable(struct gfar_private *priv)
559 {
560 	int i;
561 	for (i = 0; i < priv->num_grps; i++) {
562 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
563 		/* Unmask the interrupts we look for */
564 		gfar_write(&regs->imask, IMASK_DEFAULT);
565 	}
566 }
567 
568 static int gfar_alloc_tx_queues(struct gfar_private *priv)
569 {
570 	int i;
571 
572 	for (i = 0; i < priv->num_tx_queues; i++) {
573 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
574 					    GFP_KERNEL);
575 		if (!priv->tx_queue[i])
576 			return -ENOMEM;
577 
578 		priv->tx_queue[i]->tx_skbuff = NULL;
579 		priv->tx_queue[i]->qindex = i;
580 		priv->tx_queue[i]->dev = priv->ndev;
581 		spin_lock_init(&(priv->tx_queue[i]->txlock));
582 	}
583 	return 0;
584 }
585 
586 static int gfar_alloc_rx_queues(struct gfar_private *priv)
587 {
588 	int i;
589 
590 	for (i = 0; i < priv->num_rx_queues; i++) {
591 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
592 					    GFP_KERNEL);
593 		if (!priv->rx_queue[i])
594 			return -ENOMEM;
595 
596 		priv->rx_queue[i]->rx_skbuff = NULL;
597 		priv->rx_queue[i]->qindex = i;
598 		priv->rx_queue[i]->dev = priv->ndev;
599 	}
600 	return 0;
601 }
602 
603 static void gfar_free_tx_queues(struct gfar_private *priv)
604 {
605 	int i;
606 
607 	for (i = 0; i < priv->num_tx_queues; i++)
608 		kfree(priv->tx_queue[i]);
609 }
610 
611 static void gfar_free_rx_queues(struct gfar_private *priv)
612 {
613 	int i;
614 
615 	for (i = 0; i < priv->num_rx_queues; i++)
616 		kfree(priv->rx_queue[i]);
617 }
618 
619 static void unmap_group_regs(struct gfar_private *priv)
620 {
621 	int i;
622 
623 	for (i = 0; i < MAXGROUPS; i++)
624 		if (priv->gfargrp[i].regs)
625 			iounmap(priv->gfargrp[i].regs);
626 }
627 
628 static void free_gfar_dev(struct gfar_private *priv)
629 {
630 	int i, j;
631 
632 	for (i = 0; i < priv->num_grps; i++)
633 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
634 			kfree(priv->gfargrp[i].irqinfo[j]);
635 			priv->gfargrp[i].irqinfo[j] = NULL;
636 		}
637 
638 	free_netdev(priv->ndev);
639 }
640 
641 static void disable_napi(struct gfar_private *priv)
642 {
643 	int i;
644 
645 	for (i = 0; i < priv->num_grps; i++) {
646 		napi_disable(&priv->gfargrp[i].napi_rx);
647 		napi_disable(&priv->gfargrp[i].napi_tx);
648 	}
649 }
650 
651 static void enable_napi(struct gfar_private *priv)
652 {
653 	int i;
654 
655 	for (i = 0; i < priv->num_grps; i++) {
656 		napi_enable(&priv->gfargrp[i].napi_rx);
657 		napi_enable(&priv->gfargrp[i].napi_tx);
658 	}
659 }
660 
661 static int gfar_parse_group(struct device_node *np,
662 			    struct gfar_private *priv, const char *model)
663 {
664 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
665 	int i;
666 
667 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
668 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
669 					  GFP_KERNEL);
670 		if (!grp->irqinfo[i])
671 			return -ENOMEM;
672 	}
673 
674 	grp->regs = of_iomap(np, 0);
675 	if (!grp->regs)
676 		return -ENOMEM;
677 
678 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
679 
680 	/* If we aren't the FEC we have multiple interrupts */
681 	if (model && strcasecmp(model, "FEC")) {
682 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
683 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
684 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
685 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
686 		    gfar_irq(grp, ER)->irq == NO_IRQ)
687 			return -EINVAL;
688 	}
689 
690 	grp->priv = priv;
691 	spin_lock_init(&grp->grplock);
692 	if (priv->mode == MQ_MG_MODE) {
693 		u32 rxq_mask, txq_mask;
694 		int ret;
695 
696 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
697 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
698 
699 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
700 		if (!ret) {
701 			grp->rx_bit_map = rxq_mask ?
702 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
703 		}
704 
705 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
706 		if (!ret) {
707 			grp->tx_bit_map = txq_mask ?
708 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
709 		}
710 
711 		if (priv->poll_mode == GFAR_SQ_POLLING) {
712 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
713 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
714 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
715 		}
716 	} else {
717 		grp->rx_bit_map = 0xFF;
718 		grp->tx_bit_map = 0xFF;
719 	}
720 
721 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
722 	 * right to left, so we need to revert the 8 bits to get the q index
723 	 */
724 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
725 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
726 
727 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
728 	 * also assign queues to groups
729 	 */
730 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
731 		if (!grp->rx_queue)
732 			grp->rx_queue = priv->rx_queue[i];
733 		grp->num_rx_queues++;
734 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
735 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
736 		priv->rx_queue[i]->grp = grp;
737 	}
738 
739 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
740 		if (!grp->tx_queue)
741 			grp->tx_queue = priv->tx_queue[i];
742 		grp->num_tx_queues++;
743 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
744 		priv->tqueue |= (TQUEUE_EN0 >> i);
745 		priv->tx_queue[i]->grp = grp;
746 	}
747 
748 	priv->num_grps++;
749 
750 	return 0;
751 }
752 
753 static int gfar_of_group_count(struct device_node *np)
754 {
755 	struct device_node *child;
756 	int num = 0;
757 
758 	for_each_available_child_of_node(np, child)
759 		if (!of_node_cmp(child->name, "queue-group"))
760 			num++;
761 
762 	return num;
763 }
764 
765 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
766 {
767 	const char *model;
768 	const char *ctype;
769 	const void *mac_addr;
770 	int err = 0, i;
771 	struct net_device *dev = NULL;
772 	struct gfar_private *priv = NULL;
773 	struct device_node *np = ofdev->dev.of_node;
774 	struct device_node *child = NULL;
775 	struct property *stash;
776 	u32 stash_len = 0;
777 	u32 stash_idx = 0;
778 	unsigned int num_tx_qs, num_rx_qs;
779 	unsigned short mode, poll_mode;
780 
781 	if (!np)
782 		return -ENODEV;
783 
784 	if (of_device_is_compatible(np, "fsl,etsec2")) {
785 		mode = MQ_MG_MODE;
786 		poll_mode = GFAR_SQ_POLLING;
787 	} else {
788 		mode = SQ_SG_MODE;
789 		poll_mode = GFAR_SQ_POLLING;
790 	}
791 
792 	if (mode == SQ_SG_MODE) {
793 		num_tx_qs = 1;
794 		num_rx_qs = 1;
795 	} else { /* MQ_MG_MODE */
796 		/* get the actual number of supported groups */
797 		unsigned int num_grps = gfar_of_group_count(np);
798 
799 		if (num_grps == 0 || num_grps > MAXGROUPS) {
800 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
801 				num_grps);
802 			pr_err("Cannot do alloc_etherdev, aborting\n");
803 			return -EINVAL;
804 		}
805 
806 		if (poll_mode == GFAR_SQ_POLLING) {
807 			num_tx_qs = num_grps; /* one txq per int group */
808 			num_rx_qs = num_grps; /* one rxq per int group */
809 		} else { /* GFAR_MQ_POLLING */
810 			u32 tx_queues, rx_queues;
811 			int ret;
812 
813 			/* parse the num of HW tx and rx queues */
814 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
815 						   &tx_queues);
816 			num_tx_qs = ret ? 1 : tx_queues;
817 
818 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
819 						   &rx_queues);
820 			num_rx_qs = ret ? 1 : rx_queues;
821 		}
822 	}
823 
824 	if (num_tx_qs > MAX_TX_QS) {
825 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
826 		       num_tx_qs, MAX_TX_QS);
827 		pr_err("Cannot do alloc_etherdev, aborting\n");
828 		return -EINVAL;
829 	}
830 
831 	if (num_rx_qs > MAX_RX_QS) {
832 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
833 		       num_rx_qs, MAX_RX_QS);
834 		pr_err("Cannot do alloc_etherdev, aborting\n");
835 		return -EINVAL;
836 	}
837 
838 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
839 	dev = *pdev;
840 	if (NULL == dev)
841 		return -ENOMEM;
842 
843 	priv = netdev_priv(dev);
844 	priv->ndev = dev;
845 
846 	priv->mode = mode;
847 	priv->poll_mode = poll_mode;
848 
849 	priv->num_tx_queues = num_tx_qs;
850 	netif_set_real_num_rx_queues(dev, num_rx_qs);
851 	priv->num_rx_queues = num_rx_qs;
852 
853 	err = gfar_alloc_tx_queues(priv);
854 	if (err)
855 		goto tx_alloc_failed;
856 
857 	err = gfar_alloc_rx_queues(priv);
858 	if (err)
859 		goto rx_alloc_failed;
860 
861 	err = of_property_read_string(np, "model", &model);
862 	if (err) {
863 		pr_err("Device model property missing, aborting\n");
864 		goto rx_alloc_failed;
865 	}
866 
867 	/* Init Rx queue filer rule set linked list */
868 	INIT_LIST_HEAD(&priv->rx_list.list);
869 	priv->rx_list.count = 0;
870 	mutex_init(&priv->rx_queue_access);
871 
872 	for (i = 0; i < MAXGROUPS; i++)
873 		priv->gfargrp[i].regs = NULL;
874 
875 	/* Parse and initialize group specific information */
876 	if (priv->mode == MQ_MG_MODE) {
877 		for_each_available_child_of_node(np, child) {
878 			if (of_node_cmp(child->name, "queue-group"))
879 				continue;
880 
881 			err = gfar_parse_group(child, priv, model);
882 			if (err)
883 				goto err_grp_init;
884 		}
885 	} else { /* SQ_SG_MODE */
886 		err = gfar_parse_group(np, priv, model);
887 		if (err)
888 			goto err_grp_init;
889 	}
890 
891 	stash = of_find_property(np, "bd-stash", NULL);
892 
893 	if (stash) {
894 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
895 		priv->bd_stash_en = 1;
896 	}
897 
898 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
899 
900 	if (err == 0)
901 		priv->rx_stash_size = stash_len;
902 
903 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
904 
905 	if (err == 0)
906 		priv->rx_stash_index = stash_idx;
907 
908 	if (stash_len || stash_idx)
909 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
910 
911 	mac_addr = of_get_mac_address(np);
912 
913 	if (mac_addr)
914 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
915 
916 	if (model && !strcasecmp(model, "TSEC"))
917 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
918 				     FSL_GIANFAR_DEV_HAS_COALESCE |
919 				     FSL_GIANFAR_DEV_HAS_RMON |
920 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
921 
922 	if (model && !strcasecmp(model, "eTSEC"))
923 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
924 				     FSL_GIANFAR_DEV_HAS_COALESCE |
925 				     FSL_GIANFAR_DEV_HAS_RMON |
926 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
927 				     FSL_GIANFAR_DEV_HAS_CSUM |
928 				     FSL_GIANFAR_DEV_HAS_VLAN |
929 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
930 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
931 				     FSL_GIANFAR_DEV_HAS_TIMER;
932 
933 	err = of_property_read_string(np, "phy-connection-type", &ctype);
934 
935 	/* We only care about rgmii-id.  The rest are autodetected */
936 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
937 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
938 	else
939 		priv->interface = PHY_INTERFACE_MODE_MII;
940 
941 	if (of_find_property(np, "fsl,magic-packet", NULL))
942 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
943 
944 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
945 
946 	/* In the case of a fixed PHY, the DT node associated
947 	 * to the PHY is the Ethernet MAC DT node.
948 	 */
949 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
950 		err = of_phy_register_fixed_link(np);
951 		if (err)
952 			goto err_grp_init;
953 
954 		priv->phy_node = of_node_get(np);
955 	}
956 
957 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
958 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
959 
960 	return 0;
961 
962 err_grp_init:
963 	unmap_group_regs(priv);
964 rx_alloc_failed:
965 	gfar_free_rx_queues(priv);
966 tx_alloc_failed:
967 	gfar_free_tx_queues(priv);
968 	free_gfar_dev(priv);
969 	return err;
970 }
971 
972 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
973 {
974 	struct hwtstamp_config config;
975 	struct gfar_private *priv = netdev_priv(netdev);
976 
977 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
978 		return -EFAULT;
979 
980 	/* reserved for future extensions */
981 	if (config.flags)
982 		return -EINVAL;
983 
984 	switch (config.tx_type) {
985 	case HWTSTAMP_TX_OFF:
986 		priv->hwts_tx_en = 0;
987 		break;
988 	case HWTSTAMP_TX_ON:
989 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
990 			return -ERANGE;
991 		priv->hwts_tx_en = 1;
992 		break;
993 	default:
994 		return -ERANGE;
995 	}
996 
997 	switch (config.rx_filter) {
998 	case HWTSTAMP_FILTER_NONE:
999 		if (priv->hwts_rx_en) {
1000 			priv->hwts_rx_en = 0;
1001 			reset_gfar(netdev);
1002 		}
1003 		break;
1004 	default:
1005 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1006 			return -ERANGE;
1007 		if (!priv->hwts_rx_en) {
1008 			priv->hwts_rx_en = 1;
1009 			reset_gfar(netdev);
1010 		}
1011 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1012 		break;
1013 	}
1014 
1015 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1016 		-EFAULT : 0;
1017 }
1018 
1019 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1020 {
1021 	struct hwtstamp_config config;
1022 	struct gfar_private *priv = netdev_priv(netdev);
1023 
1024 	config.flags = 0;
1025 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1026 	config.rx_filter = (priv->hwts_rx_en ?
1027 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1028 
1029 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1030 		-EFAULT : 0;
1031 }
1032 
1033 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1034 {
1035 	struct gfar_private *priv = netdev_priv(dev);
1036 
1037 	if (!netif_running(dev))
1038 		return -EINVAL;
1039 
1040 	if (cmd == SIOCSHWTSTAMP)
1041 		return gfar_hwtstamp_set(dev, rq);
1042 	if (cmd == SIOCGHWTSTAMP)
1043 		return gfar_hwtstamp_get(dev, rq);
1044 
1045 	if (!priv->phydev)
1046 		return -ENODEV;
1047 
1048 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1049 }
1050 
1051 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1052 				   u32 class)
1053 {
1054 	u32 rqfpr = FPR_FILER_MASK;
1055 	u32 rqfcr = 0x0;
1056 
1057 	rqfar--;
1058 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1059 	priv->ftp_rqfpr[rqfar] = rqfpr;
1060 	priv->ftp_rqfcr[rqfar] = rqfcr;
1061 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1062 
1063 	rqfar--;
1064 	rqfcr = RQFCR_CMP_NOMATCH;
1065 	priv->ftp_rqfpr[rqfar] = rqfpr;
1066 	priv->ftp_rqfcr[rqfar] = rqfcr;
1067 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1068 
1069 	rqfar--;
1070 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1071 	rqfpr = class;
1072 	priv->ftp_rqfcr[rqfar] = rqfcr;
1073 	priv->ftp_rqfpr[rqfar] = rqfpr;
1074 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1075 
1076 	rqfar--;
1077 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1078 	rqfpr = class;
1079 	priv->ftp_rqfcr[rqfar] = rqfcr;
1080 	priv->ftp_rqfpr[rqfar] = rqfpr;
1081 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1082 
1083 	return rqfar;
1084 }
1085 
1086 static void gfar_init_filer_table(struct gfar_private *priv)
1087 {
1088 	int i = 0x0;
1089 	u32 rqfar = MAX_FILER_IDX;
1090 	u32 rqfcr = 0x0;
1091 	u32 rqfpr = FPR_FILER_MASK;
1092 
1093 	/* Default rule */
1094 	rqfcr = RQFCR_CMP_MATCH;
1095 	priv->ftp_rqfcr[rqfar] = rqfcr;
1096 	priv->ftp_rqfpr[rqfar] = rqfpr;
1097 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1098 
1099 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1100 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1101 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1102 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1103 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1104 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1105 
1106 	/* cur_filer_idx indicated the first non-masked rule */
1107 	priv->cur_filer_idx = rqfar;
1108 
1109 	/* Rest are masked rules */
1110 	rqfcr = RQFCR_CMP_NOMATCH;
1111 	for (i = 0; i < rqfar; i++) {
1112 		priv->ftp_rqfcr[i] = rqfcr;
1113 		priv->ftp_rqfpr[i] = rqfpr;
1114 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1115 	}
1116 }
1117 
1118 #ifdef CONFIG_PPC
1119 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1120 {
1121 	unsigned int pvr = mfspr(SPRN_PVR);
1122 	unsigned int svr = mfspr(SPRN_SVR);
1123 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1124 	unsigned int rev = svr & 0xffff;
1125 
1126 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1127 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1128 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1129 		priv->errata |= GFAR_ERRATA_74;
1130 
1131 	/* MPC8313 and MPC837x all rev */
1132 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1133 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1134 		priv->errata |= GFAR_ERRATA_76;
1135 
1136 	/* MPC8313 Rev < 2.0 */
1137 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1138 		priv->errata |= GFAR_ERRATA_12;
1139 }
1140 
1141 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1142 {
1143 	unsigned int svr = mfspr(SPRN_SVR);
1144 
1145 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1146 		priv->errata |= GFAR_ERRATA_12;
1147 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1148 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1149 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1150 }
1151 #endif
1152 
1153 static void gfar_detect_errata(struct gfar_private *priv)
1154 {
1155 	struct device *dev = &priv->ofdev->dev;
1156 
1157 	/* no plans to fix */
1158 	priv->errata |= GFAR_ERRATA_A002;
1159 
1160 #ifdef CONFIG_PPC
1161 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1162 		__gfar_detect_errata_85xx(priv);
1163 	else /* non-mpc85xx parts, i.e. e300 core based */
1164 		__gfar_detect_errata_83xx(priv);
1165 #endif
1166 
1167 	if (priv->errata)
1168 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1169 			 priv->errata);
1170 }
1171 
1172 void gfar_mac_reset(struct gfar_private *priv)
1173 {
1174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1175 	u32 tempval;
1176 
1177 	/* Reset MAC layer */
1178 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1179 
1180 	/* We need to delay at least 3 TX clocks */
1181 	udelay(3);
1182 
1183 	/* the soft reset bit is not self-resetting, so we need to
1184 	 * clear it before resuming normal operation
1185 	 */
1186 	gfar_write(&regs->maccfg1, 0);
1187 
1188 	udelay(3);
1189 
1190 	/* Compute rx_buff_size based on config flags */
1191 	gfar_rx_buff_size_config(priv);
1192 
1193 	/* Initialize the max receive frame/buffer lengths */
1194 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1195 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1196 
1197 	/* Initialize the Minimum Frame Length Register */
1198 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1199 
1200 	/* Initialize MACCFG2. */
1201 	tempval = MACCFG2_INIT_SETTINGS;
1202 
1203 	/* If the mtu is larger than the max size for standard
1204 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
1205 	 * to allow huge frames, and to check the length
1206 	 */
1207 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1208 	    gfar_has_errata(priv, GFAR_ERRATA_74))
1209 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1210 
1211 	gfar_write(&regs->maccfg2, tempval);
1212 
1213 	/* Clear mac addr hash registers */
1214 	gfar_write(&regs->igaddr0, 0);
1215 	gfar_write(&regs->igaddr1, 0);
1216 	gfar_write(&regs->igaddr2, 0);
1217 	gfar_write(&regs->igaddr3, 0);
1218 	gfar_write(&regs->igaddr4, 0);
1219 	gfar_write(&regs->igaddr5, 0);
1220 	gfar_write(&regs->igaddr6, 0);
1221 	gfar_write(&regs->igaddr7, 0);
1222 
1223 	gfar_write(&regs->gaddr0, 0);
1224 	gfar_write(&regs->gaddr1, 0);
1225 	gfar_write(&regs->gaddr2, 0);
1226 	gfar_write(&regs->gaddr3, 0);
1227 	gfar_write(&regs->gaddr4, 0);
1228 	gfar_write(&regs->gaddr5, 0);
1229 	gfar_write(&regs->gaddr6, 0);
1230 	gfar_write(&regs->gaddr7, 0);
1231 
1232 	if (priv->extended_hash)
1233 		gfar_clear_exact_match(priv->ndev);
1234 
1235 	gfar_mac_rx_config(priv);
1236 
1237 	gfar_mac_tx_config(priv);
1238 
1239 	gfar_set_mac_address(priv->ndev);
1240 
1241 	gfar_set_multi(priv->ndev);
1242 
1243 	/* clear ievent and imask before configuring coalescing */
1244 	gfar_ints_disable(priv);
1245 
1246 	/* Configure the coalescing support */
1247 	gfar_configure_coalescing_all(priv);
1248 }
1249 
1250 static void gfar_hw_init(struct gfar_private *priv)
1251 {
1252 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1253 	u32 attrs;
1254 
1255 	/* Stop the DMA engine now, in case it was running before
1256 	 * (The firmware could have used it, and left it running).
1257 	 */
1258 	gfar_halt(priv);
1259 
1260 	gfar_mac_reset(priv);
1261 
1262 	/* Zero out the rmon mib registers if it has them */
1263 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1264 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1265 
1266 		/* Mask off the CAM interrupts */
1267 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1268 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1269 	}
1270 
1271 	/* Initialize ECNTRL */
1272 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1273 
1274 	/* Set the extraction length and index */
1275 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1276 		ATTRELI_EI(priv->rx_stash_index);
1277 
1278 	gfar_write(&regs->attreli, attrs);
1279 
1280 	/* Start with defaults, and add stashing
1281 	 * depending on driver parameters
1282 	 */
1283 	attrs = ATTR_INIT_SETTINGS;
1284 
1285 	if (priv->bd_stash_en)
1286 		attrs |= ATTR_BDSTASH;
1287 
1288 	if (priv->rx_stash_size != 0)
1289 		attrs |= ATTR_BUFSTASH;
1290 
1291 	gfar_write(&regs->attr, attrs);
1292 
1293 	/* FIFO configs */
1294 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1295 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1296 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1297 
1298 	/* Program the interrupt steering regs, only for MG devices */
1299 	if (priv->num_grps > 1)
1300 		gfar_write_isrg(priv);
1301 }
1302 
1303 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1304 {
1305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1306 
1307 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1308 		priv->extended_hash = 1;
1309 		priv->hash_width = 9;
1310 
1311 		priv->hash_regs[0] = &regs->igaddr0;
1312 		priv->hash_regs[1] = &regs->igaddr1;
1313 		priv->hash_regs[2] = &regs->igaddr2;
1314 		priv->hash_regs[3] = &regs->igaddr3;
1315 		priv->hash_regs[4] = &regs->igaddr4;
1316 		priv->hash_regs[5] = &regs->igaddr5;
1317 		priv->hash_regs[6] = &regs->igaddr6;
1318 		priv->hash_regs[7] = &regs->igaddr7;
1319 		priv->hash_regs[8] = &regs->gaddr0;
1320 		priv->hash_regs[9] = &regs->gaddr1;
1321 		priv->hash_regs[10] = &regs->gaddr2;
1322 		priv->hash_regs[11] = &regs->gaddr3;
1323 		priv->hash_regs[12] = &regs->gaddr4;
1324 		priv->hash_regs[13] = &regs->gaddr5;
1325 		priv->hash_regs[14] = &regs->gaddr6;
1326 		priv->hash_regs[15] = &regs->gaddr7;
1327 
1328 	} else {
1329 		priv->extended_hash = 0;
1330 		priv->hash_width = 8;
1331 
1332 		priv->hash_regs[0] = &regs->gaddr0;
1333 		priv->hash_regs[1] = &regs->gaddr1;
1334 		priv->hash_regs[2] = &regs->gaddr2;
1335 		priv->hash_regs[3] = &regs->gaddr3;
1336 		priv->hash_regs[4] = &regs->gaddr4;
1337 		priv->hash_regs[5] = &regs->gaddr5;
1338 		priv->hash_regs[6] = &regs->gaddr6;
1339 		priv->hash_regs[7] = &regs->gaddr7;
1340 	}
1341 }
1342 
1343 /* Set up the ethernet device structure, private data,
1344  * and anything else we need before we start
1345  */
1346 static int gfar_probe(struct platform_device *ofdev)
1347 {
1348 	struct net_device *dev = NULL;
1349 	struct gfar_private *priv = NULL;
1350 	int err = 0, i;
1351 
1352 	err = gfar_of_init(ofdev, &dev);
1353 
1354 	if (err)
1355 		return err;
1356 
1357 	priv = netdev_priv(dev);
1358 	priv->ndev = dev;
1359 	priv->ofdev = ofdev;
1360 	priv->dev = &ofdev->dev;
1361 	SET_NETDEV_DEV(dev, &ofdev->dev);
1362 
1363 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1364 
1365 	platform_set_drvdata(ofdev, priv);
1366 
1367 	gfar_detect_errata(priv);
1368 
1369 	/* Set the dev->base_addr to the gfar reg region */
1370 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1371 
1372 	/* Fill in the dev structure */
1373 	dev->watchdog_timeo = TX_TIMEOUT;
1374 	dev->mtu = 1500;
1375 	dev->netdev_ops = &gfar_netdev_ops;
1376 	dev->ethtool_ops = &gfar_ethtool_ops;
1377 
1378 	/* Register for napi ...We are registering NAPI for each grp */
1379 	for (i = 0; i < priv->num_grps; i++) {
1380 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1381 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1382 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1383 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1384 				       gfar_poll_tx_sq, 2);
1385 		} else {
1386 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1387 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1388 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1389 				       gfar_poll_tx, 2);
1390 		}
1391 	}
1392 
1393 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1394 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1395 				   NETIF_F_RXCSUM;
1396 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1397 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1398 	}
1399 
1400 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1401 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1402 				    NETIF_F_HW_VLAN_CTAG_RX;
1403 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1404 	}
1405 
1406 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1407 
1408 	gfar_init_addr_hash_table(priv);
1409 
1410 	/* Insert receive time stamps into padding alignment bytes */
1411 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1412 		priv->padding = 8;
1413 
1414 	if (dev->features & NETIF_F_IP_CSUM ||
1415 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1416 		dev->needed_headroom = GMAC_FCB_LEN;
1417 
1418 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1419 
1420 	/* Initializing some of the rx/tx queue level parameters */
1421 	for (i = 0; i < priv->num_tx_queues; i++) {
1422 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1423 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1424 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1425 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1426 	}
1427 
1428 	for (i = 0; i < priv->num_rx_queues; i++) {
1429 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1430 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1431 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1432 	}
1433 
1434 	/* always enable rx filer */
1435 	priv->rx_filer_enable = 1;
1436 	/* Enable most messages by default */
1437 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1438 	/* use pritority h/w tx queue scheduling for single queue devices */
1439 	if (priv->num_tx_queues == 1)
1440 		priv->prio_sched_en = 1;
1441 
1442 	set_bit(GFAR_DOWN, &priv->state);
1443 
1444 	gfar_hw_init(priv);
1445 
1446 	/* Carrier starts down, phylib will bring it up */
1447 	netif_carrier_off(dev);
1448 
1449 	err = register_netdev(dev);
1450 
1451 	if (err) {
1452 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1453 		goto register_fail;
1454 	}
1455 
1456 	device_set_wakeup_capable(&dev->dev, priv->device_flags &
1457 				  FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1458 
1459 	/* fill out IRQ number and name fields */
1460 	for (i = 0; i < priv->num_grps; i++) {
1461 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1462 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1463 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1464 				dev->name, "_g", '0' + i, "_tx");
1465 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1466 				dev->name, "_g", '0' + i, "_rx");
1467 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1468 				dev->name, "_g", '0' + i, "_er");
1469 		} else
1470 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1471 	}
1472 
1473 	/* Initialize the filer table */
1474 	gfar_init_filer_table(priv);
1475 
1476 	/* Print out the device info */
1477 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1478 
1479 	/* Even more device info helps when determining which kernel
1480 	 * provided which set of benchmarks.
1481 	 */
1482 	netdev_info(dev, "Running with NAPI enabled\n");
1483 	for (i = 0; i < priv->num_rx_queues; i++)
1484 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1485 			    i, priv->rx_queue[i]->rx_ring_size);
1486 	for (i = 0; i < priv->num_tx_queues; i++)
1487 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1488 			    i, priv->tx_queue[i]->tx_ring_size);
1489 
1490 	return 0;
1491 
1492 register_fail:
1493 	unmap_group_regs(priv);
1494 	gfar_free_rx_queues(priv);
1495 	gfar_free_tx_queues(priv);
1496 	of_node_put(priv->phy_node);
1497 	of_node_put(priv->tbi_node);
1498 	free_gfar_dev(priv);
1499 	return err;
1500 }
1501 
1502 static int gfar_remove(struct platform_device *ofdev)
1503 {
1504 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1505 
1506 	of_node_put(priv->phy_node);
1507 	of_node_put(priv->tbi_node);
1508 
1509 	unregister_netdev(priv->ndev);
1510 	unmap_group_regs(priv);
1511 	gfar_free_rx_queues(priv);
1512 	gfar_free_tx_queues(priv);
1513 	free_gfar_dev(priv);
1514 
1515 	return 0;
1516 }
1517 
1518 #ifdef CONFIG_PM
1519 
1520 static int gfar_suspend(struct device *dev)
1521 {
1522 	struct gfar_private *priv = dev_get_drvdata(dev);
1523 	struct net_device *ndev = priv->ndev;
1524 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1525 	u32 tempval;
1526 	int magic_packet = priv->wol_en &&
1527 			   (priv->device_flags &
1528 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1529 
1530 	if (!netif_running(ndev))
1531 		return 0;
1532 
1533 	disable_napi(priv);
1534 	netif_tx_lock(ndev);
1535 	netif_device_detach(ndev);
1536 	netif_tx_unlock(ndev);
1537 
1538 	gfar_halt(priv);
1539 
1540 	if (magic_packet) {
1541 		/* Enable interrupt on Magic Packet */
1542 		gfar_write(&regs->imask, IMASK_MAG);
1543 
1544 		/* Enable Magic Packet mode */
1545 		tempval = gfar_read(&regs->maccfg2);
1546 		tempval |= MACCFG2_MPEN;
1547 		gfar_write(&regs->maccfg2, tempval);
1548 
1549 		/* re-enable the Rx block */
1550 		tempval = gfar_read(&regs->maccfg1);
1551 		tempval |= MACCFG1_RX_EN;
1552 		gfar_write(&regs->maccfg1, tempval);
1553 
1554 	} else {
1555 		phy_stop(priv->phydev);
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static int gfar_resume(struct device *dev)
1562 {
1563 	struct gfar_private *priv = dev_get_drvdata(dev);
1564 	struct net_device *ndev = priv->ndev;
1565 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1566 	u32 tempval;
1567 	int magic_packet = priv->wol_en &&
1568 			   (priv->device_flags &
1569 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1570 
1571 	if (!netif_running(ndev))
1572 		return 0;
1573 
1574 	if (magic_packet) {
1575 		/* Disable Magic Packet mode */
1576 		tempval = gfar_read(&regs->maccfg2);
1577 		tempval &= ~MACCFG2_MPEN;
1578 		gfar_write(&regs->maccfg2, tempval);
1579 	} else {
1580 		phy_start(priv->phydev);
1581 	}
1582 
1583 	gfar_start(priv);
1584 
1585 	netif_device_attach(ndev);
1586 	enable_napi(priv);
1587 
1588 	return 0;
1589 }
1590 
1591 static int gfar_restore(struct device *dev)
1592 {
1593 	struct gfar_private *priv = dev_get_drvdata(dev);
1594 	struct net_device *ndev = priv->ndev;
1595 
1596 	if (!netif_running(ndev)) {
1597 		netif_device_attach(ndev);
1598 
1599 		return 0;
1600 	}
1601 
1602 	if (gfar_init_bds(ndev)) {
1603 		free_skb_resources(priv);
1604 		return -ENOMEM;
1605 	}
1606 
1607 	gfar_mac_reset(priv);
1608 
1609 	gfar_init_tx_rx_base(priv);
1610 
1611 	gfar_start(priv);
1612 
1613 	priv->oldlink = 0;
1614 	priv->oldspeed = 0;
1615 	priv->oldduplex = -1;
1616 
1617 	if (priv->phydev)
1618 		phy_start(priv->phydev);
1619 
1620 	netif_device_attach(ndev);
1621 	enable_napi(priv);
1622 
1623 	return 0;
1624 }
1625 
1626 static struct dev_pm_ops gfar_pm_ops = {
1627 	.suspend = gfar_suspend,
1628 	.resume = gfar_resume,
1629 	.freeze = gfar_suspend,
1630 	.thaw = gfar_resume,
1631 	.restore = gfar_restore,
1632 };
1633 
1634 #define GFAR_PM_OPS (&gfar_pm_ops)
1635 
1636 #else
1637 
1638 #define GFAR_PM_OPS NULL
1639 
1640 #endif
1641 
1642 /* Reads the controller's registers to determine what interface
1643  * connects it to the PHY.
1644  */
1645 static phy_interface_t gfar_get_interface(struct net_device *dev)
1646 {
1647 	struct gfar_private *priv = netdev_priv(dev);
1648 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649 	u32 ecntrl;
1650 
1651 	ecntrl = gfar_read(&regs->ecntrl);
1652 
1653 	if (ecntrl & ECNTRL_SGMII_MODE)
1654 		return PHY_INTERFACE_MODE_SGMII;
1655 
1656 	if (ecntrl & ECNTRL_TBI_MODE) {
1657 		if (ecntrl & ECNTRL_REDUCED_MODE)
1658 			return PHY_INTERFACE_MODE_RTBI;
1659 		else
1660 			return PHY_INTERFACE_MODE_TBI;
1661 	}
1662 
1663 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1664 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1665 			return PHY_INTERFACE_MODE_RMII;
1666 		}
1667 		else {
1668 			phy_interface_t interface = priv->interface;
1669 
1670 			/* This isn't autodetected right now, so it must
1671 			 * be set by the device tree or platform code.
1672 			 */
1673 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1674 				return PHY_INTERFACE_MODE_RGMII_ID;
1675 
1676 			return PHY_INTERFACE_MODE_RGMII;
1677 		}
1678 	}
1679 
1680 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1681 		return PHY_INTERFACE_MODE_GMII;
1682 
1683 	return PHY_INTERFACE_MODE_MII;
1684 }
1685 
1686 
1687 /* Initializes driver's PHY state, and attaches to the PHY.
1688  * Returns 0 on success.
1689  */
1690 static int init_phy(struct net_device *dev)
1691 {
1692 	struct gfar_private *priv = netdev_priv(dev);
1693 	uint gigabit_support =
1694 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1695 		GFAR_SUPPORTED_GBIT : 0;
1696 	phy_interface_t interface;
1697 
1698 	priv->oldlink = 0;
1699 	priv->oldspeed = 0;
1700 	priv->oldduplex = -1;
1701 
1702 	interface = gfar_get_interface(dev);
1703 
1704 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1705 				      interface);
1706 	if (!priv->phydev) {
1707 		dev_err(&dev->dev, "could not attach to PHY\n");
1708 		return -ENODEV;
1709 	}
1710 
1711 	if (interface == PHY_INTERFACE_MODE_SGMII)
1712 		gfar_configure_serdes(dev);
1713 
1714 	/* Remove any features not supported by the controller */
1715 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1716 	priv->phydev->advertising = priv->phydev->supported;
1717 
1718 	/* Add support for flow control, but don't advertise it by default */
1719 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1720 
1721 	return 0;
1722 }
1723 
1724 /* Initialize TBI PHY interface for communicating with the
1725  * SERDES lynx PHY on the chip.  We communicate with this PHY
1726  * through the MDIO bus on each controller, treating it as a
1727  * "normal" PHY at the address found in the TBIPA register.  We assume
1728  * that the TBIPA register is valid.  Either the MDIO bus code will set
1729  * it to a value that doesn't conflict with other PHYs on the bus, or the
1730  * value doesn't matter, as there are no other PHYs on the bus.
1731  */
1732 static void gfar_configure_serdes(struct net_device *dev)
1733 {
1734 	struct gfar_private *priv = netdev_priv(dev);
1735 	struct phy_device *tbiphy;
1736 
1737 	if (!priv->tbi_node) {
1738 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1739 				    "device tree specify a tbi-handle\n");
1740 		return;
1741 	}
1742 
1743 	tbiphy = of_phy_find_device(priv->tbi_node);
1744 	if (!tbiphy) {
1745 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1746 		return;
1747 	}
1748 
1749 	/* If the link is already up, we must already be ok, and don't need to
1750 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1751 	 * everything for us?  Resetting it takes the link down and requires
1752 	 * several seconds for it to come back.
1753 	 */
1754 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1755 		return;
1756 
1757 	/* Single clk mode, mii mode off(for serdes communication) */
1758 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1759 
1760 	phy_write(tbiphy, MII_ADVERTISE,
1761 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1762 		  ADVERTISE_1000XPSE_ASYM);
1763 
1764 	phy_write(tbiphy, MII_BMCR,
1765 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1766 		  BMCR_SPEED1000);
1767 }
1768 
1769 static int __gfar_is_rx_idle(struct gfar_private *priv)
1770 {
1771 	u32 res;
1772 
1773 	/* Normaly TSEC should not hang on GRS commands, so we should
1774 	 * actually wait for IEVENT_GRSC flag.
1775 	 */
1776 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1777 		return 0;
1778 
1779 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1780 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1781 	 * and the Rx can be safely reset.
1782 	 */
1783 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1784 	res &= 0x7f807f80;
1785 	if ((res & 0xffff) == (res >> 16))
1786 		return 1;
1787 
1788 	return 0;
1789 }
1790 
1791 /* Halt the receive and transmit queues */
1792 static void gfar_halt_nodisable(struct gfar_private *priv)
1793 {
1794 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1795 	u32 tempval;
1796 	unsigned int timeout;
1797 	int stopped;
1798 
1799 	gfar_ints_disable(priv);
1800 
1801 	if (gfar_is_dma_stopped(priv))
1802 		return;
1803 
1804 	/* Stop the DMA, and wait for it to stop */
1805 	tempval = gfar_read(&regs->dmactrl);
1806 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1807 	gfar_write(&regs->dmactrl, tempval);
1808 
1809 retry:
1810 	timeout = 1000;
1811 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1812 		cpu_relax();
1813 		timeout--;
1814 	}
1815 
1816 	if (!timeout)
1817 		stopped = gfar_is_dma_stopped(priv);
1818 
1819 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1820 	    !__gfar_is_rx_idle(priv))
1821 		goto retry;
1822 }
1823 
1824 /* Halt the receive and transmit queues */
1825 void gfar_halt(struct gfar_private *priv)
1826 {
1827 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1828 	u32 tempval;
1829 
1830 	/* Dissable the Rx/Tx hw queues */
1831 	gfar_write(&regs->rqueue, 0);
1832 	gfar_write(&regs->tqueue, 0);
1833 
1834 	mdelay(10);
1835 
1836 	gfar_halt_nodisable(priv);
1837 
1838 	/* Disable Rx/Tx DMA */
1839 	tempval = gfar_read(&regs->maccfg1);
1840 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1841 	gfar_write(&regs->maccfg1, tempval);
1842 }
1843 
1844 void stop_gfar(struct net_device *dev)
1845 {
1846 	struct gfar_private *priv = netdev_priv(dev);
1847 
1848 	netif_tx_stop_all_queues(dev);
1849 
1850 	smp_mb__before_atomic();
1851 	set_bit(GFAR_DOWN, &priv->state);
1852 	smp_mb__after_atomic();
1853 
1854 	disable_napi(priv);
1855 
1856 	/* disable ints and gracefully shut down Rx/Tx DMA */
1857 	gfar_halt(priv);
1858 
1859 	phy_stop(priv->phydev);
1860 
1861 	free_skb_resources(priv);
1862 }
1863 
1864 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1865 {
1866 	struct txbd8 *txbdp;
1867 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1868 	int i, j;
1869 
1870 	txbdp = tx_queue->tx_bd_base;
1871 
1872 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1873 		if (!tx_queue->tx_skbuff[i])
1874 			continue;
1875 
1876 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1877 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1878 		txbdp->lstatus = 0;
1879 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1880 		     j++) {
1881 			txbdp++;
1882 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1883 				       be16_to_cpu(txbdp->length),
1884 				       DMA_TO_DEVICE);
1885 		}
1886 		txbdp++;
1887 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1888 		tx_queue->tx_skbuff[i] = NULL;
1889 	}
1890 	kfree(tx_queue->tx_skbuff);
1891 	tx_queue->tx_skbuff = NULL;
1892 }
1893 
1894 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1895 {
1896 	struct rxbd8 *rxbdp;
1897 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1898 	int i;
1899 
1900 	rxbdp = rx_queue->rx_bd_base;
1901 
1902 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1903 		if (rx_queue->rx_skbuff[i]) {
1904 			dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1905 					 priv->rx_buffer_size,
1906 					 DMA_FROM_DEVICE);
1907 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1908 			rx_queue->rx_skbuff[i] = NULL;
1909 		}
1910 		rxbdp->lstatus = 0;
1911 		rxbdp->bufPtr = 0;
1912 		rxbdp++;
1913 	}
1914 	kfree(rx_queue->rx_skbuff);
1915 	rx_queue->rx_skbuff = NULL;
1916 }
1917 
1918 /* If there are any tx skbs or rx skbs still around, free them.
1919  * Then free tx_skbuff and rx_skbuff
1920  */
1921 static void free_skb_resources(struct gfar_private *priv)
1922 {
1923 	struct gfar_priv_tx_q *tx_queue = NULL;
1924 	struct gfar_priv_rx_q *rx_queue = NULL;
1925 	int i;
1926 
1927 	/* Go through all the buffer descriptors and free their data buffers */
1928 	for (i = 0; i < priv->num_tx_queues; i++) {
1929 		struct netdev_queue *txq;
1930 
1931 		tx_queue = priv->tx_queue[i];
1932 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1933 		if (tx_queue->tx_skbuff)
1934 			free_skb_tx_queue(tx_queue);
1935 		netdev_tx_reset_queue(txq);
1936 	}
1937 
1938 	for (i = 0; i < priv->num_rx_queues; i++) {
1939 		rx_queue = priv->rx_queue[i];
1940 		if (rx_queue->rx_skbuff)
1941 			free_skb_rx_queue(rx_queue);
1942 	}
1943 
1944 	dma_free_coherent(priv->dev,
1945 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1946 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1947 			  priv->tx_queue[0]->tx_bd_base,
1948 			  priv->tx_queue[0]->tx_bd_dma_base);
1949 }
1950 
1951 void gfar_start(struct gfar_private *priv)
1952 {
1953 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1954 	u32 tempval;
1955 	int i = 0;
1956 
1957 	/* Enable Rx/Tx hw queues */
1958 	gfar_write(&regs->rqueue, priv->rqueue);
1959 	gfar_write(&regs->tqueue, priv->tqueue);
1960 
1961 	/* Initialize DMACTRL to have WWR and WOP */
1962 	tempval = gfar_read(&regs->dmactrl);
1963 	tempval |= DMACTRL_INIT_SETTINGS;
1964 	gfar_write(&regs->dmactrl, tempval);
1965 
1966 	/* Make sure we aren't stopped */
1967 	tempval = gfar_read(&regs->dmactrl);
1968 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1969 	gfar_write(&regs->dmactrl, tempval);
1970 
1971 	for (i = 0; i < priv->num_grps; i++) {
1972 		regs = priv->gfargrp[i].regs;
1973 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1974 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1975 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1976 	}
1977 
1978 	/* Enable Rx/Tx DMA */
1979 	tempval = gfar_read(&regs->maccfg1);
1980 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1981 	gfar_write(&regs->maccfg1, tempval);
1982 
1983 	gfar_ints_enable(priv);
1984 
1985 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1986 }
1987 
1988 static void free_grp_irqs(struct gfar_priv_grp *grp)
1989 {
1990 	free_irq(gfar_irq(grp, TX)->irq, grp);
1991 	free_irq(gfar_irq(grp, RX)->irq, grp);
1992 	free_irq(gfar_irq(grp, ER)->irq, grp);
1993 }
1994 
1995 static int register_grp_irqs(struct gfar_priv_grp *grp)
1996 {
1997 	struct gfar_private *priv = grp->priv;
1998 	struct net_device *dev = priv->ndev;
1999 	int err;
2000 
2001 	/* If the device has multiple interrupts, register for
2002 	 * them.  Otherwise, only register for the one
2003 	 */
2004 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2005 		/* Install our interrupt handlers for Error,
2006 		 * Transmit, and Receive
2007 		 */
2008 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error,
2009 				  IRQF_NO_SUSPEND,
2010 				  gfar_irq(grp, ER)->name, grp);
2011 		if (err < 0) {
2012 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2013 				  gfar_irq(grp, ER)->irq);
2014 
2015 			goto err_irq_fail;
2016 		}
2017 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2018 				  gfar_irq(grp, TX)->name, grp);
2019 		if (err < 0) {
2020 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2021 				  gfar_irq(grp, TX)->irq);
2022 			goto tx_irq_fail;
2023 		}
2024 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2025 				  gfar_irq(grp, RX)->name, grp);
2026 		if (err < 0) {
2027 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2028 				  gfar_irq(grp, RX)->irq);
2029 			goto rx_irq_fail;
2030 		}
2031 	} else {
2032 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt,
2033 				  IRQF_NO_SUSPEND,
2034 				  gfar_irq(grp, TX)->name, grp);
2035 		if (err < 0) {
2036 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2037 				  gfar_irq(grp, TX)->irq);
2038 			goto err_irq_fail;
2039 		}
2040 	}
2041 
2042 	return 0;
2043 
2044 rx_irq_fail:
2045 	free_irq(gfar_irq(grp, TX)->irq, grp);
2046 tx_irq_fail:
2047 	free_irq(gfar_irq(grp, ER)->irq, grp);
2048 err_irq_fail:
2049 	return err;
2050 
2051 }
2052 
2053 static void gfar_free_irq(struct gfar_private *priv)
2054 {
2055 	int i;
2056 
2057 	/* Free the IRQs */
2058 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2059 		for (i = 0; i < priv->num_grps; i++)
2060 			free_grp_irqs(&priv->gfargrp[i]);
2061 	} else {
2062 		for (i = 0; i < priv->num_grps; i++)
2063 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2064 				 &priv->gfargrp[i]);
2065 	}
2066 }
2067 
2068 static int gfar_request_irq(struct gfar_private *priv)
2069 {
2070 	int err, i, j;
2071 
2072 	for (i = 0; i < priv->num_grps; i++) {
2073 		err = register_grp_irqs(&priv->gfargrp[i]);
2074 		if (err) {
2075 			for (j = 0; j < i; j++)
2076 				free_grp_irqs(&priv->gfargrp[j]);
2077 			return err;
2078 		}
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 /* Bring the controller up and running */
2085 int startup_gfar(struct net_device *ndev)
2086 {
2087 	struct gfar_private *priv = netdev_priv(ndev);
2088 	int err;
2089 
2090 	gfar_mac_reset(priv);
2091 
2092 	err = gfar_alloc_skb_resources(ndev);
2093 	if (err)
2094 		return err;
2095 
2096 	gfar_init_tx_rx_base(priv);
2097 
2098 	smp_mb__before_atomic();
2099 	clear_bit(GFAR_DOWN, &priv->state);
2100 	smp_mb__after_atomic();
2101 
2102 	/* Start Rx/Tx DMA and enable the interrupts */
2103 	gfar_start(priv);
2104 
2105 	/* force link state update after mac reset */
2106 	priv->oldlink = 0;
2107 	priv->oldspeed = 0;
2108 	priv->oldduplex = -1;
2109 
2110 	phy_start(priv->phydev);
2111 
2112 	enable_napi(priv);
2113 
2114 	netif_tx_wake_all_queues(ndev);
2115 
2116 	return 0;
2117 }
2118 
2119 /* Called when something needs to use the ethernet device
2120  * Returns 0 for success.
2121  */
2122 static int gfar_enet_open(struct net_device *dev)
2123 {
2124 	struct gfar_private *priv = netdev_priv(dev);
2125 	int err;
2126 
2127 	err = init_phy(dev);
2128 	if (err)
2129 		return err;
2130 
2131 	err = gfar_request_irq(priv);
2132 	if (err)
2133 		return err;
2134 
2135 	err = startup_gfar(dev);
2136 	if (err)
2137 		return err;
2138 
2139 	return err;
2140 }
2141 
2142 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2143 {
2144 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2145 
2146 	memset(fcb, 0, GMAC_FCB_LEN);
2147 
2148 	return fcb;
2149 }
2150 
2151 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2152 				    int fcb_length)
2153 {
2154 	/* If we're here, it's a IP packet with a TCP or UDP
2155 	 * payload.  We set it to checksum, using a pseudo-header
2156 	 * we provide
2157 	 */
2158 	u8 flags = TXFCB_DEFAULT;
2159 
2160 	/* Tell the controller what the protocol is
2161 	 * And provide the already calculated phcs
2162 	 */
2163 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2164 		flags |= TXFCB_UDP;
2165 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2166 	} else
2167 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2168 
2169 	/* l3os is the distance between the start of the
2170 	 * frame (skb->data) and the start of the IP hdr.
2171 	 * l4os is the distance between the start of the
2172 	 * l3 hdr and the l4 hdr
2173 	 */
2174 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2175 	fcb->l4os = skb_network_header_len(skb);
2176 
2177 	fcb->flags = flags;
2178 }
2179 
2180 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2181 {
2182 	fcb->flags |= TXFCB_VLN;
2183 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2184 }
2185 
2186 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2187 				      struct txbd8 *base, int ring_size)
2188 {
2189 	struct txbd8 *new_bd = bdp + stride;
2190 
2191 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2192 }
2193 
2194 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2195 				      int ring_size)
2196 {
2197 	return skip_txbd(bdp, 1, base, ring_size);
2198 }
2199 
2200 /* eTSEC12: csum generation not supported for some fcb offsets */
2201 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2202 				       unsigned long fcb_addr)
2203 {
2204 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2205 	       (fcb_addr % 0x20) > 0x18);
2206 }
2207 
2208 /* eTSEC76: csum generation for frames larger than 2500 may
2209  * cause excess delays before start of transmission
2210  */
2211 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2212 				       unsigned int len)
2213 {
2214 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2215 	       (len > 2500));
2216 }
2217 
2218 /* This is called by the kernel when a frame is ready for transmission.
2219  * It is pointed to by the dev->hard_start_xmit function pointer
2220  */
2221 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2222 {
2223 	struct gfar_private *priv = netdev_priv(dev);
2224 	struct gfar_priv_tx_q *tx_queue = NULL;
2225 	struct netdev_queue *txq;
2226 	struct gfar __iomem *regs = NULL;
2227 	struct txfcb *fcb = NULL;
2228 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2229 	u32 lstatus;
2230 	int i, rq = 0;
2231 	int do_tstamp, do_csum, do_vlan;
2232 	u32 bufaddr;
2233 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2234 
2235 	rq = skb->queue_mapping;
2236 	tx_queue = priv->tx_queue[rq];
2237 	txq = netdev_get_tx_queue(dev, rq);
2238 	base = tx_queue->tx_bd_base;
2239 	regs = tx_queue->grp->regs;
2240 
2241 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2242 	do_vlan = skb_vlan_tag_present(skb);
2243 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2244 		    priv->hwts_tx_en;
2245 
2246 	if (do_csum || do_vlan)
2247 		fcb_len = GMAC_FCB_LEN;
2248 
2249 	/* check if time stamp should be generated */
2250 	if (unlikely(do_tstamp))
2251 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2252 
2253 	/* make space for additional header when fcb is needed */
2254 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2255 		struct sk_buff *skb_new;
2256 
2257 		skb_new = skb_realloc_headroom(skb, fcb_len);
2258 		if (!skb_new) {
2259 			dev->stats.tx_errors++;
2260 			dev_kfree_skb_any(skb);
2261 			return NETDEV_TX_OK;
2262 		}
2263 
2264 		if (skb->sk)
2265 			skb_set_owner_w(skb_new, skb->sk);
2266 		dev_consume_skb_any(skb);
2267 		skb = skb_new;
2268 	}
2269 
2270 	/* total number of fragments in the SKB */
2271 	nr_frags = skb_shinfo(skb)->nr_frags;
2272 
2273 	/* calculate the required number of TxBDs for this skb */
2274 	if (unlikely(do_tstamp))
2275 		nr_txbds = nr_frags + 2;
2276 	else
2277 		nr_txbds = nr_frags + 1;
2278 
2279 	/* check if there is space to queue this packet */
2280 	if (nr_txbds > tx_queue->num_txbdfree) {
2281 		/* no space, stop the queue */
2282 		netif_tx_stop_queue(txq);
2283 		dev->stats.tx_fifo_errors++;
2284 		return NETDEV_TX_BUSY;
2285 	}
2286 
2287 	/* Update transmit stats */
2288 	bytes_sent = skb->len;
2289 	tx_queue->stats.tx_bytes += bytes_sent;
2290 	/* keep Tx bytes on wire for BQL accounting */
2291 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2292 	tx_queue->stats.tx_packets++;
2293 
2294 	txbdp = txbdp_start = tx_queue->cur_tx;
2295 	lstatus = be32_to_cpu(txbdp->lstatus);
2296 
2297 	/* Time stamp insertion requires one additional TxBD */
2298 	if (unlikely(do_tstamp))
2299 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2300 						 tx_queue->tx_ring_size);
2301 
2302 	if (nr_frags == 0) {
2303 		if (unlikely(do_tstamp)) {
2304 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2305 
2306 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2307 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2308 		} else {
2309 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2310 		}
2311 	} else {
2312 		/* Place the fragment addresses and lengths into the TxBDs */
2313 		for (i = 0; i < nr_frags; i++) {
2314 			unsigned int frag_len;
2315 			/* Point at the next BD, wrapping as needed */
2316 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2317 
2318 			frag_len = skb_shinfo(skb)->frags[i].size;
2319 
2320 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2321 				  BD_LFLAG(TXBD_READY);
2322 
2323 			/* Handle the last BD specially */
2324 			if (i == nr_frags - 1)
2325 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2326 
2327 			bufaddr = skb_frag_dma_map(priv->dev,
2328 						   &skb_shinfo(skb)->frags[i],
2329 						   0,
2330 						   frag_len,
2331 						   DMA_TO_DEVICE);
2332 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2333 				goto dma_map_err;
2334 
2335 			/* set the TxBD length and buffer pointer */
2336 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2337 			txbdp->lstatus = cpu_to_be32(lstatus);
2338 		}
2339 
2340 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2341 	}
2342 
2343 	/* Add TxPAL between FCB and frame if required */
2344 	if (unlikely(do_tstamp)) {
2345 		skb_push(skb, GMAC_TXPAL_LEN);
2346 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2347 	}
2348 
2349 	/* Add TxFCB if required */
2350 	if (fcb_len) {
2351 		fcb = gfar_add_fcb(skb);
2352 		lstatus |= BD_LFLAG(TXBD_TOE);
2353 	}
2354 
2355 	/* Set up checksumming */
2356 	if (do_csum) {
2357 		gfar_tx_checksum(skb, fcb, fcb_len);
2358 
2359 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2360 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2361 			__skb_pull(skb, GMAC_FCB_LEN);
2362 			skb_checksum_help(skb);
2363 			if (do_vlan || do_tstamp) {
2364 				/* put back a new fcb for vlan/tstamp TOE */
2365 				fcb = gfar_add_fcb(skb);
2366 			} else {
2367 				/* Tx TOE not used */
2368 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2369 				fcb = NULL;
2370 			}
2371 		}
2372 	}
2373 
2374 	if (do_vlan)
2375 		gfar_tx_vlan(skb, fcb);
2376 
2377 	/* Setup tx hardware time stamping if requested */
2378 	if (unlikely(do_tstamp)) {
2379 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2380 		fcb->ptp = 1;
2381 	}
2382 
2383 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2384 				 DMA_TO_DEVICE);
2385 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2386 		goto dma_map_err;
2387 
2388 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2389 
2390 	/* If time stamping is requested one additional TxBD must be set up. The
2391 	 * first TxBD points to the FCB and must have a data length of
2392 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2393 	 * the full frame length.
2394 	 */
2395 	if (unlikely(do_tstamp)) {
2396 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2397 
2398 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2399 		bufaddr += fcb_len;
2400 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2401 			      (skb_headlen(skb) - fcb_len);
2402 
2403 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2404 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2405 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2406 	} else {
2407 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2408 	}
2409 
2410 	netdev_tx_sent_queue(txq, bytes_sent);
2411 
2412 	gfar_wmb();
2413 
2414 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2415 
2416 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2417 
2418 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2419 
2420 	/* Update the current skb pointer to the next entry we will use
2421 	 * (wrapping if necessary)
2422 	 */
2423 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2424 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2425 
2426 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2427 
2428 	/* We can work in parallel with gfar_clean_tx_ring(), except
2429 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2430 	 * when we were reading the num_txbdfree and checking for available
2431 	 * space, that's because outside of this function it can only grow.
2432 	 */
2433 	spin_lock_bh(&tx_queue->txlock);
2434 	/* reduce TxBD free count */
2435 	tx_queue->num_txbdfree -= (nr_txbds);
2436 	spin_unlock_bh(&tx_queue->txlock);
2437 
2438 	/* If the next BD still needs to be cleaned up, then the bds
2439 	 * are full.  We need to tell the kernel to stop sending us stuff.
2440 	 */
2441 	if (!tx_queue->num_txbdfree) {
2442 		netif_tx_stop_queue(txq);
2443 
2444 		dev->stats.tx_fifo_errors++;
2445 	}
2446 
2447 	/* Tell the DMA to go go go */
2448 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2449 
2450 	return NETDEV_TX_OK;
2451 
2452 dma_map_err:
2453 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2454 	if (do_tstamp)
2455 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2456 	for (i = 0; i < nr_frags; i++) {
2457 		lstatus = be32_to_cpu(txbdp->lstatus);
2458 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2459 			break;
2460 
2461 		lstatus &= ~BD_LFLAG(TXBD_READY);
2462 		txbdp->lstatus = cpu_to_be32(lstatus);
2463 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2464 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2465 			       DMA_TO_DEVICE);
2466 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2467 	}
2468 	gfar_wmb();
2469 	dev_kfree_skb_any(skb);
2470 	return NETDEV_TX_OK;
2471 }
2472 
2473 /* Stops the kernel queue, and halts the controller */
2474 static int gfar_close(struct net_device *dev)
2475 {
2476 	struct gfar_private *priv = netdev_priv(dev);
2477 
2478 	cancel_work_sync(&priv->reset_task);
2479 	stop_gfar(dev);
2480 
2481 	/* Disconnect from the PHY */
2482 	phy_disconnect(priv->phydev);
2483 	priv->phydev = NULL;
2484 
2485 	gfar_free_irq(priv);
2486 
2487 	return 0;
2488 }
2489 
2490 /* Changes the mac address if the controller is not running. */
2491 static int gfar_set_mac_address(struct net_device *dev)
2492 {
2493 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2494 
2495 	return 0;
2496 }
2497 
2498 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2499 {
2500 	struct gfar_private *priv = netdev_priv(dev);
2501 	int frame_size = new_mtu + ETH_HLEN;
2502 
2503 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2504 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2505 		return -EINVAL;
2506 	}
2507 
2508 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2509 		cpu_relax();
2510 
2511 	if (dev->flags & IFF_UP)
2512 		stop_gfar(dev);
2513 
2514 	dev->mtu = new_mtu;
2515 
2516 	if (dev->flags & IFF_UP)
2517 		startup_gfar(dev);
2518 
2519 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2520 
2521 	return 0;
2522 }
2523 
2524 void reset_gfar(struct net_device *ndev)
2525 {
2526 	struct gfar_private *priv = netdev_priv(ndev);
2527 
2528 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2529 		cpu_relax();
2530 
2531 	stop_gfar(ndev);
2532 	startup_gfar(ndev);
2533 
2534 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2535 }
2536 
2537 /* gfar_reset_task gets scheduled when a packet has not been
2538  * transmitted after a set amount of time.
2539  * For now, assume that clearing out all the structures, and
2540  * starting over will fix the problem.
2541  */
2542 static void gfar_reset_task(struct work_struct *work)
2543 {
2544 	struct gfar_private *priv = container_of(work, struct gfar_private,
2545 						 reset_task);
2546 	reset_gfar(priv->ndev);
2547 }
2548 
2549 static void gfar_timeout(struct net_device *dev)
2550 {
2551 	struct gfar_private *priv = netdev_priv(dev);
2552 
2553 	dev->stats.tx_errors++;
2554 	schedule_work(&priv->reset_task);
2555 }
2556 
2557 static void gfar_align_skb(struct sk_buff *skb)
2558 {
2559 	/* We need the data buffer to be aligned properly.  We will reserve
2560 	 * as many bytes as needed to align the data properly
2561 	 */
2562 	skb_reserve(skb, RXBUF_ALIGNMENT -
2563 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2564 }
2565 
2566 /* Interrupt Handler for Transmit complete */
2567 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2568 {
2569 	struct net_device *dev = tx_queue->dev;
2570 	struct netdev_queue *txq;
2571 	struct gfar_private *priv = netdev_priv(dev);
2572 	struct txbd8 *bdp, *next = NULL;
2573 	struct txbd8 *lbdp = NULL;
2574 	struct txbd8 *base = tx_queue->tx_bd_base;
2575 	struct sk_buff *skb;
2576 	int skb_dirtytx;
2577 	int tx_ring_size = tx_queue->tx_ring_size;
2578 	int frags = 0, nr_txbds = 0;
2579 	int i;
2580 	int howmany = 0;
2581 	int tqi = tx_queue->qindex;
2582 	unsigned int bytes_sent = 0;
2583 	u32 lstatus;
2584 	size_t buflen;
2585 
2586 	txq = netdev_get_tx_queue(dev, tqi);
2587 	bdp = tx_queue->dirty_tx;
2588 	skb_dirtytx = tx_queue->skb_dirtytx;
2589 
2590 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2591 
2592 		frags = skb_shinfo(skb)->nr_frags;
2593 
2594 		/* When time stamping, one additional TxBD must be freed.
2595 		 * Also, we need to dma_unmap_single() the TxPAL.
2596 		 */
2597 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2598 			nr_txbds = frags + 2;
2599 		else
2600 			nr_txbds = frags + 1;
2601 
2602 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2603 
2604 		lstatus = be32_to_cpu(lbdp->lstatus);
2605 
2606 		/* Only clean completed frames */
2607 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2608 		    (lstatus & BD_LENGTH_MASK))
2609 			break;
2610 
2611 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2612 			next = next_txbd(bdp, base, tx_ring_size);
2613 			buflen = be16_to_cpu(next->length) +
2614 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2615 		} else
2616 			buflen = be16_to_cpu(bdp->length);
2617 
2618 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2619 				 buflen, DMA_TO_DEVICE);
2620 
2621 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2622 			struct skb_shared_hwtstamps shhwtstamps;
2623 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2624 
2625 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2626 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2627 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2628 			skb_tstamp_tx(skb, &shhwtstamps);
2629 			gfar_clear_txbd_status(bdp);
2630 			bdp = next;
2631 		}
2632 
2633 		gfar_clear_txbd_status(bdp);
2634 		bdp = next_txbd(bdp, base, tx_ring_size);
2635 
2636 		for (i = 0; i < frags; i++) {
2637 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2638 				       be16_to_cpu(bdp->length),
2639 				       DMA_TO_DEVICE);
2640 			gfar_clear_txbd_status(bdp);
2641 			bdp = next_txbd(bdp, base, tx_ring_size);
2642 		}
2643 
2644 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2645 
2646 		dev_kfree_skb_any(skb);
2647 
2648 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2649 
2650 		skb_dirtytx = (skb_dirtytx + 1) &
2651 			      TX_RING_MOD_MASK(tx_ring_size);
2652 
2653 		howmany++;
2654 		spin_lock(&tx_queue->txlock);
2655 		tx_queue->num_txbdfree += nr_txbds;
2656 		spin_unlock(&tx_queue->txlock);
2657 	}
2658 
2659 	/* If we freed a buffer, we can restart transmission, if necessary */
2660 	if (tx_queue->num_txbdfree &&
2661 	    netif_tx_queue_stopped(txq) &&
2662 	    !(test_bit(GFAR_DOWN, &priv->state)))
2663 		netif_wake_subqueue(priv->ndev, tqi);
2664 
2665 	/* Update dirty indicators */
2666 	tx_queue->skb_dirtytx = skb_dirtytx;
2667 	tx_queue->dirty_tx = bdp;
2668 
2669 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2670 }
2671 
2672 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2673 {
2674 	struct gfar_private *priv = netdev_priv(dev);
2675 	struct sk_buff *skb;
2676 
2677 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2678 	if (!skb)
2679 		return NULL;
2680 
2681 	gfar_align_skb(skb);
2682 
2683 	return skb;
2684 }
2685 
2686 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2687 {
2688 	struct gfar_private *priv = netdev_priv(dev);
2689 	struct sk_buff *skb;
2690 	dma_addr_t addr;
2691 
2692 	skb = gfar_alloc_skb(dev);
2693 	if (!skb)
2694 		return NULL;
2695 
2696 	addr = dma_map_single(priv->dev, skb->data,
2697 			      priv->rx_buffer_size, DMA_FROM_DEVICE);
2698 	if (unlikely(dma_mapping_error(priv->dev, addr))) {
2699 		dev_kfree_skb_any(skb);
2700 		return NULL;
2701 	}
2702 
2703 	*bufaddr = addr;
2704 	return skb;
2705 }
2706 
2707 static inline void count_errors(unsigned short status, struct net_device *dev)
2708 {
2709 	struct gfar_private *priv = netdev_priv(dev);
2710 	struct net_device_stats *stats = &dev->stats;
2711 	struct gfar_extra_stats *estats = &priv->extra_stats;
2712 
2713 	/* If the packet was truncated, none of the other errors matter */
2714 	if (status & RXBD_TRUNCATED) {
2715 		stats->rx_length_errors++;
2716 
2717 		atomic64_inc(&estats->rx_trunc);
2718 
2719 		return;
2720 	}
2721 	/* Count the errors, if there were any */
2722 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2723 		stats->rx_length_errors++;
2724 
2725 		if (status & RXBD_LARGE)
2726 			atomic64_inc(&estats->rx_large);
2727 		else
2728 			atomic64_inc(&estats->rx_short);
2729 	}
2730 	if (status & RXBD_NONOCTET) {
2731 		stats->rx_frame_errors++;
2732 		atomic64_inc(&estats->rx_nonoctet);
2733 	}
2734 	if (status & RXBD_CRCERR) {
2735 		atomic64_inc(&estats->rx_crcerr);
2736 		stats->rx_crc_errors++;
2737 	}
2738 	if (status & RXBD_OVERRUN) {
2739 		atomic64_inc(&estats->rx_overrun);
2740 		stats->rx_crc_errors++;
2741 	}
2742 }
2743 
2744 irqreturn_t gfar_receive(int irq, void *grp_id)
2745 {
2746 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2747 	unsigned long flags;
2748 	u32 imask;
2749 
2750 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2751 		spin_lock_irqsave(&grp->grplock, flags);
2752 		imask = gfar_read(&grp->regs->imask);
2753 		imask &= IMASK_RX_DISABLED;
2754 		gfar_write(&grp->regs->imask, imask);
2755 		spin_unlock_irqrestore(&grp->grplock, flags);
2756 		__napi_schedule(&grp->napi_rx);
2757 	} else {
2758 		/* Clear IEVENT, so interrupts aren't called again
2759 		 * because of the packets that have already arrived.
2760 		 */
2761 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2762 	}
2763 
2764 	return IRQ_HANDLED;
2765 }
2766 
2767 /* Interrupt Handler for Transmit complete */
2768 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2769 {
2770 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2771 	unsigned long flags;
2772 	u32 imask;
2773 
2774 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2775 		spin_lock_irqsave(&grp->grplock, flags);
2776 		imask = gfar_read(&grp->regs->imask);
2777 		imask &= IMASK_TX_DISABLED;
2778 		gfar_write(&grp->regs->imask, imask);
2779 		spin_unlock_irqrestore(&grp->grplock, flags);
2780 		__napi_schedule(&grp->napi_tx);
2781 	} else {
2782 		/* Clear IEVENT, so interrupts aren't called again
2783 		 * because of the packets that have already arrived.
2784 		 */
2785 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2786 	}
2787 
2788 	return IRQ_HANDLED;
2789 }
2790 
2791 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2792 {
2793 	/* If valid headers were found, and valid sums
2794 	 * were verified, then we tell the kernel that no
2795 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2796 	 */
2797 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2798 	    (RXFCB_CIP | RXFCB_CTU))
2799 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2800 	else
2801 		skb_checksum_none_assert(skb);
2802 }
2803 
2804 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2805 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2806 			       int amount_pull, struct napi_struct *napi)
2807 {
2808 	struct gfar_private *priv = netdev_priv(dev);
2809 	struct rxfcb *fcb = NULL;
2810 
2811 	/* fcb is at the beginning if exists */
2812 	fcb = (struct rxfcb *)skb->data;
2813 
2814 	/* Remove the FCB from the skb
2815 	 * Remove the padded bytes, if there are any
2816 	 */
2817 	if (amount_pull) {
2818 		skb_record_rx_queue(skb, fcb->rq);
2819 		skb_pull(skb, amount_pull);
2820 	}
2821 
2822 	/* Get receive timestamp from the skb */
2823 	if (priv->hwts_rx_en) {
2824 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2825 		u64 *ns = (u64 *) skb->data;
2826 
2827 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2828 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2829 	}
2830 
2831 	if (priv->padding)
2832 		skb_pull(skb, priv->padding);
2833 
2834 	if (dev->features & NETIF_F_RXCSUM)
2835 		gfar_rx_checksum(skb, fcb);
2836 
2837 	/* Tell the skb what kind of packet this is */
2838 	skb->protocol = eth_type_trans(skb, dev);
2839 
2840 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2841 	 * Even if vlan rx accel is disabled, on some chips
2842 	 * RXFCB_VLN is pseudo randomly set.
2843 	 */
2844 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2845 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2846 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2847 				       be16_to_cpu(fcb->vlctl));
2848 
2849 	/* Send the packet up the stack */
2850 	napi_gro_receive(napi, skb);
2851 
2852 }
2853 
2854 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2855  * until the budget/quota has been reached. Returns the number
2856  * of frames handled
2857  */
2858 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2859 {
2860 	struct net_device *dev = rx_queue->dev;
2861 	struct rxbd8 *bdp, *base;
2862 	struct sk_buff *skb;
2863 	int pkt_len;
2864 	int amount_pull;
2865 	int howmany = 0;
2866 	struct gfar_private *priv = netdev_priv(dev);
2867 
2868 	/* Get the first full descriptor */
2869 	bdp = rx_queue->cur_rx;
2870 	base = rx_queue->rx_bd_base;
2871 
2872 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2873 
2874 	while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2875 		struct sk_buff *newskb;
2876 		dma_addr_t bufaddr;
2877 
2878 		rmb();
2879 
2880 		/* Add another skb for the future */
2881 		newskb = gfar_new_skb(dev, &bufaddr);
2882 
2883 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2884 
2885 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2886 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2887 
2888 		if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2889 			     be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2890 			bdp->status = cpu_to_be16(RXBD_LARGE);
2891 
2892 		/* We drop the frame if we failed to allocate a new buffer */
2893 		if (unlikely(!newskb ||
2894 			     !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2895 			     be16_to_cpu(bdp->status) & RXBD_ERR)) {
2896 			count_errors(be16_to_cpu(bdp->status), dev);
2897 
2898 			if (unlikely(!newskb)) {
2899 				newskb = skb;
2900 				bufaddr = be32_to_cpu(bdp->bufPtr);
2901 			} else if (skb)
2902 				dev_kfree_skb(skb);
2903 		} else {
2904 			/* Increment the number of packets */
2905 			rx_queue->stats.rx_packets++;
2906 			howmany++;
2907 
2908 			if (likely(skb)) {
2909 				pkt_len = be16_to_cpu(bdp->length) -
2910 					  ETH_FCS_LEN;
2911 				/* Remove the FCS from the packet length */
2912 				skb_put(skb, pkt_len);
2913 				rx_queue->stats.rx_bytes += pkt_len;
2914 				skb_record_rx_queue(skb, rx_queue->qindex);
2915 				gfar_process_frame(dev, skb, amount_pull,
2916 						   &rx_queue->grp->napi_rx);
2917 
2918 			} else {
2919 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2920 				rx_queue->stats.rx_dropped++;
2921 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2922 			}
2923 
2924 		}
2925 
2926 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2927 
2928 		/* Setup the new bdp */
2929 		gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2930 
2931 		/* Update Last Free RxBD pointer for LFC */
2932 		if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2933 			gfar_write(rx_queue->rfbptr, (u32)bdp);
2934 
2935 		/* Update to the next pointer */
2936 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2937 
2938 		/* update to point at the next skb */
2939 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2940 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2941 	}
2942 
2943 	/* Update the current rxbd pointer to be the next one */
2944 	rx_queue->cur_rx = bdp;
2945 
2946 	return howmany;
2947 }
2948 
2949 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2950 {
2951 	struct gfar_priv_grp *gfargrp =
2952 		container_of(napi, struct gfar_priv_grp, napi_rx);
2953 	struct gfar __iomem *regs = gfargrp->regs;
2954 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2955 	int work_done = 0;
2956 
2957 	/* Clear IEVENT, so interrupts aren't called again
2958 	 * because of the packets that have already arrived
2959 	 */
2960 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2961 
2962 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2963 
2964 	if (work_done < budget) {
2965 		u32 imask;
2966 		napi_complete(napi);
2967 		/* Clear the halt bit in RSTAT */
2968 		gfar_write(&regs->rstat, gfargrp->rstat);
2969 
2970 		spin_lock_irq(&gfargrp->grplock);
2971 		imask = gfar_read(&regs->imask);
2972 		imask |= IMASK_RX_DEFAULT;
2973 		gfar_write(&regs->imask, imask);
2974 		spin_unlock_irq(&gfargrp->grplock);
2975 	}
2976 
2977 	return work_done;
2978 }
2979 
2980 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2981 {
2982 	struct gfar_priv_grp *gfargrp =
2983 		container_of(napi, struct gfar_priv_grp, napi_tx);
2984 	struct gfar __iomem *regs = gfargrp->regs;
2985 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2986 	u32 imask;
2987 
2988 	/* Clear IEVENT, so interrupts aren't called again
2989 	 * because of the packets that have already arrived
2990 	 */
2991 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2992 
2993 	/* run Tx cleanup to completion */
2994 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2995 		gfar_clean_tx_ring(tx_queue);
2996 
2997 	napi_complete(napi);
2998 
2999 	spin_lock_irq(&gfargrp->grplock);
3000 	imask = gfar_read(&regs->imask);
3001 	imask |= IMASK_TX_DEFAULT;
3002 	gfar_write(&regs->imask, imask);
3003 	spin_unlock_irq(&gfargrp->grplock);
3004 
3005 	return 0;
3006 }
3007 
3008 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3009 {
3010 	struct gfar_priv_grp *gfargrp =
3011 		container_of(napi, struct gfar_priv_grp, napi_rx);
3012 	struct gfar_private *priv = gfargrp->priv;
3013 	struct gfar __iomem *regs = gfargrp->regs;
3014 	struct gfar_priv_rx_q *rx_queue = NULL;
3015 	int work_done = 0, work_done_per_q = 0;
3016 	int i, budget_per_q = 0;
3017 	unsigned long rstat_rxf;
3018 	int num_act_queues;
3019 
3020 	/* Clear IEVENT, so interrupts aren't called again
3021 	 * because of the packets that have already arrived
3022 	 */
3023 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3024 
3025 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3026 
3027 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3028 	if (num_act_queues)
3029 		budget_per_q = budget/num_act_queues;
3030 
3031 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3032 		/* skip queue if not active */
3033 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3034 			continue;
3035 
3036 		rx_queue = priv->rx_queue[i];
3037 		work_done_per_q =
3038 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3039 		work_done += work_done_per_q;
3040 
3041 		/* finished processing this queue */
3042 		if (work_done_per_q < budget_per_q) {
3043 			/* clear active queue hw indication */
3044 			gfar_write(&regs->rstat,
3045 				   RSTAT_CLEAR_RXF0 >> i);
3046 			num_act_queues--;
3047 
3048 			if (!num_act_queues)
3049 				break;
3050 		}
3051 	}
3052 
3053 	if (!num_act_queues) {
3054 		u32 imask;
3055 		napi_complete(napi);
3056 
3057 		/* Clear the halt bit in RSTAT */
3058 		gfar_write(&regs->rstat, gfargrp->rstat);
3059 
3060 		spin_lock_irq(&gfargrp->grplock);
3061 		imask = gfar_read(&regs->imask);
3062 		imask |= IMASK_RX_DEFAULT;
3063 		gfar_write(&regs->imask, imask);
3064 		spin_unlock_irq(&gfargrp->grplock);
3065 	}
3066 
3067 	return work_done;
3068 }
3069 
3070 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3071 {
3072 	struct gfar_priv_grp *gfargrp =
3073 		container_of(napi, struct gfar_priv_grp, napi_tx);
3074 	struct gfar_private *priv = gfargrp->priv;
3075 	struct gfar __iomem *regs = gfargrp->regs;
3076 	struct gfar_priv_tx_q *tx_queue = NULL;
3077 	int has_tx_work = 0;
3078 	int i;
3079 
3080 	/* Clear IEVENT, so interrupts aren't called again
3081 	 * because of the packets that have already arrived
3082 	 */
3083 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3084 
3085 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3086 		tx_queue = priv->tx_queue[i];
3087 		/* run Tx cleanup to completion */
3088 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3089 			gfar_clean_tx_ring(tx_queue);
3090 			has_tx_work = 1;
3091 		}
3092 	}
3093 
3094 	if (!has_tx_work) {
3095 		u32 imask;
3096 		napi_complete(napi);
3097 
3098 		spin_lock_irq(&gfargrp->grplock);
3099 		imask = gfar_read(&regs->imask);
3100 		imask |= IMASK_TX_DEFAULT;
3101 		gfar_write(&regs->imask, imask);
3102 		spin_unlock_irq(&gfargrp->grplock);
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 
3109 #ifdef CONFIG_NET_POLL_CONTROLLER
3110 /* Polling 'interrupt' - used by things like netconsole to send skbs
3111  * without having to re-enable interrupts. It's not called while
3112  * the interrupt routine is executing.
3113  */
3114 static void gfar_netpoll(struct net_device *dev)
3115 {
3116 	struct gfar_private *priv = netdev_priv(dev);
3117 	int i;
3118 
3119 	/* If the device has multiple interrupts, run tx/rx */
3120 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3121 		for (i = 0; i < priv->num_grps; i++) {
3122 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3123 
3124 			disable_irq(gfar_irq(grp, TX)->irq);
3125 			disable_irq(gfar_irq(grp, RX)->irq);
3126 			disable_irq(gfar_irq(grp, ER)->irq);
3127 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3128 			enable_irq(gfar_irq(grp, ER)->irq);
3129 			enable_irq(gfar_irq(grp, RX)->irq);
3130 			enable_irq(gfar_irq(grp, TX)->irq);
3131 		}
3132 	} else {
3133 		for (i = 0; i < priv->num_grps; i++) {
3134 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3135 
3136 			disable_irq(gfar_irq(grp, TX)->irq);
3137 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3138 			enable_irq(gfar_irq(grp, TX)->irq);
3139 		}
3140 	}
3141 }
3142 #endif
3143 
3144 /* The interrupt handler for devices with one interrupt */
3145 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3146 {
3147 	struct gfar_priv_grp *gfargrp = grp_id;
3148 
3149 	/* Save ievent for future reference */
3150 	u32 events = gfar_read(&gfargrp->regs->ievent);
3151 
3152 	/* Check for reception */
3153 	if (events & IEVENT_RX_MASK)
3154 		gfar_receive(irq, grp_id);
3155 
3156 	/* Check for transmit completion */
3157 	if (events & IEVENT_TX_MASK)
3158 		gfar_transmit(irq, grp_id);
3159 
3160 	/* Check for errors */
3161 	if (events & IEVENT_ERR_MASK)
3162 		gfar_error(irq, grp_id);
3163 
3164 	return IRQ_HANDLED;
3165 }
3166 
3167 /* Called every time the controller might need to be made
3168  * aware of new link state.  The PHY code conveys this
3169  * information through variables in the phydev structure, and this
3170  * function converts those variables into the appropriate
3171  * register values, and can bring down the device if needed.
3172  */
3173 static void adjust_link(struct net_device *dev)
3174 {
3175 	struct gfar_private *priv = netdev_priv(dev);
3176 	struct phy_device *phydev = priv->phydev;
3177 
3178 	if (unlikely(phydev->link != priv->oldlink ||
3179 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3180 				       phydev->speed != priv->oldspeed))))
3181 		gfar_update_link_state(priv);
3182 }
3183 
3184 /* Update the hash table based on the current list of multicast
3185  * addresses we subscribe to.  Also, change the promiscuity of
3186  * the device based on the flags (this function is called
3187  * whenever dev->flags is changed
3188  */
3189 static void gfar_set_multi(struct net_device *dev)
3190 {
3191 	struct netdev_hw_addr *ha;
3192 	struct gfar_private *priv = netdev_priv(dev);
3193 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3194 	u32 tempval;
3195 
3196 	if (dev->flags & IFF_PROMISC) {
3197 		/* Set RCTRL to PROM */
3198 		tempval = gfar_read(&regs->rctrl);
3199 		tempval |= RCTRL_PROM;
3200 		gfar_write(&regs->rctrl, tempval);
3201 	} else {
3202 		/* Set RCTRL to not PROM */
3203 		tempval = gfar_read(&regs->rctrl);
3204 		tempval &= ~(RCTRL_PROM);
3205 		gfar_write(&regs->rctrl, tempval);
3206 	}
3207 
3208 	if (dev->flags & IFF_ALLMULTI) {
3209 		/* Set the hash to rx all multicast frames */
3210 		gfar_write(&regs->igaddr0, 0xffffffff);
3211 		gfar_write(&regs->igaddr1, 0xffffffff);
3212 		gfar_write(&regs->igaddr2, 0xffffffff);
3213 		gfar_write(&regs->igaddr3, 0xffffffff);
3214 		gfar_write(&regs->igaddr4, 0xffffffff);
3215 		gfar_write(&regs->igaddr5, 0xffffffff);
3216 		gfar_write(&regs->igaddr6, 0xffffffff);
3217 		gfar_write(&regs->igaddr7, 0xffffffff);
3218 		gfar_write(&regs->gaddr0, 0xffffffff);
3219 		gfar_write(&regs->gaddr1, 0xffffffff);
3220 		gfar_write(&regs->gaddr2, 0xffffffff);
3221 		gfar_write(&regs->gaddr3, 0xffffffff);
3222 		gfar_write(&regs->gaddr4, 0xffffffff);
3223 		gfar_write(&regs->gaddr5, 0xffffffff);
3224 		gfar_write(&regs->gaddr6, 0xffffffff);
3225 		gfar_write(&regs->gaddr7, 0xffffffff);
3226 	} else {
3227 		int em_num;
3228 		int idx;
3229 
3230 		/* zero out the hash */
3231 		gfar_write(&regs->igaddr0, 0x0);
3232 		gfar_write(&regs->igaddr1, 0x0);
3233 		gfar_write(&regs->igaddr2, 0x0);
3234 		gfar_write(&regs->igaddr3, 0x0);
3235 		gfar_write(&regs->igaddr4, 0x0);
3236 		gfar_write(&regs->igaddr5, 0x0);
3237 		gfar_write(&regs->igaddr6, 0x0);
3238 		gfar_write(&regs->igaddr7, 0x0);
3239 		gfar_write(&regs->gaddr0, 0x0);
3240 		gfar_write(&regs->gaddr1, 0x0);
3241 		gfar_write(&regs->gaddr2, 0x0);
3242 		gfar_write(&regs->gaddr3, 0x0);
3243 		gfar_write(&regs->gaddr4, 0x0);
3244 		gfar_write(&regs->gaddr5, 0x0);
3245 		gfar_write(&regs->gaddr6, 0x0);
3246 		gfar_write(&regs->gaddr7, 0x0);
3247 
3248 		/* If we have extended hash tables, we need to
3249 		 * clear the exact match registers to prepare for
3250 		 * setting them
3251 		 */
3252 		if (priv->extended_hash) {
3253 			em_num = GFAR_EM_NUM + 1;
3254 			gfar_clear_exact_match(dev);
3255 			idx = 1;
3256 		} else {
3257 			idx = 0;
3258 			em_num = 0;
3259 		}
3260 
3261 		if (netdev_mc_empty(dev))
3262 			return;
3263 
3264 		/* Parse the list, and set the appropriate bits */
3265 		netdev_for_each_mc_addr(ha, dev) {
3266 			if (idx < em_num) {
3267 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3268 				idx++;
3269 			} else
3270 				gfar_set_hash_for_addr(dev, ha->addr);
3271 		}
3272 	}
3273 }
3274 
3275 
3276 /* Clears each of the exact match registers to zero, so they
3277  * don't interfere with normal reception
3278  */
3279 static void gfar_clear_exact_match(struct net_device *dev)
3280 {
3281 	int idx;
3282 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3283 
3284 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3285 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3286 }
3287 
3288 /* Set the appropriate hash bit for the given addr */
3289 /* The algorithm works like so:
3290  * 1) Take the Destination Address (ie the multicast address), and
3291  * do a CRC on it (little endian), and reverse the bits of the
3292  * result.
3293  * 2) Use the 8 most significant bits as a hash into a 256-entry
3294  * table.  The table is controlled through 8 32-bit registers:
3295  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3296  * gaddr7.  This means that the 3 most significant bits in the
3297  * hash index which gaddr register to use, and the 5 other bits
3298  * indicate which bit (assuming an IBM numbering scheme, which
3299  * for PowerPC (tm) is usually the case) in the register holds
3300  * the entry.
3301  */
3302 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3303 {
3304 	u32 tempval;
3305 	struct gfar_private *priv = netdev_priv(dev);
3306 	u32 result = ether_crc(ETH_ALEN, addr);
3307 	int width = priv->hash_width;
3308 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3309 	u8 whichreg = result >> (32 - width + 5);
3310 	u32 value = (1 << (31-whichbit));
3311 
3312 	tempval = gfar_read(priv->hash_regs[whichreg]);
3313 	tempval |= value;
3314 	gfar_write(priv->hash_regs[whichreg], tempval);
3315 }
3316 
3317 
3318 /* There are multiple MAC Address register pairs on some controllers
3319  * This function sets the numth pair to a given address
3320  */
3321 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3322 				  const u8 *addr)
3323 {
3324 	struct gfar_private *priv = netdev_priv(dev);
3325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3326 	u32 tempval;
3327 	u32 __iomem *macptr = &regs->macstnaddr1;
3328 
3329 	macptr += num*2;
3330 
3331 	/* For a station address of 0x12345678ABCD in transmission
3332 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3333 	 * MACnADDR2 is set to 0x34120000.
3334 	 */
3335 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3336 		  (addr[3] << 8)  |  addr[2];
3337 
3338 	gfar_write(macptr, tempval);
3339 
3340 	tempval = (addr[1] << 24) | (addr[0] << 16);
3341 
3342 	gfar_write(macptr+1, tempval);
3343 }
3344 
3345 /* GFAR error interrupt handler */
3346 static irqreturn_t gfar_error(int irq, void *grp_id)
3347 {
3348 	struct gfar_priv_grp *gfargrp = grp_id;
3349 	struct gfar __iomem *regs = gfargrp->regs;
3350 	struct gfar_private *priv= gfargrp->priv;
3351 	struct net_device *dev = priv->ndev;
3352 
3353 	/* Save ievent for future reference */
3354 	u32 events = gfar_read(&regs->ievent);
3355 
3356 	/* Clear IEVENT */
3357 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3358 
3359 	/* Magic Packet is not an error. */
3360 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3361 	    (events & IEVENT_MAG))
3362 		events &= ~IEVENT_MAG;
3363 
3364 	/* Hmm... */
3365 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3366 		netdev_dbg(dev,
3367 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3368 			   events, gfar_read(&regs->imask));
3369 
3370 	/* Update the error counters */
3371 	if (events & IEVENT_TXE) {
3372 		dev->stats.tx_errors++;
3373 
3374 		if (events & IEVENT_LC)
3375 			dev->stats.tx_window_errors++;
3376 		if (events & IEVENT_CRL)
3377 			dev->stats.tx_aborted_errors++;
3378 		if (events & IEVENT_XFUN) {
3379 			netif_dbg(priv, tx_err, dev,
3380 				  "TX FIFO underrun, packet dropped\n");
3381 			dev->stats.tx_dropped++;
3382 			atomic64_inc(&priv->extra_stats.tx_underrun);
3383 
3384 			schedule_work(&priv->reset_task);
3385 		}
3386 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3387 	}
3388 	if (events & IEVENT_BSY) {
3389 		dev->stats.rx_errors++;
3390 		atomic64_inc(&priv->extra_stats.rx_bsy);
3391 
3392 		gfar_receive(irq, grp_id);
3393 
3394 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3395 			  gfar_read(&regs->rstat));
3396 	}
3397 	if (events & IEVENT_BABR) {
3398 		dev->stats.rx_errors++;
3399 		atomic64_inc(&priv->extra_stats.rx_babr);
3400 
3401 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3402 	}
3403 	if (events & IEVENT_EBERR) {
3404 		atomic64_inc(&priv->extra_stats.eberr);
3405 		netif_dbg(priv, rx_err, dev, "bus error\n");
3406 	}
3407 	if (events & IEVENT_RXC)
3408 		netif_dbg(priv, rx_status, dev, "control frame\n");
3409 
3410 	if (events & IEVENT_BABT) {
3411 		atomic64_inc(&priv->extra_stats.tx_babt);
3412 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3413 	}
3414 	return IRQ_HANDLED;
3415 }
3416 
3417 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3418 {
3419 	struct phy_device *phydev = priv->phydev;
3420 	u32 val = 0;
3421 
3422 	if (!phydev->duplex)
3423 		return val;
3424 
3425 	if (!priv->pause_aneg_en) {
3426 		if (priv->tx_pause_en)
3427 			val |= MACCFG1_TX_FLOW;
3428 		if (priv->rx_pause_en)
3429 			val |= MACCFG1_RX_FLOW;
3430 	} else {
3431 		u16 lcl_adv, rmt_adv;
3432 		u8 flowctrl;
3433 		/* get link partner capabilities */
3434 		rmt_adv = 0;
3435 		if (phydev->pause)
3436 			rmt_adv = LPA_PAUSE_CAP;
3437 		if (phydev->asym_pause)
3438 			rmt_adv |= LPA_PAUSE_ASYM;
3439 
3440 		lcl_adv = 0;
3441 		if (phydev->advertising & ADVERTISED_Pause)
3442 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3443 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3444 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3445 
3446 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3447 		if (flowctrl & FLOW_CTRL_TX)
3448 			val |= MACCFG1_TX_FLOW;
3449 		if (flowctrl & FLOW_CTRL_RX)
3450 			val |= MACCFG1_RX_FLOW;
3451 	}
3452 
3453 	return val;
3454 }
3455 
3456 static noinline void gfar_update_link_state(struct gfar_private *priv)
3457 {
3458 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3459 	struct phy_device *phydev = priv->phydev;
3460 	struct gfar_priv_rx_q *rx_queue = NULL;
3461 	int i;
3462 	struct rxbd8 *bdp;
3463 
3464 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3465 		return;
3466 
3467 	if (phydev->link) {
3468 		u32 tempval1 = gfar_read(&regs->maccfg1);
3469 		u32 tempval = gfar_read(&regs->maccfg2);
3470 		u32 ecntrl = gfar_read(&regs->ecntrl);
3471 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3472 
3473 		if (phydev->duplex != priv->oldduplex) {
3474 			if (!(phydev->duplex))
3475 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3476 			else
3477 				tempval |= MACCFG2_FULL_DUPLEX;
3478 
3479 			priv->oldduplex = phydev->duplex;
3480 		}
3481 
3482 		if (phydev->speed != priv->oldspeed) {
3483 			switch (phydev->speed) {
3484 			case 1000:
3485 				tempval =
3486 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3487 
3488 				ecntrl &= ~(ECNTRL_R100);
3489 				break;
3490 			case 100:
3491 			case 10:
3492 				tempval =
3493 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3494 
3495 				/* Reduced mode distinguishes
3496 				 * between 10 and 100
3497 				 */
3498 				if (phydev->speed == SPEED_100)
3499 					ecntrl |= ECNTRL_R100;
3500 				else
3501 					ecntrl &= ~(ECNTRL_R100);
3502 				break;
3503 			default:
3504 				netif_warn(priv, link, priv->ndev,
3505 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3506 					   phydev->speed);
3507 				break;
3508 			}
3509 
3510 			priv->oldspeed = phydev->speed;
3511 		}
3512 
3513 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3514 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3515 
3516 		/* Turn last free buffer recording on */
3517 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3518 			for (i = 0; i < priv->num_rx_queues; i++) {
3519 				rx_queue = priv->rx_queue[i];
3520 				bdp = rx_queue->cur_rx;
3521 				/* skip to previous bd */
3522 				bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3523 					      rx_queue->rx_bd_base,
3524 					      rx_queue->rx_ring_size);
3525 
3526 				if (rx_queue->rfbptr)
3527 					gfar_write(rx_queue->rfbptr, (u32)bdp);
3528 			}
3529 
3530 			priv->tx_actual_en = 1;
3531 		}
3532 
3533 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3534 			priv->tx_actual_en = 0;
3535 
3536 		gfar_write(&regs->maccfg1, tempval1);
3537 		gfar_write(&regs->maccfg2, tempval);
3538 		gfar_write(&regs->ecntrl, ecntrl);
3539 
3540 		if (!priv->oldlink)
3541 			priv->oldlink = 1;
3542 
3543 	} else if (priv->oldlink) {
3544 		priv->oldlink = 0;
3545 		priv->oldspeed = 0;
3546 		priv->oldduplex = -1;
3547 	}
3548 
3549 	if (netif_msg_link(priv))
3550 		phy_print_status(phydev);
3551 }
3552 
3553 static const struct of_device_id gfar_match[] =
3554 {
3555 	{
3556 		.type = "network",
3557 		.compatible = "gianfar",
3558 	},
3559 	{
3560 		.compatible = "fsl,etsec2",
3561 	},
3562 	{},
3563 };
3564 MODULE_DEVICE_TABLE(of, gfar_match);
3565 
3566 /* Structure for a device driver */
3567 static struct platform_driver gfar_driver = {
3568 	.driver = {
3569 		.name = "fsl-gianfar",
3570 		.pm = GFAR_PM_OPS,
3571 		.of_match_table = gfar_match,
3572 	},
3573 	.probe = gfar_probe,
3574 	.remove = gfar_remove,
3575 };
3576 
3577 module_platform_driver(gfar_driver);
3578