xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision c6bd5bcc4983f1a2d2f87a3769bf309482ee8c04)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (1*HZ)
105 
106 const char gfar_driver_version[] = "1.3";
107 
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 			   struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 			      int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143 				  const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145 
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149 
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151 			    dma_addr_t buf)
152 {
153 	u32 lstatus;
154 
155 	bdp->bufPtr = buf;
156 
157 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159 		lstatus |= BD_LFLAG(RXBD_WRAP);
160 
161 	eieio();
162 
163 	bdp->lstatus = lstatus;
164 }
165 
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168 	struct gfar_private *priv = netdev_priv(ndev);
169 	struct gfar_priv_tx_q *tx_queue = NULL;
170 	struct gfar_priv_rx_q *rx_queue = NULL;
171 	struct txbd8 *txbdp;
172 	struct rxbd8 *rxbdp;
173 	int i, j;
174 
175 	for (i = 0; i < priv->num_tx_queues; i++) {
176 		tx_queue = priv->tx_queue[i];
177 		/* Initialize some variables in our dev structure */
178 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
180 		tx_queue->cur_tx = tx_queue->tx_bd_base;
181 		tx_queue->skb_curtx = 0;
182 		tx_queue->skb_dirtytx = 0;
183 
184 		/* Initialize Transmit Descriptor Ring */
185 		txbdp = tx_queue->tx_bd_base;
186 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
187 			txbdp->lstatus = 0;
188 			txbdp->bufPtr = 0;
189 			txbdp++;
190 		}
191 
192 		/* Set the last descriptor in the ring to indicate wrap */
193 		txbdp--;
194 		txbdp->status |= TXBD_WRAP;
195 	}
196 
197 	for (i = 0; i < priv->num_rx_queues; i++) {
198 		rx_queue = priv->rx_queue[i];
199 		rx_queue->cur_rx = rx_queue->rx_bd_base;
200 		rx_queue->skb_currx = 0;
201 		rxbdp = rx_queue->rx_bd_base;
202 
203 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
204 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
205 
206 			if (skb) {
207 				gfar_init_rxbdp(rx_queue, rxbdp,
208 						rxbdp->bufPtr);
209 			} else {
210 				skb = gfar_new_skb(ndev);
211 				if (!skb) {
212 					netdev_err(ndev, "Can't allocate RX buffers\n");
213 					goto err_rxalloc_fail;
214 				}
215 				rx_queue->rx_skbuff[j] = skb;
216 
217 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
218 			}
219 
220 			rxbdp++;
221 		}
222 
223 	}
224 
225 	return 0;
226 
227 err_rxalloc_fail:
228 	free_skb_resources(priv);
229 	return -ENOMEM;
230 }
231 
232 static int gfar_alloc_skb_resources(struct net_device *ndev)
233 {
234 	void *vaddr;
235 	dma_addr_t addr;
236 	int i, j, k;
237 	struct gfar_private *priv = netdev_priv(ndev);
238 	struct device *dev = &priv->ofdev->dev;
239 	struct gfar_priv_tx_q *tx_queue = NULL;
240 	struct gfar_priv_rx_q *rx_queue = NULL;
241 
242 	priv->total_tx_ring_size = 0;
243 	for (i = 0; i < priv->num_tx_queues; i++)
244 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
245 
246 	priv->total_rx_ring_size = 0;
247 	for (i = 0; i < priv->num_rx_queues; i++)
248 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
249 
250 	/* Allocate memory for the buffer descriptors */
251 	vaddr = dma_alloc_coherent(dev,
252 			sizeof(struct txbd8) * priv->total_tx_ring_size +
253 			sizeof(struct rxbd8) * priv->total_rx_ring_size,
254 			&addr, GFP_KERNEL);
255 	if (!vaddr) {
256 		netif_err(priv, ifup, ndev,
257 			  "Could not allocate buffer descriptors!\n");
258 		return -ENOMEM;
259 	}
260 
261 	for (i = 0; i < priv->num_tx_queues; i++) {
262 		tx_queue = priv->tx_queue[i];
263 		tx_queue->tx_bd_base = vaddr;
264 		tx_queue->tx_bd_dma_base = addr;
265 		tx_queue->dev = ndev;
266 		/* enet DMA only understands physical addresses */
267 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
268 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269 	}
270 
271 	/* Start the rx descriptor ring where the tx ring leaves off */
272 	for (i = 0; i < priv->num_rx_queues; i++) {
273 		rx_queue = priv->rx_queue[i];
274 		rx_queue->rx_bd_base = vaddr;
275 		rx_queue->rx_bd_dma_base = addr;
276 		rx_queue->dev = ndev;
277 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
278 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279 	}
280 
281 	/* Setup the skbuff rings */
282 	for (i = 0; i < priv->num_tx_queues; i++) {
283 		tx_queue = priv->tx_queue[i];
284 		tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
285 					      tx_queue->tx_ring_size,
286 					      GFP_KERNEL);
287 		if (!tx_queue->tx_skbuff) {
288 			netif_err(priv, ifup, ndev,
289 				  "Could not allocate tx_skbuff\n");
290 			goto cleanup;
291 		}
292 
293 		for (k = 0; k < tx_queue->tx_ring_size; k++)
294 			tx_queue->tx_skbuff[k] = NULL;
295 	}
296 
297 	for (i = 0; i < priv->num_rx_queues; i++) {
298 		rx_queue = priv->rx_queue[i];
299 		rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
300 					      rx_queue->rx_ring_size,
301 					      GFP_KERNEL);
302 
303 		if (!rx_queue->rx_skbuff) {
304 			netif_err(priv, ifup, ndev,
305 				  "Could not allocate rx_skbuff\n");
306 			goto cleanup;
307 		}
308 
309 		for (j = 0; j < rx_queue->rx_ring_size; j++)
310 			rx_queue->rx_skbuff[j] = NULL;
311 	}
312 
313 	if (gfar_init_bds(ndev))
314 		goto cleanup;
315 
316 	return 0;
317 
318 cleanup:
319 	free_skb_resources(priv);
320 	return -ENOMEM;
321 }
322 
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 	u32 __iomem *baddr;
327 	int i;
328 
329 	baddr = &regs->tbase0;
330 	for (i = 0; i < priv->num_tx_queues; i++) {
331 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 		baddr += 2;
333 	}
334 
335 	baddr = &regs->rbase0;
336 	for (i = 0; i < priv->num_rx_queues; i++) {
337 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 		baddr += 2;
339 	}
340 }
341 
342 static void gfar_init_mac(struct net_device *ndev)
343 {
344 	struct gfar_private *priv = netdev_priv(ndev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 rctrl = 0;
347 	u32 tctrl = 0;
348 	u32 attrs = 0;
349 
350 	/* write the tx/rx base registers */
351 	gfar_init_tx_rx_base(priv);
352 
353 	/* Configure the coalescing support */
354 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
355 
356 	if (priv->rx_filer_enable) {
357 		rctrl |= RCTRL_FILREN;
358 		/* Program the RIR0 reg with the required distribution */
359 		gfar_write(&regs->rir0, DEFAULT_RIR0);
360 	}
361 
362 	if (ndev->features & NETIF_F_RXCSUM)
363 		rctrl |= RCTRL_CHECKSUMMING;
364 
365 	if (priv->extended_hash) {
366 		rctrl |= RCTRL_EXTHASH;
367 
368 		gfar_clear_exact_match(ndev);
369 		rctrl |= RCTRL_EMEN;
370 	}
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Insert receive time stamps into padding alignment bytes */
378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 		rctrl &= ~RCTRL_PAL_MASK;
380 		rctrl |= RCTRL_PADDING(8);
381 		priv->padding = 8;
382 	}
383 
384 	/* Enable HW time stamping if requested from user space */
385 	if (priv->hwts_rx_en)
386 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 
388 	if (ndev->features & NETIF_F_HW_VLAN_RX)
389 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 
394 	if (ndev->features & NETIF_F_IP_CSUM)
395 		tctrl |= TCTRL_INIT_CSUM;
396 
397 	if (priv->prio_sched_en)
398 		tctrl |= TCTRL_TXSCHED_PRIO;
399 	else {
400 		tctrl |= TCTRL_TXSCHED_WRRS;
401 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
402 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
403 	}
404 
405 	gfar_write(&regs->tctrl, tctrl);
406 
407 	/* Set the extraction length and index */
408 	attrs = ATTRELI_EL(priv->rx_stash_size) |
409 		ATTRELI_EI(priv->rx_stash_index);
410 
411 	gfar_write(&regs->attreli, attrs);
412 
413 	/* Start with defaults, and add stashing or locking
414 	 * depending on the approprate variables
415 	 */
416 	attrs = ATTR_INIT_SETTINGS;
417 
418 	if (priv->bd_stash_en)
419 		attrs |= ATTR_BDSTASH;
420 
421 	if (priv->rx_stash_size != 0)
422 		attrs |= ATTR_BUFSTASH;
423 
424 	gfar_write(&regs->attr, attrs);
425 
426 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
427 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
428 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
429 }
430 
431 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
432 {
433 	struct gfar_private *priv = netdev_priv(dev);
434 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
435 	unsigned long tx_packets = 0, tx_bytes = 0;
436 	int i;
437 
438 	for (i = 0; i < priv->num_rx_queues; i++) {
439 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
440 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
441 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
442 	}
443 
444 	dev->stats.rx_packets = rx_packets;
445 	dev->stats.rx_bytes   = rx_bytes;
446 	dev->stats.rx_dropped = rx_dropped;
447 
448 	for (i = 0; i < priv->num_tx_queues; i++) {
449 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
450 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
451 	}
452 
453 	dev->stats.tx_bytes   = tx_bytes;
454 	dev->stats.tx_packets = tx_packets;
455 
456 	return &dev->stats;
457 }
458 
459 static const struct net_device_ops gfar_netdev_ops = {
460 	.ndo_open = gfar_enet_open,
461 	.ndo_start_xmit = gfar_start_xmit,
462 	.ndo_stop = gfar_close,
463 	.ndo_change_mtu = gfar_change_mtu,
464 	.ndo_set_features = gfar_set_features,
465 	.ndo_set_rx_mode = gfar_set_multi,
466 	.ndo_tx_timeout = gfar_timeout,
467 	.ndo_do_ioctl = gfar_ioctl,
468 	.ndo_get_stats = gfar_get_stats,
469 	.ndo_set_mac_address = eth_mac_addr,
470 	.ndo_validate_addr = eth_validate_addr,
471 #ifdef CONFIG_NET_POLL_CONTROLLER
472 	.ndo_poll_controller = gfar_netpoll,
473 #endif
474 };
475 
476 void lock_rx_qs(struct gfar_private *priv)
477 {
478 	int i;
479 
480 	for (i = 0; i < priv->num_rx_queues; i++)
481 		spin_lock(&priv->rx_queue[i]->rxlock);
482 }
483 
484 void lock_tx_qs(struct gfar_private *priv)
485 {
486 	int i;
487 
488 	for (i = 0; i < priv->num_tx_queues; i++)
489 		spin_lock(&priv->tx_queue[i]->txlock);
490 }
491 
492 void unlock_rx_qs(struct gfar_private *priv)
493 {
494 	int i;
495 
496 	for (i = 0; i < priv->num_rx_queues; i++)
497 		spin_unlock(&priv->rx_queue[i]->rxlock);
498 }
499 
500 void unlock_tx_qs(struct gfar_private *priv)
501 {
502 	int i;
503 
504 	for (i = 0; i < priv->num_tx_queues; i++)
505 		spin_unlock(&priv->tx_queue[i]->txlock);
506 }
507 
508 static bool gfar_is_vlan_on(struct gfar_private *priv)
509 {
510 	return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
511 	       (priv->ndev->features & NETIF_F_HW_VLAN_TX);
512 }
513 
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
516 {
517 	return gfar_is_vlan_on(priv) ||
518 	       (priv->ndev->features & NETIF_F_RXCSUM) ||
519 	       (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
520 }
521 
522 static void free_tx_pointers(struct gfar_private *priv)
523 {
524 	int i;
525 
526 	for (i = 0; i < priv->num_tx_queues; i++)
527 		kfree(priv->tx_queue[i]);
528 }
529 
530 static void free_rx_pointers(struct gfar_private *priv)
531 {
532 	int i;
533 
534 	for (i = 0; i < priv->num_rx_queues; i++)
535 		kfree(priv->rx_queue[i]);
536 }
537 
538 static void unmap_group_regs(struct gfar_private *priv)
539 {
540 	int i;
541 
542 	for (i = 0; i < MAXGROUPS; i++)
543 		if (priv->gfargrp[i].regs)
544 			iounmap(priv->gfargrp[i].regs);
545 }
546 
547 static void disable_napi(struct gfar_private *priv)
548 {
549 	int i;
550 
551 	for (i = 0; i < priv->num_grps; i++)
552 		napi_disable(&priv->gfargrp[i].napi);
553 }
554 
555 static void enable_napi(struct gfar_private *priv)
556 {
557 	int i;
558 
559 	for (i = 0; i < priv->num_grps; i++)
560 		napi_enable(&priv->gfargrp[i].napi);
561 }
562 
563 static int gfar_parse_group(struct device_node *np,
564 			    struct gfar_private *priv, const char *model)
565 {
566 	u32 *queue_mask;
567 
568 	priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
569 	if (!priv->gfargrp[priv->num_grps].regs)
570 		return -ENOMEM;
571 
572 	priv->gfargrp[priv->num_grps].interruptTransmit =
573 			irq_of_parse_and_map(np, 0);
574 
575 	/* If we aren't the FEC we have multiple interrupts */
576 	if (model && strcasecmp(model, "FEC")) {
577 		priv->gfargrp[priv->num_grps].interruptReceive =
578 			irq_of_parse_and_map(np, 1);
579 		priv->gfargrp[priv->num_grps].interruptError =
580 			irq_of_parse_and_map(np,2);
581 		if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
582 		    priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
583 		    priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
584 			return -EINVAL;
585 	}
586 
587 	priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
588 	priv->gfargrp[priv->num_grps].priv = priv;
589 	spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
590 	if (priv->mode == MQ_MG_MODE) {
591 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
592 		priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
593 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
594 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
595 		priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
596 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
597 	} else {
598 		priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
599 		priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
600 	}
601 	priv->num_grps++;
602 
603 	return 0;
604 }
605 
606 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
607 {
608 	const char *model;
609 	const char *ctype;
610 	const void *mac_addr;
611 	int err = 0, i;
612 	struct net_device *dev = NULL;
613 	struct gfar_private *priv = NULL;
614 	struct device_node *np = ofdev->dev.of_node;
615 	struct device_node *child = NULL;
616 	const u32 *stash;
617 	const u32 *stash_len;
618 	const u32 *stash_idx;
619 	unsigned int num_tx_qs, num_rx_qs;
620 	u32 *tx_queues, *rx_queues;
621 
622 	if (!np || !of_device_is_available(np))
623 		return -ENODEV;
624 
625 	/* parse the num of tx and rx queues */
626 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
627 	num_tx_qs = tx_queues ? *tx_queues : 1;
628 
629 	if (num_tx_qs > MAX_TX_QS) {
630 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
631 		       num_tx_qs, MAX_TX_QS);
632 		pr_err("Cannot do alloc_etherdev, aborting\n");
633 		return -EINVAL;
634 	}
635 
636 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
637 	num_rx_qs = rx_queues ? *rx_queues : 1;
638 
639 	if (num_rx_qs > MAX_RX_QS) {
640 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
641 		       num_rx_qs, MAX_RX_QS);
642 		pr_err("Cannot do alloc_etherdev, aborting\n");
643 		return -EINVAL;
644 	}
645 
646 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
647 	dev = *pdev;
648 	if (NULL == dev)
649 		return -ENOMEM;
650 
651 	priv = netdev_priv(dev);
652 	priv->node = ofdev->dev.of_node;
653 	priv->ndev = dev;
654 
655 	priv->num_tx_queues = num_tx_qs;
656 	netif_set_real_num_rx_queues(dev, num_rx_qs);
657 	priv->num_rx_queues = num_rx_qs;
658 	priv->num_grps = 0x0;
659 
660 	/* Init Rx queue filer rule set linked list */
661 	INIT_LIST_HEAD(&priv->rx_list.list);
662 	priv->rx_list.count = 0;
663 	mutex_init(&priv->rx_queue_access);
664 
665 	model = of_get_property(np, "model", NULL);
666 
667 	for (i = 0; i < MAXGROUPS; i++)
668 		priv->gfargrp[i].regs = NULL;
669 
670 	/* Parse and initialize group specific information */
671 	if (of_device_is_compatible(np, "fsl,etsec2")) {
672 		priv->mode = MQ_MG_MODE;
673 		for_each_child_of_node(np, child) {
674 			err = gfar_parse_group(child, priv, model);
675 			if (err)
676 				goto err_grp_init;
677 		}
678 	} else {
679 		priv->mode = SQ_SG_MODE;
680 		err = gfar_parse_group(np, priv, model);
681 		if (err)
682 			goto err_grp_init;
683 	}
684 
685 	for (i = 0; i < priv->num_tx_queues; i++)
686 	       priv->tx_queue[i] = NULL;
687 	for (i = 0; i < priv->num_rx_queues; i++)
688 		priv->rx_queue[i] = NULL;
689 
690 	for (i = 0; i < priv->num_tx_queues; i++) {
691 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
692 					    GFP_KERNEL);
693 		if (!priv->tx_queue[i]) {
694 			err = -ENOMEM;
695 			goto tx_alloc_failed;
696 		}
697 		priv->tx_queue[i]->tx_skbuff = NULL;
698 		priv->tx_queue[i]->qindex = i;
699 		priv->tx_queue[i]->dev = dev;
700 		spin_lock_init(&(priv->tx_queue[i]->txlock));
701 	}
702 
703 	for (i = 0; i < priv->num_rx_queues; i++) {
704 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
705 					    GFP_KERNEL);
706 		if (!priv->rx_queue[i]) {
707 			err = -ENOMEM;
708 			goto rx_alloc_failed;
709 		}
710 		priv->rx_queue[i]->rx_skbuff = NULL;
711 		priv->rx_queue[i]->qindex = i;
712 		priv->rx_queue[i]->dev = dev;
713 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
714 	}
715 
716 
717 	stash = of_get_property(np, "bd-stash", NULL);
718 
719 	if (stash) {
720 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
721 		priv->bd_stash_en = 1;
722 	}
723 
724 	stash_len = of_get_property(np, "rx-stash-len", NULL);
725 
726 	if (stash_len)
727 		priv->rx_stash_size = *stash_len;
728 
729 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
730 
731 	if (stash_idx)
732 		priv->rx_stash_index = *stash_idx;
733 
734 	if (stash_len || stash_idx)
735 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
736 
737 	mac_addr = of_get_mac_address(np);
738 
739 	if (mac_addr)
740 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
741 
742 	if (model && !strcasecmp(model, "TSEC"))
743 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
744 				     FSL_GIANFAR_DEV_HAS_COALESCE |
745 				     FSL_GIANFAR_DEV_HAS_RMON |
746 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
747 
748 	if (model && !strcasecmp(model, "eTSEC"))
749 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
750 				     FSL_GIANFAR_DEV_HAS_COALESCE |
751 				     FSL_GIANFAR_DEV_HAS_RMON |
752 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
753 				     FSL_GIANFAR_DEV_HAS_PADDING |
754 				     FSL_GIANFAR_DEV_HAS_CSUM |
755 				     FSL_GIANFAR_DEV_HAS_VLAN |
756 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
757 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
758 				     FSL_GIANFAR_DEV_HAS_TIMER;
759 
760 	ctype = of_get_property(np, "phy-connection-type", NULL);
761 
762 	/* We only care about rgmii-id.  The rest are autodetected */
763 	if (ctype && !strcmp(ctype, "rgmii-id"))
764 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
765 	else
766 		priv->interface = PHY_INTERFACE_MODE_MII;
767 
768 	if (of_get_property(np, "fsl,magic-packet", NULL))
769 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
770 
771 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
772 
773 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
774 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
775 
776 	return 0;
777 
778 rx_alloc_failed:
779 	free_rx_pointers(priv);
780 tx_alloc_failed:
781 	free_tx_pointers(priv);
782 err_grp_init:
783 	unmap_group_regs(priv);
784 	free_netdev(dev);
785 	return err;
786 }
787 
788 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
789 			       struct ifreq *ifr, int cmd)
790 {
791 	struct hwtstamp_config config;
792 	struct gfar_private *priv = netdev_priv(netdev);
793 
794 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
795 		return -EFAULT;
796 
797 	/* reserved for future extensions */
798 	if (config.flags)
799 		return -EINVAL;
800 
801 	switch (config.tx_type) {
802 	case HWTSTAMP_TX_OFF:
803 		priv->hwts_tx_en = 0;
804 		break;
805 	case HWTSTAMP_TX_ON:
806 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
807 			return -ERANGE;
808 		priv->hwts_tx_en = 1;
809 		break;
810 	default:
811 		return -ERANGE;
812 	}
813 
814 	switch (config.rx_filter) {
815 	case HWTSTAMP_FILTER_NONE:
816 		if (priv->hwts_rx_en) {
817 			stop_gfar(netdev);
818 			priv->hwts_rx_en = 0;
819 			startup_gfar(netdev);
820 		}
821 		break;
822 	default:
823 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
824 			return -ERANGE;
825 		if (!priv->hwts_rx_en) {
826 			stop_gfar(netdev);
827 			priv->hwts_rx_en = 1;
828 			startup_gfar(netdev);
829 		}
830 		config.rx_filter = HWTSTAMP_FILTER_ALL;
831 		break;
832 	}
833 
834 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
835 		-EFAULT : 0;
836 }
837 
838 /* Ioctl MII Interface */
839 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
840 {
841 	struct gfar_private *priv = netdev_priv(dev);
842 
843 	if (!netif_running(dev))
844 		return -EINVAL;
845 
846 	if (cmd == SIOCSHWTSTAMP)
847 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
848 
849 	if (!priv->phydev)
850 		return -ENODEV;
851 
852 	return phy_mii_ioctl(priv->phydev, rq, cmd);
853 }
854 
855 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
856 {
857 	unsigned int new_bit_map = 0x0;
858 	int mask = 0x1 << (max_qs - 1), i;
859 
860 	for (i = 0; i < max_qs; i++) {
861 		if (bit_map & mask)
862 			new_bit_map = new_bit_map + (1 << i);
863 		mask = mask >> 0x1;
864 	}
865 	return new_bit_map;
866 }
867 
868 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
869 				   u32 class)
870 {
871 	u32 rqfpr = FPR_FILER_MASK;
872 	u32 rqfcr = 0x0;
873 
874 	rqfar--;
875 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
876 	priv->ftp_rqfpr[rqfar] = rqfpr;
877 	priv->ftp_rqfcr[rqfar] = rqfcr;
878 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879 
880 	rqfar--;
881 	rqfcr = RQFCR_CMP_NOMATCH;
882 	priv->ftp_rqfpr[rqfar] = rqfpr;
883 	priv->ftp_rqfcr[rqfar] = rqfcr;
884 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
885 
886 	rqfar--;
887 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
888 	rqfpr = class;
889 	priv->ftp_rqfcr[rqfar] = rqfcr;
890 	priv->ftp_rqfpr[rqfar] = rqfpr;
891 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892 
893 	rqfar--;
894 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
895 	rqfpr = class;
896 	priv->ftp_rqfcr[rqfar] = rqfcr;
897 	priv->ftp_rqfpr[rqfar] = rqfpr;
898 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899 
900 	return rqfar;
901 }
902 
903 static void gfar_init_filer_table(struct gfar_private *priv)
904 {
905 	int i = 0x0;
906 	u32 rqfar = MAX_FILER_IDX;
907 	u32 rqfcr = 0x0;
908 	u32 rqfpr = FPR_FILER_MASK;
909 
910 	/* Default rule */
911 	rqfcr = RQFCR_CMP_MATCH;
912 	priv->ftp_rqfcr[rqfar] = rqfcr;
913 	priv->ftp_rqfpr[rqfar] = rqfpr;
914 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
915 
916 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
917 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
918 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
919 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
920 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
921 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
922 
923 	/* cur_filer_idx indicated the first non-masked rule */
924 	priv->cur_filer_idx = rqfar;
925 
926 	/* Rest are masked rules */
927 	rqfcr = RQFCR_CMP_NOMATCH;
928 	for (i = 0; i < rqfar; i++) {
929 		priv->ftp_rqfcr[i] = rqfcr;
930 		priv->ftp_rqfpr[i] = rqfpr;
931 		gfar_write_filer(priv, i, rqfcr, rqfpr);
932 	}
933 }
934 
935 static void gfar_detect_errata(struct gfar_private *priv)
936 {
937 	struct device *dev = &priv->ofdev->dev;
938 	unsigned int pvr = mfspr(SPRN_PVR);
939 	unsigned int svr = mfspr(SPRN_SVR);
940 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
941 	unsigned int rev = svr & 0xffff;
942 
943 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
944 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
945 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946 		priv->errata |= GFAR_ERRATA_74;
947 
948 	/* MPC8313 and MPC837x all rev */
949 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
950 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951 		priv->errata |= GFAR_ERRATA_76;
952 
953 	/* MPC8313 and MPC837x all rev */
954 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
955 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
956 		priv->errata |= GFAR_ERRATA_A002;
957 
958 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
959 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
960 	    (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
961 		priv->errata |= GFAR_ERRATA_12;
962 
963 	if (priv->errata)
964 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
965 			 priv->errata);
966 }
967 
968 /* Set up the ethernet device structure, private data,
969  * and anything else we need before we start
970  */
971 static int gfar_probe(struct platform_device *ofdev)
972 {
973 	u32 tempval;
974 	struct net_device *dev = NULL;
975 	struct gfar_private *priv = NULL;
976 	struct gfar __iomem *regs = NULL;
977 	int err = 0, i, grp_idx = 0;
978 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
979 	u32 isrg = 0;
980 	u32 __iomem *baddr;
981 
982 	err = gfar_of_init(ofdev, &dev);
983 
984 	if (err)
985 		return err;
986 
987 	priv = netdev_priv(dev);
988 	priv->ndev = dev;
989 	priv->ofdev = ofdev;
990 	priv->node = ofdev->dev.of_node;
991 	SET_NETDEV_DEV(dev, &ofdev->dev);
992 
993 	spin_lock_init(&priv->bflock);
994 	INIT_WORK(&priv->reset_task, gfar_reset_task);
995 
996 	dev_set_drvdata(&ofdev->dev, priv);
997 	regs = priv->gfargrp[0].regs;
998 
999 	gfar_detect_errata(priv);
1000 
1001 	/* Stop the DMA engine now, in case it was running before
1002 	 * (The firmware could have used it, and left it running).
1003 	 */
1004 	gfar_halt(dev);
1005 
1006 	/* Reset MAC layer */
1007 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1008 
1009 	/* We need to delay at least 3 TX clocks */
1010 	udelay(2);
1011 
1012 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1013 	gfar_write(&regs->maccfg1, tempval);
1014 
1015 	/* Initialize MACCFG2. */
1016 	tempval = MACCFG2_INIT_SETTINGS;
1017 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1018 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1019 	gfar_write(&regs->maccfg2, tempval);
1020 
1021 	/* Initialize ECNTRL */
1022 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1023 
1024 	/* Set the dev->base_addr to the gfar reg region */
1025 	dev->base_addr = (unsigned long) regs;
1026 
1027 	SET_NETDEV_DEV(dev, &ofdev->dev);
1028 
1029 	/* Fill in the dev structure */
1030 	dev->watchdog_timeo = TX_TIMEOUT;
1031 	dev->mtu = 1500;
1032 	dev->netdev_ops = &gfar_netdev_ops;
1033 	dev->ethtool_ops = &gfar_ethtool_ops;
1034 
1035 	/* Register for napi ...We are registering NAPI for each grp */
1036 	for (i = 0; i < priv->num_grps; i++)
1037 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1038 			       GFAR_DEV_WEIGHT);
1039 
1040 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1041 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1042 				   NETIF_F_RXCSUM;
1043 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1044 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1045 	}
1046 
1047 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1048 		dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1049 		dev->features |= NETIF_F_HW_VLAN_RX;
1050 	}
1051 
1052 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1053 		priv->extended_hash = 1;
1054 		priv->hash_width = 9;
1055 
1056 		priv->hash_regs[0] = &regs->igaddr0;
1057 		priv->hash_regs[1] = &regs->igaddr1;
1058 		priv->hash_regs[2] = &regs->igaddr2;
1059 		priv->hash_regs[3] = &regs->igaddr3;
1060 		priv->hash_regs[4] = &regs->igaddr4;
1061 		priv->hash_regs[5] = &regs->igaddr5;
1062 		priv->hash_regs[6] = &regs->igaddr6;
1063 		priv->hash_regs[7] = &regs->igaddr7;
1064 		priv->hash_regs[8] = &regs->gaddr0;
1065 		priv->hash_regs[9] = &regs->gaddr1;
1066 		priv->hash_regs[10] = &regs->gaddr2;
1067 		priv->hash_regs[11] = &regs->gaddr3;
1068 		priv->hash_regs[12] = &regs->gaddr4;
1069 		priv->hash_regs[13] = &regs->gaddr5;
1070 		priv->hash_regs[14] = &regs->gaddr6;
1071 		priv->hash_regs[15] = &regs->gaddr7;
1072 
1073 	} else {
1074 		priv->extended_hash = 0;
1075 		priv->hash_width = 8;
1076 
1077 		priv->hash_regs[0] = &regs->gaddr0;
1078 		priv->hash_regs[1] = &regs->gaddr1;
1079 		priv->hash_regs[2] = &regs->gaddr2;
1080 		priv->hash_regs[3] = &regs->gaddr3;
1081 		priv->hash_regs[4] = &regs->gaddr4;
1082 		priv->hash_regs[5] = &regs->gaddr5;
1083 		priv->hash_regs[6] = &regs->gaddr6;
1084 		priv->hash_regs[7] = &regs->gaddr7;
1085 	}
1086 
1087 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1088 		priv->padding = DEFAULT_PADDING;
1089 	else
1090 		priv->padding = 0;
1091 
1092 	if (dev->features & NETIF_F_IP_CSUM ||
1093 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1094 		dev->needed_headroom = GMAC_FCB_LEN;
1095 
1096 	/* Program the isrg regs only if number of grps > 1 */
1097 	if (priv->num_grps > 1) {
1098 		baddr = &regs->isrg0;
1099 		for (i = 0; i < priv->num_grps; i++) {
1100 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1101 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1102 			gfar_write(baddr, isrg);
1103 			baddr++;
1104 			isrg = 0x0;
1105 		}
1106 	}
1107 
1108 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1109 	 * but, for_each_set_bit parses from right to left, which
1110 	 * basically reverses the queue numbers
1111 	 */
1112 	for (i = 0; i< priv->num_grps; i++) {
1113 		priv->gfargrp[i].tx_bit_map =
1114 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1115 		priv->gfargrp[i].rx_bit_map =
1116 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1117 	}
1118 
1119 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1120 	 * also assign queues to groups
1121 	 */
1122 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1123 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1124 
1125 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1126 				 priv->num_rx_queues) {
1127 			priv->gfargrp[grp_idx].num_rx_queues++;
1128 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1129 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1130 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1131 		}
1132 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1133 
1134 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1135 				 priv->num_tx_queues) {
1136 			priv->gfargrp[grp_idx].num_tx_queues++;
1137 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1138 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1139 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1140 		}
1141 		priv->gfargrp[grp_idx].rstat = rstat;
1142 		priv->gfargrp[grp_idx].tstat = tstat;
1143 		rstat = tstat =0;
1144 	}
1145 
1146 	gfar_write(&regs->rqueue, rqueue);
1147 	gfar_write(&regs->tqueue, tqueue);
1148 
1149 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1150 
1151 	/* Initializing some of the rx/tx queue level parameters */
1152 	for (i = 0; i < priv->num_tx_queues; i++) {
1153 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1154 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1155 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1156 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1157 	}
1158 
1159 	for (i = 0; i < priv->num_rx_queues; i++) {
1160 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1161 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1162 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1163 	}
1164 
1165 	/* always enable rx filer */
1166 	priv->rx_filer_enable = 1;
1167 	/* Enable most messages by default */
1168 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1169 	/* use pritority h/w tx queue scheduling for single queue devices */
1170 	if (priv->num_tx_queues == 1)
1171 		priv->prio_sched_en = 1;
1172 
1173 	/* Carrier starts down, phylib will bring it up */
1174 	netif_carrier_off(dev);
1175 
1176 	err = register_netdev(dev);
1177 
1178 	if (err) {
1179 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1180 		goto register_fail;
1181 	}
1182 
1183 	device_init_wakeup(&dev->dev,
1184 			   priv->device_flags &
1185 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1186 
1187 	/* fill out IRQ number and name fields */
1188 	for (i = 0; i < priv->num_grps; i++) {
1189 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1190 			sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1191 				dev->name, "_g", '0' + i, "_tx");
1192 			sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1193 				dev->name, "_g", '0' + i, "_rx");
1194 			sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1195 				dev->name, "_g", '0' + i, "_er");
1196 		} else
1197 			strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1198 	}
1199 
1200 	/* Initialize the filer table */
1201 	gfar_init_filer_table(priv);
1202 
1203 	/* Create all the sysfs files */
1204 	gfar_init_sysfs(dev);
1205 
1206 	/* Print out the device info */
1207 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1208 
1209 	/* Even more device info helps when determining which kernel
1210 	 * provided which set of benchmarks.
1211 	 */
1212 	netdev_info(dev, "Running with NAPI enabled\n");
1213 	for (i = 0; i < priv->num_rx_queues; i++)
1214 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1215 			    i, priv->rx_queue[i]->rx_ring_size);
1216 	for (i = 0; i < priv->num_tx_queues; i++)
1217 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1218 			    i, priv->tx_queue[i]->tx_ring_size);
1219 
1220 	return 0;
1221 
1222 register_fail:
1223 	unmap_group_regs(priv);
1224 	free_tx_pointers(priv);
1225 	free_rx_pointers(priv);
1226 	if (priv->phy_node)
1227 		of_node_put(priv->phy_node);
1228 	if (priv->tbi_node)
1229 		of_node_put(priv->tbi_node);
1230 	free_netdev(dev);
1231 	return err;
1232 }
1233 
1234 static int gfar_remove(struct platform_device *ofdev)
1235 {
1236 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1237 
1238 	if (priv->phy_node)
1239 		of_node_put(priv->phy_node);
1240 	if (priv->tbi_node)
1241 		of_node_put(priv->tbi_node);
1242 
1243 	dev_set_drvdata(&ofdev->dev, NULL);
1244 
1245 	unregister_netdev(priv->ndev);
1246 	unmap_group_regs(priv);
1247 	free_netdev(priv->ndev);
1248 
1249 	return 0;
1250 }
1251 
1252 #ifdef CONFIG_PM
1253 
1254 static int gfar_suspend(struct device *dev)
1255 {
1256 	struct gfar_private *priv = dev_get_drvdata(dev);
1257 	struct net_device *ndev = priv->ndev;
1258 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1259 	unsigned long flags;
1260 	u32 tempval;
1261 
1262 	int magic_packet = priv->wol_en &&
1263 			   (priv->device_flags &
1264 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1265 
1266 	netif_device_detach(ndev);
1267 
1268 	if (netif_running(ndev)) {
1269 
1270 		local_irq_save(flags);
1271 		lock_tx_qs(priv);
1272 		lock_rx_qs(priv);
1273 
1274 		gfar_halt_nodisable(ndev);
1275 
1276 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1277 		tempval = gfar_read(&regs->maccfg1);
1278 
1279 		tempval &= ~MACCFG1_TX_EN;
1280 
1281 		if (!magic_packet)
1282 			tempval &= ~MACCFG1_RX_EN;
1283 
1284 		gfar_write(&regs->maccfg1, tempval);
1285 
1286 		unlock_rx_qs(priv);
1287 		unlock_tx_qs(priv);
1288 		local_irq_restore(flags);
1289 
1290 		disable_napi(priv);
1291 
1292 		if (magic_packet) {
1293 			/* Enable interrupt on Magic Packet */
1294 			gfar_write(&regs->imask, IMASK_MAG);
1295 
1296 			/* Enable Magic Packet mode */
1297 			tempval = gfar_read(&regs->maccfg2);
1298 			tempval |= MACCFG2_MPEN;
1299 			gfar_write(&regs->maccfg2, tempval);
1300 		} else {
1301 			phy_stop(priv->phydev);
1302 		}
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 static int gfar_resume(struct device *dev)
1309 {
1310 	struct gfar_private *priv = dev_get_drvdata(dev);
1311 	struct net_device *ndev = priv->ndev;
1312 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313 	unsigned long flags;
1314 	u32 tempval;
1315 	int magic_packet = priv->wol_en &&
1316 			   (priv->device_flags &
1317 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1318 
1319 	if (!netif_running(ndev)) {
1320 		netif_device_attach(ndev);
1321 		return 0;
1322 	}
1323 
1324 	if (!magic_packet && priv->phydev)
1325 		phy_start(priv->phydev);
1326 
1327 	/* Disable Magic Packet mode, in case something
1328 	 * else woke us up.
1329 	 */
1330 	local_irq_save(flags);
1331 	lock_tx_qs(priv);
1332 	lock_rx_qs(priv);
1333 
1334 	tempval = gfar_read(&regs->maccfg2);
1335 	tempval &= ~MACCFG2_MPEN;
1336 	gfar_write(&regs->maccfg2, tempval);
1337 
1338 	gfar_start(ndev);
1339 
1340 	unlock_rx_qs(priv);
1341 	unlock_tx_qs(priv);
1342 	local_irq_restore(flags);
1343 
1344 	netif_device_attach(ndev);
1345 
1346 	enable_napi(priv);
1347 
1348 	return 0;
1349 }
1350 
1351 static int gfar_restore(struct device *dev)
1352 {
1353 	struct gfar_private *priv = dev_get_drvdata(dev);
1354 	struct net_device *ndev = priv->ndev;
1355 
1356 	if (!netif_running(ndev)) {
1357 		netif_device_attach(ndev);
1358 
1359 		return 0;
1360 	}
1361 
1362 	gfar_init_bds(ndev);
1363 	init_registers(ndev);
1364 	gfar_set_mac_address(ndev);
1365 	gfar_init_mac(ndev);
1366 	gfar_start(ndev);
1367 
1368 	priv->oldlink = 0;
1369 	priv->oldspeed = 0;
1370 	priv->oldduplex = -1;
1371 
1372 	if (priv->phydev)
1373 		phy_start(priv->phydev);
1374 
1375 	netif_device_attach(ndev);
1376 	enable_napi(priv);
1377 
1378 	return 0;
1379 }
1380 
1381 static struct dev_pm_ops gfar_pm_ops = {
1382 	.suspend = gfar_suspend,
1383 	.resume = gfar_resume,
1384 	.freeze = gfar_suspend,
1385 	.thaw = gfar_resume,
1386 	.restore = gfar_restore,
1387 };
1388 
1389 #define GFAR_PM_OPS (&gfar_pm_ops)
1390 
1391 #else
1392 
1393 #define GFAR_PM_OPS NULL
1394 
1395 #endif
1396 
1397 /* Reads the controller's registers to determine what interface
1398  * connects it to the PHY.
1399  */
1400 static phy_interface_t gfar_get_interface(struct net_device *dev)
1401 {
1402 	struct gfar_private *priv = netdev_priv(dev);
1403 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1404 	u32 ecntrl;
1405 
1406 	ecntrl = gfar_read(&regs->ecntrl);
1407 
1408 	if (ecntrl & ECNTRL_SGMII_MODE)
1409 		return PHY_INTERFACE_MODE_SGMII;
1410 
1411 	if (ecntrl & ECNTRL_TBI_MODE) {
1412 		if (ecntrl & ECNTRL_REDUCED_MODE)
1413 			return PHY_INTERFACE_MODE_RTBI;
1414 		else
1415 			return PHY_INTERFACE_MODE_TBI;
1416 	}
1417 
1418 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1419 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1420 			return PHY_INTERFACE_MODE_RMII;
1421 		}
1422 		else {
1423 			phy_interface_t interface = priv->interface;
1424 
1425 			/* This isn't autodetected right now, so it must
1426 			 * be set by the device tree or platform code.
1427 			 */
1428 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1429 				return PHY_INTERFACE_MODE_RGMII_ID;
1430 
1431 			return PHY_INTERFACE_MODE_RGMII;
1432 		}
1433 	}
1434 
1435 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1436 		return PHY_INTERFACE_MODE_GMII;
1437 
1438 	return PHY_INTERFACE_MODE_MII;
1439 }
1440 
1441 
1442 /* Initializes driver's PHY state, and attaches to the PHY.
1443  * Returns 0 on success.
1444  */
1445 static int init_phy(struct net_device *dev)
1446 {
1447 	struct gfar_private *priv = netdev_priv(dev);
1448 	uint gigabit_support =
1449 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1450 		SUPPORTED_1000baseT_Full : 0;
1451 	phy_interface_t interface;
1452 
1453 	priv->oldlink = 0;
1454 	priv->oldspeed = 0;
1455 	priv->oldduplex = -1;
1456 
1457 	interface = gfar_get_interface(dev);
1458 
1459 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1460 				      interface);
1461 	if (!priv->phydev)
1462 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1463 							 interface);
1464 	if (!priv->phydev) {
1465 		dev_err(&dev->dev, "could not attach to PHY\n");
1466 		return -ENODEV;
1467 	}
1468 
1469 	if (interface == PHY_INTERFACE_MODE_SGMII)
1470 		gfar_configure_serdes(dev);
1471 
1472 	/* Remove any features not supported by the controller */
1473 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1474 	priv->phydev->advertising = priv->phydev->supported;
1475 
1476 	return 0;
1477 }
1478 
1479 /* Initialize TBI PHY interface for communicating with the
1480  * SERDES lynx PHY on the chip.  We communicate with this PHY
1481  * through the MDIO bus on each controller, treating it as a
1482  * "normal" PHY at the address found in the TBIPA register.  We assume
1483  * that the TBIPA register is valid.  Either the MDIO bus code will set
1484  * it to a value that doesn't conflict with other PHYs on the bus, or the
1485  * value doesn't matter, as there are no other PHYs on the bus.
1486  */
1487 static void gfar_configure_serdes(struct net_device *dev)
1488 {
1489 	struct gfar_private *priv = netdev_priv(dev);
1490 	struct phy_device *tbiphy;
1491 
1492 	if (!priv->tbi_node) {
1493 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1494 				    "device tree specify a tbi-handle\n");
1495 		return;
1496 	}
1497 
1498 	tbiphy = of_phy_find_device(priv->tbi_node);
1499 	if (!tbiphy) {
1500 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1501 		return;
1502 	}
1503 
1504 	/* If the link is already up, we must already be ok, and don't need to
1505 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1506 	 * everything for us?  Resetting it takes the link down and requires
1507 	 * several seconds for it to come back.
1508 	 */
1509 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1510 		return;
1511 
1512 	/* Single clk mode, mii mode off(for serdes communication) */
1513 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1514 
1515 	phy_write(tbiphy, MII_ADVERTISE,
1516 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1517 		  ADVERTISE_1000XPSE_ASYM);
1518 
1519 	phy_write(tbiphy, MII_BMCR,
1520 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1521 		  BMCR_SPEED1000);
1522 }
1523 
1524 static void init_registers(struct net_device *dev)
1525 {
1526 	struct gfar_private *priv = netdev_priv(dev);
1527 	struct gfar __iomem *regs = NULL;
1528 	int i;
1529 
1530 	for (i = 0; i < priv->num_grps; i++) {
1531 		regs = priv->gfargrp[i].regs;
1532 		/* Clear IEVENT */
1533 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1534 
1535 		/* Initialize IMASK */
1536 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1537 	}
1538 
1539 	regs = priv->gfargrp[0].regs;
1540 	/* Init hash registers to zero */
1541 	gfar_write(&regs->igaddr0, 0);
1542 	gfar_write(&regs->igaddr1, 0);
1543 	gfar_write(&regs->igaddr2, 0);
1544 	gfar_write(&regs->igaddr3, 0);
1545 	gfar_write(&regs->igaddr4, 0);
1546 	gfar_write(&regs->igaddr5, 0);
1547 	gfar_write(&regs->igaddr6, 0);
1548 	gfar_write(&regs->igaddr7, 0);
1549 
1550 	gfar_write(&regs->gaddr0, 0);
1551 	gfar_write(&regs->gaddr1, 0);
1552 	gfar_write(&regs->gaddr2, 0);
1553 	gfar_write(&regs->gaddr3, 0);
1554 	gfar_write(&regs->gaddr4, 0);
1555 	gfar_write(&regs->gaddr5, 0);
1556 	gfar_write(&regs->gaddr6, 0);
1557 	gfar_write(&regs->gaddr7, 0);
1558 
1559 	/* Zero out the rmon mib registers if it has them */
1560 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1561 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1562 
1563 		/* Mask off the CAM interrupts */
1564 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1565 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1566 	}
1567 
1568 	/* Initialize the max receive buffer length */
1569 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1570 
1571 	/* Initialize the Minimum Frame Length Register */
1572 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1573 }
1574 
1575 static int __gfar_is_rx_idle(struct gfar_private *priv)
1576 {
1577 	u32 res;
1578 
1579 	/* Normaly TSEC should not hang on GRS commands, so we should
1580 	 * actually wait for IEVENT_GRSC flag.
1581 	 */
1582 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1583 		return 0;
1584 
1585 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1586 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1587 	 * and the Rx can be safely reset.
1588 	 */
1589 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1590 	res &= 0x7f807f80;
1591 	if ((res & 0xffff) == (res >> 16))
1592 		return 1;
1593 
1594 	return 0;
1595 }
1596 
1597 /* Halt the receive and transmit queues */
1598 static void gfar_halt_nodisable(struct net_device *dev)
1599 {
1600 	struct gfar_private *priv = netdev_priv(dev);
1601 	struct gfar __iomem *regs = NULL;
1602 	u32 tempval;
1603 	int i;
1604 
1605 	for (i = 0; i < priv->num_grps; i++) {
1606 		regs = priv->gfargrp[i].regs;
1607 		/* Mask all interrupts */
1608 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1609 
1610 		/* Clear all interrupts */
1611 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1612 	}
1613 
1614 	regs = priv->gfargrp[0].regs;
1615 	/* Stop the DMA, and wait for it to stop */
1616 	tempval = gfar_read(&regs->dmactrl);
1617 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1618 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1619 		int ret;
1620 
1621 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1622 		gfar_write(&regs->dmactrl, tempval);
1623 
1624 		do {
1625 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1626 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1627 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1628 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1629 				ret = __gfar_is_rx_idle(priv);
1630 		} while (!ret);
1631 	}
1632 }
1633 
1634 /* Halt the receive and transmit queues */
1635 void gfar_halt(struct net_device *dev)
1636 {
1637 	struct gfar_private *priv = netdev_priv(dev);
1638 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1639 	u32 tempval;
1640 
1641 	gfar_halt_nodisable(dev);
1642 
1643 	/* Disable Rx and Tx */
1644 	tempval = gfar_read(&regs->maccfg1);
1645 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1646 	gfar_write(&regs->maccfg1, tempval);
1647 }
1648 
1649 static void free_grp_irqs(struct gfar_priv_grp *grp)
1650 {
1651 	free_irq(grp->interruptError, grp);
1652 	free_irq(grp->interruptTransmit, grp);
1653 	free_irq(grp->interruptReceive, grp);
1654 }
1655 
1656 void stop_gfar(struct net_device *dev)
1657 {
1658 	struct gfar_private *priv = netdev_priv(dev);
1659 	unsigned long flags;
1660 	int i;
1661 
1662 	phy_stop(priv->phydev);
1663 
1664 
1665 	/* Lock it down */
1666 	local_irq_save(flags);
1667 	lock_tx_qs(priv);
1668 	lock_rx_qs(priv);
1669 
1670 	gfar_halt(dev);
1671 
1672 	unlock_rx_qs(priv);
1673 	unlock_tx_qs(priv);
1674 	local_irq_restore(flags);
1675 
1676 	/* Free the IRQs */
1677 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1678 		for (i = 0; i < priv->num_grps; i++)
1679 			free_grp_irqs(&priv->gfargrp[i]);
1680 	} else {
1681 		for (i = 0; i < priv->num_grps; i++)
1682 			free_irq(priv->gfargrp[i].interruptTransmit,
1683 				 &priv->gfargrp[i]);
1684 	}
1685 
1686 	free_skb_resources(priv);
1687 }
1688 
1689 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1690 {
1691 	struct txbd8 *txbdp;
1692 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1693 	int i, j;
1694 
1695 	txbdp = tx_queue->tx_bd_base;
1696 
1697 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1698 		if (!tx_queue->tx_skbuff[i])
1699 			continue;
1700 
1701 		dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1702 				 txbdp->length, DMA_TO_DEVICE);
1703 		txbdp->lstatus = 0;
1704 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1705 		     j++) {
1706 			txbdp++;
1707 			dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1708 				       txbdp->length, DMA_TO_DEVICE);
1709 		}
1710 		txbdp++;
1711 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1712 		tx_queue->tx_skbuff[i] = NULL;
1713 	}
1714 	kfree(tx_queue->tx_skbuff);
1715 }
1716 
1717 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1718 {
1719 	struct rxbd8 *rxbdp;
1720 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1721 	int i;
1722 
1723 	rxbdp = rx_queue->rx_bd_base;
1724 
1725 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1726 		if (rx_queue->rx_skbuff[i]) {
1727 			dma_unmap_single(&priv->ofdev->dev,
1728 					 rxbdp->bufPtr, priv->rx_buffer_size,
1729 					 DMA_FROM_DEVICE);
1730 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1731 			rx_queue->rx_skbuff[i] = NULL;
1732 		}
1733 		rxbdp->lstatus = 0;
1734 		rxbdp->bufPtr = 0;
1735 		rxbdp++;
1736 	}
1737 	kfree(rx_queue->rx_skbuff);
1738 }
1739 
1740 /* If there are any tx skbs or rx skbs still around, free them.
1741  * Then free tx_skbuff and rx_skbuff
1742  */
1743 static void free_skb_resources(struct gfar_private *priv)
1744 {
1745 	struct gfar_priv_tx_q *tx_queue = NULL;
1746 	struct gfar_priv_rx_q *rx_queue = NULL;
1747 	int i;
1748 
1749 	/* Go through all the buffer descriptors and free their data buffers */
1750 	for (i = 0; i < priv->num_tx_queues; i++) {
1751 		struct netdev_queue *txq;
1752 
1753 		tx_queue = priv->tx_queue[i];
1754 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1755 		if (tx_queue->tx_skbuff)
1756 			free_skb_tx_queue(tx_queue);
1757 		netdev_tx_reset_queue(txq);
1758 	}
1759 
1760 	for (i = 0; i < priv->num_rx_queues; i++) {
1761 		rx_queue = priv->rx_queue[i];
1762 		if (rx_queue->rx_skbuff)
1763 			free_skb_rx_queue(rx_queue);
1764 	}
1765 
1766 	dma_free_coherent(&priv->ofdev->dev,
1767 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1768 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1769 			  priv->tx_queue[0]->tx_bd_base,
1770 			  priv->tx_queue[0]->tx_bd_dma_base);
1771 }
1772 
1773 void gfar_start(struct net_device *dev)
1774 {
1775 	struct gfar_private *priv = netdev_priv(dev);
1776 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1777 	u32 tempval;
1778 	int i = 0;
1779 
1780 	/* Enable Rx and Tx in MACCFG1 */
1781 	tempval = gfar_read(&regs->maccfg1);
1782 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1783 	gfar_write(&regs->maccfg1, tempval);
1784 
1785 	/* Initialize DMACTRL to have WWR and WOP */
1786 	tempval = gfar_read(&regs->dmactrl);
1787 	tempval |= DMACTRL_INIT_SETTINGS;
1788 	gfar_write(&regs->dmactrl, tempval);
1789 
1790 	/* Make sure we aren't stopped */
1791 	tempval = gfar_read(&regs->dmactrl);
1792 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1793 	gfar_write(&regs->dmactrl, tempval);
1794 
1795 	for (i = 0; i < priv->num_grps; i++) {
1796 		regs = priv->gfargrp[i].regs;
1797 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1798 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1799 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1800 		/* Unmask the interrupts we look for */
1801 		gfar_write(&regs->imask, IMASK_DEFAULT);
1802 	}
1803 
1804 	dev->trans_start = jiffies; /* prevent tx timeout */
1805 }
1806 
1807 void gfar_configure_coalescing(struct gfar_private *priv,
1808 			       unsigned long tx_mask, unsigned long rx_mask)
1809 {
1810 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1811 	u32 __iomem *baddr;
1812 	int i = 0;
1813 
1814 	/* Backward compatible case ---- even if we enable
1815 	 * multiple queues, there's only single reg to program
1816 	 */
1817 	gfar_write(&regs->txic, 0);
1818 	if (likely(priv->tx_queue[0]->txcoalescing))
1819 		gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1820 
1821 	gfar_write(&regs->rxic, 0);
1822 	if (unlikely(priv->rx_queue[0]->rxcoalescing))
1823 		gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1824 
1825 	if (priv->mode == MQ_MG_MODE) {
1826 		baddr = &regs->txic0;
1827 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1828 			gfar_write(baddr + i, 0);
1829 			if (likely(priv->tx_queue[i]->txcoalescing))
1830 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1831 		}
1832 
1833 		baddr = &regs->rxic0;
1834 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1835 			gfar_write(baddr + i, 0);
1836 			if (likely(priv->rx_queue[i]->rxcoalescing))
1837 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1838 		}
1839 	}
1840 }
1841 
1842 static int register_grp_irqs(struct gfar_priv_grp *grp)
1843 {
1844 	struct gfar_private *priv = grp->priv;
1845 	struct net_device *dev = priv->ndev;
1846 	int err;
1847 
1848 	/* If the device has multiple interrupts, register for
1849 	 * them.  Otherwise, only register for the one
1850 	 */
1851 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1852 		/* Install our interrupt handlers for Error,
1853 		 * Transmit, and Receive
1854 		 */
1855 		if ((err = request_irq(grp->interruptError, gfar_error,
1856 				       0, grp->int_name_er, grp)) < 0) {
1857 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1858 				  grp->interruptError);
1859 
1860 			goto err_irq_fail;
1861 		}
1862 
1863 		if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1864 				       0, grp->int_name_tx, grp)) < 0) {
1865 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1866 				  grp->interruptTransmit);
1867 			goto tx_irq_fail;
1868 		}
1869 
1870 		if ((err = request_irq(grp->interruptReceive, gfar_receive,
1871 				       0, grp->int_name_rx, grp)) < 0) {
1872 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1873 				  grp->interruptReceive);
1874 			goto rx_irq_fail;
1875 		}
1876 	} else {
1877 		if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1878 				       0, grp->int_name_tx, grp)) < 0) {
1879 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1880 				  grp->interruptTransmit);
1881 			goto err_irq_fail;
1882 		}
1883 	}
1884 
1885 	return 0;
1886 
1887 rx_irq_fail:
1888 	free_irq(grp->interruptTransmit, grp);
1889 tx_irq_fail:
1890 	free_irq(grp->interruptError, grp);
1891 err_irq_fail:
1892 	return err;
1893 
1894 }
1895 
1896 /* Bring the controller up and running */
1897 int startup_gfar(struct net_device *ndev)
1898 {
1899 	struct gfar_private *priv = netdev_priv(ndev);
1900 	struct gfar __iomem *regs = NULL;
1901 	int err, i, j;
1902 
1903 	for (i = 0; i < priv->num_grps; i++) {
1904 		regs= priv->gfargrp[i].regs;
1905 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1906 	}
1907 
1908 	regs= priv->gfargrp[0].regs;
1909 	err = gfar_alloc_skb_resources(ndev);
1910 	if (err)
1911 		return err;
1912 
1913 	gfar_init_mac(ndev);
1914 
1915 	for (i = 0; i < priv->num_grps; i++) {
1916 		err = register_grp_irqs(&priv->gfargrp[i]);
1917 		if (err) {
1918 			for (j = 0; j < i; j++)
1919 				free_grp_irqs(&priv->gfargrp[j]);
1920 			goto irq_fail;
1921 		}
1922 	}
1923 
1924 	/* Start the controller */
1925 	gfar_start(ndev);
1926 
1927 	phy_start(priv->phydev);
1928 
1929 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1930 
1931 	return 0;
1932 
1933 irq_fail:
1934 	free_skb_resources(priv);
1935 	return err;
1936 }
1937 
1938 /* Called when something needs to use the ethernet device
1939  * Returns 0 for success.
1940  */
1941 static int gfar_enet_open(struct net_device *dev)
1942 {
1943 	struct gfar_private *priv = netdev_priv(dev);
1944 	int err;
1945 
1946 	enable_napi(priv);
1947 
1948 	/* Initialize a bunch of registers */
1949 	init_registers(dev);
1950 
1951 	gfar_set_mac_address(dev);
1952 
1953 	err = init_phy(dev);
1954 
1955 	if (err) {
1956 		disable_napi(priv);
1957 		return err;
1958 	}
1959 
1960 	err = startup_gfar(dev);
1961 	if (err) {
1962 		disable_napi(priv);
1963 		return err;
1964 	}
1965 
1966 	netif_tx_start_all_queues(dev);
1967 
1968 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1969 
1970 	return err;
1971 }
1972 
1973 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1974 {
1975 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1976 
1977 	memset(fcb, 0, GMAC_FCB_LEN);
1978 
1979 	return fcb;
1980 }
1981 
1982 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1983 				    int fcb_length)
1984 {
1985 	/* If we're here, it's a IP packet with a TCP or UDP
1986 	 * payload.  We set it to checksum, using a pseudo-header
1987 	 * we provide
1988 	 */
1989 	u8 flags = TXFCB_DEFAULT;
1990 
1991 	/* Tell the controller what the protocol is
1992 	 * And provide the already calculated phcs
1993 	 */
1994 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1995 		flags |= TXFCB_UDP;
1996 		fcb->phcs = udp_hdr(skb)->check;
1997 	} else
1998 		fcb->phcs = tcp_hdr(skb)->check;
1999 
2000 	/* l3os is the distance between the start of the
2001 	 * frame (skb->data) and the start of the IP hdr.
2002 	 * l4os is the distance between the start of the
2003 	 * l3 hdr and the l4 hdr
2004 	 */
2005 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2006 	fcb->l4os = skb_network_header_len(skb);
2007 
2008 	fcb->flags = flags;
2009 }
2010 
2011 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2012 {
2013 	fcb->flags |= TXFCB_VLN;
2014 	fcb->vlctl = vlan_tx_tag_get(skb);
2015 }
2016 
2017 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2018 				      struct txbd8 *base, int ring_size)
2019 {
2020 	struct txbd8 *new_bd = bdp + stride;
2021 
2022 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2023 }
2024 
2025 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2026 				      int ring_size)
2027 {
2028 	return skip_txbd(bdp, 1, base, ring_size);
2029 }
2030 
2031 /* This is called by the kernel when a frame is ready for transmission.
2032  * It is pointed to by the dev->hard_start_xmit function pointer
2033  */
2034 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2035 {
2036 	struct gfar_private *priv = netdev_priv(dev);
2037 	struct gfar_priv_tx_q *tx_queue = NULL;
2038 	struct netdev_queue *txq;
2039 	struct gfar __iomem *regs = NULL;
2040 	struct txfcb *fcb = NULL;
2041 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2042 	u32 lstatus;
2043 	int i, rq = 0, do_tstamp = 0;
2044 	u32 bufaddr;
2045 	unsigned long flags;
2046 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2047 
2048 	/* TOE=1 frames larger than 2500 bytes may see excess delays
2049 	 * before start of transmission.
2050 	 */
2051 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2052 		     skb->ip_summed == CHECKSUM_PARTIAL &&
2053 		     skb->len > 2500)) {
2054 		int ret;
2055 
2056 		ret = skb_checksum_help(skb);
2057 		if (ret)
2058 			return ret;
2059 	}
2060 
2061 	rq = skb->queue_mapping;
2062 	tx_queue = priv->tx_queue[rq];
2063 	txq = netdev_get_tx_queue(dev, rq);
2064 	base = tx_queue->tx_bd_base;
2065 	regs = tx_queue->grp->regs;
2066 
2067 	/* check if time stamp should be generated */
2068 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2069 		     priv->hwts_tx_en)) {
2070 		do_tstamp = 1;
2071 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2072 	}
2073 
2074 	/* make space for additional header when fcb is needed */
2075 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2076 	     vlan_tx_tag_present(skb) ||
2077 	     unlikely(do_tstamp)) &&
2078 	    (skb_headroom(skb) < fcb_length)) {
2079 		struct sk_buff *skb_new;
2080 
2081 		skb_new = skb_realloc_headroom(skb, fcb_length);
2082 		if (!skb_new) {
2083 			dev->stats.tx_errors++;
2084 			kfree_skb(skb);
2085 			return NETDEV_TX_OK;
2086 		}
2087 
2088 		if (skb->sk)
2089 			skb_set_owner_w(skb_new, skb->sk);
2090 		consume_skb(skb);
2091 		skb = skb_new;
2092 	}
2093 
2094 	/* total number of fragments in the SKB */
2095 	nr_frags = skb_shinfo(skb)->nr_frags;
2096 
2097 	/* calculate the required number of TxBDs for this skb */
2098 	if (unlikely(do_tstamp))
2099 		nr_txbds = nr_frags + 2;
2100 	else
2101 		nr_txbds = nr_frags + 1;
2102 
2103 	/* check if there is space to queue this packet */
2104 	if (nr_txbds > tx_queue->num_txbdfree) {
2105 		/* no space, stop the queue */
2106 		netif_tx_stop_queue(txq);
2107 		dev->stats.tx_fifo_errors++;
2108 		return NETDEV_TX_BUSY;
2109 	}
2110 
2111 	/* Update transmit stats */
2112 	tx_queue->stats.tx_bytes += skb->len;
2113 	tx_queue->stats.tx_packets++;
2114 
2115 	txbdp = txbdp_start = tx_queue->cur_tx;
2116 	lstatus = txbdp->lstatus;
2117 
2118 	/* Time stamp insertion requires one additional TxBD */
2119 	if (unlikely(do_tstamp))
2120 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2121 						 tx_queue->tx_ring_size);
2122 
2123 	if (nr_frags == 0) {
2124 		if (unlikely(do_tstamp))
2125 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2126 							  TXBD_INTERRUPT);
2127 		else
2128 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2129 	} else {
2130 		/* Place the fragment addresses and lengths into the TxBDs */
2131 		for (i = 0; i < nr_frags; i++) {
2132 			/* Point at the next BD, wrapping as needed */
2133 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2134 
2135 			length = skb_shinfo(skb)->frags[i].size;
2136 
2137 			lstatus = txbdp->lstatus | length |
2138 				  BD_LFLAG(TXBD_READY);
2139 
2140 			/* Handle the last BD specially */
2141 			if (i == nr_frags - 1)
2142 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2143 
2144 			bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2145 						   &skb_shinfo(skb)->frags[i],
2146 						   0,
2147 						   length,
2148 						   DMA_TO_DEVICE);
2149 
2150 			/* set the TxBD length and buffer pointer */
2151 			txbdp->bufPtr = bufaddr;
2152 			txbdp->lstatus = lstatus;
2153 		}
2154 
2155 		lstatus = txbdp_start->lstatus;
2156 	}
2157 
2158 	/* Add TxPAL between FCB and frame if required */
2159 	if (unlikely(do_tstamp)) {
2160 		skb_push(skb, GMAC_TXPAL_LEN);
2161 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2162 	}
2163 
2164 	/* Set up checksumming */
2165 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2166 		fcb = gfar_add_fcb(skb);
2167 		/* as specified by errata */
2168 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2169 			     ((unsigned long)fcb % 0x20) > 0x18)) {
2170 			__skb_pull(skb, GMAC_FCB_LEN);
2171 			skb_checksum_help(skb);
2172 		} else {
2173 			lstatus |= BD_LFLAG(TXBD_TOE);
2174 			gfar_tx_checksum(skb, fcb, fcb_length);
2175 		}
2176 	}
2177 
2178 	if (vlan_tx_tag_present(skb)) {
2179 		if (unlikely(NULL == fcb)) {
2180 			fcb = gfar_add_fcb(skb);
2181 			lstatus |= BD_LFLAG(TXBD_TOE);
2182 		}
2183 
2184 		gfar_tx_vlan(skb, fcb);
2185 	}
2186 
2187 	/* Setup tx hardware time stamping if requested */
2188 	if (unlikely(do_tstamp)) {
2189 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2190 		if (fcb == NULL)
2191 			fcb = gfar_add_fcb(skb);
2192 		fcb->ptp = 1;
2193 		lstatus |= BD_LFLAG(TXBD_TOE);
2194 	}
2195 
2196 	txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2197 					     skb_headlen(skb), DMA_TO_DEVICE);
2198 
2199 	/* If time stamping is requested one additional TxBD must be set up. The
2200 	 * first TxBD points to the FCB and must have a data length of
2201 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2202 	 * the full frame length.
2203 	 */
2204 	if (unlikely(do_tstamp)) {
2205 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2206 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2207 					 (skb_headlen(skb) - fcb_length);
2208 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2209 	} else {
2210 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2211 	}
2212 
2213 	netdev_tx_sent_queue(txq, skb->len);
2214 
2215 	/* We can work in parallel with gfar_clean_tx_ring(), except
2216 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2217 	 * when we were reading the num_txbdfree and checking for available
2218 	 * space, that's because outside of this function it can only grow,
2219 	 * and once we've got needed space, it cannot suddenly disappear.
2220 	 *
2221 	 * The lock also protects us from gfar_error(), which can modify
2222 	 * regs->tstat and thus retrigger the transfers, which is why we
2223 	 * also must grab the lock before setting ready bit for the first
2224 	 * to be transmitted BD.
2225 	 */
2226 	spin_lock_irqsave(&tx_queue->txlock, flags);
2227 
2228 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2229 	 * semantics (it requires synchronization between cacheable and
2230 	 * uncacheable mappings, which eieio doesn't provide and which we
2231 	 * don't need), thus requiring a more expensive sync instruction.  At
2232 	 * some point, the set of architecture-independent barrier functions
2233 	 * should be expanded to include weaker barriers.
2234 	 */
2235 	eieio();
2236 
2237 	txbdp_start->lstatus = lstatus;
2238 
2239 	eieio(); /* force lstatus write before tx_skbuff */
2240 
2241 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2242 
2243 	/* Update the current skb pointer to the next entry we will use
2244 	 * (wrapping if necessary)
2245 	 */
2246 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2247 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2248 
2249 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2250 
2251 	/* reduce TxBD free count */
2252 	tx_queue->num_txbdfree -= (nr_txbds);
2253 
2254 	/* If the next BD still needs to be cleaned up, then the bds
2255 	 * are full.  We need to tell the kernel to stop sending us stuff.
2256 	 */
2257 	if (!tx_queue->num_txbdfree) {
2258 		netif_tx_stop_queue(txq);
2259 
2260 		dev->stats.tx_fifo_errors++;
2261 	}
2262 
2263 	/* Tell the DMA to go go go */
2264 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2265 
2266 	/* Unlock priv */
2267 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2268 
2269 	return NETDEV_TX_OK;
2270 }
2271 
2272 /* Stops the kernel queue, and halts the controller */
2273 static int gfar_close(struct net_device *dev)
2274 {
2275 	struct gfar_private *priv = netdev_priv(dev);
2276 
2277 	disable_napi(priv);
2278 
2279 	cancel_work_sync(&priv->reset_task);
2280 	stop_gfar(dev);
2281 
2282 	/* Disconnect from the PHY */
2283 	phy_disconnect(priv->phydev);
2284 	priv->phydev = NULL;
2285 
2286 	netif_tx_stop_all_queues(dev);
2287 
2288 	return 0;
2289 }
2290 
2291 /* Changes the mac address if the controller is not running. */
2292 static int gfar_set_mac_address(struct net_device *dev)
2293 {
2294 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2295 
2296 	return 0;
2297 }
2298 
2299 /* Check if rx parser should be activated */
2300 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2301 {
2302 	struct gfar __iomem *regs;
2303 	u32 tempval;
2304 
2305 	regs = priv->gfargrp[0].regs;
2306 
2307 	tempval = gfar_read(&regs->rctrl);
2308 	/* If parse is no longer required, then disable parser */
2309 	if (tempval & RCTRL_REQ_PARSER)
2310 		tempval |= RCTRL_PRSDEP_INIT;
2311 	else
2312 		tempval &= ~RCTRL_PRSDEP_INIT;
2313 	gfar_write(&regs->rctrl, tempval);
2314 }
2315 
2316 /* Enables and disables VLAN insertion/extraction */
2317 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2318 {
2319 	struct gfar_private *priv = netdev_priv(dev);
2320 	struct gfar __iomem *regs = NULL;
2321 	unsigned long flags;
2322 	u32 tempval;
2323 
2324 	regs = priv->gfargrp[0].regs;
2325 	local_irq_save(flags);
2326 	lock_rx_qs(priv);
2327 
2328 	if (features & NETIF_F_HW_VLAN_TX) {
2329 		/* Enable VLAN tag insertion */
2330 		tempval = gfar_read(&regs->tctrl);
2331 		tempval |= TCTRL_VLINS;
2332 		gfar_write(&regs->tctrl, tempval);
2333 	} else {
2334 		/* Disable VLAN tag insertion */
2335 		tempval = gfar_read(&regs->tctrl);
2336 		tempval &= ~TCTRL_VLINS;
2337 		gfar_write(&regs->tctrl, tempval);
2338 	}
2339 
2340 	if (features & NETIF_F_HW_VLAN_RX) {
2341 		/* Enable VLAN tag extraction */
2342 		tempval = gfar_read(&regs->rctrl);
2343 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2344 		gfar_write(&regs->rctrl, tempval);
2345 	} else {
2346 		/* Disable VLAN tag extraction */
2347 		tempval = gfar_read(&regs->rctrl);
2348 		tempval &= ~RCTRL_VLEX;
2349 		gfar_write(&regs->rctrl, tempval);
2350 
2351 		gfar_check_rx_parser_mode(priv);
2352 	}
2353 
2354 	gfar_change_mtu(dev, dev->mtu);
2355 
2356 	unlock_rx_qs(priv);
2357 	local_irq_restore(flags);
2358 }
2359 
2360 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2361 {
2362 	int tempsize, tempval;
2363 	struct gfar_private *priv = netdev_priv(dev);
2364 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2365 	int oldsize = priv->rx_buffer_size;
2366 	int frame_size = new_mtu + ETH_HLEN;
2367 
2368 	if (gfar_is_vlan_on(priv))
2369 		frame_size += VLAN_HLEN;
2370 
2371 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2372 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2373 		return -EINVAL;
2374 	}
2375 
2376 	if (gfar_uses_fcb(priv))
2377 		frame_size += GMAC_FCB_LEN;
2378 
2379 	frame_size += priv->padding;
2380 
2381 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2382 		   INCREMENTAL_BUFFER_SIZE;
2383 
2384 	/* Only stop and start the controller if it isn't already
2385 	 * stopped, and we changed something
2386 	 */
2387 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2388 		stop_gfar(dev);
2389 
2390 	priv->rx_buffer_size = tempsize;
2391 
2392 	dev->mtu = new_mtu;
2393 
2394 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2395 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2396 
2397 	/* If the mtu is larger than the max size for standard
2398 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2399 	 * to allow huge frames, and to check the length
2400 	 */
2401 	tempval = gfar_read(&regs->maccfg2);
2402 
2403 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2404 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2405 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2406 	else
2407 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2408 
2409 	gfar_write(&regs->maccfg2, tempval);
2410 
2411 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2412 		startup_gfar(dev);
2413 
2414 	return 0;
2415 }
2416 
2417 /* gfar_reset_task gets scheduled when a packet has not been
2418  * transmitted after a set amount of time.
2419  * For now, assume that clearing out all the structures, and
2420  * starting over will fix the problem.
2421  */
2422 static void gfar_reset_task(struct work_struct *work)
2423 {
2424 	struct gfar_private *priv = container_of(work, struct gfar_private,
2425 						 reset_task);
2426 	struct net_device *dev = priv->ndev;
2427 
2428 	if (dev->flags & IFF_UP) {
2429 		netif_tx_stop_all_queues(dev);
2430 		stop_gfar(dev);
2431 		startup_gfar(dev);
2432 		netif_tx_start_all_queues(dev);
2433 	}
2434 
2435 	netif_tx_schedule_all(dev);
2436 }
2437 
2438 static void gfar_timeout(struct net_device *dev)
2439 {
2440 	struct gfar_private *priv = netdev_priv(dev);
2441 
2442 	dev->stats.tx_errors++;
2443 	schedule_work(&priv->reset_task);
2444 }
2445 
2446 static void gfar_align_skb(struct sk_buff *skb)
2447 {
2448 	/* We need the data buffer to be aligned properly.  We will reserve
2449 	 * as many bytes as needed to align the data properly
2450 	 */
2451 	skb_reserve(skb, RXBUF_ALIGNMENT -
2452 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2453 }
2454 
2455 /* Interrupt Handler for Transmit complete */
2456 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2457 {
2458 	struct net_device *dev = tx_queue->dev;
2459 	struct netdev_queue *txq;
2460 	struct gfar_private *priv = netdev_priv(dev);
2461 	struct gfar_priv_rx_q *rx_queue = NULL;
2462 	struct txbd8 *bdp, *next = NULL;
2463 	struct txbd8 *lbdp = NULL;
2464 	struct txbd8 *base = tx_queue->tx_bd_base;
2465 	struct sk_buff *skb;
2466 	int skb_dirtytx;
2467 	int tx_ring_size = tx_queue->tx_ring_size;
2468 	int frags = 0, nr_txbds = 0;
2469 	int i;
2470 	int howmany = 0;
2471 	int tqi = tx_queue->qindex;
2472 	unsigned int bytes_sent = 0;
2473 	u32 lstatus;
2474 	size_t buflen;
2475 
2476 	rx_queue = priv->rx_queue[tqi];
2477 	txq = netdev_get_tx_queue(dev, tqi);
2478 	bdp = tx_queue->dirty_tx;
2479 	skb_dirtytx = tx_queue->skb_dirtytx;
2480 
2481 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2482 		unsigned long flags;
2483 
2484 		frags = skb_shinfo(skb)->nr_frags;
2485 
2486 		/* When time stamping, one additional TxBD must be freed.
2487 		 * Also, we need to dma_unmap_single() the TxPAL.
2488 		 */
2489 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2490 			nr_txbds = frags + 2;
2491 		else
2492 			nr_txbds = frags + 1;
2493 
2494 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2495 
2496 		lstatus = lbdp->lstatus;
2497 
2498 		/* Only clean completed frames */
2499 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2500 		    (lstatus & BD_LENGTH_MASK))
2501 			break;
2502 
2503 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2504 			next = next_txbd(bdp, base, tx_ring_size);
2505 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2506 		} else
2507 			buflen = bdp->length;
2508 
2509 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2510 				 buflen, DMA_TO_DEVICE);
2511 
2512 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2513 			struct skb_shared_hwtstamps shhwtstamps;
2514 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2515 
2516 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2517 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2518 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2519 			skb_tstamp_tx(skb, &shhwtstamps);
2520 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2521 			bdp = next;
2522 		}
2523 
2524 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2525 		bdp = next_txbd(bdp, base, tx_ring_size);
2526 
2527 		for (i = 0; i < frags; i++) {
2528 			dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2529 				       bdp->length, DMA_TO_DEVICE);
2530 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2531 			bdp = next_txbd(bdp, base, tx_ring_size);
2532 		}
2533 
2534 		bytes_sent += skb->len;
2535 
2536 		dev_kfree_skb_any(skb);
2537 
2538 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2539 
2540 		skb_dirtytx = (skb_dirtytx + 1) &
2541 			      TX_RING_MOD_MASK(tx_ring_size);
2542 
2543 		howmany++;
2544 		spin_lock_irqsave(&tx_queue->txlock, flags);
2545 		tx_queue->num_txbdfree += nr_txbds;
2546 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2547 	}
2548 
2549 	/* If we freed a buffer, we can restart transmission, if necessary */
2550 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2551 		netif_wake_subqueue(dev, tqi);
2552 
2553 	/* Update dirty indicators */
2554 	tx_queue->skb_dirtytx = skb_dirtytx;
2555 	tx_queue->dirty_tx = bdp;
2556 
2557 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2558 
2559 	return howmany;
2560 }
2561 
2562 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2563 {
2564 	unsigned long flags;
2565 
2566 	spin_lock_irqsave(&gfargrp->grplock, flags);
2567 	if (napi_schedule_prep(&gfargrp->napi)) {
2568 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2569 		__napi_schedule(&gfargrp->napi);
2570 	} else {
2571 		/* Clear IEVENT, so interrupts aren't called again
2572 		 * because of the packets that have already arrived.
2573 		 */
2574 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2575 	}
2576 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2577 
2578 }
2579 
2580 /* Interrupt Handler for Transmit complete */
2581 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2582 {
2583 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2584 	return IRQ_HANDLED;
2585 }
2586 
2587 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2588 			   struct sk_buff *skb)
2589 {
2590 	struct net_device *dev = rx_queue->dev;
2591 	struct gfar_private *priv = netdev_priv(dev);
2592 	dma_addr_t buf;
2593 
2594 	buf = dma_map_single(&priv->ofdev->dev, skb->data,
2595 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2596 	gfar_init_rxbdp(rx_queue, bdp, buf);
2597 }
2598 
2599 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2600 {
2601 	struct gfar_private *priv = netdev_priv(dev);
2602 	struct sk_buff *skb;
2603 
2604 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2605 	if (!skb)
2606 		return NULL;
2607 
2608 	gfar_align_skb(skb);
2609 
2610 	return skb;
2611 }
2612 
2613 struct sk_buff *gfar_new_skb(struct net_device *dev)
2614 {
2615 	return gfar_alloc_skb(dev);
2616 }
2617 
2618 static inline void count_errors(unsigned short status, struct net_device *dev)
2619 {
2620 	struct gfar_private *priv = netdev_priv(dev);
2621 	struct net_device_stats *stats = &dev->stats;
2622 	struct gfar_extra_stats *estats = &priv->extra_stats;
2623 
2624 	/* If the packet was truncated, none of the other errors matter */
2625 	if (status & RXBD_TRUNCATED) {
2626 		stats->rx_length_errors++;
2627 
2628 		estats->rx_trunc++;
2629 
2630 		return;
2631 	}
2632 	/* Count the errors, if there were any */
2633 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2634 		stats->rx_length_errors++;
2635 
2636 		if (status & RXBD_LARGE)
2637 			estats->rx_large++;
2638 		else
2639 			estats->rx_short++;
2640 	}
2641 	if (status & RXBD_NONOCTET) {
2642 		stats->rx_frame_errors++;
2643 		estats->rx_nonoctet++;
2644 	}
2645 	if (status & RXBD_CRCERR) {
2646 		estats->rx_crcerr++;
2647 		stats->rx_crc_errors++;
2648 	}
2649 	if (status & RXBD_OVERRUN) {
2650 		estats->rx_overrun++;
2651 		stats->rx_crc_errors++;
2652 	}
2653 }
2654 
2655 irqreturn_t gfar_receive(int irq, void *grp_id)
2656 {
2657 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2658 	return IRQ_HANDLED;
2659 }
2660 
2661 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2662 {
2663 	/* If valid headers were found, and valid sums
2664 	 * were verified, then we tell the kernel that no
2665 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2666 	 */
2667 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2668 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2669 	else
2670 		skb_checksum_none_assert(skb);
2671 }
2672 
2673 
2674 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2675 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2676 			      int amount_pull, struct napi_struct *napi)
2677 {
2678 	struct gfar_private *priv = netdev_priv(dev);
2679 	struct rxfcb *fcb = NULL;
2680 
2681 	gro_result_t ret;
2682 
2683 	/* fcb is at the beginning if exists */
2684 	fcb = (struct rxfcb *)skb->data;
2685 
2686 	/* Remove the FCB from the skb
2687 	 * Remove the padded bytes, if there are any
2688 	 */
2689 	if (amount_pull) {
2690 		skb_record_rx_queue(skb, fcb->rq);
2691 		skb_pull(skb, amount_pull);
2692 	}
2693 
2694 	/* Get receive timestamp from the skb */
2695 	if (priv->hwts_rx_en) {
2696 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2697 		u64 *ns = (u64 *) skb->data;
2698 
2699 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2700 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2701 	}
2702 
2703 	if (priv->padding)
2704 		skb_pull(skb, priv->padding);
2705 
2706 	if (dev->features & NETIF_F_RXCSUM)
2707 		gfar_rx_checksum(skb, fcb);
2708 
2709 	/* Tell the skb what kind of packet this is */
2710 	skb->protocol = eth_type_trans(skb, dev);
2711 
2712 	/* There's need to check for NETIF_F_HW_VLAN_RX here.
2713 	 * Even if vlan rx accel is disabled, on some chips
2714 	 * RXFCB_VLN is pseudo randomly set.
2715 	 */
2716 	if (dev->features & NETIF_F_HW_VLAN_RX &&
2717 	    fcb->flags & RXFCB_VLN)
2718 		__vlan_hwaccel_put_tag(skb, fcb->vlctl);
2719 
2720 	/* Send the packet up the stack */
2721 	ret = napi_gro_receive(napi, skb);
2722 
2723 	if (GRO_DROP == ret)
2724 		priv->extra_stats.kernel_dropped++;
2725 
2726 	return 0;
2727 }
2728 
2729 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2730  * until the budget/quota has been reached. Returns the number
2731  * of frames handled
2732  */
2733 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2734 {
2735 	struct net_device *dev = rx_queue->dev;
2736 	struct rxbd8 *bdp, *base;
2737 	struct sk_buff *skb;
2738 	int pkt_len;
2739 	int amount_pull;
2740 	int howmany = 0;
2741 	struct gfar_private *priv = netdev_priv(dev);
2742 
2743 	/* Get the first full descriptor */
2744 	bdp = rx_queue->cur_rx;
2745 	base = rx_queue->rx_bd_base;
2746 
2747 	amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2748 
2749 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2750 		struct sk_buff *newskb;
2751 
2752 		rmb();
2753 
2754 		/* Add another skb for the future */
2755 		newskb = gfar_new_skb(dev);
2756 
2757 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2758 
2759 		dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2761 
2762 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2763 			     bdp->length > priv->rx_buffer_size))
2764 			bdp->status = RXBD_LARGE;
2765 
2766 		/* We drop the frame if we failed to allocate a new buffer */
2767 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768 			     bdp->status & RXBD_ERR)) {
2769 			count_errors(bdp->status, dev);
2770 
2771 			if (unlikely(!newskb))
2772 				newskb = skb;
2773 			else if (skb)
2774 				dev_kfree_skb(skb);
2775 		} else {
2776 			/* Increment the number of packets */
2777 			rx_queue->stats.rx_packets++;
2778 			howmany++;
2779 
2780 			if (likely(skb)) {
2781 				pkt_len = bdp->length - ETH_FCS_LEN;
2782 				/* Remove the FCS from the packet length */
2783 				skb_put(skb, pkt_len);
2784 				rx_queue->stats.rx_bytes += pkt_len;
2785 				skb_record_rx_queue(skb, rx_queue->qindex);
2786 				gfar_process_frame(dev, skb, amount_pull,
2787 						   &rx_queue->grp->napi);
2788 
2789 			} else {
2790 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2791 				rx_queue->stats.rx_dropped++;
2792 				priv->extra_stats.rx_skbmissing++;
2793 			}
2794 
2795 		}
2796 
2797 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2798 
2799 		/* Setup the new bdp */
2800 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2801 
2802 		/* Update to the next pointer */
2803 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2804 
2805 		/* update to point at the next skb */
2806 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2807 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2808 	}
2809 
2810 	/* Update the current rxbd pointer to be the next one */
2811 	rx_queue->cur_rx = bdp;
2812 
2813 	return howmany;
2814 }
2815 
2816 static int gfar_poll(struct napi_struct *napi, int budget)
2817 {
2818 	struct gfar_priv_grp *gfargrp =
2819 		container_of(napi, struct gfar_priv_grp, napi);
2820 	struct gfar_private *priv = gfargrp->priv;
2821 	struct gfar __iomem *regs = gfargrp->regs;
2822 	struct gfar_priv_tx_q *tx_queue = NULL;
2823 	struct gfar_priv_rx_q *rx_queue = NULL;
2824 	int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2825 	int tx_cleaned = 0, i, left_over_budget = budget;
2826 	unsigned long serviced_queues = 0;
2827 	int num_queues = 0;
2828 
2829 	num_queues = gfargrp->num_rx_queues;
2830 	budget_per_queue = budget/num_queues;
2831 
2832 	/* Clear IEVENT, so interrupts aren't called again
2833 	 * because of the packets that have already arrived
2834 	 */
2835 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2836 
2837 	while (num_queues && left_over_budget) {
2838 		budget_per_queue = left_over_budget/num_queues;
2839 		left_over_budget = 0;
2840 
2841 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2842 			if (test_bit(i, &serviced_queues))
2843 				continue;
2844 			rx_queue = priv->rx_queue[i];
2845 			tx_queue = priv->tx_queue[rx_queue->qindex];
2846 
2847 			tx_cleaned += gfar_clean_tx_ring(tx_queue);
2848 			rx_cleaned_per_queue =
2849 				gfar_clean_rx_ring(rx_queue, budget_per_queue);
2850 			rx_cleaned += rx_cleaned_per_queue;
2851 			if (rx_cleaned_per_queue < budget_per_queue) {
2852 				left_over_budget = left_over_budget +
2853 					(budget_per_queue -
2854 					 rx_cleaned_per_queue);
2855 				set_bit(i, &serviced_queues);
2856 				num_queues--;
2857 			}
2858 		}
2859 	}
2860 
2861 	if (tx_cleaned)
2862 		return budget;
2863 
2864 	if (rx_cleaned < budget) {
2865 		napi_complete(napi);
2866 
2867 		/* Clear the halt bit in RSTAT */
2868 		gfar_write(&regs->rstat, gfargrp->rstat);
2869 
2870 		gfar_write(&regs->imask, IMASK_DEFAULT);
2871 
2872 		/* If we are coalescing interrupts, update the timer
2873 		 * Otherwise, clear it
2874 		 */
2875 		gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2876 					  gfargrp->tx_bit_map);
2877 	}
2878 
2879 	return rx_cleaned;
2880 }
2881 
2882 #ifdef CONFIG_NET_POLL_CONTROLLER
2883 /* Polling 'interrupt' - used by things like netconsole to send skbs
2884  * without having to re-enable interrupts. It's not called while
2885  * the interrupt routine is executing.
2886  */
2887 static void gfar_netpoll(struct net_device *dev)
2888 {
2889 	struct gfar_private *priv = netdev_priv(dev);
2890 	int i;
2891 
2892 	/* If the device has multiple interrupts, run tx/rx */
2893 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2894 		for (i = 0; i < priv->num_grps; i++) {
2895 			disable_irq(priv->gfargrp[i].interruptTransmit);
2896 			disable_irq(priv->gfargrp[i].interruptReceive);
2897 			disable_irq(priv->gfargrp[i].interruptError);
2898 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899 				       &priv->gfargrp[i]);
2900 			enable_irq(priv->gfargrp[i].interruptError);
2901 			enable_irq(priv->gfargrp[i].interruptReceive);
2902 			enable_irq(priv->gfargrp[i].interruptTransmit);
2903 		}
2904 	} else {
2905 		for (i = 0; i < priv->num_grps; i++) {
2906 			disable_irq(priv->gfargrp[i].interruptTransmit);
2907 			gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2908 				       &priv->gfargrp[i]);
2909 			enable_irq(priv->gfargrp[i].interruptTransmit);
2910 		}
2911 	}
2912 }
2913 #endif
2914 
2915 /* The interrupt handler for devices with one interrupt */
2916 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2917 {
2918 	struct gfar_priv_grp *gfargrp = grp_id;
2919 
2920 	/* Save ievent for future reference */
2921 	u32 events = gfar_read(&gfargrp->regs->ievent);
2922 
2923 	/* Check for reception */
2924 	if (events & IEVENT_RX_MASK)
2925 		gfar_receive(irq, grp_id);
2926 
2927 	/* Check for transmit completion */
2928 	if (events & IEVENT_TX_MASK)
2929 		gfar_transmit(irq, grp_id);
2930 
2931 	/* Check for errors */
2932 	if (events & IEVENT_ERR_MASK)
2933 		gfar_error(irq, grp_id);
2934 
2935 	return IRQ_HANDLED;
2936 }
2937 
2938 /* Called every time the controller might need to be made
2939  * aware of new link state.  The PHY code conveys this
2940  * information through variables in the phydev structure, and this
2941  * function converts those variables into the appropriate
2942  * register values, and can bring down the device if needed.
2943  */
2944 static void adjust_link(struct net_device *dev)
2945 {
2946 	struct gfar_private *priv = netdev_priv(dev);
2947 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2948 	unsigned long flags;
2949 	struct phy_device *phydev = priv->phydev;
2950 	int new_state = 0;
2951 
2952 	local_irq_save(flags);
2953 	lock_tx_qs(priv);
2954 
2955 	if (phydev->link) {
2956 		u32 tempval = gfar_read(&regs->maccfg2);
2957 		u32 ecntrl = gfar_read(&regs->ecntrl);
2958 
2959 		/* Now we make sure that we can be in full duplex mode.
2960 		 * If not, we operate in half-duplex mode.
2961 		 */
2962 		if (phydev->duplex != priv->oldduplex) {
2963 			new_state = 1;
2964 			if (!(phydev->duplex))
2965 				tempval &= ~(MACCFG2_FULL_DUPLEX);
2966 			else
2967 				tempval |= MACCFG2_FULL_DUPLEX;
2968 
2969 			priv->oldduplex = phydev->duplex;
2970 		}
2971 
2972 		if (phydev->speed != priv->oldspeed) {
2973 			new_state = 1;
2974 			switch (phydev->speed) {
2975 			case 1000:
2976 				tempval =
2977 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2978 
2979 				ecntrl &= ~(ECNTRL_R100);
2980 				break;
2981 			case 100:
2982 			case 10:
2983 				tempval =
2984 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2985 
2986 				/* Reduced mode distinguishes
2987 				 * between 10 and 100
2988 				 */
2989 				if (phydev->speed == SPEED_100)
2990 					ecntrl |= ECNTRL_R100;
2991 				else
2992 					ecntrl &= ~(ECNTRL_R100);
2993 				break;
2994 			default:
2995 				netif_warn(priv, link, dev,
2996 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
2997 					   phydev->speed);
2998 				break;
2999 			}
3000 
3001 			priv->oldspeed = phydev->speed;
3002 		}
3003 
3004 		gfar_write(&regs->maccfg2, tempval);
3005 		gfar_write(&regs->ecntrl, ecntrl);
3006 
3007 		if (!priv->oldlink) {
3008 			new_state = 1;
3009 			priv->oldlink = 1;
3010 		}
3011 	} else if (priv->oldlink) {
3012 		new_state = 1;
3013 		priv->oldlink = 0;
3014 		priv->oldspeed = 0;
3015 		priv->oldduplex = -1;
3016 	}
3017 
3018 	if (new_state && netif_msg_link(priv))
3019 		phy_print_status(phydev);
3020 	unlock_tx_qs(priv);
3021 	local_irq_restore(flags);
3022 }
3023 
3024 /* Update the hash table based on the current list of multicast
3025  * addresses we subscribe to.  Also, change the promiscuity of
3026  * the device based on the flags (this function is called
3027  * whenever dev->flags is changed
3028  */
3029 static void gfar_set_multi(struct net_device *dev)
3030 {
3031 	struct netdev_hw_addr *ha;
3032 	struct gfar_private *priv = netdev_priv(dev);
3033 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3034 	u32 tempval;
3035 
3036 	if (dev->flags & IFF_PROMISC) {
3037 		/* Set RCTRL to PROM */
3038 		tempval = gfar_read(&regs->rctrl);
3039 		tempval |= RCTRL_PROM;
3040 		gfar_write(&regs->rctrl, tempval);
3041 	} else {
3042 		/* Set RCTRL to not PROM */
3043 		tempval = gfar_read(&regs->rctrl);
3044 		tempval &= ~(RCTRL_PROM);
3045 		gfar_write(&regs->rctrl, tempval);
3046 	}
3047 
3048 	if (dev->flags & IFF_ALLMULTI) {
3049 		/* Set the hash to rx all multicast frames */
3050 		gfar_write(&regs->igaddr0, 0xffffffff);
3051 		gfar_write(&regs->igaddr1, 0xffffffff);
3052 		gfar_write(&regs->igaddr2, 0xffffffff);
3053 		gfar_write(&regs->igaddr3, 0xffffffff);
3054 		gfar_write(&regs->igaddr4, 0xffffffff);
3055 		gfar_write(&regs->igaddr5, 0xffffffff);
3056 		gfar_write(&regs->igaddr6, 0xffffffff);
3057 		gfar_write(&regs->igaddr7, 0xffffffff);
3058 		gfar_write(&regs->gaddr0, 0xffffffff);
3059 		gfar_write(&regs->gaddr1, 0xffffffff);
3060 		gfar_write(&regs->gaddr2, 0xffffffff);
3061 		gfar_write(&regs->gaddr3, 0xffffffff);
3062 		gfar_write(&regs->gaddr4, 0xffffffff);
3063 		gfar_write(&regs->gaddr5, 0xffffffff);
3064 		gfar_write(&regs->gaddr6, 0xffffffff);
3065 		gfar_write(&regs->gaddr7, 0xffffffff);
3066 	} else {
3067 		int em_num;
3068 		int idx;
3069 
3070 		/* zero out the hash */
3071 		gfar_write(&regs->igaddr0, 0x0);
3072 		gfar_write(&regs->igaddr1, 0x0);
3073 		gfar_write(&regs->igaddr2, 0x0);
3074 		gfar_write(&regs->igaddr3, 0x0);
3075 		gfar_write(&regs->igaddr4, 0x0);
3076 		gfar_write(&regs->igaddr5, 0x0);
3077 		gfar_write(&regs->igaddr6, 0x0);
3078 		gfar_write(&regs->igaddr7, 0x0);
3079 		gfar_write(&regs->gaddr0, 0x0);
3080 		gfar_write(&regs->gaddr1, 0x0);
3081 		gfar_write(&regs->gaddr2, 0x0);
3082 		gfar_write(&regs->gaddr3, 0x0);
3083 		gfar_write(&regs->gaddr4, 0x0);
3084 		gfar_write(&regs->gaddr5, 0x0);
3085 		gfar_write(&regs->gaddr6, 0x0);
3086 		gfar_write(&regs->gaddr7, 0x0);
3087 
3088 		/* If we have extended hash tables, we need to
3089 		 * clear the exact match registers to prepare for
3090 		 * setting them
3091 		 */
3092 		if (priv->extended_hash) {
3093 			em_num = GFAR_EM_NUM + 1;
3094 			gfar_clear_exact_match(dev);
3095 			idx = 1;
3096 		} else {
3097 			idx = 0;
3098 			em_num = 0;
3099 		}
3100 
3101 		if (netdev_mc_empty(dev))
3102 			return;
3103 
3104 		/* Parse the list, and set the appropriate bits */
3105 		netdev_for_each_mc_addr(ha, dev) {
3106 			if (idx < em_num) {
3107 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3108 				idx++;
3109 			} else
3110 				gfar_set_hash_for_addr(dev, ha->addr);
3111 		}
3112 	}
3113 }
3114 
3115 
3116 /* Clears each of the exact match registers to zero, so they
3117  * don't interfere with normal reception
3118  */
3119 static void gfar_clear_exact_match(struct net_device *dev)
3120 {
3121 	int idx;
3122 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3123 
3124 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3125 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3126 }
3127 
3128 /* Set the appropriate hash bit for the given addr */
3129 /* The algorithm works like so:
3130  * 1) Take the Destination Address (ie the multicast address), and
3131  * do a CRC on it (little endian), and reverse the bits of the
3132  * result.
3133  * 2) Use the 8 most significant bits as a hash into a 256-entry
3134  * table.  The table is controlled through 8 32-bit registers:
3135  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3136  * gaddr7.  This means that the 3 most significant bits in the
3137  * hash index which gaddr register to use, and the 5 other bits
3138  * indicate which bit (assuming an IBM numbering scheme, which
3139  * for PowerPC (tm) is usually the case) in the register holds
3140  * the entry.
3141  */
3142 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3143 {
3144 	u32 tempval;
3145 	struct gfar_private *priv = netdev_priv(dev);
3146 	u32 result = ether_crc(ETH_ALEN, addr);
3147 	int width = priv->hash_width;
3148 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3149 	u8 whichreg = result >> (32 - width + 5);
3150 	u32 value = (1 << (31-whichbit));
3151 
3152 	tempval = gfar_read(priv->hash_regs[whichreg]);
3153 	tempval |= value;
3154 	gfar_write(priv->hash_regs[whichreg], tempval);
3155 }
3156 
3157 
3158 /* There are multiple MAC Address register pairs on some controllers
3159  * This function sets the numth pair to a given address
3160  */
3161 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3162 				  const u8 *addr)
3163 {
3164 	struct gfar_private *priv = netdev_priv(dev);
3165 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3166 	int idx;
3167 	char tmpbuf[ETH_ALEN];
3168 	u32 tempval;
3169 	u32 __iomem *macptr = &regs->macstnaddr1;
3170 
3171 	macptr += num*2;
3172 
3173 	/* Now copy it into the mac registers backwards, cuz
3174 	 * little endian is silly
3175 	 */
3176 	for (idx = 0; idx < ETH_ALEN; idx++)
3177 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3178 
3179 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3180 
3181 	tempval = *((u32 *) (tmpbuf + 4));
3182 
3183 	gfar_write(macptr+1, tempval);
3184 }
3185 
3186 /* GFAR error interrupt handler */
3187 static irqreturn_t gfar_error(int irq, void *grp_id)
3188 {
3189 	struct gfar_priv_grp *gfargrp = grp_id;
3190 	struct gfar __iomem *regs = gfargrp->regs;
3191 	struct gfar_private *priv= gfargrp->priv;
3192 	struct net_device *dev = priv->ndev;
3193 
3194 	/* Save ievent for future reference */
3195 	u32 events = gfar_read(&regs->ievent);
3196 
3197 	/* Clear IEVENT */
3198 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3199 
3200 	/* Magic Packet is not an error. */
3201 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3202 	    (events & IEVENT_MAG))
3203 		events &= ~IEVENT_MAG;
3204 
3205 	/* Hmm... */
3206 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3207 		netdev_dbg(dev,
3208 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3209 			   events, gfar_read(&regs->imask));
3210 
3211 	/* Update the error counters */
3212 	if (events & IEVENT_TXE) {
3213 		dev->stats.tx_errors++;
3214 
3215 		if (events & IEVENT_LC)
3216 			dev->stats.tx_window_errors++;
3217 		if (events & IEVENT_CRL)
3218 			dev->stats.tx_aborted_errors++;
3219 		if (events & IEVENT_XFUN) {
3220 			unsigned long flags;
3221 
3222 			netif_dbg(priv, tx_err, dev,
3223 				  "TX FIFO underrun, packet dropped\n");
3224 			dev->stats.tx_dropped++;
3225 			priv->extra_stats.tx_underrun++;
3226 
3227 			local_irq_save(flags);
3228 			lock_tx_qs(priv);
3229 
3230 			/* Reactivate the Tx Queues */
3231 			gfar_write(&regs->tstat, gfargrp->tstat);
3232 
3233 			unlock_tx_qs(priv);
3234 			local_irq_restore(flags);
3235 		}
3236 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3237 	}
3238 	if (events & IEVENT_BSY) {
3239 		dev->stats.rx_errors++;
3240 		priv->extra_stats.rx_bsy++;
3241 
3242 		gfar_receive(irq, grp_id);
3243 
3244 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3245 			  gfar_read(&regs->rstat));
3246 	}
3247 	if (events & IEVENT_BABR) {
3248 		dev->stats.rx_errors++;
3249 		priv->extra_stats.rx_babr++;
3250 
3251 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3252 	}
3253 	if (events & IEVENT_EBERR) {
3254 		priv->extra_stats.eberr++;
3255 		netif_dbg(priv, rx_err, dev, "bus error\n");
3256 	}
3257 	if (events & IEVENT_RXC)
3258 		netif_dbg(priv, rx_status, dev, "control frame\n");
3259 
3260 	if (events & IEVENT_BABT) {
3261 		priv->extra_stats.tx_babt++;
3262 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3263 	}
3264 	return IRQ_HANDLED;
3265 }
3266 
3267 static struct of_device_id gfar_match[] =
3268 {
3269 	{
3270 		.type = "network",
3271 		.compatible = "gianfar",
3272 	},
3273 	{
3274 		.compatible = "fsl,etsec2",
3275 	},
3276 	{},
3277 };
3278 MODULE_DEVICE_TABLE(of, gfar_match);
3279 
3280 /* Structure for a device driver */
3281 static struct platform_driver gfar_driver = {
3282 	.driver = {
3283 		.name = "fsl-gianfar",
3284 		.owner = THIS_MODULE,
3285 		.pm = GFAR_PM_OPS,
3286 		.of_match_table = gfar_match,
3287 	},
3288 	.probe = gfar_probe,
3289 	.remove = gfar_remove,
3290 };
3291 
3292 module_platform_driver(gfar_driver);
3293