1 /* 2 * drivers/net/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * This program is free software; you can redistribute it and/or modify it 17 * under the terms of the GNU General Public License as published by the 18 * Free Software Foundation; either version 2 of the License, or (at your 19 * option) any later version. 20 * 21 * Gianfar: AKA Lambda Draconis, "Dragon" 22 * RA 11 31 24.2 23 * Dec +69 19 52 24 * V 3.84 25 * B-V +1.62 26 * 27 * Theory of operation 28 * 29 * The driver is initialized through of_device. Configuration information 30 * is therefore conveyed through an OF-style device tree. 31 * 32 * The Gianfar Ethernet Controller uses a ring of buffer 33 * descriptors. The beginning is indicated by a register 34 * pointing to the physical address of the start of the ring. 35 * The end is determined by a "wrap" bit being set in the 36 * last descriptor of the ring. 37 * 38 * When a packet is received, the RXF bit in the 39 * IEVENT register is set, triggering an interrupt when the 40 * corresponding bit in the IMASK register is also set (if 41 * interrupt coalescing is active, then the interrupt may not 42 * happen immediately, but will wait until either a set number 43 * of frames or amount of time have passed). In NAPI, the 44 * interrupt handler will signal there is work to be done, and 45 * exit. This method will start at the last known empty 46 * descriptor, and process every subsequent descriptor until there 47 * are none left with data (NAPI will stop after a set number of 48 * packets to give time to other tasks, but will eventually 49 * process all the packets). The data arrives inside a 50 * pre-allocated skb, and so after the skb is passed up to the 51 * stack, a new skb must be allocated, and the address field in 52 * the buffer descriptor must be updated to indicate this new 53 * skb. 54 * 55 * When the kernel requests that a packet be transmitted, the 56 * driver starts where it left off last time, and points the 57 * descriptor at the buffer which was passed in. The driver 58 * then informs the DMA engine that there are packets ready to 59 * be transmitted. Once the controller is finished transmitting 60 * the packet, an interrupt may be triggered (under the same 61 * conditions as for reception, but depending on the TXF bit). 62 * The driver then cleans up the buffer. 63 */ 64 65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 66 #define DEBUG 67 68 #include <linux/kernel.h> 69 #include <linux/string.h> 70 #include <linux/errno.h> 71 #include <linux/unistd.h> 72 #include <linux/slab.h> 73 #include <linux/interrupt.h> 74 #include <linux/init.h> 75 #include <linux/delay.h> 76 #include <linux/netdevice.h> 77 #include <linux/etherdevice.h> 78 #include <linux/skbuff.h> 79 #include <linux/if_vlan.h> 80 #include <linux/spinlock.h> 81 #include <linux/mm.h> 82 #include <linux/of_mdio.h> 83 #include <linux/of_platform.h> 84 #include <linux/ip.h> 85 #include <linux/tcp.h> 86 #include <linux/udp.h> 87 #include <linux/in.h> 88 #include <linux/net_tstamp.h> 89 90 #include <asm/io.h> 91 #include <asm/reg.h> 92 #include <asm/irq.h> 93 #include <asm/uaccess.h> 94 #include <linux/module.h> 95 #include <linux/dma-mapping.h> 96 #include <linux/crc32.h> 97 #include <linux/mii.h> 98 #include <linux/phy.h> 99 #include <linux/phy_fixed.h> 100 #include <linux/of.h> 101 #include <linux/of_net.h> 102 103 #include "gianfar.h" 104 #include "fsl_pq_mdio.h" 105 106 #define TX_TIMEOUT (1*HZ) 107 #undef BRIEF_GFAR_ERRORS 108 #undef VERBOSE_GFAR_ERRORS 109 110 const char gfar_driver_name[] = "Gianfar Ethernet"; 111 const char gfar_driver_version[] = "1.3"; 112 113 static int gfar_enet_open(struct net_device *dev); 114 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); 115 static void gfar_reset_task(struct work_struct *work); 116 static void gfar_timeout(struct net_device *dev); 117 static int gfar_close(struct net_device *dev); 118 struct sk_buff *gfar_new_skb(struct net_device *dev); 119 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 120 struct sk_buff *skb); 121 static int gfar_set_mac_address(struct net_device *dev); 122 static int gfar_change_mtu(struct net_device *dev, int new_mtu); 123 static irqreturn_t gfar_error(int irq, void *dev_id); 124 static irqreturn_t gfar_transmit(int irq, void *dev_id); 125 static irqreturn_t gfar_interrupt(int irq, void *dev_id); 126 static void adjust_link(struct net_device *dev); 127 static void init_registers(struct net_device *dev); 128 static int init_phy(struct net_device *dev); 129 static int gfar_probe(struct platform_device *ofdev); 130 static int gfar_remove(struct platform_device *ofdev); 131 static void free_skb_resources(struct gfar_private *priv); 132 static void gfar_set_multi(struct net_device *dev); 133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); 134 static void gfar_configure_serdes(struct net_device *dev); 135 static int gfar_poll(struct napi_struct *napi, int budget); 136 #ifdef CONFIG_NET_POLL_CONTROLLER 137 static void gfar_netpoll(struct net_device *dev); 138 #endif 139 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit); 140 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue); 141 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 142 int amount_pull); 143 void gfar_halt(struct net_device *dev); 144 static void gfar_halt_nodisable(struct net_device *dev); 145 void gfar_start(struct net_device *dev); 146 static void gfar_clear_exact_match(struct net_device *dev); 147 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 148 const u8 *addr); 149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 150 151 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 152 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 153 MODULE_LICENSE("GPL"); 154 155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 156 dma_addr_t buf) 157 { 158 u32 lstatus; 159 160 bdp->bufPtr = buf; 161 162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 164 lstatus |= BD_LFLAG(RXBD_WRAP); 165 166 eieio(); 167 168 bdp->lstatus = lstatus; 169 } 170 171 static int gfar_init_bds(struct net_device *ndev) 172 { 173 struct gfar_private *priv = netdev_priv(ndev); 174 struct gfar_priv_tx_q *tx_queue = NULL; 175 struct gfar_priv_rx_q *rx_queue = NULL; 176 struct txbd8 *txbdp; 177 struct rxbd8 *rxbdp; 178 int i, j; 179 180 for (i = 0; i < priv->num_tx_queues; i++) { 181 tx_queue = priv->tx_queue[i]; 182 /* Initialize some variables in our dev structure */ 183 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 184 tx_queue->dirty_tx = tx_queue->tx_bd_base; 185 tx_queue->cur_tx = tx_queue->tx_bd_base; 186 tx_queue->skb_curtx = 0; 187 tx_queue->skb_dirtytx = 0; 188 189 /* Initialize Transmit Descriptor Ring */ 190 txbdp = tx_queue->tx_bd_base; 191 for (j = 0; j < tx_queue->tx_ring_size; j++) { 192 txbdp->lstatus = 0; 193 txbdp->bufPtr = 0; 194 txbdp++; 195 } 196 197 /* Set the last descriptor in the ring to indicate wrap */ 198 txbdp--; 199 txbdp->status |= TXBD_WRAP; 200 } 201 202 for (i = 0; i < priv->num_rx_queues; i++) { 203 rx_queue = priv->rx_queue[i]; 204 rx_queue->cur_rx = rx_queue->rx_bd_base; 205 rx_queue->skb_currx = 0; 206 rxbdp = rx_queue->rx_bd_base; 207 208 for (j = 0; j < rx_queue->rx_ring_size; j++) { 209 struct sk_buff *skb = rx_queue->rx_skbuff[j]; 210 211 if (skb) { 212 gfar_init_rxbdp(rx_queue, rxbdp, 213 rxbdp->bufPtr); 214 } else { 215 skb = gfar_new_skb(ndev); 216 if (!skb) { 217 netdev_err(ndev, "Can't allocate RX buffers\n"); 218 goto err_rxalloc_fail; 219 } 220 rx_queue->rx_skbuff[j] = skb; 221 222 gfar_new_rxbdp(rx_queue, rxbdp, skb); 223 } 224 225 rxbdp++; 226 } 227 228 } 229 230 return 0; 231 232 err_rxalloc_fail: 233 free_skb_resources(priv); 234 return -ENOMEM; 235 } 236 237 static int gfar_alloc_skb_resources(struct net_device *ndev) 238 { 239 void *vaddr; 240 dma_addr_t addr; 241 int i, j, k; 242 struct gfar_private *priv = netdev_priv(ndev); 243 struct device *dev = &priv->ofdev->dev; 244 struct gfar_priv_tx_q *tx_queue = NULL; 245 struct gfar_priv_rx_q *rx_queue = NULL; 246 247 priv->total_tx_ring_size = 0; 248 for (i = 0; i < priv->num_tx_queues; i++) 249 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 250 251 priv->total_rx_ring_size = 0; 252 for (i = 0; i < priv->num_rx_queues; i++) 253 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 254 255 /* Allocate memory for the buffer descriptors */ 256 vaddr = dma_alloc_coherent(dev, 257 sizeof(struct txbd8) * priv->total_tx_ring_size + 258 sizeof(struct rxbd8) * priv->total_rx_ring_size, 259 &addr, GFP_KERNEL); 260 if (!vaddr) { 261 netif_err(priv, ifup, ndev, 262 "Could not allocate buffer descriptors!\n"); 263 return -ENOMEM; 264 } 265 266 for (i = 0; i < priv->num_tx_queues; i++) { 267 tx_queue = priv->tx_queue[i]; 268 tx_queue->tx_bd_base = vaddr; 269 tx_queue->tx_bd_dma_base = addr; 270 tx_queue->dev = ndev; 271 /* enet DMA only understands physical addresses */ 272 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size; 273 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size; 274 } 275 276 /* Start the rx descriptor ring where the tx ring leaves off */ 277 for (i = 0; i < priv->num_rx_queues; i++) { 278 rx_queue = priv->rx_queue[i]; 279 rx_queue->rx_bd_base = vaddr; 280 rx_queue->rx_bd_dma_base = addr; 281 rx_queue->dev = ndev; 282 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; 283 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size; 284 } 285 286 /* Setup the skbuff rings */ 287 for (i = 0; i < priv->num_tx_queues; i++) { 288 tx_queue = priv->tx_queue[i]; 289 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) * 290 tx_queue->tx_ring_size, GFP_KERNEL); 291 if (!tx_queue->tx_skbuff) { 292 netif_err(priv, ifup, ndev, 293 "Could not allocate tx_skbuff\n"); 294 goto cleanup; 295 } 296 297 for (k = 0; k < tx_queue->tx_ring_size; k++) 298 tx_queue->tx_skbuff[k] = NULL; 299 } 300 301 for (i = 0; i < priv->num_rx_queues; i++) { 302 rx_queue = priv->rx_queue[i]; 303 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) * 304 rx_queue->rx_ring_size, GFP_KERNEL); 305 306 if (!rx_queue->rx_skbuff) { 307 netif_err(priv, ifup, ndev, 308 "Could not allocate rx_skbuff\n"); 309 goto cleanup; 310 } 311 312 for (j = 0; j < rx_queue->rx_ring_size; j++) 313 rx_queue->rx_skbuff[j] = NULL; 314 } 315 316 if (gfar_init_bds(ndev)) 317 goto cleanup; 318 319 return 0; 320 321 cleanup: 322 free_skb_resources(priv); 323 return -ENOMEM; 324 } 325 326 static void gfar_init_tx_rx_base(struct gfar_private *priv) 327 { 328 struct gfar __iomem *regs = priv->gfargrp[0].regs; 329 u32 __iomem *baddr; 330 int i; 331 332 baddr = ®s->tbase0; 333 for(i = 0; i < priv->num_tx_queues; i++) { 334 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 335 baddr += 2; 336 } 337 338 baddr = ®s->rbase0; 339 for(i = 0; i < priv->num_rx_queues; i++) { 340 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 341 baddr += 2; 342 } 343 } 344 345 static void gfar_init_mac(struct net_device *ndev) 346 { 347 struct gfar_private *priv = netdev_priv(ndev); 348 struct gfar __iomem *regs = priv->gfargrp[0].regs; 349 u32 rctrl = 0; 350 u32 tctrl = 0; 351 u32 attrs = 0; 352 353 /* write the tx/rx base registers */ 354 gfar_init_tx_rx_base(priv); 355 356 /* Configure the coalescing support */ 357 gfar_configure_coalescing(priv, 0xFF, 0xFF); 358 359 if (priv->rx_filer_enable) { 360 rctrl |= RCTRL_FILREN; 361 /* Program the RIR0 reg with the required distribution */ 362 gfar_write(®s->rir0, DEFAULT_RIR0); 363 } 364 365 if (ndev->features & NETIF_F_RXCSUM) 366 rctrl |= RCTRL_CHECKSUMMING; 367 368 if (priv->extended_hash) { 369 rctrl |= RCTRL_EXTHASH; 370 371 gfar_clear_exact_match(ndev); 372 rctrl |= RCTRL_EMEN; 373 } 374 375 if (priv->padding) { 376 rctrl &= ~RCTRL_PAL_MASK; 377 rctrl |= RCTRL_PADDING(priv->padding); 378 } 379 380 /* Insert receive time stamps into padding alignment bytes */ 381 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) { 382 rctrl &= ~RCTRL_PAL_MASK; 383 rctrl |= RCTRL_PADDING(8); 384 priv->padding = 8; 385 } 386 387 /* Enable HW time stamping if requested from user space */ 388 if (priv->hwts_rx_en) 389 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 390 391 if (ndev->features & NETIF_F_HW_VLAN_RX) 392 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 393 394 /* Init rctrl based on our settings */ 395 gfar_write(®s->rctrl, rctrl); 396 397 if (ndev->features & NETIF_F_IP_CSUM) 398 tctrl |= TCTRL_INIT_CSUM; 399 400 tctrl |= TCTRL_TXSCHED_PRIO; 401 402 gfar_write(®s->tctrl, tctrl); 403 404 /* Set the extraction length and index */ 405 attrs = ATTRELI_EL(priv->rx_stash_size) | 406 ATTRELI_EI(priv->rx_stash_index); 407 408 gfar_write(®s->attreli, attrs); 409 410 /* Start with defaults, and add stashing or locking 411 * depending on the approprate variables */ 412 attrs = ATTR_INIT_SETTINGS; 413 414 if (priv->bd_stash_en) 415 attrs |= ATTR_BDSTASH; 416 417 if (priv->rx_stash_size != 0) 418 attrs |= ATTR_BUFSTASH; 419 420 gfar_write(®s->attr, attrs); 421 422 gfar_write(®s->fifo_tx_thr, priv->fifo_threshold); 423 gfar_write(®s->fifo_tx_starve, priv->fifo_starve); 424 gfar_write(®s->fifo_tx_starve_shutoff, priv->fifo_starve_off); 425 } 426 427 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 428 { 429 struct gfar_private *priv = netdev_priv(dev); 430 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 431 unsigned long tx_packets = 0, tx_bytes = 0; 432 int i = 0; 433 434 for (i = 0; i < priv->num_rx_queues; i++) { 435 rx_packets += priv->rx_queue[i]->stats.rx_packets; 436 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 437 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 438 } 439 440 dev->stats.rx_packets = rx_packets; 441 dev->stats.rx_bytes = rx_bytes; 442 dev->stats.rx_dropped = rx_dropped; 443 444 for (i = 0; i < priv->num_tx_queues; i++) { 445 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 446 tx_packets += priv->tx_queue[i]->stats.tx_packets; 447 } 448 449 dev->stats.tx_bytes = tx_bytes; 450 dev->stats.tx_packets = tx_packets; 451 452 return &dev->stats; 453 } 454 455 static const struct net_device_ops gfar_netdev_ops = { 456 .ndo_open = gfar_enet_open, 457 .ndo_start_xmit = gfar_start_xmit, 458 .ndo_stop = gfar_close, 459 .ndo_change_mtu = gfar_change_mtu, 460 .ndo_set_features = gfar_set_features, 461 .ndo_set_rx_mode = gfar_set_multi, 462 .ndo_tx_timeout = gfar_timeout, 463 .ndo_do_ioctl = gfar_ioctl, 464 .ndo_get_stats = gfar_get_stats, 465 .ndo_set_mac_address = eth_mac_addr, 466 .ndo_validate_addr = eth_validate_addr, 467 #ifdef CONFIG_NET_POLL_CONTROLLER 468 .ndo_poll_controller = gfar_netpoll, 469 #endif 470 }; 471 472 void lock_rx_qs(struct gfar_private *priv) 473 { 474 int i = 0x0; 475 476 for (i = 0; i < priv->num_rx_queues; i++) 477 spin_lock(&priv->rx_queue[i]->rxlock); 478 } 479 480 void lock_tx_qs(struct gfar_private *priv) 481 { 482 int i = 0x0; 483 484 for (i = 0; i < priv->num_tx_queues; i++) 485 spin_lock(&priv->tx_queue[i]->txlock); 486 } 487 488 void unlock_rx_qs(struct gfar_private *priv) 489 { 490 int i = 0x0; 491 492 for (i = 0; i < priv->num_rx_queues; i++) 493 spin_unlock(&priv->rx_queue[i]->rxlock); 494 } 495 496 void unlock_tx_qs(struct gfar_private *priv) 497 { 498 int i = 0x0; 499 500 for (i = 0; i < priv->num_tx_queues; i++) 501 spin_unlock(&priv->tx_queue[i]->txlock); 502 } 503 504 static bool gfar_is_vlan_on(struct gfar_private *priv) 505 { 506 return (priv->ndev->features & NETIF_F_HW_VLAN_RX) || 507 (priv->ndev->features & NETIF_F_HW_VLAN_TX); 508 } 509 510 /* Returns 1 if incoming frames use an FCB */ 511 static inline int gfar_uses_fcb(struct gfar_private *priv) 512 { 513 return gfar_is_vlan_on(priv) || 514 (priv->ndev->features & NETIF_F_RXCSUM) || 515 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER); 516 } 517 518 static void free_tx_pointers(struct gfar_private *priv) 519 { 520 int i = 0; 521 522 for (i = 0; i < priv->num_tx_queues; i++) 523 kfree(priv->tx_queue[i]); 524 } 525 526 static void free_rx_pointers(struct gfar_private *priv) 527 { 528 int i = 0; 529 530 for (i = 0; i < priv->num_rx_queues; i++) 531 kfree(priv->rx_queue[i]); 532 } 533 534 static void unmap_group_regs(struct gfar_private *priv) 535 { 536 int i = 0; 537 538 for (i = 0; i < MAXGROUPS; i++) 539 if (priv->gfargrp[i].regs) 540 iounmap(priv->gfargrp[i].regs); 541 } 542 543 static void disable_napi(struct gfar_private *priv) 544 { 545 int i = 0; 546 547 for (i = 0; i < priv->num_grps; i++) 548 napi_disable(&priv->gfargrp[i].napi); 549 } 550 551 static void enable_napi(struct gfar_private *priv) 552 { 553 int i = 0; 554 555 for (i = 0; i < priv->num_grps; i++) 556 napi_enable(&priv->gfargrp[i].napi); 557 } 558 559 static int gfar_parse_group(struct device_node *np, 560 struct gfar_private *priv, const char *model) 561 { 562 u32 *queue_mask; 563 564 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0); 565 if (!priv->gfargrp[priv->num_grps].regs) 566 return -ENOMEM; 567 568 priv->gfargrp[priv->num_grps].interruptTransmit = 569 irq_of_parse_and_map(np, 0); 570 571 /* If we aren't the FEC we have multiple interrupts */ 572 if (model && strcasecmp(model, "FEC")) { 573 priv->gfargrp[priv->num_grps].interruptReceive = 574 irq_of_parse_and_map(np, 1); 575 priv->gfargrp[priv->num_grps].interruptError = 576 irq_of_parse_and_map(np,2); 577 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ || 578 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ || 579 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ) 580 return -EINVAL; 581 } 582 583 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps; 584 priv->gfargrp[priv->num_grps].priv = priv; 585 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock); 586 if(priv->mode == MQ_MG_MODE) { 587 queue_mask = (u32 *)of_get_property(np, 588 "fsl,rx-bit-map", NULL); 589 priv->gfargrp[priv->num_grps].rx_bit_map = 590 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps); 591 queue_mask = (u32 *)of_get_property(np, 592 "fsl,tx-bit-map", NULL); 593 priv->gfargrp[priv->num_grps].tx_bit_map = 594 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps); 595 } else { 596 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF; 597 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF; 598 } 599 priv->num_grps++; 600 601 return 0; 602 } 603 604 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 605 { 606 const char *model; 607 const char *ctype; 608 const void *mac_addr; 609 int err = 0, i; 610 struct net_device *dev = NULL; 611 struct gfar_private *priv = NULL; 612 struct device_node *np = ofdev->dev.of_node; 613 struct device_node *child = NULL; 614 const u32 *stash; 615 const u32 *stash_len; 616 const u32 *stash_idx; 617 unsigned int num_tx_qs, num_rx_qs; 618 u32 *tx_queues, *rx_queues; 619 620 if (!np || !of_device_is_available(np)) 621 return -ENODEV; 622 623 /* parse the num of tx and rx queues */ 624 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL); 625 num_tx_qs = tx_queues ? *tx_queues : 1; 626 627 if (num_tx_qs > MAX_TX_QS) { 628 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 629 num_tx_qs, MAX_TX_QS); 630 pr_err("Cannot do alloc_etherdev, aborting\n"); 631 return -EINVAL; 632 } 633 634 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL); 635 num_rx_qs = rx_queues ? *rx_queues : 1; 636 637 if (num_rx_qs > MAX_RX_QS) { 638 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 639 num_rx_qs, MAX_RX_QS); 640 pr_err("Cannot do alloc_etherdev, aborting\n"); 641 return -EINVAL; 642 } 643 644 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 645 dev = *pdev; 646 if (NULL == dev) 647 return -ENOMEM; 648 649 priv = netdev_priv(dev); 650 priv->node = ofdev->dev.of_node; 651 priv->ndev = dev; 652 653 priv->num_tx_queues = num_tx_qs; 654 netif_set_real_num_rx_queues(dev, num_rx_qs); 655 priv->num_rx_queues = num_rx_qs; 656 priv->num_grps = 0x0; 657 658 /* Init Rx queue filer rule set linked list*/ 659 INIT_LIST_HEAD(&priv->rx_list.list); 660 priv->rx_list.count = 0; 661 mutex_init(&priv->rx_queue_access); 662 663 model = of_get_property(np, "model", NULL); 664 665 for (i = 0; i < MAXGROUPS; i++) 666 priv->gfargrp[i].regs = NULL; 667 668 /* Parse and initialize group specific information */ 669 if (of_device_is_compatible(np, "fsl,etsec2")) { 670 priv->mode = MQ_MG_MODE; 671 for_each_child_of_node(np, child) { 672 err = gfar_parse_group(child, priv, model); 673 if (err) 674 goto err_grp_init; 675 } 676 } else { 677 priv->mode = SQ_SG_MODE; 678 err = gfar_parse_group(np, priv, model); 679 if(err) 680 goto err_grp_init; 681 } 682 683 for (i = 0; i < priv->num_tx_queues; i++) 684 priv->tx_queue[i] = NULL; 685 for (i = 0; i < priv->num_rx_queues; i++) 686 priv->rx_queue[i] = NULL; 687 688 for (i = 0; i < priv->num_tx_queues; i++) { 689 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 690 GFP_KERNEL); 691 if (!priv->tx_queue[i]) { 692 err = -ENOMEM; 693 goto tx_alloc_failed; 694 } 695 priv->tx_queue[i]->tx_skbuff = NULL; 696 priv->tx_queue[i]->qindex = i; 697 priv->tx_queue[i]->dev = dev; 698 spin_lock_init(&(priv->tx_queue[i]->txlock)); 699 } 700 701 for (i = 0; i < priv->num_rx_queues; i++) { 702 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 703 GFP_KERNEL); 704 if (!priv->rx_queue[i]) { 705 err = -ENOMEM; 706 goto rx_alloc_failed; 707 } 708 priv->rx_queue[i]->rx_skbuff = NULL; 709 priv->rx_queue[i]->qindex = i; 710 priv->rx_queue[i]->dev = dev; 711 spin_lock_init(&(priv->rx_queue[i]->rxlock)); 712 } 713 714 715 stash = of_get_property(np, "bd-stash", NULL); 716 717 if (stash) { 718 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 719 priv->bd_stash_en = 1; 720 } 721 722 stash_len = of_get_property(np, "rx-stash-len", NULL); 723 724 if (stash_len) 725 priv->rx_stash_size = *stash_len; 726 727 stash_idx = of_get_property(np, "rx-stash-idx", NULL); 728 729 if (stash_idx) 730 priv->rx_stash_index = *stash_idx; 731 732 if (stash_len || stash_idx) 733 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 734 735 mac_addr = of_get_mac_address(np); 736 if (mac_addr) 737 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 738 739 if (model && !strcasecmp(model, "TSEC")) 740 priv->device_flags = 741 FSL_GIANFAR_DEV_HAS_GIGABIT | 742 FSL_GIANFAR_DEV_HAS_COALESCE | 743 FSL_GIANFAR_DEV_HAS_RMON | 744 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 745 if (model && !strcasecmp(model, "eTSEC")) 746 priv->device_flags = 747 FSL_GIANFAR_DEV_HAS_GIGABIT | 748 FSL_GIANFAR_DEV_HAS_COALESCE | 749 FSL_GIANFAR_DEV_HAS_RMON | 750 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 751 FSL_GIANFAR_DEV_HAS_PADDING | 752 FSL_GIANFAR_DEV_HAS_CSUM | 753 FSL_GIANFAR_DEV_HAS_VLAN | 754 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 755 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 756 FSL_GIANFAR_DEV_HAS_TIMER; 757 758 ctype = of_get_property(np, "phy-connection-type", NULL); 759 760 /* We only care about rgmii-id. The rest are autodetected */ 761 if (ctype && !strcmp(ctype, "rgmii-id")) 762 priv->interface = PHY_INTERFACE_MODE_RGMII_ID; 763 else 764 priv->interface = PHY_INTERFACE_MODE_MII; 765 766 if (of_get_property(np, "fsl,magic-packet", NULL)) 767 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 768 769 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 770 771 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 772 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 773 774 return 0; 775 776 rx_alloc_failed: 777 free_rx_pointers(priv); 778 tx_alloc_failed: 779 free_tx_pointers(priv); 780 err_grp_init: 781 unmap_group_regs(priv); 782 free_netdev(dev); 783 return err; 784 } 785 786 static int gfar_hwtstamp_ioctl(struct net_device *netdev, 787 struct ifreq *ifr, int cmd) 788 { 789 struct hwtstamp_config config; 790 struct gfar_private *priv = netdev_priv(netdev); 791 792 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 793 return -EFAULT; 794 795 /* reserved for future extensions */ 796 if (config.flags) 797 return -EINVAL; 798 799 switch (config.tx_type) { 800 case HWTSTAMP_TX_OFF: 801 priv->hwts_tx_en = 0; 802 break; 803 case HWTSTAMP_TX_ON: 804 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 805 return -ERANGE; 806 priv->hwts_tx_en = 1; 807 break; 808 default: 809 return -ERANGE; 810 } 811 812 switch (config.rx_filter) { 813 case HWTSTAMP_FILTER_NONE: 814 if (priv->hwts_rx_en) { 815 stop_gfar(netdev); 816 priv->hwts_rx_en = 0; 817 startup_gfar(netdev); 818 } 819 break; 820 default: 821 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 822 return -ERANGE; 823 if (!priv->hwts_rx_en) { 824 stop_gfar(netdev); 825 priv->hwts_rx_en = 1; 826 startup_gfar(netdev); 827 } 828 config.rx_filter = HWTSTAMP_FILTER_ALL; 829 break; 830 } 831 832 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 833 -EFAULT : 0; 834 } 835 836 /* Ioctl MII Interface */ 837 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 838 { 839 struct gfar_private *priv = netdev_priv(dev); 840 841 if (!netif_running(dev)) 842 return -EINVAL; 843 844 if (cmd == SIOCSHWTSTAMP) 845 return gfar_hwtstamp_ioctl(dev, rq, cmd); 846 847 if (!priv->phydev) 848 return -ENODEV; 849 850 return phy_mii_ioctl(priv->phydev, rq, cmd); 851 } 852 853 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs) 854 { 855 unsigned int new_bit_map = 0x0; 856 int mask = 0x1 << (max_qs - 1), i; 857 for (i = 0; i < max_qs; i++) { 858 if (bit_map & mask) 859 new_bit_map = new_bit_map + (1 << i); 860 mask = mask >> 0x1; 861 } 862 return new_bit_map; 863 } 864 865 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 866 u32 class) 867 { 868 u32 rqfpr = FPR_FILER_MASK; 869 u32 rqfcr = 0x0; 870 871 rqfar--; 872 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 873 priv->ftp_rqfpr[rqfar] = rqfpr; 874 priv->ftp_rqfcr[rqfar] = rqfcr; 875 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 876 877 rqfar--; 878 rqfcr = RQFCR_CMP_NOMATCH; 879 priv->ftp_rqfpr[rqfar] = rqfpr; 880 priv->ftp_rqfcr[rqfar] = rqfcr; 881 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 882 883 rqfar--; 884 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 885 rqfpr = class; 886 priv->ftp_rqfcr[rqfar] = rqfcr; 887 priv->ftp_rqfpr[rqfar] = rqfpr; 888 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 889 890 rqfar--; 891 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 892 rqfpr = class; 893 priv->ftp_rqfcr[rqfar] = rqfcr; 894 priv->ftp_rqfpr[rqfar] = rqfpr; 895 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 896 897 return rqfar; 898 } 899 900 static void gfar_init_filer_table(struct gfar_private *priv) 901 { 902 int i = 0x0; 903 u32 rqfar = MAX_FILER_IDX; 904 u32 rqfcr = 0x0; 905 u32 rqfpr = FPR_FILER_MASK; 906 907 /* Default rule */ 908 rqfcr = RQFCR_CMP_MATCH; 909 priv->ftp_rqfcr[rqfar] = rqfcr; 910 priv->ftp_rqfpr[rqfar] = rqfpr; 911 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 912 913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 917 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 918 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 919 920 /* cur_filer_idx indicated the first non-masked rule */ 921 priv->cur_filer_idx = rqfar; 922 923 /* Rest are masked rules */ 924 rqfcr = RQFCR_CMP_NOMATCH; 925 for (i = 0; i < rqfar; i++) { 926 priv->ftp_rqfcr[i] = rqfcr; 927 priv->ftp_rqfpr[i] = rqfpr; 928 gfar_write_filer(priv, i, rqfcr, rqfpr); 929 } 930 } 931 932 static void gfar_detect_errata(struct gfar_private *priv) 933 { 934 struct device *dev = &priv->ofdev->dev; 935 unsigned int pvr = mfspr(SPRN_PVR); 936 unsigned int svr = mfspr(SPRN_SVR); 937 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 938 unsigned int rev = svr & 0xffff; 939 940 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 941 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 942 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 943 priv->errata |= GFAR_ERRATA_74; 944 945 /* MPC8313 and MPC837x all rev */ 946 if ((pvr == 0x80850010 && mod == 0x80b0) || 947 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 948 priv->errata |= GFAR_ERRATA_76; 949 950 /* MPC8313 and MPC837x all rev */ 951 if ((pvr == 0x80850010 && mod == 0x80b0) || 952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 953 priv->errata |= GFAR_ERRATA_A002; 954 955 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */ 956 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) || 957 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020)) 958 priv->errata |= GFAR_ERRATA_12; 959 960 if (priv->errata) 961 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 962 priv->errata); 963 } 964 965 /* Set up the ethernet device structure, private data, 966 * and anything else we need before we start */ 967 static int gfar_probe(struct platform_device *ofdev) 968 { 969 u32 tempval; 970 struct net_device *dev = NULL; 971 struct gfar_private *priv = NULL; 972 struct gfar __iomem *regs = NULL; 973 int err = 0, i, grp_idx = 0; 974 int len_devname; 975 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0; 976 u32 isrg = 0; 977 u32 __iomem *baddr; 978 979 err = gfar_of_init(ofdev, &dev); 980 981 if (err) 982 return err; 983 984 priv = netdev_priv(dev); 985 priv->ndev = dev; 986 priv->ofdev = ofdev; 987 priv->node = ofdev->dev.of_node; 988 SET_NETDEV_DEV(dev, &ofdev->dev); 989 990 spin_lock_init(&priv->bflock); 991 INIT_WORK(&priv->reset_task, gfar_reset_task); 992 993 dev_set_drvdata(&ofdev->dev, priv); 994 regs = priv->gfargrp[0].regs; 995 996 gfar_detect_errata(priv); 997 998 /* Stop the DMA engine now, in case it was running before */ 999 /* (The firmware could have used it, and left it running). */ 1000 gfar_halt(dev); 1001 1002 /* Reset MAC layer */ 1003 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 1004 1005 /* We need to delay at least 3 TX clocks */ 1006 udelay(2); 1007 1008 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1009 gfar_write(®s->maccfg1, tempval); 1010 1011 /* Initialize MACCFG2. */ 1012 tempval = MACCFG2_INIT_SETTINGS; 1013 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 1014 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 1015 gfar_write(®s->maccfg2, tempval); 1016 1017 /* Initialize ECNTRL */ 1018 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 1019 1020 /* Set the dev->base_addr to the gfar reg region */ 1021 dev->base_addr = (unsigned long) regs; 1022 1023 SET_NETDEV_DEV(dev, &ofdev->dev); 1024 1025 /* Fill in the dev structure */ 1026 dev->watchdog_timeo = TX_TIMEOUT; 1027 dev->mtu = 1500; 1028 dev->netdev_ops = &gfar_netdev_ops; 1029 dev->ethtool_ops = &gfar_ethtool_ops; 1030 1031 /* Register for napi ...We are registering NAPI for each grp */ 1032 for (i = 0; i < priv->num_grps; i++) 1033 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT); 1034 1035 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 1036 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 1037 NETIF_F_RXCSUM; 1038 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 1039 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 1040 } 1041 1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 1043 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 1044 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 1045 } 1046 1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 1048 priv->extended_hash = 1; 1049 priv->hash_width = 9; 1050 1051 priv->hash_regs[0] = ®s->igaddr0; 1052 priv->hash_regs[1] = ®s->igaddr1; 1053 priv->hash_regs[2] = ®s->igaddr2; 1054 priv->hash_regs[3] = ®s->igaddr3; 1055 priv->hash_regs[4] = ®s->igaddr4; 1056 priv->hash_regs[5] = ®s->igaddr5; 1057 priv->hash_regs[6] = ®s->igaddr6; 1058 priv->hash_regs[7] = ®s->igaddr7; 1059 priv->hash_regs[8] = ®s->gaddr0; 1060 priv->hash_regs[9] = ®s->gaddr1; 1061 priv->hash_regs[10] = ®s->gaddr2; 1062 priv->hash_regs[11] = ®s->gaddr3; 1063 priv->hash_regs[12] = ®s->gaddr4; 1064 priv->hash_regs[13] = ®s->gaddr5; 1065 priv->hash_regs[14] = ®s->gaddr6; 1066 priv->hash_regs[15] = ®s->gaddr7; 1067 1068 } else { 1069 priv->extended_hash = 0; 1070 priv->hash_width = 8; 1071 1072 priv->hash_regs[0] = ®s->gaddr0; 1073 priv->hash_regs[1] = ®s->gaddr1; 1074 priv->hash_regs[2] = ®s->gaddr2; 1075 priv->hash_regs[3] = ®s->gaddr3; 1076 priv->hash_regs[4] = ®s->gaddr4; 1077 priv->hash_regs[5] = ®s->gaddr5; 1078 priv->hash_regs[6] = ®s->gaddr6; 1079 priv->hash_regs[7] = ®s->gaddr7; 1080 } 1081 1082 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) 1083 priv->padding = DEFAULT_PADDING; 1084 else 1085 priv->padding = 0; 1086 1087 if (dev->features & NETIF_F_IP_CSUM || 1088 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 1089 dev->hard_header_len += GMAC_FCB_LEN; 1090 1091 /* Program the isrg regs only if number of grps > 1 */ 1092 if (priv->num_grps > 1) { 1093 baddr = ®s->isrg0; 1094 for (i = 0; i < priv->num_grps; i++) { 1095 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX); 1096 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX); 1097 gfar_write(baddr, isrg); 1098 baddr++; 1099 isrg = 0x0; 1100 } 1101 } 1102 1103 /* Need to reverse the bit maps as bit_map's MSB is q0 1104 * but, for_each_set_bit parses from right to left, which 1105 * basically reverses the queue numbers */ 1106 for (i = 0; i< priv->num_grps; i++) { 1107 priv->gfargrp[i].tx_bit_map = reverse_bitmap( 1108 priv->gfargrp[i].tx_bit_map, MAX_TX_QS); 1109 priv->gfargrp[i].rx_bit_map = reverse_bitmap( 1110 priv->gfargrp[i].rx_bit_map, MAX_RX_QS); 1111 } 1112 1113 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 1114 * also assign queues to groups */ 1115 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) { 1116 priv->gfargrp[grp_idx].num_rx_queues = 0x0; 1117 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map, 1118 priv->num_rx_queues) { 1119 priv->gfargrp[grp_idx].num_rx_queues++; 1120 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx]; 1121 rstat = rstat | (RSTAT_CLEAR_RHALT >> i); 1122 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 1123 } 1124 priv->gfargrp[grp_idx].num_tx_queues = 0x0; 1125 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map, 1126 priv->num_tx_queues) { 1127 priv->gfargrp[grp_idx].num_tx_queues++; 1128 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx]; 1129 tstat = tstat | (TSTAT_CLEAR_THALT >> i); 1130 tqueue = tqueue | (TQUEUE_EN0 >> i); 1131 } 1132 priv->gfargrp[grp_idx].rstat = rstat; 1133 priv->gfargrp[grp_idx].tstat = tstat; 1134 rstat = tstat =0; 1135 } 1136 1137 gfar_write(®s->rqueue, rqueue); 1138 gfar_write(®s->tqueue, tqueue); 1139 1140 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; 1141 1142 /* Initializing some of the rx/tx queue level parameters */ 1143 for (i = 0; i < priv->num_tx_queues; i++) { 1144 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 1145 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 1146 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 1147 priv->tx_queue[i]->txic = DEFAULT_TXIC; 1148 } 1149 1150 for (i = 0; i < priv->num_rx_queues; i++) { 1151 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 1152 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 1153 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 1154 } 1155 1156 /* always enable rx filer*/ 1157 priv->rx_filer_enable = 1; 1158 /* Enable most messages by default */ 1159 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 1160 1161 /* Carrier starts down, phylib will bring it up */ 1162 netif_carrier_off(dev); 1163 1164 err = register_netdev(dev); 1165 1166 if (err) { 1167 pr_err("%s: Cannot register net device, aborting\n", dev->name); 1168 goto register_fail; 1169 } 1170 1171 device_init_wakeup(&dev->dev, 1172 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1173 1174 /* fill out IRQ number and name fields */ 1175 len_devname = strlen(dev->name); 1176 for (i = 0; i < priv->num_grps; i++) { 1177 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name, 1178 len_devname); 1179 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1180 strncpy(&priv->gfargrp[i].int_name_tx[len_devname], 1181 "_g", sizeof("_g")); 1182 priv->gfargrp[i].int_name_tx[ 1183 strlen(priv->gfargrp[i].int_name_tx)] = i+48; 1184 strncpy(&priv->gfargrp[i].int_name_tx[strlen( 1185 priv->gfargrp[i].int_name_tx)], 1186 "_tx", sizeof("_tx") + 1); 1187 1188 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name, 1189 len_devname); 1190 strncpy(&priv->gfargrp[i].int_name_rx[len_devname], 1191 "_g", sizeof("_g")); 1192 priv->gfargrp[i].int_name_rx[ 1193 strlen(priv->gfargrp[i].int_name_rx)] = i+48; 1194 strncpy(&priv->gfargrp[i].int_name_rx[strlen( 1195 priv->gfargrp[i].int_name_rx)], 1196 "_rx", sizeof("_rx") + 1); 1197 1198 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name, 1199 len_devname); 1200 strncpy(&priv->gfargrp[i].int_name_er[len_devname], 1201 "_g", sizeof("_g")); 1202 priv->gfargrp[i].int_name_er[strlen( 1203 priv->gfargrp[i].int_name_er)] = i+48; 1204 strncpy(&priv->gfargrp[i].int_name_er[strlen(\ 1205 priv->gfargrp[i].int_name_er)], 1206 "_er", sizeof("_er") + 1); 1207 } else 1208 priv->gfargrp[i].int_name_tx[len_devname] = '\0'; 1209 } 1210 1211 /* Initialize the filer table */ 1212 gfar_init_filer_table(priv); 1213 1214 /* Create all the sysfs files */ 1215 gfar_init_sysfs(dev); 1216 1217 /* Print out the device info */ 1218 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 1219 1220 /* Even more device info helps when determining which kernel */ 1221 /* provided which set of benchmarks. */ 1222 netdev_info(dev, "Running with NAPI enabled\n"); 1223 for (i = 0; i < priv->num_rx_queues; i++) 1224 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 1225 i, priv->rx_queue[i]->rx_ring_size); 1226 for(i = 0; i < priv->num_tx_queues; i++) 1227 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 1228 i, priv->tx_queue[i]->tx_ring_size); 1229 1230 return 0; 1231 1232 register_fail: 1233 unmap_group_regs(priv); 1234 free_tx_pointers(priv); 1235 free_rx_pointers(priv); 1236 if (priv->phy_node) 1237 of_node_put(priv->phy_node); 1238 if (priv->tbi_node) 1239 of_node_put(priv->tbi_node); 1240 free_netdev(dev); 1241 return err; 1242 } 1243 1244 static int gfar_remove(struct platform_device *ofdev) 1245 { 1246 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev); 1247 1248 if (priv->phy_node) 1249 of_node_put(priv->phy_node); 1250 if (priv->tbi_node) 1251 of_node_put(priv->tbi_node); 1252 1253 dev_set_drvdata(&ofdev->dev, NULL); 1254 1255 unregister_netdev(priv->ndev); 1256 unmap_group_regs(priv); 1257 free_netdev(priv->ndev); 1258 1259 return 0; 1260 } 1261 1262 #ifdef CONFIG_PM 1263 1264 static int gfar_suspend(struct device *dev) 1265 { 1266 struct gfar_private *priv = dev_get_drvdata(dev); 1267 struct net_device *ndev = priv->ndev; 1268 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1269 unsigned long flags; 1270 u32 tempval; 1271 1272 int magic_packet = priv->wol_en && 1273 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1274 1275 netif_device_detach(ndev); 1276 1277 if (netif_running(ndev)) { 1278 1279 local_irq_save(flags); 1280 lock_tx_qs(priv); 1281 lock_rx_qs(priv); 1282 1283 gfar_halt_nodisable(ndev); 1284 1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */ 1286 tempval = gfar_read(®s->maccfg1); 1287 1288 tempval &= ~MACCFG1_TX_EN; 1289 1290 if (!magic_packet) 1291 tempval &= ~MACCFG1_RX_EN; 1292 1293 gfar_write(®s->maccfg1, tempval); 1294 1295 unlock_rx_qs(priv); 1296 unlock_tx_qs(priv); 1297 local_irq_restore(flags); 1298 1299 disable_napi(priv); 1300 1301 if (magic_packet) { 1302 /* Enable interrupt on Magic Packet */ 1303 gfar_write(®s->imask, IMASK_MAG); 1304 1305 /* Enable Magic Packet mode */ 1306 tempval = gfar_read(®s->maccfg2); 1307 tempval |= MACCFG2_MPEN; 1308 gfar_write(®s->maccfg2, tempval); 1309 } else { 1310 phy_stop(priv->phydev); 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 static int gfar_resume(struct device *dev) 1318 { 1319 struct gfar_private *priv = dev_get_drvdata(dev); 1320 struct net_device *ndev = priv->ndev; 1321 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1322 unsigned long flags; 1323 u32 tempval; 1324 int magic_packet = priv->wol_en && 1325 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET); 1326 1327 if (!netif_running(ndev)) { 1328 netif_device_attach(ndev); 1329 return 0; 1330 } 1331 1332 if (!magic_packet && priv->phydev) 1333 phy_start(priv->phydev); 1334 1335 /* Disable Magic Packet mode, in case something 1336 * else woke us up. 1337 */ 1338 local_irq_save(flags); 1339 lock_tx_qs(priv); 1340 lock_rx_qs(priv); 1341 1342 tempval = gfar_read(®s->maccfg2); 1343 tempval &= ~MACCFG2_MPEN; 1344 gfar_write(®s->maccfg2, tempval); 1345 1346 gfar_start(ndev); 1347 1348 unlock_rx_qs(priv); 1349 unlock_tx_qs(priv); 1350 local_irq_restore(flags); 1351 1352 netif_device_attach(ndev); 1353 1354 enable_napi(priv); 1355 1356 return 0; 1357 } 1358 1359 static int gfar_restore(struct device *dev) 1360 { 1361 struct gfar_private *priv = dev_get_drvdata(dev); 1362 struct net_device *ndev = priv->ndev; 1363 1364 if (!netif_running(ndev)) 1365 return 0; 1366 1367 gfar_init_bds(ndev); 1368 init_registers(ndev); 1369 gfar_set_mac_address(ndev); 1370 gfar_init_mac(ndev); 1371 gfar_start(ndev); 1372 1373 priv->oldlink = 0; 1374 priv->oldspeed = 0; 1375 priv->oldduplex = -1; 1376 1377 if (priv->phydev) 1378 phy_start(priv->phydev); 1379 1380 netif_device_attach(ndev); 1381 enable_napi(priv); 1382 1383 return 0; 1384 } 1385 1386 static struct dev_pm_ops gfar_pm_ops = { 1387 .suspend = gfar_suspend, 1388 .resume = gfar_resume, 1389 .freeze = gfar_suspend, 1390 .thaw = gfar_resume, 1391 .restore = gfar_restore, 1392 }; 1393 1394 #define GFAR_PM_OPS (&gfar_pm_ops) 1395 1396 #else 1397 1398 #define GFAR_PM_OPS NULL 1399 1400 #endif 1401 1402 /* Reads the controller's registers to determine what interface 1403 * connects it to the PHY. 1404 */ 1405 static phy_interface_t gfar_get_interface(struct net_device *dev) 1406 { 1407 struct gfar_private *priv = netdev_priv(dev); 1408 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1409 u32 ecntrl; 1410 1411 ecntrl = gfar_read(®s->ecntrl); 1412 1413 if (ecntrl & ECNTRL_SGMII_MODE) 1414 return PHY_INTERFACE_MODE_SGMII; 1415 1416 if (ecntrl & ECNTRL_TBI_MODE) { 1417 if (ecntrl & ECNTRL_REDUCED_MODE) 1418 return PHY_INTERFACE_MODE_RTBI; 1419 else 1420 return PHY_INTERFACE_MODE_TBI; 1421 } 1422 1423 if (ecntrl & ECNTRL_REDUCED_MODE) { 1424 if (ecntrl & ECNTRL_REDUCED_MII_MODE) 1425 return PHY_INTERFACE_MODE_RMII; 1426 else { 1427 phy_interface_t interface = priv->interface; 1428 1429 /* 1430 * This isn't autodetected right now, so it must 1431 * be set by the device tree or platform code. 1432 */ 1433 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 1434 return PHY_INTERFACE_MODE_RGMII_ID; 1435 1436 return PHY_INTERFACE_MODE_RGMII; 1437 } 1438 } 1439 1440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1441 return PHY_INTERFACE_MODE_GMII; 1442 1443 return PHY_INTERFACE_MODE_MII; 1444 } 1445 1446 1447 /* Initializes driver's PHY state, and attaches to the PHY. 1448 * Returns 0 on success. 1449 */ 1450 static int init_phy(struct net_device *dev) 1451 { 1452 struct gfar_private *priv = netdev_priv(dev); 1453 uint gigabit_support = 1454 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? 1455 SUPPORTED_1000baseT_Full : 0; 1456 phy_interface_t interface; 1457 1458 priv->oldlink = 0; 1459 priv->oldspeed = 0; 1460 priv->oldduplex = -1; 1461 1462 interface = gfar_get_interface(dev); 1463 1464 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1465 interface); 1466 if (!priv->phydev) 1467 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link, 1468 interface); 1469 if (!priv->phydev) { 1470 dev_err(&dev->dev, "could not attach to PHY\n"); 1471 return -ENODEV; 1472 } 1473 1474 if (interface == PHY_INTERFACE_MODE_SGMII) 1475 gfar_configure_serdes(dev); 1476 1477 /* Remove any features not supported by the controller */ 1478 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support); 1479 priv->phydev->advertising = priv->phydev->supported; 1480 1481 return 0; 1482 } 1483 1484 /* 1485 * Initialize TBI PHY interface for communicating with the 1486 * SERDES lynx PHY on the chip. We communicate with this PHY 1487 * through the MDIO bus on each controller, treating it as a 1488 * "normal" PHY at the address found in the TBIPA register. We assume 1489 * that the TBIPA register is valid. Either the MDIO bus code will set 1490 * it to a value that doesn't conflict with other PHYs on the bus, or the 1491 * value doesn't matter, as there are no other PHYs on the bus. 1492 */ 1493 static void gfar_configure_serdes(struct net_device *dev) 1494 { 1495 struct gfar_private *priv = netdev_priv(dev); 1496 struct phy_device *tbiphy; 1497 1498 if (!priv->tbi_node) { 1499 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1500 "device tree specify a tbi-handle\n"); 1501 return; 1502 } 1503 1504 tbiphy = of_phy_find_device(priv->tbi_node); 1505 if (!tbiphy) { 1506 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1507 return; 1508 } 1509 1510 /* 1511 * If the link is already up, we must already be ok, and don't need to 1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1513 * everything for us? Resetting it takes the link down and requires 1514 * several seconds for it to come back. 1515 */ 1516 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) 1517 return; 1518 1519 /* Single clk mode, mii mode off(for serdes communication) */ 1520 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1521 1522 phy_write(tbiphy, MII_ADVERTISE, 1523 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1524 ADVERTISE_1000XPSE_ASYM); 1525 1526 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE | 1527 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); 1528 } 1529 1530 static void init_registers(struct net_device *dev) 1531 { 1532 struct gfar_private *priv = netdev_priv(dev); 1533 struct gfar __iomem *regs = NULL; 1534 int i = 0; 1535 1536 for (i = 0; i < priv->num_grps; i++) { 1537 regs = priv->gfargrp[i].regs; 1538 /* Clear IEVENT */ 1539 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 1540 1541 /* Initialize IMASK */ 1542 gfar_write(®s->imask, IMASK_INIT_CLEAR); 1543 } 1544 1545 regs = priv->gfargrp[0].regs; 1546 /* Init hash registers to zero */ 1547 gfar_write(®s->igaddr0, 0); 1548 gfar_write(®s->igaddr1, 0); 1549 gfar_write(®s->igaddr2, 0); 1550 gfar_write(®s->igaddr3, 0); 1551 gfar_write(®s->igaddr4, 0); 1552 gfar_write(®s->igaddr5, 0); 1553 gfar_write(®s->igaddr6, 0); 1554 gfar_write(®s->igaddr7, 0); 1555 1556 gfar_write(®s->gaddr0, 0); 1557 gfar_write(®s->gaddr1, 0); 1558 gfar_write(®s->gaddr2, 0); 1559 gfar_write(®s->gaddr3, 0); 1560 gfar_write(®s->gaddr4, 0); 1561 gfar_write(®s->gaddr5, 0); 1562 gfar_write(®s->gaddr6, 0); 1563 gfar_write(®s->gaddr7, 0); 1564 1565 /* Zero out the rmon mib registers if it has them */ 1566 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 1567 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib)); 1568 1569 /* Mask off the CAM interrupts */ 1570 gfar_write(®s->rmon.cam1, 0xffffffff); 1571 gfar_write(®s->rmon.cam2, 0xffffffff); 1572 } 1573 1574 /* Initialize the max receive buffer length */ 1575 gfar_write(®s->mrblr, priv->rx_buffer_size); 1576 1577 /* Initialize the Minimum Frame Length Register */ 1578 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 1579 } 1580 1581 static int __gfar_is_rx_idle(struct gfar_private *priv) 1582 { 1583 u32 res; 1584 1585 /* 1586 * Normaly TSEC should not hang on GRS commands, so we should 1587 * actually wait for IEVENT_GRSC flag. 1588 */ 1589 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002))) 1590 return 0; 1591 1592 /* 1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are 1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 1595 * and the Rx can be safely reset. 1596 */ 1597 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1598 res &= 0x7f807f80; 1599 if ((res & 0xffff) == (res >> 16)) 1600 return 1; 1601 1602 return 0; 1603 } 1604 1605 /* Halt the receive and transmit queues */ 1606 static void gfar_halt_nodisable(struct net_device *dev) 1607 { 1608 struct gfar_private *priv = netdev_priv(dev); 1609 struct gfar __iomem *regs = NULL; 1610 u32 tempval; 1611 int i = 0; 1612 1613 for (i = 0; i < priv->num_grps; i++) { 1614 regs = priv->gfargrp[i].regs; 1615 /* Mask all interrupts */ 1616 gfar_write(®s->imask, IMASK_INIT_CLEAR); 1617 1618 /* Clear all interrupts */ 1619 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 1620 } 1621 1622 regs = priv->gfargrp[0].regs; 1623 /* Stop the DMA, and wait for it to stop */ 1624 tempval = gfar_read(®s->dmactrl); 1625 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) 1626 != (DMACTRL_GRS | DMACTRL_GTS)) { 1627 int ret; 1628 1629 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1630 gfar_write(®s->dmactrl, tempval); 1631 1632 do { 1633 ret = spin_event_timeout(((gfar_read(®s->ievent) & 1634 (IEVENT_GRSC | IEVENT_GTSC)) == 1635 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0); 1636 if (!ret && !(gfar_read(®s->ievent) & IEVENT_GRSC)) 1637 ret = __gfar_is_rx_idle(priv); 1638 } while (!ret); 1639 } 1640 } 1641 1642 /* Halt the receive and transmit queues */ 1643 void gfar_halt(struct net_device *dev) 1644 { 1645 struct gfar_private *priv = netdev_priv(dev); 1646 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1647 u32 tempval; 1648 1649 gfar_halt_nodisable(dev); 1650 1651 /* Disable Rx and Tx */ 1652 tempval = gfar_read(®s->maccfg1); 1653 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1654 gfar_write(®s->maccfg1, tempval); 1655 } 1656 1657 static void free_grp_irqs(struct gfar_priv_grp *grp) 1658 { 1659 free_irq(grp->interruptError, grp); 1660 free_irq(grp->interruptTransmit, grp); 1661 free_irq(grp->interruptReceive, grp); 1662 } 1663 1664 void stop_gfar(struct net_device *dev) 1665 { 1666 struct gfar_private *priv = netdev_priv(dev); 1667 unsigned long flags; 1668 int i; 1669 1670 phy_stop(priv->phydev); 1671 1672 1673 /* Lock it down */ 1674 local_irq_save(flags); 1675 lock_tx_qs(priv); 1676 lock_rx_qs(priv); 1677 1678 gfar_halt(dev); 1679 1680 unlock_rx_qs(priv); 1681 unlock_tx_qs(priv); 1682 local_irq_restore(flags); 1683 1684 /* Free the IRQs */ 1685 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1686 for (i = 0; i < priv->num_grps; i++) 1687 free_grp_irqs(&priv->gfargrp[i]); 1688 } else { 1689 for (i = 0; i < priv->num_grps; i++) 1690 free_irq(priv->gfargrp[i].interruptTransmit, 1691 &priv->gfargrp[i]); 1692 } 1693 1694 free_skb_resources(priv); 1695 } 1696 1697 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1698 { 1699 struct txbd8 *txbdp; 1700 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1701 int i, j; 1702 1703 txbdp = tx_queue->tx_bd_base; 1704 1705 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1706 if (!tx_queue->tx_skbuff[i]) 1707 continue; 1708 1709 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr, 1710 txbdp->length, DMA_TO_DEVICE); 1711 txbdp->lstatus = 0; 1712 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1713 j++) { 1714 txbdp++; 1715 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr, 1716 txbdp->length, DMA_TO_DEVICE); 1717 } 1718 txbdp++; 1719 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1720 tx_queue->tx_skbuff[i] = NULL; 1721 } 1722 kfree(tx_queue->tx_skbuff); 1723 } 1724 1725 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1726 { 1727 struct rxbd8 *rxbdp; 1728 struct gfar_private *priv = netdev_priv(rx_queue->dev); 1729 int i; 1730 1731 rxbdp = rx_queue->rx_bd_base; 1732 1733 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1734 if (rx_queue->rx_skbuff[i]) { 1735 dma_unmap_single(&priv->ofdev->dev, 1736 rxbdp->bufPtr, priv->rx_buffer_size, 1737 DMA_FROM_DEVICE); 1738 dev_kfree_skb_any(rx_queue->rx_skbuff[i]); 1739 rx_queue->rx_skbuff[i] = NULL; 1740 } 1741 rxbdp->lstatus = 0; 1742 rxbdp->bufPtr = 0; 1743 rxbdp++; 1744 } 1745 kfree(rx_queue->rx_skbuff); 1746 } 1747 1748 /* If there are any tx skbs or rx skbs still around, free them. 1749 * Then free tx_skbuff and rx_skbuff */ 1750 static void free_skb_resources(struct gfar_private *priv) 1751 { 1752 struct gfar_priv_tx_q *tx_queue = NULL; 1753 struct gfar_priv_rx_q *rx_queue = NULL; 1754 int i; 1755 1756 /* Go through all the buffer descriptors and free their data buffers */ 1757 for (i = 0; i < priv->num_tx_queues; i++) { 1758 tx_queue = priv->tx_queue[i]; 1759 if(tx_queue->tx_skbuff) 1760 free_skb_tx_queue(tx_queue); 1761 } 1762 1763 for (i = 0; i < priv->num_rx_queues; i++) { 1764 rx_queue = priv->rx_queue[i]; 1765 if(rx_queue->rx_skbuff) 1766 free_skb_rx_queue(rx_queue); 1767 } 1768 1769 dma_free_coherent(&priv->ofdev->dev, 1770 sizeof(struct txbd8) * priv->total_tx_ring_size + 1771 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1772 priv->tx_queue[0]->tx_bd_base, 1773 priv->tx_queue[0]->tx_bd_dma_base); 1774 skb_queue_purge(&priv->rx_recycle); 1775 } 1776 1777 void gfar_start(struct net_device *dev) 1778 { 1779 struct gfar_private *priv = netdev_priv(dev); 1780 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1781 u32 tempval; 1782 int i = 0; 1783 1784 /* Enable Rx and Tx in MACCFG1 */ 1785 tempval = gfar_read(®s->maccfg1); 1786 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1787 gfar_write(®s->maccfg1, tempval); 1788 1789 /* Initialize DMACTRL to have WWR and WOP */ 1790 tempval = gfar_read(®s->dmactrl); 1791 tempval |= DMACTRL_INIT_SETTINGS; 1792 gfar_write(®s->dmactrl, tempval); 1793 1794 /* Make sure we aren't stopped */ 1795 tempval = gfar_read(®s->dmactrl); 1796 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1797 gfar_write(®s->dmactrl, tempval); 1798 1799 for (i = 0; i < priv->num_grps; i++) { 1800 regs = priv->gfargrp[i].regs; 1801 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1802 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1803 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1804 /* Unmask the interrupts we look for */ 1805 gfar_write(®s->imask, IMASK_DEFAULT); 1806 } 1807 1808 dev->trans_start = jiffies; /* prevent tx timeout */ 1809 } 1810 1811 void gfar_configure_coalescing(struct gfar_private *priv, 1812 unsigned long tx_mask, unsigned long rx_mask) 1813 { 1814 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1815 u32 __iomem *baddr; 1816 int i = 0; 1817 1818 /* Backward compatible case ---- even if we enable 1819 * multiple queues, there's only single reg to program 1820 */ 1821 gfar_write(®s->txic, 0); 1822 if(likely(priv->tx_queue[0]->txcoalescing)) 1823 gfar_write(®s->txic, priv->tx_queue[0]->txic); 1824 1825 gfar_write(®s->rxic, 0); 1826 if(unlikely(priv->rx_queue[0]->rxcoalescing)) 1827 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 1828 1829 if (priv->mode == MQ_MG_MODE) { 1830 baddr = ®s->txic0; 1831 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 1832 if (likely(priv->tx_queue[i]->txcoalescing)) { 1833 gfar_write(baddr + i, 0); 1834 gfar_write(baddr + i, priv->tx_queue[i]->txic); 1835 } 1836 } 1837 1838 baddr = ®s->rxic0; 1839 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 1840 if (likely(priv->rx_queue[i]->rxcoalescing)) { 1841 gfar_write(baddr + i, 0); 1842 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 1843 } 1844 } 1845 } 1846 } 1847 1848 static int register_grp_irqs(struct gfar_priv_grp *grp) 1849 { 1850 struct gfar_private *priv = grp->priv; 1851 struct net_device *dev = priv->ndev; 1852 int err; 1853 1854 /* If the device has multiple interrupts, register for 1855 * them. Otherwise, only register for the one */ 1856 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 1857 /* Install our interrupt handlers for Error, 1858 * Transmit, and Receive */ 1859 if ((err = request_irq(grp->interruptError, gfar_error, 0, 1860 grp->int_name_er,grp)) < 0) { 1861 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1862 grp->interruptError); 1863 1864 goto err_irq_fail; 1865 } 1866 1867 if ((err = request_irq(grp->interruptTransmit, gfar_transmit, 1868 0, grp->int_name_tx, grp)) < 0) { 1869 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1870 grp->interruptTransmit); 1871 goto tx_irq_fail; 1872 } 1873 1874 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0, 1875 grp->int_name_rx, grp)) < 0) { 1876 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1877 grp->interruptReceive); 1878 goto rx_irq_fail; 1879 } 1880 } else { 1881 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0, 1882 grp->int_name_tx, grp)) < 0) { 1883 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 1884 grp->interruptTransmit); 1885 goto err_irq_fail; 1886 } 1887 } 1888 1889 return 0; 1890 1891 rx_irq_fail: 1892 free_irq(grp->interruptTransmit, grp); 1893 tx_irq_fail: 1894 free_irq(grp->interruptError, grp); 1895 err_irq_fail: 1896 return err; 1897 1898 } 1899 1900 /* Bring the controller up and running */ 1901 int startup_gfar(struct net_device *ndev) 1902 { 1903 struct gfar_private *priv = netdev_priv(ndev); 1904 struct gfar __iomem *regs = NULL; 1905 int err, i, j; 1906 1907 for (i = 0; i < priv->num_grps; i++) { 1908 regs= priv->gfargrp[i].regs; 1909 gfar_write(®s->imask, IMASK_INIT_CLEAR); 1910 } 1911 1912 regs= priv->gfargrp[0].regs; 1913 err = gfar_alloc_skb_resources(ndev); 1914 if (err) 1915 return err; 1916 1917 gfar_init_mac(ndev); 1918 1919 for (i = 0; i < priv->num_grps; i++) { 1920 err = register_grp_irqs(&priv->gfargrp[i]); 1921 if (err) { 1922 for (j = 0; j < i; j++) 1923 free_grp_irqs(&priv->gfargrp[j]); 1924 goto irq_fail; 1925 } 1926 } 1927 1928 /* Start the controller */ 1929 gfar_start(ndev); 1930 1931 phy_start(priv->phydev); 1932 1933 gfar_configure_coalescing(priv, 0xFF, 0xFF); 1934 1935 return 0; 1936 1937 irq_fail: 1938 free_skb_resources(priv); 1939 return err; 1940 } 1941 1942 /* Called when something needs to use the ethernet device */ 1943 /* Returns 0 for success. */ 1944 static int gfar_enet_open(struct net_device *dev) 1945 { 1946 struct gfar_private *priv = netdev_priv(dev); 1947 int err; 1948 1949 enable_napi(priv); 1950 1951 skb_queue_head_init(&priv->rx_recycle); 1952 1953 /* Initialize a bunch of registers */ 1954 init_registers(dev); 1955 1956 gfar_set_mac_address(dev); 1957 1958 err = init_phy(dev); 1959 1960 if (err) { 1961 disable_napi(priv); 1962 return err; 1963 } 1964 1965 err = startup_gfar(dev); 1966 if (err) { 1967 disable_napi(priv); 1968 return err; 1969 } 1970 1971 netif_tx_start_all_queues(dev); 1972 1973 device_set_wakeup_enable(&dev->dev, priv->wol_en); 1974 1975 return err; 1976 } 1977 1978 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1979 { 1980 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN); 1981 1982 memset(fcb, 0, GMAC_FCB_LEN); 1983 1984 return fcb; 1985 } 1986 1987 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1988 int fcb_length) 1989 { 1990 u8 flags = 0; 1991 1992 /* If we're here, it's a IP packet with a TCP or UDP 1993 * payload. We set it to checksum, using a pseudo-header 1994 * we provide 1995 */ 1996 flags = TXFCB_DEFAULT; 1997 1998 /* Tell the controller what the protocol is */ 1999 /* And provide the already calculated phcs */ 2000 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 2001 flags |= TXFCB_UDP; 2002 fcb->phcs = udp_hdr(skb)->check; 2003 } else 2004 fcb->phcs = tcp_hdr(skb)->check; 2005 2006 /* l3os is the distance between the start of the 2007 * frame (skb->data) and the start of the IP hdr. 2008 * l4os is the distance between the start of the 2009 * l3 hdr and the l4 hdr */ 2010 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length); 2011 fcb->l4os = skb_network_header_len(skb); 2012 2013 fcb->flags = flags; 2014 } 2015 2016 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 2017 { 2018 fcb->flags |= TXFCB_VLN; 2019 fcb->vlctl = vlan_tx_tag_get(skb); 2020 } 2021 2022 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 2023 struct txbd8 *base, int ring_size) 2024 { 2025 struct txbd8 *new_bd = bdp + stride; 2026 2027 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 2028 } 2029 2030 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 2031 int ring_size) 2032 { 2033 return skip_txbd(bdp, 1, base, ring_size); 2034 } 2035 2036 /* This is called by the kernel when a frame is ready for transmission. */ 2037 /* It is pointed to by the dev->hard_start_xmit function pointer */ 2038 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 2039 { 2040 struct gfar_private *priv = netdev_priv(dev); 2041 struct gfar_priv_tx_q *tx_queue = NULL; 2042 struct netdev_queue *txq; 2043 struct gfar __iomem *regs = NULL; 2044 struct txfcb *fcb = NULL; 2045 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 2046 u32 lstatus; 2047 int i, rq = 0, do_tstamp = 0; 2048 u32 bufaddr; 2049 unsigned long flags; 2050 unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN; 2051 2052 /* 2053 * TOE=1 frames larger than 2500 bytes may see excess delays 2054 * before start of transmission. 2055 */ 2056 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) && 2057 skb->ip_summed == CHECKSUM_PARTIAL && 2058 skb->len > 2500)) { 2059 int ret; 2060 2061 ret = skb_checksum_help(skb); 2062 if (ret) 2063 return ret; 2064 } 2065 2066 rq = skb->queue_mapping; 2067 tx_queue = priv->tx_queue[rq]; 2068 txq = netdev_get_tx_queue(dev, rq); 2069 base = tx_queue->tx_bd_base; 2070 regs = tx_queue->grp->regs; 2071 2072 /* check if time stamp should be generated */ 2073 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 2074 priv->hwts_tx_en)) { 2075 do_tstamp = 1; 2076 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2077 } 2078 2079 /* make space for additional header when fcb is needed */ 2080 if (((skb->ip_summed == CHECKSUM_PARTIAL) || 2081 vlan_tx_tag_present(skb) || 2082 unlikely(do_tstamp)) && 2083 (skb_headroom(skb) < fcb_length)) { 2084 struct sk_buff *skb_new; 2085 2086 skb_new = skb_realloc_headroom(skb, fcb_length); 2087 if (!skb_new) { 2088 dev->stats.tx_errors++; 2089 kfree_skb(skb); 2090 return NETDEV_TX_OK; 2091 } 2092 2093 /* Steal sock reference for processing TX time stamps */ 2094 swap(skb_new->sk, skb->sk); 2095 swap(skb_new->destructor, skb->destructor); 2096 kfree_skb(skb); 2097 skb = skb_new; 2098 } 2099 2100 /* total number of fragments in the SKB */ 2101 nr_frags = skb_shinfo(skb)->nr_frags; 2102 2103 /* calculate the required number of TxBDs for this skb */ 2104 if (unlikely(do_tstamp)) 2105 nr_txbds = nr_frags + 2; 2106 else 2107 nr_txbds = nr_frags + 1; 2108 2109 /* check if there is space to queue this packet */ 2110 if (nr_txbds > tx_queue->num_txbdfree) { 2111 /* no space, stop the queue */ 2112 netif_tx_stop_queue(txq); 2113 dev->stats.tx_fifo_errors++; 2114 return NETDEV_TX_BUSY; 2115 } 2116 2117 /* Update transmit stats */ 2118 tx_queue->stats.tx_bytes += skb->len; 2119 tx_queue->stats.tx_packets++; 2120 2121 txbdp = txbdp_start = tx_queue->cur_tx; 2122 lstatus = txbdp->lstatus; 2123 2124 /* Time stamp insertion requires one additional TxBD */ 2125 if (unlikely(do_tstamp)) 2126 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 2127 tx_queue->tx_ring_size); 2128 2129 if (nr_frags == 0) { 2130 if (unlikely(do_tstamp)) 2131 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST | 2132 TXBD_INTERRUPT); 2133 else 2134 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2135 } else { 2136 /* Place the fragment addresses and lengths into the TxBDs */ 2137 for (i = 0; i < nr_frags; i++) { 2138 /* Point at the next BD, wrapping as needed */ 2139 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2140 2141 length = skb_shinfo(skb)->frags[i].size; 2142 2143 lstatus = txbdp->lstatus | length | 2144 BD_LFLAG(TXBD_READY); 2145 2146 /* Handle the last BD specially */ 2147 if (i == nr_frags - 1) 2148 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 2149 2150 bufaddr = skb_frag_dma_map(&priv->ofdev->dev, 2151 &skb_shinfo(skb)->frags[i], 2152 0, 2153 length, 2154 DMA_TO_DEVICE); 2155 2156 /* set the TxBD length and buffer pointer */ 2157 txbdp->bufPtr = bufaddr; 2158 txbdp->lstatus = lstatus; 2159 } 2160 2161 lstatus = txbdp_start->lstatus; 2162 } 2163 2164 /* Add TxPAL between FCB and frame if required */ 2165 if (unlikely(do_tstamp)) { 2166 skb_push(skb, GMAC_TXPAL_LEN); 2167 memset(skb->data, 0, GMAC_TXPAL_LEN); 2168 } 2169 2170 /* Set up checksumming */ 2171 if (CHECKSUM_PARTIAL == skb->ip_summed) { 2172 fcb = gfar_add_fcb(skb); 2173 /* as specified by errata */ 2174 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) 2175 && ((unsigned long)fcb % 0x20) > 0x18)) { 2176 __skb_pull(skb, GMAC_FCB_LEN); 2177 skb_checksum_help(skb); 2178 } else { 2179 lstatus |= BD_LFLAG(TXBD_TOE); 2180 gfar_tx_checksum(skb, fcb, fcb_length); 2181 } 2182 } 2183 2184 if (vlan_tx_tag_present(skb)) { 2185 if (unlikely(NULL == fcb)) { 2186 fcb = gfar_add_fcb(skb); 2187 lstatus |= BD_LFLAG(TXBD_TOE); 2188 } 2189 2190 gfar_tx_vlan(skb, fcb); 2191 } 2192 2193 /* Setup tx hardware time stamping if requested */ 2194 if (unlikely(do_tstamp)) { 2195 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2196 if (fcb == NULL) 2197 fcb = gfar_add_fcb(skb); 2198 fcb->ptp = 1; 2199 lstatus |= BD_LFLAG(TXBD_TOE); 2200 } 2201 2202 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data, 2203 skb_headlen(skb), DMA_TO_DEVICE); 2204 2205 /* 2206 * If time stamping is requested one additional TxBD must be set up. The 2207 * first TxBD points to the FCB and must have a data length of 2208 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 2209 * the full frame length. 2210 */ 2211 if (unlikely(do_tstamp)) { 2212 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length; 2213 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) | 2214 (skb_headlen(skb) - fcb_length); 2215 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 2216 } else { 2217 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 2218 } 2219 2220 /* 2221 * We can work in parallel with gfar_clean_tx_ring(), except 2222 * when modifying num_txbdfree. Note that we didn't grab the lock 2223 * when we were reading the num_txbdfree and checking for available 2224 * space, that's because outside of this function it can only grow, 2225 * and once we've got needed space, it cannot suddenly disappear. 2226 * 2227 * The lock also protects us from gfar_error(), which can modify 2228 * regs->tstat and thus retrigger the transfers, which is why we 2229 * also must grab the lock before setting ready bit for the first 2230 * to be transmitted BD. 2231 */ 2232 spin_lock_irqsave(&tx_queue->txlock, flags); 2233 2234 /* 2235 * The powerpc-specific eieio() is used, as wmb() has too strong 2236 * semantics (it requires synchronization between cacheable and 2237 * uncacheable mappings, which eieio doesn't provide and which we 2238 * don't need), thus requiring a more expensive sync instruction. At 2239 * some point, the set of architecture-independent barrier functions 2240 * should be expanded to include weaker barriers. 2241 */ 2242 eieio(); 2243 2244 txbdp_start->lstatus = lstatus; 2245 2246 eieio(); /* force lstatus write before tx_skbuff */ 2247 2248 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 2249 2250 /* Update the current skb pointer to the next entry we will use 2251 * (wrapping if necessary) */ 2252 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 2253 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 2254 2255 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2256 2257 /* reduce TxBD free count */ 2258 tx_queue->num_txbdfree -= (nr_txbds); 2259 2260 /* If the next BD still needs to be cleaned up, then the bds 2261 are full. We need to tell the kernel to stop sending us stuff. */ 2262 if (!tx_queue->num_txbdfree) { 2263 netif_tx_stop_queue(txq); 2264 2265 dev->stats.tx_fifo_errors++; 2266 } 2267 2268 /* Tell the DMA to go go go */ 2269 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 2270 2271 /* Unlock priv */ 2272 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2273 2274 return NETDEV_TX_OK; 2275 } 2276 2277 /* Stops the kernel queue, and halts the controller */ 2278 static int gfar_close(struct net_device *dev) 2279 { 2280 struct gfar_private *priv = netdev_priv(dev); 2281 2282 disable_napi(priv); 2283 2284 cancel_work_sync(&priv->reset_task); 2285 stop_gfar(dev); 2286 2287 /* Disconnect from the PHY */ 2288 phy_disconnect(priv->phydev); 2289 priv->phydev = NULL; 2290 2291 netif_tx_stop_all_queues(dev); 2292 2293 return 0; 2294 } 2295 2296 /* Changes the mac address if the controller is not running. */ 2297 static int gfar_set_mac_address(struct net_device *dev) 2298 { 2299 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2300 2301 return 0; 2302 } 2303 2304 /* Check if rx parser should be activated */ 2305 void gfar_check_rx_parser_mode(struct gfar_private *priv) 2306 { 2307 struct gfar __iomem *regs; 2308 u32 tempval; 2309 2310 regs = priv->gfargrp[0].regs; 2311 2312 tempval = gfar_read(®s->rctrl); 2313 /* If parse is no longer required, then disable parser */ 2314 if (tempval & RCTRL_REQ_PARSER) 2315 tempval |= RCTRL_PRSDEP_INIT; 2316 else 2317 tempval &= ~RCTRL_PRSDEP_INIT; 2318 gfar_write(®s->rctrl, tempval); 2319 } 2320 2321 /* Enables and disables VLAN insertion/extraction */ 2322 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features) 2323 { 2324 struct gfar_private *priv = netdev_priv(dev); 2325 struct gfar __iomem *regs = NULL; 2326 unsigned long flags; 2327 u32 tempval; 2328 2329 regs = priv->gfargrp[0].regs; 2330 local_irq_save(flags); 2331 lock_rx_qs(priv); 2332 2333 if (features & NETIF_F_HW_VLAN_TX) { 2334 /* Enable VLAN tag insertion */ 2335 tempval = gfar_read(®s->tctrl); 2336 tempval |= TCTRL_VLINS; 2337 gfar_write(®s->tctrl, tempval); 2338 } else { 2339 /* Disable VLAN tag insertion */ 2340 tempval = gfar_read(®s->tctrl); 2341 tempval &= ~TCTRL_VLINS; 2342 gfar_write(®s->tctrl, tempval); 2343 } 2344 2345 if (features & NETIF_F_HW_VLAN_RX) { 2346 /* Enable VLAN tag extraction */ 2347 tempval = gfar_read(®s->rctrl); 2348 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT); 2349 gfar_write(®s->rctrl, tempval); 2350 } else { 2351 /* Disable VLAN tag extraction */ 2352 tempval = gfar_read(®s->rctrl); 2353 tempval &= ~RCTRL_VLEX; 2354 gfar_write(®s->rctrl, tempval); 2355 2356 gfar_check_rx_parser_mode(priv); 2357 } 2358 2359 gfar_change_mtu(dev, dev->mtu); 2360 2361 unlock_rx_qs(priv); 2362 local_irq_restore(flags); 2363 } 2364 2365 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2366 { 2367 int tempsize, tempval; 2368 struct gfar_private *priv = netdev_priv(dev); 2369 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2370 int oldsize = priv->rx_buffer_size; 2371 int frame_size = new_mtu + ETH_HLEN; 2372 2373 if (gfar_is_vlan_on(priv)) 2374 frame_size += VLAN_HLEN; 2375 2376 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { 2377 netif_err(priv, drv, dev, "Invalid MTU setting\n"); 2378 return -EINVAL; 2379 } 2380 2381 if (gfar_uses_fcb(priv)) 2382 frame_size += GMAC_FCB_LEN; 2383 2384 frame_size += priv->padding; 2385 2386 tempsize = 2387 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + 2388 INCREMENTAL_BUFFER_SIZE; 2389 2390 /* Only stop and start the controller if it isn't already 2391 * stopped, and we changed something */ 2392 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 2393 stop_gfar(dev); 2394 2395 priv->rx_buffer_size = tempsize; 2396 2397 dev->mtu = new_mtu; 2398 2399 gfar_write(®s->mrblr, priv->rx_buffer_size); 2400 gfar_write(®s->maxfrm, priv->rx_buffer_size); 2401 2402 /* If the mtu is larger than the max size for standard 2403 * ethernet frames (ie, a jumbo frame), then set maccfg2 2404 * to allow huge frames, and to check the length */ 2405 tempval = gfar_read(®s->maccfg2); 2406 2407 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE || 2408 gfar_has_errata(priv, GFAR_ERRATA_74)) 2409 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 2410 else 2411 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); 2412 2413 gfar_write(®s->maccfg2, tempval); 2414 2415 if ((oldsize != tempsize) && (dev->flags & IFF_UP)) 2416 startup_gfar(dev); 2417 2418 return 0; 2419 } 2420 2421 /* gfar_reset_task gets scheduled when a packet has not been 2422 * transmitted after a set amount of time. 2423 * For now, assume that clearing out all the structures, and 2424 * starting over will fix the problem. 2425 */ 2426 static void gfar_reset_task(struct work_struct *work) 2427 { 2428 struct gfar_private *priv = container_of(work, struct gfar_private, 2429 reset_task); 2430 struct net_device *dev = priv->ndev; 2431 2432 if (dev->flags & IFF_UP) { 2433 netif_tx_stop_all_queues(dev); 2434 stop_gfar(dev); 2435 startup_gfar(dev); 2436 netif_tx_start_all_queues(dev); 2437 } 2438 2439 netif_tx_schedule_all(dev); 2440 } 2441 2442 static void gfar_timeout(struct net_device *dev) 2443 { 2444 struct gfar_private *priv = netdev_priv(dev); 2445 2446 dev->stats.tx_errors++; 2447 schedule_work(&priv->reset_task); 2448 } 2449 2450 static void gfar_align_skb(struct sk_buff *skb) 2451 { 2452 /* We need the data buffer to be aligned properly. We will reserve 2453 * as many bytes as needed to align the data properly 2454 */ 2455 skb_reserve(skb, RXBUF_ALIGNMENT - 2456 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1))); 2457 } 2458 2459 /* Interrupt Handler for Transmit complete */ 2460 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2461 { 2462 struct net_device *dev = tx_queue->dev; 2463 struct gfar_private *priv = netdev_priv(dev); 2464 struct gfar_priv_rx_q *rx_queue = NULL; 2465 struct txbd8 *bdp, *next = NULL; 2466 struct txbd8 *lbdp = NULL; 2467 struct txbd8 *base = tx_queue->tx_bd_base; 2468 struct sk_buff *skb; 2469 int skb_dirtytx; 2470 int tx_ring_size = tx_queue->tx_ring_size; 2471 int frags = 0, nr_txbds = 0; 2472 int i; 2473 int howmany = 0; 2474 u32 lstatus; 2475 size_t buflen; 2476 2477 rx_queue = priv->rx_queue[tx_queue->qindex]; 2478 bdp = tx_queue->dirty_tx; 2479 skb_dirtytx = tx_queue->skb_dirtytx; 2480 2481 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2482 unsigned long flags; 2483 2484 frags = skb_shinfo(skb)->nr_frags; 2485 2486 /* 2487 * When time stamping, one additional TxBD must be freed. 2488 * Also, we need to dma_unmap_single() the TxPAL. 2489 */ 2490 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2491 nr_txbds = frags + 2; 2492 else 2493 nr_txbds = frags + 1; 2494 2495 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2496 2497 lstatus = lbdp->lstatus; 2498 2499 /* Only clean completed frames */ 2500 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2501 (lstatus & BD_LENGTH_MASK)) 2502 break; 2503 2504 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2505 next = next_txbd(bdp, base, tx_ring_size); 2506 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2507 } else 2508 buflen = bdp->length; 2509 2510 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, 2511 buflen, DMA_TO_DEVICE); 2512 2513 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) { 2514 struct skb_shared_hwtstamps shhwtstamps; 2515 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7); 2516 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2517 shhwtstamps.hwtstamp = ns_to_ktime(*ns); 2518 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2519 skb_tstamp_tx(skb, &shhwtstamps); 2520 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2521 bdp = next; 2522 } 2523 2524 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2525 bdp = next_txbd(bdp, base, tx_ring_size); 2526 2527 for (i = 0; i < frags; i++) { 2528 dma_unmap_page(&priv->ofdev->dev, 2529 bdp->bufPtr, 2530 bdp->length, 2531 DMA_TO_DEVICE); 2532 bdp->lstatus &= BD_LFLAG(TXBD_WRAP); 2533 bdp = next_txbd(bdp, base, tx_ring_size); 2534 } 2535 2536 /* 2537 * If there's room in the queue (limit it to rx_buffer_size) 2538 * we add this skb back into the pool, if it's the right size 2539 */ 2540 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size && 2541 skb_recycle_check(skb, priv->rx_buffer_size + 2542 RXBUF_ALIGNMENT)) { 2543 gfar_align_skb(skb); 2544 skb_queue_head(&priv->rx_recycle, skb); 2545 } else 2546 dev_kfree_skb_any(skb); 2547 2548 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2549 2550 skb_dirtytx = (skb_dirtytx + 1) & 2551 TX_RING_MOD_MASK(tx_ring_size); 2552 2553 howmany++; 2554 spin_lock_irqsave(&tx_queue->txlock, flags); 2555 tx_queue->num_txbdfree += nr_txbds; 2556 spin_unlock_irqrestore(&tx_queue->txlock, flags); 2557 } 2558 2559 /* If we freed a buffer, we can restart transmission, if necessary */ 2560 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree) 2561 netif_wake_subqueue(dev, tx_queue->qindex); 2562 2563 /* Update dirty indicators */ 2564 tx_queue->skb_dirtytx = skb_dirtytx; 2565 tx_queue->dirty_tx = bdp; 2566 2567 return howmany; 2568 } 2569 2570 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp) 2571 { 2572 unsigned long flags; 2573 2574 spin_lock_irqsave(&gfargrp->grplock, flags); 2575 if (napi_schedule_prep(&gfargrp->napi)) { 2576 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED); 2577 __napi_schedule(&gfargrp->napi); 2578 } else { 2579 /* 2580 * Clear IEVENT, so interrupts aren't called again 2581 * because of the packets that have already arrived. 2582 */ 2583 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK); 2584 } 2585 spin_unlock_irqrestore(&gfargrp->grplock, flags); 2586 2587 } 2588 2589 /* Interrupt Handler for Transmit complete */ 2590 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2591 { 2592 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); 2593 return IRQ_HANDLED; 2594 } 2595 2596 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 2597 struct sk_buff *skb) 2598 { 2599 struct net_device *dev = rx_queue->dev; 2600 struct gfar_private *priv = netdev_priv(dev); 2601 dma_addr_t buf; 2602 2603 buf = dma_map_single(&priv->ofdev->dev, skb->data, 2604 priv->rx_buffer_size, DMA_FROM_DEVICE); 2605 gfar_init_rxbdp(rx_queue, bdp, buf); 2606 } 2607 2608 static struct sk_buff * gfar_alloc_skb(struct net_device *dev) 2609 { 2610 struct gfar_private *priv = netdev_priv(dev); 2611 struct sk_buff *skb = NULL; 2612 2613 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT); 2614 if (!skb) 2615 return NULL; 2616 2617 gfar_align_skb(skb); 2618 2619 return skb; 2620 } 2621 2622 struct sk_buff * gfar_new_skb(struct net_device *dev) 2623 { 2624 struct gfar_private *priv = netdev_priv(dev); 2625 struct sk_buff *skb = NULL; 2626 2627 skb = skb_dequeue(&priv->rx_recycle); 2628 if (!skb) 2629 skb = gfar_alloc_skb(dev); 2630 2631 return skb; 2632 } 2633 2634 static inline void count_errors(unsigned short status, struct net_device *dev) 2635 { 2636 struct gfar_private *priv = netdev_priv(dev); 2637 struct net_device_stats *stats = &dev->stats; 2638 struct gfar_extra_stats *estats = &priv->extra_stats; 2639 2640 /* If the packet was truncated, none of the other errors 2641 * matter */ 2642 if (status & RXBD_TRUNCATED) { 2643 stats->rx_length_errors++; 2644 2645 estats->rx_trunc++; 2646 2647 return; 2648 } 2649 /* Count the errors, if there were any */ 2650 if (status & (RXBD_LARGE | RXBD_SHORT)) { 2651 stats->rx_length_errors++; 2652 2653 if (status & RXBD_LARGE) 2654 estats->rx_large++; 2655 else 2656 estats->rx_short++; 2657 } 2658 if (status & RXBD_NONOCTET) { 2659 stats->rx_frame_errors++; 2660 estats->rx_nonoctet++; 2661 } 2662 if (status & RXBD_CRCERR) { 2663 estats->rx_crcerr++; 2664 stats->rx_crc_errors++; 2665 } 2666 if (status & RXBD_OVERRUN) { 2667 estats->rx_overrun++; 2668 stats->rx_crc_errors++; 2669 } 2670 } 2671 2672 irqreturn_t gfar_receive(int irq, void *grp_id) 2673 { 2674 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id); 2675 return IRQ_HANDLED; 2676 } 2677 2678 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2679 { 2680 /* If valid headers were found, and valid sums 2681 * were verified, then we tell the kernel that no 2682 * checksumming is necessary. Otherwise, it is */ 2683 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) 2684 skb->ip_summed = CHECKSUM_UNNECESSARY; 2685 else 2686 skb_checksum_none_assert(skb); 2687 } 2688 2689 2690 /* gfar_process_frame() -- handle one incoming packet if skb 2691 * isn't NULL. */ 2692 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, 2693 int amount_pull) 2694 { 2695 struct gfar_private *priv = netdev_priv(dev); 2696 struct rxfcb *fcb = NULL; 2697 2698 int ret; 2699 2700 /* fcb is at the beginning if exists */ 2701 fcb = (struct rxfcb *)skb->data; 2702 2703 /* Remove the FCB from the skb */ 2704 /* Remove the padded bytes, if there are any */ 2705 if (amount_pull) { 2706 skb_record_rx_queue(skb, fcb->rq); 2707 skb_pull(skb, amount_pull); 2708 } 2709 2710 /* Get receive timestamp from the skb */ 2711 if (priv->hwts_rx_en) { 2712 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2713 u64 *ns = (u64 *) skb->data; 2714 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2715 shhwtstamps->hwtstamp = ns_to_ktime(*ns); 2716 } 2717 2718 if (priv->padding) 2719 skb_pull(skb, priv->padding); 2720 2721 if (dev->features & NETIF_F_RXCSUM) 2722 gfar_rx_checksum(skb, fcb); 2723 2724 /* Tell the skb what kind of packet this is */ 2725 skb->protocol = eth_type_trans(skb, dev); 2726 2727 /* 2728 * There's need to check for NETIF_F_HW_VLAN_RX here. 2729 * Even if vlan rx accel is disabled, on some chips 2730 * RXFCB_VLN is pseudo randomly set. 2731 */ 2732 if (dev->features & NETIF_F_HW_VLAN_RX && 2733 fcb->flags & RXFCB_VLN) 2734 __vlan_hwaccel_put_tag(skb, fcb->vlctl); 2735 2736 /* Send the packet up the stack */ 2737 ret = netif_receive_skb(skb); 2738 2739 if (NET_RX_DROP == ret) 2740 priv->extra_stats.kernel_dropped++; 2741 2742 return 0; 2743 } 2744 2745 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2746 * until the budget/quota has been reached. Returns the number 2747 * of frames handled 2748 */ 2749 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit) 2750 { 2751 struct net_device *dev = rx_queue->dev; 2752 struct rxbd8 *bdp, *base; 2753 struct sk_buff *skb; 2754 int pkt_len; 2755 int amount_pull; 2756 int howmany = 0; 2757 struct gfar_private *priv = netdev_priv(dev); 2758 2759 /* Get the first full descriptor */ 2760 bdp = rx_queue->cur_rx; 2761 base = rx_queue->rx_bd_base; 2762 2763 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0); 2764 2765 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { 2766 struct sk_buff *newskb; 2767 rmb(); 2768 2769 /* Add another skb for the future */ 2770 newskb = gfar_new_skb(dev); 2771 2772 skb = rx_queue->rx_skbuff[rx_queue->skb_currx]; 2773 2774 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr, 2775 priv->rx_buffer_size, DMA_FROM_DEVICE); 2776 2777 if (unlikely(!(bdp->status & RXBD_ERR) && 2778 bdp->length > priv->rx_buffer_size)) 2779 bdp->status = RXBD_LARGE; 2780 2781 /* We drop the frame if we failed to allocate a new buffer */ 2782 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) || 2783 bdp->status & RXBD_ERR)) { 2784 count_errors(bdp->status, dev); 2785 2786 if (unlikely(!newskb)) 2787 newskb = skb; 2788 else if (skb) 2789 skb_queue_head(&priv->rx_recycle, skb); 2790 } else { 2791 /* Increment the number of packets */ 2792 rx_queue->stats.rx_packets++; 2793 howmany++; 2794 2795 if (likely(skb)) { 2796 pkt_len = bdp->length - ETH_FCS_LEN; 2797 /* Remove the FCS from the packet length */ 2798 skb_put(skb, pkt_len); 2799 rx_queue->stats.rx_bytes += pkt_len; 2800 skb_record_rx_queue(skb, rx_queue->qindex); 2801 gfar_process_frame(dev, skb, amount_pull); 2802 2803 } else { 2804 netif_warn(priv, rx_err, dev, "Missing skb!\n"); 2805 rx_queue->stats.rx_dropped++; 2806 priv->extra_stats.rx_skbmissing++; 2807 } 2808 2809 } 2810 2811 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb; 2812 2813 /* Setup the new bdp */ 2814 gfar_new_rxbdp(rx_queue, bdp, newskb); 2815 2816 /* Update to the next pointer */ 2817 bdp = next_bd(bdp, base, rx_queue->rx_ring_size); 2818 2819 /* update to point at the next skb */ 2820 rx_queue->skb_currx = 2821 (rx_queue->skb_currx + 1) & 2822 RX_RING_MOD_MASK(rx_queue->rx_ring_size); 2823 } 2824 2825 /* Update the current rxbd pointer to be the next one */ 2826 rx_queue->cur_rx = bdp; 2827 2828 return howmany; 2829 } 2830 2831 static int gfar_poll(struct napi_struct *napi, int budget) 2832 { 2833 struct gfar_priv_grp *gfargrp = container_of(napi, 2834 struct gfar_priv_grp, napi); 2835 struct gfar_private *priv = gfargrp->priv; 2836 struct gfar __iomem *regs = gfargrp->regs; 2837 struct gfar_priv_tx_q *tx_queue = NULL; 2838 struct gfar_priv_rx_q *rx_queue = NULL; 2839 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0; 2840 int tx_cleaned = 0, i, left_over_budget = budget; 2841 unsigned long serviced_queues = 0; 2842 int num_queues = 0; 2843 2844 num_queues = gfargrp->num_rx_queues; 2845 budget_per_queue = budget/num_queues; 2846 2847 /* Clear IEVENT, so interrupts aren't called again 2848 * because of the packets that have already arrived */ 2849 gfar_write(®s->ievent, IEVENT_RTX_MASK); 2850 2851 while (num_queues && left_over_budget) { 2852 2853 budget_per_queue = left_over_budget/num_queues; 2854 left_over_budget = 0; 2855 2856 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) { 2857 if (test_bit(i, &serviced_queues)) 2858 continue; 2859 rx_queue = priv->rx_queue[i]; 2860 tx_queue = priv->tx_queue[rx_queue->qindex]; 2861 2862 tx_cleaned += gfar_clean_tx_ring(tx_queue); 2863 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue, 2864 budget_per_queue); 2865 rx_cleaned += rx_cleaned_per_queue; 2866 if(rx_cleaned_per_queue < budget_per_queue) { 2867 left_over_budget = left_over_budget + 2868 (budget_per_queue - rx_cleaned_per_queue); 2869 set_bit(i, &serviced_queues); 2870 num_queues--; 2871 } 2872 } 2873 } 2874 2875 if (tx_cleaned) 2876 return budget; 2877 2878 if (rx_cleaned < budget) { 2879 napi_complete(napi); 2880 2881 /* Clear the halt bit in RSTAT */ 2882 gfar_write(®s->rstat, gfargrp->rstat); 2883 2884 gfar_write(®s->imask, IMASK_DEFAULT); 2885 2886 /* If we are coalescing interrupts, update the timer */ 2887 /* Otherwise, clear it */ 2888 gfar_configure_coalescing(priv, 2889 gfargrp->rx_bit_map, gfargrp->tx_bit_map); 2890 } 2891 2892 return rx_cleaned; 2893 } 2894 2895 #ifdef CONFIG_NET_POLL_CONTROLLER 2896 /* 2897 * Polling 'interrupt' - used by things like netconsole to send skbs 2898 * without having to re-enable interrupts. It's not called while 2899 * the interrupt routine is executing. 2900 */ 2901 static void gfar_netpoll(struct net_device *dev) 2902 { 2903 struct gfar_private *priv = netdev_priv(dev); 2904 int i = 0; 2905 2906 /* If the device has multiple interrupts, run tx/rx */ 2907 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2908 for (i = 0; i < priv->num_grps; i++) { 2909 disable_irq(priv->gfargrp[i].interruptTransmit); 2910 disable_irq(priv->gfargrp[i].interruptReceive); 2911 disable_irq(priv->gfargrp[i].interruptError); 2912 gfar_interrupt(priv->gfargrp[i].interruptTransmit, 2913 &priv->gfargrp[i]); 2914 enable_irq(priv->gfargrp[i].interruptError); 2915 enable_irq(priv->gfargrp[i].interruptReceive); 2916 enable_irq(priv->gfargrp[i].interruptTransmit); 2917 } 2918 } else { 2919 for (i = 0; i < priv->num_grps; i++) { 2920 disable_irq(priv->gfargrp[i].interruptTransmit); 2921 gfar_interrupt(priv->gfargrp[i].interruptTransmit, 2922 &priv->gfargrp[i]); 2923 enable_irq(priv->gfargrp[i].interruptTransmit); 2924 } 2925 } 2926 } 2927 #endif 2928 2929 /* The interrupt handler for devices with one interrupt */ 2930 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2931 { 2932 struct gfar_priv_grp *gfargrp = grp_id; 2933 2934 /* Save ievent for future reference */ 2935 u32 events = gfar_read(&gfargrp->regs->ievent); 2936 2937 /* Check for reception */ 2938 if (events & IEVENT_RX_MASK) 2939 gfar_receive(irq, grp_id); 2940 2941 /* Check for transmit completion */ 2942 if (events & IEVENT_TX_MASK) 2943 gfar_transmit(irq, grp_id); 2944 2945 /* Check for errors */ 2946 if (events & IEVENT_ERR_MASK) 2947 gfar_error(irq, grp_id); 2948 2949 return IRQ_HANDLED; 2950 } 2951 2952 /* Called every time the controller might need to be made 2953 * aware of new link state. The PHY code conveys this 2954 * information through variables in the phydev structure, and this 2955 * function converts those variables into the appropriate 2956 * register values, and can bring down the device if needed. 2957 */ 2958 static void adjust_link(struct net_device *dev) 2959 { 2960 struct gfar_private *priv = netdev_priv(dev); 2961 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2962 unsigned long flags; 2963 struct phy_device *phydev = priv->phydev; 2964 int new_state = 0; 2965 2966 local_irq_save(flags); 2967 lock_tx_qs(priv); 2968 2969 if (phydev->link) { 2970 u32 tempval = gfar_read(®s->maccfg2); 2971 u32 ecntrl = gfar_read(®s->ecntrl); 2972 2973 /* Now we make sure that we can be in full duplex mode. 2974 * If not, we operate in half-duplex mode. */ 2975 if (phydev->duplex != priv->oldduplex) { 2976 new_state = 1; 2977 if (!(phydev->duplex)) 2978 tempval &= ~(MACCFG2_FULL_DUPLEX); 2979 else 2980 tempval |= MACCFG2_FULL_DUPLEX; 2981 2982 priv->oldduplex = phydev->duplex; 2983 } 2984 2985 if (phydev->speed != priv->oldspeed) { 2986 new_state = 1; 2987 switch (phydev->speed) { 2988 case 1000: 2989 tempval = 2990 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 2991 2992 ecntrl &= ~(ECNTRL_R100); 2993 break; 2994 case 100: 2995 case 10: 2996 tempval = 2997 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 2998 2999 /* Reduced mode distinguishes 3000 * between 10 and 100 */ 3001 if (phydev->speed == SPEED_100) 3002 ecntrl |= ECNTRL_R100; 3003 else 3004 ecntrl &= ~(ECNTRL_R100); 3005 break; 3006 default: 3007 netif_warn(priv, link, dev, 3008 "Ack! Speed (%d) is not 10/100/1000!\n", 3009 phydev->speed); 3010 break; 3011 } 3012 3013 priv->oldspeed = phydev->speed; 3014 } 3015 3016 gfar_write(®s->maccfg2, tempval); 3017 gfar_write(®s->ecntrl, ecntrl); 3018 3019 if (!priv->oldlink) { 3020 new_state = 1; 3021 priv->oldlink = 1; 3022 } 3023 } else if (priv->oldlink) { 3024 new_state = 1; 3025 priv->oldlink = 0; 3026 priv->oldspeed = 0; 3027 priv->oldduplex = -1; 3028 } 3029 3030 if (new_state && netif_msg_link(priv)) 3031 phy_print_status(phydev); 3032 unlock_tx_qs(priv); 3033 local_irq_restore(flags); 3034 } 3035 3036 /* Update the hash table based on the current list of multicast 3037 * addresses we subscribe to. Also, change the promiscuity of 3038 * the device based on the flags (this function is called 3039 * whenever dev->flags is changed */ 3040 static void gfar_set_multi(struct net_device *dev) 3041 { 3042 struct netdev_hw_addr *ha; 3043 struct gfar_private *priv = netdev_priv(dev); 3044 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3045 u32 tempval; 3046 3047 if (dev->flags & IFF_PROMISC) { 3048 /* Set RCTRL to PROM */ 3049 tempval = gfar_read(®s->rctrl); 3050 tempval |= RCTRL_PROM; 3051 gfar_write(®s->rctrl, tempval); 3052 } else { 3053 /* Set RCTRL to not PROM */ 3054 tempval = gfar_read(®s->rctrl); 3055 tempval &= ~(RCTRL_PROM); 3056 gfar_write(®s->rctrl, tempval); 3057 } 3058 3059 if (dev->flags & IFF_ALLMULTI) { 3060 /* Set the hash to rx all multicast frames */ 3061 gfar_write(®s->igaddr0, 0xffffffff); 3062 gfar_write(®s->igaddr1, 0xffffffff); 3063 gfar_write(®s->igaddr2, 0xffffffff); 3064 gfar_write(®s->igaddr3, 0xffffffff); 3065 gfar_write(®s->igaddr4, 0xffffffff); 3066 gfar_write(®s->igaddr5, 0xffffffff); 3067 gfar_write(®s->igaddr6, 0xffffffff); 3068 gfar_write(®s->igaddr7, 0xffffffff); 3069 gfar_write(®s->gaddr0, 0xffffffff); 3070 gfar_write(®s->gaddr1, 0xffffffff); 3071 gfar_write(®s->gaddr2, 0xffffffff); 3072 gfar_write(®s->gaddr3, 0xffffffff); 3073 gfar_write(®s->gaddr4, 0xffffffff); 3074 gfar_write(®s->gaddr5, 0xffffffff); 3075 gfar_write(®s->gaddr6, 0xffffffff); 3076 gfar_write(®s->gaddr7, 0xffffffff); 3077 } else { 3078 int em_num; 3079 int idx; 3080 3081 /* zero out the hash */ 3082 gfar_write(®s->igaddr0, 0x0); 3083 gfar_write(®s->igaddr1, 0x0); 3084 gfar_write(®s->igaddr2, 0x0); 3085 gfar_write(®s->igaddr3, 0x0); 3086 gfar_write(®s->igaddr4, 0x0); 3087 gfar_write(®s->igaddr5, 0x0); 3088 gfar_write(®s->igaddr6, 0x0); 3089 gfar_write(®s->igaddr7, 0x0); 3090 gfar_write(®s->gaddr0, 0x0); 3091 gfar_write(®s->gaddr1, 0x0); 3092 gfar_write(®s->gaddr2, 0x0); 3093 gfar_write(®s->gaddr3, 0x0); 3094 gfar_write(®s->gaddr4, 0x0); 3095 gfar_write(®s->gaddr5, 0x0); 3096 gfar_write(®s->gaddr6, 0x0); 3097 gfar_write(®s->gaddr7, 0x0); 3098 3099 /* If we have extended hash tables, we need to 3100 * clear the exact match registers to prepare for 3101 * setting them */ 3102 if (priv->extended_hash) { 3103 em_num = GFAR_EM_NUM + 1; 3104 gfar_clear_exact_match(dev); 3105 idx = 1; 3106 } else { 3107 idx = 0; 3108 em_num = 0; 3109 } 3110 3111 if (netdev_mc_empty(dev)) 3112 return; 3113 3114 /* Parse the list, and set the appropriate bits */ 3115 netdev_for_each_mc_addr(ha, dev) { 3116 if (idx < em_num) { 3117 gfar_set_mac_for_addr(dev, idx, ha->addr); 3118 idx++; 3119 } else 3120 gfar_set_hash_for_addr(dev, ha->addr); 3121 } 3122 } 3123 } 3124 3125 3126 /* Clears each of the exact match registers to zero, so they 3127 * don't interfere with normal reception */ 3128 static void gfar_clear_exact_match(struct net_device *dev) 3129 { 3130 int idx; 3131 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 3132 3133 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) 3134 gfar_set_mac_for_addr(dev, idx, zero_arr); 3135 } 3136 3137 /* Set the appropriate hash bit for the given addr */ 3138 /* The algorithm works like so: 3139 * 1) Take the Destination Address (ie the multicast address), and 3140 * do a CRC on it (little endian), and reverse the bits of the 3141 * result. 3142 * 2) Use the 8 most significant bits as a hash into a 256-entry 3143 * table. The table is controlled through 8 32-bit registers: 3144 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 3145 * gaddr7. This means that the 3 most significant bits in the 3146 * hash index which gaddr register to use, and the 5 other bits 3147 * indicate which bit (assuming an IBM numbering scheme, which 3148 * for PowerPC (tm) is usually the case) in the register holds 3149 * the entry. */ 3150 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 3151 { 3152 u32 tempval; 3153 struct gfar_private *priv = netdev_priv(dev); 3154 u32 result = ether_crc(ETH_ALEN, addr); 3155 int width = priv->hash_width; 3156 u8 whichbit = (result >> (32 - width)) & 0x1f; 3157 u8 whichreg = result >> (32 - width + 5); 3158 u32 value = (1 << (31-whichbit)); 3159 3160 tempval = gfar_read(priv->hash_regs[whichreg]); 3161 tempval |= value; 3162 gfar_write(priv->hash_regs[whichreg], tempval); 3163 } 3164 3165 3166 /* There are multiple MAC Address register pairs on some controllers 3167 * This function sets the numth pair to a given address 3168 */ 3169 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 3170 const u8 *addr) 3171 { 3172 struct gfar_private *priv = netdev_priv(dev); 3173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3174 int idx; 3175 char tmpbuf[ETH_ALEN]; 3176 u32 tempval; 3177 u32 __iomem *macptr = ®s->macstnaddr1; 3178 3179 macptr += num*2; 3180 3181 /* Now copy it into the mac registers backwards, cuz */ 3182 /* little endian is silly */ 3183 for (idx = 0; idx < ETH_ALEN; idx++) 3184 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx]; 3185 3186 gfar_write(macptr, *((u32 *) (tmpbuf))); 3187 3188 tempval = *((u32 *) (tmpbuf + 4)); 3189 3190 gfar_write(macptr+1, tempval); 3191 } 3192 3193 /* GFAR error interrupt handler */ 3194 static irqreturn_t gfar_error(int irq, void *grp_id) 3195 { 3196 struct gfar_priv_grp *gfargrp = grp_id; 3197 struct gfar __iomem *regs = gfargrp->regs; 3198 struct gfar_private *priv= gfargrp->priv; 3199 struct net_device *dev = priv->ndev; 3200 3201 /* Save ievent for future reference */ 3202 u32 events = gfar_read(®s->ievent); 3203 3204 /* Clear IEVENT */ 3205 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 3206 3207 /* Magic Packet is not an error. */ 3208 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 3209 (events & IEVENT_MAG)) 3210 events &= ~IEVENT_MAG; 3211 3212 /* Hmm... */ 3213 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 3214 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n", 3215 events, gfar_read(®s->imask)); 3216 3217 /* Update the error counters */ 3218 if (events & IEVENT_TXE) { 3219 dev->stats.tx_errors++; 3220 3221 if (events & IEVENT_LC) 3222 dev->stats.tx_window_errors++; 3223 if (events & IEVENT_CRL) 3224 dev->stats.tx_aborted_errors++; 3225 if (events & IEVENT_XFUN) { 3226 unsigned long flags; 3227 3228 netif_dbg(priv, tx_err, dev, 3229 "TX FIFO underrun, packet dropped\n"); 3230 dev->stats.tx_dropped++; 3231 priv->extra_stats.tx_underrun++; 3232 3233 local_irq_save(flags); 3234 lock_tx_qs(priv); 3235 3236 /* Reactivate the Tx Queues */ 3237 gfar_write(®s->tstat, gfargrp->tstat); 3238 3239 unlock_tx_qs(priv); 3240 local_irq_restore(flags); 3241 } 3242 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 3243 } 3244 if (events & IEVENT_BSY) { 3245 dev->stats.rx_errors++; 3246 priv->extra_stats.rx_bsy++; 3247 3248 gfar_receive(irq, grp_id); 3249 3250 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 3251 gfar_read(®s->rstat)); 3252 } 3253 if (events & IEVENT_BABR) { 3254 dev->stats.rx_errors++; 3255 priv->extra_stats.rx_babr++; 3256 3257 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 3258 } 3259 if (events & IEVENT_EBERR) { 3260 priv->extra_stats.eberr++; 3261 netif_dbg(priv, rx_err, dev, "bus error\n"); 3262 } 3263 if (events & IEVENT_RXC) 3264 netif_dbg(priv, rx_status, dev, "control frame\n"); 3265 3266 if (events & IEVENT_BABT) { 3267 priv->extra_stats.tx_babt++; 3268 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 3269 } 3270 return IRQ_HANDLED; 3271 } 3272 3273 static struct of_device_id gfar_match[] = 3274 { 3275 { 3276 .type = "network", 3277 .compatible = "gianfar", 3278 }, 3279 { 3280 .compatible = "fsl,etsec2", 3281 }, 3282 {}, 3283 }; 3284 MODULE_DEVICE_TABLE(of, gfar_match); 3285 3286 /* Structure for a device driver */ 3287 static struct platform_driver gfar_driver = { 3288 .driver = { 3289 .name = "fsl-gianfar", 3290 .owner = THIS_MODULE, 3291 .pm = GFAR_PM_OPS, 3292 .of_match_table = gfar_match, 3293 }, 3294 .probe = gfar_probe, 3295 .remove = gfar_remove, 3296 }; 3297 3298 module_platform_driver(gfar_driver); 3299