1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/kernel.h> 63 #include <linux/platform_device.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/in.h> 83 #include <linux/net_tstamp.h> 84 85 #include <asm/io.h> 86 #ifdef CONFIG_PPC 87 #include <asm/reg.h> 88 #include <asm/mpc85xx.h> 89 #endif 90 #include <asm/irq.h> 91 #include <linux/uaccess.h> 92 #include <linux/module.h> 93 #include <linux/dma-mapping.h> 94 #include <linux/crc32.h> 95 #include <linux/mii.h> 96 #include <linux/phy.h> 97 #include <linux/phy_fixed.h> 98 #include <linux/of.h> 99 #include <linux/of_net.h> 100 #include <linux/property.h> 101 102 #include "gianfar.h" 103 104 #define TX_TIMEOUT (5*HZ) 105 106 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 107 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 108 MODULE_LICENSE("GPL"); 109 110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 111 dma_addr_t buf) 112 { 113 u32 lstatus; 114 115 bdp->bufPtr = cpu_to_be32(buf); 116 117 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 118 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 119 lstatus |= BD_LFLAG(RXBD_WRAP); 120 121 gfar_wmb(); 122 123 bdp->lstatus = cpu_to_be32(lstatus); 124 } 125 126 static void gfar_init_tx_rx_base(struct gfar_private *priv) 127 { 128 struct gfar __iomem *regs = priv->gfargrp[0].regs; 129 u32 __iomem *baddr; 130 int i; 131 132 baddr = ®s->tbase0; 133 for (i = 0; i < priv->num_tx_queues; i++) { 134 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 135 baddr += 2; 136 } 137 138 baddr = ®s->rbase0; 139 for (i = 0; i < priv->num_rx_queues; i++) { 140 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 141 baddr += 2; 142 } 143 } 144 145 static void gfar_init_rqprm(struct gfar_private *priv) 146 { 147 struct gfar __iomem *regs = priv->gfargrp[0].regs; 148 u32 __iomem *baddr; 149 int i; 150 151 baddr = ®s->rqprm0; 152 for (i = 0; i < priv->num_rx_queues; i++) { 153 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 154 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 155 baddr++; 156 } 157 } 158 159 static void gfar_rx_offload_en(struct gfar_private *priv) 160 { 161 /* set this when rx hw offload (TOE) functions are being used */ 162 priv->uses_rxfcb = 0; 163 164 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 165 priv->uses_rxfcb = 1; 166 167 if (priv->hwts_rx_en || priv->rx_filer_enable) 168 priv->uses_rxfcb = 1; 169 } 170 171 static void gfar_mac_rx_config(struct gfar_private *priv) 172 { 173 struct gfar __iomem *regs = priv->gfargrp[0].regs; 174 u32 rctrl = 0; 175 176 if (priv->rx_filer_enable) { 177 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 178 /* Program the RIR0 reg with the required distribution */ 179 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 180 } 181 182 /* Restore PROMISC mode */ 183 if (priv->ndev->flags & IFF_PROMISC) 184 rctrl |= RCTRL_PROM; 185 186 if (priv->ndev->features & NETIF_F_RXCSUM) 187 rctrl |= RCTRL_CHECKSUMMING; 188 189 if (priv->extended_hash) 190 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 191 192 if (priv->padding) { 193 rctrl &= ~RCTRL_PAL_MASK; 194 rctrl |= RCTRL_PADDING(priv->padding); 195 } 196 197 /* Enable HW time stamping if requested from user space */ 198 if (priv->hwts_rx_en) 199 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 200 201 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 202 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 203 204 /* Clear the LFC bit */ 205 gfar_write(®s->rctrl, rctrl); 206 /* Init flow control threshold values */ 207 gfar_init_rqprm(priv); 208 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 209 rctrl |= RCTRL_LFC; 210 211 /* Init rctrl based on our settings */ 212 gfar_write(®s->rctrl, rctrl); 213 } 214 215 static void gfar_mac_tx_config(struct gfar_private *priv) 216 { 217 struct gfar __iomem *regs = priv->gfargrp[0].regs; 218 u32 tctrl = 0; 219 220 if (priv->ndev->features & NETIF_F_IP_CSUM) 221 tctrl |= TCTRL_INIT_CSUM; 222 223 if (priv->prio_sched_en) 224 tctrl |= TCTRL_TXSCHED_PRIO; 225 else { 226 tctrl |= TCTRL_TXSCHED_WRRS; 227 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 228 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 229 } 230 231 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 232 tctrl |= TCTRL_VLINS; 233 234 gfar_write(®s->tctrl, tctrl); 235 } 236 237 static void gfar_configure_coalescing(struct gfar_private *priv, 238 unsigned long tx_mask, unsigned long rx_mask) 239 { 240 struct gfar __iomem *regs = priv->gfargrp[0].regs; 241 u32 __iomem *baddr; 242 243 if (priv->mode == MQ_MG_MODE) { 244 int i = 0; 245 246 baddr = ®s->txic0; 247 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 248 gfar_write(baddr + i, 0); 249 if (likely(priv->tx_queue[i]->txcoalescing)) 250 gfar_write(baddr + i, priv->tx_queue[i]->txic); 251 } 252 253 baddr = ®s->rxic0; 254 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 255 gfar_write(baddr + i, 0); 256 if (likely(priv->rx_queue[i]->rxcoalescing)) 257 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 258 } 259 } else { 260 /* Backward compatible case -- even if we enable 261 * multiple queues, there's only single reg to program 262 */ 263 gfar_write(®s->txic, 0); 264 if (likely(priv->tx_queue[0]->txcoalescing)) 265 gfar_write(®s->txic, priv->tx_queue[0]->txic); 266 267 gfar_write(®s->rxic, 0); 268 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 269 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 270 } 271 } 272 273 static void gfar_configure_coalescing_all(struct gfar_private *priv) 274 { 275 gfar_configure_coalescing(priv, 0xFF, 0xFF); 276 } 277 278 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 279 { 280 struct gfar_private *priv = netdev_priv(dev); 281 int i; 282 283 for (i = 0; i < priv->num_rx_queues; i++) { 284 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets; 285 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 286 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 287 } 288 289 for (i = 0; i < priv->num_tx_queues; i++) { 290 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 291 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets; 292 } 293 294 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 295 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; 296 unsigned long flags; 297 u32 rdrp, car, car_before; 298 u64 rdrp_offset; 299 300 spin_lock_irqsave(&priv->rmon_overflow.lock, flags); 301 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 302 do { 303 car_before = car; 304 rdrp = gfar_read(&rmon->rdrp); 305 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 306 } while (car != car_before); 307 if (car) { 308 priv->rmon_overflow.rdrp++; 309 gfar_write(&rmon->car1, car); 310 } 311 rdrp_offset = priv->rmon_overflow.rdrp; 312 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags); 313 314 stats->rx_missed_errors = rdrp + (rdrp_offset << 16); 315 } 316 } 317 318 /* Set the appropriate hash bit for the given addr */ 319 /* The algorithm works like so: 320 * 1) Take the Destination Address (ie the multicast address), and 321 * do a CRC on it (little endian), and reverse the bits of the 322 * result. 323 * 2) Use the 8 most significant bits as a hash into a 256-entry 324 * table. The table is controlled through 8 32-bit registers: 325 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 326 * gaddr7. This means that the 3 most significant bits in the 327 * hash index which gaddr register to use, and the 5 other bits 328 * indicate which bit (assuming an IBM numbering scheme, which 329 * for PowerPC (tm) is usually the case) in the register holds 330 * the entry. 331 */ 332 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 333 { 334 u32 tempval; 335 struct gfar_private *priv = netdev_priv(dev); 336 u32 result = ether_crc(ETH_ALEN, addr); 337 int width = priv->hash_width; 338 u8 whichbit = (result >> (32 - width)) & 0x1f; 339 u8 whichreg = result >> (32 - width + 5); 340 u32 value = (1 << (31-whichbit)); 341 342 tempval = gfar_read(priv->hash_regs[whichreg]); 343 tempval |= value; 344 gfar_write(priv->hash_regs[whichreg], tempval); 345 } 346 347 /* There are multiple MAC Address register pairs on some controllers 348 * This function sets the numth pair to a given address 349 */ 350 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 351 const u8 *addr) 352 { 353 struct gfar_private *priv = netdev_priv(dev); 354 struct gfar __iomem *regs = priv->gfargrp[0].regs; 355 u32 tempval; 356 u32 __iomem *macptr = ®s->macstnaddr1; 357 358 macptr += num*2; 359 360 /* For a station address of 0x12345678ABCD in transmission 361 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 362 * MACnADDR2 is set to 0x34120000. 363 */ 364 tempval = (addr[5] << 24) | (addr[4] << 16) | 365 (addr[3] << 8) | addr[2]; 366 367 gfar_write(macptr, tempval); 368 369 tempval = (addr[1] << 24) | (addr[0] << 16); 370 371 gfar_write(macptr+1, tempval); 372 } 373 374 static int gfar_set_mac_addr(struct net_device *dev, void *p) 375 { 376 int ret; 377 378 ret = eth_mac_addr(dev, p); 379 if (ret) 380 return ret; 381 382 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 383 384 return 0; 385 } 386 387 static void gfar_ints_disable(struct gfar_private *priv) 388 { 389 int i; 390 for (i = 0; i < priv->num_grps; i++) { 391 struct gfar __iomem *regs = priv->gfargrp[i].regs; 392 /* Clear IEVENT */ 393 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 394 395 /* Initialize IMASK */ 396 gfar_write(®s->imask, IMASK_INIT_CLEAR); 397 } 398 } 399 400 static void gfar_ints_enable(struct gfar_private *priv) 401 { 402 int i; 403 for (i = 0; i < priv->num_grps; i++) { 404 struct gfar __iomem *regs = priv->gfargrp[i].regs; 405 /* Unmask the interrupts we look for */ 406 gfar_write(®s->imask, 407 IMASK_DEFAULT | priv->rmon_overflow.imask); 408 } 409 } 410 411 static int gfar_alloc_tx_queues(struct gfar_private *priv) 412 { 413 int i; 414 415 for (i = 0; i < priv->num_tx_queues; i++) { 416 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 417 GFP_KERNEL); 418 if (!priv->tx_queue[i]) 419 return -ENOMEM; 420 421 priv->tx_queue[i]->tx_skbuff = NULL; 422 priv->tx_queue[i]->qindex = i; 423 priv->tx_queue[i]->dev = priv->ndev; 424 spin_lock_init(&(priv->tx_queue[i]->txlock)); 425 } 426 return 0; 427 } 428 429 static int gfar_alloc_rx_queues(struct gfar_private *priv) 430 { 431 int i; 432 433 for (i = 0; i < priv->num_rx_queues; i++) { 434 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 435 GFP_KERNEL); 436 if (!priv->rx_queue[i]) 437 return -ENOMEM; 438 439 priv->rx_queue[i]->qindex = i; 440 priv->rx_queue[i]->ndev = priv->ndev; 441 } 442 return 0; 443 } 444 445 static void gfar_free_tx_queues(struct gfar_private *priv) 446 { 447 int i; 448 449 for (i = 0; i < priv->num_tx_queues; i++) 450 kfree(priv->tx_queue[i]); 451 } 452 453 static void gfar_free_rx_queues(struct gfar_private *priv) 454 { 455 int i; 456 457 for (i = 0; i < priv->num_rx_queues; i++) 458 kfree(priv->rx_queue[i]); 459 } 460 461 static void unmap_group_regs(struct gfar_private *priv) 462 { 463 int i; 464 465 for (i = 0; i < MAXGROUPS; i++) 466 if (priv->gfargrp[i].regs) 467 iounmap(priv->gfargrp[i].regs); 468 } 469 470 static void free_gfar_dev(struct gfar_private *priv) 471 { 472 int i, j; 473 474 for (i = 0; i < priv->num_grps; i++) 475 for (j = 0; j < GFAR_NUM_IRQS; j++) { 476 kfree(priv->gfargrp[i].irqinfo[j]); 477 priv->gfargrp[i].irqinfo[j] = NULL; 478 } 479 480 free_netdev(priv->ndev); 481 } 482 483 static void disable_napi(struct gfar_private *priv) 484 { 485 int i; 486 487 for (i = 0; i < priv->num_grps; i++) { 488 napi_disable(&priv->gfargrp[i].napi_rx); 489 napi_disable(&priv->gfargrp[i].napi_tx); 490 } 491 } 492 493 static void enable_napi(struct gfar_private *priv) 494 { 495 int i; 496 497 for (i = 0; i < priv->num_grps; i++) { 498 napi_enable(&priv->gfargrp[i].napi_rx); 499 napi_enable(&priv->gfargrp[i].napi_tx); 500 } 501 } 502 503 static int gfar_parse_group(struct device_node *np, 504 struct gfar_private *priv, const char *model) 505 { 506 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 507 int i; 508 509 for (i = 0; i < GFAR_NUM_IRQS; i++) { 510 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 511 GFP_KERNEL); 512 if (!grp->irqinfo[i]) 513 return -ENOMEM; 514 } 515 516 grp->regs = of_iomap(np, 0); 517 if (!grp->regs) 518 return -ENOMEM; 519 520 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 521 522 /* If we aren't the FEC we have multiple interrupts */ 523 if (model && strcasecmp(model, "FEC")) { 524 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 525 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 526 if (!gfar_irq(grp, TX)->irq || 527 !gfar_irq(grp, RX)->irq || 528 !gfar_irq(grp, ER)->irq) 529 return -EINVAL; 530 } 531 532 grp->priv = priv; 533 spin_lock_init(&grp->grplock); 534 if (priv->mode == MQ_MG_MODE) { 535 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 536 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 537 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 538 } else { 539 grp->rx_bit_map = 0xFF; 540 grp->tx_bit_map = 0xFF; 541 } 542 543 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 544 * right to left, so we need to revert the 8 bits to get the q index 545 */ 546 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 547 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 548 549 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 550 * also assign queues to groups 551 */ 552 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 553 if (!grp->rx_queue) 554 grp->rx_queue = priv->rx_queue[i]; 555 grp->num_rx_queues++; 556 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 557 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 558 priv->rx_queue[i]->grp = grp; 559 } 560 561 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 562 if (!grp->tx_queue) 563 grp->tx_queue = priv->tx_queue[i]; 564 grp->num_tx_queues++; 565 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 566 priv->tqueue |= (TQUEUE_EN0 >> i); 567 priv->tx_queue[i]->grp = grp; 568 } 569 570 priv->num_grps++; 571 572 return 0; 573 } 574 575 /* Reads the controller's registers to determine what interface 576 * connects it to the PHY. 577 */ 578 static phy_interface_t gfar_get_interface(struct net_device *dev) 579 { 580 struct gfar_private *priv = netdev_priv(dev); 581 struct gfar __iomem *regs = priv->gfargrp[0].regs; 582 u32 ecntrl; 583 584 ecntrl = gfar_read(®s->ecntrl); 585 586 if (ecntrl & ECNTRL_SGMII_MODE) 587 return PHY_INTERFACE_MODE_SGMII; 588 589 if (ecntrl & ECNTRL_TBI_MODE) { 590 if (ecntrl & ECNTRL_REDUCED_MODE) 591 return PHY_INTERFACE_MODE_RTBI; 592 else 593 return PHY_INTERFACE_MODE_TBI; 594 } 595 596 if (ecntrl & ECNTRL_REDUCED_MODE) { 597 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 598 return PHY_INTERFACE_MODE_RMII; 599 } 600 else { 601 phy_interface_t interface = priv->interface; 602 603 /* This isn't autodetected right now, so it must 604 * be set by the device tree or platform code. 605 */ 606 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 607 return PHY_INTERFACE_MODE_RGMII_ID; 608 609 return PHY_INTERFACE_MODE_RGMII; 610 } 611 } 612 613 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 614 return PHY_INTERFACE_MODE_GMII; 615 616 return PHY_INTERFACE_MODE_MII; 617 } 618 619 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 620 { 621 const char *model; 622 int err = 0, i; 623 phy_interface_t interface; 624 struct net_device *dev = NULL; 625 struct gfar_private *priv = NULL; 626 struct device_node *np = ofdev->dev.of_node; 627 struct device_node *child = NULL; 628 u32 stash_len = 0; 629 u32 stash_idx = 0; 630 unsigned int num_tx_qs, num_rx_qs; 631 unsigned short mode; 632 633 if (!np) 634 return -ENODEV; 635 636 if (of_device_is_compatible(np, "fsl,etsec2")) 637 mode = MQ_MG_MODE; 638 else 639 mode = SQ_SG_MODE; 640 641 if (mode == SQ_SG_MODE) { 642 num_tx_qs = 1; 643 num_rx_qs = 1; 644 } else { /* MQ_MG_MODE */ 645 /* get the actual number of supported groups */ 646 unsigned int num_grps; 647 648 num_grps = device_get_named_child_node_count(&ofdev->dev, 649 "queue-group"); 650 if (num_grps == 0 || num_grps > MAXGROUPS) { 651 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 652 num_grps); 653 pr_err("Cannot do alloc_etherdev, aborting\n"); 654 return -EINVAL; 655 } 656 657 num_tx_qs = num_grps; /* one txq per int group */ 658 num_rx_qs = num_grps; /* one rxq per int group */ 659 } 660 661 if (num_tx_qs > MAX_TX_QS) { 662 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 663 num_tx_qs, MAX_TX_QS); 664 pr_err("Cannot do alloc_etherdev, aborting\n"); 665 return -EINVAL; 666 } 667 668 if (num_rx_qs > MAX_RX_QS) { 669 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 670 num_rx_qs, MAX_RX_QS); 671 pr_err("Cannot do alloc_etherdev, aborting\n"); 672 return -EINVAL; 673 } 674 675 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 676 dev = *pdev; 677 if (NULL == dev) 678 return -ENOMEM; 679 680 priv = netdev_priv(dev); 681 priv->ndev = dev; 682 683 priv->mode = mode; 684 685 priv->num_tx_queues = num_tx_qs; 686 netif_set_real_num_rx_queues(dev, num_rx_qs); 687 priv->num_rx_queues = num_rx_qs; 688 689 err = gfar_alloc_tx_queues(priv); 690 if (err) 691 goto tx_alloc_failed; 692 693 err = gfar_alloc_rx_queues(priv); 694 if (err) 695 goto rx_alloc_failed; 696 697 err = of_property_read_string(np, "model", &model); 698 if (err) { 699 pr_err("Device model property missing, aborting\n"); 700 goto rx_alloc_failed; 701 } 702 703 /* Init Rx queue filer rule set linked list */ 704 INIT_LIST_HEAD(&priv->rx_list.list); 705 priv->rx_list.count = 0; 706 mutex_init(&priv->rx_queue_access); 707 708 for (i = 0; i < MAXGROUPS; i++) 709 priv->gfargrp[i].regs = NULL; 710 711 /* Parse and initialize group specific information */ 712 if (priv->mode == MQ_MG_MODE) { 713 for_each_available_child_of_node(np, child) { 714 if (!of_node_name_eq(child, "queue-group")) 715 continue; 716 717 err = gfar_parse_group(child, priv, model); 718 if (err) { 719 of_node_put(child); 720 goto err_grp_init; 721 } 722 } 723 } else { /* SQ_SG_MODE */ 724 err = gfar_parse_group(np, priv, model); 725 if (err) 726 goto err_grp_init; 727 } 728 729 if (of_property_read_bool(np, "bd-stash")) { 730 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 731 priv->bd_stash_en = 1; 732 } 733 734 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 735 736 if (err == 0) 737 priv->rx_stash_size = stash_len; 738 739 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 740 741 if (err == 0) 742 priv->rx_stash_index = stash_idx; 743 744 if (stash_len || stash_idx) 745 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 746 747 err = of_get_ethdev_address(np, dev); 748 if (err == -EPROBE_DEFER) 749 goto err_grp_init; 750 if (err) { 751 eth_hw_addr_random(dev); 752 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 753 } 754 755 if (model && !strcasecmp(model, "TSEC")) 756 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 757 FSL_GIANFAR_DEV_HAS_COALESCE | 758 FSL_GIANFAR_DEV_HAS_RMON | 759 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 760 761 if (model && !strcasecmp(model, "eTSEC")) 762 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 763 FSL_GIANFAR_DEV_HAS_COALESCE | 764 FSL_GIANFAR_DEV_HAS_RMON | 765 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 766 FSL_GIANFAR_DEV_HAS_CSUM | 767 FSL_GIANFAR_DEV_HAS_VLAN | 768 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 769 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 770 FSL_GIANFAR_DEV_HAS_TIMER | 771 FSL_GIANFAR_DEV_HAS_RX_FILER; 772 773 /* Use PHY connection type from the DT node if one is specified there. 774 * rgmii-id really needs to be specified. Other types can be 775 * detected by hardware 776 */ 777 err = of_get_phy_mode(np, &interface); 778 if (!err) 779 priv->interface = interface; 780 else 781 priv->interface = gfar_get_interface(dev); 782 783 if (of_property_read_bool(np, "fsl,magic-packet")) 784 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 785 786 if (of_property_read_bool(np, "fsl,wake-on-filer")) 787 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 788 789 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 790 791 /* In the case of a fixed PHY, the DT node associated 792 * to the PHY is the Ethernet MAC DT node. 793 */ 794 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 795 err = of_phy_register_fixed_link(np); 796 if (err) 797 goto err_grp_init; 798 799 priv->phy_node = of_node_get(np); 800 } 801 802 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 803 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 804 805 return 0; 806 807 err_grp_init: 808 unmap_group_regs(priv); 809 rx_alloc_failed: 810 gfar_free_rx_queues(priv); 811 tx_alloc_failed: 812 gfar_free_tx_queues(priv); 813 free_gfar_dev(priv); 814 return err; 815 } 816 817 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 818 u32 class) 819 { 820 u32 rqfpr = FPR_FILER_MASK; 821 u32 rqfcr = 0x0; 822 823 rqfar--; 824 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 825 priv->ftp_rqfpr[rqfar] = rqfpr; 826 priv->ftp_rqfcr[rqfar] = rqfcr; 827 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 828 829 rqfar--; 830 rqfcr = RQFCR_CMP_NOMATCH; 831 priv->ftp_rqfpr[rqfar] = rqfpr; 832 priv->ftp_rqfcr[rqfar] = rqfcr; 833 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 834 835 rqfar--; 836 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 837 rqfpr = class; 838 priv->ftp_rqfcr[rqfar] = rqfcr; 839 priv->ftp_rqfpr[rqfar] = rqfpr; 840 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 841 842 rqfar--; 843 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 844 rqfpr = class; 845 priv->ftp_rqfcr[rqfar] = rqfcr; 846 priv->ftp_rqfpr[rqfar] = rqfpr; 847 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 848 849 return rqfar; 850 } 851 852 static void gfar_init_filer_table(struct gfar_private *priv) 853 { 854 int i = 0x0; 855 u32 rqfar = MAX_FILER_IDX; 856 u32 rqfcr = 0x0; 857 u32 rqfpr = FPR_FILER_MASK; 858 859 /* Default rule */ 860 rqfcr = RQFCR_CMP_MATCH; 861 priv->ftp_rqfcr[rqfar] = rqfcr; 862 priv->ftp_rqfpr[rqfar] = rqfpr; 863 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 864 865 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 866 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 867 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 868 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 869 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 870 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 871 872 /* cur_filer_idx indicated the first non-masked rule */ 873 priv->cur_filer_idx = rqfar; 874 875 /* Rest are masked rules */ 876 rqfcr = RQFCR_CMP_NOMATCH; 877 for (i = 0; i < rqfar; i++) { 878 priv->ftp_rqfcr[i] = rqfcr; 879 priv->ftp_rqfpr[i] = rqfpr; 880 gfar_write_filer(priv, i, rqfcr, rqfpr); 881 } 882 } 883 884 #ifdef CONFIG_PPC 885 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 886 { 887 unsigned int pvr = mfspr(SPRN_PVR); 888 unsigned int svr = mfspr(SPRN_SVR); 889 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 890 unsigned int rev = svr & 0xffff; 891 892 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 893 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 894 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 895 priv->errata |= GFAR_ERRATA_74; 896 897 /* MPC8313 and MPC837x all rev */ 898 if ((pvr == 0x80850010 && mod == 0x80b0) || 899 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 900 priv->errata |= GFAR_ERRATA_76; 901 902 /* MPC8313 Rev < 2.0 */ 903 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 904 priv->errata |= GFAR_ERRATA_12; 905 } 906 907 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 908 { 909 unsigned int svr = mfspr(SPRN_SVR); 910 911 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 912 priv->errata |= GFAR_ERRATA_12; 913 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 914 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 915 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 916 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 917 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 918 } 919 #endif 920 921 static void gfar_detect_errata(struct gfar_private *priv) 922 { 923 struct device *dev = &priv->ofdev->dev; 924 925 /* no plans to fix */ 926 priv->errata |= GFAR_ERRATA_A002; 927 928 #ifdef CONFIG_PPC 929 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 930 __gfar_detect_errata_85xx(priv); 931 else /* non-mpc85xx parts, i.e. e300 core based */ 932 __gfar_detect_errata_83xx(priv); 933 #endif 934 935 if (priv->errata) 936 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 937 priv->errata); 938 } 939 940 static void gfar_init_addr_hash_table(struct gfar_private *priv) 941 { 942 struct gfar __iomem *regs = priv->gfargrp[0].regs; 943 944 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 945 priv->extended_hash = 1; 946 priv->hash_width = 9; 947 948 priv->hash_regs[0] = ®s->igaddr0; 949 priv->hash_regs[1] = ®s->igaddr1; 950 priv->hash_regs[2] = ®s->igaddr2; 951 priv->hash_regs[3] = ®s->igaddr3; 952 priv->hash_regs[4] = ®s->igaddr4; 953 priv->hash_regs[5] = ®s->igaddr5; 954 priv->hash_regs[6] = ®s->igaddr6; 955 priv->hash_regs[7] = ®s->igaddr7; 956 priv->hash_regs[8] = ®s->gaddr0; 957 priv->hash_regs[9] = ®s->gaddr1; 958 priv->hash_regs[10] = ®s->gaddr2; 959 priv->hash_regs[11] = ®s->gaddr3; 960 priv->hash_regs[12] = ®s->gaddr4; 961 priv->hash_regs[13] = ®s->gaddr5; 962 priv->hash_regs[14] = ®s->gaddr6; 963 priv->hash_regs[15] = ®s->gaddr7; 964 965 } else { 966 priv->extended_hash = 0; 967 priv->hash_width = 8; 968 969 priv->hash_regs[0] = ®s->gaddr0; 970 priv->hash_regs[1] = ®s->gaddr1; 971 priv->hash_regs[2] = ®s->gaddr2; 972 priv->hash_regs[3] = ®s->gaddr3; 973 priv->hash_regs[4] = ®s->gaddr4; 974 priv->hash_regs[5] = ®s->gaddr5; 975 priv->hash_regs[6] = ®s->gaddr6; 976 priv->hash_regs[7] = ®s->gaddr7; 977 } 978 } 979 980 static int __gfar_is_rx_idle(struct gfar_private *priv) 981 { 982 u32 res; 983 984 /* Normaly TSEC should not hang on GRS commands, so we should 985 * actually wait for IEVENT_GRSC flag. 986 */ 987 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 988 return 0; 989 990 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 991 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 992 * and the Rx can be safely reset. 993 */ 994 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 995 res &= 0x7f807f80; 996 if ((res & 0xffff) == (res >> 16)) 997 return 1; 998 999 return 0; 1000 } 1001 1002 /* Halt the receive and transmit queues */ 1003 static void gfar_halt_nodisable(struct gfar_private *priv) 1004 { 1005 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1006 u32 tempval; 1007 unsigned int timeout; 1008 int stopped; 1009 1010 gfar_ints_disable(priv); 1011 1012 if (gfar_is_dma_stopped(priv)) 1013 return; 1014 1015 /* Stop the DMA, and wait for it to stop */ 1016 tempval = gfar_read(®s->dmactrl); 1017 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1018 gfar_write(®s->dmactrl, tempval); 1019 1020 retry: 1021 timeout = 1000; 1022 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1023 cpu_relax(); 1024 timeout--; 1025 } 1026 1027 if (!timeout) 1028 stopped = gfar_is_dma_stopped(priv); 1029 1030 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1031 !__gfar_is_rx_idle(priv)) 1032 goto retry; 1033 } 1034 1035 /* Halt the receive and transmit queues */ 1036 static void gfar_halt(struct gfar_private *priv) 1037 { 1038 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1039 u32 tempval; 1040 1041 /* Dissable the Rx/Tx hw queues */ 1042 gfar_write(®s->rqueue, 0); 1043 gfar_write(®s->tqueue, 0); 1044 1045 mdelay(10); 1046 1047 gfar_halt_nodisable(priv); 1048 1049 /* Disable Rx/Tx DMA */ 1050 tempval = gfar_read(®s->maccfg1); 1051 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1052 gfar_write(®s->maccfg1, tempval); 1053 } 1054 1055 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1056 { 1057 struct txbd8 *txbdp; 1058 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1059 int i, j; 1060 1061 txbdp = tx_queue->tx_bd_base; 1062 1063 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1064 if (!tx_queue->tx_skbuff[i]) 1065 continue; 1066 1067 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1068 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1069 txbdp->lstatus = 0; 1070 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1071 j++) { 1072 txbdp++; 1073 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1074 be16_to_cpu(txbdp->length), 1075 DMA_TO_DEVICE); 1076 } 1077 txbdp++; 1078 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1079 tx_queue->tx_skbuff[i] = NULL; 1080 } 1081 kfree(tx_queue->tx_skbuff); 1082 tx_queue->tx_skbuff = NULL; 1083 } 1084 1085 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1086 { 1087 int i; 1088 1089 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1090 1091 dev_kfree_skb(rx_queue->skb); 1092 1093 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1094 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1095 1096 rxbdp->lstatus = 0; 1097 rxbdp->bufPtr = 0; 1098 rxbdp++; 1099 1100 if (!rxb->page) 1101 continue; 1102 1103 dma_unmap_page(rx_queue->dev, rxb->dma, 1104 PAGE_SIZE, DMA_FROM_DEVICE); 1105 __free_page(rxb->page); 1106 1107 rxb->page = NULL; 1108 } 1109 1110 kfree(rx_queue->rx_buff); 1111 rx_queue->rx_buff = NULL; 1112 } 1113 1114 /* If there are any tx skbs or rx skbs still around, free them. 1115 * Then free tx_skbuff and rx_skbuff 1116 */ 1117 static void free_skb_resources(struct gfar_private *priv) 1118 { 1119 struct gfar_priv_tx_q *tx_queue = NULL; 1120 struct gfar_priv_rx_q *rx_queue = NULL; 1121 int i; 1122 1123 /* Go through all the buffer descriptors and free their data buffers */ 1124 for (i = 0; i < priv->num_tx_queues; i++) { 1125 struct netdev_queue *txq; 1126 1127 tx_queue = priv->tx_queue[i]; 1128 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1129 if (tx_queue->tx_skbuff) 1130 free_skb_tx_queue(tx_queue); 1131 netdev_tx_reset_queue(txq); 1132 } 1133 1134 for (i = 0; i < priv->num_rx_queues; i++) { 1135 rx_queue = priv->rx_queue[i]; 1136 if (rx_queue->rx_buff) 1137 free_skb_rx_queue(rx_queue); 1138 } 1139 1140 dma_free_coherent(priv->dev, 1141 sizeof(struct txbd8) * priv->total_tx_ring_size + 1142 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1143 priv->tx_queue[0]->tx_bd_base, 1144 priv->tx_queue[0]->tx_bd_dma_base); 1145 } 1146 1147 void stop_gfar(struct net_device *dev) 1148 { 1149 struct gfar_private *priv = netdev_priv(dev); 1150 1151 netif_tx_stop_all_queues(dev); 1152 1153 smp_mb__before_atomic(); 1154 set_bit(GFAR_DOWN, &priv->state); 1155 smp_mb__after_atomic(); 1156 1157 disable_napi(priv); 1158 1159 /* disable ints and gracefully shut down Rx/Tx DMA */ 1160 gfar_halt(priv); 1161 1162 phy_stop(dev->phydev); 1163 1164 free_skb_resources(priv); 1165 } 1166 1167 static void gfar_start(struct gfar_private *priv) 1168 { 1169 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1170 u32 tempval; 1171 int i = 0; 1172 1173 /* Enable Rx/Tx hw queues */ 1174 gfar_write(®s->rqueue, priv->rqueue); 1175 gfar_write(®s->tqueue, priv->tqueue); 1176 1177 /* Initialize DMACTRL to have WWR and WOP */ 1178 tempval = gfar_read(®s->dmactrl); 1179 tempval |= DMACTRL_INIT_SETTINGS; 1180 gfar_write(®s->dmactrl, tempval); 1181 1182 /* Make sure we aren't stopped */ 1183 tempval = gfar_read(®s->dmactrl); 1184 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1185 gfar_write(®s->dmactrl, tempval); 1186 1187 for (i = 0; i < priv->num_grps; i++) { 1188 regs = priv->gfargrp[i].regs; 1189 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1190 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1191 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1192 } 1193 1194 /* Enable Rx/Tx DMA */ 1195 tempval = gfar_read(®s->maccfg1); 1196 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1197 gfar_write(®s->maccfg1, tempval); 1198 1199 gfar_ints_enable(priv); 1200 1201 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1202 } 1203 1204 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1205 { 1206 struct page *page; 1207 dma_addr_t addr; 1208 1209 page = dev_alloc_page(); 1210 if (unlikely(!page)) 1211 return false; 1212 1213 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1214 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1215 __free_page(page); 1216 1217 return false; 1218 } 1219 1220 rxb->dma = addr; 1221 rxb->page = page; 1222 rxb->page_offset = 0; 1223 1224 return true; 1225 } 1226 1227 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1228 { 1229 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1230 struct gfar_extra_stats *estats = &priv->extra_stats; 1231 1232 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1233 atomic64_inc(&estats->rx_alloc_err); 1234 } 1235 1236 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1237 int alloc_cnt) 1238 { 1239 struct rxbd8 *bdp; 1240 struct gfar_rx_buff *rxb; 1241 int i; 1242 1243 i = rx_queue->next_to_use; 1244 bdp = &rx_queue->rx_bd_base[i]; 1245 rxb = &rx_queue->rx_buff[i]; 1246 1247 while (alloc_cnt--) { 1248 /* try reuse page */ 1249 if (unlikely(!rxb->page)) { 1250 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1251 gfar_rx_alloc_err(rx_queue); 1252 break; 1253 } 1254 } 1255 1256 /* Setup the new RxBD */ 1257 gfar_init_rxbdp(rx_queue, bdp, 1258 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1259 1260 /* Update to the next pointer */ 1261 bdp++; 1262 rxb++; 1263 1264 if (unlikely(++i == rx_queue->rx_ring_size)) { 1265 i = 0; 1266 bdp = rx_queue->rx_bd_base; 1267 rxb = rx_queue->rx_buff; 1268 } 1269 } 1270 1271 rx_queue->next_to_use = i; 1272 rx_queue->next_to_alloc = i; 1273 } 1274 1275 static void gfar_init_bds(struct net_device *ndev) 1276 { 1277 struct gfar_private *priv = netdev_priv(ndev); 1278 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1279 struct gfar_priv_tx_q *tx_queue = NULL; 1280 struct gfar_priv_rx_q *rx_queue = NULL; 1281 struct txbd8 *txbdp; 1282 u32 __iomem *rfbptr; 1283 int i, j; 1284 1285 for (i = 0; i < priv->num_tx_queues; i++) { 1286 tx_queue = priv->tx_queue[i]; 1287 /* Initialize some variables in our dev structure */ 1288 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1289 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1290 tx_queue->cur_tx = tx_queue->tx_bd_base; 1291 tx_queue->skb_curtx = 0; 1292 tx_queue->skb_dirtytx = 0; 1293 1294 /* Initialize Transmit Descriptor Ring */ 1295 txbdp = tx_queue->tx_bd_base; 1296 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1297 txbdp->lstatus = 0; 1298 txbdp->bufPtr = 0; 1299 txbdp++; 1300 } 1301 1302 /* Set the last descriptor in the ring to indicate wrap */ 1303 txbdp--; 1304 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1305 TXBD_WRAP); 1306 } 1307 1308 rfbptr = ®s->rfbptr0; 1309 for (i = 0; i < priv->num_rx_queues; i++) { 1310 rx_queue = priv->rx_queue[i]; 1311 1312 rx_queue->next_to_clean = 0; 1313 rx_queue->next_to_use = 0; 1314 rx_queue->next_to_alloc = 0; 1315 1316 /* make sure next_to_clean != next_to_use after this 1317 * by leaving at least 1 unused descriptor 1318 */ 1319 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1320 1321 rx_queue->rfbptr = rfbptr; 1322 rfbptr += 2; 1323 } 1324 } 1325 1326 static int gfar_alloc_skb_resources(struct net_device *ndev) 1327 { 1328 void *vaddr; 1329 dma_addr_t addr; 1330 int i, j; 1331 struct gfar_private *priv = netdev_priv(ndev); 1332 struct device *dev = priv->dev; 1333 struct gfar_priv_tx_q *tx_queue = NULL; 1334 struct gfar_priv_rx_q *rx_queue = NULL; 1335 1336 priv->total_tx_ring_size = 0; 1337 for (i = 0; i < priv->num_tx_queues; i++) 1338 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1339 1340 priv->total_rx_ring_size = 0; 1341 for (i = 0; i < priv->num_rx_queues; i++) 1342 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1343 1344 /* Allocate memory for the buffer descriptors */ 1345 vaddr = dma_alloc_coherent(dev, 1346 (priv->total_tx_ring_size * 1347 sizeof(struct txbd8)) + 1348 (priv->total_rx_ring_size * 1349 sizeof(struct rxbd8)), 1350 &addr, GFP_KERNEL); 1351 if (!vaddr) 1352 return -ENOMEM; 1353 1354 for (i = 0; i < priv->num_tx_queues; i++) { 1355 tx_queue = priv->tx_queue[i]; 1356 tx_queue->tx_bd_base = vaddr; 1357 tx_queue->tx_bd_dma_base = addr; 1358 tx_queue->dev = ndev; 1359 /* enet DMA only understands physical addresses */ 1360 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1361 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1362 } 1363 1364 /* Start the rx descriptor ring where the tx ring leaves off */ 1365 for (i = 0; i < priv->num_rx_queues; i++) { 1366 rx_queue = priv->rx_queue[i]; 1367 rx_queue->rx_bd_base = vaddr; 1368 rx_queue->rx_bd_dma_base = addr; 1369 rx_queue->ndev = ndev; 1370 rx_queue->dev = dev; 1371 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1372 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1373 } 1374 1375 /* Setup the skbuff rings */ 1376 for (i = 0; i < priv->num_tx_queues; i++) { 1377 tx_queue = priv->tx_queue[i]; 1378 tx_queue->tx_skbuff = 1379 kmalloc_array(tx_queue->tx_ring_size, 1380 sizeof(*tx_queue->tx_skbuff), 1381 GFP_KERNEL); 1382 if (!tx_queue->tx_skbuff) 1383 goto cleanup; 1384 1385 for (j = 0; j < tx_queue->tx_ring_size; j++) 1386 tx_queue->tx_skbuff[j] = NULL; 1387 } 1388 1389 for (i = 0; i < priv->num_rx_queues; i++) { 1390 rx_queue = priv->rx_queue[i]; 1391 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1392 sizeof(*rx_queue->rx_buff), 1393 GFP_KERNEL); 1394 if (!rx_queue->rx_buff) 1395 goto cleanup; 1396 } 1397 1398 gfar_init_bds(ndev); 1399 1400 return 0; 1401 1402 cleanup: 1403 free_skb_resources(priv); 1404 return -ENOMEM; 1405 } 1406 1407 /* Bring the controller up and running */ 1408 int startup_gfar(struct net_device *ndev) 1409 { 1410 struct gfar_private *priv = netdev_priv(ndev); 1411 int err; 1412 1413 gfar_mac_reset(priv); 1414 1415 err = gfar_alloc_skb_resources(ndev); 1416 if (err) 1417 return err; 1418 1419 gfar_init_tx_rx_base(priv); 1420 1421 smp_mb__before_atomic(); 1422 clear_bit(GFAR_DOWN, &priv->state); 1423 smp_mb__after_atomic(); 1424 1425 /* Start Rx/Tx DMA and enable the interrupts */ 1426 gfar_start(priv); 1427 1428 /* force link state update after mac reset */ 1429 priv->oldlink = 0; 1430 priv->oldspeed = 0; 1431 priv->oldduplex = -1; 1432 1433 phy_start(ndev->phydev); 1434 1435 enable_napi(priv); 1436 1437 netif_tx_wake_all_queues(ndev); 1438 1439 return 0; 1440 } 1441 1442 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1443 { 1444 struct net_device *ndev = priv->ndev; 1445 struct phy_device *phydev = ndev->phydev; 1446 u32 val = 0; 1447 1448 if (!phydev->duplex) 1449 return val; 1450 1451 if (!priv->pause_aneg_en) { 1452 if (priv->tx_pause_en) 1453 val |= MACCFG1_TX_FLOW; 1454 if (priv->rx_pause_en) 1455 val |= MACCFG1_RX_FLOW; 1456 } else { 1457 u16 lcl_adv, rmt_adv; 1458 u8 flowctrl; 1459 /* get link partner capabilities */ 1460 rmt_adv = 0; 1461 if (phydev->pause) 1462 rmt_adv = LPA_PAUSE_CAP; 1463 if (phydev->asym_pause) 1464 rmt_adv |= LPA_PAUSE_ASYM; 1465 1466 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1467 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1468 if (flowctrl & FLOW_CTRL_TX) 1469 val |= MACCFG1_TX_FLOW; 1470 if (flowctrl & FLOW_CTRL_RX) 1471 val |= MACCFG1_RX_FLOW; 1472 } 1473 1474 return val; 1475 } 1476 1477 static noinline void gfar_update_link_state(struct gfar_private *priv) 1478 { 1479 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1480 struct net_device *ndev = priv->ndev; 1481 struct phy_device *phydev = ndev->phydev; 1482 struct gfar_priv_rx_q *rx_queue = NULL; 1483 int i; 1484 1485 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1486 return; 1487 1488 if (phydev->link) { 1489 u32 tempval1 = gfar_read(®s->maccfg1); 1490 u32 tempval = gfar_read(®s->maccfg2); 1491 u32 ecntrl = gfar_read(®s->ecntrl); 1492 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1493 1494 if (phydev->duplex != priv->oldduplex) { 1495 if (!(phydev->duplex)) 1496 tempval &= ~(MACCFG2_FULL_DUPLEX); 1497 else 1498 tempval |= MACCFG2_FULL_DUPLEX; 1499 1500 priv->oldduplex = phydev->duplex; 1501 } 1502 1503 if (phydev->speed != priv->oldspeed) { 1504 switch (phydev->speed) { 1505 case 1000: 1506 tempval = 1507 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1508 1509 ecntrl &= ~(ECNTRL_R100); 1510 break; 1511 case 100: 1512 case 10: 1513 tempval = 1514 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1515 1516 /* Reduced mode distinguishes 1517 * between 10 and 100 1518 */ 1519 if (phydev->speed == SPEED_100) 1520 ecntrl |= ECNTRL_R100; 1521 else 1522 ecntrl &= ~(ECNTRL_R100); 1523 break; 1524 default: 1525 netif_warn(priv, link, priv->ndev, 1526 "Ack! Speed (%d) is not 10/100/1000!\n", 1527 phydev->speed); 1528 break; 1529 } 1530 1531 priv->oldspeed = phydev->speed; 1532 } 1533 1534 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1535 tempval1 |= gfar_get_flowctrl_cfg(priv); 1536 1537 /* Turn last free buffer recording on */ 1538 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1539 for (i = 0; i < priv->num_rx_queues; i++) { 1540 u32 bdp_dma; 1541 1542 rx_queue = priv->rx_queue[i]; 1543 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1544 gfar_write(rx_queue->rfbptr, bdp_dma); 1545 } 1546 1547 priv->tx_actual_en = 1; 1548 } 1549 1550 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1551 priv->tx_actual_en = 0; 1552 1553 gfar_write(®s->maccfg1, tempval1); 1554 gfar_write(®s->maccfg2, tempval); 1555 gfar_write(®s->ecntrl, ecntrl); 1556 1557 if (!priv->oldlink) 1558 priv->oldlink = 1; 1559 1560 } else if (priv->oldlink) { 1561 priv->oldlink = 0; 1562 priv->oldspeed = 0; 1563 priv->oldduplex = -1; 1564 } 1565 1566 if (netif_msg_link(priv)) 1567 phy_print_status(phydev); 1568 } 1569 1570 /* Called every time the controller might need to be made 1571 * aware of new link state. The PHY code conveys this 1572 * information through variables in the phydev structure, and this 1573 * function converts those variables into the appropriate 1574 * register values, and can bring down the device if needed. 1575 */ 1576 static void adjust_link(struct net_device *dev) 1577 { 1578 struct gfar_private *priv = netdev_priv(dev); 1579 struct phy_device *phydev = dev->phydev; 1580 1581 if (unlikely(phydev->link != priv->oldlink || 1582 (phydev->link && (phydev->duplex != priv->oldduplex || 1583 phydev->speed != priv->oldspeed)))) 1584 gfar_update_link_state(priv); 1585 } 1586 1587 /* Initialize TBI PHY interface for communicating with the 1588 * SERDES lynx PHY on the chip. We communicate with this PHY 1589 * through the MDIO bus on each controller, treating it as a 1590 * "normal" PHY at the address found in the TBIPA register. We assume 1591 * that the TBIPA register is valid. Either the MDIO bus code will set 1592 * it to a value that doesn't conflict with other PHYs on the bus, or the 1593 * value doesn't matter, as there are no other PHYs on the bus. 1594 */ 1595 static void gfar_configure_serdes(struct net_device *dev) 1596 { 1597 struct gfar_private *priv = netdev_priv(dev); 1598 struct phy_device *tbiphy; 1599 1600 if (!priv->tbi_node) { 1601 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1602 "device tree specify a tbi-handle\n"); 1603 return; 1604 } 1605 1606 tbiphy = of_phy_find_device(priv->tbi_node); 1607 if (!tbiphy) { 1608 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1609 return; 1610 } 1611 1612 /* If the link is already up, we must already be ok, and don't need to 1613 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1614 * everything for us? Resetting it takes the link down and requires 1615 * several seconds for it to come back. 1616 */ 1617 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1618 put_device(&tbiphy->mdio.dev); 1619 return; 1620 } 1621 1622 /* Single clk mode, mii mode off(for serdes communication) */ 1623 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1624 1625 phy_write(tbiphy, MII_ADVERTISE, 1626 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1627 ADVERTISE_1000XPSE_ASYM); 1628 1629 phy_write(tbiphy, MII_BMCR, 1630 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1631 BMCR_SPEED1000); 1632 1633 put_device(&tbiphy->mdio.dev); 1634 } 1635 1636 /* Initializes driver's PHY state, and attaches to the PHY. 1637 * Returns 0 on success. 1638 */ 1639 static int init_phy(struct net_device *dev) 1640 { 1641 struct gfar_private *priv = netdev_priv(dev); 1642 phy_interface_t interface = priv->interface; 1643 struct phy_device *phydev; 1644 struct ethtool_keee edata; 1645 1646 priv->oldlink = 0; 1647 priv->oldspeed = 0; 1648 priv->oldduplex = -1; 1649 1650 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1651 interface); 1652 if (!phydev) { 1653 dev_err(&dev->dev, "could not attach to PHY\n"); 1654 return -ENODEV; 1655 } 1656 1657 if (interface == PHY_INTERFACE_MODE_SGMII) 1658 gfar_configure_serdes(dev); 1659 1660 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)) 1661 phy_set_max_speed(phydev, SPEED_100); 1662 1663 /* Add support for flow control */ 1664 phy_support_asym_pause(phydev); 1665 1666 /* disable EEE autoneg, EEE not supported by eTSEC */ 1667 memset(&edata, 0, sizeof(struct ethtool_keee)); 1668 phy_ethtool_set_eee(phydev, &edata); 1669 1670 return 0; 1671 } 1672 1673 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1674 { 1675 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1676 1677 memset(fcb, 0, GMAC_FCB_LEN); 1678 1679 return fcb; 1680 } 1681 1682 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1683 int fcb_length) 1684 { 1685 /* If we're here, it's a IP packet with a TCP or UDP 1686 * payload. We set it to checksum, using a pseudo-header 1687 * we provide 1688 */ 1689 u8 flags = TXFCB_DEFAULT; 1690 1691 /* Tell the controller what the protocol is 1692 * And provide the already calculated phcs 1693 */ 1694 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1695 flags |= TXFCB_UDP; 1696 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1697 } else 1698 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1699 1700 /* l3os is the distance between the start of the 1701 * frame (skb->data) and the start of the IP hdr. 1702 * l4os is the distance between the start of the 1703 * l3 hdr and the l4 hdr 1704 */ 1705 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1706 fcb->l4os = skb_network_header_len(skb); 1707 1708 fcb->flags = flags; 1709 } 1710 1711 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1712 { 1713 fcb->flags |= TXFCB_VLN; 1714 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1715 } 1716 1717 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1718 struct txbd8 *base, int ring_size) 1719 { 1720 struct txbd8 *new_bd = bdp + stride; 1721 1722 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1723 } 1724 1725 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1726 int ring_size) 1727 { 1728 return skip_txbd(bdp, 1, base, ring_size); 1729 } 1730 1731 /* eTSEC12: csum generation not supported for some fcb offsets */ 1732 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1733 unsigned long fcb_addr) 1734 { 1735 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1736 (fcb_addr % 0x20) > 0x18); 1737 } 1738 1739 /* eTSEC76: csum generation for frames larger than 2500 may 1740 * cause excess delays before start of transmission 1741 */ 1742 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1743 unsigned int len) 1744 { 1745 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1746 (len > 2500)); 1747 } 1748 1749 /* This is called by the kernel when a frame is ready for transmission. 1750 * It is pointed to by the dev->hard_start_xmit function pointer 1751 */ 1752 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1753 { 1754 struct gfar_private *priv = netdev_priv(dev); 1755 struct gfar_priv_tx_q *tx_queue = NULL; 1756 struct netdev_queue *txq; 1757 struct gfar __iomem *regs = NULL; 1758 struct txfcb *fcb = NULL; 1759 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1760 u32 lstatus; 1761 skb_frag_t *frag; 1762 int i, rq = 0; 1763 int do_tstamp, do_csum, do_vlan; 1764 u32 bufaddr; 1765 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1766 1767 rq = skb->queue_mapping; 1768 tx_queue = priv->tx_queue[rq]; 1769 txq = netdev_get_tx_queue(dev, rq); 1770 base = tx_queue->tx_bd_base; 1771 regs = tx_queue->grp->regs; 1772 1773 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1774 do_vlan = skb_vlan_tag_present(skb); 1775 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1776 priv->hwts_tx_en; 1777 1778 if (do_csum || do_vlan) 1779 fcb_len = GMAC_FCB_LEN; 1780 1781 /* check if time stamp should be generated */ 1782 if (unlikely(do_tstamp)) 1783 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1784 1785 /* make space for additional header when fcb is needed */ 1786 if (fcb_len) { 1787 if (unlikely(skb_cow_head(skb, fcb_len))) { 1788 dev->stats.tx_errors++; 1789 dev_kfree_skb_any(skb); 1790 return NETDEV_TX_OK; 1791 } 1792 } 1793 1794 /* total number of fragments in the SKB */ 1795 nr_frags = skb_shinfo(skb)->nr_frags; 1796 1797 /* calculate the required number of TxBDs for this skb */ 1798 if (unlikely(do_tstamp)) 1799 nr_txbds = nr_frags + 2; 1800 else 1801 nr_txbds = nr_frags + 1; 1802 1803 /* check if there is space to queue this packet */ 1804 if (nr_txbds > tx_queue->num_txbdfree) { 1805 /* no space, stop the queue */ 1806 netif_tx_stop_queue(txq); 1807 dev->stats.tx_fifo_errors++; 1808 return NETDEV_TX_BUSY; 1809 } 1810 1811 /* Update transmit stats */ 1812 bytes_sent = skb->len; 1813 tx_queue->stats.tx_bytes += bytes_sent; 1814 /* keep Tx bytes on wire for BQL accounting */ 1815 GFAR_CB(skb)->bytes_sent = bytes_sent; 1816 tx_queue->stats.tx_packets++; 1817 1818 txbdp = txbdp_start = tx_queue->cur_tx; 1819 lstatus = be32_to_cpu(txbdp->lstatus); 1820 1821 /* Add TxPAL between FCB and frame if required */ 1822 if (unlikely(do_tstamp)) { 1823 skb_push(skb, GMAC_TXPAL_LEN); 1824 memset(skb->data, 0, GMAC_TXPAL_LEN); 1825 } 1826 1827 /* Add TxFCB if required */ 1828 if (fcb_len) { 1829 fcb = gfar_add_fcb(skb); 1830 lstatus |= BD_LFLAG(TXBD_TOE); 1831 } 1832 1833 /* Set up checksumming */ 1834 if (do_csum) { 1835 gfar_tx_checksum(skb, fcb, fcb_len); 1836 1837 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1838 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1839 __skb_pull(skb, GMAC_FCB_LEN); 1840 skb_checksum_help(skb); 1841 if (do_vlan || do_tstamp) { 1842 /* put back a new fcb for vlan/tstamp TOE */ 1843 fcb = gfar_add_fcb(skb); 1844 } else { 1845 /* Tx TOE not used */ 1846 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1847 fcb = NULL; 1848 } 1849 } 1850 } 1851 1852 if (do_vlan) 1853 gfar_tx_vlan(skb, fcb); 1854 1855 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1856 DMA_TO_DEVICE); 1857 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1858 goto dma_map_err; 1859 1860 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1861 1862 /* Time stamp insertion requires one additional TxBD */ 1863 if (unlikely(do_tstamp)) 1864 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1865 tx_queue->tx_ring_size); 1866 1867 if (likely(!nr_frags)) { 1868 if (likely(!do_tstamp)) 1869 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1870 } else { 1871 u32 lstatus_start = lstatus; 1872 1873 /* Place the fragment addresses and lengths into the TxBDs */ 1874 frag = &skb_shinfo(skb)->frags[0]; 1875 for (i = 0; i < nr_frags; i++, frag++) { 1876 unsigned int size; 1877 1878 /* Point at the next BD, wrapping as needed */ 1879 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1880 1881 size = skb_frag_size(frag); 1882 1883 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1884 BD_LFLAG(TXBD_READY); 1885 1886 /* Handle the last BD specially */ 1887 if (i == nr_frags - 1) 1888 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1889 1890 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1891 size, DMA_TO_DEVICE); 1892 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1893 goto dma_map_err; 1894 1895 /* set the TxBD length and buffer pointer */ 1896 txbdp->bufPtr = cpu_to_be32(bufaddr); 1897 txbdp->lstatus = cpu_to_be32(lstatus); 1898 } 1899 1900 lstatus = lstatus_start; 1901 } 1902 1903 /* If time stamping is requested one additional TxBD must be set up. The 1904 * first TxBD points to the FCB and must have a data length of 1905 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1906 * the full frame length. 1907 */ 1908 if (unlikely(do_tstamp)) { 1909 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1910 1911 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1912 bufaddr += fcb_len; 1913 1914 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1915 (skb_headlen(skb) - fcb_len); 1916 if (!nr_frags) 1917 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1918 1919 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1920 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1921 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1922 1923 /* Setup tx hardware time stamping */ 1924 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1925 fcb->ptp = 1; 1926 } else { 1927 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1928 } 1929 1930 skb_tx_timestamp(skb); 1931 netdev_tx_sent_queue(txq, bytes_sent); 1932 1933 gfar_wmb(); 1934 1935 txbdp_start->lstatus = cpu_to_be32(lstatus); 1936 1937 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1938 1939 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1940 1941 /* Update the current skb pointer to the next entry we will use 1942 * (wrapping if necessary) 1943 */ 1944 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1945 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1946 1947 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1948 1949 /* We can work in parallel with gfar_clean_tx_ring(), except 1950 * when modifying num_txbdfree. Note that we didn't grab the lock 1951 * when we were reading the num_txbdfree and checking for available 1952 * space, that's because outside of this function it can only grow. 1953 */ 1954 spin_lock_bh(&tx_queue->txlock); 1955 /* reduce TxBD free count */ 1956 tx_queue->num_txbdfree -= (nr_txbds); 1957 spin_unlock_bh(&tx_queue->txlock); 1958 1959 /* If the next BD still needs to be cleaned up, then the bds 1960 * are full. We need to tell the kernel to stop sending us stuff. 1961 */ 1962 if (!tx_queue->num_txbdfree) { 1963 netif_tx_stop_queue(txq); 1964 1965 dev->stats.tx_fifo_errors++; 1966 } 1967 1968 /* Tell the DMA to go go go */ 1969 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 1970 1971 return NETDEV_TX_OK; 1972 1973 dma_map_err: 1974 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 1975 if (do_tstamp) 1976 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1977 for (i = 0; i < nr_frags; i++) { 1978 lstatus = be32_to_cpu(txbdp->lstatus); 1979 if (!(lstatus & BD_LFLAG(TXBD_READY))) 1980 break; 1981 1982 lstatus &= ~BD_LFLAG(TXBD_READY); 1983 txbdp->lstatus = cpu_to_be32(lstatus); 1984 bufaddr = be32_to_cpu(txbdp->bufPtr); 1985 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 1986 DMA_TO_DEVICE); 1987 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1988 } 1989 gfar_wmb(); 1990 dev_kfree_skb_any(skb); 1991 return NETDEV_TX_OK; 1992 } 1993 1994 /* Changes the mac address if the controller is not running. */ 1995 static int gfar_set_mac_address(struct net_device *dev) 1996 { 1997 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 1998 1999 return 0; 2000 } 2001 2002 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2003 { 2004 struct gfar_private *priv = netdev_priv(dev); 2005 2006 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2007 cpu_relax(); 2008 2009 if (dev->flags & IFF_UP) 2010 stop_gfar(dev); 2011 2012 WRITE_ONCE(dev->mtu, new_mtu); 2013 2014 if (dev->flags & IFF_UP) 2015 startup_gfar(dev); 2016 2017 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2018 2019 return 0; 2020 } 2021 2022 static void reset_gfar(struct net_device *ndev) 2023 { 2024 struct gfar_private *priv = netdev_priv(ndev); 2025 2026 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2027 cpu_relax(); 2028 2029 stop_gfar(ndev); 2030 startup_gfar(ndev); 2031 2032 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2033 } 2034 2035 /* gfar_reset_task gets scheduled when a packet has not been 2036 * transmitted after a set amount of time. 2037 * For now, assume that clearing out all the structures, and 2038 * starting over will fix the problem. 2039 */ 2040 static void gfar_reset_task(struct work_struct *work) 2041 { 2042 struct gfar_private *priv = container_of(work, struct gfar_private, 2043 reset_task); 2044 reset_gfar(priv->ndev); 2045 } 2046 2047 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2048 { 2049 struct gfar_private *priv = netdev_priv(dev); 2050 2051 dev->stats.tx_errors++; 2052 schedule_work(&priv->reset_task); 2053 } 2054 2055 static int gfar_hwtstamp_set(struct net_device *netdev, 2056 struct kernel_hwtstamp_config *config, 2057 struct netlink_ext_ack *extack) 2058 { 2059 struct gfar_private *priv = netdev_priv(netdev); 2060 2061 switch (config->tx_type) { 2062 case HWTSTAMP_TX_OFF: 2063 priv->hwts_tx_en = 0; 2064 break; 2065 case HWTSTAMP_TX_ON: 2066 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2067 return -ERANGE; 2068 priv->hwts_tx_en = 1; 2069 break; 2070 default: 2071 return -ERANGE; 2072 } 2073 2074 switch (config->rx_filter) { 2075 case HWTSTAMP_FILTER_NONE: 2076 if (priv->hwts_rx_en) { 2077 priv->hwts_rx_en = 0; 2078 reset_gfar(netdev); 2079 } 2080 break; 2081 default: 2082 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2083 return -ERANGE; 2084 if (!priv->hwts_rx_en) { 2085 priv->hwts_rx_en = 1; 2086 reset_gfar(netdev); 2087 } 2088 config->rx_filter = HWTSTAMP_FILTER_ALL; 2089 break; 2090 } 2091 2092 return 0; 2093 } 2094 2095 static int gfar_hwtstamp_get(struct net_device *netdev, 2096 struct kernel_hwtstamp_config *config) 2097 { 2098 struct gfar_private *priv = netdev_priv(netdev); 2099 2100 config->tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2101 config->rx_filter = priv->hwts_rx_en ? HWTSTAMP_FILTER_ALL : 2102 HWTSTAMP_FILTER_NONE; 2103 2104 return 0; 2105 } 2106 2107 /* Interrupt Handler for Transmit complete */ 2108 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2109 { 2110 struct net_device *dev = tx_queue->dev; 2111 struct netdev_queue *txq; 2112 struct gfar_private *priv = netdev_priv(dev); 2113 struct txbd8 *bdp, *next = NULL; 2114 struct txbd8 *lbdp = NULL; 2115 struct txbd8 *base = tx_queue->tx_bd_base; 2116 struct sk_buff *skb; 2117 int skb_dirtytx; 2118 int tx_ring_size = tx_queue->tx_ring_size; 2119 int frags = 0, nr_txbds = 0; 2120 int i; 2121 int howmany = 0; 2122 int tqi = tx_queue->qindex; 2123 unsigned int bytes_sent = 0; 2124 u32 lstatus; 2125 size_t buflen; 2126 2127 txq = netdev_get_tx_queue(dev, tqi); 2128 bdp = tx_queue->dirty_tx; 2129 skb_dirtytx = tx_queue->skb_dirtytx; 2130 2131 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2132 bool do_tstamp; 2133 2134 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2135 priv->hwts_tx_en; 2136 2137 frags = skb_shinfo(skb)->nr_frags; 2138 2139 /* When time stamping, one additional TxBD must be freed. 2140 * Also, we need to dma_unmap_single() the TxPAL. 2141 */ 2142 if (unlikely(do_tstamp)) 2143 nr_txbds = frags + 2; 2144 else 2145 nr_txbds = frags + 1; 2146 2147 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2148 2149 lstatus = be32_to_cpu(lbdp->lstatus); 2150 2151 /* Only clean completed frames */ 2152 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2153 (lstatus & BD_LENGTH_MASK)) 2154 break; 2155 2156 if (unlikely(do_tstamp)) { 2157 next = next_txbd(bdp, base, tx_ring_size); 2158 buflen = be16_to_cpu(next->length) + 2159 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2160 } else 2161 buflen = be16_to_cpu(bdp->length); 2162 2163 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2164 buflen, DMA_TO_DEVICE); 2165 2166 if (unlikely(do_tstamp)) { 2167 struct skb_shared_hwtstamps shhwtstamps; 2168 __be64 *ns; 2169 2170 ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL); 2171 2172 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2173 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2174 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2175 skb_tstamp_tx(skb, &shhwtstamps); 2176 gfar_clear_txbd_status(bdp); 2177 bdp = next; 2178 } 2179 2180 gfar_clear_txbd_status(bdp); 2181 bdp = next_txbd(bdp, base, tx_ring_size); 2182 2183 for (i = 0; i < frags; i++) { 2184 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2185 be16_to_cpu(bdp->length), 2186 DMA_TO_DEVICE); 2187 gfar_clear_txbd_status(bdp); 2188 bdp = next_txbd(bdp, base, tx_ring_size); 2189 } 2190 2191 bytes_sent += GFAR_CB(skb)->bytes_sent; 2192 2193 dev_kfree_skb_any(skb); 2194 2195 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2196 2197 skb_dirtytx = (skb_dirtytx + 1) & 2198 TX_RING_MOD_MASK(tx_ring_size); 2199 2200 howmany++; 2201 spin_lock(&tx_queue->txlock); 2202 tx_queue->num_txbdfree += nr_txbds; 2203 spin_unlock(&tx_queue->txlock); 2204 } 2205 2206 /* If we freed a buffer, we can restart transmission, if necessary */ 2207 if (tx_queue->num_txbdfree && 2208 netif_tx_queue_stopped(txq) && 2209 !(test_bit(GFAR_DOWN, &priv->state))) 2210 netif_wake_subqueue(priv->ndev, tqi); 2211 2212 /* Update dirty indicators */ 2213 tx_queue->skb_dirtytx = skb_dirtytx; 2214 tx_queue->dirty_tx = bdp; 2215 2216 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2217 } 2218 2219 static void count_errors(u32 lstatus, struct net_device *ndev) 2220 { 2221 struct gfar_private *priv = netdev_priv(ndev); 2222 struct net_device_stats *stats = &ndev->stats; 2223 struct gfar_extra_stats *estats = &priv->extra_stats; 2224 2225 /* If the packet was truncated, none of the other errors matter */ 2226 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2227 stats->rx_length_errors++; 2228 2229 atomic64_inc(&estats->rx_trunc); 2230 2231 return; 2232 } 2233 /* Count the errors, if there were any */ 2234 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2235 stats->rx_length_errors++; 2236 2237 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2238 atomic64_inc(&estats->rx_large); 2239 else 2240 atomic64_inc(&estats->rx_short); 2241 } 2242 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2243 stats->rx_frame_errors++; 2244 atomic64_inc(&estats->rx_nonoctet); 2245 } 2246 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2247 atomic64_inc(&estats->rx_crcerr); 2248 stats->rx_crc_errors++; 2249 } 2250 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2251 atomic64_inc(&estats->rx_overrun); 2252 stats->rx_over_errors++; 2253 } 2254 } 2255 2256 static irqreturn_t gfar_receive(int irq, void *grp_id) 2257 { 2258 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2259 unsigned long flags; 2260 u32 imask, ievent; 2261 2262 ievent = gfar_read(&grp->regs->ievent); 2263 2264 if (unlikely(ievent & IEVENT_FGPI)) { 2265 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2266 return IRQ_HANDLED; 2267 } 2268 2269 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2270 spin_lock_irqsave(&grp->grplock, flags); 2271 imask = gfar_read(&grp->regs->imask); 2272 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask; 2273 gfar_write(&grp->regs->imask, imask); 2274 spin_unlock_irqrestore(&grp->grplock, flags); 2275 __napi_schedule(&grp->napi_rx); 2276 } else { 2277 /* Clear IEVENT, so interrupts aren't called again 2278 * because of the packets that have already arrived. 2279 */ 2280 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2281 } 2282 2283 return IRQ_HANDLED; 2284 } 2285 2286 /* Interrupt Handler for Transmit complete */ 2287 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2288 { 2289 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2290 unsigned long flags; 2291 u32 imask; 2292 2293 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2294 spin_lock_irqsave(&grp->grplock, flags); 2295 imask = gfar_read(&grp->regs->imask); 2296 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask; 2297 gfar_write(&grp->regs->imask, imask); 2298 spin_unlock_irqrestore(&grp->grplock, flags); 2299 __napi_schedule(&grp->napi_tx); 2300 } else { 2301 /* Clear IEVENT, so interrupts aren't called again 2302 * because of the packets that have already arrived. 2303 */ 2304 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2305 } 2306 2307 return IRQ_HANDLED; 2308 } 2309 2310 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2311 struct sk_buff *skb, bool first) 2312 { 2313 int size = lstatus & BD_LENGTH_MASK; 2314 struct page *page = rxb->page; 2315 2316 if (likely(first)) { 2317 skb_put(skb, size); 2318 } else { 2319 /* the last fragments' length contains the full frame length */ 2320 if (lstatus & BD_LFLAG(RXBD_LAST)) 2321 size -= skb->len; 2322 2323 WARN(size < 0, "gianfar: rx fragment size underflow"); 2324 if (size < 0) 2325 return false; 2326 2327 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2328 rxb->page_offset + RXBUF_ALIGNMENT, 2329 size, GFAR_RXB_TRUESIZE); 2330 } 2331 2332 /* try reuse page */ 2333 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2334 return false; 2335 2336 /* change offset to the other half */ 2337 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2338 2339 page_ref_inc(page); 2340 2341 return true; 2342 } 2343 2344 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2345 struct gfar_rx_buff *old_rxb) 2346 { 2347 struct gfar_rx_buff *new_rxb; 2348 u16 nta = rxq->next_to_alloc; 2349 2350 new_rxb = &rxq->rx_buff[nta]; 2351 2352 /* find next buf that can reuse a page */ 2353 nta++; 2354 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2355 2356 /* copy page reference */ 2357 *new_rxb = *old_rxb; 2358 2359 /* sync for use by the device */ 2360 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2361 old_rxb->page_offset, 2362 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2363 } 2364 2365 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2366 u32 lstatus, struct sk_buff *skb) 2367 { 2368 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2369 struct page *page = rxb->page; 2370 bool first = false; 2371 2372 if (likely(!skb)) { 2373 void *buff_addr = page_address(page) + rxb->page_offset; 2374 2375 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2376 if (unlikely(!skb)) { 2377 gfar_rx_alloc_err(rx_queue); 2378 return NULL; 2379 } 2380 skb_reserve(skb, RXBUF_ALIGNMENT); 2381 first = true; 2382 } 2383 2384 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2385 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2386 2387 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2388 /* reuse the free half of the page */ 2389 gfar_reuse_rx_page(rx_queue, rxb); 2390 } else { 2391 /* page cannot be reused, unmap it */ 2392 dma_unmap_page(rx_queue->dev, rxb->dma, 2393 PAGE_SIZE, DMA_FROM_DEVICE); 2394 } 2395 2396 /* clear rxb content */ 2397 rxb->page = NULL; 2398 2399 return skb; 2400 } 2401 2402 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2403 { 2404 /* If valid headers were found, and valid sums 2405 * were verified, then we tell the kernel that no 2406 * checksumming is necessary. Otherwise, it is [FIXME] 2407 */ 2408 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2409 (RXFCB_CIP | RXFCB_CTU)) 2410 skb->ip_summed = CHECKSUM_UNNECESSARY; 2411 else 2412 skb_checksum_none_assert(skb); 2413 } 2414 2415 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2416 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2417 { 2418 struct gfar_private *priv = netdev_priv(ndev); 2419 struct rxfcb *fcb = NULL; 2420 2421 /* fcb is at the beginning if exists */ 2422 fcb = (struct rxfcb *)skb->data; 2423 2424 /* Remove the FCB from the skb 2425 * Remove the padded bytes, if there are any 2426 */ 2427 if (priv->uses_rxfcb) 2428 skb_pull(skb, GMAC_FCB_LEN); 2429 2430 /* Get receive timestamp from the skb */ 2431 if (priv->hwts_rx_en) { 2432 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2433 __be64 *ns = (__be64 *)skb->data; 2434 2435 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2436 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2437 } 2438 2439 if (priv->padding) 2440 skb_pull(skb, priv->padding); 2441 2442 /* Trim off the FCS */ 2443 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2444 2445 if (ndev->features & NETIF_F_RXCSUM) 2446 gfar_rx_checksum(skb, fcb); 2447 2448 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2449 * Even if vlan rx accel is disabled, on some chips 2450 * RXFCB_VLN is pseudo randomly set. 2451 */ 2452 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2453 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2454 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2455 be16_to_cpu(fcb->vlctl)); 2456 } 2457 2458 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2459 * until the budget/quota has been reached. Returns the number 2460 * of frames handled 2461 */ 2462 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2463 int rx_work_limit) 2464 { 2465 struct net_device *ndev = rx_queue->ndev; 2466 struct gfar_private *priv = netdev_priv(ndev); 2467 struct rxbd8 *bdp; 2468 int i, howmany = 0; 2469 struct sk_buff *skb = rx_queue->skb; 2470 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2471 unsigned int total_bytes = 0, total_pkts = 0; 2472 2473 /* Get the first full descriptor */ 2474 i = rx_queue->next_to_clean; 2475 2476 while (rx_work_limit--) { 2477 u32 lstatus; 2478 2479 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2480 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2481 cleaned_cnt = 0; 2482 } 2483 2484 bdp = &rx_queue->rx_bd_base[i]; 2485 lstatus = be32_to_cpu(bdp->lstatus); 2486 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2487 break; 2488 2489 /* lost RXBD_LAST descriptor due to overrun */ 2490 if (skb && 2491 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2492 /* discard faulty buffer */ 2493 dev_kfree_skb(skb); 2494 skb = NULL; 2495 rx_queue->stats.rx_dropped++; 2496 2497 /* can continue normally */ 2498 } 2499 2500 /* order rx buffer descriptor reads */ 2501 rmb(); 2502 2503 /* fetch next to clean buffer from the ring */ 2504 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2505 if (unlikely(!skb)) 2506 break; 2507 2508 cleaned_cnt++; 2509 howmany++; 2510 2511 if (unlikely(++i == rx_queue->rx_ring_size)) 2512 i = 0; 2513 2514 rx_queue->next_to_clean = i; 2515 2516 /* fetch next buffer if not the last in frame */ 2517 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2518 continue; 2519 2520 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2521 count_errors(lstatus, ndev); 2522 2523 /* discard faulty buffer */ 2524 dev_kfree_skb(skb); 2525 skb = NULL; 2526 rx_queue->stats.rx_dropped++; 2527 continue; 2528 } 2529 2530 gfar_process_frame(ndev, skb); 2531 2532 /* Increment the number of packets */ 2533 total_pkts++; 2534 total_bytes += skb->len; 2535 2536 skb_record_rx_queue(skb, rx_queue->qindex); 2537 2538 skb->protocol = eth_type_trans(skb, ndev); 2539 2540 /* Send the packet up the stack */ 2541 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2542 2543 skb = NULL; 2544 } 2545 2546 /* Store incomplete frames for completion */ 2547 rx_queue->skb = skb; 2548 2549 rx_queue->stats.rx_packets += total_pkts; 2550 rx_queue->stats.rx_bytes += total_bytes; 2551 2552 if (cleaned_cnt) 2553 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2554 2555 /* Update Last Free RxBD pointer for LFC */ 2556 if (unlikely(priv->tx_actual_en)) { 2557 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2558 2559 gfar_write(rx_queue->rfbptr, bdp_dma); 2560 } 2561 2562 return howmany; 2563 } 2564 2565 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2566 { 2567 struct gfar_priv_grp *gfargrp = 2568 container_of(napi, struct gfar_priv_grp, napi_rx); 2569 struct gfar __iomem *regs = gfargrp->regs; 2570 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2571 int work_done = 0; 2572 2573 /* Clear IEVENT, so interrupts aren't called again 2574 * because of the packets that have already arrived 2575 */ 2576 gfar_write(®s->ievent, IEVENT_RX_MASK); 2577 2578 work_done = gfar_clean_rx_ring(rx_queue, budget); 2579 2580 if (work_done < budget) { 2581 u32 imask; 2582 napi_complete_done(napi, work_done); 2583 /* Clear the halt bit in RSTAT */ 2584 gfar_write(®s->rstat, gfargrp->rstat); 2585 2586 spin_lock_irq(&gfargrp->grplock); 2587 imask = gfar_read(®s->imask); 2588 imask |= IMASK_RX_DEFAULT; 2589 gfar_write(®s->imask, imask); 2590 spin_unlock_irq(&gfargrp->grplock); 2591 } 2592 2593 return work_done; 2594 } 2595 2596 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2597 { 2598 struct gfar_priv_grp *gfargrp = 2599 container_of(napi, struct gfar_priv_grp, napi_tx); 2600 struct gfar __iomem *regs = gfargrp->regs; 2601 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2602 u32 imask; 2603 2604 /* Clear IEVENT, so interrupts aren't called again 2605 * because of the packets that have already arrived 2606 */ 2607 gfar_write(®s->ievent, IEVENT_TX_MASK); 2608 2609 /* run Tx cleanup to completion */ 2610 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2611 gfar_clean_tx_ring(tx_queue); 2612 2613 napi_complete(napi); 2614 2615 spin_lock_irq(&gfargrp->grplock); 2616 imask = gfar_read(®s->imask); 2617 imask |= IMASK_TX_DEFAULT; 2618 gfar_write(®s->imask, imask); 2619 spin_unlock_irq(&gfargrp->grplock); 2620 2621 return 0; 2622 } 2623 2624 /* GFAR error interrupt handler */ 2625 static irqreturn_t gfar_error(int irq, void *grp_id) 2626 { 2627 struct gfar_priv_grp *gfargrp = grp_id; 2628 struct gfar __iomem *regs = gfargrp->regs; 2629 struct gfar_private *priv= gfargrp->priv; 2630 struct net_device *dev = priv->ndev; 2631 2632 /* Save ievent for future reference */ 2633 u32 events = gfar_read(®s->ievent); 2634 2635 /* Clear IEVENT */ 2636 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2637 2638 /* Magic Packet is not an error. */ 2639 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2640 (events & IEVENT_MAG)) 2641 events &= ~IEVENT_MAG; 2642 2643 /* Hmm... */ 2644 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2645 netdev_dbg(dev, 2646 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2647 events, gfar_read(®s->imask)); 2648 2649 /* Update the error counters */ 2650 if (events & IEVENT_TXE) { 2651 dev->stats.tx_errors++; 2652 2653 if (events & IEVENT_LC) 2654 dev->stats.tx_window_errors++; 2655 if (events & IEVENT_CRL) 2656 dev->stats.tx_aborted_errors++; 2657 if (events & IEVENT_XFUN) { 2658 netif_dbg(priv, tx_err, dev, 2659 "TX FIFO underrun, packet dropped\n"); 2660 dev->stats.tx_dropped++; 2661 atomic64_inc(&priv->extra_stats.tx_underrun); 2662 2663 schedule_work(&priv->reset_task); 2664 } 2665 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2666 } 2667 if (events & IEVENT_MSRO) { 2668 struct rmon_mib __iomem *rmon = ®s->rmon; 2669 u32 car; 2670 2671 spin_lock(&priv->rmon_overflow.lock); 2672 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 2673 if (car) { 2674 priv->rmon_overflow.rdrp++; 2675 gfar_write(&rmon->car1, car); 2676 } 2677 spin_unlock(&priv->rmon_overflow.lock); 2678 } 2679 if (events & IEVENT_BSY) { 2680 dev->stats.rx_over_errors++; 2681 atomic64_inc(&priv->extra_stats.rx_bsy); 2682 2683 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2684 gfar_read(®s->rstat)); 2685 } 2686 if (events & IEVENT_BABR) { 2687 dev->stats.rx_errors++; 2688 atomic64_inc(&priv->extra_stats.rx_babr); 2689 2690 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2691 } 2692 if (events & IEVENT_EBERR) { 2693 atomic64_inc(&priv->extra_stats.eberr); 2694 netif_dbg(priv, rx_err, dev, "bus error\n"); 2695 } 2696 if (events & IEVENT_RXC) 2697 netif_dbg(priv, rx_status, dev, "control frame\n"); 2698 2699 if (events & IEVENT_BABT) { 2700 atomic64_inc(&priv->extra_stats.tx_babt); 2701 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2702 } 2703 return IRQ_HANDLED; 2704 } 2705 2706 /* The interrupt handler for devices with one interrupt */ 2707 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2708 { 2709 struct gfar_priv_grp *gfargrp = grp_id; 2710 2711 /* Save ievent for future reference */ 2712 u32 events = gfar_read(&gfargrp->regs->ievent); 2713 2714 /* Check for reception */ 2715 if (events & IEVENT_RX_MASK) 2716 gfar_receive(irq, grp_id); 2717 2718 /* Check for transmit completion */ 2719 if (events & IEVENT_TX_MASK) 2720 gfar_transmit(irq, grp_id); 2721 2722 /* Check for errors */ 2723 if (events & IEVENT_ERR_MASK) 2724 gfar_error(irq, grp_id); 2725 2726 return IRQ_HANDLED; 2727 } 2728 2729 #ifdef CONFIG_NET_POLL_CONTROLLER 2730 /* Polling 'interrupt' - used by things like netconsole to send skbs 2731 * without having to re-enable interrupts. It's not called while 2732 * the interrupt routine is executing. 2733 */ 2734 static void gfar_netpoll(struct net_device *dev) 2735 { 2736 struct gfar_private *priv = netdev_priv(dev); 2737 int i; 2738 2739 /* If the device has multiple interrupts, run tx/rx */ 2740 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2741 for (i = 0; i < priv->num_grps; i++) { 2742 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2743 2744 disable_irq(gfar_irq(grp, TX)->irq); 2745 disable_irq(gfar_irq(grp, RX)->irq); 2746 disable_irq(gfar_irq(grp, ER)->irq); 2747 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2748 enable_irq(gfar_irq(grp, ER)->irq); 2749 enable_irq(gfar_irq(grp, RX)->irq); 2750 enable_irq(gfar_irq(grp, TX)->irq); 2751 } 2752 } else { 2753 for (i = 0; i < priv->num_grps; i++) { 2754 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2755 2756 disable_irq(gfar_irq(grp, TX)->irq); 2757 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2758 enable_irq(gfar_irq(grp, TX)->irq); 2759 } 2760 } 2761 } 2762 #endif 2763 2764 static void free_grp_irqs(struct gfar_priv_grp *grp) 2765 { 2766 free_irq(gfar_irq(grp, TX)->irq, grp); 2767 free_irq(gfar_irq(grp, RX)->irq, grp); 2768 free_irq(gfar_irq(grp, ER)->irq, grp); 2769 } 2770 2771 static int register_grp_irqs(struct gfar_priv_grp *grp) 2772 { 2773 struct gfar_private *priv = grp->priv; 2774 struct net_device *dev = priv->ndev; 2775 int err; 2776 2777 /* If the device has multiple interrupts, register for 2778 * them. Otherwise, only register for the one 2779 */ 2780 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2781 /* Install our interrupt handlers for Error, 2782 * Transmit, and Receive 2783 */ 2784 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2785 gfar_irq(grp, ER)->name, grp); 2786 if (err < 0) { 2787 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2788 gfar_irq(grp, ER)->irq); 2789 2790 goto err_irq_fail; 2791 } 2792 enable_irq_wake(gfar_irq(grp, ER)->irq); 2793 2794 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2795 gfar_irq(grp, TX)->name, grp); 2796 if (err < 0) { 2797 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2798 gfar_irq(grp, TX)->irq); 2799 goto tx_irq_fail; 2800 } 2801 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2802 gfar_irq(grp, RX)->name, grp); 2803 if (err < 0) { 2804 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2805 gfar_irq(grp, RX)->irq); 2806 goto rx_irq_fail; 2807 } 2808 enable_irq_wake(gfar_irq(grp, RX)->irq); 2809 2810 } else { 2811 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2812 gfar_irq(grp, TX)->name, grp); 2813 if (err < 0) { 2814 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2815 gfar_irq(grp, TX)->irq); 2816 goto err_irq_fail; 2817 } 2818 enable_irq_wake(gfar_irq(grp, TX)->irq); 2819 } 2820 2821 return 0; 2822 2823 rx_irq_fail: 2824 free_irq(gfar_irq(grp, TX)->irq, grp); 2825 tx_irq_fail: 2826 free_irq(gfar_irq(grp, ER)->irq, grp); 2827 err_irq_fail: 2828 return err; 2829 2830 } 2831 2832 static void gfar_free_irq(struct gfar_private *priv) 2833 { 2834 int i; 2835 2836 /* Free the IRQs */ 2837 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2838 for (i = 0; i < priv->num_grps; i++) 2839 free_grp_irqs(&priv->gfargrp[i]); 2840 } else { 2841 for (i = 0; i < priv->num_grps; i++) 2842 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2843 &priv->gfargrp[i]); 2844 } 2845 } 2846 2847 static int gfar_request_irq(struct gfar_private *priv) 2848 { 2849 int err, i, j; 2850 2851 for (i = 0; i < priv->num_grps; i++) { 2852 err = register_grp_irqs(&priv->gfargrp[i]); 2853 if (err) { 2854 for (j = 0; j < i; j++) 2855 free_grp_irqs(&priv->gfargrp[j]); 2856 return err; 2857 } 2858 } 2859 2860 return 0; 2861 } 2862 2863 /* Called when something needs to use the ethernet device 2864 * Returns 0 for success. 2865 */ 2866 static int gfar_enet_open(struct net_device *dev) 2867 { 2868 struct gfar_private *priv = netdev_priv(dev); 2869 int err; 2870 2871 err = init_phy(dev); 2872 if (err) 2873 return err; 2874 2875 err = gfar_request_irq(priv); 2876 if (err) 2877 return err; 2878 2879 err = startup_gfar(dev); 2880 if (err) 2881 return err; 2882 2883 return err; 2884 } 2885 2886 /* Stops the kernel queue, and halts the controller */ 2887 static int gfar_close(struct net_device *dev) 2888 { 2889 struct gfar_private *priv = netdev_priv(dev); 2890 2891 cancel_work_sync(&priv->reset_task); 2892 stop_gfar(dev); 2893 2894 /* Disconnect from the PHY */ 2895 phy_disconnect(dev->phydev); 2896 2897 gfar_free_irq(priv); 2898 2899 return 0; 2900 } 2901 2902 /* Clears each of the exact match registers to zero, so they 2903 * don't interfere with normal reception 2904 */ 2905 static void gfar_clear_exact_match(struct net_device *dev) 2906 { 2907 int idx; 2908 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 2909 2910 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 2911 gfar_set_mac_for_addr(dev, idx, zero_arr); 2912 } 2913 2914 /* Update the hash table based on the current list of multicast 2915 * addresses we subscribe to. Also, change the promiscuity of 2916 * the device based on the flags (this function is called 2917 * whenever dev->flags is changed 2918 */ 2919 static void gfar_set_multi(struct net_device *dev) 2920 { 2921 struct netdev_hw_addr *ha; 2922 struct gfar_private *priv = netdev_priv(dev); 2923 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2924 u32 tempval; 2925 2926 if (dev->flags & IFF_PROMISC) { 2927 /* Set RCTRL to PROM */ 2928 tempval = gfar_read(®s->rctrl); 2929 tempval |= RCTRL_PROM; 2930 gfar_write(®s->rctrl, tempval); 2931 } else { 2932 /* Set RCTRL to not PROM */ 2933 tempval = gfar_read(®s->rctrl); 2934 tempval &= ~(RCTRL_PROM); 2935 gfar_write(®s->rctrl, tempval); 2936 } 2937 2938 if (dev->flags & IFF_ALLMULTI) { 2939 /* Set the hash to rx all multicast frames */ 2940 gfar_write(®s->igaddr0, 0xffffffff); 2941 gfar_write(®s->igaddr1, 0xffffffff); 2942 gfar_write(®s->igaddr2, 0xffffffff); 2943 gfar_write(®s->igaddr3, 0xffffffff); 2944 gfar_write(®s->igaddr4, 0xffffffff); 2945 gfar_write(®s->igaddr5, 0xffffffff); 2946 gfar_write(®s->igaddr6, 0xffffffff); 2947 gfar_write(®s->igaddr7, 0xffffffff); 2948 gfar_write(®s->gaddr0, 0xffffffff); 2949 gfar_write(®s->gaddr1, 0xffffffff); 2950 gfar_write(®s->gaddr2, 0xffffffff); 2951 gfar_write(®s->gaddr3, 0xffffffff); 2952 gfar_write(®s->gaddr4, 0xffffffff); 2953 gfar_write(®s->gaddr5, 0xffffffff); 2954 gfar_write(®s->gaddr6, 0xffffffff); 2955 gfar_write(®s->gaddr7, 0xffffffff); 2956 } else { 2957 int em_num; 2958 int idx; 2959 2960 /* zero out the hash */ 2961 gfar_write(®s->igaddr0, 0x0); 2962 gfar_write(®s->igaddr1, 0x0); 2963 gfar_write(®s->igaddr2, 0x0); 2964 gfar_write(®s->igaddr3, 0x0); 2965 gfar_write(®s->igaddr4, 0x0); 2966 gfar_write(®s->igaddr5, 0x0); 2967 gfar_write(®s->igaddr6, 0x0); 2968 gfar_write(®s->igaddr7, 0x0); 2969 gfar_write(®s->gaddr0, 0x0); 2970 gfar_write(®s->gaddr1, 0x0); 2971 gfar_write(®s->gaddr2, 0x0); 2972 gfar_write(®s->gaddr3, 0x0); 2973 gfar_write(®s->gaddr4, 0x0); 2974 gfar_write(®s->gaddr5, 0x0); 2975 gfar_write(®s->gaddr6, 0x0); 2976 gfar_write(®s->gaddr7, 0x0); 2977 2978 /* If we have extended hash tables, we need to 2979 * clear the exact match registers to prepare for 2980 * setting them 2981 */ 2982 if (priv->extended_hash) { 2983 em_num = GFAR_EM_NUM + 1; 2984 gfar_clear_exact_match(dev); 2985 idx = 1; 2986 } else { 2987 idx = 0; 2988 em_num = 0; 2989 } 2990 2991 if (netdev_mc_empty(dev)) 2992 return; 2993 2994 /* Parse the list, and set the appropriate bits */ 2995 netdev_for_each_mc_addr(ha, dev) { 2996 if (idx < em_num) { 2997 gfar_set_mac_for_addr(dev, idx, ha->addr); 2998 idx++; 2999 } else 3000 gfar_set_hash_for_addr(dev, ha->addr); 3001 } 3002 } 3003 } 3004 3005 void gfar_mac_reset(struct gfar_private *priv) 3006 { 3007 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3008 u32 tempval; 3009 3010 /* Reset MAC layer */ 3011 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3012 3013 /* We need to delay at least 3 TX clocks */ 3014 udelay(3); 3015 3016 /* the soft reset bit is not self-resetting, so we need to 3017 * clear it before resuming normal operation 3018 */ 3019 gfar_write(®s->maccfg1, 0); 3020 3021 udelay(3); 3022 3023 gfar_rx_offload_en(priv); 3024 3025 /* Initialize the max receive frame/buffer lengths */ 3026 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3027 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3028 3029 /* Initialize the Minimum Frame Length Register */ 3030 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3031 3032 /* Initialize MACCFG2. */ 3033 tempval = MACCFG2_INIT_SETTINGS; 3034 3035 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3036 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3037 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3038 */ 3039 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3040 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3041 3042 gfar_write(®s->maccfg2, tempval); 3043 3044 /* Clear mac addr hash registers */ 3045 gfar_write(®s->igaddr0, 0); 3046 gfar_write(®s->igaddr1, 0); 3047 gfar_write(®s->igaddr2, 0); 3048 gfar_write(®s->igaddr3, 0); 3049 gfar_write(®s->igaddr4, 0); 3050 gfar_write(®s->igaddr5, 0); 3051 gfar_write(®s->igaddr6, 0); 3052 gfar_write(®s->igaddr7, 0); 3053 3054 gfar_write(®s->gaddr0, 0); 3055 gfar_write(®s->gaddr1, 0); 3056 gfar_write(®s->gaddr2, 0); 3057 gfar_write(®s->gaddr3, 0); 3058 gfar_write(®s->gaddr4, 0); 3059 gfar_write(®s->gaddr5, 0); 3060 gfar_write(®s->gaddr6, 0); 3061 gfar_write(®s->gaddr7, 0); 3062 3063 if (priv->extended_hash) 3064 gfar_clear_exact_match(priv->ndev); 3065 3066 gfar_mac_rx_config(priv); 3067 3068 gfar_mac_tx_config(priv); 3069 3070 gfar_set_mac_address(priv->ndev); 3071 3072 gfar_set_multi(priv->ndev); 3073 3074 /* clear ievent and imask before configuring coalescing */ 3075 gfar_ints_disable(priv); 3076 3077 /* Configure the coalescing support */ 3078 gfar_configure_coalescing_all(priv); 3079 } 3080 3081 static void gfar_hw_init(struct gfar_private *priv) 3082 { 3083 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3084 u32 attrs; 3085 3086 /* Stop the DMA engine now, in case it was running before 3087 * (The firmware could have used it, and left it running). 3088 */ 3089 gfar_halt(priv); 3090 3091 gfar_mac_reset(priv); 3092 3093 /* Zero out the rmon mib registers if it has them */ 3094 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3095 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1)); 3096 3097 /* Mask off the CAM interrupts */ 3098 gfar_write(®s->rmon.cam1, 0xffffffff); 3099 gfar_write(®s->rmon.cam2, 0xffffffff); 3100 /* Clear the CAR registers (w1c style) */ 3101 gfar_write(®s->rmon.car1, 0xffffffff); 3102 gfar_write(®s->rmon.car2, 0xffffffff); 3103 } 3104 3105 /* Initialize ECNTRL */ 3106 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3107 3108 /* Set the extraction length and index */ 3109 attrs = ATTRELI_EL(priv->rx_stash_size) | 3110 ATTRELI_EI(priv->rx_stash_index); 3111 3112 gfar_write(®s->attreli, attrs); 3113 3114 /* Start with defaults, and add stashing 3115 * depending on driver parameters 3116 */ 3117 attrs = ATTR_INIT_SETTINGS; 3118 3119 if (priv->bd_stash_en) 3120 attrs |= ATTR_BDSTASH; 3121 3122 if (priv->rx_stash_size != 0) 3123 attrs |= ATTR_BUFSTASH; 3124 3125 gfar_write(®s->attr, attrs); 3126 3127 /* FIFO configs */ 3128 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3129 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3130 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3131 3132 /* Program the interrupt steering regs, only for MG devices */ 3133 if (priv->num_grps > 1) 3134 gfar_write_isrg(priv); 3135 } 3136 3137 static const struct net_device_ops gfar_netdev_ops = { 3138 .ndo_open = gfar_enet_open, 3139 .ndo_start_xmit = gfar_start_xmit, 3140 .ndo_stop = gfar_close, 3141 .ndo_change_mtu = gfar_change_mtu, 3142 .ndo_set_features = gfar_set_features, 3143 .ndo_set_rx_mode = gfar_set_multi, 3144 .ndo_tx_timeout = gfar_timeout, 3145 .ndo_eth_ioctl = phy_do_ioctl_running, 3146 .ndo_get_stats64 = gfar_get_stats64, 3147 .ndo_change_carrier = fixed_phy_change_carrier, 3148 .ndo_set_mac_address = gfar_set_mac_addr, 3149 .ndo_validate_addr = eth_validate_addr, 3150 #ifdef CONFIG_NET_POLL_CONTROLLER 3151 .ndo_poll_controller = gfar_netpoll, 3152 #endif 3153 .ndo_hwtstamp_get = gfar_hwtstamp_get, 3154 .ndo_hwtstamp_set = gfar_hwtstamp_set, 3155 }; 3156 3157 /* Set up the ethernet device structure, private data, 3158 * and anything else we need before we start 3159 */ 3160 static int gfar_probe(struct platform_device *ofdev) 3161 { 3162 struct device_node *np = ofdev->dev.of_node; 3163 struct net_device *dev = NULL; 3164 struct gfar_private *priv = NULL; 3165 int err = 0, i; 3166 3167 err = gfar_of_init(ofdev, &dev); 3168 3169 if (err) 3170 return err; 3171 3172 priv = netdev_priv(dev); 3173 priv->ndev = dev; 3174 priv->ofdev = ofdev; 3175 priv->dev = &ofdev->dev; 3176 SET_NETDEV_DEV(dev, &ofdev->dev); 3177 3178 INIT_WORK(&priv->reset_task, gfar_reset_task); 3179 3180 platform_set_drvdata(ofdev, priv); 3181 3182 gfar_detect_errata(priv); 3183 3184 /* Set the dev->base_addr to the gfar reg region */ 3185 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3186 3187 /* Fill in the dev structure */ 3188 dev->watchdog_timeo = TX_TIMEOUT; 3189 /* MTU range: 50 - 9586 */ 3190 dev->mtu = 1500; 3191 dev->min_mtu = 50; 3192 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3193 dev->netdev_ops = &gfar_netdev_ops; 3194 dev->ethtool_ops = &gfar_ethtool_ops; 3195 3196 /* Register for napi ...We are registering NAPI for each grp */ 3197 for (i = 0; i < priv->num_grps; i++) { 3198 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3199 gfar_poll_rx_sq); 3200 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx, 3201 gfar_poll_tx_sq, 2); 3202 } 3203 3204 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3205 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3206 NETIF_F_RXCSUM; 3207 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3208 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3209 } 3210 3211 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3212 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3213 NETIF_F_HW_VLAN_CTAG_RX; 3214 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3215 } 3216 3217 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3218 3219 gfar_init_addr_hash_table(priv); 3220 3221 /* Insert receive time stamps into padding alignment bytes, and 3222 * plus 2 bytes padding to ensure the cpu alignment. 3223 */ 3224 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3225 priv->padding = 8 + DEFAULT_PADDING; 3226 3227 if (dev->features & NETIF_F_IP_CSUM || 3228 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3229 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3230 3231 /* Initializing some of the rx/tx queue level parameters */ 3232 for (i = 0; i < priv->num_tx_queues; i++) { 3233 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3234 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3235 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3236 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3237 } 3238 3239 for (i = 0; i < priv->num_rx_queues; i++) { 3240 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3241 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3242 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3243 } 3244 3245 /* Always enable rx filer if available */ 3246 priv->rx_filer_enable = 3247 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3248 /* Enable most messages by default */ 3249 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3250 /* use pritority h/w tx queue scheduling for single queue devices */ 3251 if (priv->num_tx_queues == 1) 3252 priv->prio_sched_en = 1; 3253 3254 set_bit(GFAR_DOWN, &priv->state); 3255 3256 gfar_hw_init(priv); 3257 3258 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3259 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; 3260 3261 spin_lock_init(&priv->rmon_overflow.lock); 3262 priv->rmon_overflow.imask = IMASK_MSRO; 3263 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR); 3264 } 3265 3266 /* Carrier starts down, phylib will bring it up */ 3267 netif_carrier_off(dev); 3268 3269 err = register_netdev(dev); 3270 3271 if (err) { 3272 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3273 goto register_fail; 3274 } 3275 3276 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3277 priv->wol_supported |= GFAR_WOL_MAGIC; 3278 3279 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3280 priv->rx_filer_enable) 3281 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3282 3283 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3284 3285 /* fill out IRQ number and name fields */ 3286 for (i = 0; i < priv->num_grps; i++) { 3287 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3288 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3289 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3290 dev->name, "_g", '0' + i, "_tx"); 3291 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3292 dev->name, "_g", '0' + i, "_rx"); 3293 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3294 dev->name, "_g", '0' + i, "_er"); 3295 } else 3296 strcpy(gfar_irq(grp, TX)->name, dev->name); 3297 } 3298 3299 /* Initialize the filer table */ 3300 gfar_init_filer_table(priv); 3301 3302 /* Print out the device info */ 3303 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3304 3305 /* Even more device info helps when determining which kernel 3306 * provided which set of benchmarks. 3307 */ 3308 netdev_info(dev, "Running with NAPI enabled\n"); 3309 for (i = 0; i < priv->num_rx_queues; i++) 3310 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3311 i, priv->rx_queue[i]->rx_ring_size); 3312 for (i = 0; i < priv->num_tx_queues; i++) 3313 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3314 i, priv->tx_queue[i]->tx_ring_size); 3315 3316 return 0; 3317 3318 register_fail: 3319 if (of_phy_is_fixed_link(np)) 3320 of_phy_deregister_fixed_link(np); 3321 unmap_group_regs(priv); 3322 gfar_free_rx_queues(priv); 3323 gfar_free_tx_queues(priv); 3324 of_node_put(priv->phy_node); 3325 of_node_put(priv->tbi_node); 3326 free_gfar_dev(priv); 3327 return err; 3328 } 3329 3330 static void gfar_remove(struct platform_device *ofdev) 3331 { 3332 struct gfar_private *priv = platform_get_drvdata(ofdev); 3333 struct device_node *np = ofdev->dev.of_node; 3334 3335 of_node_put(priv->phy_node); 3336 of_node_put(priv->tbi_node); 3337 3338 unregister_netdev(priv->ndev); 3339 3340 if (of_phy_is_fixed_link(np)) 3341 of_phy_deregister_fixed_link(np); 3342 3343 unmap_group_regs(priv); 3344 gfar_free_rx_queues(priv); 3345 gfar_free_tx_queues(priv); 3346 free_gfar_dev(priv); 3347 } 3348 3349 #ifdef CONFIG_PM 3350 3351 static void __gfar_filer_disable(struct gfar_private *priv) 3352 { 3353 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3354 u32 temp; 3355 3356 temp = gfar_read(®s->rctrl); 3357 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3358 gfar_write(®s->rctrl, temp); 3359 } 3360 3361 static void __gfar_filer_enable(struct gfar_private *priv) 3362 { 3363 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3364 u32 temp; 3365 3366 temp = gfar_read(®s->rctrl); 3367 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3368 gfar_write(®s->rctrl, temp); 3369 } 3370 3371 /* Filer rules implementing wol capabilities */ 3372 static void gfar_filer_config_wol(struct gfar_private *priv) 3373 { 3374 unsigned int i; 3375 u32 rqfcr; 3376 3377 __gfar_filer_disable(priv); 3378 3379 /* clear the filer table, reject any packet by default */ 3380 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3381 for (i = 0; i <= MAX_FILER_IDX; i++) 3382 gfar_write_filer(priv, i, rqfcr, 0); 3383 3384 i = 0; 3385 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3386 /* unicast packet, accept it */ 3387 struct net_device *ndev = priv->ndev; 3388 /* get the default rx queue index */ 3389 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3390 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3391 (ndev->dev_addr[1] << 8) | 3392 ndev->dev_addr[2]; 3393 3394 rqfcr = (qindex << 10) | RQFCR_AND | 3395 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3396 3397 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3398 3399 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3400 (ndev->dev_addr[4] << 8) | 3401 ndev->dev_addr[5]; 3402 rqfcr = (qindex << 10) | RQFCR_GPI | 3403 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3404 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3405 } 3406 3407 __gfar_filer_enable(priv); 3408 } 3409 3410 static void gfar_filer_restore_table(struct gfar_private *priv) 3411 { 3412 u32 rqfcr, rqfpr; 3413 unsigned int i; 3414 3415 __gfar_filer_disable(priv); 3416 3417 for (i = 0; i <= MAX_FILER_IDX; i++) { 3418 rqfcr = priv->ftp_rqfcr[i]; 3419 rqfpr = priv->ftp_rqfpr[i]; 3420 gfar_write_filer(priv, i, rqfcr, rqfpr); 3421 } 3422 3423 __gfar_filer_enable(priv); 3424 } 3425 3426 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3427 static void gfar_start_wol_filer(struct gfar_private *priv) 3428 { 3429 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3430 u32 tempval; 3431 int i = 0; 3432 3433 /* Enable Rx hw queues */ 3434 gfar_write(®s->rqueue, priv->rqueue); 3435 3436 /* Initialize DMACTRL to have WWR and WOP */ 3437 tempval = gfar_read(®s->dmactrl); 3438 tempval |= DMACTRL_INIT_SETTINGS; 3439 gfar_write(®s->dmactrl, tempval); 3440 3441 /* Make sure we aren't stopped */ 3442 tempval = gfar_read(®s->dmactrl); 3443 tempval &= ~DMACTRL_GRS; 3444 gfar_write(®s->dmactrl, tempval); 3445 3446 for (i = 0; i < priv->num_grps; i++) { 3447 regs = priv->gfargrp[i].regs; 3448 /* Clear RHLT, so that the DMA starts polling now */ 3449 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3450 /* enable the Filer General Purpose Interrupt */ 3451 gfar_write(®s->imask, IMASK_FGPI); 3452 } 3453 3454 /* Enable Rx DMA */ 3455 tempval = gfar_read(®s->maccfg1); 3456 tempval |= MACCFG1_RX_EN; 3457 gfar_write(®s->maccfg1, tempval); 3458 } 3459 3460 static int gfar_suspend(struct device *dev) 3461 { 3462 struct gfar_private *priv = dev_get_drvdata(dev); 3463 struct net_device *ndev = priv->ndev; 3464 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3465 u32 tempval; 3466 u16 wol = priv->wol_opts; 3467 3468 if (!netif_running(ndev)) 3469 return 0; 3470 3471 disable_napi(priv); 3472 netif_tx_lock(ndev); 3473 netif_device_detach(ndev); 3474 netif_tx_unlock(ndev); 3475 3476 gfar_halt(priv); 3477 3478 if (wol & GFAR_WOL_MAGIC) { 3479 /* Enable interrupt on Magic Packet */ 3480 gfar_write(®s->imask, IMASK_MAG); 3481 3482 /* Enable Magic Packet mode */ 3483 tempval = gfar_read(®s->maccfg2); 3484 tempval |= MACCFG2_MPEN; 3485 gfar_write(®s->maccfg2, tempval); 3486 3487 /* re-enable the Rx block */ 3488 tempval = gfar_read(®s->maccfg1); 3489 tempval |= MACCFG1_RX_EN; 3490 gfar_write(®s->maccfg1, tempval); 3491 3492 } else if (wol & GFAR_WOL_FILER_UCAST) { 3493 gfar_filer_config_wol(priv); 3494 gfar_start_wol_filer(priv); 3495 3496 } else { 3497 phy_stop(ndev->phydev); 3498 } 3499 3500 return 0; 3501 } 3502 3503 static int gfar_resume(struct device *dev) 3504 { 3505 struct gfar_private *priv = dev_get_drvdata(dev); 3506 struct net_device *ndev = priv->ndev; 3507 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3508 u32 tempval; 3509 u16 wol = priv->wol_opts; 3510 3511 if (!netif_running(ndev)) 3512 return 0; 3513 3514 if (wol & GFAR_WOL_MAGIC) { 3515 /* Disable Magic Packet mode */ 3516 tempval = gfar_read(®s->maccfg2); 3517 tempval &= ~MACCFG2_MPEN; 3518 gfar_write(®s->maccfg2, tempval); 3519 3520 } else if (wol & GFAR_WOL_FILER_UCAST) { 3521 /* need to stop rx only, tx is already down */ 3522 gfar_halt(priv); 3523 gfar_filer_restore_table(priv); 3524 3525 } else { 3526 phy_start(ndev->phydev); 3527 } 3528 3529 gfar_start(priv); 3530 3531 netif_device_attach(ndev); 3532 enable_napi(priv); 3533 3534 return 0; 3535 } 3536 3537 static int gfar_restore(struct device *dev) 3538 { 3539 struct gfar_private *priv = dev_get_drvdata(dev); 3540 struct net_device *ndev = priv->ndev; 3541 3542 if (!netif_running(ndev)) { 3543 netif_device_attach(ndev); 3544 3545 return 0; 3546 } 3547 3548 gfar_init_bds(ndev); 3549 3550 gfar_mac_reset(priv); 3551 3552 gfar_init_tx_rx_base(priv); 3553 3554 gfar_start(priv); 3555 3556 priv->oldlink = 0; 3557 priv->oldspeed = 0; 3558 priv->oldduplex = -1; 3559 3560 if (ndev->phydev) 3561 phy_start(ndev->phydev); 3562 3563 netif_device_attach(ndev); 3564 enable_napi(priv); 3565 3566 return 0; 3567 } 3568 3569 static const struct dev_pm_ops gfar_pm_ops = { 3570 .suspend = gfar_suspend, 3571 .resume = gfar_resume, 3572 .freeze = gfar_suspend, 3573 .thaw = gfar_resume, 3574 .restore = gfar_restore, 3575 }; 3576 3577 #define GFAR_PM_OPS (&gfar_pm_ops) 3578 3579 #else 3580 3581 #define GFAR_PM_OPS NULL 3582 3583 #endif 3584 3585 static const struct of_device_id gfar_match[] = 3586 { 3587 { 3588 .type = "network", 3589 .compatible = "gianfar", 3590 }, 3591 { 3592 .compatible = "fsl,etsec2", 3593 }, 3594 {}, 3595 }; 3596 MODULE_DEVICE_TABLE(of, gfar_match); 3597 3598 /* Structure for a device driver */ 3599 static struct platform_driver gfar_driver = { 3600 .driver = { 3601 .name = "fsl-gianfar", 3602 .pm = GFAR_PM_OPS, 3603 .of_match_table = gfar_match, 3604 }, 3605 .probe = gfar_probe, 3606 .remove = gfar_remove, 3607 }; 3608 3609 module_platform_driver(gfar_driver); 3610