xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision 9da8320bb97768e35f2e64fa7642015271d672eb)
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (!gfar_irq(grp, TX)->irq ||
651 		    !gfar_irq(grp, RX)->irq ||
652 		    !gfar_irq(grp, ER)->irq)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	struct property *stash;
742 	u32 stash_len = 0;
743 	u32 stash_idx = 0;
744 	unsigned int num_tx_qs, num_rx_qs;
745 	unsigned short mode, poll_mode;
746 
747 	if (!np)
748 		return -ENODEV;
749 
750 	if (of_device_is_compatible(np, "fsl,etsec2")) {
751 		mode = MQ_MG_MODE;
752 		poll_mode = GFAR_SQ_POLLING;
753 	} else {
754 		mode = SQ_SG_MODE;
755 		poll_mode = GFAR_SQ_POLLING;
756 	}
757 
758 	if (mode == SQ_SG_MODE) {
759 		num_tx_qs = 1;
760 		num_rx_qs = 1;
761 	} else { /* MQ_MG_MODE */
762 		/* get the actual number of supported groups */
763 		unsigned int num_grps = gfar_of_group_count(np);
764 
765 		if (num_grps == 0 || num_grps > MAXGROUPS) {
766 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
767 				num_grps);
768 			pr_err("Cannot do alloc_etherdev, aborting\n");
769 			return -EINVAL;
770 		}
771 
772 		if (poll_mode == GFAR_SQ_POLLING) {
773 			num_tx_qs = num_grps; /* one txq per int group */
774 			num_rx_qs = num_grps; /* one rxq per int group */
775 		} else { /* GFAR_MQ_POLLING */
776 			u32 tx_queues, rx_queues;
777 			int ret;
778 
779 			/* parse the num of HW tx and rx queues */
780 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
781 						   &tx_queues);
782 			num_tx_qs = ret ? 1 : tx_queues;
783 
784 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
785 						   &rx_queues);
786 			num_rx_qs = ret ? 1 : rx_queues;
787 		}
788 	}
789 
790 	if (num_tx_qs > MAX_TX_QS) {
791 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
792 		       num_tx_qs, MAX_TX_QS);
793 		pr_err("Cannot do alloc_etherdev, aborting\n");
794 		return -EINVAL;
795 	}
796 
797 	if (num_rx_qs > MAX_RX_QS) {
798 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
799 		       num_rx_qs, MAX_RX_QS);
800 		pr_err("Cannot do alloc_etherdev, aborting\n");
801 		return -EINVAL;
802 	}
803 
804 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
805 	dev = *pdev;
806 	if (NULL == dev)
807 		return -ENOMEM;
808 
809 	priv = netdev_priv(dev);
810 	priv->ndev = dev;
811 
812 	priv->mode = mode;
813 	priv->poll_mode = poll_mode;
814 
815 	priv->num_tx_queues = num_tx_qs;
816 	netif_set_real_num_rx_queues(dev, num_rx_qs);
817 	priv->num_rx_queues = num_rx_qs;
818 
819 	err = gfar_alloc_tx_queues(priv);
820 	if (err)
821 		goto tx_alloc_failed;
822 
823 	err = gfar_alloc_rx_queues(priv);
824 	if (err)
825 		goto rx_alloc_failed;
826 
827 	err = of_property_read_string(np, "model", &model);
828 	if (err) {
829 		pr_err("Device model property missing, aborting\n");
830 		goto rx_alloc_failed;
831 	}
832 
833 	/* Init Rx queue filer rule set linked list */
834 	INIT_LIST_HEAD(&priv->rx_list.list);
835 	priv->rx_list.count = 0;
836 	mutex_init(&priv->rx_queue_access);
837 
838 	for (i = 0; i < MAXGROUPS; i++)
839 		priv->gfargrp[i].regs = NULL;
840 
841 	/* Parse and initialize group specific information */
842 	if (priv->mode == MQ_MG_MODE) {
843 		for_each_available_child_of_node(np, child) {
844 			if (of_node_cmp(child->name, "queue-group"))
845 				continue;
846 
847 			err = gfar_parse_group(child, priv, model);
848 			if (err)
849 				goto err_grp_init;
850 		}
851 	} else { /* SQ_SG_MODE */
852 		err = gfar_parse_group(np, priv, model);
853 		if (err)
854 			goto err_grp_init;
855 	}
856 
857 	stash = of_find_property(np, "bd-stash", NULL);
858 
859 	if (stash) {
860 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
861 		priv->bd_stash_en = 1;
862 	}
863 
864 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
865 
866 	if (err == 0)
867 		priv->rx_stash_size = stash_len;
868 
869 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
870 
871 	if (err == 0)
872 		priv->rx_stash_index = stash_idx;
873 
874 	if (stash_len || stash_idx)
875 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
876 
877 	mac_addr = of_get_mac_address(np);
878 
879 	if (mac_addr)
880 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
881 
882 	if (model && !strcasecmp(model, "TSEC"))
883 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
884 				     FSL_GIANFAR_DEV_HAS_COALESCE |
885 				     FSL_GIANFAR_DEV_HAS_RMON |
886 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
887 
888 	if (model && !strcasecmp(model, "eTSEC"))
889 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
890 				     FSL_GIANFAR_DEV_HAS_COALESCE |
891 				     FSL_GIANFAR_DEV_HAS_RMON |
892 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
893 				     FSL_GIANFAR_DEV_HAS_CSUM |
894 				     FSL_GIANFAR_DEV_HAS_VLAN |
895 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
896 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
897 				     FSL_GIANFAR_DEV_HAS_TIMER |
898 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
899 
900 	err = of_property_read_string(np, "phy-connection-type", &ctype);
901 
902 	/* We only care about rgmii-id.  The rest are autodetected */
903 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
904 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
905 	else
906 		priv->interface = PHY_INTERFACE_MODE_MII;
907 
908 	if (of_find_property(np, "fsl,magic-packet", NULL))
909 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
910 
911 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
912 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
913 
914 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
915 
916 	/* In the case of a fixed PHY, the DT node associated
917 	 * to the PHY is the Ethernet MAC DT node.
918 	 */
919 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
920 		err = of_phy_register_fixed_link(np);
921 		if (err)
922 			goto err_grp_init;
923 
924 		priv->phy_node = of_node_get(np);
925 	}
926 
927 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
928 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
929 
930 	return 0;
931 
932 err_grp_init:
933 	unmap_group_regs(priv);
934 rx_alloc_failed:
935 	gfar_free_rx_queues(priv);
936 tx_alloc_failed:
937 	gfar_free_tx_queues(priv);
938 	free_gfar_dev(priv);
939 	return err;
940 }
941 
942 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
943 {
944 	struct hwtstamp_config config;
945 	struct gfar_private *priv = netdev_priv(netdev);
946 
947 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
948 		return -EFAULT;
949 
950 	/* reserved for future extensions */
951 	if (config.flags)
952 		return -EINVAL;
953 
954 	switch (config.tx_type) {
955 	case HWTSTAMP_TX_OFF:
956 		priv->hwts_tx_en = 0;
957 		break;
958 	case HWTSTAMP_TX_ON:
959 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
960 			return -ERANGE;
961 		priv->hwts_tx_en = 1;
962 		break;
963 	default:
964 		return -ERANGE;
965 	}
966 
967 	switch (config.rx_filter) {
968 	case HWTSTAMP_FILTER_NONE:
969 		if (priv->hwts_rx_en) {
970 			priv->hwts_rx_en = 0;
971 			reset_gfar(netdev);
972 		}
973 		break;
974 	default:
975 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
976 			return -ERANGE;
977 		if (!priv->hwts_rx_en) {
978 			priv->hwts_rx_en = 1;
979 			reset_gfar(netdev);
980 		}
981 		config.rx_filter = HWTSTAMP_FILTER_ALL;
982 		break;
983 	}
984 
985 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
986 		-EFAULT : 0;
987 }
988 
989 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
990 {
991 	struct hwtstamp_config config;
992 	struct gfar_private *priv = netdev_priv(netdev);
993 
994 	config.flags = 0;
995 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
996 	config.rx_filter = (priv->hwts_rx_en ?
997 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
998 
999 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1000 		-EFAULT : 0;
1001 }
1002 
1003 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1004 {
1005 	struct gfar_private *priv = netdev_priv(dev);
1006 
1007 	if (!netif_running(dev))
1008 		return -EINVAL;
1009 
1010 	if (cmd == SIOCSHWTSTAMP)
1011 		return gfar_hwtstamp_set(dev, rq);
1012 	if (cmd == SIOCGHWTSTAMP)
1013 		return gfar_hwtstamp_get(dev, rq);
1014 
1015 	if (!priv->phydev)
1016 		return -ENODEV;
1017 
1018 	return phy_mii_ioctl(priv->phydev, rq, cmd);
1019 }
1020 
1021 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1022 				   u32 class)
1023 {
1024 	u32 rqfpr = FPR_FILER_MASK;
1025 	u32 rqfcr = 0x0;
1026 
1027 	rqfar--;
1028 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1029 	priv->ftp_rqfpr[rqfar] = rqfpr;
1030 	priv->ftp_rqfcr[rqfar] = rqfcr;
1031 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1032 
1033 	rqfar--;
1034 	rqfcr = RQFCR_CMP_NOMATCH;
1035 	priv->ftp_rqfpr[rqfar] = rqfpr;
1036 	priv->ftp_rqfcr[rqfar] = rqfcr;
1037 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1038 
1039 	rqfar--;
1040 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1041 	rqfpr = class;
1042 	priv->ftp_rqfcr[rqfar] = rqfcr;
1043 	priv->ftp_rqfpr[rqfar] = rqfpr;
1044 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1045 
1046 	rqfar--;
1047 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1048 	rqfpr = class;
1049 	priv->ftp_rqfcr[rqfar] = rqfcr;
1050 	priv->ftp_rqfpr[rqfar] = rqfpr;
1051 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1052 
1053 	return rqfar;
1054 }
1055 
1056 static void gfar_init_filer_table(struct gfar_private *priv)
1057 {
1058 	int i = 0x0;
1059 	u32 rqfar = MAX_FILER_IDX;
1060 	u32 rqfcr = 0x0;
1061 	u32 rqfpr = FPR_FILER_MASK;
1062 
1063 	/* Default rule */
1064 	rqfcr = RQFCR_CMP_MATCH;
1065 	priv->ftp_rqfcr[rqfar] = rqfcr;
1066 	priv->ftp_rqfpr[rqfar] = rqfpr;
1067 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1068 
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1071 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1072 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1073 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1074 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1075 
1076 	/* cur_filer_idx indicated the first non-masked rule */
1077 	priv->cur_filer_idx = rqfar;
1078 
1079 	/* Rest are masked rules */
1080 	rqfcr = RQFCR_CMP_NOMATCH;
1081 	for (i = 0; i < rqfar; i++) {
1082 		priv->ftp_rqfcr[i] = rqfcr;
1083 		priv->ftp_rqfpr[i] = rqfpr;
1084 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1085 	}
1086 }
1087 
1088 #ifdef CONFIG_PPC
1089 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1090 {
1091 	unsigned int pvr = mfspr(SPRN_PVR);
1092 	unsigned int svr = mfspr(SPRN_SVR);
1093 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1094 	unsigned int rev = svr & 0xffff;
1095 
1096 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1097 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1098 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1099 		priv->errata |= GFAR_ERRATA_74;
1100 
1101 	/* MPC8313 and MPC837x all rev */
1102 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1103 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1104 		priv->errata |= GFAR_ERRATA_76;
1105 
1106 	/* MPC8313 Rev < 2.0 */
1107 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1108 		priv->errata |= GFAR_ERRATA_12;
1109 }
1110 
1111 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1112 {
1113 	unsigned int svr = mfspr(SPRN_SVR);
1114 
1115 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1116 		priv->errata |= GFAR_ERRATA_12;
1117 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1118 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1119 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1120 }
1121 #endif
1122 
1123 static void gfar_detect_errata(struct gfar_private *priv)
1124 {
1125 	struct device *dev = &priv->ofdev->dev;
1126 
1127 	/* no plans to fix */
1128 	priv->errata |= GFAR_ERRATA_A002;
1129 
1130 #ifdef CONFIG_PPC
1131 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1132 		__gfar_detect_errata_85xx(priv);
1133 	else /* non-mpc85xx parts, i.e. e300 core based */
1134 		__gfar_detect_errata_83xx(priv);
1135 #endif
1136 
1137 	if (priv->errata)
1138 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1139 			 priv->errata);
1140 }
1141 
1142 void gfar_mac_reset(struct gfar_private *priv)
1143 {
1144 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1145 	u32 tempval;
1146 
1147 	/* Reset MAC layer */
1148 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1149 
1150 	/* We need to delay at least 3 TX clocks */
1151 	udelay(3);
1152 
1153 	/* the soft reset bit is not self-resetting, so we need to
1154 	 * clear it before resuming normal operation
1155 	 */
1156 	gfar_write(&regs->maccfg1, 0);
1157 
1158 	udelay(3);
1159 
1160 	gfar_rx_offload_en(priv);
1161 
1162 	/* Initialize the max receive frame/buffer lengths */
1163 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1164 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1165 
1166 	/* Initialize the Minimum Frame Length Register */
1167 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1168 
1169 	/* Initialize MACCFG2. */
1170 	tempval = MACCFG2_INIT_SETTINGS;
1171 
1172 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1173 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1174 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1175 	 */
1176 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1177 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1178 
1179 	gfar_write(&regs->maccfg2, tempval);
1180 
1181 	/* Clear mac addr hash registers */
1182 	gfar_write(&regs->igaddr0, 0);
1183 	gfar_write(&regs->igaddr1, 0);
1184 	gfar_write(&regs->igaddr2, 0);
1185 	gfar_write(&regs->igaddr3, 0);
1186 	gfar_write(&regs->igaddr4, 0);
1187 	gfar_write(&regs->igaddr5, 0);
1188 	gfar_write(&regs->igaddr6, 0);
1189 	gfar_write(&regs->igaddr7, 0);
1190 
1191 	gfar_write(&regs->gaddr0, 0);
1192 	gfar_write(&regs->gaddr1, 0);
1193 	gfar_write(&regs->gaddr2, 0);
1194 	gfar_write(&regs->gaddr3, 0);
1195 	gfar_write(&regs->gaddr4, 0);
1196 	gfar_write(&regs->gaddr5, 0);
1197 	gfar_write(&regs->gaddr6, 0);
1198 	gfar_write(&regs->gaddr7, 0);
1199 
1200 	if (priv->extended_hash)
1201 		gfar_clear_exact_match(priv->ndev);
1202 
1203 	gfar_mac_rx_config(priv);
1204 
1205 	gfar_mac_tx_config(priv);
1206 
1207 	gfar_set_mac_address(priv->ndev);
1208 
1209 	gfar_set_multi(priv->ndev);
1210 
1211 	/* clear ievent and imask before configuring coalescing */
1212 	gfar_ints_disable(priv);
1213 
1214 	/* Configure the coalescing support */
1215 	gfar_configure_coalescing_all(priv);
1216 }
1217 
1218 static void gfar_hw_init(struct gfar_private *priv)
1219 {
1220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1221 	u32 attrs;
1222 
1223 	/* Stop the DMA engine now, in case it was running before
1224 	 * (The firmware could have used it, and left it running).
1225 	 */
1226 	gfar_halt(priv);
1227 
1228 	gfar_mac_reset(priv);
1229 
1230 	/* Zero out the rmon mib registers if it has them */
1231 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1232 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1233 
1234 		/* Mask off the CAM interrupts */
1235 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1236 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1237 	}
1238 
1239 	/* Initialize ECNTRL */
1240 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1241 
1242 	/* Set the extraction length and index */
1243 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1244 		ATTRELI_EI(priv->rx_stash_index);
1245 
1246 	gfar_write(&regs->attreli, attrs);
1247 
1248 	/* Start with defaults, and add stashing
1249 	 * depending on driver parameters
1250 	 */
1251 	attrs = ATTR_INIT_SETTINGS;
1252 
1253 	if (priv->bd_stash_en)
1254 		attrs |= ATTR_BDSTASH;
1255 
1256 	if (priv->rx_stash_size != 0)
1257 		attrs |= ATTR_BUFSTASH;
1258 
1259 	gfar_write(&regs->attr, attrs);
1260 
1261 	/* FIFO configs */
1262 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1263 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1264 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1265 
1266 	/* Program the interrupt steering regs, only for MG devices */
1267 	if (priv->num_grps > 1)
1268 		gfar_write_isrg(priv);
1269 }
1270 
1271 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1272 {
1273 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1274 
1275 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1276 		priv->extended_hash = 1;
1277 		priv->hash_width = 9;
1278 
1279 		priv->hash_regs[0] = &regs->igaddr0;
1280 		priv->hash_regs[1] = &regs->igaddr1;
1281 		priv->hash_regs[2] = &regs->igaddr2;
1282 		priv->hash_regs[3] = &regs->igaddr3;
1283 		priv->hash_regs[4] = &regs->igaddr4;
1284 		priv->hash_regs[5] = &regs->igaddr5;
1285 		priv->hash_regs[6] = &regs->igaddr6;
1286 		priv->hash_regs[7] = &regs->igaddr7;
1287 		priv->hash_regs[8] = &regs->gaddr0;
1288 		priv->hash_regs[9] = &regs->gaddr1;
1289 		priv->hash_regs[10] = &regs->gaddr2;
1290 		priv->hash_regs[11] = &regs->gaddr3;
1291 		priv->hash_regs[12] = &regs->gaddr4;
1292 		priv->hash_regs[13] = &regs->gaddr5;
1293 		priv->hash_regs[14] = &regs->gaddr6;
1294 		priv->hash_regs[15] = &regs->gaddr7;
1295 
1296 	} else {
1297 		priv->extended_hash = 0;
1298 		priv->hash_width = 8;
1299 
1300 		priv->hash_regs[0] = &regs->gaddr0;
1301 		priv->hash_regs[1] = &regs->gaddr1;
1302 		priv->hash_regs[2] = &regs->gaddr2;
1303 		priv->hash_regs[3] = &regs->gaddr3;
1304 		priv->hash_regs[4] = &regs->gaddr4;
1305 		priv->hash_regs[5] = &regs->gaddr5;
1306 		priv->hash_regs[6] = &regs->gaddr6;
1307 		priv->hash_regs[7] = &regs->gaddr7;
1308 	}
1309 }
1310 
1311 /* Set up the ethernet device structure, private data,
1312  * and anything else we need before we start
1313  */
1314 static int gfar_probe(struct platform_device *ofdev)
1315 {
1316 	struct net_device *dev = NULL;
1317 	struct gfar_private *priv = NULL;
1318 	int err = 0, i;
1319 
1320 	err = gfar_of_init(ofdev, &dev);
1321 
1322 	if (err)
1323 		return err;
1324 
1325 	priv = netdev_priv(dev);
1326 	priv->ndev = dev;
1327 	priv->ofdev = ofdev;
1328 	priv->dev = &ofdev->dev;
1329 	SET_NETDEV_DEV(dev, &ofdev->dev);
1330 
1331 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1332 
1333 	platform_set_drvdata(ofdev, priv);
1334 
1335 	gfar_detect_errata(priv);
1336 
1337 	/* Set the dev->base_addr to the gfar reg region */
1338 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339 
1340 	/* Fill in the dev structure */
1341 	dev->watchdog_timeo = TX_TIMEOUT;
1342 	dev->mtu = 1500;
1343 	dev->netdev_ops = &gfar_netdev_ops;
1344 	dev->ethtool_ops = &gfar_ethtool_ops;
1345 
1346 	/* Register for napi ...We are registering NAPI for each grp */
1347 	for (i = 0; i < priv->num_grps; i++) {
1348 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1349 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1350 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1351 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1352 				       gfar_poll_tx_sq, 2);
1353 		} else {
1354 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1355 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1356 			netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1357 				       gfar_poll_tx, 2);
1358 		}
1359 	}
1360 
1361 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1362 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1363 				   NETIF_F_RXCSUM;
1364 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1365 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1366 	}
1367 
1368 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1369 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1370 				    NETIF_F_HW_VLAN_CTAG_RX;
1371 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1372 	}
1373 
1374 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1375 
1376 	gfar_init_addr_hash_table(priv);
1377 
1378 	/* Insert receive time stamps into padding alignment bytes */
1379 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1380 		priv->padding = 8;
1381 
1382 	if (dev->features & NETIF_F_IP_CSUM ||
1383 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384 		dev->needed_headroom = GMAC_FCB_LEN;
1385 
1386 	/* Initializing some of the rx/tx queue level parameters */
1387 	for (i = 0; i < priv->num_tx_queues; i++) {
1388 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1389 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1390 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1391 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1392 	}
1393 
1394 	for (i = 0; i < priv->num_rx_queues; i++) {
1395 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1396 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1397 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1398 	}
1399 
1400 	/* Always enable rx filer if available */
1401 	priv->rx_filer_enable =
1402 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1403 	/* Enable most messages by default */
1404 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1405 	/* use pritority h/w tx queue scheduling for single queue devices */
1406 	if (priv->num_tx_queues == 1)
1407 		priv->prio_sched_en = 1;
1408 
1409 	set_bit(GFAR_DOWN, &priv->state);
1410 
1411 	gfar_hw_init(priv);
1412 
1413 	/* Carrier starts down, phylib will bring it up */
1414 	netif_carrier_off(dev);
1415 
1416 	err = register_netdev(dev);
1417 
1418 	if (err) {
1419 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1420 		goto register_fail;
1421 	}
1422 
1423 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1424 		priv->wol_supported |= GFAR_WOL_MAGIC;
1425 
1426 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1427 	    priv->rx_filer_enable)
1428 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1429 
1430 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1431 
1432 	/* fill out IRQ number and name fields */
1433 	for (i = 0; i < priv->num_grps; i++) {
1434 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1435 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1436 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1437 				dev->name, "_g", '0' + i, "_tx");
1438 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1439 				dev->name, "_g", '0' + i, "_rx");
1440 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1441 				dev->name, "_g", '0' + i, "_er");
1442 		} else
1443 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1444 	}
1445 
1446 	/* Initialize the filer table */
1447 	gfar_init_filer_table(priv);
1448 
1449 	/* Print out the device info */
1450 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1451 
1452 	/* Even more device info helps when determining which kernel
1453 	 * provided which set of benchmarks.
1454 	 */
1455 	netdev_info(dev, "Running with NAPI enabled\n");
1456 	for (i = 0; i < priv->num_rx_queues; i++)
1457 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1458 			    i, priv->rx_queue[i]->rx_ring_size);
1459 	for (i = 0; i < priv->num_tx_queues; i++)
1460 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1461 			    i, priv->tx_queue[i]->tx_ring_size);
1462 
1463 	return 0;
1464 
1465 register_fail:
1466 	unmap_group_regs(priv);
1467 	gfar_free_rx_queues(priv);
1468 	gfar_free_tx_queues(priv);
1469 	of_node_put(priv->phy_node);
1470 	of_node_put(priv->tbi_node);
1471 	free_gfar_dev(priv);
1472 	return err;
1473 }
1474 
1475 static int gfar_remove(struct platform_device *ofdev)
1476 {
1477 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1478 
1479 	of_node_put(priv->phy_node);
1480 	of_node_put(priv->tbi_node);
1481 
1482 	unregister_netdev(priv->ndev);
1483 	unmap_group_regs(priv);
1484 	gfar_free_rx_queues(priv);
1485 	gfar_free_tx_queues(priv);
1486 	free_gfar_dev(priv);
1487 
1488 	return 0;
1489 }
1490 
1491 #ifdef CONFIG_PM
1492 
1493 static void __gfar_filer_disable(struct gfar_private *priv)
1494 {
1495 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1496 	u32 temp;
1497 
1498 	temp = gfar_read(&regs->rctrl);
1499 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1500 	gfar_write(&regs->rctrl, temp);
1501 }
1502 
1503 static void __gfar_filer_enable(struct gfar_private *priv)
1504 {
1505 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506 	u32 temp;
1507 
1508 	temp = gfar_read(&regs->rctrl);
1509 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1510 	gfar_write(&regs->rctrl, temp);
1511 }
1512 
1513 /* Filer rules implementing wol capabilities */
1514 static void gfar_filer_config_wol(struct gfar_private *priv)
1515 {
1516 	unsigned int i;
1517 	u32 rqfcr;
1518 
1519 	__gfar_filer_disable(priv);
1520 
1521 	/* clear the filer table, reject any packet by default */
1522 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1523 	for (i = 0; i <= MAX_FILER_IDX; i++)
1524 		gfar_write_filer(priv, i, rqfcr, 0);
1525 
1526 	i = 0;
1527 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1528 		/* unicast packet, accept it */
1529 		struct net_device *ndev = priv->ndev;
1530 		/* get the default rx queue index */
1531 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1532 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1533 				    (ndev->dev_addr[1] << 8) |
1534 				     ndev->dev_addr[2];
1535 
1536 		rqfcr = (qindex << 10) | RQFCR_AND |
1537 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1538 
1539 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1540 
1541 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1542 				(ndev->dev_addr[4] << 8) |
1543 				 ndev->dev_addr[5];
1544 		rqfcr = (qindex << 10) | RQFCR_GPI |
1545 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1546 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1547 	}
1548 
1549 	__gfar_filer_enable(priv);
1550 }
1551 
1552 static void gfar_filer_restore_table(struct gfar_private *priv)
1553 {
1554 	u32 rqfcr, rqfpr;
1555 	unsigned int i;
1556 
1557 	__gfar_filer_disable(priv);
1558 
1559 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1560 		rqfcr = priv->ftp_rqfcr[i];
1561 		rqfpr = priv->ftp_rqfpr[i];
1562 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1563 	}
1564 
1565 	__gfar_filer_enable(priv);
1566 }
1567 
1568 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1569 static void gfar_start_wol_filer(struct gfar_private *priv)
1570 {
1571 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1572 	u32 tempval;
1573 	int i = 0;
1574 
1575 	/* Enable Rx hw queues */
1576 	gfar_write(&regs->rqueue, priv->rqueue);
1577 
1578 	/* Initialize DMACTRL to have WWR and WOP */
1579 	tempval = gfar_read(&regs->dmactrl);
1580 	tempval |= DMACTRL_INIT_SETTINGS;
1581 	gfar_write(&regs->dmactrl, tempval);
1582 
1583 	/* Make sure we aren't stopped */
1584 	tempval = gfar_read(&regs->dmactrl);
1585 	tempval &= ~DMACTRL_GRS;
1586 	gfar_write(&regs->dmactrl, tempval);
1587 
1588 	for (i = 0; i < priv->num_grps; i++) {
1589 		regs = priv->gfargrp[i].regs;
1590 		/* Clear RHLT, so that the DMA starts polling now */
1591 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1592 		/* enable the Filer General Purpose Interrupt */
1593 		gfar_write(&regs->imask, IMASK_FGPI);
1594 	}
1595 
1596 	/* Enable Rx DMA */
1597 	tempval = gfar_read(&regs->maccfg1);
1598 	tempval |= MACCFG1_RX_EN;
1599 	gfar_write(&regs->maccfg1, tempval);
1600 }
1601 
1602 static int gfar_suspend(struct device *dev)
1603 {
1604 	struct gfar_private *priv = dev_get_drvdata(dev);
1605 	struct net_device *ndev = priv->ndev;
1606 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1607 	u32 tempval;
1608 	u16 wol = priv->wol_opts;
1609 
1610 	if (!netif_running(ndev))
1611 		return 0;
1612 
1613 	disable_napi(priv);
1614 	netif_tx_lock(ndev);
1615 	netif_device_detach(ndev);
1616 	netif_tx_unlock(ndev);
1617 
1618 	gfar_halt(priv);
1619 
1620 	if (wol & GFAR_WOL_MAGIC) {
1621 		/* Enable interrupt on Magic Packet */
1622 		gfar_write(&regs->imask, IMASK_MAG);
1623 
1624 		/* Enable Magic Packet mode */
1625 		tempval = gfar_read(&regs->maccfg2);
1626 		tempval |= MACCFG2_MPEN;
1627 		gfar_write(&regs->maccfg2, tempval);
1628 
1629 		/* re-enable the Rx block */
1630 		tempval = gfar_read(&regs->maccfg1);
1631 		tempval |= MACCFG1_RX_EN;
1632 		gfar_write(&regs->maccfg1, tempval);
1633 
1634 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1635 		gfar_filer_config_wol(priv);
1636 		gfar_start_wol_filer(priv);
1637 
1638 	} else {
1639 		phy_stop(priv->phydev);
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static int gfar_resume(struct device *dev)
1646 {
1647 	struct gfar_private *priv = dev_get_drvdata(dev);
1648 	struct net_device *ndev = priv->ndev;
1649 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1650 	u32 tempval;
1651 	u16 wol = priv->wol_opts;
1652 
1653 	if (!netif_running(ndev))
1654 		return 0;
1655 
1656 	if (wol & GFAR_WOL_MAGIC) {
1657 		/* Disable Magic Packet mode */
1658 		tempval = gfar_read(&regs->maccfg2);
1659 		tempval &= ~MACCFG2_MPEN;
1660 		gfar_write(&regs->maccfg2, tempval);
1661 
1662 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1663 		/* need to stop rx only, tx is already down */
1664 		gfar_halt(priv);
1665 		gfar_filer_restore_table(priv);
1666 
1667 	} else {
1668 		phy_start(priv->phydev);
1669 	}
1670 
1671 	gfar_start(priv);
1672 
1673 	netif_device_attach(ndev);
1674 	enable_napi(priv);
1675 
1676 	return 0;
1677 }
1678 
1679 static int gfar_restore(struct device *dev)
1680 {
1681 	struct gfar_private *priv = dev_get_drvdata(dev);
1682 	struct net_device *ndev = priv->ndev;
1683 
1684 	if (!netif_running(ndev)) {
1685 		netif_device_attach(ndev);
1686 
1687 		return 0;
1688 	}
1689 
1690 	gfar_init_bds(ndev);
1691 
1692 	gfar_mac_reset(priv);
1693 
1694 	gfar_init_tx_rx_base(priv);
1695 
1696 	gfar_start(priv);
1697 
1698 	priv->oldlink = 0;
1699 	priv->oldspeed = 0;
1700 	priv->oldduplex = -1;
1701 
1702 	if (priv->phydev)
1703 		phy_start(priv->phydev);
1704 
1705 	netif_device_attach(ndev);
1706 	enable_napi(priv);
1707 
1708 	return 0;
1709 }
1710 
1711 static struct dev_pm_ops gfar_pm_ops = {
1712 	.suspend = gfar_suspend,
1713 	.resume = gfar_resume,
1714 	.freeze = gfar_suspend,
1715 	.thaw = gfar_resume,
1716 	.restore = gfar_restore,
1717 };
1718 
1719 #define GFAR_PM_OPS (&gfar_pm_ops)
1720 
1721 #else
1722 
1723 #define GFAR_PM_OPS NULL
1724 
1725 #endif
1726 
1727 /* Reads the controller's registers to determine what interface
1728  * connects it to the PHY.
1729  */
1730 static phy_interface_t gfar_get_interface(struct net_device *dev)
1731 {
1732 	struct gfar_private *priv = netdev_priv(dev);
1733 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1734 	u32 ecntrl;
1735 
1736 	ecntrl = gfar_read(&regs->ecntrl);
1737 
1738 	if (ecntrl & ECNTRL_SGMII_MODE)
1739 		return PHY_INTERFACE_MODE_SGMII;
1740 
1741 	if (ecntrl & ECNTRL_TBI_MODE) {
1742 		if (ecntrl & ECNTRL_REDUCED_MODE)
1743 			return PHY_INTERFACE_MODE_RTBI;
1744 		else
1745 			return PHY_INTERFACE_MODE_TBI;
1746 	}
1747 
1748 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1749 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1750 			return PHY_INTERFACE_MODE_RMII;
1751 		}
1752 		else {
1753 			phy_interface_t interface = priv->interface;
1754 
1755 			/* This isn't autodetected right now, so it must
1756 			 * be set by the device tree or platform code.
1757 			 */
1758 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1759 				return PHY_INTERFACE_MODE_RGMII_ID;
1760 
1761 			return PHY_INTERFACE_MODE_RGMII;
1762 		}
1763 	}
1764 
1765 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1766 		return PHY_INTERFACE_MODE_GMII;
1767 
1768 	return PHY_INTERFACE_MODE_MII;
1769 }
1770 
1771 
1772 /* Initializes driver's PHY state, and attaches to the PHY.
1773  * Returns 0 on success.
1774  */
1775 static int init_phy(struct net_device *dev)
1776 {
1777 	struct gfar_private *priv = netdev_priv(dev);
1778 	uint gigabit_support =
1779 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1780 		GFAR_SUPPORTED_GBIT : 0;
1781 	phy_interface_t interface;
1782 
1783 	priv->oldlink = 0;
1784 	priv->oldspeed = 0;
1785 	priv->oldduplex = -1;
1786 
1787 	interface = gfar_get_interface(dev);
1788 
1789 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1790 				      interface);
1791 	if (!priv->phydev) {
1792 		dev_err(&dev->dev, "could not attach to PHY\n");
1793 		return -ENODEV;
1794 	}
1795 
1796 	if (interface == PHY_INTERFACE_MODE_SGMII)
1797 		gfar_configure_serdes(dev);
1798 
1799 	/* Remove any features not supported by the controller */
1800 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1801 	priv->phydev->advertising = priv->phydev->supported;
1802 
1803 	/* Add support for flow control, but don't advertise it by default */
1804 	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1805 
1806 	return 0;
1807 }
1808 
1809 /* Initialize TBI PHY interface for communicating with the
1810  * SERDES lynx PHY on the chip.  We communicate with this PHY
1811  * through the MDIO bus on each controller, treating it as a
1812  * "normal" PHY at the address found in the TBIPA register.  We assume
1813  * that the TBIPA register is valid.  Either the MDIO bus code will set
1814  * it to a value that doesn't conflict with other PHYs on the bus, or the
1815  * value doesn't matter, as there are no other PHYs on the bus.
1816  */
1817 static void gfar_configure_serdes(struct net_device *dev)
1818 {
1819 	struct gfar_private *priv = netdev_priv(dev);
1820 	struct phy_device *tbiphy;
1821 
1822 	if (!priv->tbi_node) {
1823 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1824 				    "device tree specify a tbi-handle\n");
1825 		return;
1826 	}
1827 
1828 	tbiphy = of_phy_find_device(priv->tbi_node);
1829 	if (!tbiphy) {
1830 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1831 		return;
1832 	}
1833 
1834 	/* If the link is already up, we must already be ok, and don't need to
1835 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1836 	 * everything for us?  Resetting it takes the link down and requires
1837 	 * several seconds for it to come back.
1838 	 */
1839 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1840 		put_device(&tbiphy->dev);
1841 		return;
1842 	}
1843 
1844 	/* Single clk mode, mii mode off(for serdes communication) */
1845 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1846 
1847 	phy_write(tbiphy, MII_ADVERTISE,
1848 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1849 		  ADVERTISE_1000XPSE_ASYM);
1850 
1851 	phy_write(tbiphy, MII_BMCR,
1852 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1853 		  BMCR_SPEED1000);
1854 
1855 	put_device(&tbiphy->dev);
1856 }
1857 
1858 static int __gfar_is_rx_idle(struct gfar_private *priv)
1859 {
1860 	u32 res;
1861 
1862 	/* Normaly TSEC should not hang on GRS commands, so we should
1863 	 * actually wait for IEVENT_GRSC flag.
1864 	 */
1865 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1866 		return 0;
1867 
1868 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1869 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1870 	 * and the Rx can be safely reset.
1871 	 */
1872 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1873 	res &= 0x7f807f80;
1874 	if ((res & 0xffff) == (res >> 16))
1875 		return 1;
1876 
1877 	return 0;
1878 }
1879 
1880 /* Halt the receive and transmit queues */
1881 static void gfar_halt_nodisable(struct gfar_private *priv)
1882 {
1883 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1884 	u32 tempval;
1885 	unsigned int timeout;
1886 	int stopped;
1887 
1888 	gfar_ints_disable(priv);
1889 
1890 	if (gfar_is_dma_stopped(priv))
1891 		return;
1892 
1893 	/* Stop the DMA, and wait for it to stop */
1894 	tempval = gfar_read(&regs->dmactrl);
1895 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1896 	gfar_write(&regs->dmactrl, tempval);
1897 
1898 retry:
1899 	timeout = 1000;
1900 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1901 		cpu_relax();
1902 		timeout--;
1903 	}
1904 
1905 	if (!timeout)
1906 		stopped = gfar_is_dma_stopped(priv);
1907 
1908 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1909 	    !__gfar_is_rx_idle(priv))
1910 		goto retry;
1911 }
1912 
1913 /* Halt the receive and transmit queues */
1914 void gfar_halt(struct gfar_private *priv)
1915 {
1916 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1917 	u32 tempval;
1918 
1919 	/* Dissable the Rx/Tx hw queues */
1920 	gfar_write(&regs->rqueue, 0);
1921 	gfar_write(&regs->tqueue, 0);
1922 
1923 	mdelay(10);
1924 
1925 	gfar_halt_nodisable(priv);
1926 
1927 	/* Disable Rx/Tx DMA */
1928 	tempval = gfar_read(&regs->maccfg1);
1929 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1930 	gfar_write(&regs->maccfg1, tempval);
1931 }
1932 
1933 void stop_gfar(struct net_device *dev)
1934 {
1935 	struct gfar_private *priv = netdev_priv(dev);
1936 
1937 	netif_tx_stop_all_queues(dev);
1938 
1939 	smp_mb__before_atomic();
1940 	set_bit(GFAR_DOWN, &priv->state);
1941 	smp_mb__after_atomic();
1942 
1943 	disable_napi(priv);
1944 
1945 	/* disable ints and gracefully shut down Rx/Tx DMA */
1946 	gfar_halt(priv);
1947 
1948 	phy_stop(priv->phydev);
1949 
1950 	free_skb_resources(priv);
1951 }
1952 
1953 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1954 {
1955 	struct txbd8 *txbdp;
1956 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1957 	int i, j;
1958 
1959 	txbdp = tx_queue->tx_bd_base;
1960 
1961 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1962 		if (!tx_queue->tx_skbuff[i])
1963 			continue;
1964 
1965 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1966 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1967 		txbdp->lstatus = 0;
1968 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1969 		     j++) {
1970 			txbdp++;
1971 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1972 				       be16_to_cpu(txbdp->length),
1973 				       DMA_TO_DEVICE);
1974 		}
1975 		txbdp++;
1976 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1977 		tx_queue->tx_skbuff[i] = NULL;
1978 	}
1979 	kfree(tx_queue->tx_skbuff);
1980 	tx_queue->tx_skbuff = NULL;
1981 }
1982 
1983 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1984 {
1985 	int i;
1986 
1987 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1988 
1989 	if (rx_queue->skb)
1990 		dev_kfree_skb(rx_queue->skb);
1991 
1992 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1993 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1994 
1995 		rxbdp->lstatus = 0;
1996 		rxbdp->bufPtr = 0;
1997 		rxbdp++;
1998 
1999 		if (!rxb->page)
2000 			continue;
2001 
2002 		dma_unmap_single(rx_queue->dev, rxb->dma,
2003 				 PAGE_SIZE, DMA_FROM_DEVICE);
2004 		__free_page(rxb->page);
2005 
2006 		rxb->page = NULL;
2007 	}
2008 
2009 	kfree(rx_queue->rx_buff);
2010 	rx_queue->rx_buff = NULL;
2011 }
2012 
2013 /* If there are any tx skbs or rx skbs still around, free them.
2014  * Then free tx_skbuff and rx_skbuff
2015  */
2016 static void free_skb_resources(struct gfar_private *priv)
2017 {
2018 	struct gfar_priv_tx_q *tx_queue = NULL;
2019 	struct gfar_priv_rx_q *rx_queue = NULL;
2020 	int i;
2021 
2022 	/* Go through all the buffer descriptors and free their data buffers */
2023 	for (i = 0; i < priv->num_tx_queues; i++) {
2024 		struct netdev_queue *txq;
2025 
2026 		tx_queue = priv->tx_queue[i];
2027 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2028 		if (tx_queue->tx_skbuff)
2029 			free_skb_tx_queue(tx_queue);
2030 		netdev_tx_reset_queue(txq);
2031 	}
2032 
2033 	for (i = 0; i < priv->num_rx_queues; i++) {
2034 		rx_queue = priv->rx_queue[i];
2035 		if (rx_queue->rx_buff)
2036 			free_skb_rx_queue(rx_queue);
2037 	}
2038 
2039 	dma_free_coherent(priv->dev,
2040 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2041 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2042 			  priv->tx_queue[0]->tx_bd_base,
2043 			  priv->tx_queue[0]->tx_bd_dma_base);
2044 }
2045 
2046 void gfar_start(struct gfar_private *priv)
2047 {
2048 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2049 	u32 tempval;
2050 	int i = 0;
2051 
2052 	/* Enable Rx/Tx hw queues */
2053 	gfar_write(&regs->rqueue, priv->rqueue);
2054 	gfar_write(&regs->tqueue, priv->tqueue);
2055 
2056 	/* Initialize DMACTRL to have WWR and WOP */
2057 	tempval = gfar_read(&regs->dmactrl);
2058 	tempval |= DMACTRL_INIT_SETTINGS;
2059 	gfar_write(&regs->dmactrl, tempval);
2060 
2061 	/* Make sure we aren't stopped */
2062 	tempval = gfar_read(&regs->dmactrl);
2063 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2064 	gfar_write(&regs->dmactrl, tempval);
2065 
2066 	for (i = 0; i < priv->num_grps; i++) {
2067 		regs = priv->gfargrp[i].regs;
2068 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2069 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2070 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2071 	}
2072 
2073 	/* Enable Rx/Tx DMA */
2074 	tempval = gfar_read(&regs->maccfg1);
2075 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2076 	gfar_write(&regs->maccfg1, tempval);
2077 
2078 	gfar_ints_enable(priv);
2079 
2080 	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2081 }
2082 
2083 static void free_grp_irqs(struct gfar_priv_grp *grp)
2084 {
2085 	free_irq(gfar_irq(grp, TX)->irq, grp);
2086 	free_irq(gfar_irq(grp, RX)->irq, grp);
2087 	free_irq(gfar_irq(grp, ER)->irq, grp);
2088 }
2089 
2090 static int register_grp_irqs(struct gfar_priv_grp *grp)
2091 {
2092 	struct gfar_private *priv = grp->priv;
2093 	struct net_device *dev = priv->ndev;
2094 	int err;
2095 
2096 	/* If the device has multiple interrupts, register for
2097 	 * them.  Otherwise, only register for the one
2098 	 */
2099 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2100 		/* Install our interrupt handlers for Error,
2101 		 * Transmit, and Receive
2102 		 */
2103 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2104 				  gfar_irq(grp, ER)->name, grp);
2105 		if (err < 0) {
2106 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2107 				  gfar_irq(grp, ER)->irq);
2108 
2109 			goto err_irq_fail;
2110 		}
2111 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2112 
2113 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2114 				  gfar_irq(grp, TX)->name, grp);
2115 		if (err < 0) {
2116 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2117 				  gfar_irq(grp, TX)->irq);
2118 			goto tx_irq_fail;
2119 		}
2120 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2121 				  gfar_irq(grp, RX)->name, grp);
2122 		if (err < 0) {
2123 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2124 				  gfar_irq(grp, RX)->irq);
2125 			goto rx_irq_fail;
2126 		}
2127 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2128 
2129 	} else {
2130 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2131 				  gfar_irq(grp, TX)->name, grp);
2132 		if (err < 0) {
2133 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2134 				  gfar_irq(grp, TX)->irq);
2135 			goto err_irq_fail;
2136 		}
2137 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2138 	}
2139 
2140 	return 0;
2141 
2142 rx_irq_fail:
2143 	free_irq(gfar_irq(grp, TX)->irq, grp);
2144 tx_irq_fail:
2145 	free_irq(gfar_irq(grp, ER)->irq, grp);
2146 err_irq_fail:
2147 	return err;
2148 
2149 }
2150 
2151 static void gfar_free_irq(struct gfar_private *priv)
2152 {
2153 	int i;
2154 
2155 	/* Free the IRQs */
2156 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2157 		for (i = 0; i < priv->num_grps; i++)
2158 			free_grp_irqs(&priv->gfargrp[i]);
2159 	} else {
2160 		for (i = 0; i < priv->num_grps; i++)
2161 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2162 				 &priv->gfargrp[i]);
2163 	}
2164 }
2165 
2166 static int gfar_request_irq(struct gfar_private *priv)
2167 {
2168 	int err, i, j;
2169 
2170 	for (i = 0; i < priv->num_grps; i++) {
2171 		err = register_grp_irqs(&priv->gfargrp[i]);
2172 		if (err) {
2173 			for (j = 0; j < i; j++)
2174 				free_grp_irqs(&priv->gfargrp[j]);
2175 			return err;
2176 		}
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 /* Bring the controller up and running */
2183 int startup_gfar(struct net_device *ndev)
2184 {
2185 	struct gfar_private *priv = netdev_priv(ndev);
2186 	int err;
2187 
2188 	gfar_mac_reset(priv);
2189 
2190 	err = gfar_alloc_skb_resources(ndev);
2191 	if (err)
2192 		return err;
2193 
2194 	gfar_init_tx_rx_base(priv);
2195 
2196 	smp_mb__before_atomic();
2197 	clear_bit(GFAR_DOWN, &priv->state);
2198 	smp_mb__after_atomic();
2199 
2200 	/* Start Rx/Tx DMA and enable the interrupts */
2201 	gfar_start(priv);
2202 
2203 	/* force link state update after mac reset */
2204 	priv->oldlink = 0;
2205 	priv->oldspeed = 0;
2206 	priv->oldduplex = -1;
2207 
2208 	phy_start(priv->phydev);
2209 
2210 	enable_napi(priv);
2211 
2212 	netif_tx_wake_all_queues(ndev);
2213 
2214 	return 0;
2215 }
2216 
2217 /* Called when something needs to use the ethernet device
2218  * Returns 0 for success.
2219  */
2220 static int gfar_enet_open(struct net_device *dev)
2221 {
2222 	struct gfar_private *priv = netdev_priv(dev);
2223 	int err;
2224 
2225 	err = init_phy(dev);
2226 	if (err)
2227 		return err;
2228 
2229 	err = gfar_request_irq(priv);
2230 	if (err)
2231 		return err;
2232 
2233 	err = startup_gfar(dev);
2234 	if (err)
2235 		return err;
2236 
2237 	return err;
2238 }
2239 
2240 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2241 {
2242 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2243 
2244 	memset(fcb, 0, GMAC_FCB_LEN);
2245 
2246 	return fcb;
2247 }
2248 
2249 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2250 				    int fcb_length)
2251 {
2252 	/* If we're here, it's a IP packet with a TCP or UDP
2253 	 * payload.  We set it to checksum, using a pseudo-header
2254 	 * we provide
2255 	 */
2256 	u8 flags = TXFCB_DEFAULT;
2257 
2258 	/* Tell the controller what the protocol is
2259 	 * And provide the already calculated phcs
2260 	 */
2261 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2262 		flags |= TXFCB_UDP;
2263 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2264 	} else
2265 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2266 
2267 	/* l3os is the distance between the start of the
2268 	 * frame (skb->data) and the start of the IP hdr.
2269 	 * l4os is the distance between the start of the
2270 	 * l3 hdr and the l4 hdr
2271 	 */
2272 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2273 	fcb->l4os = skb_network_header_len(skb);
2274 
2275 	fcb->flags = flags;
2276 }
2277 
2278 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2279 {
2280 	fcb->flags |= TXFCB_VLN;
2281 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2282 }
2283 
2284 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2285 				      struct txbd8 *base, int ring_size)
2286 {
2287 	struct txbd8 *new_bd = bdp + stride;
2288 
2289 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2290 }
2291 
2292 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2293 				      int ring_size)
2294 {
2295 	return skip_txbd(bdp, 1, base, ring_size);
2296 }
2297 
2298 /* eTSEC12: csum generation not supported for some fcb offsets */
2299 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2300 				       unsigned long fcb_addr)
2301 {
2302 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2303 	       (fcb_addr % 0x20) > 0x18);
2304 }
2305 
2306 /* eTSEC76: csum generation for frames larger than 2500 may
2307  * cause excess delays before start of transmission
2308  */
2309 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2310 				       unsigned int len)
2311 {
2312 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2313 	       (len > 2500));
2314 }
2315 
2316 /* This is called by the kernel when a frame is ready for transmission.
2317  * It is pointed to by the dev->hard_start_xmit function pointer
2318  */
2319 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2320 {
2321 	struct gfar_private *priv = netdev_priv(dev);
2322 	struct gfar_priv_tx_q *tx_queue = NULL;
2323 	struct netdev_queue *txq;
2324 	struct gfar __iomem *regs = NULL;
2325 	struct txfcb *fcb = NULL;
2326 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2327 	u32 lstatus;
2328 	int i, rq = 0;
2329 	int do_tstamp, do_csum, do_vlan;
2330 	u32 bufaddr;
2331 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2332 
2333 	rq = skb->queue_mapping;
2334 	tx_queue = priv->tx_queue[rq];
2335 	txq = netdev_get_tx_queue(dev, rq);
2336 	base = tx_queue->tx_bd_base;
2337 	regs = tx_queue->grp->regs;
2338 
2339 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340 	do_vlan = skb_vlan_tag_present(skb);
2341 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342 		    priv->hwts_tx_en;
2343 
2344 	if (do_csum || do_vlan)
2345 		fcb_len = GMAC_FCB_LEN;
2346 
2347 	/* check if time stamp should be generated */
2348 	if (unlikely(do_tstamp))
2349 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2350 
2351 	/* make space for additional header when fcb is needed */
2352 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353 		struct sk_buff *skb_new;
2354 
2355 		skb_new = skb_realloc_headroom(skb, fcb_len);
2356 		if (!skb_new) {
2357 			dev->stats.tx_errors++;
2358 			dev_kfree_skb_any(skb);
2359 			return NETDEV_TX_OK;
2360 		}
2361 
2362 		if (skb->sk)
2363 			skb_set_owner_w(skb_new, skb->sk);
2364 		dev_consume_skb_any(skb);
2365 		skb = skb_new;
2366 	}
2367 
2368 	/* total number of fragments in the SKB */
2369 	nr_frags = skb_shinfo(skb)->nr_frags;
2370 
2371 	/* calculate the required number of TxBDs for this skb */
2372 	if (unlikely(do_tstamp))
2373 		nr_txbds = nr_frags + 2;
2374 	else
2375 		nr_txbds = nr_frags + 1;
2376 
2377 	/* check if there is space to queue this packet */
2378 	if (nr_txbds > tx_queue->num_txbdfree) {
2379 		/* no space, stop the queue */
2380 		netif_tx_stop_queue(txq);
2381 		dev->stats.tx_fifo_errors++;
2382 		return NETDEV_TX_BUSY;
2383 	}
2384 
2385 	/* Update transmit stats */
2386 	bytes_sent = skb->len;
2387 	tx_queue->stats.tx_bytes += bytes_sent;
2388 	/* keep Tx bytes on wire for BQL accounting */
2389 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2390 	tx_queue->stats.tx_packets++;
2391 
2392 	txbdp = txbdp_start = tx_queue->cur_tx;
2393 	lstatus = be32_to_cpu(txbdp->lstatus);
2394 
2395 	/* Time stamp insertion requires one additional TxBD */
2396 	if (unlikely(do_tstamp))
2397 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2398 						 tx_queue->tx_ring_size);
2399 
2400 	if (nr_frags == 0) {
2401 		if (unlikely(do_tstamp)) {
2402 			u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2403 
2404 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2405 			txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2406 		} else {
2407 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2408 		}
2409 	} else {
2410 		/* Place the fragment addresses and lengths into the TxBDs */
2411 		for (i = 0; i < nr_frags; i++) {
2412 			unsigned int frag_len;
2413 			/* Point at the next BD, wrapping as needed */
2414 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2415 
2416 			frag_len = skb_shinfo(skb)->frags[i].size;
2417 
2418 			lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2419 				  BD_LFLAG(TXBD_READY);
2420 
2421 			/* Handle the last BD specially */
2422 			if (i == nr_frags - 1)
2423 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2424 
2425 			bufaddr = skb_frag_dma_map(priv->dev,
2426 						   &skb_shinfo(skb)->frags[i],
2427 						   0,
2428 						   frag_len,
2429 						   DMA_TO_DEVICE);
2430 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2431 				goto dma_map_err;
2432 
2433 			/* set the TxBD length and buffer pointer */
2434 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2435 			txbdp->lstatus = cpu_to_be32(lstatus);
2436 		}
2437 
2438 		lstatus = be32_to_cpu(txbdp_start->lstatus);
2439 	}
2440 
2441 	/* Add TxPAL between FCB and frame if required */
2442 	if (unlikely(do_tstamp)) {
2443 		skb_push(skb, GMAC_TXPAL_LEN);
2444 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2445 	}
2446 
2447 	/* Add TxFCB if required */
2448 	if (fcb_len) {
2449 		fcb = gfar_add_fcb(skb);
2450 		lstatus |= BD_LFLAG(TXBD_TOE);
2451 	}
2452 
2453 	/* Set up checksumming */
2454 	if (do_csum) {
2455 		gfar_tx_checksum(skb, fcb, fcb_len);
2456 
2457 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2458 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2459 			__skb_pull(skb, GMAC_FCB_LEN);
2460 			skb_checksum_help(skb);
2461 			if (do_vlan || do_tstamp) {
2462 				/* put back a new fcb for vlan/tstamp TOE */
2463 				fcb = gfar_add_fcb(skb);
2464 			} else {
2465 				/* Tx TOE not used */
2466 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2467 				fcb = NULL;
2468 			}
2469 		}
2470 	}
2471 
2472 	if (do_vlan)
2473 		gfar_tx_vlan(skb, fcb);
2474 
2475 	/* Setup tx hardware time stamping if requested */
2476 	if (unlikely(do_tstamp)) {
2477 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2478 		fcb->ptp = 1;
2479 	}
2480 
2481 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2482 				 DMA_TO_DEVICE);
2483 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2484 		goto dma_map_err;
2485 
2486 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2487 
2488 	/* If time stamping is requested one additional TxBD must be set up. The
2489 	 * first TxBD points to the FCB and must have a data length of
2490 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2491 	 * the full frame length.
2492 	 */
2493 	if (unlikely(do_tstamp)) {
2494 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2495 
2496 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2497 		bufaddr += fcb_len;
2498 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2499 			      (skb_headlen(skb) - fcb_len);
2500 
2501 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2502 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2503 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2504 	} else {
2505 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2506 	}
2507 
2508 	netdev_tx_sent_queue(txq, bytes_sent);
2509 
2510 	gfar_wmb();
2511 
2512 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2513 
2514 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2515 
2516 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2517 
2518 	/* Update the current skb pointer to the next entry we will use
2519 	 * (wrapping if necessary)
2520 	 */
2521 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2522 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2523 
2524 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2525 
2526 	/* We can work in parallel with gfar_clean_tx_ring(), except
2527 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2528 	 * when we were reading the num_txbdfree and checking for available
2529 	 * space, that's because outside of this function it can only grow.
2530 	 */
2531 	spin_lock_bh(&tx_queue->txlock);
2532 	/* reduce TxBD free count */
2533 	tx_queue->num_txbdfree -= (nr_txbds);
2534 	spin_unlock_bh(&tx_queue->txlock);
2535 
2536 	/* If the next BD still needs to be cleaned up, then the bds
2537 	 * are full.  We need to tell the kernel to stop sending us stuff.
2538 	 */
2539 	if (!tx_queue->num_txbdfree) {
2540 		netif_tx_stop_queue(txq);
2541 
2542 		dev->stats.tx_fifo_errors++;
2543 	}
2544 
2545 	/* Tell the DMA to go go go */
2546 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2547 
2548 	return NETDEV_TX_OK;
2549 
2550 dma_map_err:
2551 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2552 	if (do_tstamp)
2553 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2554 	for (i = 0; i < nr_frags; i++) {
2555 		lstatus = be32_to_cpu(txbdp->lstatus);
2556 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2557 			break;
2558 
2559 		lstatus &= ~BD_LFLAG(TXBD_READY);
2560 		txbdp->lstatus = cpu_to_be32(lstatus);
2561 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2562 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2563 			       DMA_TO_DEVICE);
2564 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2565 	}
2566 	gfar_wmb();
2567 	dev_kfree_skb_any(skb);
2568 	return NETDEV_TX_OK;
2569 }
2570 
2571 /* Stops the kernel queue, and halts the controller */
2572 static int gfar_close(struct net_device *dev)
2573 {
2574 	struct gfar_private *priv = netdev_priv(dev);
2575 
2576 	cancel_work_sync(&priv->reset_task);
2577 	stop_gfar(dev);
2578 
2579 	/* Disconnect from the PHY */
2580 	phy_disconnect(priv->phydev);
2581 	priv->phydev = NULL;
2582 
2583 	gfar_free_irq(priv);
2584 
2585 	return 0;
2586 }
2587 
2588 /* Changes the mac address if the controller is not running. */
2589 static int gfar_set_mac_address(struct net_device *dev)
2590 {
2591 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2592 
2593 	return 0;
2594 }
2595 
2596 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2597 {
2598 	struct gfar_private *priv = netdev_priv(dev);
2599 	int frame_size = new_mtu + ETH_HLEN;
2600 
2601 	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2602 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2603 		return -EINVAL;
2604 	}
2605 
2606 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2607 		cpu_relax();
2608 
2609 	if (dev->flags & IFF_UP)
2610 		stop_gfar(dev);
2611 
2612 	dev->mtu = new_mtu;
2613 
2614 	if (dev->flags & IFF_UP)
2615 		startup_gfar(dev);
2616 
2617 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2618 
2619 	return 0;
2620 }
2621 
2622 void reset_gfar(struct net_device *ndev)
2623 {
2624 	struct gfar_private *priv = netdev_priv(ndev);
2625 
2626 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2627 		cpu_relax();
2628 
2629 	stop_gfar(ndev);
2630 	startup_gfar(ndev);
2631 
2632 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2633 }
2634 
2635 /* gfar_reset_task gets scheduled when a packet has not been
2636  * transmitted after a set amount of time.
2637  * For now, assume that clearing out all the structures, and
2638  * starting over will fix the problem.
2639  */
2640 static void gfar_reset_task(struct work_struct *work)
2641 {
2642 	struct gfar_private *priv = container_of(work, struct gfar_private,
2643 						 reset_task);
2644 	reset_gfar(priv->ndev);
2645 }
2646 
2647 static void gfar_timeout(struct net_device *dev)
2648 {
2649 	struct gfar_private *priv = netdev_priv(dev);
2650 
2651 	dev->stats.tx_errors++;
2652 	schedule_work(&priv->reset_task);
2653 }
2654 
2655 /* Interrupt Handler for Transmit complete */
2656 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2657 {
2658 	struct net_device *dev = tx_queue->dev;
2659 	struct netdev_queue *txq;
2660 	struct gfar_private *priv = netdev_priv(dev);
2661 	struct txbd8 *bdp, *next = NULL;
2662 	struct txbd8 *lbdp = NULL;
2663 	struct txbd8 *base = tx_queue->tx_bd_base;
2664 	struct sk_buff *skb;
2665 	int skb_dirtytx;
2666 	int tx_ring_size = tx_queue->tx_ring_size;
2667 	int frags = 0, nr_txbds = 0;
2668 	int i;
2669 	int howmany = 0;
2670 	int tqi = tx_queue->qindex;
2671 	unsigned int bytes_sent = 0;
2672 	u32 lstatus;
2673 	size_t buflen;
2674 
2675 	txq = netdev_get_tx_queue(dev, tqi);
2676 	bdp = tx_queue->dirty_tx;
2677 	skb_dirtytx = tx_queue->skb_dirtytx;
2678 
2679 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2680 
2681 		frags = skb_shinfo(skb)->nr_frags;
2682 
2683 		/* When time stamping, one additional TxBD must be freed.
2684 		 * Also, we need to dma_unmap_single() the TxPAL.
2685 		 */
2686 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2687 			nr_txbds = frags + 2;
2688 		else
2689 			nr_txbds = frags + 1;
2690 
2691 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2692 
2693 		lstatus = be32_to_cpu(lbdp->lstatus);
2694 
2695 		/* Only clean completed frames */
2696 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2697 		    (lstatus & BD_LENGTH_MASK))
2698 			break;
2699 
2700 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2701 			next = next_txbd(bdp, base, tx_ring_size);
2702 			buflen = be16_to_cpu(next->length) +
2703 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2704 		} else
2705 			buflen = be16_to_cpu(bdp->length);
2706 
2707 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2708 				 buflen, DMA_TO_DEVICE);
2709 
2710 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2711 			struct skb_shared_hwtstamps shhwtstamps;
2712 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2713 					  ~0x7UL);
2714 
2715 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2716 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2717 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2718 			skb_tstamp_tx(skb, &shhwtstamps);
2719 			gfar_clear_txbd_status(bdp);
2720 			bdp = next;
2721 		}
2722 
2723 		gfar_clear_txbd_status(bdp);
2724 		bdp = next_txbd(bdp, base, tx_ring_size);
2725 
2726 		for (i = 0; i < frags; i++) {
2727 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2728 				       be16_to_cpu(bdp->length),
2729 				       DMA_TO_DEVICE);
2730 			gfar_clear_txbd_status(bdp);
2731 			bdp = next_txbd(bdp, base, tx_ring_size);
2732 		}
2733 
2734 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2735 
2736 		dev_kfree_skb_any(skb);
2737 
2738 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2739 
2740 		skb_dirtytx = (skb_dirtytx + 1) &
2741 			      TX_RING_MOD_MASK(tx_ring_size);
2742 
2743 		howmany++;
2744 		spin_lock(&tx_queue->txlock);
2745 		tx_queue->num_txbdfree += nr_txbds;
2746 		spin_unlock(&tx_queue->txlock);
2747 	}
2748 
2749 	/* If we freed a buffer, we can restart transmission, if necessary */
2750 	if (tx_queue->num_txbdfree &&
2751 	    netif_tx_queue_stopped(txq) &&
2752 	    !(test_bit(GFAR_DOWN, &priv->state)))
2753 		netif_wake_subqueue(priv->ndev, tqi);
2754 
2755 	/* Update dirty indicators */
2756 	tx_queue->skb_dirtytx = skb_dirtytx;
2757 	tx_queue->dirty_tx = bdp;
2758 
2759 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2760 }
2761 
2762 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2763 {
2764 	struct page *page;
2765 	dma_addr_t addr;
2766 
2767 	page = dev_alloc_page();
2768 	if (unlikely(!page))
2769 		return false;
2770 
2771 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2772 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2773 		__free_page(page);
2774 
2775 		return false;
2776 	}
2777 
2778 	rxb->dma = addr;
2779 	rxb->page = page;
2780 	rxb->page_offset = 0;
2781 
2782 	return true;
2783 }
2784 
2785 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2786 {
2787 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2788 	struct gfar_extra_stats *estats = &priv->extra_stats;
2789 
2790 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2791 	atomic64_inc(&estats->rx_alloc_err);
2792 }
2793 
2794 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2795 				int alloc_cnt)
2796 {
2797 	struct rxbd8 *bdp;
2798 	struct gfar_rx_buff *rxb;
2799 	int i;
2800 
2801 	i = rx_queue->next_to_use;
2802 	bdp = &rx_queue->rx_bd_base[i];
2803 	rxb = &rx_queue->rx_buff[i];
2804 
2805 	while (alloc_cnt--) {
2806 		/* try reuse page */
2807 		if (unlikely(!rxb->page)) {
2808 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2809 				gfar_rx_alloc_err(rx_queue);
2810 				break;
2811 			}
2812 		}
2813 
2814 		/* Setup the new RxBD */
2815 		gfar_init_rxbdp(rx_queue, bdp,
2816 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2817 
2818 		/* Update to the next pointer */
2819 		bdp++;
2820 		rxb++;
2821 
2822 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2823 			i = 0;
2824 			bdp = rx_queue->rx_bd_base;
2825 			rxb = rx_queue->rx_buff;
2826 		}
2827 	}
2828 
2829 	rx_queue->next_to_use = i;
2830 	rx_queue->next_to_alloc = i;
2831 }
2832 
2833 static void count_errors(u32 lstatus, struct net_device *ndev)
2834 {
2835 	struct gfar_private *priv = netdev_priv(ndev);
2836 	struct net_device_stats *stats = &ndev->stats;
2837 	struct gfar_extra_stats *estats = &priv->extra_stats;
2838 
2839 	/* If the packet was truncated, none of the other errors matter */
2840 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2841 		stats->rx_length_errors++;
2842 
2843 		atomic64_inc(&estats->rx_trunc);
2844 
2845 		return;
2846 	}
2847 	/* Count the errors, if there were any */
2848 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2849 		stats->rx_length_errors++;
2850 
2851 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2852 			atomic64_inc(&estats->rx_large);
2853 		else
2854 			atomic64_inc(&estats->rx_short);
2855 	}
2856 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2857 		stats->rx_frame_errors++;
2858 		atomic64_inc(&estats->rx_nonoctet);
2859 	}
2860 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2861 		atomic64_inc(&estats->rx_crcerr);
2862 		stats->rx_crc_errors++;
2863 	}
2864 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2865 		atomic64_inc(&estats->rx_overrun);
2866 		stats->rx_over_errors++;
2867 	}
2868 }
2869 
2870 irqreturn_t gfar_receive(int irq, void *grp_id)
2871 {
2872 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2873 	unsigned long flags;
2874 	u32 imask, ievent;
2875 
2876 	ievent = gfar_read(&grp->regs->ievent);
2877 
2878 	if (unlikely(ievent & IEVENT_FGPI)) {
2879 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2880 		return IRQ_HANDLED;
2881 	}
2882 
2883 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2884 		spin_lock_irqsave(&grp->grplock, flags);
2885 		imask = gfar_read(&grp->regs->imask);
2886 		imask &= IMASK_RX_DISABLED;
2887 		gfar_write(&grp->regs->imask, imask);
2888 		spin_unlock_irqrestore(&grp->grplock, flags);
2889 		__napi_schedule(&grp->napi_rx);
2890 	} else {
2891 		/* Clear IEVENT, so interrupts aren't called again
2892 		 * because of the packets that have already arrived.
2893 		 */
2894 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2895 	}
2896 
2897 	return IRQ_HANDLED;
2898 }
2899 
2900 /* Interrupt Handler for Transmit complete */
2901 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2902 {
2903 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2904 	unsigned long flags;
2905 	u32 imask;
2906 
2907 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2908 		spin_lock_irqsave(&grp->grplock, flags);
2909 		imask = gfar_read(&grp->regs->imask);
2910 		imask &= IMASK_TX_DISABLED;
2911 		gfar_write(&grp->regs->imask, imask);
2912 		spin_unlock_irqrestore(&grp->grplock, flags);
2913 		__napi_schedule(&grp->napi_tx);
2914 	} else {
2915 		/* Clear IEVENT, so interrupts aren't called again
2916 		 * because of the packets that have already arrived.
2917 		 */
2918 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2919 	}
2920 
2921 	return IRQ_HANDLED;
2922 }
2923 
2924 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2925 			     struct sk_buff *skb, bool first)
2926 {
2927 	unsigned int size = lstatus & BD_LENGTH_MASK;
2928 	struct page *page = rxb->page;
2929 
2930 	/* Remove the FCS from the packet length */
2931 	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2932 		size -= ETH_FCS_LEN;
2933 
2934 	if (likely(first))
2935 		skb_put(skb, size);
2936 	else
2937 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2938 				rxb->page_offset + RXBUF_ALIGNMENT,
2939 				size, GFAR_RXB_TRUESIZE);
2940 
2941 	/* try reuse page */
2942 	if (unlikely(page_count(page) != 1))
2943 		return false;
2944 
2945 	/* change offset to the other half */
2946 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2947 
2948 	atomic_inc(&page->_count);
2949 
2950 	return true;
2951 }
2952 
2953 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2954 			       struct gfar_rx_buff *old_rxb)
2955 {
2956 	struct gfar_rx_buff *new_rxb;
2957 	u16 nta = rxq->next_to_alloc;
2958 
2959 	new_rxb = &rxq->rx_buff[nta];
2960 
2961 	/* find next buf that can reuse a page */
2962 	nta++;
2963 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2964 
2965 	/* copy page reference */
2966 	*new_rxb = *old_rxb;
2967 
2968 	/* sync for use by the device */
2969 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2970 					 old_rxb->page_offset,
2971 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2972 }
2973 
2974 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2975 					    u32 lstatus, struct sk_buff *skb)
2976 {
2977 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2978 	struct page *page = rxb->page;
2979 	bool first = false;
2980 
2981 	if (likely(!skb)) {
2982 		void *buff_addr = page_address(page) + rxb->page_offset;
2983 
2984 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2985 		if (unlikely(!skb)) {
2986 			gfar_rx_alloc_err(rx_queue);
2987 			return NULL;
2988 		}
2989 		skb_reserve(skb, RXBUF_ALIGNMENT);
2990 		first = true;
2991 	}
2992 
2993 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2994 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2995 
2996 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2997 		/* reuse the free half of the page */
2998 		gfar_reuse_rx_page(rx_queue, rxb);
2999 	} else {
3000 		/* page cannot be reused, unmap it */
3001 		dma_unmap_page(rx_queue->dev, rxb->dma,
3002 			       PAGE_SIZE, DMA_FROM_DEVICE);
3003 	}
3004 
3005 	/* clear rxb content */
3006 	rxb->page = NULL;
3007 
3008 	return skb;
3009 }
3010 
3011 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3012 {
3013 	/* If valid headers were found, and valid sums
3014 	 * were verified, then we tell the kernel that no
3015 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3016 	 */
3017 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3018 	    (RXFCB_CIP | RXFCB_CTU))
3019 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3020 	else
3021 		skb_checksum_none_assert(skb);
3022 }
3023 
3024 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3025 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3026 {
3027 	struct gfar_private *priv = netdev_priv(ndev);
3028 	struct rxfcb *fcb = NULL;
3029 
3030 	/* fcb is at the beginning if exists */
3031 	fcb = (struct rxfcb *)skb->data;
3032 
3033 	/* Remove the FCB from the skb
3034 	 * Remove the padded bytes, if there are any
3035 	 */
3036 	if (priv->uses_rxfcb)
3037 		skb_pull(skb, GMAC_FCB_LEN);
3038 
3039 	/* Get receive timestamp from the skb */
3040 	if (priv->hwts_rx_en) {
3041 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3042 		u64 *ns = (u64 *) skb->data;
3043 
3044 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3045 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
3046 	}
3047 
3048 	if (priv->padding)
3049 		skb_pull(skb, priv->padding);
3050 
3051 	if (ndev->features & NETIF_F_RXCSUM)
3052 		gfar_rx_checksum(skb, fcb);
3053 
3054 	/* Tell the skb what kind of packet this is */
3055 	skb->protocol = eth_type_trans(skb, ndev);
3056 
3057 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3058 	 * Even if vlan rx accel is disabled, on some chips
3059 	 * RXFCB_VLN is pseudo randomly set.
3060 	 */
3061 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3062 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3063 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3064 				       be16_to_cpu(fcb->vlctl));
3065 }
3066 
3067 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3068  * until the budget/quota has been reached. Returns the number
3069  * of frames handled
3070  */
3071 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3072 {
3073 	struct net_device *ndev = rx_queue->ndev;
3074 	struct gfar_private *priv = netdev_priv(ndev);
3075 	struct rxbd8 *bdp;
3076 	int i, howmany = 0;
3077 	struct sk_buff *skb = rx_queue->skb;
3078 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3079 	unsigned int total_bytes = 0, total_pkts = 0;
3080 
3081 	/* Get the first full descriptor */
3082 	i = rx_queue->next_to_clean;
3083 
3084 	while (rx_work_limit--) {
3085 		u32 lstatus;
3086 
3087 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3088 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3089 			cleaned_cnt = 0;
3090 		}
3091 
3092 		bdp = &rx_queue->rx_bd_base[i];
3093 		lstatus = be32_to_cpu(bdp->lstatus);
3094 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3095 			break;
3096 
3097 		/* order rx buffer descriptor reads */
3098 		rmb();
3099 
3100 		/* fetch next to clean buffer from the ring */
3101 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3102 		if (unlikely(!skb))
3103 			break;
3104 
3105 		cleaned_cnt++;
3106 		howmany++;
3107 
3108 		if (unlikely(++i == rx_queue->rx_ring_size))
3109 			i = 0;
3110 
3111 		rx_queue->next_to_clean = i;
3112 
3113 		/* fetch next buffer if not the last in frame */
3114 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3115 			continue;
3116 
3117 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3118 			count_errors(lstatus, ndev);
3119 
3120 			/* discard faulty buffer */
3121 			dev_kfree_skb(skb);
3122 			skb = NULL;
3123 			rx_queue->stats.rx_dropped++;
3124 			continue;
3125 		}
3126 
3127 		/* Increment the number of packets */
3128 		total_pkts++;
3129 		total_bytes += skb->len;
3130 
3131 		skb_record_rx_queue(skb, rx_queue->qindex);
3132 
3133 		gfar_process_frame(ndev, skb);
3134 
3135 		/* Send the packet up the stack */
3136 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3137 
3138 		skb = NULL;
3139 	}
3140 
3141 	/* Store incomplete frames for completion */
3142 	rx_queue->skb = skb;
3143 
3144 	rx_queue->stats.rx_packets += total_pkts;
3145 	rx_queue->stats.rx_bytes += total_bytes;
3146 
3147 	if (cleaned_cnt)
3148 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3149 
3150 	/* Update Last Free RxBD pointer for LFC */
3151 	if (unlikely(priv->tx_actual_en)) {
3152 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3153 
3154 		gfar_write(rx_queue->rfbptr, bdp_dma);
3155 	}
3156 
3157 	return howmany;
3158 }
3159 
3160 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3161 {
3162 	struct gfar_priv_grp *gfargrp =
3163 		container_of(napi, struct gfar_priv_grp, napi_rx);
3164 	struct gfar __iomem *regs = gfargrp->regs;
3165 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3166 	int work_done = 0;
3167 
3168 	/* Clear IEVENT, so interrupts aren't called again
3169 	 * because of the packets that have already arrived
3170 	 */
3171 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3172 
3173 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3174 
3175 	if (work_done < budget) {
3176 		u32 imask;
3177 		napi_complete(napi);
3178 		/* Clear the halt bit in RSTAT */
3179 		gfar_write(&regs->rstat, gfargrp->rstat);
3180 
3181 		spin_lock_irq(&gfargrp->grplock);
3182 		imask = gfar_read(&regs->imask);
3183 		imask |= IMASK_RX_DEFAULT;
3184 		gfar_write(&regs->imask, imask);
3185 		spin_unlock_irq(&gfargrp->grplock);
3186 	}
3187 
3188 	return work_done;
3189 }
3190 
3191 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3192 {
3193 	struct gfar_priv_grp *gfargrp =
3194 		container_of(napi, struct gfar_priv_grp, napi_tx);
3195 	struct gfar __iomem *regs = gfargrp->regs;
3196 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3197 	u32 imask;
3198 
3199 	/* Clear IEVENT, so interrupts aren't called again
3200 	 * because of the packets that have already arrived
3201 	 */
3202 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3203 
3204 	/* run Tx cleanup to completion */
3205 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3206 		gfar_clean_tx_ring(tx_queue);
3207 
3208 	napi_complete(napi);
3209 
3210 	spin_lock_irq(&gfargrp->grplock);
3211 	imask = gfar_read(&regs->imask);
3212 	imask |= IMASK_TX_DEFAULT;
3213 	gfar_write(&regs->imask, imask);
3214 	spin_unlock_irq(&gfargrp->grplock);
3215 
3216 	return 0;
3217 }
3218 
3219 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3220 {
3221 	struct gfar_priv_grp *gfargrp =
3222 		container_of(napi, struct gfar_priv_grp, napi_rx);
3223 	struct gfar_private *priv = gfargrp->priv;
3224 	struct gfar __iomem *regs = gfargrp->regs;
3225 	struct gfar_priv_rx_q *rx_queue = NULL;
3226 	int work_done = 0, work_done_per_q = 0;
3227 	int i, budget_per_q = 0;
3228 	unsigned long rstat_rxf;
3229 	int num_act_queues;
3230 
3231 	/* Clear IEVENT, so interrupts aren't called again
3232 	 * because of the packets that have already arrived
3233 	 */
3234 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3235 
3236 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3237 
3238 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3239 	if (num_act_queues)
3240 		budget_per_q = budget/num_act_queues;
3241 
3242 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3243 		/* skip queue if not active */
3244 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3245 			continue;
3246 
3247 		rx_queue = priv->rx_queue[i];
3248 		work_done_per_q =
3249 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3250 		work_done += work_done_per_q;
3251 
3252 		/* finished processing this queue */
3253 		if (work_done_per_q < budget_per_q) {
3254 			/* clear active queue hw indication */
3255 			gfar_write(&regs->rstat,
3256 				   RSTAT_CLEAR_RXF0 >> i);
3257 			num_act_queues--;
3258 
3259 			if (!num_act_queues)
3260 				break;
3261 		}
3262 	}
3263 
3264 	if (!num_act_queues) {
3265 		u32 imask;
3266 		napi_complete(napi);
3267 
3268 		/* Clear the halt bit in RSTAT */
3269 		gfar_write(&regs->rstat, gfargrp->rstat);
3270 
3271 		spin_lock_irq(&gfargrp->grplock);
3272 		imask = gfar_read(&regs->imask);
3273 		imask |= IMASK_RX_DEFAULT;
3274 		gfar_write(&regs->imask, imask);
3275 		spin_unlock_irq(&gfargrp->grplock);
3276 	}
3277 
3278 	return work_done;
3279 }
3280 
3281 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3282 {
3283 	struct gfar_priv_grp *gfargrp =
3284 		container_of(napi, struct gfar_priv_grp, napi_tx);
3285 	struct gfar_private *priv = gfargrp->priv;
3286 	struct gfar __iomem *regs = gfargrp->regs;
3287 	struct gfar_priv_tx_q *tx_queue = NULL;
3288 	int has_tx_work = 0;
3289 	int i;
3290 
3291 	/* Clear IEVENT, so interrupts aren't called again
3292 	 * because of the packets that have already arrived
3293 	 */
3294 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3295 
3296 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3297 		tx_queue = priv->tx_queue[i];
3298 		/* run Tx cleanup to completion */
3299 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3300 			gfar_clean_tx_ring(tx_queue);
3301 			has_tx_work = 1;
3302 		}
3303 	}
3304 
3305 	if (!has_tx_work) {
3306 		u32 imask;
3307 		napi_complete(napi);
3308 
3309 		spin_lock_irq(&gfargrp->grplock);
3310 		imask = gfar_read(&regs->imask);
3311 		imask |= IMASK_TX_DEFAULT;
3312 		gfar_write(&regs->imask, imask);
3313 		spin_unlock_irq(&gfargrp->grplock);
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 
3320 #ifdef CONFIG_NET_POLL_CONTROLLER
3321 /* Polling 'interrupt' - used by things like netconsole to send skbs
3322  * without having to re-enable interrupts. It's not called while
3323  * the interrupt routine is executing.
3324  */
3325 static void gfar_netpoll(struct net_device *dev)
3326 {
3327 	struct gfar_private *priv = netdev_priv(dev);
3328 	int i;
3329 
3330 	/* If the device has multiple interrupts, run tx/rx */
3331 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3332 		for (i = 0; i < priv->num_grps; i++) {
3333 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3334 
3335 			disable_irq(gfar_irq(grp, TX)->irq);
3336 			disable_irq(gfar_irq(grp, RX)->irq);
3337 			disable_irq(gfar_irq(grp, ER)->irq);
3338 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3339 			enable_irq(gfar_irq(grp, ER)->irq);
3340 			enable_irq(gfar_irq(grp, RX)->irq);
3341 			enable_irq(gfar_irq(grp, TX)->irq);
3342 		}
3343 	} else {
3344 		for (i = 0; i < priv->num_grps; i++) {
3345 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3346 
3347 			disable_irq(gfar_irq(grp, TX)->irq);
3348 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3349 			enable_irq(gfar_irq(grp, TX)->irq);
3350 		}
3351 	}
3352 }
3353 #endif
3354 
3355 /* The interrupt handler for devices with one interrupt */
3356 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3357 {
3358 	struct gfar_priv_grp *gfargrp = grp_id;
3359 
3360 	/* Save ievent for future reference */
3361 	u32 events = gfar_read(&gfargrp->regs->ievent);
3362 
3363 	/* Check for reception */
3364 	if (events & IEVENT_RX_MASK)
3365 		gfar_receive(irq, grp_id);
3366 
3367 	/* Check for transmit completion */
3368 	if (events & IEVENT_TX_MASK)
3369 		gfar_transmit(irq, grp_id);
3370 
3371 	/* Check for errors */
3372 	if (events & IEVENT_ERR_MASK)
3373 		gfar_error(irq, grp_id);
3374 
3375 	return IRQ_HANDLED;
3376 }
3377 
3378 /* Called every time the controller might need to be made
3379  * aware of new link state.  The PHY code conveys this
3380  * information through variables in the phydev structure, and this
3381  * function converts those variables into the appropriate
3382  * register values, and can bring down the device if needed.
3383  */
3384 static void adjust_link(struct net_device *dev)
3385 {
3386 	struct gfar_private *priv = netdev_priv(dev);
3387 	struct phy_device *phydev = priv->phydev;
3388 
3389 	if (unlikely(phydev->link != priv->oldlink ||
3390 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3391 				       phydev->speed != priv->oldspeed))))
3392 		gfar_update_link_state(priv);
3393 }
3394 
3395 /* Update the hash table based on the current list of multicast
3396  * addresses we subscribe to.  Also, change the promiscuity of
3397  * the device based on the flags (this function is called
3398  * whenever dev->flags is changed
3399  */
3400 static void gfar_set_multi(struct net_device *dev)
3401 {
3402 	struct netdev_hw_addr *ha;
3403 	struct gfar_private *priv = netdev_priv(dev);
3404 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3405 	u32 tempval;
3406 
3407 	if (dev->flags & IFF_PROMISC) {
3408 		/* Set RCTRL to PROM */
3409 		tempval = gfar_read(&regs->rctrl);
3410 		tempval |= RCTRL_PROM;
3411 		gfar_write(&regs->rctrl, tempval);
3412 	} else {
3413 		/* Set RCTRL to not PROM */
3414 		tempval = gfar_read(&regs->rctrl);
3415 		tempval &= ~(RCTRL_PROM);
3416 		gfar_write(&regs->rctrl, tempval);
3417 	}
3418 
3419 	if (dev->flags & IFF_ALLMULTI) {
3420 		/* Set the hash to rx all multicast frames */
3421 		gfar_write(&regs->igaddr0, 0xffffffff);
3422 		gfar_write(&regs->igaddr1, 0xffffffff);
3423 		gfar_write(&regs->igaddr2, 0xffffffff);
3424 		gfar_write(&regs->igaddr3, 0xffffffff);
3425 		gfar_write(&regs->igaddr4, 0xffffffff);
3426 		gfar_write(&regs->igaddr5, 0xffffffff);
3427 		gfar_write(&regs->igaddr6, 0xffffffff);
3428 		gfar_write(&regs->igaddr7, 0xffffffff);
3429 		gfar_write(&regs->gaddr0, 0xffffffff);
3430 		gfar_write(&regs->gaddr1, 0xffffffff);
3431 		gfar_write(&regs->gaddr2, 0xffffffff);
3432 		gfar_write(&regs->gaddr3, 0xffffffff);
3433 		gfar_write(&regs->gaddr4, 0xffffffff);
3434 		gfar_write(&regs->gaddr5, 0xffffffff);
3435 		gfar_write(&regs->gaddr6, 0xffffffff);
3436 		gfar_write(&regs->gaddr7, 0xffffffff);
3437 	} else {
3438 		int em_num;
3439 		int idx;
3440 
3441 		/* zero out the hash */
3442 		gfar_write(&regs->igaddr0, 0x0);
3443 		gfar_write(&regs->igaddr1, 0x0);
3444 		gfar_write(&regs->igaddr2, 0x0);
3445 		gfar_write(&regs->igaddr3, 0x0);
3446 		gfar_write(&regs->igaddr4, 0x0);
3447 		gfar_write(&regs->igaddr5, 0x0);
3448 		gfar_write(&regs->igaddr6, 0x0);
3449 		gfar_write(&regs->igaddr7, 0x0);
3450 		gfar_write(&regs->gaddr0, 0x0);
3451 		gfar_write(&regs->gaddr1, 0x0);
3452 		gfar_write(&regs->gaddr2, 0x0);
3453 		gfar_write(&regs->gaddr3, 0x0);
3454 		gfar_write(&regs->gaddr4, 0x0);
3455 		gfar_write(&regs->gaddr5, 0x0);
3456 		gfar_write(&regs->gaddr6, 0x0);
3457 		gfar_write(&regs->gaddr7, 0x0);
3458 
3459 		/* If we have extended hash tables, we need to
3460 		 * clear the exact match registers to prepare for
3461 		 * setting them
3462 		 */
3463 		if (priv->extended_hash) {
3464 			em_num = GFAR_EM_NUM + 1;
3465 			gfar_clear_exact_match(dev);
3466 			idx = 1;
3467 		} else {
3468 			idx = 0;
3469 			em_num = 0;
3470 		}
3471 
3472 		if (netdev_mc_empty(dev))
3473 			return;
3474 
3475 		/* Parse the list, and set the appropriate bits */
3476 		netdev_for_each_mc_addr(ha, dev) {
3477 			if (idx < em_num) {
3478 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3479 				idx++;
3480 			} else
3481 				gfar_set_hash_for_addr(dev, ha->addr);
3482 		}
3483 	}
3484 }
3485 
3486 
3487 /* Clears each of the exact match registers to zero, so they
3488  * don't interfere with normal reception
3489  */
3490 static void gfar_clear_exact_match(struct net_device *dev)
3491 {
3492 	int idx;
3493 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3494 
3495 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3496 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3497 }
3498 
3499 /* Set the appropriate hash bit for the given addr */
3500 /* The algorithm works like so:
3501  * 1) Take the Destination Address (ie the multicast address), and
3502  * do a CRC on it (little endian), and reverse the bits of the
3503  * result.
3504  * 2) Use the 8 most significant bits as a hash into a 256-entry
3505  * table.  The table is controlled through 8 32-bit registers:
3506  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3507  * gaddr7.  This means that the 3 most significant bits in the
3508  * hash index which gaddr register to use, and the 5 other bits
3509  * indicate which bit (assuming an IBM numbering scheme, which
3510  * for PowerPC (tm) is usually the case) in the register holds
3511  * the entry.
3512  */
3513 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3514 {
3515 	u32 tempval;
3516 	struct gfar_private *priv = netdev_priv(dev);
3517 	u32 result = ether_crc(ETH_ALEN, addr);
3518 	int width = priv->hash_width;
3519 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3520 	u8 whichreg = result >> (32 - width + 5);
3521 	u32 value = (1 << (31-whichbit));
3522 
3523 	tempval = gfar_read(priv->hash_regs[whichreg]);
3524 	tempval |= value;
3525 	gfar_write(priv->hash_regs[whichreg], tempval);
3526 }
3527 
3528 
3529 /* There are multiple MAC Address register pairs on some controllers
3530  * This function sets the numth pair to a given address
3531  */
3532 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3533 				  const u8 *addr)
3534 {
3535 	struct gfar_private *priv = netdev_priv(dev);
3536 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3537 	u32 tempval;
3538 	u32 __iomem *macptr = &regs->macstnaddr1;
3539 
3540 	macptr += num*2;
3541 
3542 	/* For a station address of 0x12345678ABCD in transmission
3543 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3544 	 * MACnADDR2 is set to 0x34120000.
3545 	 */
3546 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3547 		  (addr[3] << 8)  |  addr[2];
3548 
3549 	gfar_write(macptr, tempval);
3550 
3551 	tempval = (addr[1] << 24) | (addr[0] << 16);
3552 
3553 	gfar_write(macptr+1, tempval);
3554 }
3555 
3556 /* GFAR error interrupt handler */
3557 static irqreturn_t gfar_error(int irq, void *grp_id)
3558 {
3559 	struct gfar_priv_grp *gfargrp = grp_id;
3560 	struct gfar __iomem *regs = gfargrp->regs;
3561 	struct gfar_private *priv= gfargrp->priv;
3562 	struct net_device *dev = priv->ndev;
3563 
3564 	/* Save ievent for future reference */
3565 	u32 events = gfar_read(&regs->ievent);
3566 
3567 	/* Clear IEVENT */
3568 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3569 
3570 	/* Magic Packet is not an error. */
3571 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3572 	    (events & IEVENT_MAG))
3573 		events &= ~IEVENT_MAG;
3574 
3575 	/* Hmm... */
3576 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3577 		netdev_dbg(dev,
3578 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3579 			   events, gfar_read(&regs->imask));
3580 
3581 	/* Update the error counters */
3582 	if (events & IEVENT_TXE) {
3583 		dev->stats.tx_errors++;
3584 
3585 		if (events & IEVENT_LC)
3586 			dev->stats.tx_window_errors++;
3587 		if (events & IEVENT_CRL)
3588 			dev->stats.tx_aborted_errors++;
3589 		if (events & IEVENT_XFUN) {
3590 			netif_dbg(priv, tx_err, dev,
3591 				  "TX FIFO underrun, packet dropped\n");
3592 			dev->stats.tx_dropped++;
3593 			atomic64_inc(&priv->extra_stats.tx_underrun);
3594 
3595 			schedule_work(&priv->reset_task);
3596 		}
3597 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3598 	}
3599 	if (events & IEVENT_BSY) {
3600 		dev->stats.rx_over_errors++;
3601 		atomic64_inc(&priv->extra_stats.rx_bsy);
3602 
3603 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3604 			  gfar_read(&regs->rstat));
3605 	}
3606 	if (events & IEVENT_BABR) {
3607 		dev->stats.rx_errors++;
3608 		atomic64_inc(&priv->extra_stats.rx_babr);
3609 
3610 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3611 	}
3612 	if (events & IEVENT_EBERR) {
3613 		atomic64_inc(&priv->extra_stats.eberr);
3614 		netif_dbg(priv, rx_err, dev, "bus error\n");
3615 	}
3616 	if (events & IEVENT_RXC)
3617 		netif_dbg(priv, rx_status, dev, "control frame\n");
3618 
3619 	if (events & IEVENT_BABT) {
3620 		atomic64_inc(&priv->extra_stats.tx_babt);
3621 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3622 	}
3623 	return IRQ_HANDLED;
3624 }
3625 
3626 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3627 {
3628 	struct phy_device *phydev = priv->phydev;
3629 	u32 val = 0;
3630 
3631 	if (!phydev->duplex)
3632 		return val;
3633 
3634 	if (!priv->pause_aneg_en) {
3635 		if (priv->tx_pause_en)
3636 			val |= MACCFG1_TX_FLOW;
3637 		if (priv->rx_pause_en)
3638 			val |= MACCFG1_RX_FLOW;
3639 	} else {
3640 		u16 lcl_adv, rmt_adv;
3641 		u8 flowctrl;
3642 		/* get link partner capabilities */
3643 		rmt_adv = 0;
3644 		if (phydev->pause)
3645 			rmt_adv = LPA_PAUSE_CAP;
3646 		if (phydev->asym_pause)
3647 			rmt_adv |= LPA_PAUSE_ASYM;
3648 
3649 		lcl_adv = 0;
3650 		if (phydev->advertising & ADVERTISED_Pause)
3651 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3652 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3653 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3654 
3655 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3656 		if (flowctrl & FLOW_CTRL_TX)
3657 			val |= MACCFG1_TX_FLOW;
3658 		if (flowctrl & FLOW_CTRL_RX)
3659 			val |= MACCFG1_RX_FLOW;
3660 	}
3661 
3662 	return val;
3663 }
3664 
3665 static noinline void gfar_update_link_state(struct gfar_private *priv)
3666 {
3667 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3668 	struct phy_device *phydev = priv->phydev;
3669 	struct gfar_priv_rx_q *rx_queue = NULL;
3670 	int i;
3671 
3672 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3673 		return;
3674 
3675 	if (phydev->link) {
3676 		u32 tempval1 = gfar_read(&regs->maccfg1);
3677 		u32 tempval = gfar_read(&regs->maccfg2);
3678 		u32 ecntrl = gfar_read(&regs->ecntrl);
3679 		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3680 
3681 		if (phydev->duplex != priv->oldduplex) {
3682 			if (!(phydev->duplex))
3683 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3684 			else
3685 				tempval |= MACCFG2_FULL_DUPLEX;
3686 
3687 			priv->oldduplex = phydev->duplex;
3688 		}
3689 
3690 		if (phydev->speed != priv->oldspeed) {
3691 			switch (phydev->speed) {
3692 			case 1000:
3693 				tempval =
3694 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3695 
3696 				ecntrl &= ~(ECNTRL_R100);
3697 				break;
3698 			case 100:
3699 			case 10:
3700 				tempval =
3701 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3702 
3703 				/* Reduced mode distinguishes
3704 				 * between 10 and 100
3705 				 */
3706 				if (phydev->speed == SPEED_100)
3707 					ecntrl |= ECNTRL_R100;
3708 				else
3709 					ecntrl &= ~(ECNTRL_R100);
3710 				break;
3711 			default:
3712 				netif_warn(priv, link, priv->ndev,
3713 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3714 					   phydev->speed);
3715 				break;
3716 			}
3717 
3718 			priv->oldspeed = phydev->speed;
3719 		}
3720 
3721 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3722 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3723 
3724 		/* Turn last free buffer recording on */
3725 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3726 			for (i = 0; i < priv->num_rx_queues; i++) {
3727 				u32 bdp_dma;
3728 
3729 				rx_queue = priv->rx_queue[i];
3730 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3731 				gfar_write(rx_queue->rfbptr, bdp_dma);
3732 			}
3733 
3734 			priv->tx_actual_en = 1;
3735 		}
3736 
3737 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3738 			priv->tx_actual_en = 0;
3739 
3740 		gfar_write(&regs->maccfg1, tempval1);
3741 		gfar_write(&regs->maccfg2, tempval);
3742 		gfar_write(&regs->ecntrl, ecntrl);
3743 
3744 		if (!priv->oldlink)
3745 			priv->oldlink = 1;
3746 
3747 	} else if (priv->oldlink) {
3748 		priv->oldlink = 0;
3749 		priv->oldspeed = 0;
3750 		priv->oldduplex = -1;
3751 	}
3752 
3753 	if (netif_msg_link(priv))
3754 		phy_print_status(phydev);
3755 }
3756 
3757 static const struct of_device_id gfar_match[] =
3758 {
3759 	{
3760 		.type = "network",
3761 		.compatible = "gianfar",
3762 	},
3763 	{
3764 		.compatible = "fsl,etsec2",
3765 	},
3766 	{},
3767 };
3768 MODULE_DEVICE_TABLE(of, gfar_match);
3769 
3770 /* Structure for a device driver */
3771 static struct platform_driver gfar_driver = {
3772 	.driver = {
3773 		.name = "fsl-gianfar",
3774 		.pm = GFAR_PM_OPS,
3775 		.of_match_table = gfar_match,
3776 	},
3777 	.probe = gfar_probe,
3778 	.remove = gfar_remove,
3779 };
3780 
3781 module_platform_driver(gfar_driver);
3782