1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/kernel.h> 63 #include <linux/string.h> 64 #include <linux/errno.h> 65 #include <linux/unistd.h> 66 #include <linux/slab.h> 67 #include <linux/interrupt.h> 68 #include <linux/delay.h> 69 #include <linux/netdevice.h> 70 #include <linux/etherdevice.h> 71 #include <linux/skbuff.h> 72 #include <linux/if_vlan.h> 73 #include <linux/spinlock.h> 74 #include <linux/mm.h> 75 #include <linux/of_address.h> 76 #include <linux/of_irq.h> 77 #include <linux/of_mdio.h> 78 #include <linux/of_platform.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/in.h> 83 #include <linux/net_tstamp.h> 84 85 #include <asm/io.h> 86 #ifdef CONFIG_PPC 87 #include <asm/reg.h> 88 #include <asm/mpc85xx.h> 89 #endif 90 #include <asm/irq.h> 91 #include <linux/uaccess.h> 92 #include <linux/module.h> 93 #include <linux/dma-mapping.h> 94 #include <linux/crc32.h> 95 #include <linux/mii.h> 96 #include <linux/phy.h> 97 #include <linux/phy_fixed.h> 98 #include <linux/of.h> 99 #include <linux/of_net.h> 100 101 #include "gianfar.h" 102 103 #define TX_TIMEOUT (5*HZ) 104 105 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 106 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 107 MODULE_LICENSE("GPL"); 108 109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 110 dma_addr_t buf) 111 { 112 u32 lstatus; 113 114 bdp->bufPtr = cpu_to_be32(buf); 115 116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 118 lstatus |= BD_LFLAG(RXBD_WRAP); 119 120 gfar_wmb(); 121 122 bdp->lstatus = cpu_to_be32(lstatus); 123 } 124 125 static void gfar_init_tx_rx_base(struct gfar_private *priv) 126 { 127 struct gfar __iomem *regs = priv->gfargrp[0].regs; 128 u32 __iomem *baddr; 129 int i; 130 131 baddr = ®s->tbase0; 132 for (i = 0; i < priv->num_tx_queues; i++) { 133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 134 baddr += 2; 135 } 136 137 baddr = ®s->rbase0; 138 for (i = 0; i < priv->num_rx_queues; i++) { 139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 140 baddr += 2; 141 } 142 } 143 144 static void gfar_init_rqprm(struct gfar_private *priv) 145 { 146 struct gfar __iomem *regs = priv->gfargrp[0].regs; 147 u32 __iomem *baddr; 148 int i; 149 150 baddr = ®s->rqprm0; 151 for (i = 0; i < priv->num_rx_queues; i++) { 152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 154 baddr++; 155 } 156 } 157 158 static void gfar_rx_offload_en(struct gfar_private *priv) 159 { 160 /* set this when rx hw offload (TOE) functions are being used */ 161 priv->uses_rxfcb = 0; 162 163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 164 priv->uses_rxfcb = 1; 165 166 if (priv->hwts_rx_en || priv->rx_filer_enable) 167 priv->uses_rxfcb = 1; 168 } 169 170 static void gfar_mac_rx_config(struct gfar_private *priv) 171 { 172 struct gfar __iomem *regs = priv->gfargrp[0].regs; 173 u32 rctrl = 0; 174 175 if (priv->rx_filer_enable) { 176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 177 /* Program the RIR0 reg with the required distribution */ 178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 179 } 180 181 /* Restore PROMISC mode */ 182 if (priv->ndev->flags & IFF_PROMISC) 183 rctrl |= RCTRL_PROM; 184 185 if (priv->ndev->features & NETIF_F_RXCSUM) 186 rctrl |= RCTRL_CHECKSUMMING; 187 188 if (priv->extended_hash) 189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 190 191 if (priv->padding) { 192 rctrl &= ~RCTRL_PAL_MASK; 193 rctrl |= RCTRL_PADDING(priv->padding); 194 } 195 196 /* Enable HW time stamping if requested from user space */ 197 if (priv->hwts_rx_en) 198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 199 200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 202 203 /* Clear the LFC bit */ 204 gfar_write(®s->rctrl, rctrl); 205 /* Init flow control threshold values */ 206 gfar_init_rqprm(priv); 207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 208 rctrl |= RCTRL_LFC; 209 210 /* Init rctrl based on our settings */ 211 gfar_write(®s->rctrl, rctrl); 212 } 213 214 static void gfar_mac_tx_config(struct gfar_private *priv) 215 { 216 struct gfar __iomem *regs = priv->gfargrp[0].regs; 217 u32 tctrl = 0; 218 219 if (priv->ndev->features & NETIF_F_IP_CSUM) 220 tctrl |= TCTRL_INIT_CSUM; 221 222 if (priv->prio_sched_en) 223 tctrl |= TCTRL_TXSCHED_PRIO; 224 else { 225 tctrl |= TCTRL_TXSCHED_WRRS; 226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 228 } 229 230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 231 tctrl |= TCTRL_VLINS; 232 233 gfar_write(®s->tctrl, tctrl); 234 } 235 236 static void gfar_configure_coalescing(struct gfar_private *priv, 237 unsigned long tx_mask, unsigned long rx_mask) 238 { 239 struct gfar __iomem *regs = priv->gfargrp[0].regs; 240 u32 __iomem *baddr; 241 242 if (priv->mode == MQ_MG_MODE) { 243 int i = 0; 244 245 baddr = ®s->txic0; 246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 247 gfar_write(baddr + i, 0); 248 if (likely(priv->tx_queue[i]->txcoalescing)) 249 gfar_write(baddr + i, priv->tx_queue[i]->txic); 250 } 251 252 baddr = ®s->rxic0; 253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 254 gfar_write(baddr + i, 0); 255 if (likely(priv->rx_queue[i]->rxcoalescing)) 256 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 257 } 258 } else { 259 /* Backward compatible case -- even if we enable 260 * multiple queues, there's only single reg to program 261 */ 262 gfar_write(®s->txic, 0); 263 if (likely(priv->tx_queue[0]->txcoalescing)) 264 gfar_write(®s->txic, priv->tx_queue[0]->txic); 265 266 gfar_write(®s->rxic, 0); 267 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 269 } 270 } 271 272 static void gfar_configure_coalescing_all(struct gfar_private *priv) 273 { 274 gfar_configure_coalescing(priv, 0xFF, 0xFF); 275 } 276 277 static struct net_device_stats *gfar_get_stats(struct net_device *dev) 278 { 279 struct gfar_private *priv = netdev_priv(dev); 280 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0; 281 unsigned long tx_packets = 0, tx_bytes = 0; 282 int i; 283 284 for (i = 0; i < priv->num_rx_queues; i++) { 285 rx_packets += priv->rx_queue[i]->stats.rx_packets; 286 rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 287 rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 288 } 289 290 dev->stats.rx_packets = rx_packets; 291 dev->stats.rx_bytes = rx_bytes; 292 dev->stats.rx_dropped = rx_dropped; 293 294 for (i = 0; i < priv->num_tx_queues; i++) { 295 tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 296 tx_packets += priv->tx_queue[i]->stats.tx_packets; 297 } 298 299 dev->stats.tx_bytes = tx_bytes; 300 dev->stats.tx_packets = tx_packets; 301 302 return &dev->stats; 303 } 304 305 /* Set the appropriate hash bit for the given addr */ 306 /* The algorithm works like so: 307 * 1) Take the Destination Address (ie the multicast address), and 308 * do a CRC on it (little endian), and reverse the bits of the 309 * result. 310 * 2) Use the 8 most significant bits as a hash into a 256-entry 311 * table. The table is controlled through 8 32-bit registers: 312 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 313 * gaddr7. This means that the 3 most significant bits in the 314 * hash index which gaddr register to use, and the 5 other bits 315 * indicate which bit (assuming an IBM numbering scheme, which 316 * for PowerPC (tm) is usually the case) in the register holds 317 * the entry. 318 */ 319 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 320 { 321 u32 tempval; 322 struct gfar_private *priv = netdev_priv(dev); 323 u32 result = ether_crc(ETH_ALEN, addr); 324 int width = priv->hash_width; 325 u8 whichbit = (result >> (32 - width)) & 0x1f; 326 u8 whichreg = result >> (32 - width + 5); 327 u32 value = (1 << (31-whichbit)); 328 329 tempval = gfar_read(priv->hash_regs[whichreg]); 330 tempval |= value; 331 gfar_write(priv->hash_regs[whichreg], tempval); 332 } 333 334 /* There are multiple MAC Address register pairs on some controllers 335 * This function sets the numth pair to a given address 336 */ 337 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 338 const u8 *addr) 339 { 340 struct gfar_private *priv = netdev_priv(dev); 341 struct gfar __iomem *regs = priv->gfargrp[0].regs; 342 u32 tempval; 343 u32 __iomem *macptr = ®s->macstnaddr1; 344 345 macptr += num*2; 346 347 /* For a station address of 0x12345678ABCD in transmission 348 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 349 * MACnADDR2 is set to 0x34120000. 350 */ 351 tempval = (addr[5] << 24) | (addr[4] << 16) | 352 (addr[3] << 8) | addr[2]; 353 354 gfar_write(macptr, tempval); 355 356 tempval = (addr[1] << 24) | (addr[0] << 16); 357 358 gfar_write(macptr+1, tempval); 359 } 360 361 static int gfar_set_mac_addr(struct net_device *dev, void *p) 362 { 363 int ret; 364 365 ret = eth_mac_addr(dev, p); 366 if (ret) 367 return ret; 368 369 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 370 371 return 0; 372 } 373 374 static void gfar_ints_disable(struct gfar_private *priv) 375 { 376 int i; 377 for (i = 0; i < priv->num_grps; i++) { 378 struct gfar __iomem *regs = priv->gfargrp[i].regs; 379 /* Clear IEVENT */ 380 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 381 382 /* Initialize IMASK */ 383 gfar_write(®s->imask, IMASK_INIT_CLEAR); 384 } 385 } 386 387 static void gfar_ints_enable(struct gfar_private *priv) 388 { 389 int i; 390 for (i = 0; i < priv->num_grps; i++) { 391 struct gfar __iomem *regs = priv->gfargrp[i].regs; 392 /* Unmask the interrupts we look for */ 393 gfar_write(®s->imask, IMASK_DEFAULT); 394 } 395 } 396 397 static int gfar_alloc_tx_queues(struct gfar_private *priv) 398 { 399 int i; 400 401 for (i = 0; i < priv->num_tx_queues; i++) { 402 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 403 GFP_KERNEL); 404 if (!priv->tx_queue[i]) 405 return -ENOMEM; 406 407 priv->tx_queue[i]->tx_skbuff = NULL; 408 priv->tx_queue[i]->qindex = i; 409 priv->tx_queue[i]->dev = priv->ndev; 410 spin_lock_init(&(priv->tx_queue[i]->txlock)); 411 } 412 return 0; 413 } 414 415 static int gfar_alloc_rx_queues(struct gfar_private *priv) 416 { 417 int i; 418 419 for (i = 0; i < priv->num_rx_queues; i++) { 420 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 421 GFP_KERNEL); 422 if (!priv->rx_queue[i]) 423 return -ENOMEM; 424 425 priv->rx_queue[i]->qindex = i; 426 priv->rx_queue[i]->ndev = priv->ndev; 427 } 428 return 0; 429 } 430 431 static void gfar_free_tx_queues(struct gfar_private *priv) 432 { 433 int i; 434 435 for (i = 0; i < priv->num_tx_queues; i++) 436 kfree(priv->tx_queue[i]); 437 } 438 439 static void gfar_free_rx_queues(struct gfar_private *priv) 440 { 441 int i; 442 443 for (i = 0; i < priv->num_rx_queues; i++) 444 kfree(priv->rx_queue[i]); 445 } 446 447 static void unmap_group_regs(struct gfar_private *priv) 448 { 449 int i; 450 451 for (i = 0; i < MAXGROUPS; i++) 452 if (priv->gfargrp[i].regs) 453 iounmap(priv->gfargrp[i].regs); 454 } 455 456 static void free_gfar_dev(struct gfar_private *priv) 457 { 458 int i, j; 459 460 for (i = 0; i < priv->num_grps; i++) 461 for (j = 0; j < GFAR_NUM_IRQS; j++) { 462 kfree(priv->gfargrp[i].irqinfo[j]); 463 priv->gfargrp[i].irqinfo[j] = NULL; 464 } 465 466 free_netdev(priv->ndev); 467 } 468 469 static void disable_napi(struct gfar_private *priv) 470 { 471 int i; 472 473 for (i = 0; i < priv->num_grps; i++) { 474 napi_disable(&priv->gfargrp[i].napi_rx); 475 napi_disable(&priv->gfargrp[i].napi_tx); 476 } 477 } 478 479 static void enable_napi(struct gfar_private *priv) 480 { 481 int i; 482 483 for (i = 0; i < priv->num_grps; i++) { 484 napi_enable(&priv->gfargrp[i].napi_rx); 485 napi_enable(&priv->gfargrp[i].napi_tx); 486 } 487 } 488 489 static int gfar_parse_group(struct device_node *np, 490 struct gfar_private *priv, const char *model) 491 { 492 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 493 int i; 494 495 for (i = 0; i < GFAR_NUM_IRQS; i++) { 496 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 497 GFP_KERNEL); 498 if (!grp->irqinfo[i]) 499 return -ENOMEM; 500 } 501 502 grp->regs = of_iomap(np, 0); 503 if (!grp->regs) 504 return -ENOMEM; 505 506 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 507 508 /* If we aren't the FEC we have multiple interrupts */ 509 if (model && strcasecmp(model, "FEC")) { 510 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 511 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 512 if (!gfar_irq(grp, TX)->irq || 513 !gfar_irq(grp, RX)->irq || 514 !gfar_irq(grp, ER)->irq) 515 return -EINVAL; 516 } 517 518 grp->priv = priv; 519 spin_lock_init(&grp->grplock); 520 if (priv->mode == MQ_MG_MODE) { 521 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 522 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 523 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 524 } else { 525 grp->rx_bit_map = 0xFF; 526 grp->tx_bit_map = 0xFF; 527 } 528 529 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 530 * right to left, so we need to revert the 8 bits to get the q index 531 */ 532 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 533 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 534 535 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 536 * also assign queues to groups 537 */ 538 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 539 if (!grp->rx_queue) 540 grp->rx_queue = priv->rx_queue[i]; 541 grp->num_rx_queues++; 542 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 543 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 544 priv->rx_queue[i]->grp = grp; 545 } 546 547 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 548 if (!grp->tx_queue) 549 grp->tx_queue = priv->tx_queue[i]; 550 grp->num_tx_queues++; 551 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 552 priv->tqueue |= (TQUEUE_EN0 >> i); 553 priv->tx_queue[i]->grp = grp; 554 } 555 556 priv->num_grps++; 557 558 return 0; 559 } 560 561 static int gfar_of_group_count(struct device_node *np) 562 { 563 struct device_node *child; 564 int num = 0; 565 566 for_each_available_child_of_node(np, child) 567 if (of_node_name_eq(child, "queue-group")) 568 num++; 569 570 return num; 571 } 572 573 /* Reads the controller's registers to determine what interface 574 * connects it to the PHY. 575 */ 576 static phy_interface_t gfar_get_interface(struct net_device *dev) 577 { 578 struct gfar_private *priv = netdev_priv(dev); 579 struct gfar __iomem *regs = priv->gfargrp[0].regs; 580 u32 ecntrl; 581 582 ecntrl = gfar_read(®s->ecntrl); 583 584 if (ecntrl & ECNTRL_SGMII_MODE) 585 return PHY_INTERFACE_MODE_SGMII; 586 587 if (ecntrl & ECNTRL_TBI_MODE) { 588 if (ecntrl & ECNTRL_REDUCED_MODE) 589 return PHY_INTERFACE_MODE_RTBI; 590 else 591 return PHY_INTERFACE_MODE_TBI; 592 } 593 594 if (ecntrl & ECNTRL_REDUCED_MODE) { 595 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 596 return PHY_INTERFACE_MODE_RMII; 597 } 598 else { 599 phy_interface_t interface = priv->interface; 600 601 /* This isn't autodetected right now, so it must 602 * be set by the device tree or platform code. 603 */ 604 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 605 return PHY_INTERFACE_MODE_RGMII_ID; 606 607 return PHY_INTERFACE_MODE_RGMII; 608 } 609 } 610 611 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 612 return PHY_INTERFACE_MODE_GMII; 613 614 return PHY_INTERFACE_MODE_MII; 615 } 616 617 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 618 { 619 const char *model; 620 int err = 0, i; 621 phy_interface_t interface; 622 struct net_device *dev = NULL; 623 struct gfar_private *priv = NULL; 624 struct device_node *np = ofdev->dev.of_node; 625 struct device_node *child = NULL; 626 u32 stash_len = 0; 627 u32 stash_idx = 0; 628 unsigned int num_tx_qs, num_rx_qs; 629 unsigned short mode; 630 631 if (!np) 632 return -ENODEV; 633 634 if (of_device_is_compatible(np, "fsl,etsec2")) 635 mode = MQ_MG_MODE; 636 else 637 mode = SQ_SG_MODE; 638 639 if (mode == SQ_SG_MODE) { 640 num_tx_qs = 1; 641 num_rx_qs = 1; 642 } else { /* MQ_MG_MODE */ 643 /* get the actual number of supported groups */ 644 unsigned int num_grps = gfar_of_group_count(np); 645 646 if (num_grps == 0 || num_grps > MAXGROUPS) { 647 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 648 num_grps); 649 pr_err("Cannot do alloc_etherdev, aborting\n"); 650 return -EINVAL; 651 } 652 653 num_tx_qs = num_grps; /* one txq per int group */ 654 num_rx_qs = num_grps; /* one rxq per int group */ 655 } 656 657 if (num_tx_qs > MAX_TX_QS) { 658 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 659 num_tx_qs, MAX_TX_QS); 660 pr_err("Cannot do alloc_etherdev, aborting\n"); 661 return -EINVAL; 662 } 663 664 if (num_rx_qs > MAX_RX_QS) { 665 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 666 num_rx_qs, MAX_RX_QS); 667 pr_err("Cannot do alloc_etherdev, aborting\n"); 668 return -EINVAL; 669 } 670 671 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 672 dev = *pdev; 673 if (NULL == dev) 674 return -ENOMEM; 675 676 priv = netdev_priv(dev); 677 priv->ndev = dev; 678 679 priv->mode = mode; 680 681 priv->num_tx_queues = num_tx_qs; 682 netif_set_real_num_rx_queues(dev, num_rx_qs); 683 priv->num_rx_queues = num_rx_qs; 684 685 err = gfar_alloc_tx_queues(priv); 686 if (err) 687 goto tx_alloc_failed; 688 689 err = gfar_alloc_rx_queues(priv); 690 if (err) 691 goto rx_alloc_failed; 692 693 err = of_property_read_string(np, "model", &model); 694 if (err) { 695 pr_err("Device model property missing, aborting\n"); 696 goto rx_alloc_failed; 697 } 698 699 /* Init Rx queue filer rule set linked list */ 700 INIT_LIST_HEAD(&priv->rx_list.list); 701 priv->rx_list.count = 0; 702 mutex_init(&priv->rx_queue_access); 703 704 for (i = 0; i < MAXGROUPS; i++) 705 priv->gfargrp[i].regs = NULL; 706 707 /* Parse and initialize group specific information */ 708 if (priv->mode == MQ_MG_MODE) { 709 for_each_available_child_of_node(np, child) { 710 if (!of_node_name_eq(child, "queue-group")) 711 continue; 712 713 err = gfar_parse_group(child, priv, model); 714 if (err) { 715 of_node_put(child); 716 goto err_grp_init; 717 } 718 } 719 } else { /* SQ_SG_MODE */ 720 err = gfar_parse_group(np, priv, model); 721 if (err) 722 goto err_grp_init; 723 } 724 725 if (of_property_read_bool(np, "bd-stash")) { 726 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 727 priv->bd_stash_en = 1; 728 } 729 730 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 731 732 if (err == 0) 733 priv->rx_stash_size = stash_len; 734 735 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 736 737 if (err == 0) 738 priv->rx_stash_index = stash_idx; 739 740 if (stash_len || stash_idx) 741 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 742 743 err = of_get_mac_address(np, dev->dev_addr); 744 if (err) { 745 eth_hw_addr_random(dev); 746 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 747 } 748 749 if (model && !strcasecmp(model, "TSEC")) 750 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 751 FSL_GIANFAR_DEV_HAS_COALESCE | 752 FSL_GIANFAR_DEV_HAS_RMON | 753 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 754 755 if (model && !strcasecmp(model, "eTSEC")) 756 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 757 FSL_GIANFAR_DEV_HAS_COALESCE | 758 FSL_GIANFAR_DEV_HAS_RMON | 759 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 760 FSL_GIANFAR_DEV_HAS_CSUM | 761 FSL_GIANFAR_DEV_HAS_VLAN | 762 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 763 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 764 FSL_GIANFAR_DEV_HAS_TIMER | 765 FSL_GIANFAR_DEV_HAS_RX_FILER; 766 767 /* Use PHY connection type from the DT node if one is specified there. 768 * rgmii-id really needs to be specified. Other types can be 769 * detected by hardware 770 */ 771 err = of_get_phy_mode(np, &interface); 772 if (!err) 773 priv->interface = interface; 774 else 775 priv->interface = gfar_get_interface(dev); 776 777 if (of_find_property(np, "fsl,magic-packet", NULL)) 778 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 779 780 if (of_get_property(np, "fsl,wake-on-filer", NULL)) 781 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 782 783 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 784 785 /* In the case of a fixed PHY, the DT node associated 786 * to the PHY is the Ethernet MAC DT node. 787 */ 788 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 789 err = of_phy_register_fixed_link(np); 790 if (err) 791 goto err_grp_init; 792 793 priv->phy_node = of_node_get(np); 794 } 795 796 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 797 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 798 799 return 0; 800 801 err_grp_init: 802 unmap_group_regs(priv); 803 rx_alloc_failed: 804 gfar_free_rx_queues(priv); 805 tx_alloc_failed: 806 gfar_free_tx_queues(priv); 807 free_gfar_dev(priv); 808 return err; 809 } 810 811 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 812 u32 class) 813 { 814 u32 rqfpr = FPR_FILER_MASK; 815 u32 rqfcr = 0x0; 816 817 rqfar--; 818 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 819 priv->ftp_rqfpr[rqfar] = rqfpr; 820 priv->ftp_rqfcr[rqfar] = rqfcr; 821 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 822 823 rqfar--; 824 rqfcr = RQFCR_CMP_NOMATCH; 825 priv->ftp_rqfpr[rqfar] = rqfpr; 826 priv->ftp_rqfcr[rqfar] = rqfcr; 827 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 828 829 rqfar--; 830 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 831 rqfpr = class; 832 priv->ftp_rqfcr[rqfar] = rqfcr; 833 priv->ftp_rqfpr[rqfar] = rqfpr; 834 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 835 836 rqfar--; 837 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 838 rqfpr = class; 839 priv->ftp_rqfcr[rqfar] = rqfcr; 840 priv->ftp_rqfpr[rqfar] = rqfpr; 841 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 842 843 return rqfar; 844 } 845 846 static void gfar_init_filer_table(struct gfar_private *priv) 847 { 848 int i = 0x0; 849 u32 rqfar = MAX_FILER_IDX; 850 u32 rqfcr = 0x0; 851 u32 rqfpr = FPR_FILER_MASK; 852 853 /* Default rule */ 854 rqfcr = RQFCR_CMP_MATCH; 855 priv->ftp_rqfcr[rqfar] = rqfcr; 856 priv->ftp_rqfpr[rqfar] = rqfpr; 857 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 858 859 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 860 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 861 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 862 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 863 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 864 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 865 866 /* cur_filer_idx indicated the first non-masked rule */ 867 priv->cur_filer_idx = rqfar; 868 869 /* Rest are masked rules */ 870 rqfcr = RQFCR_CMP_NOMATCH; 871 for (i = 0; i < rqfar; i++) { 872 priv->ftp_rqfcr[i] = rqfcr; 873 priv->ftp_rqfpr[i] = rqfpr; 874 gfar_write_filer(priv, i, rqfcr, rqfpr); 875 } 876 } 877 878 #ifdef CONFIG_PPC 879 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 880 { 881 unsigned int pvr = mfspr(SPRN_PVR); 882 unsigned int svr = mfspr(SPRN_SVR); 883 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 884 unsigned int rev = svr & 0xffff; 885 886 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 887 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 888 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 889 priv->errata |= GFAR_ERRATA_74; 890 891 /* MPC8313 and MPC837x all rev */ 892 if ((pvr == 0x80850010 && mod == 0x80b0) || 893 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 894 priv->errata |= GFAR_ERRATA_76; 895 896 /* MPC8313 Rev < 2.0 */ 897 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 898 priv->errata |= GFAR_ERRATA_12; 899 } 900 901 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 902 { 903 unsigned int svr = mfspr(SPRN_SVR); 904 905 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 906 priv->errata |= GFAR_ERRATA_12; 907 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 908 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 909 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 910 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 911 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 912 } 913 #endif 914 915 static void gfar_detect_errata(struct gfar_private *priv) 916 { 917 struct device *dev = &priv->ofdev->dev; 918 919 /* no plans to fix */ 920 priv->errata |= GFAR_ERRATA_A002; 921 922 #ifdef CONFIG_PPC 923 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 924 __gfar_detect_errata_85xx(priv); 925 else /* non-mpc85xx parts, i.e. e300 core based */ 926 __gfar_detect_errata_83xx(priv); 927 #endif 928 929 if (priv->errata) 930 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 931 priv->errata); 932 } 933 934 static void gfar_init_addr_hash_table(struct gfar_private *priv) 935 { 936 struct gfar __iomem *regs = priv->gfargrp[0].regs; 937 938 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 939 priv->extended_hash = 1; 940 priv->hash_width = 9; 941 942 priv->hash_regs[0] = ®s->igaddr0; 943 priv->hash_regs[1] = ®s->igaddr1; 944 priv->hash_regs[2] = ®s->igaddr2; 945 priv->hash_regs[3] = ®s->igaddr3; 946 priv->hash_regs[4] = ®s->igaddr4; 947 priv->hash_regs[5] = ®s->igaddr5; 948 priv->hash_regs[6] = ®s->igaddr6; 949 priv->hash_regs[7] = ®s->igaddr7; 950 priv->hash_regs[8] = ®s->gaddr0; 951 priv->hash_regs[9] = ®s->gaddr1; 952 priv->hash_regs[10] = ®s->gaddr2; 953 priv->hash_regs[11] = ®s->gaddr3; 954 priv->hash_regs[12] = ®s->gaddr4; 955 priv->hash_regs[13] = ®s->gaddr5; 956 priv->hash_regs[14] = ®s->gaddr6; 957 priv->hash_regs[15] = ®s->gaddr7; 958 959 } else { 960 priv->extended_hash = 0; 961 priv->hash_width = 8; 962 963 priv->hash_regs[0] = ®s->gaddr0; 964 priv->hash_regs[1] = ®s->gaddr1; 965 priv->hash_regs[2] = ®s->gaddr2; 966 priv->hash_regs[3] = ®s->gaddr3; 967 priv->hash_regs[4] = ®s->gaddr4; 968 priv->hash_regs[5] = ®s->gaddr5; 969 priv->hash_regs[6] = ®s->gaddr6; 970 priv->hash_regs[7] = ®s->gaddr7; 971 } 972 } 973 974 static int __gfar_is_rx_idle(struct gfar_private *priv) 975 { 976 u32 res; 977 978 /* Normaly TSEC should not hang on GRS commands, so we should 979 * actually wait for IEVENT_GRSC flag. 980 */ 981 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 982 return 0; 983 984 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 985 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 986 * and the Rx can be safely reset. 987 */ 988 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 989 res &= 0x7f807f80; 990 if ((res & 0xffff) == (res >> 16)) 991 return 1; 992 993 return 0; 994 } 995 996 /* Halt the receive and transmit queues */ 997 static void gfar_halt_nodisable(struct gfar_private *priv) 998 { 999 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1000 u32 tempval; 1001 unsigned int timeout; 1002 int stopped; 1003 1004 gfar_ints_disable(priv); 1005 1006 if (gfar_is_dma_stopped(priv)) 1007 return; 1008 1009 /* Stop the DMA, and wait for it to stop */ 1010 tempval = gfar_read(®s->dmactrl); 1011 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1012 gfar_write(®s->dmactrl, tempval); 1013 1014 retry: 1015 timeout = 1000; 1016 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1017 cpu_relax(); 1018 timeout--; 1019 } 1020 1021 if (!timeout) 1022 stopped = gfar_is_dma_stopped(priv); 1023 1024 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1025 !__gfar_is_rx_idle(priv)) 1026 goto retry; 1027 } 1028 1029 /* Halt the receive and transmit queues */ 1030 static void gfar_halt(struct gfar_private *priv) 1031 { 1032 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1033 u32 tempval; 1034 1035 /* Dissable the Rx/Tx hw queues */ 1036 gfar_write(®s->rqueue, 0); 1037 gfar_write(®s->tqueue, 0); 1038 1039 mdelay(10); 1040 1041 gfar_halt_nodisable(priv); 1042 1043 /* Disable Rx/Tx DMA */ 1044 tempval = gfar_read(®s->maccfg1); 1045 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1046 gfar_write(®s->maccfg1, tempval); 1047 } 1048 1049 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1050 { 1051 struct txbd8 *txbdp; 1052 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1053 int i, j; 1054 1055 txbdp = tx_queue->tx_bd_base; 1056 1057 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1058 if (!tx_queue->tx_skbuff[i]) 1059 continue; 1060 1061 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1062 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1063 txbdp->lstatus = 0; 1064 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1065 j++) { 1066 txbdp++; 1067 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1068 be16_to_cpu(txbdp->length), 1069 DMA_TO_DEVICE); 1070 } 1071 txbdp++; 1072 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1073 tx_queue->tx_skbuff[i] = NULL; 1074 } 1075 kfree(tx_queue->tx_skbuff); 1076 tx_queue->tx_skbuff = NULL; 1077 } 1078 1079 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1080 { 1081 int i; 1082 1083 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1084 1085 dev_kfree_skb(rx_queue->skb); 1086 1087 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1088 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1089 1090 rxbdp->lstatus = 0; 1091 rxbdp->bufPtr = 0; 1092 rxbdp++; 1093 1094 if (!rxb->page) 1095 continue; 1096 1097 dma_unmap_page(rx_queue->dev, rxb->dma, 1098 PAGE_SIZE, DMA_FROM_DEVICE); 1099 __free_page(rxb->page); 1100 1101 rxb->page = NULL; 1102 } 1103 1104 kfree(rx_queue->rx_buff); 1105 rx_queue->rx_buff = NULL; 1106 } 1107 1108 /* If there are any tx skbs or rx skbs still around, free them. 1109 * Then free tx_skbuff and rx_skbuff 1110 */ 1111 static void free_skb_resources(struct gfar_private *priv) 1112 { 1113 struct gfar_priv_tx_q *tx_queue = NULL; 1114 struct gfar_priv_rx_q *rx_queue = NULL; 1115 int i; 1116 1117 /* Go through all the buffer descriptors and free their data buffers */ 1118 for (i = 0; i < priv->num_tx_queues; i++) { 1119 struct netdev_queue *txq; 1120 1121 tx_queue = priv->tx_queue[i]; 1122 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1123 if (tx_queue->tx_skbuff) 1124 free_skb_tx_queue(tx_queue); 1125 netdev_tx_reset_queue(txq); 1126 } 1127 1128 for (i = 0; i < priv->num_rx_queues; i++) { 1129 rx_queue = priv->rx_queue[i]; 1130 if (rx_queue->rx_buff) 1131 free_skb_rx_queue(rx_queue); 1132 } 1133 1134 dma_free_coherent(priv->dev, 1135 sizeof(struct txbd8) * priv->total_tx_ring_size + 1136 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1137 priv->tx_queue[0]->tx_bd_base, 1138 priv->tx_queue[0]->tx_bd_dma_base); 1139 } 1140 1141 void stop_gfar(struct net_device *dev) 1142 { 1143 struct gfar_private *priv = netdev_priv(dev); 1144 1145 netif_tx_stop_all_queues(dev); 1146 1147 smp_mb__before_atomic(); 1148 set_bit(GFAR_DOWN, &priv->state); 1149 smp_mb__after_atomic(); 1150 1151 disable_napi(priv); 1152 1153 /* disable ints and gracefully shut down Rx/Tx DMA */ 1154 gfar_halt(priv); 1155 1156 phy_stop(dev->phydev); 1157 1158 free_skb_resources(priv); 1159 } 1160 1161 static void gfar_start(struct gfar_private *priv) 1162 { 1163 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1164 u32 tempval; 1165 int i = 0; 1166 1167 /* Enable Rx/Tx hw queues */ 1168 gfar_write(®s->rqueue, priv->rqueue); 1169 gfar_write(®s->tqueue, priv->tqueue); 1170 1171 /* Initialize DMACTRL to have WWR and WOP */ 1172 tempval = gfar_read(®s->dmactrl); 1173 tempval |= DMACTRL_INIT_SETTINGS; 1174 gfar_write(®s->dmactrl, tempval); 1175 1176 /* Make sure we aren't stopped */ 1177 tempval = gfar_read(®s->dmactrl); 1178 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1179 gfar_write(®s->dmactrl, tempval); 1180 1181 for (i = 0; i < priv->num_grps; i++) { 1182 regs = priv->gfargrp[i].regs; 1183 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1184 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1185 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1186 } 1187 1188 /* Enable Rx/Tx DMA */ 1189 tempval = gfar_read(®s->maccfg1); 1190 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1191 gfar_write(®s->maccfg1, tempval); 1192 1193 gfar_ints_enable(priv); 1194 1195 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1196 } 1197 1198 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1199 { 1200 struct page *page; 1201 dma_addr_t addr; 1202 1203 page = dev_alloc_page(); 1204 if (unlikely(!page)) 1205 return false; 1206 1207 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1208 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1209 __free_page(page); 1210 1211 return false; 1212 } 1213 1214 rxb->dma = addr; 1215 rxb->page = page; 1216 rxb->page_offset = 0; 1217 1218 return true; 1219 } 1220 1221 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1222 { 1223 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1224 struct gfar_extra_stats *estats = &priv->extra_stats; 1225 1226 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1227 atomic64_inc(&estats->rx_alloc_err); 1228 } 1229 1230 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1231 int alloc_cnt) 1232 { 1233 struct rxbd8 *bdp; 1234 struct gfar_rx_buff *rxb; 1235 int i; 1236 1237 i = rx_queue->next_to_use; 1238 bdp = &rx_queue->rx_bd_base[i]; 1239 rxb = &rx_queue->rx_buff[i]; 1240 1241 while (alloc_cnt--) { 1242 /* try reuse page */ 1243 if (unlikely(!rxb->page)) { 1244 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1245 gfar_rx_alloc_err(rx_queue); 1246 break; 1247 } 1248 } 1249 1250 /* Setup the new RxBD */ 1251 gfar_init_rxbdp(rx_queue, bdp, 1252 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1253 1254 /* Update to the next pointer */ 1255 bdp++; 1256 rxb++; 1257 1258 if (unlikely(++i == rx_queue->rx_ring_size)) { 1259 i = 0; 1260 bdp = rx_queue->rx_bd_base; 1261 rxb = rx_queue->rx_buff; 1262 } 1263 } 1264 1265 rx_queue->next_to_use = i; 1266 rx_queue->next_to_alloc = i; 1267 } 1268 1269 static void gfar_init_bds(struct net_device *ndev) 1270 { 1271 struct gfar_private *priv = netdev_priv(ndev); 1272 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1273 struct gfar_priv_tx_q *tx_queue = NULL; 1274 struct gfar_priv_rx_q *rx_queue = NULL; 1275 struct txbd8 *txbdp; 1276 u32 __iomem *rfbptr; 1277 int i, j; 1278 1279 for (i = 0; i < priv->num_tx_queues; i++) { 1280 tx_queue = priv->tx_queue[i]; 1281 /* Initialize some variables in our dev structure */ 1282 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1283 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1284 tx_queue->cur_tx = tx_queue->tx_bd_base; 1285 tx_queue->skb_curtx = 0; 1286 tx_queue->skb_dirtytx = 0; 1287 1288 /* Initialize Transmit Descriptor Ring */ 1289 txbdp = tx_queue->tx_bd_base; 1290 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1291 txbdp->lstatus = 0; 1292 txbdp->bufPtr = 0; 1293 txbdp++; 1294 } 1295 1296 /* Set the last descriptor in the ring to indicate wrap */ 1297 txbdp--; 1298 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1299 TXBD_WRAP); 1300 } 1301 1302 rfbptr = ®s->rfbptr0; 1303 for (i = 0; i < priv->num_rx_queues; i++) { 1304 rx_queue = priv->rx_queue[i]; 1305 1306 rx_queue->next_to_clean = 0; 1307 rx_queue->next_to_use = 0; 1308 rx_queue->next_to_alloc = 0; 1309 1310 /* make sure next_to_clean != next_to_use after this 1311 * by leaving at least 1 unused descriptor 1312 */ 1313 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1314 1315 rx_queue->rfbptr = rfbptr; 1316 rfbptr += 2; 1317 } 1318 } 1319 1320 static int gfar_alloc_skb_resources(struct net_device *ndev) 1321 { 1322 void *vaddr; 1323 dma_addr_t addr; 1324 int i, j; 1325 struct gfar_private *priv = netdev_priv(ndev); 1326 struct device *dev = priv->dev; 1327 struct gfar_priv_tx_q *tx_queue = NULL; 1328 struct gfar_priv_rx_q *rx_queue = NULL; 1329 1330 priv->total_tx_ring_size = 0; 1331 for (i = 0; i < priv->num_tx_queues; i++) 1332 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1333 1334 priv->total_rx_ring_size = 0; 1335 for (i = 0; i < priv->num_rx_queues; i++) 1336 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1337 1338 /* Allocate memory for the buffer descriptors */ 1339 vaddr = dma_alloc_coherent(dev, 1340 (priv->total_tx_ring_size * 1341 sizeof(struct txbd8)) + 1342 (priv->total_rx_ring_size * 1343 sizeof(struct rxbd8)), 1344 &addr, GFP_KERNEL); 1345 if (!vaddr) 1346 return -ENOMEM; 1347 1348 for (i = 0; i < priv->num_tx_queues; i++) { 1349 tx_queue = priv->tx_queue[i]; 1350 tx_queue->tx_bd_base = vaddr; 1351 tx_queue->tx_bd_dma_base = addr; 1352 tx_queue->dev = ndev; 1353 /* enet DMA only understands physical addresses */ 1354 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1355 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1356 } 1357 1358 /* Start the rx descriptor ring where the tx ring leaves off */ 1359 for (i = 0; i < priv->num_rx_queues; i++) { 1360 rx_queue = priv->rx_queue[i]; 1361 rx_queue->rx_bd_base = vaddr; 1362 rx_queue->rx_bd_dma_base = addr; 1363 rx_queue->ndev = ndev; 1364 rx_queue->dev = dev; 1365 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1366 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1367 } 1368 1369 /* Setup the skbuff rings */ 1370 for (i = 0; i < priv->num_tx_queues; i++) { 1371 tx_queue = priv->tx_queue[i]; 1372 tx_queue->tx_skbuff = 1373 kmalloc_array(tx_queue->tx_ring_size, 1374 sizeof(*tx_queue->tx_skbuff), 1375 GFP_KERNEL); 1376 if (!tx_queue->tx_skbuff) 1377 goto cleanup; 1378 1379 for (j = 0; j < tx_queue->tx_ring_size; j++) 1380 tx_queue->tx_skbuff[j] = NULL; 1381 } 1382 1383 for (i = 0; i < priv->num_rx_queues; i++) { 1384 rx_queue = priv->rx_queue[i]; 1385 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1386 sizeof(*rx_queue->rx_buff), 1387 GFP_KERNEL); 1388 if (!rx_queue->rx_buff) 1389 goto cleanup; 1390 } 1391 1392 gfar_init_bds(ndev); 1393 1394 return 0; 1395 1396 cleanup: 1397 free_skb_resources(priv); 1398 return -ENOMEM; 1399 } 1400 1401 /* Bring the controller up and running */ 1402 int startup_gfar(struct net_device *ndev) 1403 { 1404 struct gfar_private *priv = netdev_priv(ndev); 1405 int err; 1406 1407 gfar_mac_reset(priv); 1408 1409 err = gfar_alloc_skb_resources(ndev); 1410 if (err) 1411 return err; 1412 1413 gfar_init_tx_rx_base(priv); 1414 1415 smp_mb__before_atomic(); 1416 clear_bit(GFAR_DOWN, &priv->state); 1417 smp_mb__after_atomic(); 1418 1419 /* Start Rx/Tx DMA and enable the interrupts */ 1420 gfar_start(priv); 1421 1422 /* force link state update after mac reset */ 1423 priv->oldlink = 0; 1424 priv->oldspeed = 0; 1425 priv->oldduplex = -1; 1426 1427 phy_start(ndev->phydev); 1428 1429 enable_napi(priv); 1430 1431 netif_tx_wake_all_queues(ndev); 1432 1433 return 0; 1434 } 1435 1436 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1437 { 1438 struct net_device *ndev = priv->ndev; 1439 struct phy_device *phydev = ndev->phydev; 1440 u32 val = 0; 1441 1442 if (!phydev->duplex) 1443 return val; 1444 1445 if (!priv->pause_aneg_en) { 1446 if (priv->tx_pause_en) 1447 val |= MACCFG1_TX_FLOW; 1448 if (priv->rx_pause_en) 1449 val |= MACCFG1_RX_FLOW; 1450 } else { 1451 u16 lcl_adv, rmt_adv; 1452 u8 flowctrl; 1453 /* get link partner capabilities */ 1454 rmt_adv = 0; 1455 if (phydev->pause) 1456 rmt_adv = LPA_PAUSE_CAP; 1457 if (phydev->asym_pause) 1458 rmt_adv |= LPA_PAUSE_ASYM; 1459 1460 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1461 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1462 if (flowctrl & FLOW_CTRL_TX) 1463 val |= MACCFG1_TX_FLOW; 1464 if (flowctrl & FLOW_CTRL_RX) 1465 val |= MACCFG1_RX_FLOW; 1466 } 1467 1468 return val; 1469 } 1470 1471 static noinline void gfar_update_link_state(struct gfar_private *priv) 1472 { 1473 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1474 struct net_device *ndev = priv->ndev; 1475 struct phy_device *phydev = ndev->phydev; 1476 struct gfar_priv_rx_q *rx_queue = NULL; 1477 int i; 1478 1479 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1480 return; 1481 1482 if (phydev->link) { 1483 u32 tempval1 = gfar_read(®s->maccfg1); 1484 u32 tempval = gfar_read(®s->maccfg2); 1485 u32 ecntrl = gfar_read(®s->ecntrl); 1486 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1487 1488 if (phydev->duplex != priv->oldduplex) { 1489 if (!(phydev->duplex)) 1490 tempval &= ~(MACCFG2_FULL_DUPLEX); 1491 else 1492 tempval |= MACCFG2_FULL_DUPLEX; 1493 1494 priv->oldduplex = phydev->duplex; 1495 } 1496 1497 if (phydev->speed != priv->oldspeed) { 1498 switch (phydev->speed) { 1499 case 1000: 1500 tempval = 1501 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1502 1503 ecntrl &= ~(ECNTRL_R100); 1504 break; 1505 case 100: 1506 case 10: 1507 tempval = 1508 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1509 1510 /* Reduced mode distinguishes 1511 * between 10 and 100 1512 */ 1513 if (phydev->speed == SPEED_100) 1514 ecntrl |= ECNTRL_R100; 1515 else 1516 ecntrl &= ~(ECNTRL_R100); 1517 break; 1518 default: 1519 netif_warn(priv, link, priv->ndev, 1520 "Ack! Speed (%d) is not 10/100/1000!\n", 1521 phydev->speed); 1522 break; 1523 } 1524 1525 priv->oldspeed = phydev->speed; 1526 } 1527 1528 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1529 tempval1 |= gfar_get_flowctrl_cfg(priv); 1530 1531 /* Turn last free buffer recording on */ 1532 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1533 for (i = 0; i < priv->num_rx_queues; i++) { 1534 u32 bdp_dma; 1535 1536 rx_queue = priv->rx_queue[i]; 1537 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1538 gfar_write(rx_queue->rfbptr, bdp_dma); 1539 } 1540 1541 priv->tx_actual_en = 1; 1542 } 1543 1544 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1545 priv->tx_actual_en = 0; 1546 1547 gfar_write(®s->maccfg1, tempval1); 1548 gfar_write(®s->maccfg2, tempval); 1549 gfar_write(®s->ecntrl, ecntrl); 1550 1551 if (!priv->oldlink) 1552 priv->oldlink = 1; 1553 1554 } else if (priv->oldlink) { 1555 priv->oldlink = 0; 1556 priv->oldspeed = 0; 1557 priv->oldduplex = -1; 1558 } 1559 1560 if (netif_msg_link(priv)) 1561 phy_print_status(phydev); 1562 } 1563 1564 /* Called every time the controller might need to be made 1565 * aware of new link state. The PHY code conveys this 1566 * information through variables in the phydev structure, and this 1567 * function converts those variables into the appropriate 1568 * register values, and can bring down the device if needed. 1569 */ 1570 static void adjust_link(struct net_device *dev) 1571 { 1572 struct gfar_private *priv = netdev_priv(dev); 1573 struct phy_device *phydev = dev->phydev; 1574 1575 if (unlikely(phydev->link != priv->oldlink || 1576 (phydev->link && (phydev->duplex != priv->oldduplex || 1577 phydev->speed != priv->oldspeed)))) 1578 gfar_update_link_state(priv); 1579 } 1580 1581 /* Initialize TBI PHY interface for communicating with the 1582 * SERDES lynx PHY on the chip. We communicate with this PHY 1583 * through the MDIO bus on each controller, treating it as a 1584 * "normal" PHY at the address found in the TBIPA register. We assume 1585 * that the TBIPA register is valid. Either the MDIO bus code will set 1586 * it to a value that doesn't conflict with other PHYs on the bus, or the 1587 * value doesn't matter, as there are no other PHYs on the bus. 1588 */ 1589 static void gfar_configure_serdes(struct net_device *dev) 1590 { 1591 struct gfar_private *priv = netdev_priv(dev); 1592 struct phy_device *tbiphy; 1593 1594 if (!priv->tbi_node) { 1595 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1596 "device tree specify a tbi-handle\n"); 1597 return; 1598 } 1599 1600 tbiphy = of_phy_find_device(priv->tbi_node); 1601 if (!tbiphy) { 1602 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1603 return; 1604 } 1605 1606 /* If the link is already up, we must already be ok, and don't need to 1607 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1608 * everything for us? Resetting it takes the link down and requires 1609 * several seconds for it to come back. 1610 */ 1611 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1612 put_device(&tbiphy->mdio.dev); 1613 return; 1614 } 1615 1616 /* Single clk mode, mii mode off(for serdes communication) */ 1617 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1618 1619 phy_write(tbiphy, MII_ADVERTISE, 1620 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1621 ADVERTISE_1000XPSE_ASYM); 1622 1623 phy_write(tbiphy, MII_BMCR, 1624 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1625 BMCR_SPEED1000); 1626 1627 put_device(&tbiphy->mdio.dev); 1628 } 1629 1630 /* Initializes driver's PHY state, and attaches to the PHY. 1631 * Returns 0 on success. 1632 */ 1633 static int init_phy(struct net_device *dev) 1634 { 1635 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1636 struct gfar_private *priv = netdev_priv(dev); 1637 phy_interface_t interface = priv->interface; 1638 struct phy_device *phydev; 1639 struct ethtool_eee edata; 1640 1641 linkmode_set_bit_array(phy_10_100_features_array, 1642 ARRAY_SIZE(phy_10_100_features_array), 1643 mask); 1644 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1645 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1646 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1647 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1648 1649 priv->oldlink = 0; 1650 priv->oldspeed = 0; 1651 priv->oldduplex = -1; 1652 1653 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1654 interface); 1655 if (!phydev) { 1656 dev_err(&dev->dev, "could not attach to PHY\n"); 1657 return -ENODEV; 1658 } 1659 1660 if (interface == PHY_INTERFACE_MODE_SGMII) 1661 gfar_configure_serdes(dev); 1662 1663 /* Remove any features not supported by the controller */ 1664 linkmode_and(phydev->supported, phydev->supported, mask); 1665 linkmode_copy(phydev->advertising, phydev->supported); 1666 1667 /* Add support for flow control */ 1668 phy_support_asym_pause(phydev); 1669 1670 /* disable EEE autoneg, EEE not supported by eTSEC */ 1671 memset(&edata, 0, sizeof(struct ethtool_eee)); 1672 phy_ethtool_set_eee(phydev, &edata); 1673 1674 return 0; 1675 } 1676 1677 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1678 { 1679 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1680 1681 memset(fcb, 0, GMAC_FCB_LEN); 1682 1683 return fcb; 1684 } 1685 1686 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1687 int fcb_length) 1688 { 1689 /* If we're here, it's a IP packet with a TCP or UDP 1690 * payload. We set it to checksum, using a pseudo-header 1691 * we provide 1692 */ 1693 u8 flags = TXFCB_DEFAULT; 1694 1695 /* Tell the controller what the protocol is 1696 * And provide the already calculated phcs 1697 */ 1698 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1699 flags |= TXFCB_UDP; 1700 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1701 } else 1702 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1703 1704 /* l3os is the distance between the start of the 1705 * frame (skb->data) and the start of the IP hdr. 1706 * l4os is the distance between the start of the 1707 * l3 hdr and the l4 hdr 1708 */ 1709 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1710 fcb->l4os = skb_network_header_len(skb); 1711 1712 fcb->flags = flags; 1713 } 1714 1715 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1716 { 1717 fcb->flags |= TXFCB_VLN; 1718 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1719 } 1720 1721 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1722 struct txbd8 *base, int ring_size) 1723 { 1724 struct txbd8 *new_bd = bdp + stride; 1725 1726 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1727 } 1728 1729 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1730 int ring_size) 1731 { 1732 return skip_txbd(bdp, 1, base, ring_size); 1733 } 1734 1735 /* eTSEC12: csum generation not supported for some fcb offsets */ 1736 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1737 unsigned long fcb_addr) 1738 { 1739 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1740 (fcb_addr % 0x20) > 0x18); 1741 } 1742 1743 /* eTSEC76: csum generation for frames larger than 2500 may 1744 * cause excess delays before start of transmission 1745 */ 1746 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1747 unsigned int len) 1748 { 1749 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1750 (len > 2500)); 1751 } 1752 1753 /* This is called by the kernel when a frame is ready for transmission. 1754 * It is pointed to by the dev->hard_start_xmit function pointer 1755 */ 1756 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1757 { 1758 struct gfar_private *priv = netdev_priv(dev); 1759 struct gfar_priv_tx_q *tx_queue = NULL; 1760 struct netdev_queue *txq; 1761 struct gfar __iomem *regs = NULL; 1762 struct txfcb *fcb = NULL; 1763 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1764 u32 lstatus; 1765 skb_frag_t *frag; 1766 int i, rq = 0; 1767 int do_tstamp, do_csum, do_vlan; 1768 u32 bufaddr; 1769 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1770 1771 rq = skb->queue_mapping; 1772 tx_queue = priv->tx_queue[rq]; 1773 txq = netdev_get_tx_queue(dev, rq); 1774 base = tx_queue->tx_bd_base; 1775 regs = tx_queue->grp->regs; 1776 1777 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1778 do_vlan = skb_vlan_tag_present(skb); 1779 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1780 priv->hwts_tx_en; 1781 1782 if (do_csum || do_vlan) 1783 fcb_len = GMAC_FCB_LEN; 1784 1785 /* check if time stamp should be generated */ 1786 if (unlikely(do_tstamp)) 1787 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1788 1789 /* make space for additional header when fcb is needed */ 1790 if (fcb_len) { 1791 if (unlikely(skb_cow_head(skb, fcb_len))) { 1792 dev->stats.tx_errors++; 1793 dev_kfree_skb_any(skb); 1794 return NETDEV_TX_OK; 1795 } 1796 } 1797 1798 /* total number of fragments in the SKB */ 1799 nr_frags = skb_shinfo(skb)->nr_frags; 1800 1801 /* calculate the required number of TxBDs for this skb */ 1802 if (unlikely(do_tstamp)) 1803 nr_txbds = nr_frags + 2; 1804 else 1805 nr_txbds = nr_frags + 1; 1806 1807 /* check if there is space to queue this packet */ 1808 if (nr_txbds > tx_queue->num_txbdfree) { 1809 /* no space, stop the queue */ 1810 netif_tx_stop_queue(txq); 1811 dev->stats.tx_fifo_errors++; 1812 return NETDEV_TX_BUSY; 1813 } 1814 1815 /* Update transmit stats */ 1816 bytes_sent = skb->len; 1817 tx_queue->stats.tx_bytes += bytes_sent; 1818 /* keep Tx bytes on wire for BQL accounting */ 1819 GFAR_CB(skb)->bytes_sent = bytes_sent; 1820 tx_queue->stats.tx_packets++; 1821 1822 txbdp = txbdp_start = tx_queue->cur_tx; 1823 lstatus = be32_to_cpu(txbdp->lstatus); 1824 1825 /* Add TxPAL between FCB and frame if required */ 1826 if (unlikely(do_tstamp)) { 1827 skb_push(skb, GMAC_TXPAL_LEN); 1828 memset(skb->data, 0, GMAC_TXPAL_LEN); 1829 } 1830 1831 /* Add TxFCB if required */ 1832 if (fcb_len) { 1833 fcb = gfar_add_fcb(skb); 1834 lstatus |= BD_LFLAG(TXBD_TOE); 1835 } 1836 1837 /* Set up checksumming */ 1838 if (do_csum) { 1839 gfar_tx_checksum(skb, fcb, fcb_len); 1840 1841 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1842 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1843 __skb_pull(skb, GMAC_FCB_LEN); 1844 skb_checksum_help(skb); 1845 if (do_vlan || do_tstamp) { 1846 /* put back a new fcb for vlan/tstamp TOE */ 1847 fcb = gfar_add_fcb(skb); 1848 } else { 1849 /* Tx TOE not used */ 1850 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1851 fcb = NULL; 1852 } 1853 } 1854 } 1855 1856 if (do_vlan) 1857 gfar_tx_vlan(skb, fcb); 1858 1859 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1860 DMA_TO_DEVICE); 1861 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1862 goto dma_map_err; 1863 1864 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1865 1866 /* Time stamp insertion requires one additional TxBD */ 1867 if (unlikely(do_tstamp)) 1868 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1869 tx_queue->tx_ring_size); 1870 1871 if (likely(!nr_frags)) { 1872 if (likely(!do_tstamp)) 1873 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1874 } else { 1875 u32 lstatus_start = lstatus; 1876 1877 /* Place the fragment addresses and lengths into the TxBDs */ 1878 frag = &skb_shinfo(skb)->frags[0]; 1879 for (i = 0; i < nr_frags; i++, frag++) { 1880 unsigned int size; 1881 1882 /* Point at the next BD, wrapping as needed */ 1883 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1884 1885 size = skb_frag_size(frag); 1886 1887 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1888 BD_LFLAG(TXBD_READY); 1889 1890 /* Handle the last BD specially */ 1891 if (i == nr_frags - 1) 1892 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1893 1894 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1895 size, DMA_TO_DEVICE); 1896 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1897 goto dma_map_err; 1898 1899 /* set the TxBD length and buffer pointer */ 1900 txbdp->bufPtr = cpu_to_be32(bufaddr); 1901 txbdp->lstatus = cpu_to_be32(lstatus); 1902 } 1903 1904 lstatus = lstatus_start; 1905 } 1906 1907 /* If time stamping is requested one additional TxBD must be set up. The 1908 * first TxBD points to the FCB and must have a data length of 1909 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1910 * the full frame length. 1911 */ 1912 if (unlikely(do_tstamp)) { 1913 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1914 1915 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1916 bufaddr += fcb_len; 1917 1918 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1919 (skb_headlen(skb) - fcb_len); 1920 if (!nr_frags) 1921 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1922 1923 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1924 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1925 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1926 1927 /* Setup tx hardware time stamping */ 1928 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1929 fcb->ptp = 1; 1930 } else { 1931 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1932 } 1933 1934 netdev_tx_sent_queue(txq, bytes_sent); 1935 1936 gfar_wmb(); 1937 1938 txbdp_start->lstatus = cpu_to_be32(lstatus); 1939 1940 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1941 1942 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1943 1944 /* Update the current skb pointer to the next entry we will use 1945 * (wrapping if necessary) 1946 */ 1947 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1948 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1949 1950 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1951 1952 /* We can work in parallel with gfar_clean_tx_ring(), except 1953 * when modifying num_txbdfree. Note that we didn't grab the lock 1954 * when we were reading the num_txbdfree and checking for available 1955 * space, that's because outside of this function it can only grow. 1956 */ 1957 spin_lock_bh(&tx_queue->txlock); 1958 /* reduce TxBD free count */ 1959 tx_queue->num_txbdfree -= (nr_txbds); 1960 spin_unlock_bh(&tx_queue->txlock); 1961 1962 /* If the next BD still needs to be cleaned up, then the bds 1963 * are full. We need to tell the kernel to stop sending us stuff. 1964 */ 1965 if (!tx_queue->num_txbdfree) { 1966 netif_tx_stop_queue(txq); 1967 1968 dev->stats.tx_fifo_errors++; 1969 } 1970 1971 /* Tell the DMA to go go go */ 1972 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 1973 1974 return NETDEV_TX_OK; 1975 1976 dma_map_err: 1977 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 1978 if (do_tstamp) 1979 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1980 for (i = 0; i < nr_frags; i++) { 1981 lstatus = be32_to_cpu(txbdp->lstatus); 1982 if (!(lstatus & BD_LFLAG(TXBD_READY))) 1983 break; 1984 1985 lstatus &= ~BD_LFLAG(TXBD_READY); 1986 txbdp->lstatus = cpu_to_be32(lstatus); 1987 bufaddr = be32_to_cpu(txbdp->bufPtr); 1988 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 1989 DMA_TO_DEVICE); 1990 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1991 } 1992 gfar_wmb(); 1993 dev_kfree_skb_any(skb); 1994 return NETDEV_TX_OK; 1995 } 1996 1997 /* Changes the mac address if the controller is not running. */ 1998 static int gfar_set_mac_address(struct net_device *dev) 1999 { 2000 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2001 2002 return 0; 2003 } 2004 2005 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2006 { 2007 struct gfar_private *priv = netdev_priv(dev); 2008 2009 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2010 cpu_relax(); 2011 2012 if (dev->flags & IFF_UP) 2013 stop_gfar(dev); 2014 2015 dev->mtu = new_mtu; 2016 2017 if (dev->flags & IFF_UP) 2018 startup_gfar(dev); 2019 2020 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2021 2022 return 0; 2023 } 2024 2025 static void reset_gfar(struct net_device *ndev) 2026 { 2027 struct gfar_private *priv = netdev_priv(ndev); 2028 2029 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2030 cpu_relax(); 2031 2032 stop_gfar(ndev); 2033 startup_gfar(ndev); 2034 2035 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2036 } 2037 2038 /* gfar_reset_task gets scheduled when a packet has not been 2039 * transmitted after a set amount of time. 2040 * For now, assume that clearing out all the structures, and 2041 * starting over will fix the problem. 2042 */ 2043 static void gfar_reset_task(struct work_struct *work) 2044 { 2045 struct gfar_private *priv = container_of(work, struct gfar_private, 2046 reset_task); 2047 reset_gfar(priv->ndev); 2048 } 2049 2050 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2051 { 2052 struct gfar_private *priv = netdev_priv(dev); 2053 2054 dev->stats.tx_errors++; 2055 schedule_work(&priv->reset_task); 2056 } 2057 2058 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2059 { 2060 struct hwtstamp_config config; 2061 struct gfar_private *priv = netdev_priv(netdev); 2062 2063 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2064 return -EFAULT; 2065 2066 /* reserved for future extensions */ 2067 if (config.flags) 2068 return -EINVAL; 2069 2070 switch (config.tx_type) { 2071 case HWTSTAMP_TX_OFF: 2072 priv->hwts_tx_en = 0; 2073 break; 2074 case HWTSTAMP_TX_ON: 2075 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2076 return -ERANGE; 2077 priv->hwts_tx_en = 1; 2078 break; 2079 default: 2080 return -ERANGE; 2081 } 2082 2083 switch (config.rx_filter) { 2084 case HWTSTAMP_FILTER_NONE: 2085 if (priv->hwts_rx_en) { 2086 priv->hwts_rx_en = 0; 2087 reset_gfar(netdev); 2088 } 2089 break; 2090 default: 2091 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2092 return -ERANGE; 2093 if (!priv->hwts_rx_en) { 2094 priv->hwts_rx_en = 1; 2095 reset_gfar(netdev); 2096 } 2097 config.rx_filter = HWTSTAMP_FILTER_ALL; 2098 break; 2099 } 2100 2101 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2102 -EFAULT : 0; 2103 } 2104 2105 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2106 { 2107 struct hwtstamp_config config; 2108 struct gfar_private *priv = netdev_priv(netdev); 2109 2110 config.flags = 0; 2111 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2112 config.rx_filter = (priv->hwts_rx_en ? 2113 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2114 2115 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2116 -EFAULT : 0; 2117 } 2118 2119 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2120 { 2121 struct phy_device *phydev = dev->phydev; 2122 2123 if (!netif_running(dev)) 2124 return -EINVAL; 2125 2126 if (cmd == SIOCSHWTSTAMP) 2127 return gfar_hwtstamp_set(dev, rq); 2128 if (cmd == SIOCGHWTSTAMP) 2129 return gfar_hwtstamp_get(dev, rq); 2130 2131 if (!phydev) 2132 return -ENODEV; 2133 2134 return phy_mii_ioctl(phydev, rq, cmd); 2135 } 2136 2137 /* Interrupt Handler for Transmit complete */ 2138 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2139 { 2140 struct net_device *dev = tx_queue->dev; 2141 struct netdev_queue *txq; 2142 struct gfar_private *priv = netdev_priv(dev); 2143 struct txbd8 *bdp, *next = NULL; 2144 struct txbd8 *lbdp = NULL; 2145 struct txbd8 *base = tx_queue->tx_bd_base; 2146 struct sk_buff *skb; 2147 int skb_dirtytx; 2148 int tx_ring_size = tx_queue->tx_ring_size; 2149 int frags = 0, nr_txbds = 0; 2150 int i; 2151 int howmany = 0; 2152 int tqi = tx_queue->qindex; 2153 unsigned int bytes_sent = 0; 2154 u32 lstatus; 2155 size_t buflen; 2156 2157 txq = netdev_get_tx_queue(dev, tqi); 2158 bdp = tx_queue->dirty_tx; 2159 skb_dirtytx = tx_queue->skb_dirtytx; 2160 2161 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2162 bool do_tstamp; 2163 2164 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2165 priv->hwts_tx_en; 2166 2167 frags = skb_shinfo(skb)->nr_frags; 2168 2169 /* When time stamping, one additional TxBD must be freed. 2170 * Also, we need to dma_unmap_single() the TxPAL. 2171 */ 2172 if (unlikely(do_tstamp)) 2173 nr_txbds = frags + 2; 2174 else 2175 nr_txbds = frags + 1; 2176 2177 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2178 2179 lstatus = be32_to_cpu(lbdp->lstatus); 2180 2181 /* Only clean completed frames */ 2182 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2183 (lstatus & BD_LENGTH_MASK)) 2184 break; 2185 2186 if (unlikely(do_tstamp)) { 2187 next = next_txbd(bdp, base, tx_ring_size); 2188 buflen = be16_to_cpu(next->length) + 2189 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2190 } else 2191 buflen = be16_to_cpu(bdp->length); 2192 2193 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2194 buflen, DMA_TO_DEVICE); 2195 2196 if (unlikely(do_tstamp)) { 2197 struct skb_shared_hwtstamps shhwtstamps; 2198 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2199 ~0x7UL); 2200 2201 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2202 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2203 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2204 skb_tstamp_tx(skb, &shhwtstamps); 2205 gfar_clear_txbd_status(bdp); 2206 bdp = next; 2207 } 2208 2209 gfar_clear_txbd_status(bdp); 2210 bdp = next_txbd(bdp, base, tx_ring_size); 2211 2212 for (i = 0; i < frags; i++) { 2213 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2214 be16_to_cpu(bdp->length), 2215 DMA_TO_DEVICE); 2216 gfar_clear_txbd_status(bdp); 2217 bdp = next_txbd(bdp, base, tx_ring_size); 2218 } 2219 2220 bytes_sent += GFAR_CB(skb)->bytes_sent; 2221 2222 dev_kfree_skb_any(skb); 2223 2224 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2225 2226 skb_dirtytx = (skb_dirtytx + 1) & 2227 TX_RING_MOD_MASK(tx_ring_size); 2228 2229 howmany++; 2230 spin_lock(&tx_queue->txlock); 2231 tx_queue->num_txbdfree += nr_txbds; 2232 spin_unlock(&tx_queue->txlock); 2233 } 2234 2235 /* If we freed a buffer, we can restart transmission, if necessary */ 2236 if (tx_queue->num_txbdfree && 2237 netif_tx_queue_stopped(txq) && 2238 !(test_bit(GFAR_DOWN, &priv->state))) 2239 netif_wake_subqueue(priv->ndev, tqi); 2240 2241 /* Update dirty indicators */ 2242 tx_queue->skb_dirtytx = skb_dirtytx; 2243 tx_queue->dirty_tx = bdp; 2244 2245 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2246 } 2247 2248 static void count_errors(u32 lstatus, struct net_device *ndev) 2249 { 2250 struct gfar_private *priv = netdev_priv(ndev); 2251 struct net_device_stats *stats = &ndev->stats; 2252 struct gfar_extra_stats *estats = &priv->extra_stats; 2253 2254 /* If the packet was truncated, none of the other errors matter */ 2255 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2256 stats->rx_length_errors++; 2257 2258 atomic64_inc(&estats->rx_trunc); 2259 2260 return; 2261 } 2262 /* Count the errors, if there were any */ 2263 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2264 stats->rx_length_errors++; 2265 2266 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2267 atomic64_inc(&estats->rx_large); 2268 else 2269 atomic64_inc(&estats->rx_short); 2270 } 2271 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2272 stats->rx_frame_errors++; 2273 atomic64_inc(&estats->rx_nonoctet); 2274 } 2275 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2276 atomic64_inc(&estats->rx_crcerr); 2277 stats->rx_crc_errors++; 2278 } 2279 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2280 atomic64_inc(&estats->rx_overrun); 2281 stats->rx_over_errors++; 2282 } 2283 } 2284 2285 static irqreturn_t gfar_receive(int irq, void *grp_id) 2286 { 2287 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2288 unsigned long flags; 2289 u32 imask, ievent; 2290 2291 ievent = gfar_read(&grp->regs->ievent); 2292 2293 if (unlikely(ievent & IEVENT_FGPI)) { 2294 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2295 return IRQ_HANDLED; 2296 } 2297 2298 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2299 spin_lock_irqsave(&grp->grplock, flags); 2300 imask = gfar_read(&grp->regs->imask); 2301 imask &= IMASK_RX_DISABLED; 2302 gfar_write(&grp->regs->imask, imask); 2303 spin_unlock_irqrestore(&grp->grplock, flags); 2304 __napi_schedule(&grp->napi_rx); 2305 } else { 2306 /* Clear IEVENT, so interrupts aren't called again 2307 * because of the packets that have already arrived. 2308 */ 2309 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2310 } 2311 2312 return IRQ_HANDLED; 2313 } 2314 2315 /* Interrupt Handler for Transmit complete */ 2316 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2317 { 2318 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2319 unsigned long flags; 2320 u32 imask; 2321 2322 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2323 spin_lock_irqsave(&grp->grplock, flags); 2324 imask = gfar_read(&grp->regs->imask); 2325 imask &= IMASK_TX_DISABLED; 2326 gfar_write(&grp->regs->imask, imask); 2327 spin_unlock_irqrestore(&grp->grplock, flags); 2328 __napi_schedule(&grp->napi_tx); 2329 } else { 2330 /* Clear IEVENT, so interrupts aren't called again 2331 * because of the packets that have already arrived. 2332 */ 2333 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2334 } 2335 2336 return IRQ_HANDLED; 2337 } 2338 2339 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2340 struct sk_buff *skb, bool first) 2341 { 2342 int size = lstatus & BD_LENGTH_MASK; 2343 struct page *page = rxb->page; 2344 2345 if (likely(first)) { 2346 skb_put(skb, size); 2347 } else { 2348 /* the last fragments' length contains the full frame length */ 2349 if (lstatus & BD_LFLAG(RXBD_LAST)) 2350 size -= skb->len; 2351 2352 WARN(size < 0, "gianfar: rx fragment size underflow"); 2353 if (size < 0) 2354 return false; 2355 2356 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2357 rxb->page_offset + RXBUF_ALIGNMENT, 2358 size, GFAR_RXB_TRUESIZE); 2359 } 2360 2361 /* try reuse page */ 2362 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2363 return false; 2364 2365 /* change offset to the other half */ 2366 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2367 2368 page_ref_inc(page); 2369 2370 return true; 2371 } 2372 2373 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2374 struct gfar_rx_buff *old_rxb) 2375 { 2376 struct gfar_rx_buff *new_rxb; 2377 u16 nta = rxq->next_to_alloc; 2378 2379 new_rxb = &rxq->rx_buff[nta]; 2380 2381 /* find next buf that can reuse a page */ 2382 nta++; 2383 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2384 2385 /* copy page reference */ 2386 *new_rxb = *old_rxb; 2387 2388 /* sync for use by the device */ 2389 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2390 old_rxb->page_offset, 2391 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2392 } 2393 2394 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2395 u32 lstatus, struct sk_buff *skb) 2396 { 2397 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2398 struct page *page = rxb->page; 2399 bool first = false; 2400 2401 if (likely(!skb)) { 2402 void *buff_addr = page_address(page) + rxb->page_offset; 2403 2404 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2405 if (unlikely(!skb)) { 2406 gfar_rx_alloc_err(rx_queue); 2407 return NULL; 2408 } 2409 skb_reserve(skb, RXBUF_ALIGNMENT); 2410 first = true; 2411 } 2412 2413 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2414 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2415 2416 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2417 /* reuse the free half of the page */ 2418 gfar_reuse_rx_page(rx_queue, rxb); 2419 } else { 2420 /* page cannot be reused, unmap it */ 2421 dma_unmap_page(rx_queue->dev, rxb->dma, 2422 PAGE_SIZE, DMA_FROM_DEVICE); 2423 } 2424 2425 /* clear rxb content */ 2426 rxb->page = NULL; 2427 2428 return skb; 2429 } 2430 2431 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2432 { 2433 /* If valid headers were found, and valid sums 2434 * were verified, then we tell the kernel that no 2435 * checksumming is necessary. Otherwise, it is [FIXME] 2436 */ 2437 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2438 (RXFCB_CIP | RXFCB_CTU)) 2439 skb->ip_summed = CHECKSUM_UNNECESSARY; 2440 else 2441 skb_checksum_none_assert(skb); 2442 } 2443 2444 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2445 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2446 { 2447 struct gfar_private *priv = netdev_priv(ndev); 2448 struct rxfcb *fcb = NULL; 2449 2450 /* fcb is at the beginning if exists */ 2451 fcb = (struct rxfcb *)skb->data; 2452 2453 /* Remove the FCB from the skb 2454 * Remove the padded bytes, if there are any 2455 */ 2456 if (priv->uses_rxfcb) 2457 skb_pull(skb, GMAC_FCB_LEN); 2458 2459 /* Get receive timestamp from the skb */ 2460 if (priv->hwts_rx_en) { 2461 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2462 u64 *ns = (u64 *) skb->data; 2463 2464 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2465 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2466 } 2467 2468 if (priv->padding) 2469 skb_pull(skb, priv->padding); 2470 2471 /* Trim off the FCS */ 2472 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2473 2474 if (ndev->features & NETIF_F_RXCSUM) 2475 gfar_rx_checksum(skb, fcb); 2476 2477 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2478 * Even if vlan rx accel is disabled, on some chips 2479 * RXFCB_VLN is pseudo randomly set. 2480 */ 2481 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2482 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2483 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2484 be16_to_cpu(fcb->vlctl)); 2485 } 2486 2487 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2488 * until the budget/quota has been reached. Returns the number 2489 * of frames handled 2490 */ 2491 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2492 int rx_work_limit) 2493 { 2494 struct net_device *ndev = rx_queue->ndev; 2495 struct gfar_private *priv = netdev_priv(ndev); 2496 struct rxbd8 *bdp; 2497 int i, howmany = 0; 2498 struct sk_buff *skb = rx_queue->skb; 2499 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2500 unsigned int total_bytes = 0, total_pkts = 0; 2501 2502 /* Get the first full descriptor */ 2503 i = rx_queue->next_to_clean; 2504 2505 while (rx_work_limit--) { 2506 u32 lstatus; 2507 2508 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2509 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2510 cleaned_cnt = 0; 2511 } 2512 2513 bdp = &rx_queue->rx_bd_base[i]; 2514 lstatus = be32_to_cpu(bdp->lstatus); 2515 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2516 break; 2517 2518 /* lost RXBD_LAST descriptor due to overrun */ 2519 if (skb && 2520 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2521 /* discard faulty buffer */ 2522 dev_kfree_skb(skb); 2523 skb = NULL; 2524 rx_queue->stats.rx_dropped++; 2525 2526 /* can continue normally */ 2527 } 2528 2529 /* order rx buffer descriptor reads */ 2530 rmb(); 2531 2532 /* fetch next to clean buffer from the ring */ 2533 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2534 if (unlikely(!skb)) 2535 break; 2536 2537 cleaned_cnt++; 2538 howmany++; 2539 2540 if (unlikely(++i == rx_queue->rx_ring_size)) 2541 i = 0; 2542 2543 rx_queue->next_to_clean = i; 2544 2545 /* fetch next buffer if not the last in frame */ 2546 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2547 continue; 2548 2549 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2550 count_errors(lstatus, ndev); 2551 2552 /* discard faulty buffer */ 2553 dev_kfree_skb(skb); 2554 skb = NULL; 2555 rx_queue->stats.rx_dropped++; 2556 continue; 2557 } 2558 2559 gfar_process_frame(ndev, skb); 2560 2561 /* Increment the number of packets */ 2562 total_pkts++; 2563 total_bytes += skb->len; 2564 2565 skb_record_rx_queue(skb, rx_queue->qindex); 2566 2567 skb->protocol = eth_type_trans(skb, ndev); 2568 2569 /* Send the packet up the stack */ 2570 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2571 2572 skb = NULL; 2573 } 2574 2575 /* Store incomplete frames for completion */ 2576 rx_queue->skb = skb; 2577 2578 rx_queue->stats.rx_packets += total_pkts; 2579 rx_queue->stats.rx_bytes += total_bytes; 2580 2581 if (cleaned_cnt) 2582 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2583 2584 /* Update Last Free RxBD pointer for LFC */ 2585 if (unlikely(priv->tx_actual_en)) { 2586 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2587 2588 gfar_write(rx_queue->rfbptr, bdp_dma); 2589 } 2590 2591 return howmany; 2592 } 2593 2594 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2595 { 2596 struct gfar_priv_grp *gfargrp = 2597 container_of(napi, struct gfar_priv_grp, napi_rx); 2598 struct gfar __iomem *regs = gfargrp->regs; 2599 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2600 int work_done = 0; 2601 2602 /* Clear IEVENT, so interrupts aren't called again 2603 * because of the packets that have already arrived 2604 */ 2605 gfar_write(®s->ievent, IEVENT_RX_MASK); 2606 2607 work_done = gfar_clean_rx_ring(rx_queue, budget); 2608 2609 if (work_done < budget) { 2610 u32 imask; 2611 napi_complete_done(napi, work_done); 2612 /* Clear the halt bit in RSTAT */ 2613 gfar_write(®s->rstat, gfargrp->rstat); 2614 2615 spin_lock_irq(&gfargrp->grplock); 2616 imask = gfar_read(®s->imask); 2617 imask |= IMASK_RX_DEFAULT; 2618 gfar_write(®s->imask, imask); 2619 spin_unlock_irq(&gfargrp->grplock); 2620 } 2621 2622 return work_done; 2623 } 2624 2625 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2626 { 2627 struct gfar_priv_grp *gfargrp = 2628 container_of(napi, struct gfar_priv_grp, napi_tx); 2629 struct gfar __iomem *regs = gfargrp->regs; 2630 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2631 u32 imask; 2632 2633 /* Clear IEVENT, so interrupts aren't called again 2634 * because of the packets that have already arrived 2635 */ 2636 gfar_write(®s->ievent, IEVENT_TX_MASK); 2637 2638 /* run Tx cleanup to completion */ 2639 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2640 gfar_clean_tx_ring(tx_queue); 2641 2642 napi_complete(napi); 2643 2644 spin_lock_irq(&gfargrp->grplock); 2645 imask = gfar_read(®s->imask); 2646 imask |= IMASK_TX_DEFAULT; 2647 gfar_write(®s->imask, imask); 2648 spin_unlock_irq(&gfargrp->grplock); 2649 2650 return 0; 2651 } 2652 2653 /* GFAR error interrupt handler */ 2654 static irqreturn_t gfar_error(int irq, void *grp_id) 2655 { 2656 struct gfar_priv_grp *gfargrp = grp_id; 2657 struct gfar __iomem *regs = gfargrp->regs; 2658 struct gfar_private *priv= gfargrp->priv; 2659 struct net_device *dev = priv->ndev; 2660 2661 /* Save ievent for future reference */ 2662 u32 events = gfar_read(®s->ievent); 2663 2664 /* Clear IEVENT */ 2665 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2666 2667 /* Magic Packet is not an error. */ 2668 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2669 (events & IEVENT_MAG)) 2670 events &= ~IEVENT_MAG; 2671 2672 /* Hmm... */ 2673 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2674 netdev_dbg(dev, 2675 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2676 events, gfar_read(®s->imask)); 2677 2678 /* Update the error counters */ 2679 if (events & IEVENT_TXE) { 2680 dev->stats.tx_errors++; 2681 2682 if (events & IEVENT_LC) 2683 dev->stats.tx_window_errors++; 2684 if (events & IEVENT_CRL) 2685 dev->stats.tx_aborted_errors++; 2686 if (events & IEVENT_XFUN) { 2687 netif_dbg(priv, tx_err, dev, 2688 "TX FIFO underrun, packet dropped\n"); 2689 dev->stats.tx_dropped++; 2690 atomic64_inc(&priv->extra_stats.tx_underrun); 2691 2692 schedule_work(&priv->reset_task); 2693 } 2694 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2695 } 2696 if (events & IEVENT_BSY) { 2697 dev->stats.rx_over_errors++; 2698 atomic64_inc(&priv->extra_stats.rx_bsy); 2699 2700 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2701 gfar_read(®s->rstat)); 2702 } 2703 if (events & IEVENT_BABR) { 2704 dev->stats.rx_errors++; 2705 atomic64_inc(&priv->extra_stats.rx_babr); 2706 2707 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2708 } 2709 if (events & IEVENT_EBERR) { 2710 atomic64_inc(&priv->extra_stats.eberr); 2711 netif_dbg(priv, rx_err, dev, "bus error\n"); 2712 } 2713 if (events & IEVENT_RXC) 2714 netif_dbg(priv, rx_status, dev, "control frame\n"); 2715 2716 if (events & IEVENT_BABT) { 2717 atomic64_inc(&priv->extra_stats.tx_babt); 2718 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2719 } 2720 return IRQ_HANDLED; 2721 } 2722 2723 /* The interrupt handler for devices with one interrupt */ 2724 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2725 { 2726 struct gfar_priv_grp *gfargrp = grp_id; 2727 2728 /* Save ievent for future reference */ 2729 u32 events = gfar_read(&gfargrp->regs->ievent); 2730 2731 /* Check for reception */ 2732 if (events & IEVENT_RX_MASK) 2733 gfar_receive(irq, grp_id); 2734 2735 /* Check for transmit completion */ 2736 if (events & IEVENT_TX_MASK) 2737 gfar_transmit(irq, grp_id); 2738 2739 /* Check for errors */ 2740 if (events & IEVENT_ERR_MASK) 2741 gfar_error(irq, grp_id); 2742 2743 return IRQ_HANDLED; 2744 } 2745 2746 #ifdef CONFIG_NET_POLL_CONTROLLER 2747 /* Polling 'interrupt' - used by things like netconsole to send skbs 2748 * without having to re-enable interrupts. It's not called while 2749 * the interrupt routine is executing. 2750 */ 2751 static void gfar_netpoll(struct net_device *dev) 2752 { 2753 struct gfar_private *priv = netdev_priv(dev); 2754 int i; 2755 2756 /* If the device has multiple interrupts, run tx/rx */ 2757 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2758 for (i = 0; i < priv->num_grps; i++) { 2759 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2760 2761 disable_irq(gfar_irq(grp, TX)->irq); 2762 disable_irq(gfar_irq(grp, RX)->irq); 2763 disable_irq(gfar_irq(grp, ER)->irq); 2764 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2765 enable_irq(gfar_irq(grp, ER)->irq); 2766 enable_irq(gfar_irq(grp, RX)->irq); 2767 enable_irq(gfar_irq(grp, TX)->irq); 2768 } 2769 } else { 2770 for (i = 0; i < priv->num_grps; i++) { 2771 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2772 2773 disable_irq(gfar_irq(grp, TX)->irq); 2774 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2775 enable_irq(gfar_irq(grp, TX)->irq); 2776 } 2777 } 2778 } 2779 #endif 2780 2781 static void free_grp_irqs(struct gfar_priv_grp *grp) 2782 { 2783 free_irq(gfar_irq(grp, TX)->irq, grp); 2784 free_irq(gfar_irq(grp, RX)->irq, grp); 2785 free_irq(gfar_irq(grp, ER)->irq, grp); 2786 } 2787 2788 static int register_grp_irqs(struct gfar_priv_grp *grp) 2789 { 2790 struct gfar_private *priv = grp->priv; 2791 struct net_device *dev = priv->ndev; 2792 int err; 2793 2794 /* If the device has multiple interrupts, register for 2795 * them. Otherwise, only register for the one 2796 */ 2797 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2798 /* Install our interrupt handlers for Error, 2799 * Transmit, and Receive 2800 */ 2801 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2802 gfar_irq(grp, ER)->name, grp); 2803 if (err < 0) { 2804 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2805 gfar_irq(grp, ER)->irq); 2806 2807 goto err_irq_fail; 2808 } 2809 enable_irq_wake(gfar_irq(grp, ER)->irq); 2810 2811 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2812 gfar_irq(grp, TX)->name, grp); 2813 if (err < 0) { 2814 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2815 gfar_irq(grp, TX)->irq); 2816 goto tx_irq_fail; 2817 } 2818 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2819 gfar_irq(grp, RX)->name, grp); 2820 if (err < 0) { 2821 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2822 gfar_irq(grp, RX)->irq); 2823 goto rx_irq_fail; 2824 } 2825 enable_irq_wake(gfar_irq(grp, RX)->irq); 2826 2827 } else { 2828 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2829 gfar_irq(grp, TX)->name, grp); 2830 if (err < 0) { 2831 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2832 gfar_irq(grp, TX)->irq); 2833 goto err_irq_fail; 2834 } 2835 enable_irq_wake(gfar_irq(grp, TX)->irq); 2836 } 2837 2838 return 0; 2839 2840 rx_irq_fail: 2841 free_irq(gfar_irq(grp, TX)->irq, grp); 2842 tx_irq_fail: 2843 free_irq(gfar_irq(grp, ER)->irq, grp); 2844 err_irq_fail: 2845 return err; 2846 2847 } 2848 2849 static void gfar_free_irq(struct gfar_private *priv) 2850 { 2851 int i; 2852 2853 /* Free the IRQs */ 2854 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2855 for (i = 0; i < priv->num_grps; i++) 2856 free_grp_irqs(&priv->gfargrp[i]); 2857 } else { 2858 for (i = 0; i < priv->num_grps; i++) 2859 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2860 &priv->gfargrp[i]); 2861 } 2862 } 2863 2864 static int gfar_request_irq(struct gfar_private *priv) 2865 { 2866 int err, i, j; 2867 2868 for (i = 0; i < priv->num_grps; i++) { 2869 err = register_grp_irqs(&priv->gfargrp[i]); 2870 if (err) { 2871 for (j = 0; j < i; j++) 2872 free_grp_irqs(&priv->gfargrp[j]); 2873 return err; 2874 } 2875 } 2876 2877 return 0; 2878 } 2879 2880 /* Called when something needs to use the ethernet device 2881 * Returns 0 for success. 2882 */ 2883 static int gfar_enet_open(struct net_device *dev) 2884 { 2885 struct gfar_private *priv = netdev_priv(dev); 2886 int err; 2887 2888 err = init_phy(dev); 2889 if (err) 2890 return err; 2891 2892 err = gfar_request_irq(priv); 2893 if (err) 2894 return err; 2895 2896 err = startup_gfar(dev); 2897 if (err) 2898 return err; 2899 2900 return err; 2901 } 2902 2903 /* Stops the kernel queue, and halts the controller */ 2904 static int gfar_close(struct net_device *dev) 2905 { 2906 struct gfar_private *priv = netdev_priv(dev); 2907 2908 cancel_work_sync(&priv->reset_task); 2909 stop_gfar(dev); 2910 2911 /* Disconnect from the PHY */ 2912 phy_disconnect(dev->phydev); 2913 2914 gfar_free_irq(priv); 2915 2916 return 0; 2917 } 2918 2919 /* Clears each of the exact match registers to zero, so they 2920 * don't interfere with normal reception 2921 */ 2922 static void gfar_clear_exact_match(struct net_device *dev) 2923 { 2924 int idx; 2925 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 2926 2927 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 2928 gfar_set_mac_for_addr(dev, idx, zero_arr); 2929 } 2930 2931 /* Update the hash table based on the current list of multicast 2932 * addresses we subscribe to. Also, change the promiscuity of 2933 * the device based on the flags (this function is called 2934 * whenever dev->flags is changed 2935 */ 2936 static void gfar_set_multi(struct net_device *dev) 2937 { 2938 struct netdev_hw_addr *ha; 2939 struct gfar_private *priv = netdev_priv(dev); 2940 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2941 u32 tempval; 2942 2943 if (dev->flags & IFF_PROMISC) { 2944 /* Set RCTRL to PROM */ 2945 tempval = gfar_read(®s->rctrl); 2946 tempval |= RCTRL_PROM; 2947 gfar_write(®s->rctrl, tempval); 2948 } else { 2949 /* Set RCTRL to not PROM */ 2950 tempval = gfar_read(®s->rctrl); 2951 tempval &= ~(RCTRL_PROM); 2952 gfar_write(®s->rctrl, tempval); 2953 } 2954 2955 if (dev->flags & IFF_ALLMULTI) { 2956 /* Set the hash to rx all multicast frames */ 2957 gfar_write(®s->igaddr0, 0xffffffff); 2958 gfar_write(®s->igaddr1, 0xffffffff); 2959 gfar_write(®s->igaddr2, 0xffffffff); 2960 gfar_write(®s->igaddr3, 0xffffffff); 2961 gfar_write(®s->igaddr4, 0xffffffff); 2962 gfar_write(®s->igaddr5, 0xffffffff); 2963 gfar_write(®s->igaddr6, 0xffffffff); 2964 gfar_write(®s->igaddr7, 0xffffffff); 2965 gfar_write(®s->gaddr0, 0xffffffff); 2966 gfar_write(®s->gaddr1, 0xffffffff); 2967 gfar_write(®s->gaddr2, 0xffffffff); 2968 gfar_write(®s->gaddr3, 0xffffffff); 2969 gfar_write(®s->gaddr4, 0xffffffff); 2970 gfar_write(®s->gaddr5, 0xffffffff); 2971 gfar_write(®s->gaddr6, 0xffffffff); 2972 gfar_write(®s->gaddr7, 0xffffffff); 2973 } else { 2974 int em_num; 2975 int idx; 2976 2977 /* zero out the hash */ 2978 gfar_write(®s->igaddr0, 0x0); 2979 gfar_write(®s->igaddr1, 0x0); 2980 gfar_write(®s->igaddr2, 0x0); 2981 gfar_write(®s->igaddr3, 0x0); 2982 gfar_write(®s->igaddr4, 0x0); 2983 gfar_write(®s->igaddr5, 0x0); 2984 gfar_write(®s->igaddr6, 0x0); 2985 gfar_write(®s->igaddr7, 0x0); 2986 gfar_write(®s->gaddr0, 0x0); 2987 gfar_write(®s->gaddr1, 0x0); 2988 gfar_write(®s->gaddr2, 0x0); 2989 gfar_write(®s->gaddr3, 0x0); 2990 gfar_write(®s->gaddr4, 0x0); 2991 gfar_write(®s->gaddr5, 0x0); 2992 gfar_write(®s->gaddr6, 0x0); 2993 gfar_write(®s->gaddr7, 0x0); 2994 2995 /* If we have extended hash tables, we need to 2996 * clear the exact match registers to prepare for 2997 * setting them 2998 */ 2999 if (priv->extended_hash) { 3000 em_num = GFAR_EM_NUM + 1; 3001 gfar_clear_exact_match(dev); 3002 idx = 1; 3003 } else { 3004 idx = 0; 3005 em_num = 0; 3006 } 3007 3008 if (netdev_mc_empty(dev)) 3009 return; 3010 3011 /* Parse the list, and set the appropriate bits */ 3012 netdev_for_each_mc_addr(ha, dev) { 3013 if (idx < em_num) { 3014 gfar_set_mac_for_addr(dev, idx, ha->addr); 3015 idx++; 3016 } else 3017 gfar_set_hash_for_addr(dev, ha->addr); 3018 } 3019 } 3020 } 3021 3022 void gfar_mac_reset(struct gfar_private *priv) 3023 { 3024 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3025 u32 tempval; 3026 3027 /* Reset MAC layer */ 3028 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3029 3030 /* We need to delay at least 3 TX clocks */ 3031 udelay(3); 3032 3033 /* the soft reset bit is not self-resetting, so we need to 3034 * clear it before resuming normal operation 3035 */ 3036 gfar_write(®s->maccfg1, 0); 3037 3038 udelay(3); 3039 3040 gfar_rx_offload_en(priv); 3041 3042 /* Initialize the max receive frame/buffer lengths */ 3043 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3044 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3045 3046 /* Initialize the Minimum Frame Length Register */ 3047 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3048 3049 /* Initialize MACCFG2. */ 3050 tempval = MACCFG2_INIT_SETTINGS; 3051 3052 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3053 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3054 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3055 */ 3056 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3057 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3058 3059 gfar_write(®s->maccfg2, tempval); 3060 3061 /* Clear mac addr hash registers */ 3062 gfar_write(®s->igaddr0, 0); 3063 gfar_write(®s->igaddr1, 0); 3064 gfar_write(®s->igaddr2, 0); 3065 gfar_write(®s->igaddr3, 0); 3066 gfar_write(®s->igaddr4, 0); 3067 gfar_write(®s->igaddr5, 0); 3068 gfar_write(®s->igaddr6, 0); 3069 gfar_write(®s->igaddr7, 0); 3070 3071 gfar_write(®s->gaddr0, 0); 3072 gfar_write(®s->gaddr1, 0); 3073 gfar_write(®s->gaddr2, 0); 3074 gfar_write(®s->gaddr3, 0); 3075 gfar_write(®s->gaddr4, 0); 3076 gfar_write(®s->gaddr5, 0); 3077 gfar_write(®s->gaddr6, 0); 3078 gfar_write(®s->gaddr7, 0); 3079 3080 if (priv->extended_hash) 3081 gfar_clear_exact_match(priv->ndev); 3082 3083 gfar_mac_rx_config(priv); 3084 3085 gfar_mac_tx_config(priv); 3086 3087 gfar_set_mac_address(priv->ndev); 3088 3089 gfar_set_multi(priv->ndev); 3090 3091 /* clear ievent and imask before configuring coalescing */ 3092 gfar_ints_disable(priv); 3093 3094 /* Configure the coalescing support */ 3095 gfar_configure_coalescing_all(priv); 3096 } 3097 3098 static void gfar_hw_init(struct gfar_private *priv) 3099 { 3100 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3101 u32 attrs; 3102 3103 /* Stop the DMA engine now, in case it was running before 3104 * (The firmware could have used it, and left it running). 3105 */ 3106 gfar_halt(priv); 3107 3108 gfar_mac_reset(priv); 3109 3110 /* Zero out the rmon mib registers if it has them */ 3111 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3112 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib)); 3113 3114 /* Mask off the CAM interrupts */ 3115 gfar_write(®s->rmon.cam1, 0xffffffff); 3116 gfar_write(®s->rmon.cam2, 0xffffffff); 3117 } 3118 3119 /* Initialize ECNTRL */ 3120 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3121 3122 /* Set the extraction length and index */ 3123 attrs = ATTRELI_EL(priv->rx_stash_size) | 3124 ATTRELI_EI(priv->rx_stash_index); 3125 3126 gfar_write(®s->attreli, attrs); 3127 3128 /* Start with defaults, and add stashing 3129 * depending on driver parameters 3130 */ 3131 attrs = ATTR_INIT_SETTINGS; 3132 3133 if (priv->bd_stash_en) 3134 attrs |= ATTR_BDSTASH; 3135 3136 if (priv->rx_stash_size != 0) 3137 attrs |= ATTR_BUFSTASH; 3138 3139 gfar_write(®s->attr, attrs); 3140 3141 /* FIFO configs */ 3142 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3143 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3144 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3145 3146 /* Program the interrupt steering regs, only for MG devices */ 3147 if (priv->num_grps > 1) 3148 gfar_write_isrg(priv); 3149 } 3150 3151 static const struct net_device_ops gfar_netdev_ops = { 3152 .ndo_open = gfar_enet_open, 3153 .ndo_start_xmit = gfar_start_xmit, 3154 .ndo_stop = gfar_close, 3155 .ndo_change_mtu = gfar_change_mtu, 3156 .ndo_set_features = gfar_set_features, 3157 .ndo_set_rx_mode = gfar_set_multi, 3158 .ndo_tx_timeout = gfar_timeout, 3159 .ndo_do_ioctl = gfar_ioctl, 3160 .ndo_get_stats = gfar_get_stats, 3161 .ndo_change_carrier = fixed_phy_change_carrier, 3162 .ndo_set_mac_address = gfar_set_mac_addr, 3163 .ndo_validate_addr = eth_validate_addr, 3164 #ifdef CONFIG_NET_POLL_CONTROLLER 3165 .ndo_poll_controller = gfar_netpoll, 3166 #endif 3167 }; 3168 3169 /* Set up the ethernet device structure, private data, 3170 * and anything else we need before we start 3171 */ 3172 static int gfar_probe(struct platform_device *ofdev) 3173 { 3174 struct device_node *np = ofdev->dev.of_node; 3175 struct net_device *dev = NULL; 3176 struct gfar_private *priv = NULL; 3177 int err = 0, i; 3178 3179 err = gfar_of_init(ofdev, &dev); 3180 3181 if (err) 3182 return err; 3183 3184 priv = netdev_priv(dev); 3185 priv->ndev = dev; 3186 priv->ofdev = ofdev; 3187 priv->dev = &ofdev->dev; 3188 SET_NETDEV_DEV(dev, &ofdev->dev); 3189 3190 INIT_WORK(&priv->reset_task, gfar_reset_task); 3191 3192 platform_set_drvdata(ofdev, priv); 3193 3194 gfar_detect_errata(priv); 3195 3196 /* Set the dev->base_addr to the gfar reg region */ 3197 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3198 3199 /* Fill in the dev structure */ 3200 dev->watchdog_timeo = TX_TIMEOUT; 3201 /* MTU range: 50 - 9586 */ 3202 dev->mtu = 1500; 3203 dev->min_mtu = 50; 3204 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3205 dev->netdev_ops = &gfar_netdev_ops; 3206 dev->ethtool_ops = &gfar_ethtool_ops; 3207 3208 /* Register for napi ...We are registering NAPI for each grp */ 3209 for (i = 0; i < priv->num_grps; i++) { 3210 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3211 gfar_poll_rx_sq, GFAR_DEV_WEIGHT); 3212 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx, 3213 gfar_poll_tx_sq, 2); 3214 } 3215 3216 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3217 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3218 NETIF_F_RXCSUM; 3219 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3220 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3221 } 3222 3223 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3224 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3225 NETIF_F_HW_VLAN_CTAG_RX; 3226 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3227 } 3228 3229 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3230 3231 gfar_init_addr_hash_table(priv); 3232 3233 /* Insert receive time stamps into padding alignment bytes, and 3234 * plus 2 bytes padding to ensure the cpu alignment. 3235 */ 3236 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3237 priv->padding = 8 + DEFAULT_PADDING; 3238 3239 if (dev->features & NETIF_F_IP_CSUM || 3240 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3241 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3242 3243 /* Initializing some of the rx/tx queue level parameters */ 3244 for (i = 0; i < priv->num_tx_queues; i++) { 3245 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3246 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3247 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3248 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3249 } 3250 3251 for (i = 0; i < priv->num_rx_queues; i++) { 3252 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3253 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3254 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3255 } 3256 3257 /* Always enable rx filer if available */ 3258 priv->rx_filer_enable = 3259 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3260 /* Enable most messages by default */ 3261 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3262 /* use pritority h/w tx queue scheduling for single queue devices */ 3263 if (priv->num_tx_queues == 1) 3264 priv->prio_sched_en = 1; 3265 3266 set_bit(GFAR_DOWN, &priv->state); 3267 3268 gfar_hw_init(priv); 3269 3270 /* Carrier starts down, phylib will bring it up */ 3271 netif_carrier_off(dev); 3272 3273 err = register_netdev(dev); 3274 3275 if (err) { 3276 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3277 goto register_fail; 3278 } 3279 3280 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3281 priv->wol_supported |= GFAR_WOL_MAGIC; 3282 3283 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3284 priv->rx_filer_enable) 3285 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3286 3287 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3288 3289 /* fill out IRQ number and name fields */ 3290 for (i = 0; i < priv->num_grps; i++) { 3291 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3292 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3293 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3294 dev->name, "_g", '0' + i, "_tx"); 3295 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3296 dev->name, "_g", '0' + i, "_rx"); 3297 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3298 dev->name, "_g", '0' + i, "_er"); 3299 } else 3300 strcpy(gfar_irq(grp, TX)->name, dev->name); 3301 } 3302 3303 /* Initialize the filer table */ 3304 gfar_init_filer_table(priv); 3305 3306 /* Print out the device info */ 3307 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3308 3309 /* Even more device info helps when determining which kernel 3310 * provided which set of benchmarks. 3311 */ 3312 netdev_info(dev, "Running with NAPI enabled\n"); 3313 for (i = 0; i < priv->num_rx_queues; i++) 3314 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3315 i, priv->rx_queue[i]->rx_ring_size); 3316 for (i = 0; i < priv->num_tx_queues; i++) 3317 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3318 i, priv->tx_queue[i]->tx_ring_size); 3319 3320 return 0; 3321 3322 register_fail: 3323 if (of_phy_is_fixed_link(np)) 3324 of_phy_deregister_fixed_link(np); 3325 unmap_group_regs(priv); 3326 gfar_free_rx_queues(priv); 3327 gfar_free_tx_queues(priv); 3328 of_node_put(priv->phy_node); 3329 of_node_put(priv->tbi_node); 3330 free_gfar_dev(priv); 3331 return err; 3332 } 3333 3334 static int gfar_remove(struct platform_device *ofdev) 3335 { 3336 struct gfar_private *priv = platform_get_drvdata(ofdev); 3337 struct device_node *np = ofdev->dev.of_node; 3338 3339 of_node_put(priv->phy_node); 3340 of_node_put(priv->tbi_node); 3341 3342 unregister_netdev(priv->ndev); 3343 3344 if (of_phy_is_fixed_link(np)) 3345 of_phy_deregister_fixed_link(np); 3346 3347 unmap_group_regs(priv); 3348 gfar_free_rx_queues(priv); 3349 gfar_free_tx_queues(priv); 3350 free_gfar_dev(priv); 3351 3352 return 0; 3353 } 3354 3355 #ifdef CONFIG_PM 3356 3357 static void __gfar_filer_disable(struct gfar_private *priv) 3358 { 3359 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3360 u32 temp; 3361 3362 temp = gfar_read(®s->rctrl); 3363 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3364 gfar_write(®s->rctrl, temp); 3365 } 3366 3367 static void __gfar_filer_enable(struct gfar_private *priv) 3368 { 3369 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3370 u32 temp; 3371 3372 temp = gfar_read(®s->rctrl); 3373 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3374 gfar_write(®s->rctrl, temp); 3375 } 3376 3377 /* Filer rules implementing wol capabilities */ 3378 static void gfar_filer_config_wol(struct gfar_private *priv) 3379 { 3380 unsigned int i; 3381 u32 rqfcr; 3382 3383 __gfar_filer_disable(priv); 3384 3385 /* clear the filer table, reject any packet by default */ 3386 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3387 for (i = 0; i <= MAX_FILER_IDX; i++) 3388 gfar_write_filer(priv, i, rqfcr, 0); 3389 3390 i = 0; 3391 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3392 /* unicast packet, accept it */ 3393 struct net_device *ndev = priv->ndev; 3394 /* get the default rx queue index */ 3395 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3396 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3397 (ndev->dev_addr[1] << 8) | 3398 ndev->dev_addr[2]; 3399 3400 rqfcr = (qindex << 10) | RQFCR_AND | 3401 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3402 3403 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3404 3405 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3406 (ndev->dev_addr[4] << 8) | 3407 ndev->dev_addr[5]; 3408 rqfcr = (qindex << 10) | RQFCR_GPI | 3409 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3410 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3411 } 3412 3413 __gfar_filer_enable(priv); 3414 } 3415 3416 static void gfar_filer_restore_table(struct gfar_private *priv) 3417 { 3418 u32 rqfcr, rqfpr; 3419 unsigned int i; 3420 3421 __gfar_filer_disable(priv); 3422 3423 for (i = 0; i <= MAX_FILER_IDX; i++) { 3424 rqfcr = priv->ftp_rqfcr[i]; 3425 rqfpr = priv->ftp_rqfpr[i]; 3426 gfar_write_filer(priv, i, rqfcr, rqfpr); 3427 } 3428 3429 __gfar_filer_enable(priv); 3430 } 3431 3432 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3433 static void gfar_start_wol_filer(struct gfar_private *priv) 3434 { 3435 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3436 u32 tempval; 3437 int i = 0; 3438 3439 /* Enable Rx hw queues */ 3440 gfar_write(®s->rqueue, priv->rqueue); 3441 3442 /* Initialize DMACTRL to have WWR and WOP */ 3443 tempval = gfar_read(®s->dmactrl); 3444 tempval |= DMACTRL_INIT_SETTINGS; 3445 gfar_write(®s->dmactrl, tempval); 3446 3447 /* Make sure we aren't stopped */ 3448 tempval = gfar_read(®s->dmactrl); 3449 tempval &= ~DMACTRL_GRS; 3450 gfar_write(®s->dmactrl, tempval); 3451 3452 for (i = 0; i < priv->num_grps; i++) { 3453 regs = priv->gfargrp[i].regs; 3454 /* Clear RHLT, so that the DMA starts polling now */ 3455 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3456 /* enable the Filer General Purpose Interrupt */ 3457 gfar_write(®s->imask, IMASK_FGPI); 3458 } 3459 3460 /* Enable Rx DMA */ 3461 tempval = gfar_read(®s->maccfg1); 3462 tempval |= MACCFG1_RX_EN; 3463 gfar_write(®s->maccfg1, tempval); 3464 } 3465 3466 static int gfar_suspend(struct device *dev) 3467 { 3468 struct gfar_private *priv = dev_get_drvdata(dev); 3469 struct net_device *ndev = priv->ndev; 3470 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3471 u32 tempval; 3472 u16 wol = priv->wol_opts; 3473 3474 if (!netif_running(ndev)) 3475 return 0; 3476 3477 disable_napi(priv); 3478 netif_tx_lock(ndev); 3479 netif_device_detach(ndev); 3480 netif_tx_unlock(ndev); 3481 3482 gfar_halt(priv); 3483 3484 if (wol & GFAR_WOL_MAGIC) { 3485 /* Enable interrupt on Magic Packet */ 3486 gfar_write(®s->imask, IMASK_MAG); 3487 3488 /* Enable Magic Packet mode */ 3489 tempval = gfar_read(®s->maccfg2); 3490 tempval |= MACCFG2_MPEN; 3491 gfar_write(®s->maccfg2, tempval); 3492 3493 /* re-enable the Rx block */ 3494 tempval = gfar_read(®s->maccfg1); 3495 tempval |= MACCFG1_RX_EN; 3496 gfar_write(®s->maccfg1, tempval); 3497 3498 } else if (wol & GFAR_WOL_FILER_UCAST) { 3499 gfar_filer_config_wol(priv); 3500 gfar_start_wol_filer(priv); 3501 3502 } else { 3503 phy_stop(ndev->phydev); 3504 } 3505 3506 return 0; 3507 } 3508 3509 static int gfar_resume(struct device *dev) 3510 { 3511 struct gfar_private *priv = dev_get_drvdata(dev); 3512 struct net_device *ndev = priv->ndev; 3513 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3514 u32 tempval; 3515 u16 wol = priv->wol_opts; 3516 3517 if (!netif_running(ndev)) 3518 return 0; 3519 3520 if (wol & GFAR_WOL_MAGIC) { 3521 /* Disable Magic Packet mode */ 3522 tempval = gfar_read(®s->maccfg2); 3523 tempval &= ~MACCFG2_MPEN; 3524 gfar_write(®s->maccfg2, tempval); 3525 3526 } else if (wol & GFAR_WOL_FILER_UCAST) { 3527 /* need to stop rx only, tx is already down */ 3528 gfar_halt(priv); 3529 gfar_filer_restore_table(priv); 3530 3531 } else { 3532 phy_start(ndev->phydev); 3533 } 3534 3535 gfar_start(priv); 3536 3537 netif_device_attach(ndev); 3538 enable_napi(priv); 3539 3540 return 0; 3541 } 3542 3543 static int gfar_restore(struct device *dev) 3544 { 3545 struct gfar_private *priv = dev_get_drvdata(dev); 3546 struct net_device *ndev = priv->ndev; 3547 3548 if (!netif_running(ndev)) { 3549 netif_device_attach(ndev); 3550 3551 return 0; 3552 } 3553 3554 gfar_init_bds(ndev); 3555 3556 gfar_mac_reset(priv); 3557 3558 gfar_init_tx_rx_base(priv); 3559 3560 gfar_start(priv); 3561 3562 priv->oldlink = 0; 3563 priv->oldspeed = 0; 3564 priv->oldduplex = -1; 3565 3566 if (ndev->phydev) 3567 phy_start(ndev->phydev); 3568 3569 netif_device_attach(ndev); 3570 enable_napi(priv); 3571 3572 return 0; 3573 } 3574 3575 static const struct dev_pm_ops gfar_pm_ops = { 3576 .suspend = gfar_suspend, 3577 .resume = gfar_resume, 3578 .freeze = gfar_suspend, 3579 .thaw = gfar_resume, 3580 .restore = gfar_restore, 3581 }; 3582 3583 #define GFAR_PM_OPS (&gfar_pm_ops) 3584 3585 #else 3586 3587 #define GFAR_PM_OPS NULL 3588 3589 #endif 3590 3591 static const struct of_device_id gfar_match[] = 3592 { 3593 { 3594 .type = "network", 3595 .compatible = "gianfar", 3596 }, 3597 { 3598 .compatible = "fsl,etsec2", 3599 }, 3600 {}, 3601 }; 3602 MODULE_DEVICE_TABLE(of, gfar_match); 3603 3604 /* Structure for a device driver */ 3605 static struct platform_driver gfar_driver = { 3606 .driver = { 3607 .name = "fsl-gianfar", 3608 .pm = GFAR_PM_OPS, 3609 .of_match_table = gfar_match, 3610 }, 3611 .probe = gfar_probe, 3612 .remove = gfar_remove, 3613 }; 3614 3615 module_platform_driver(gfar_driver); 3616