xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/kernel.h>
63 #include <linux/string.h>
64 #include <linux/errno.h>
65 #include <linux/unistd.h>
66 #include <linux/slab.h>
67 #include <linux/interrupt.h>
68 #include <linux/delay.h>
69 #include <linux/netdevice.h>
70 #include <linux/etherdevice.h>
71 #include <linux/skbuff.h>
72 #include <linux/if_vlan.h>
73 #include <linux/spinlock.h>
74 #include <linux/mm.h>
75 #include <linux/of_address.h>
76 #include <linux/of_irq.h>
77 #include <linux/of_mdio.h>
78 #include <linux/of_platform.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84 
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100 
101 #include "gianfar.h"
102 
103 #define TX_TIMEOUT      (5*HZ)
104 
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108 
109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 			    dma_addr_t buf)
111 {
112 	u32 lstatus;
113 
114 	bdp->bufPtr = cpu_to_be32(buf);
115 
116 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 		lstatus |= BD_LFLAG(RXBD_WRAP);
119 
120 	gfar_wmb();
121 
122 	bdp->lstatus = cpu_to_be32(lstatus);
123 }
124 
125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 	u32 __iomem *baddr;
129 	int i;
130 
131 	baddr = &regs->tbase0;
132 	for (i = 0; i < priv->num_tx_queues; i++) {
133 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 		baddr += 2;
135 	}
136 
137 	baddr = &regs->rbase0;
138 	for (i = 0; i < priv->num_rx_queues; i++) {
139 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 		baddr += 2;
141 	}
142 }
143 
144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 	u32 __iomem *baddr;
148 	int i;
149 
150 	baddr = &regs->rqprm0;
151 	for (i = 0; i < priv->num_rx_queues; i++) {
152 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 		baddr++;
155 	}
156 }
157 
158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 	/* set this when rx hw offload (TOE) functions are being used */
161 	priv->uses_rxfcb = 0;
162 
163 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 		priv->uses_rxfcb = 1;
165 
166 	if (priv->hwts_rx_en || priv->rx_filer_enable)
167 		priv->uses_rxfcb = 1;
168 }
169 
170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	u32 rctrl = 0;
174 
175 	if (priv->rx_filer_enable) {
176 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 		/* Program the RIR0 reg with the required distribution */
178 		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
179 	}
180 
181 	/* Restore PROMISC mode */
182 	if (priv->ndev->flags & IFF_PROMISC)
183 		rctrl |= RCTRL_PROM;
184 
185 	if (priv->ndev->features & NETIF_F_RXCSUM)
186 		rctrl |= RCTRL_CHECKSUMMING;
187 
188 	if (priv->extended_hash)
189 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190 
191 	if (priv->padding) {
192 		rctrl &= ~RCTRL_PAL_MASK;
193 		rctrl |= RCTRL_PADDING(priv->padding);
194 	}
195 
196 	/* Enable HW time stamping if requested from user space */
197 	if (priv->hwts_rx_en)
198 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199 
200 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202 
203 	/* Clear the LFC bit */
204 	gfar_write(&regs->rctrl, rctrl);
205 	/* Init flow control threshold values */
206 	gfar_init_rqprm(priv);
207 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
208 	rctrl |= RCTRL_LFC;
209 
210 	/* Init rctrl based on our settings */
211 	gfar_write(&regs->rctrl, rctrl);
212 }
213 
214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 	u32 tctrl = 0;
218 
219 	if (priv->ndev->features & NETIF_F_IP_CSUM)
220 		tctrl |= TCTRL_INIT_CSUM;
221 
222 	if (priv->prio_sched_en)
223 		tctrl |= TCTRL_TXSCHED_PRIO;
224 	else {
225 		tctrl |= TCTRL_TXSCHED_WRRS;
226 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228 	}
229 
230 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 		tctrl |= TCTRL_VLINS;
232 
233 	gfar_write(&regs->tctrl, tctrl);
234 }
235 
236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 			       unsigned long tx_mask, unsigned long rx_mask)
238 {
239 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 	u32 __iomem *baddr;
241 
242 	if (priv->mode == MQ_MG_MODE) {
243 		int i = 0;
244 
245 		baddr = &regs->txic0;
246 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 			gfar_write(baddr + i, 0);
248 			if (likely(priv->tx_queue[i]->txcoalescing))
249 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 		}
251 
252 		baddr = &regs->rxic0;
253 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 			gfar_write(baddr + i, 0);
255 			if (likely(priv->rx_queue[i]->rxcoalescing))
256 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 		}
258 	} else {
259 		/* Backward compatible case -- even if we enable
260 		 * multiple queues, there's only single reg to program
261 		 */
262 		gfar_write(&regs->txic, 0);
263 		if (likely(priv->tx_queue[0]->txcoalescing))
264 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
265 
266 		gfar_write(&regs->rxic, 0);
267 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
269 	}
270 }
271 
272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276 
277 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
278 {
279 	struct gfar_private *priv = netdev_priv(dev);
280 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
281 	unsigned long tx_packets = 0, tx_bytes = 0;
282 	int i;
283 
284 	for (i = 0; i < priv->num_rx_queues; i++) {
285 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
286 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
287 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
288 	}
289 
290 	dev->stats.rx_packets = rx_packets;
291 	dev->stats.rx_bytes   = rx_bytes;
292 	dev->stats.rx_dropped = rx_dropped;
293 
294 	for (i = 0; i < priv->num_tx_queues; i++) {
295 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
296 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
297 	}
298 
299 	dev->stats.tx_bytes   = tx_bytes;
300 	dev->stats.tx_packets = tx_packets;
301 
302 	return &dev->stats;
303 }
304 
305 /* Set the appropriate hash bit for the given addr */
306 /* The algorithm works like so:
307  * 1) Take the Destination Address (ie the multicast address), and
308  * do a CRC on it (little endian), and reverse the bits of the
309  * result.
310  * 2) Use the 8 most significant bits as a hash into a 256-entry
311  * table.  The table is controlled through 8 32-bit registers:
312  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
313  * gaddr7.  This means that the 3 most significant bits in the
314  * hash index which gaddr register to use, and the 5 other bits
315  * indicate which bit (assuming an IBM numbering scheme, which
316  * for PowerPC (tm) is usually the case) in the register holds
317  * the entry.
318  */
319 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
320 {
321 	u32 tempval;
322 	struct gfar_private *priv = netdev_priv(dev);
323 	u32 result = ether_crc(ETH_ALEN, addr);
324 	int width = priv->hash_width;
325 	u8 whichbit = (result >> (32 - width)) & 0x1f;
326 	u8 whichreg = result >> (32 - width + 5);
327 	u32 value = (1 << (31-whichbit));
328 
329 	tempval = gfar_read(priv->hash_regs[whichreg]);
330 	tempval |= value;
331 	gfar_write(priv->hash_regs[whichreg], tempval);
332 }
333 
334 /* There are multiple MAC Address register pairs on some controllers
335  * This function sets the numth pair to a given address
336  */
337 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
338 				  const u8 *addr)
339 {
340 	struct gfar_private *priv = netdev_priv(dev);
341 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
342 	u32 tempval;
343 	u32 __iomem *macptr = &regs->macstnaddr1;
344 
345 	macptr += num*2;
346 
347 	/* For a station address of 0x12345678ABCD in transmission
348 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
349 	 * MACnADDR2 is set to 0x34120000.
350 	 */
351 	tempval = (addr[5] << 24) | (addr[4] << 16) |
352 		  (addr[3] << 8)  |  addr[2];
353 
354 	gfar_write(macptr, tempval);
355 
356 	tempval = (addr[1] << 24) | (addr[0] << 16);
357 
358 	gfar_write(macptr+1, tempval);
359 }
360 
361 static int gfar_set_mac_addr(struct net_device *dev, void *p)
362 {
363 	int ret;
364 
365 	ret = eth_mac_addr(dev, p);
366 	if (ret)
367 		return ret;
368 
369 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370 
371 	return 0;
372 }
373 
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376 	int i;
377 	for (i = 0; i < priv->num_grps; i++) {
378 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
379 		/* Clear IEVENT */
380 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381 
382 		/* Initialize IMASK */
383 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384 	}
385 }
386 
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389 	int i;
390 	for (i = 0; i < priv->num_grps; i++) {
391 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 		/* Unmask the interrupts we look for */
393 		gfar_write(&regs->imask, IMASK_DEFAULT);
394 	}
395 }
396 
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399 	int i;
400 
401 	for (i = 0; i < priv->num_tx_queues; i++) {
402 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403 					    GFP_KERNEL);
404 		if (!priv->tx_queue[i])
405 			return -ENOMEM;
406 
407 		priv->tx_queue[i]->tx_skbuff = NULL;
408 		priv->tx_queue[i]->qindex = i;
409 		priv->tx_queue[i]->dev = priv->ndev;
410 		spin_lock_init(&(priv->tx_queue[i]->txlock));
411 	}
412 	return 0;
413 }
414 
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417 	int i;
418 
419 	for (i = 0; i < priv->num_rx_queues; i++) {
420 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421 					    GFP_KERNEL);
422 		if (!priv->rx_queue[i])
423 			return -ENOMEM;
424 
425 		priv->rx_queue[i]->qindex = i;
426 		priv->rx_queue[i]->ndev = priv->ndev;
427 	}
428 	return 0;
429 }
430 
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433 	int i;
434 
435 	for (i = 0; i < priv->num_tx_queues; i++)
436 		kfree(priv->tx_queue[i]);
437 }
438 
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++)
444 		kfree(priv->rx_queue[i]);
445 }
446 
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAXGROUPS; i++)
452 		if (priv->gfargrp[i].regs)
453 			iounmap(priv->gfargrp[i].regs);
454 }
455 
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458 	int i, j;
459 
460 	for (i = 0; i < priv->num_grps; i++)
461 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
462 			kfree(priv->gfargrp[i].irqinfo[j]);
463 			priv->gfargrp[i].irqinfo[j] = NULL;
464 		}
465 
466 	free_netdev(priv->ndev);
467 }
468 
469 static void disable_napi(struct gfar_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < priv->num_grps; i++) {
474 		napi_disable(&priv->gfargrp[i].napi_rx);
475 		napi_disable(&priv->gfargrp[i].napi_tx);
476 	}
477 }
478 
479 static void enable_napi(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_grps; i++) {
484 		napi_enable(&priv->gfargrp[i].napi_rx);
485 		napi_enable(&priv->gfargrp[i].napi_tx);
486 	}
487 }
488 
489 static int gfar_parse_group(struct device_node *np,
490 			    struct gfar_private *priv, const char *model)
491 {
492 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493 	int i;
494 
495 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
496 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497 					  GFP_KERNEL);
498 		if (!grp->irqinfo[i])
499 			return -ENOMEM;
500 	}
501 
502 	grp->regs = of_iomap(np, 0);
503 	if (!grp->regs)
504 		return -ENOMEM;
505 
506 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507 
508 	/* If we aren't the FEC we have multiple interrupts */
509 	if (model && strcasecmp(model, "FEC")) {
510 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512 		if (!gfar_irq(grp, TX)->irq ||
513 		    !gfar_irq(grp, RX)->irq ||
514 		    !gfar_irq(grp, ER)->irq)
515 			return -EINVAL;
516 	}
517 
518 	grp->priv = priv;
519 	spin_lock_init(&grp->grplock);
520 	if (priv->mode == MQ_MG_MODE) {
521 		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
522 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
523 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
524 	} else {
525 		grp->rx_bit_map = 0xFF;
526 		grp->tx_bit_map = 0xFF;
527 	}
528 
529 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
530 	 * right to left, so we need to revert the 8 bits to get the q index
531 	 */
532 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
533 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
534 
535 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
536 	 * also assign queues to groups
537 	 */
538 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
539 		if (!grp->rx_queue)
540 			grp->rx_queue = priv->rx_queue[i];
541 		grp->num_rx_queues++;
542 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
543 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
544 		priv->rx_queue[i]->grp = grp;
545 	}
546 
547 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
548 		if (!grp->tx_queue)
549 			grp->tx_queue = priv->tx_queue[i];
550 		grp->num_tx_queues++;
551 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
552 		priv->tqueue |= (TQUEUE_EN0 >> i);
553 		priv->tx_queue[i]->grp = grp;
554 	}
555 
556 	priv->num_grps++;
557 
558 	return 0;
559 }
560 
561 static int gfar_of_group_count(struct device_node *np)
562 {
563 	struct device_node *child;
564 	int num = 0;
565 
566 	for_each_available_child_of_node(np, child)
567 		if (of_node_name_eq(child, "queue-group"))
568 			num++;
569 
570 	return num;
571 }
572 
573 /* Reads the controller's registers to determine what interface
574  * connects it to the PHY.
575  */
576 static phy_interface_t gfar_get_interface(struct net_device *dev)
577 {
578 	struct gfar_private *priv = netdev_priv(dev);
579 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
580 	u32 ecntrl;
581 
582 	ecntrl = gfar_read(&regs->ecntrl);
583 
584 	if (ecntrl & ECNTRL_SGMII_MODE)
585 		return PHY_INTERFACE_MODE_SGMII;
586 
587 	if (ecntrl & ECNTRL_TBI_MODE) {
588 		if (ecntrl & ECNTRL_REDUCED_MODE)
589 			return PHY_INTERFACE_MODE_RTBI;
590 		else
591 			return PHY_INTERFACE_MODE_TBI;
592 	}
593 
594 	if (ecntrl & ECNTRL_REDUCED_MODE) {
595 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
596 			return PHY_INTERFACE_MODE_RMII;
597 		}
598 		else {
599 			phy_interface_t interface = priv->interface;
600 
601 			/* This isn't autodetected right now, so it must
602 			 * be set by the device tree or platform code.
603 			 */
604 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
605 				return PHY_INTERFACE_MODE_RGMII_ID;
606 
607 			return PHY_INTERFACE_MODE_RGMII;
608 		}
609 	}
610 
611 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
612 		return PHY_INTERFACE_MODE_GMII;
613 
614 	return PHY_INTERFACE_MODE_MII;
615 }
616 
617 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
618 {
619 	const char *model;
620 	int err = 0, i;
621 	phy_interface_t interface;
622 	struct net_device *dev = NULL;
623 	struct gfar_private *priv = NULL;
624 	struct device_node *np = ofdev->dev.of_node;
625 	struct device_node *child = NULL;
626 	u32 stash_len = 0;
627 	u32 stash_idx = 0;
628 	unsigned int num_tx_qs, num_rx_qs;
629 	unsigned short mode;
630 
631 	if (!np)
632 		return -ENODEV;
633 
634 	if (of_device_is_compatible(np, "fsl,etsec2"))
635 		mode = MQ_MG_MODE;
636 	else
637 		mode = SQ_SG_MODE;
638 
639 	if (mode == SQ_SG_MODE) {
640 		num_tx_qs = 1;
641 		num_rx_qs = 1;
642 	} else { /* MQ_MG_MODE */
643 		/* get the actual number of supported groups */
644 		unsigned int num_grps = gfar_of_group_count(np);
645 
646 		if (num_grps == 0 || num_grps > MAXGROUPS) {
647 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
648 				num_grps);
649 			pr_err("Cannot do alloc_etherdev, aborting\n");
650 			return -EINVAL;
651 		}
652 
653 		num_tx_qs = num_grps; /* one txq per int group */
654 		num_rx_qs = num_grps; /* one rxq per int group */
655 	}
656 
657 	if (num_tx_qs > MAX_TX_QS) {
658 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
659 		       num_tx_qs, MAX_TX_QS);
660 		pr_err("Cannot do alloc_etherdev, aborting\n");
661 		return -EINVAL;
662 	}
663 
664 	if (num_rx_qs > MAX_RX_QS) {
665 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
666 		       num_rx_qs, MAX_RX_QS);
667 		pr_err("Cannot do alloc_etherdev, aborting\n");
668 		return -EINVAL;
669 	}
670 
671 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
672 	dev = *pdev;
673 	if (NULL == dev)
674 		return -ENOMEM;
675 
676 	priv = netdev_priv(dev);
677 	priv->ndev = dev;
678 
679 	priv->mode = mode;
680 
681 	priv->num_tx_queues = num_tx_qs;
682 	netif_set_real_num_rx_queues(dev, num_rx_qs);
683 	priv->num_rx_queues = num_rx_qs;
684 
685 	err = gfar_alloc_tx_queues(priv);
686 	if (err)
687 		goto tx_alloc_failed;
688 
689 	err = gfar_alloc_rx_queues(priv);
690 	if (err)
691 		goto rx_alloc_failed;
692 
693 	err = of_property_read_string(np, "model", &model);
694 	if (err) {
695 		pr_err("Device model property missing, aborting\n");
696 		goto rx_alloc_failed;
697 	}
698 
699 	/* Init Rx queue filer rule set linked list */
700 	INIT_LIST_HEAD(&priv->rx_list.list);
701 	priv->rx_list.count = 0;
702 	mutex_init(&priv->rx_queue_access);
703 
704 	for (i = 0; i < MAXGROUPS; i++)
705 		priv->gfargrp[i].regs = NULL;
706 
707 	/* Parse and initialize group specific information */
708 	if (priv->mode == MQ_MG_MODE) {
709 		for_each_available_child_of_node(np, child) {
710 			if (!of_node_name_eq(child, "queue-group"))
711 				continue;
712 
713 			err = gfar_parse_group(child, priv, model);
714 			if (err) {
715 				of_node_put(child);
716 				goto err_grp_init;
717 			}
718 		}
719 	} else { /* SQ_SG_MODE */
720 		err = gfar_parse_group(np, priv, model);
721 		if (err)
722 			goto err_grp_init;
723 	}
724 
725 	if (of_property_read_bool(np, "bd-stash")) {
726 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
727 		priv->bd_stash_en = 1;
728 	}
729 
730 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
731 
732 	if (err == 0)
733 		priv->rx_stash_size = stash_len;
734 
735 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
736 
737 	if (err == 0)
738 		priv->rx_stash_index = stash_idx;
739 
740 	if (stash_len || stash_idx)
741 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
742 
743 	err = of_get_mac_address(np, dev->dev_addr);
744 	if (err) {
745 		eth_hw_addr_random(dev);
746 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
747 	}
748 
749 	if (model && !strcasecmp(model, "TSEC"))
750 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
751 				     FSL_GIANFAR_DEV_HAS_COALESCE |
752 				     FSL_GIANFAR_DEV_HAS_RMON |
753 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754 
755 	if (model && !strcasecmp(model, "eTSEC"))
756 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
757 				     FSL_GIANFAR_DEV_HAS_COALESCE |
758 				     FSL_GIANFAR_DEV_HAS_RMON |
759 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760 				     FSL_GIANFAR_DEV_HAS_CSUM |
761 				     FSL_GIANFAR_DEV_HAS_VLAN |
762 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
763 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
764 				     FSL_GIANFAR_DEV_HAS_TIMER |
765 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
766 
767 	/* Use PHY connection type from the DT node if one is specified there.
768 	 * rgmii-id really needs to be specified. Other types can be
769 	 * detected by hardware
770 	 */
771 	err = of_get_phy_mode(np, &interface);
772 	if (!err)
773 		priv->interface = interface;
774 	else
775 		priv->interface = gfar_get_interface(dev);
776 
777 	if (of_find_property(np, "fsl,magic-packet", NULL))
778 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
779 
780 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
781 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
782 
783 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
784 
785 	/* In the case of a fixed PHY, the DT node associated
786 	 * to the PHY is the Ethernet MAC DT node.
787 	 */
788 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
789 		err = of_phy_register_fixed_link(np);
790 		if (err)
791 			goto err_grp_init;
792 
793 		priv->phy_node = of_node_get(np);
794 	}
795 
796 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
797 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
798 
799 	return 0;
800 
801 err_grp_init:
802 	unmap_group_regs(priv);
803 rx_alloc_failed:
804 	gfar_free_rx_queues(priv);
805 tx_alloc_failed:
806 	gfar_free_tx_queues(priv);
807 	free_gfar_dev(priv);
808 	return err;
809 }
810 
811 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
812 				   u32 class)
813 {
814 	u32 rqfpr = FPR_FILER_MASK;
815 	u32 rqfcr = 0x0;
816 
817 	rqfar--;
818 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
819 	priv->ftp_rqfpr[rqfar] = rqfpr;
820 	priv->ftp_rqfcr[rqfar] = rqfcr;
821 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
822 
823 	rqfar--;
824 	rqfcr = RQFCR_CMP_NOMATCH;
825 	priv->ftp_rqfpr[rqfar] = rqfpr;
826 	priv->ftp_rqfcr[rqfar] = rqfcr;
827 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
828 
829 	rqfar--;
830 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
831 	rqfpr = class;
832 	priv->ftp_rqfcr[rqfar] = rqfcr;
833 	priv->ftp_rqfpr[rqfar] = rqfpr;
834 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
835 
836 	rqfar--;
837 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
838 	rqfpr = class;
839 	priv->ftp_rqfcr[rqfar] = rqfcr;
840 	priv->ftp_rqfpr[rqfar] = rqfpr;
841 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
842 
843 	return rqfar;
844 }
845 
846 static void gfar_init_filer_table(struct gfar_private *priv)
847 {
848 	int i = 0x0;
849 	u32 rqfar = MAX_FILER_IDX;
850 	u32 rqfcr = 0x0;
851 	u32 rqfpr = FPR_FILER_MASK;
852 
853 	/* Default rule */
854 	rqfcr = RQFCR_CMP_MATCH;
855 	priv->ftp_rqfcr[rqfar] = rqfcr;
856 	priv->ftp_rqfpr[rqfar] = rqfpr;
857 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
858 
859 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
860 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
861 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
862 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
863 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
864 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
865 
866 	/* cur_filer_idx indicated the first non-masked rule */
867 	priv->cur_filer_idx = rqfar;
868 
869 	/* Rest are masked rules */
870 	rqfcr = RQFCR_CMP_NOMATCH;
871 	for (i = 0; i < rqfar; i++) {
872 		priv->ftp_rqfcr[i] = rqfcr;
873 		priv->ftp_rqfpr[i] = rqfpr;
874 		gfar_write_filer(priv, i, rqfcr, rqfpr);
875 	}
876 }
877 
878 #ifdef CONFIG_PPC
879 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
880 {
881 	unsigned int pvr = mfspr(SPRN_PVR);
882 	unsigned int svr = mfspr(SPRN_SVR);
883 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
884 	unsigned int rev = svr & 0xffff;
885 
886 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
887 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
888 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
889 		priv->errata |= GFAR_ERRATA_74;
890 
891 	/* MPC8313 and MPC837x all rev */
892 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
893 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
894 		priv->errata |= GFAR_ERRATA_76;
895 
896 	/* MPC8313 Rev < 2.0 */
897 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
898 		priv->errata |= GFAR_ERRATA_12;
899 }
900 
901 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
902 {
903 	unsigned int svr = mfspr(SPRN_SVR);
904 
905 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
906 		priv->errata |= GFAR_ERRATA_12;
907 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
908 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
909 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
910 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
911 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
912 }
913 #endif
914 
915 static void gfar_detect_errata(struct gfar_private *priv)
916 {
917 	struct device *dev = &priv->ofdev->dev;
918 
919 	/* no plans to fix */
920 	priv->errata |= GFAR_ERRATA_A002;
921 
922 #ifdef CONFIG_PPC
923 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
924 		__gfar_detect_errata_85xx(priv);
925 	else /* non-mpc85xx parts, i.e. e300 core based */
926 		__gfar_detect_errata_83xx(priv);
927 #endif
928 
929 	if (priv->errata)
930 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
931 			 priv->errata);
932 }
933 
934 static void gfar_init_addr_hash_table(struct gfar_private *priv)
935 {
936 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
937 
938 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
939 		priv->extended_hash = 1;
940 		priv->hash_width = 9;
941 
942 		priv->hash_regs[0] = &regs->igaddr0;
943 		priv->hash_regs[1] = &regs->igaddr1;
944 		priv->hash_regs[2] = &regs->igaddr2;
945 		priv->hash_regs[3] = &regs->igaddr3;
946 		priv->hash_regs[4] = &regs->igaddr4;
947 		priv->hash_regs[5] = &regs->igaddr5;
948 		priv->hash_regs[6] = &regs->igaddr6;
949 		priv->hash_regs[7] = &regs->igaddr7;
950 		priv->hash_regs[8] = &regs->gaddr0;
951 		priv->hash_regs[9] = &regs->gaddr1;
952 		priv->hash_regs[10] = &regs->gaddr2;
953 		priv->hash_regs[11] = &regs->gaddr3;
954 		priv->hash_regs[12] = &regs->gaddr4;
955 		priv->hash_regs[13] = &regs->gaddr5;
956 		priv->hash_regs[14] = &regs->gaddr6;
957 		priv->hash_regs[15] = &regs->gaddr7;
958 
959 	} else {
960 		priv->extended_hash = 0;
961 		priv->hash_width = 8;
962 
963 		priv->hash_regs[0] = &regs->gaddr0;
964 		priv->hash_regs[1] = &regs->gaddr1;
965 		priv->hash_regs[2] = &regs->gaddr2;
966 		priv->hash_regs[3] = &regs->gaddr3;
967 		priv->hash_regs[4] = &regs->gaddr4;
968 		priv->hash_regs[5] = &regs->gaddr5;
969 		priv->hash_regs[6] = &regs->gaddr6;
970 		priv->hash_regs[7] = &regs->gaddr7;
971 	}
972 }
973 
974 static int __gfar_is_rx_idle(struct gfar_private *priv)
975 {
976 	u32 res;
977 
978 	/* Normaly TSEC should not hang on GRS commands, so we should
979 	 * actually wait for IEVENT_GRSC flag.
980 	 */
981 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
982 		return 0;
983 
984 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
985 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
986 	 * and the Rx can be safely reset.
987 	 */
988 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
989 	res &= 0x7f807f80;
990 	if ((res & 0xffff) == (res >> 16))
991 		return 1;
992 
993 	return 0;
994 }
995 
996 /* Halt the receive and transmit queues */
997 static void gfar_halt_nodisable(struct gfar_private *priv)
998 {
999 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1000 	u32 tempval;
1001 	unsigned int timeout;
1002 	int stopped;
1003 
1004 	gfar_ints_disable(priv);
1005 
1006 	if (gfar_is_dma_stopped(priv))
1007 		return;
1008 
1009 	/* Stop the DMA, and wait for it to stop */
1010 	tempval = gfar_read(&regs->dmactrl);
1011 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1012 	gfar_write(&regs->dmactrl, tempval);
1013 
1014 retry:
1015 	timeout = 1000;
1016 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1017 		cpu_relax();
1018 		timeout--;
1019 	}
1020 
1021 	if (!timeout)
1022 		stopped = gfar_is_dma_stopped(priv);
1023 
1024 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1025 	    !__gfar_is_rx_idle(priv))
1026 		goto retry;
1027 }
1028 
1029 /* Halt the receive and transmit queues */
1030 static void gfar_halt(struct gfar_private *priv)
1031 {
1032 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1033 	u32 tempval;
1034 
1035 	/* Dissable the Rx/Tx hw queues */
1036 	gfar_write(&regs->rqueue, 0);
1037 	gfar_write(&regs->tqueue, 0);
1038 
1039 	mdelay(10);
1040 
1041 	gfar_halt_nodisable(priv);
1042 
1043 	/* Disable Rx/Tx DMA */
1044 	tempval = gfar_read(&regs->maccfg1);
1045 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1046 	gfar_write(&regs->maccfg1, tempval);
1047 }
1048 
1049 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1050 {
1051 	struct txbd8 *txbdp;
1052 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1053 	int i, j;
1054 
1055 	txbdp = tx_queue->tx_bd_base;
1056 
1057 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1058 		if (!tx_queue->tx_skbuff[i])
1059 			continue;
1060 
1061 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1062 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1063 		txbdp->lstatus = 0;
1064 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1065 		     j++) {
1066 			txbdp++;
1067 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1068 				       be16_to_cpu(txbdp->length),
1069 				       DMA_TO_DEVICE);
1070 		}
1071 		txbdp++;
1072 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1073 		tx_queue->tx_skbuff[i] = NULL;
1074 	}
1075 	kfree(tx_queue->tx_skbuff);
1076 	tx_queue->tx_skbuff = NULL;
1077 }
1078 
1079 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1080 {
1081 	int i;
1082 
1083 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1084 
1085 	dev_kfree_skb(rx_queue->skb);
1086 
1087 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1088 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1089 
1090 		rxbdp->lstatus = 0;
1091 		rxbdp->bufPtr = 0;
1092 		rxbdp++;
1093 
1094 		if (!rxb->page)
1095 			continue;
1096 
1097 		dma_unmap_page(rx_queue->dev, rxb->dma,
1098 			       PAGE_SIZE, DMA_FROM_DEVICE);
1099 		__free_page(rxb->page);
1100 
1101 		rxb->page = NULL;
1102 	}
1103 
1104 	kfree(rx_queue->rx_buff);
1105 	rx_queue->rx_buff = NULL;
1106 }
1107 
1108 /* If there are any tx skbs or rx skbs still around, free them.
1109  * Then free tx_skbuff and rx_skbuff
1110  */
1111 static void free_skb_resources(struct gfar_private *priv)
1112 {
1113 	struct gfar_priv_tx_q *tx_queue = NULL;
1114 	struct gfar_priv_rx_q *rx_queue = NULL;
1115 	int i;
1116 
1117 	/* Go through all the buffer descriptors and free their data buffers */
1118 	for (i = 0; i < priv->num_tx_queues; i++) {
1119 		struct netdev_queue *txq;
1120 
1121 		tx_queue = priv->tx_queue[i];
1122 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1123 		if (tx_queue->tx_skbuff)
1124 			free_skb_tx_queue(tx_queue);
1125 		netdev_tx_reset_queue(txq);
1126 	}
1127 
1128 	for (i = 0; i < priv->num_rx_queues; i++) {
1129 		rx_queue = priv->rx_queue[i];
1130 		if (rx_queue->rx_buff)
1131 			free_skb_rx_queue(rx_queue);
1132 	}
1133 
1134 	dma_free_coherent(priv->dev,
1135 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1136 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1137 			  priv->tx_queue[0]->tx_bd_base,
1138 			  priv->tx_queue[0]->tx_bd_dma_base);
1139 }
1140 
1141 void stop_gfar(struct net_device *dev)
1142 {
1143 	struct gfar_private *priv = netdev_priv(dev);
1144 
1145 	netif_tx_stop_all_queues(dev);
1146 
1147 	smp_mb__before_atomic();
1148 	set_bit(GFAR_DOWN, &priv->state);
1149 	smp_mb__after_atomic();
1150 
1151 	disable_napi(priv);
1152 
1153 	/* disable ints and gracefully shut down Rx/Tx DMA */
1154 	gfar_halt(priv);
1155 
1156 	phy_stop(dev->phydev);
1157 
1158 	free_skb_resources(priv);
1159 }
1160 
1161 static void gfar_start(struct gfar_private *priv)
1162 {
1163 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1164 	u32 tempval;
1165 	int i = 0;
1166 
1167 	/* Enable Rx/Tx hw queues */
1168 	gfar_write(&regs->rqueue, priv->rqueue);
1169 	gfar_write(&regs->tqueue, priv->tqueue);
1170 
1171 	/* Initialize DMACTRL to have WWR and WOP */
1172 	tempval = gfar_read(&regs->dmactrl);
1173 	tempval |= DMACTRL_INIT_SETTINGS;
1174 	gfar_write(&regs->dmactrl, tempval);
1175 
1176 	/* Make sure we aren't stopped */
1177 	tempval = gfar_read(&regs->dmactrl);
1178 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1179 	gfar_write(&regs->dmactrl, tempval);
1180 
1181 	for (i = 0; i < priv->num_grps; i++) {
1182 		regs = priv->gfargrp[i].regs;
1183 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1184 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1185 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1186 	}
1187 
1188 	/* Enable Rx/Tx DMA */
1189 	tempval = gfar_read(&regs->maccfg1);
1190 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1191 	gfar_write(&regs->maccfg1, tempval);
1192 
1193 	gfar_ints_enable(priv);
1194 
1195 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1196 }
1197 
1198 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1199 {
1200 	struct page *page;
1201 	dma_addr_t addr;
1202 
1203 	page = dev_alloc_page();
1204 	if (unlikely(!page))
1205 		return false;
1206 
1207 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1208 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1209 		__free_page(page);
1210 
1211 		return false;
1212 	}
1213 
1214 	rxb->dma = addr;
1215 	rxb->page = page;
1216 	rxb->page_offset = 0;
1217 
1218 	return true;
1219 }
1220 
1221 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1222 {
1223 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1224 	struct gfar_extra_stats *estats = &priv->extra_stats;
1225 
1226 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1227 	atomic64_inc(&estats->rx_alloc_err);
1228 }
1229 
1230 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1231 				int alloc_cnt)
1232 {
1233 	struct rxbd8 *bdp;
1234 	struct gfar_rx_buff *rxb;
1235 	int i;
1236 
1237 	i = rx_queue->next_to_use;
1238 	bdp = &rx_queue->rx_bd_base[i];
1239 	rxb = &rx_queue->rx_buff[i];
1240 
1241 	while (alloc_cnt--) {
1242 		/* try reuse page */
1243 		if (unlikely(!rxb->page)) {
1244 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1245 				gfar_rx_alloc_err(rx_queue);
1246 				break;
1247 			}
1248 		}
1249 
1250 		/* Setup the new RxBD */
1251 		gfar_init_rxbdp(rx_queue, bdp,
1252 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1253 
1254 		/* Update to the next pointer */
1255 		bdp++;
1256 		rxb++;
1257 
1258 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1259 			i = 0;
1260 			bdp = rx_queue->rx_bd_base;
1261 			rxb = rx_queue->rx_buff;
1262 		}
1263 	}
1264 
1265 	rx_queue->next_to_use = i;
1266 	rx_queue->next_to_alloc = i;
1267 }
1268 
1269 static void gfar_init_bds(struct net_device *ndev)
1270 {
1271 	struct gfar_private *priv = netdev_priv(ndev);
1272 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273 	struct gfar_priv_tx_q *tx_queue = NULL;
1274 	struct gfar_priv_rx_q *rx_queue = NULL;
1275 	struct txbd8 *txbdp;
1276 	u32 __iomem *rfbptr;
1277 	int i, j;
1278 
1279 	for (i = 0; i < priv->num_tx_queues; i++) {
1280 		tx_queue = priv->tx_queue[i];
1281 		/* Initialize some variables in our dev structure */
1282 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1283 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1284 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1285 		tx_queue->skb_curtx = 0;
1286 		tx_queue->skb_dirtytx = 0;
1287 
1288 		/* Initialize Transmit Descriptor Ring */
1289 		txbdp = tx_queue->tx_bd_base;
1290 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1291 			txbdp->lstatus = 0;
1292 			txbdp->bufPtr = 0;
1293 			txbdp++;
1294 		}
1295 
1296 		/* Set the last descriptor in the ring to indicate wrap */
1297 		txbdp--;
1298 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1299 					    TXBD_WRAP);
1300 	}
1301 
1302 	rfbptr = &regs->rfbptr0;
1303 	for (i = 0; i < priv->num_rx_queues; i++) {
1304 		rx_queue = priv->rx_queue[i];
1305 
1306 		rx_queue->next_to_clean = 0;
1307 		rx_queue->next_to_use = 0;
1308 		rx_queue->next_to_alloc = 0;
1309 
1310 		/* make sure next_to_clean != next_to_use after this
1311 		 * by leaving at least 1 unused descriptor
1312 		 */
1313 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1314 
1315 		rx_queue->rfbptr = rfbptr;
1316 		rfbptr += 2;
1317 	}
1318 }
1319 
1320 static int gfar_alloc_skb_resources(struct net_device *ndev)
1321 {
1322 	void *vaddr;
1323 	dma_addr_t addr;
1324 	int i, j;
1325 	struct gfar_private *priv = netdev_priv(ndev);
1326 	struct device *dev = priv->dev;
1327 	struct gfar_priv_tx_q *tx_queue = NULL;
1328 	struct gfar_priv_rx_q *rx_queue = NULL;
1329 
1330 	priv->total_tx_ring_size = 0;
1331 	for (i = 0; i < priv->num_tx_queues; i++)
1332 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1333 
1334 	priv->total_rx_ring_size = 0;
1335 	for (i = 0; i < priv->num_rx_queues; i++)
1336 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1337 
1338 	/* Allocate memory for the buffer descriptors */
1339 	vaddr = dma_alloc_coherent(dev,
1340 				   (priv->total_tx_ring_size *
1341 				    sizeof(struct txbd8)) +
1342 				   (priv->total_rx_ring_size *
1343 				    sizeof(struct rxbd8)),
1344 				   &addr, GFP_KERNEL);
1345 	if (!vaddr)
1346 		return -ENOMEM;
1347 
1348 	for (i = 0; i < priv->num_tx_queues; i++) {
1349 		tx_queue = priv->tx_queue[i];
1350 		tx_queue->tx_bd_base = vaddr;
1351 		tx_queue->tx_bd_dma_base = addr;
1352 		tx_queue->dev = ndev;
1353 		/* enet DMA only understands physical addresses */
1354 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1355 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1356 	}
1357 
1358 	/* Start the rx descriptor ring where the tx ring leaves off */
1359 	for (i = 0; i < priv->num_rx_queues; i++) {
1360 		rx_queue = priv->rx_queue[i];
1361 		rx_queue->rx_bd_base = vaddr;
1362 		rx_queue->rx_bd_dma_base = addr;
1363 		rx_queue->ndev = ndev;
1364 		rx_queue->dev = dev;
1365 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1366 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1367 	}
1368 
1369 	/* Setup the skbuff rings */
1370 	for (i = 0; i < priv->num_tx_queues; i++) {
1371 		tx_queue = priv->tx_queue[i];
1372 		tx_queue->tx_skbuff =
1373 			kmalloc_array(tx_queue->tx_ring_size,
1374 				      sizeof(*tx_queue->tx_skbuff),
1375 				      GFP_KERNEL);
1376 		if (!tx_queue->tx_skbuff)
1377 			goto cleanup;
1378 
1379 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1380 			tx_queue->tx_skbuff[j] = NULL;
1381 	}
1382 
1383 	for (i = 0; i < priv->num_rx_queues; i++) {
1384 		rx_queue = priv->rx_queue[i];
1385 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1386 					    sizeof(*rx_queue->rx_buff),
1387 					    GFP_KERNEL);
1388 		if (!rx_queue->rx_buff)
1389 			goto cleanup;
1390 	}
1391 
1392 	gfar_init_bds(ndev);
1393 
1394 	return 0;
1395 
1396 cleanup:
1397 	free_skb_resources(priv);
1398 	return -ENOMEM;
1399 }
1400 
1401 /* Bring the controller up and running */
1402 int startup_gfar(struct net_device *ndev)
1403 {
1404 	struct gfar_private *priv = netdev_priv(ndev);
1405 	int err;
1406 
1407 	gfar_mac_reset(priv);
1408 
1409 	err = gfar_alloc_skb_resources(ndev);
1410 	if (err)
1411 		return err;
1412 
1413 	gfar_init_tx_rx_base(priv);
1414 
1415 	smp_mb__before_atomic();
1416 	clear_bit(GFAR_DOWN, &priv->state);
1417 	smp_mb__after_atomic();
1418 
1419 	/* Start Rx/Tx DMA and enable the interrupts */
1420 	gfar_start(priv);
1421 
1422 	/* force link state update after mac reset */
1423 	priv->oldlink = 0;
1424 	priv->oldspeed = 0;
1425 	priv->oldduplex = -1;
1426 
1427 	phy_start(ndev->phydev);
1428 
1429 	enable_napi(priv);
1430 
1431 	netif_tx_wake_all_queues(ndev);
1432 
1433 	return 0;
1434 }
1435 
1436 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1437 {
1438 	struct net_device *ndev = priv->ndev;
1439 	struct phy_device *phydev = ndev->phydev;
1440 	u32 val = 0;
1441 
1442 	if (!phydev->duplex)
1443 		return val;
1444 
1445 	if (!priv->pause_aneg_en) {
1446 		if (priv->tx_pause_en)
1447 			val |= MACCFG1_TX_FLOW;
1448 		if (priv->rx_pause_en)
1449 			val |= MACCFG1_RX_FLOW;
1450 	} else {
1451 		u16 lcl_adv, rmt_adv;
1452 		u8 flowctrl;
1453 		/* get link partner capabilities */
1454 		rmt_adv = 0;
1455 		if (phydev->pause)
1456 			rmt_adv = LPA_PAUSE_CAP;
1457 		if (phydev->asym_pause)
1458 			rmt_adv |= LPA_PAUSE_ASYM;
1459 
1460 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1461 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1462 		if (flowctrl & FLOW_CTRL_TX)
1463 			val |= MACCFG1_TX_FLOW;
1464 		if (flowctrl & FLOW_CTRL_RX)
1465 			val |= MACCFG1_RX_FLOW;
1466 	}
1467 
1468 	return val;
1469 }
1470 
1471 static noinline void gfar_update_link_state(struct gfar_private *priv)
1472 {
1473 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1474 	struct net_device *ndev = priv->ndev;
1475 	struct phy_device *phydev = ndev->phydev;
1476 	struct gfar_priv_rx_q *rx_queue = NULL;
1477 	int i;
1478 
1479 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1480 		return;
1481 
1482 	if (phydev->link) {
1483 		u32 tempval1 = gfar_read(&regs->maccfg1);
1484 		u32 tempval = gfar_read(&regs->maccfg2);
1485 		u32 ecntrl = gfar_read(&regs->ecntrl);
1486 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1487 
1488 		if (phydev->duplex != priv->oldduplex) {
1489 			if (!(phydev->duplex))
1490 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1491 			else
1492 				tempval |= MACCFG2_FULL_DUPLEX;
1493 
1494 			priv->oldduplex = phydev->duplex;
1495 		}
1496 
1497 		if (phydev->speed != priv->oldspeed) {
1498 			switch (phydev->speed) {
1499 			case 1000:
1500 				tempval =
1501 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1502 
1503 				ecntrl &= ~(ECNTRL_R100);
1504 				break;
1505 			case 100:
1506 			case 10:
1507 				tempval =
1508 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1509 
1510 				/* Reduced mode distinguishes
1511 				 * between 10 and 100
1512 				 */
1513 				if (phydev->speed == SPEED_100)
1514 					ecntrl |= ECNTRL_R100;
1515 				else
1516 					ecntrl &= ~(ECNTRL_R100);
1517 				break;
1518 			default:
1519 				netif_warn(priv, link, priv->ndev,
1520 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1521 					   phydev->speed);
1522 				break;
1523 			}
1524 
1525 			priv->oldspeed = phydev->speed;
1526 		}
1527 
1528 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1529 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1530 
1531 		/* Turn last free buffer recording on */
1532 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1533 			for (i = 0; i < priv->num_rx_queues; i++) {
1534 				u32 bdp_dma;
1535 
1536 				rx_queue = priv->rx_queue[i];
1537 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1538 				gfar_write(rx_queue->rfbptr, bdp_dma);
1539 			}
1540 
1541 			priv->tx_actual_en = 1;
1542 		}
1543 
1544 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1545 			priv->tx_actual_en = 0;
1546 
1547 		gfar_write(&regs->maccfg1, tempval1);
1548 		gfar_write(&regs->maccfg2, tempval);
1549 		gfar_write(&regs->ecntrl, ecntrl);
1550 
1551 		if (!priv->oldlink)
1552 			priv->oldlink = 1;
1553 
1554 	} else if (priv->oldlink) {
1555 		priv->oldlink = 0;
1556 		priv->oldspeed = 0;
1557 		priv->oldduplex = -1;
1558 	}
1559 
1560 	if (netif_msg_link(priv))
1561 		phy_print_status(phydev);
1562 }
1563 
1564 /* Called every time the controller might need to be made
1565  * aware of new link state.  The PHY code conveys this
1566  * information through variables in the phydev structure, and this
1567  * function converts those variables into the appropriate
1568  * register values, and can bring down the device if needed.
1569  */
1570 static void adjust_link(struct net_device *dev)
1571 {
1572 	struct gfar_private *priv = netdev_priv(dev);
1573 	struct phy_device *phydev = dev->phydev;
1574 
1575 	if (unlikely(phydev->link != priv->oldlink ||
1576 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1577 				       phydev->speed != priv->oldspeed))))
1578 		gfar_update_link_state(priv);
1579 }
1580 
1581 /* Initialize TBI PHY interface for communicating with the
1582  * SERDES lynx PHY on the chip.  We communicate with this PHY
1583  * through the MDIO bus on each controller, treating it as a
1584  * "normal" PHY at the address found in the TBIPA register.  We assume
1585  * that the TBIPA register is valid.  Either the MDIO bus code will set
1586  * it to a value that doesn't conflict with other PHYs on the bus, or the
1587  * value doesn't matter, as there are no other PHYs on the bus.
1588  */
1589 static void gfar_configure_serdes(struct net_device *dev)
1590 {
1591 	struct gfar_private *priv = netdev_priv(dev);
1592 	struct phy_device *tbiphy;
1593 
1594 	if (!priv->tbi_node) {
1595 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1596 				    "device tree specify a tbi-handle\n");
1597 		return;
1598 	}
1599 
1600 	tbiphy = of_phy_find_device(priv->tbi_node);
1601 	if (!tbiphy) {
1602 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1603 		return;
1604 	}
1605 
1606 	/* If the link is already up, we must already be ok, and don't need to
1607 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1608 	 * everything for us?  Resetting it takes the link down and requires
1609 	 * several seconds for it to come back.
1610 	 */
1611 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1612 		put_device(&tbiphy->mdio.dev);
1613 		return;
1614 	}
1615 
1616 	/* Single clk mode, mii mode off(for serdes communication) */
1617 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1618 
1619 	phy_write(tbiphy, MII_ADVERTISE,
1620 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1621 		  ADVERTISE_1000XPSE_ASYM);
1622 
1623 	phy_write(tbiphy, MII_BMCR,
1624 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1625 		  BMCR_SPEED1000);
1626 
1627 	put_device(&tbiphy->mdio.dev);
1628 }
1629 
1630 /* Initializes driver's PHY state, and attaches to the PHY.
1631  * Returns 0 on success.
1632  */
1633 static int init_phy(struct net_device *dev)
1634 {
1635 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1636 	struct gfar_private *priv = netdev_priv(dev);
1637 	phy_interface_t interface = priv->interface;
1638 	struct phy_device *phydev;
1639 	struct ethtool_eee edata;
1640 
1641 	linkmode_set_bit_array(phy_10_100_features_array,
1642 			       ARRAY_SIZE(phy_10_100_features_array),
1643 			       mask);
1644 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1645 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1646 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1647 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1648 
1649 	priv->oldlink = 0;
1650 	priv->oldspeed = 0;
1651 	priv->oldduplex = -1;
1652 
1653 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1654 				interface);
1655 	if (!phydev) {
1656 		dev_err(&dev->dev, "could not attach to PHY\n");
1657 		return -ENODEV;
1658 	}
1659 
1660 	if (interface == PHY_INTERFACE_MODE_SGMII)
1661 		gfar_configure_serdes(dev);
1662 
1663 	/* Remove any features not supported by the controller */
1664 	linkmode_and(phydev->supported, phydev->supported, mask);
1665 	linkmode_copy(phydev->advertising, phydev->supported);
1666 
1667 	/* Add support for flow control */
1668 	phy_support_asym_pause(phydev);
1669 
1670 	/* disable EEE autoneg, EEE not supported by eTSEC */
1671 	memset(&edata, 0, sizeof(struct ethtool_eee));
1672 	phy_ethtool_set_eee(phydev, &edata);
1673 
1674 	return 0;
1675 }
1676 
1677 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1678 {
1679 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1680 
1681 	memset(fcb, 0, GMAC_FCB_LEN);
1682 
1683 	return fcb;
1684 }
1685 
1686 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1687 				    int fcb_length)
1688 {
1689 	/* If we're here, it's a IP packet with a TCP or UDP
1690 	 * payload.  We set it to checksum, using a pseudo-header
1691 	 * we provide
1692 	 */
1693 	u8 flags = TXFCB_DEFAULT;
1694 
1695 	/* Tell the controller what the protocol is
1696 	 * And provide the already calculated phcs
1697 	 */
1698 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1699 		flags |= TXFCB_UDP;
1700 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1701 	} else
1702 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1703 
1704 	/* l3os is the distance between the start of the
1705 	 * frame (skb->data) and the start of the IP hdr.
1706 	 * l4os is the distance between the start of the
1707 	 * l3 hdr and the l4 hdr
1708 	 */
1709 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1710 	fcb->l4os = skb_network_header_len(skb);
1711 
1712 	fcb->flags = flags;
1713 }
1714 
1715 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1716 {
1717 	fcb->flags |= TXFCB_VLN;
1718 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1719 }
1720 
1721 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1722 				      struct txbd8 *base, int ring_size)
1723 {
1724 	struct txbd8 *new_bd = bdp + stride;
1725 
1726 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1727 }
1728 
1729 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1730 				      int ring_size)
1731 {
1732 	return skip_txbd(bdp, 1, base, ring_size);
1733 }
1734 
1735 /* eTSEC12: csum generation not supported for some fcb offsets */
1736 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1737 				       unsigned long fcb_addr)
1738 {
1739 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1740 	       (fcb_addr % 0x20) > 0x18);
1741 }
1742 
1743 /* eTSEC76: csum generation for frames larger than 2500 may
1744  * cause excess delays before start of transmission
1745  */
1746 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1747 				       unsigned int len)
1748 {
1749 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1750 	       (len > 2500));
1751 }
1752 
1753 /* This is called by the kernel when a frame is ready for transmission.
1754  * It is pointed to by the dev->hard_start_xmit function pointer
1755  */
1756 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1757 {
1758 	struct gfar_private *priv = netdev_priv(dev);
1759 	struct gfar_priv_tx_q *tx_queue = NULL;
1760 	struct netdev_queue *txq;
1761 	struct gfar __iomem *regs = NULL;
1762 	struct txfcb *fcb = NULL;
1763 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1764 	u32 lstatus;
1765 	skb_frag_t *frag;
1766 	int i, rq = 0;
1767 	int do_tstamp, do_csum, do_vlan;
1768 	u32 bufaddr;
1769 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1770 
1771 	rq = skb->queue_mapping;
1772 	tx_queue = priv->tx_queue[rq];
1773 	txq = netdev_get_tx_queue(dev, rq);
1774 	base = tx_queue->tx_bd_base;
1775 	regs = tx_queue->grp->regs;
1776 
1777 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1778 	do_vlan = skb_vlan_tag_present(skb);
1779 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1780 		    priv->hwts_tx_en;
1781 
1782 	if (do_csum || do_vlan)
1783 		fcb_len = GMAC_FCB_LEN;
1784 
1785 	/* check if time stamp should be generated */
1786 	if (unlikely(do_tstamp))
1787 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1788 
1789 	/* make space for additional header when fcb is needed */
1790 	if (fcb_len) {
1791 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1792 			dev->stats.tx_errors++;
1793 			dev_kfree_skb_any(skb);
1794 			return NETDEV_TX_OK;
1795 		}
1796 	}
1797 
1798 	/* total number of fragments in the SKB */
1799 	nr_frags = skb_shinfo(skb)->nr_frags;
1800 
1801 	/* calculate the required number of TxBDs for this skb */
1802 	if (unlikely(do_tstamp))
1803 		nr_txbds = nr_frags + 2;
1804 	else
1805 		nr_txbds = nr_frags + 1;
1806 
1807 	/* check if there is space to queue this packet */
1808 	if (nr_txbds > tx_queue->num_txbdfree) {
1809 		/* no space, stop the queue */
1810 		netif_tx_stop_queue(txq);
1811 		dev->stats.tx_fifo_errors++;
1812 		return NETDEV_TX_BUSY;
1813 	}
1814 
1815 	/* Update transmit stats */
1816 	bytes_sent = skb->len;
1817 	tx_queue->stats.tx_bytes += bytes_sent;
1818 	/* keep Tx bytes on wire for BQL accounting */
1819 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1820 	tx_queue->stats.tx_packets++;
1821 
1822 	txbdp = txbdp_start = tx_queue->cur_tx;
1823 	lstatus = be32_to_cpu(txbdp->lstatus);
1824 
1825 	/* Add TxPAL between FCB and frame if required */
1826 	if (unlikely(do_tstamp)) {
1827 		skb_push(skb, GMAC_TXPAL_LEN);
1828 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1829 	}
1830 
1831 	/* Add TxFCB if required */
1832 	if (fcb_len) {
1833 		fcb = gfar_add_fcb(skb);
1834 		lstatus |= BD_LFLAG(TXBD_TOE);
1835 	}
1836 
1837 	/* Set up checksumming */
1838 	if (do_csum) {
1839 		gfar_tx_checksum(skb, fcb, fcb_len);
1840 
1841 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1842 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1843 			__skb_pull(skb, GMAC_FCB_LEN);
1844 			skb_checksum_help(skb);
1845 			if (do_vlan || do_tstamp) {
1846 				/* put back a new fcb for vlan/tstamp TOE */
1847 				fcb = gfar_add_fcb(skb);
1848 			} else {
1849 				/* Tx TOE not used */
1850 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1851 				fcb = NULL;
1852 			}
1853 		}
1854 	}
1855 
1856 	if (do_vlan)
1857 		gfar_tx_vlan(skb, fcb);
1858 
1859 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1860 				 DMA_TO_DEVICE);
1861 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1862 		goto dma_map_err;
1863 
1864 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1865 
1866 	/* Time stamp insertion requires one additional TxBD */
1867 	if (unlikely(do_tstamp))
1868 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1869 						 tx_queue->tx_ring_size);
1870 
1871 	if (likely(!nr_frags)) {
1872 		if (likely(!do_tstamp))
1873 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1874 	} else {
1875 		u32 lstatus_start = lstatus;
1876 
1877 		/* Place the fragment addresses and lengths into the TxBDs */
1878 		frag = &skb_shinfo(skb)->frags[0];
1879 		for (i = 0; i < nr_frags; i++, frag++) {
1880 			unsigned int size;
1881 
1882 			/* Point at the next BD, wrapping as needed */
1883 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1884 
1885 			size = skb_frag_size(frag);
1886 
1887 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1888 				  BD_LFLAG(TXBD_READY);
1889 
1890 			/* Handle the last BD specially */
1891 			if (i == nr_frags - 1)
1892 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1893 
1894 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1895 						   size, DMA_TO_DEVICE);
1896 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1897 				goto dma_map_err;
1898 
1899 			/* set the TxBD length and buffer pointer */
1900 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1901 			txbdp->lstatus = cpu_to_be32(lstatus);
1902 		}
1903 
1904 		lstatus = lstatus_start;
1905 	}
1906 
1907 	/* If time stamping is requested one additional TxBD must be set up. The
1908 	 * first TxBD points to the FCB and must have a data length of
1909 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1910 	 * the full frame length.
1911 	 */
1912 	if (unlikely(do_tstamp)) {
1913 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1914 
1915 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1916 		bufaddr += fcb_len;
1917 
1918 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1919 			      (skb_headlen(skb) - fcb_len);
1920 		if (!nr_frags)
1921 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1922 
1923 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1924 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1925 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1926 
1927 		/* Setup tx hardware time stamping */
1928 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1929 		fcb->ptp = 1;
1930 	} else {
1931 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1932 	}
1933 
1934 	netdev_tx_sent_queue(txq, bytes_sent);
1935 
1936 	gfar_wmb();
1937 
1938 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1939 
1940 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1941 
1942 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1943 
1944 	/* Update the current skb pointer to the next entry we will use
1945 	 * (wrapping if necessary)
1946 	 */
1947 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1948 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1949 
1950 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1951 
1952 	/* We can work in parallel with gfar_clean_tx_ring(), except
1953 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1954 	 * when we were reading the num_txbdfree and checking for available
1955 	 * space, that's because outside of this function it can only grow.
1956 	 */
1957 	spin_lock_bh(&tx_queue->txlock);
1958 	/* reduce TxBD free count */
1959 	tx_queue->num_txbdfree -= (nr_txbds);
1960 	spin_unlock_bh(&tx_queue->txlock);
1961 
1962 	/* If the next BD still needs to be cleaned up, then the bds
1963 	 * are full.  We need to tell the kernel to stop sending us stuff.
1964 	 */
1965 	if (!tx_queue->num_txbdfree) {
1966 		netif_tx_stop_queue(txq);
1967 
1968 		dev->stats.tx_fifo_errors++;
1969 	}
1970 
1971 	/* Tell the DMA to go go go */
1972 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1973 
1974 	return NETDEV_TX_OK;
1975 
1976 dma_map_err:
1977 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1978 	if (do_tstamp)
1979 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1980 	for (i = 0; i < nr_frags; i++) {
1981 		lstatus = be32_to_cpu(txbdp->lstatus);
1982 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1983 			break;
1984 
1985 		lstatus &= ~BD_LFLAG(TXBD_READY);
1986 		txbdp->lstatus = cpu_to_be32(lstatus);
1987 		bufaddr = be32_to_cpu(txbdp->bufPtr);
1988 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
1989 			       DMA_TO_DEVICE);
1990 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1991 	}
1992 	gfar_wmb();
1993 	dev_kfree_skb_any(skb);
1994 	return NETDEV_TX_OK;
1995 }
1996 
1997 /* Changes the mac address if the controller is not running. */
1998 static int gfar_set_mac_address(struct net_device *dev)
1999 {
2000 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2001 
2002 	return 0;
2003 }
2004 
2005 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2006 {
2007 	struct gfar_private *priv = netdev_priv(dev);
2008 
2009 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2010 		cpu_relax();
2011 
2012 	if (dev->flags & IFF_UP)
2013 		stop_gfar(dev);
2014 
2015 	dev->mtu = new_mtu;
2016 
2017 	if (dev->flags & IFF_UP)
2018 		startup_gfar(dev);
2019 
2020 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2021 
2022 	return 0;
2023 }
2024 
2025 static void reset_gfar(struct net_device *ndev)
2026 {
2027 	struct gfar_private *priv = netdev_priv(ndev);
2028 
2029 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2030 		cpu_relax();
2031 
2032 	stop_gfar(ndev);
2033 	startup_gfar(ndev);
2034 
2035 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2036 }
2037 
2038 /* gfar_reset_task gets scheduled when a packet has not been
2039  * transmitted after a set amount of time.
2040  * For now, assume that clearing out all the structures, and
2041  * starting over will fix the problem.
2042  */
2043 static void gfar_reset_task(struct work_struct *work)
2044 {
2045 	struct gfar_private *priv = container_of(work, struct gfar_private,
2046 						 reset_task);
2047 	reset_gfar(priv->ndev);
2048 }
2049 
2050 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2051 {
2052 	struct gfar_private *priv = netdev_priv(dev);
2053 
2054 	dev->stats.tx_errors++;
2055 	schedule_work(&priv->reset_task);
2056 }
2057 
2058 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2059 {
2060 	struct hwtstamp_config config;
2061 	struct gfar_private *priv = netdev_priv(netdev);
2062 
2063 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2064 		return -EFAULT;
2065 
2066 	/* reserved for future extensions */
2067 	if (config.flags)
2068 		return -EINVAL;
2069 
2070 	switch (config.tx_type) {
2071 	case HWTSTAMP_TX_OFF:
2072 		priv->hwts_tx_en = 0;
2073 		break;
2074 	case HWTSTAMP_TX_ON:
2075 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2076 			return -ERANGE;
2077 		priv->hwts_tx_en = 1;
2078 		break;
2079 	default:
2080 		return -ERANGE;
2081 	}
2082 
2083 	switch (config.rx_filter) {
2084 	case HWTSTAMP_FILTER_NONE:
2085 		if (priv->hwts_rx_en) {
2086 			priv->hwts_rx_en = 0;
2087 			reset_gfar(netdev);
2088 		}
2089 		break;
2090 	default:
2091 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2092 			return -ERANGE;
2093 		if (!priv->hwts_rx_en) {
2094 			priv->hwts_rx_en = 1;
2095 			reset_gfar(netdev);
2096 		}
2097 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2098 		break;
2099 	}
2100 
2101 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2102 		-EFAULT : 0;
2103 }
2104 
2105 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2106 {
2107 	struct hwtstamp_config config;
2108 	struct gfar_private *priv = netdev_priv(netdev);
2109 
2110 	config.flags = 0;
2111 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2112 	config.rx_filter = (priv->hwts_rx_en ?
2113 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2114 
2115 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2116 		-EFAULT : 0;
2117 }
2118 
2119 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2120 {
2121 	struct phy_device *phydev = dev->phydev;
2122 
2123 	if (!netif_running(dev))
2124 		return -EINVAL;
2125 
2126 	if (cmd == SIOCSHWTSTAMP)
2127 		return gfar_hwtstamp_set(dev, rq);
2128 	if (cmd == SIOCGHWTSTAMP)
2129 		return gfar_hwtstamp_get(dev, rq);
2130 
2131 	if (!phydev)
2132 		return -ENODEV;
2133 
2134 	return phy_mii_ioctl(phydev, rq, cmd);
2135 }
2136 
2137 /* Interrupt Handler for Transmit complete */
2138 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2139 {
2140 	struct net_device *dev = tx_queue->dev;
2141 	struct netdev_queue *txq;
2142 	struct gfar_private *priv = netdev_priv(dev);
2143 	struct txbd8 *bdp, *next = NULL;
2144 	struct txbd8 *lbdp = NULL;
2145 	struct txbd8 *base = tx_queue->tx_bd_base;
2146 	struct sk_buff *skb;
2147 	int skb_dirtytx;
2148 	int tx_ring_size = tx_queue->tx_ring_size;
2149 	int frags = 0, nr_txbds = 0;
2150 	int i;
2151 	int howmany = 0;
2152 	int tqi = tx_queue->qindex;
2153 	unsigned int bytes_sent = 0;
2154 	u32 lstatus;
2155 	size_t buflen;
2156 
2157 	txq = netdev_get_tx_queue(dev, tqi);
2158 	bdp = tx_queue->dirty_tx;
2159 	skb_dirtytx = tx_queue->skb_dirtytx;
2160 
2161 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2162 		bool do_tstamp;
2163 
2164 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2165 			    priv->hwts_tx_en;
2166 
2167 		frags = skb_shinfo(skb)->nr_frags;
2168 
2169 		/* When time stamping, one additional TxBD must be freed.
2170 		 * Also, we need to dma_unmap_single() the TxPAL.
2171 		 */
2172 		if (unlikely(do_tstamp))
2173 			nr_txbds = frags + 2;
2174 		else
2175 			nr_txbds = frags + 1;
2176 
2177 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2178 
2179 		lstatus = be32_to_cpu(lbdp->lstatus);
2180 
2181 		/* Only clean completed frames */
2182 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2183 		    (lstatus & BD_LENGTH_MASK))
2184 			break;
2185 
2186 		if (unlikely(do_tstamp)) {
2187 			next = next_txbd(bdp, base, tx_ring_size);
2188 			buflen = be16_to_cpu(next->length) +
2189 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2190 		} else
2191 			buflen = be16_to_cpu(bdp->length);
2192 
2193 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2194 				 buflen, DMA_TO_DEVICE);
2195 
2196 		if (unlikely(do_tstamp)) {
2197 			struct skb_shared_hwtstamps shhwtstamps;
2198 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2199 					  ~0x7UL);
2200 
2201 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2202 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2203 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2204 			skb_tstamp_tx(skb, &shhwtstamps);
2205 			gfar_clear_txbd_status(bdp);
2206 			bdp = next;
2207 		}
2208 
2209 		gfar_clear_txbd_status(bdp);
2210 		bdp = next_txbd(bdp, base, tx_ring_size);
2211 
2212 		for (i = 0; i < frags; i++) {
2213 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2214 				       be16_to_cpu(bdp->length),
2215 				       DMA_TO_DEVICE);
2216 			gfar_clear_txbd_status(bdp);
2217 			bdp = next_txbd(bdp, base, tx_ring_size);
2218 		}
2219 
2220 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2221 
2222 		dev_kfree_skb_any(skb);
2223 
2224 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2225 
2226 		skb_dirtytx = (skb_dirtytx + 1) &
2227 			      TX_RING_MOD_MASK(tx_ring_size);
2228 
2229 		howmany++;
2230 		spin_lock(&tx_queue->txlock);
2231 		tx_queue->num_txbdfree += nr_txbds;
2232 		spin_unlock(&tx_queue->txlock);
2233 	}
2234 
2235 	/* If we freed a buffer, we can restart transmission, if necessary */
2236 	if (tx_queue->num_txbdfree &&
2237 	    netif_tx_queue_stopped(txq) &&
2238 	    !(test_bit(GFAR_DOWN, &priv->state)))
2239 		netif_wake_subqueue(priv->ndev, tqi);
2240 
2241 	/* Update dirty indicators */
2242 	tx_queue->skb_dirtytx = skb_dirtytx;
2243 	tx_queue->dirty_tx = bdp;
2244 
2245 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2246 }
2247 
2248 static void count_errors(u32 lstatus, struct net_device *ndev)
2249 {
2250 	struct gfar_private *priv = netdev_priv(ndev);
2251 	struct net_device_stats *stats = &ndev->stats;
2252 	struct gfar_extra_stats *estats = &priv->extra_stats;
2253 
2254 	/* If the packet was truncated, none of the other errors matter */
2255 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2256 		stats->rx_length_errors++;
2257 
2258 		atomic64_inc(&estats->rx_trunc);
2259 
2260 		return;
2261 	}
2262 	/* Count the errors, if there were any */
2263 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2264 		stats->rx_length_errors++;
2265 
2266 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2267 			atomic64_inc(&estats->rx_large);
2268 		else
2269 			atomic64_inc(&estats->rx_short);
2270 	}
2271 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2272 		stats->rx_frame_errors++;
2273 		atomic64_inc(&estats->rx_nonoctet);
2274 	}
2275 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2276 		atomic64_inc(&estats->rx_crcerr);
2277 		stats->rx_crc_errors++;
2278 	}
2279 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2280 		atomic64_inc(&estats->rx_overrun);
2281 		stats->rx_over_errors++;
2282 	}
2283 }
2284 
2285 static irqreturn_t gfar_receive(int irq, void *grp_id)
2286 {
2287 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2288 	unsigned long flags;
2289 	u32 imask, ievent;
2290 
2291 	ievent = gfar_read(&grp->regs->ievent);
2292 
2293 	if (unlikely(ievent & IEVENT_FGPI)) {
2294 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2295 		return IRQ_HANDLED;
2296 	}
2297 
2298 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2299 		spin_lock_irqsave(&grp->grplock, flags);
2300 		imask = gfar_read(&grp->regs->imask);
2301 		imask &= IMASK_RX_DISABLED;
2302 		gfar_write(&grp->regs->imask, imask);
2303 		spin_unlock_irqrestore(&grp->grplock, flags);
2304 		__napi_schedule(&grp->napi_rx);
2305 	} else {
2306 		/* Clear IEVENT, so interrupts aren't called again
2307 		 * because of the packets that have already arrived.
2308 		 */
2309 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2310 	}
2311 
2312 	return IRQ_HANDLED;
2313 }
2314 
2315 /* Interrupt Handler for Transmit complete */
2316 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2317 {
2318 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2319 	unsigned long flags;
2320 	u32 imask;
2321 
2322 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2323 		spin_lock_irqsave(&grp->grplock, flags);
2324 		imask = gfar_read(&grp->regs->imask);
2325 		imask &= IMASK_TX_DISABLED;
2326 		gfar_write(&grp->regs->imask, imask);
2327 		spin_unlock_irqrestore(&grp->grplock, flags);
2328 		__napi_schedule(&grp->napi_tx);
2329 	} else {
2330 		/* Clear IEVENT, so interrupts aren't called again
2331 		 * because of the packets that have already arrived.
2332 		 */
2333 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2334 	}
2335 
2336 	return IRQ_HANDLED;
2337 }
2338 
2339 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2340 			     struct sk_buff *skb, bool first)
2341 {
2342 	int size = lstatus & BD_LENGTH_MASK;
2343 	struct page *page = rxb->page;
2344 
2345 	if (likely(first)) {
2346 		skb_put(skb, size);
2347 	} else {
2348 		/* the last fragments' length contains the full frame length */
2349 		if (lstatus & BD_LFLAG(RXBD_LAST))
2350 			size -= skb->len;
2351 
2352 		WARN(size < 0, "gianfar: rx fragment size underflow");
2353 		if (size < 0)
2354 			return false;
2355 
2356 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2357 				rxb->page_offset + RXBUF_ALIGNMENT,
2358 				size, GFAR_RXB_TRUESIZE);
2359 	}
2360 
2361 	/* try reuse page */
2362 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2363 		return false;
2364 
2365 	/* change offset to the other half */
2366 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2367 
2368 	page_ref_inc(page);
2369 
2370 	return true;
2371 }
2372 
2373 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2374 			       struct gfar_rx_buff *old_rxb)
2375 {
2376 	struct gfar_rx_buff *new_rxb;
2377 	u16 nta = rxq->next_to_alloc;
2378 
2379 	new_rxb = &rxq->rx_buff[nta];
2380 
2381 	/* find next buf that can reuse a page */
2382 	nta++;
2383 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2384 
2385 	/* copy page reference */
2386 	*new_rxb = *old_rxb;
2387 
2388 	/* sync for use by the device */
2389 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2390 					 old_rxb->page_offset,
2391 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2392 }
2393 
2394 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2395 					    u32 lstatus, struct sk_buff *skb)
2396 {
2397 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2398 	struct page *page = rxb->page;
2399 	bool first = false;
2400 
2401 	if (likely(!skb)) {
2402 		void *buff_addr = page_address(page) + rxb->page_offset;
2403 
2404 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2405 		if (unlikely(!skb)) {
2406 			gfar_rx_alloc_err(rx_queue);
2407 			return NULL;
2408 		}
2409 		skb_reserve(skb, RXBUF_ALIGNMENT);
2410 		first = true;
2411 	}
2412 
2413 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2414 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2415 
2416 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2417 		/* reuse the free half of the page */
2418 		gfar_reuse_rx_page(rx_queue, rxb);
2419 	} else {
2420 		/* page cannot be reused, unmap it */
2421 		dma_unmap_page(rx_queue->dev, rxb->dma,
2422 			       PAGE_SIZE, DMA_FROM_DEVICE);
2423 	}
2424 
2425 	/* clear rxb content */
2426 	rxb->page = NULL;
2427 
2428 	return skb;
2429 }
2430 
2431 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2432 {
2433 	/* If valid headers were found, and valid sums
2434 	 * were verified, then we tell the kernel that no
2435 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2436 	 */
2437 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2438 	    (RXFCB_CIP | RXFCB_CTU))
2439 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2440 	else
2441 		skb_checksum_none_assert(skb);
2442 }
2443 
2444 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2445 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2446 {
2447 	struct gfar_private *priv = netdev_priv(ndev);
2448 	struct rxfcb *fcb = NULL;
2449 
2450 	/* fcb is at the beginning if exists */
2451 	fcb = (struct rxfcb *)skb->data;
2452 
2453 	/* Remove the FCB from the skb
2454 	 * Remove the padded bytes, if there are any
2455 	 */
2456 	if (priv->uses_rxfcb)
2457 		skb_pull(skb, GMAC_FCB_LEN);
2458 
2459 	/* Get receive timestamp from the skb */
2460 	if (priv->hwts_rx_en) {
2461 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2462 		u64 *ns = (u64 *) skb->data;
2463 
2464 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2465 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2466 	}
2467 
2468 	if (priv->padding)
2469 		skb_pull(skb, priv->padding);
2470 
2471 	/* Trim off the FCS */
2472 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2473 
2474 	if (ndev->features & NETIF_F_RXCSUM)
2475 		gfar_rx_checksum(skb, fcb);
2476 
2477 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2478 	 * Even if vlan rx accel is disabled, on some chips
2479 	 * RXFCB_VLN is pseudo randomly set.
2480 	 */
2481 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2482 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2483 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2484 				       be16_to_cpu(fcb->vlctl));
2485 }
2486 
2487 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2488  * until the budget/quota has been reached. Returns the number
2489  * of frames handled
2490  */
2491 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2492 			      int rx_work_limit)
2493 {
2494 	struct net_device *ndev = rx_queue->ndev;
2495 	struct gfar_private *priv = netdev_priv(ndev);
2496 	struct rxbd8 *bdp;
2497 	int i, howmany = 0;
2498 	struct sk_buff *skb = rx_queue->skb;
2499 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2500 	unsigned int total_bytes = 0, total_pkts = 0;
2501 
2502 	/* Get the first full descriptor */
2503 	i = rx_queue->next_to_clean;
2504 
2505 	while (rx_work_limit--) {
2506 		u32 lstatus;
2507 
2508 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2509 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2510 			cleaned_cnt = 0;
2511 		}
2512 
2513 		bdp = &rx_queue->rx_bd_base[i];
2514 		lstatus = be32_to_cpu(bdp->lstatus);
2515 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2516 			break;
2517 
2518 		/* lost RXBD_LAST descriptor due to overrun */
2519 		if (skb &&
2520 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2521 			/* discard faulty buffer */
2522 			dev_kfree_skb(skb);
2523 			skb = NULL;
2524 			rx_queue->stats.rx_dropped++;
2525 
2526 			/* can continue normally */
2527 		}
2528 
2529 		/* order rx buffer descriptor reads */
2530 		rmb();
2531 
2532 		/* fetch next to clean buffer from the ring */
2533 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2534 		if (unlikely(!skb))
2535 			break;
2536 
2537 		cleaned_cnt++;
2538 		howmany++;
2539 
2540 		if (unlikely(++i == rx_queue->rx_ring_size))
2541 			i = 0;
2542 
2543 		rx_queue->next_to_clean = i;
2544 
2545 		/* fetch next buffer if not the last in frame */
2546 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2547 			continue;
2548 
2549 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2550 			count_errors(lstatus, ndev);
2551 
2552 			/* discard faulty buffer */
2553 			dev_kfree_skb(skb);
2554 			skb = NULL;
2555 			rx_queue->stats.rx_dropped++;
2556 			continue;
2557 		}
2558 
2559 		gfar_process_frame(ndev, skb);
2560 
2561 		/* Increment the number of packets */
2562 		total_pkts++;
2563 		total_bytes += skb->len;
2564 
2565 		skb_record_rx_queue(skb, rx_queue->qindex);
2566 
2567 		skb->protocol = eth_type_trans(skb, ndev);
2568 
2569 		/* Send the packet up the stack */
2570 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2571 
2572 		skb = NULL;
2573 	}
2574 
2575 	/* Store incomplete frames for completion */
2576 	rx_queue->skb = skb;
2577 
2578 	rx_queue->stats.rx_packets += total_pkts;
2579 	rx_queue->stats.rx_bytes += total_bytes;
2580 
2581 	if (cleaned_cnt)
2582 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2583 
2584 	/* Update Last Free RxBD pointer for LFC */
2585 	if (unlikely(priv->tx_actual_en)) {
2586 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2587 
2588 		gfar_write(rx_queue->rfbptr, bdp_dma);
2589 	}
2590 
2591 	return howmany;
2592 }
2593 
2594 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2595 {
2596 	struct gfar_priv_grp *gfargrp =
2597 		container_of(napi, struct gfar_priv_grp, napi_rx);
2598 	struct gfar __iomem *regs = gfargrp->regs;
2599 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2600 	int work_done = 0;
2601 
2602 	/* Clear IEVENT, so interrupts aren't called again
2603 	 * because of the packets that have already arrived
2604 	 */
2605 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2606 
2607 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2608 
2609 	if (work_done < budget) {
2610 		u32 imask;
2611 		napi_complete_done(napi, work_done);
2612 		/* Clear the halt bit in RSTAT */
2613 		gfar_write(&regs->rstat, gfargrp->rstat);
2614 
2615 		spin_lock_irq(&gfargrp->grplock);
2616 		imask = gfar_read(&regs->imask);
2617 		imask |= IMASK_RX_DEFAULT;
2618 		gfar_write(&regs->imask, imask);
2619 		spin_unlock_irq(&gfargrp->grplock);
2620 	}
2621 
2622 	return work_done;
2623 }
2624 
2625 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2626 {
2627 	struct gfar_priv_grp *gfargrp =
2628 		container_of(napi, struct gfar_priv_grp, napi_tx);
2629 	struct gfar __iomem *regs = gfargrp->regs;
2630 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2631 	u32 imask;
2632 
2633 	/* Clear IEVENT, so interrupts aren't called again
2634 	 * because of the packets that have already arrived
2635 	 */
2636 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2637 
2638 	/* run Tx cleanup to completion */
2639 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2640 		gfar_clean_tx_ring(tx_queue);
2641 
2642 	napi_complete(napi);
2643 
2644 	spin_lock_irq(&gfargrp->grplock);
2645 	imask = gfar_read(&regs->imask);
2646 	imask |= IMASK_TX_DEFAULT;
2647 	gfar_write(&regs->imask, imask);
2648 	spin_unlock_irq(&gfargrp->grplock);
2649 
2650 	return 0;
2651 }
2652 
2653 /* GFAR error interrupt handler */
2654 static irqreturn_t gfar_error(int irq, void *grp_id)
2655 {
2656 	struct gfar_priv_grp *gfargrp = grp_id;
2657 	struct gfar __iomem *regs = gfargrp->regs;
2658 	struct gfar_private *priv= gfargrp->priv;
2659 	struct net_device *dev = priv->ndev;
2660 
2661 	/* Save ievent for future reference */
2662 	u32 events = gfar_read(&regs->ievent);
2663 
2664 	/* Clear IEVENT */
2665 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2666 
2667 	/* Magic Packet is not an error. */
2668 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2669 	    (events & IEVENT_MAG))
2670 		events &= ~IEVENT_MAG;
2671 
2672 	/* Hmm... */
2673 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2674 		netdev_dbg(dev,
2675 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2676 			   events, gfar_read(&regs->imask));
2677 
2678 	/* Update the error counters */
2679 	if (events & IEVENT_TXE) {
2680 		dev->stats.tx_errors++;
2681 
2682 		if (events & IEVENT_LC)
2683 			dev->stats.tx_window_errors++;
2684 		if (events & IEVENT_CRL)
2685 			dev->stats.tx_aborted_errors++;
2686 		if (events & IEVENT_XFUN) {
2687 			netif_dbg(priv, tx_err, dev,
2688 				  "TX FIFO underrun, packet dropped\n");
2689 			dev->stats.tx_dropped++;
2690 			atomic64_inc(&priv->extra_stats.tx_underrun);
2691 
2692 			schedule_work(&priv->reset_task);
2693 		}
2694 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2695 	}
2696 	if (events & IEVENT_BSY) {
2697 		dev->stats.rx_over_errors++;
2698 		atomic64_inc(&priv->extra_stats.rx_bsy);
2699 
2700 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2701 			  gfar_read(&regs->rstat));
2702 	}
2703 	if (events & IEVENT_BABR) {
2704 		dev->stats.rx_errors++;
2705 		atomic64_inc(&priv->extra_stats.rx_babr);
2706 
2707 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2708 	}
2709 	if (events & IEVENT_EBERR) {
2710 		atomic64_inc(&priv->extra_stats.eberr);
2711 		netif_dbg(priv, rx_err, dev, "bus error\n");
2712 	}
2713 	if (events & IEVENT_RXC)
2714 		netif_dbg(priv, rx_status, dev, "control frame\n");
2715 
2716 	if (events & IEVENT_BABT) {
2717 		atomic64_inc(&priv->extra_stats.tx_babt);
2718 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2719 	}
2720 	return IRQ_HANDLED;
2721 }
2722 
2723 /* The interrupt handler for devices with one interrupt */
2724 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2725 {
2726 	struct gfar_priv_grp *gfargrp = grp_id;
2727 
2728 	/* Save ievent for future reference */
2729 	u32 events = gfar_read(&gfargrp->regs->ievent);
2730 
2731 	/* Check for reception */
2732 	if (events & IEVENT_RX_MASK)
2733 		gfar_receive(irq, grp_id);
2734 
2735 	/* Check for transmit completion */
2736 	if (events & IEVENT_TX_MASK)
2737 		gfar_transmit(irq, grp_id);
2738 
2739 	/* Check for errors */
2740 	if (events & IEVENT_ERR_MASK)
2741 		gfar_error(irq, grp_id);
2742 
2743 	return IRQ_HANDLED;
2744 }
2745 
2746 #ifdef CONFIG_NET_POLL_CONTROLLER
2747 /* Polling 'interrupt' - used by things like netconsole to send skbs
2748  * without having to re-enable interrupts. It's not called while
2749  * the interrupt routine is executing.
2750  */
2751 static void gfar_netpoll(struct net_device *dev)
2752 {
2753 	struct gfar_private *priv = netdev_priv(dev);
2754 	int i;
2755 
2756 	/* If the device has multiple interrupts, run tx/rx */
2757 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2758 		for (i = 0; i < priv->num_grps; i++) {
2759 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2760 
2761 			disable_irq(gfar_irq(grp, TX)->irq);
2762 			disable_irq(gfar_irq(grp, RX)->irq);
2763 			disable_irq(gfar_irq(grp, ER)->irq);
2764 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2765 			enable_irq(gfar_irq(grp, ER)->irq);
2766 			enable_irq(gfar_irq(grp, RX)->irq);
2767 			enable_irq(gfar_irq(grp, TX)->irq);
2768 		}
2769 	} else {
2770 		for (i = 0; i < priv->num_grps; i++) {
2771 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2772 
2773 			disable_irq(gfar_irq(grp, TX)->irq);
2774 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2775 			enable_irq(gfar_irq(grp, TX)->irq);
2776 		}
2777 	}
2778 }
2779 #endif
2780 
2781 static void free_grp_irqs(struct gfar_priv_grp *grp)
2782 {
2783 	free_irq(gfar_irq(grp, TX)->irq, grp);
2784 	free_irq(gfar_irq(grp, RX)->irq, grp);
2785 	free_irq(gfar_irq(grp, ER)->irq, grp);
2786 }
2787 
2788 static int register_grp_irqs(struct gfar_priv_grp *grp)
2789 {
2790 	struct gfar_private *priv = grp->priv;
2791 	struct net_device *dev = priv->ndev;
2792 	int err;
2793 
2794 	/* If the device has multiple interrupts, register for
2795 	 * them.  Otherwise, only register for the one
2796 	 */
2797 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2798 		/* Install our interrupt handlers for Error,
2799 		 * Transmit, and Receive
2800 		 */
2801 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2802 				  gfar_irq(grp, ER)->name, grp);
2803 		if (err < 0) {
2804 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2805 				  gfar_irq(grp, ER)->irq);
2806 
2807 			goto err_irq_fail;
2808 		}
2809 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2810 
2811 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2812 				  gfar_irq(grp, TX)->name, grp);
2813 		if (err < 0) {
2814 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2815 				  gfar_irq(grp, TX)->irq);
2816 			goto tx_irq_fail;
2817 		}
2818 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2819 				  gfar_irq(grp, RX)->name, grp);
2820 		if (err < 0) {
2821 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2822 				  gfar_irq(grp, RX)->irq);
2823 			goto rx_irq_fail;
2824 		}
2825 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2826 
2827 	} else {
2828 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2829 				  gfar_irq(grp, TX)->name, grp);
2830 		if (err < 0) {
2831 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2832 				  gfar_irq(grp, TX)->irq);
2833 			goto err_irq_fail;
2834 		}
2835 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2836 	}
2837 
2838 	return 0;
2839 
2840 rx_irq_fail:
2841 	free_irq(gfar_irq(grp, TX)->irq, grp);
2842 tx_irq_fail:
2843 	free_irq(gfar_irq(grp, ER)->irq, grp);
2844 err_irq_fail:
2845 	return err;
2846 
2847 }
2848 
2849 static void gfar_free_irq(struct gfar_private *priv)
2850 {
2851 	int i;
2852 
2853 	/* Free the IRQs */
2854 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2855 		for (i = 0; i < priv->num_grps; i++)
2856 			free_grp_irqs(&priv->gfargrp[i]);
2857 	} else {
2858 		for (i = 0; i < priv->num_grps; i++)
2859 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2860 				 &priv->gfargrp[i]);
2861 	}
2862 }
2863 
2864 static int gfar_request_irq(struct gfar_private *priv)
2865 {
2866 	int err, i, j;
2867 
2868 	for (i = 0; i < priv->num_grps; i++) {
2869 		err = register_grp_irqs(&priv->gfargrp[i]);
2870 		if (err) {
2871 			for (j = 0; j < i; j++)
2872 				free_grp_irqs(&priv->gfargrp[j]);
2873 			return err;
2874 		}
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 /* Called when something needs to use the ethernet device
2881  * Returns 0 for success.
2882  */
2883 static int gfar_enet_open(struct net_device *dev)
2884 {
2885 	struct gfar_private *priv = netdev_priv(dev);
2886 	int err;
2887 
2888 	err = init_phy(dev);
2889 	if (err)
2890 		return err;
2891 
2892 	err = gfar_request_irq(priv);
2893 	if (err)
2894 		return err;
2895 
2896 	err = startup_gfar(dev);
2897 	if (err)
2898 		return err;
2899 
2900 	return err;
2901 }
2902 
2903 /* Stops the kernel queue, and halts the controller */
2904 static int gfar_close(struct net_device *dev)
2905 {
2906 	struct gfar_private *priv = netdev_priv(dev);
2907 
2908 	cancel_work_sync(&priv->reset_task);
2909 	stop_gfar(dev);
2910 
2911 	/* Disconnect from the PHY */
2912 	phy_disconnect(dev->phydev);
2913 
2914 	gfar_free_irq(priv);
2915 
2916 	return 0;
2917 }
2918 
2919 /* Clears each of the exact match registers to zero, so they
2920  * don't interfere with normal reception
2921  */
2922 static void gfar_clear_exact_match(struct net_device *dev)
2923 {
2924 	int idx;
2925 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2926 
2927 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2928 		gfar_set_mac_for_addr(dev, idx, zero_arr);
2929 }
2930 
2931 /* Update the hash table based on the current list of multicast
2932  * addresses we subscribe to.  Also, change the promiscuity of
2933  * the device based on the flags (this function is called
2934  * whenever dev->flags is changed
2935  */
2936 static void gfar_set_multi(struct net_device *dev)
2937 {
2938 	struct netdev_hw_addr *ha;
2939 	struct gfar_private *priv = netdev_priv(dev);
2940 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2941 	u32 tempval;
2942 
2943 	if (dev->flags & IFF_PROMISC) {
2944 		/* Set RCTRL to PROM */
2945 		tempval = gfar_read(&regs->rctrl);
2946 		tempval |= RCTRL_PROM;
2947 		gfar_write(&regs->rctrl, tempval);
2948 	} else {
2949 		/* Set RCTRL to not PROM */
2950 		tempval = gfar_read(&regs->rctrl);
2951 		tempval &= ~(RCTRL_PROM);
2952 		gfar_write(&regs->rctrl, tempval);
2953 	}
2954 
2955 	if (dev->flags & IFF_ALLMULTI) {
2956 		/* Set the hash to rx all multicast frames */
2957 		gfar_write(&regs->igaddr0, 0xffffffff);
2958 		gfar_write(&regs->igaddr1, 0xffffffff);
2959 		gfar_write(&regs->igaddr2, 0xffffffff);
2960 		gfar_write(&regs->igaddr3, 0xffffffff);
2961 		gfar_write(&regs->igaddr4, 0xffffffff);
2962 		gfar_write(&regs->igaddr5, 0xffffffff);
2963 		gfar_write(&regs->igaddr6, 0xffffffff);
2964 		gfar_write(&regs->igaddr7, 0xffffffff);
2965 		gfar_write(&regs->gaddr0, 0xffffffff);
2966 		gfar_write(&regs->gaddr1, 0xffffffff);
2967 		gfar_write(&regs->gaddr2, 0xffffffff);
2968 		gfar_write(&regs->gaddr3, 0xffffffff);
2969 		gfar_write(&regs->gaddr4, 0xffffffff);
2970 		gfar_write(&regs->gaddr5, 0xffffffff);
2971 		gfar_write(&regs->gaddr6, 0xffffffff);
2972 		gfar_write(&regs->gaddr7, 0xffffffff);
2973 	} else {
2974 		int em_num;
2975 		int idx;
2976 
2977 		/* zero out the hash */
2978 		gfar_write(&regs->igaddr0, 0x0);
2979 		gfar_write(&regs->igaddr1, 0x0);
2980 		gfar_write(&regs->igaddr2, 0x0);
2981 		gfar_write(&regs->igaddr3, 0x0);
2982 		gfar_write(&regs->igaddr4, 0x0);
2983 		gfar_write(&regs->igaddr5, 0x0);
2984 		gfar_write(&regs->igaddr6, 0x0);
2985 		gfar_write(&regs->igaddr7, 0x0);
2986 		gfar_write(&regs->gaddr0, 0x0);
2987 		gfar_write(&regs->gaddr1, 0x0);
2988 		gfar_write(&regs->gaddr2, 0x0);
2989 		gfar_write(&regs->gaddr3, 0x0);
2990 		gfar_write(&regs->gaddr4, 0x0);
2991 		gfar_write(&regs->gaddr5, 0x0);
2992 		gfar_write(&regs->gaddr6, 0x0);
2993 		gfar_write(&regs->gaddr7, 0x0);
2994 
2995 		/* If we have extended hash tables, we need to
2996 		 * clear the exact match registers to prepare for
2997 		 * setting them
2998 		 */
2999 		if (priv->extended_hash) {
3000 			em_num = GFAR_EM_NUM + 1;
3001 			gfar_clear_exact_match(dev);
3002 			idx = 1;
3003 		} else {
3004 			idx = 0;
3005 			em_num = 0;
3006 		}
3007 
3008 		if (netdev_mc_empty(dev))
3009 			return;
3010 
3011 		/* Parse the list, and set the appropriate bits */
3012 		netdev_for_each_mc_addr(ha, dev) {
3013 			if (idx < em_num) {
3014 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3015 				idx++;
3016 			} else
3017 				gfar_set_hash_for_addr(dev, ha->addr);
3018 		}
3019 	}
3020 }
3021 
3022 void gfar_mac_reset(struct gfar_private *priv)
3023 {
3024 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3025 	u32 tempval;
3026 
3027 	/* Reset MAC layer */
3028 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3029 
3030 	/* We need to delay at least 3 TX clocks */
3031 	udelay(3);
3032 
3033 	/* the soft reset bit is not self-resetting, so we need to
3034 	 * clear it before resuming normal operation
3035 	 */
3036 	gfar_write(&regs->maccfg1, 0);
3037 
3038 	udelay(3);
3039 
3040 	gfar_rx_offload_en(priv);
3041 
3042 	/* Initialize the max receive frame/buffer lengths */
3043 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3044 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3045 
3046 	/* Initialize the Minimum Frame Length Register */
3047 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3048 
3049 	/* Initialize MACCFG2. */
3050 	tempval = MACCFG2_INIT_SETTINGS;
3051 
3052 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3053 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3054 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3055 	 */
3056 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3057 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3058 
3059 	gfar_write(&regs->maccfg2, tempval);
3060 
3061 	/* Clear mac addr hash registers */
3062 	gfar_write(&regs->igaddr0, 0);
3063 	gfar_write(&regs->igaddr1, 0);
3064 	gfar_write(&regs->igaddr2, 0);
3065 	gfar_write(&regs->igaddr3, 0);
3066 	gfar_write(&regs->igaddr4, 0);
3067 	gfar_write(&regs->igaddr5, 0);
3068 	gfar_write(&regs->igaddr6, 0);
3069 	gfar_write(&regs->igaddr7, 0);
3070 
3071 	gfar_write(&regs->gaddr0, 0);
3072 	gfar_write(&regs->gaddr1, 0);
3073 	gfar_write(&regs->gaddr2, 0);
3074 	gfar_write(&regs->gaddr3, 0);
3075 	gfar_write(&regs->gaddr4, 0);
3076 	gfar_write(&regs->gaddr5, 0);
3077 	gfar_write(&regs->gaddr6, 0);
3078 	gfar_write(&regs->gaddr7, 0);
3079 
3080 	if (priv->extended_hash)
3081 		gfar_clear_exact_match(priv->ndev);
3082 
3083 	gfar_mac_rx_config(priv);
3084 
3085 	gfar_mac_tx_config(priv);
3086 
3087 	gfar_set_mac_address(priv->ndev);
3088 
3089 	gfar_set_multi(priv->ndev);
3090 
3091 	/* clear ievent and imask before configuring coalescing */
3092 	gfar_ints_disable(priv);
3093 
3094 	/* Configure the coalescing support */
3095 	gfar_configure_coalescing_all(priv);
3096 }
3097 
3098 static void gfar_hw_init(struct gfar_private *priv)
3099 {
3100 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3101 	u32 attrs;
3102 
3103 	/* Stop the DMA engine now, in case it was running before
3104 	 * (The firmware could have used it, and left it running).
3105 	 */
3106 	gfar_halt(priv);
3107 
3108 	gfar_mac_reset(priv);
3109 
3110 	/* Zero out the rmon mib registers if it has them */
3111 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3112 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3113 
3114 		/* Mask off the CAM interrupts */
3115 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3116 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3117 	}
3118 
3119 	/* Initialize ECNTRL */
3120 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3121 
3122 	/* Set the extraction length and index */
3123 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3124 		ATTRELI_EI(priv->rx_stash_index);
3125 
3126 	gfar_write(&regs->attreli, attrs);
3127 
3128 	/* Start with defaults, and add stashing
3129 	 * depending on driver parameters
3130 	 */
3131 	attrs = ATTR_INIT_SETTINGS;
3132 
3133 	if (priv->bd_stash_en)
3134 		attrs |= ATTR_BDSTASH;
3135 
3136 	if (priv->rx_stash_size != 0)
3137 		attrs |= ATTR_BUFSTASH;
3138 
3139 	gfar_write(&regs->attr, attrs);
3140 
3141 	/* FIFO configs */
3142 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3143 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3144 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3145 
3146 	/* Program the interrupt steering regs, only for MG devices */
3147 	if (priv->num_grps > 1)
3148 		gfar_write_isrg(priv);
3149 }
3150 
3151 static const struct net_device_ops gfar_netdev_ops = {
3152 	.ndo_open = gfar_enet_open,
3153 	.ndo_start_xmit = gfar_start_xmit,
3154 	.ndo_stop = gfar_close,
3155 	.ndo_change_mtu = gfar_change_mtu,
3156 	.ndo_set_features = gfar_set_features,
3157 	.ndo_set_rx_mode = gfar_set_multi,
3158 	.ndo_tx_timeout = gfar_timeout,
3159 	.ndo_do_ioctl = gfar_ioctl,
3160 	.ndo_get_stats = gfar_get_stats,
3161 	.ndo_change_carrier = fixed_phy_change_carrier,
3162 	.ndo_set_mac_address = gfar_set_mac_addr,
3163 	.ndo_validate_addr = eth_validate_addr,
3164 #ifdef CONFIG_NET_POLL_CONTROLLER
3165 	.ndo_poll_controller = gfar_netpoll,
3166 #endif
3167 };
3168 
3169 /* Set up the ethernet device structure, private data,
3170  * and anything else we need before we start
3171  */
3172 static int gfar_probe(struct platform_device *ofdev)
3173 {
3174 	struct device_node *np = ofdev->dev.of_node;
3175 	struct net_device *dev = NULL;
3176 	struct gfar_private *priv = NULL;
3177 	int err = 0, i;
3178 
3179 	err = gfar_of_init(ofdev, &dev);
3180 
3181 	if (err)
3182 		return err;
3183 
3184 	priv = netdev_priv(dev);
3185 	priv->ndev = dev;
3186 	priv->ofdev = ofdev;
3187 	priv->dev = &ofdev->dev;
3188 	SET_NETDEV_DEV(dev, &ofdev->dev);
3189 
3190 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3191 
3192 	platform_set_drvdata(ofdev, priv);
3193 
3194 	gfar_detect_errata(priv);
3195 
3196 	/* Set the dev->base_addr to the gfar reg region */
3197 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3198 
3199 	/* Fill in the dev structure */
3200 	dev->watchdog_timeo = TX_TIMEOUT;
3201 	/* MTU range: 50 - 9586 */
3202 	dev->mtu = 1500;
3203 	dev->min_mtu = 50;
3204 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3205 	dev->netdev_ops = &gfar_netdev_ops;
3206 	dev->ethtool_ops = &gfar_ethtool_ops;
3207 
3208 	/* Register for napi ...We are registering NAPI for each grp */
3209 	for (i = 0; i < priv->num_grps; i++) {
3210 		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3211 			       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3212 		netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3213 				  gfar_poll_tx_sq, 2);
3214 	}
3215 
3216 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3217 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3218 				   NETIF_F_RXCSUM;
3219 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3220 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3221 	}
3222 
3223 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3224 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3225 				    NETIF_F_HW_VLAN_CTAG_RX;
3226 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3227 	}
3228 
3229 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3230 
3231 	gfar_init_addr_hash_table(priv);
3232 
3233 	/* Insert receive time stamps into padding alignment bytes, and
3234 	 * plus 2 bytes padding to ensure the cpu alignment.
3235 	 */
3236 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3237 		priv->padding = 8 + DEFAULT_PADDING;
3238 
3239 	if (dev->features & NETIF_F_IP_CSUM ||
3240 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3241 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3242 
3243 	/* Initializing some of the rx/tx queue level parameters */
3244 	for (i = 0; i < priv->num_tx_queues; i++) {
3245 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3246 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3247 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3248 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3249 	}
3250 
3251 	for (i = 0; i < priv->num_rx_queues; i++) {
3252 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3253 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3254 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3255 	}
3256 
3257 	/* Always enable rx filer if available */
3258 	priv->rx_filer_enable =
3259 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3260 	/* Enable most messages by default */
3261 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3262 	/* use pritority h/w tx queue scheduling for single queue devices */
3263 	if (priv->num_tx_queues == 1)
3264 		priv->prio_sched_en = 1;
3265 
3266 	set_bit(GFAR_DOWN, &priv->state);
3267 
3268 	gfar_hw_init(priv);
3269 
3270 	/* Carrier starts down, phylib will bring it up */
3271 	netif_carrier_off(dev);
3272 
3273 	err = register_netdev(dev);
3274 
3275 	if (err) {
3276 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3277 		goto register_fail;
3278 	}
3279 
3280 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3281 		priv->wol_supported |= GFAR_WOL_MAGIC;
3282 
3283 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3284 	    priv->rx_filer_enable)
3285 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3286 
3287 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3288 
3289 	/* fill out IRQ number and name fields */
3290 	for (i = 0; i < priv->num_grps; i++) {
3291 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3292 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3293 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3294 				dev->name, "_g", '0' + i, "_tx");
3295 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3296 				dev->name, "_g", '0' + i, "_rx");
3297 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3298 				dev->name, "_g", '0' + i, "_er");
3299 		} else
3300 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3301 	}
3302 
3303 	/* Initialize the filer table */
3304 	gfar_init_filer_table(priv);
3305 
3306 	/* Print out the device info */
3307 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3308 
3309 	/* Even more device info helps when determining which kernel
3310 	 * provided which set of benchmarks.
3311 	 */
3312 	netdev_info(dev, "Running with NAPI enabled\n");
3313 	for (i = 0; i < priv->num_rx_queues; i++)
3314 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3315 			    i, priv->rx_queue[i]->rx_ring_size);
3316 	for (i = 0; i < priv->num_tx_queues; i++)
3317 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3318 			    i, priv->tx_queue[i]->tx_ring_size);
3319 
3320 	return 0;
3321 
3322 register_fail:
3323 	if (of_phy_is_fixed_link(np))
3324 		of_phy_deregister_fixed_link(np);
3325 	unmap_group_regs(priv);
3326 	gfar_free_rx_queues(priv);
3327 	gfar_free_tx_queues(priv);
3328 	of_node_put(priv->phy_node);
3329 	of_node_put(priv->tbi_node);
3330 	free_gfar_dev(priv);
3331 	return err;
3332 }
3333 
3334 static int gfar_remove(struct platform_device *ofdev)
3335 {
3336 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3337 	struct device_node *np = ofdev->dev.of_node;
3338 
3339 	of_node_put(priv->phy_node);
3340 	of_node_put(priv->tbi_node);
3341 
3342 	unregister_netdev(priv->ndev);
3343 
3344 	if (of_phy_is_fixed_link(np))
3345 		of_phy_deregister_fixed_link(np);
3346 
3347 	unmap_group_regs(priv);
3348 	gfar_free_rx_queues(priv);
3349 	gfar_free_tx_queues(priv);
3350 	free_gfar_dev(priv);
3351 
3352 	return 0;
3353 }
3354 
3355 #ifdef CONFIG_PM
3356 
3357 static void __gfar_filer_disable(struct gfar_private *priv)
3358 {
3359 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3360 	u32 temp;
3361 
3362 	temp = gfar_read(&regs->rctrl);
3363 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3364 	gfar_write(&regs->rctrl, temp);
3365 }
3366 
3367 static void __gfar_filer_enable(struct gfar_private *priv)
3368 {
3369 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3370 	u32 temp;
3371 
3372 	temp = gfar_read(&regs->rctrl);
3373 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3374 	gfar_write(&regs->rctrl, temp);
3375 }
3376 
3377 /* Filer rules implementing wol capabilities */
3378 static void gfar_filer_config_wol(struct gfar_private *priv)
3379 {
3380 	unsigned int i;
3381 	u32 rqfcr;
3382 
3383 	__gfar_filer_disable(priv);
3384 
3385 	/* clear the filer table, reject any packet by default */
3386 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3387 	for (i = 0; i <= MAX_FILER_IDX; i++)
3388 		gfar_write_filer(priv, i, rqfcr, 0);
3389 
3390 	i = 0;
3391 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3392 		/* unicast packet, accept it */
3393 		struct net_device *ndev = priv->ndev;
3394 		/* get the default rx queue index */
3395 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3396 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3397 				    (ndev->dev_addr[1] << 8) |
3398 				     ndev->dev_addr[2];
3399 
3400 		rqfcr = (qindex << 10) | RQFCR_AND |
3401 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3402 
3403 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3404 
3405 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3406 				(ndev->dev_addr[4] << 8) |
3407 				 ndev->dev_addr[5];
3408 		rqfcr = (qindex << 10) | RQFCR_GPI |
3409 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3410 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3411 	}
3412 
3413 	__gfar_filer_enable(priv);
3414 }
3415 
3416 static void gfar_filer_restore_table(struct gfar_private *priv)
3417 {
3418 	u32 rqfcr, rqfpr;
3419 	unsigned int i;
3420 
3421 	__gfar_filer_disable(priv);
3422 
3423 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3424 		rqfcr = priv->ftp_rqfcr[i];
3425 		rqfpr = priv->ftp_rqfpr[i];
3426 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3427 	}
3428 
3429 	__gfar_filer_enable(priv);
3430 }
3431 
3432 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3433 static void gfar_start_wol_filer(struct gfar_private *priv)
3434 {
3435 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3436 	u32 tempval;
3437 	int i = 0;
3438 
3439 	/* Enable Rx hw queues */
3440 	gfar_write(&regs->rqueue, priv->rqueue);
3441 
3442 	/* Initialize DMACTRL to have WWR and WOP */
3443 	tempval = gfar_read(&regs->dmactrl);
3444 	tempval |= DMACTRL_INIT_SETTINGS;
3445 	gfar_write(&regs->dmactrl, tempval);
3446 
3447 	/* Make sure we aren't stopped */
3448 	tempval = gfar_read(&regs->dmactrl);
3449 	tempval &= ~DMACTRL_GRS;
3450 	gfar_write(&regs->dmactrl, tempval);
3451 
3452 	for (i = 0; i < priv->num_grps; i++) {
3453 		regs = priv->gfargrp[i].regs;
3454 		/* Clear RHLT, so that the DMA starts polling now */
3455 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3456 		/* enable the Filer General Purpose Interrupt */
3457 		gfar_write(&regs->imask, IMASK_FGPI);
3458 	}
3459 
3460 	/* Enable Rx DMA */
3461 	tempval = gfar_read(&regs->maccfg1);
3462 	tempval |= MACCFG1_RX_EN;
3463 	gfar_write(&regs->maccfg1, tempval);
3464 }
3465 
3466 static int gfar_suspend(struct device *dev)
3467 {
3468 	struct gfar_private *priv = dev_get_drvdata(dev);
3469 	struct net_device *ndev = priv->ndev;
3470 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3471 	u32 tempval;
3472 	u16 wol = priv->wol_opts;
3473 
3474 	if (!netif_running(ndev))
3475 		return 0;
3476 
3477 	disable_napi(priv);
3478 	netif_tx_lock(ndev);
3479 	netif_device_detach(ndev);
3480 	netif_tx_unlock(ndev);
3481 
3482 	gfar_halt(priv);
3483 
3484 	if (wol & GFAR_WOL_MAGIC) {
3485 		/* Enable interrupt on Magic Packet */
3486 		gfar_write(&regs->imask, IMASK_MAG);
3487 
3488 		/* Enable Magic Packet mode */
3489 		tempval = gfar_read(&regs->maccfg2);
3490 		tempval |= MACCFG2_MPEN;
3491 		gfar_write(&regs->maccfg2, tempval);
3492 
3493 		/* re-enable the Rx block */
3494 		tempval = gfar_read(&regs->maccfg1);
3495 		tempval |= MACCFG1_RX_EN;
3496 		gfar_write(&regs->maccfg1, tempval);
3497 
3498 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3499 		gfar_filer_config_wol(priv);
3500 		gfar_start_wol_filer(priv);
3501 
3502 	} else {
3503 		phy_stop(ndev->phydev);
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 static int gfar_resume(struct device *dev)
3510 {
3511 	struct gfar_private *priv = dev_get_drvdata(dev);
3512 	struct net_device *ndev = priv->ndev;
3513 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3514 	u32 tempval;
3515 	u16 wol = priv->wol_opts;
3516 
3517 	if (!netif_running(ndev))
3518 		return 0;
3519 
3520 	if (wol & GFAR_WOL_MAGIC) {
3521 		/* Disable Magic Packet mode */
3522 		tempval = gfar_read(&regs->maccfg2);
3523 		tempval &= ~MACCFG2_MPEN;
3524 		gfar_write(&regs->maccfg2, tempval);
3525 
3526 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3527 		/* need to stop rx only, tx is already down */
3528 		gfar_halt(priv);
3529 		gfar_filer_restore_table(priv);
3530 
3531 	} else {
3532 		phy_start(ndev->phydev);
3533 	}
3534 
3535 	gfar_start(priv);
3536 
3537 	netif_device_attach(ndev);
3538 	enable_napi(priv);
3539 
3540 	return 0;
3541 }
3542 
3543 static int gfar_restore(struct device *dev)
3544 {
3545 	struct gfar_private *priv = dev_get_drvdata(dev);
3546 	struct net_device *ndev = priv->ndev;
3547 
3548 	if (!netif_running(ndev)) {
3549 		netif_device_attach(ndev);
3550 
3551 		return 0;
3552 	}
3553 
3554 	gfar_init_bds(ndev);
3555 
3556 	gfar_mac_reset(priv);
3557 
3558 	gfar_init_tx_rx_base(priv);
3559 
3560 	gfar_start(priv);
3561 
3562 	priv->oldlink = 0;
3563 	priv->oldspeed = 0;
3564 	priv->oldduplex = -1;
3565 
3566 	if (ndev->phydev)
3567 		phy_start(ndev->phydev);
3568 
3569 	netif_device_attach(ndev);
3570 	enable_napi(priv);
3571 
3572 	return 0;
3573 }
3574 
3575 static const struct dev_pm_ops gfar_pm_ops = {
3576 	.suspend = gfar_suspend,
3577 	.resume = gfar_resume,
3578 	.freeze = gfar_suspend,
3579 	.thaw = gfar_resume,
3580 	.restore = gfar_restore,
3581 };
3582 
3583 #define GFAR_PM_OPS (&gfar_pm_ops)
3584 
3585 #else
3586 
3587 #define GFAR_PM_OPS NULL
3588 
3589 #endif
3590 
3591 static const struct of_device_id gfar_match[] =
3592 {
3593 	{
3594 		.type = "network",
3595 		.compatible = "gianfar",
3596 	},
3597 	{
3598 		.compatible = "fsl,etsec2",
3599 	},
3600 	{},
3601 };
3602 MODULE_DEVICE_TABLE(of, gfar_match);
3603 
3604 /* Structure for a device driver */
3605 static struct platform_driver gfar_driver = {
3606 	.driver = {
3607 		.name = "fsl-gianfar",
3608 		.pm = GFAR_PM_OPS,
3609 		.of_match_table = gfar_match,
3610 	},
3611 	.probe = gfar_probe,
3612 	.remove = gfar_remove,
3613 };
3614 
3615 module_platform_driver(gfar_driver);
3616