1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* drivers/net/ethernet/freescale/gianfar.c 3 * 4 * Gianfar Ethernet Driver 5 * This driver is designed for the non-CPM ethernet controllers 6 * on the 85xx and 83xx family of integrated processors 7 * Based on 8260_io/fcc_enet.c 8 * 9 * Author: Andy Fleming 10 * Maintainer: Kumar Gala 11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 12 * 13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc. 14 * Copyright 2007 MontaVista Software, Inc. 15 * 16 * Gianfar: AKA Lambda Draconis, "Dragon" 17 * RA 11 31 24.2 18 * Dec +69 19 52 19 * V 3.84 20 * B-V +1.62 21 * 22 * Theory of operation 23 * 24 * The driver is initialized through of_device. Configuration information 25 * is therefore conveyed through an OF-style device tree. 26 * 27 * The Gianfar Ethernet Controller uses a ring of buffer 28 * descriptors. The beginning is indicated by a register 29 * pointing to the physical address of the start of the ring. 30 * The end is determined by a "wrap" bit being set in the 31 * last descriptor of the ring. 32 * 33 * When a packet is received, the RXF bit in the 34 * IEVENT register is set, triggering an interrupt when the 35 * corresponding bit in the IMASK register is also set (if 36 * interrupt coalescing is active, then the interrupt may not 37 * happen immediately, but will wait until either a set number 38 * of frames or amount of time have passed). In NAPI, the 39 * interrupt handler will signal there is work to be done, and 40 * exit. This method will start at the last known empty 41 * descriptor, and process every subsequent descriptor until there 42 * are none left with data (NAPI will stop after a set number of 43 * packets to give time to other tasks, but will eventually 44 * process all the packets). The data arrives inside a 45 * pre-allocated skb, and so after the skb is passed up to the 46 * stack, a new skb must be allocated, and the address field in 47 * the buffer descriptor must be updated to indicate this new 48 * skb. 49 * 50 * When the kernel requests that a packet be transmitted, the 51 * driver starts where it left off last time, and points the 52 * descriptor at the buffer which was passed in. The driver 53 * then informs the DMA engine that there are packets ready to 54 * be transmitted. Once the controller is finished transmitting 55 * the packet, an interrupt may be triggered (under the same 56 * conditions as for reception, but depending on the TXF bit). 57 * The driver then cleans up the buffer. 58 */ 59 60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 61 62 #include <linux/kernel.h> 63 #include <linux/platform_device.h> 64 #include <linux/string.h> 65 #include <linux/errno.h> 66 #include <linux/unistd.h> 67 #include <linux/slab.h> 68 #include <linux/interrupt.h> 69 #include <linux/delay.h> 70 #include <linux/netdevice.h> 71 #include <linux/etherdevice.h> 72 #include <linux/skbuff.h> 73 #include <linux/if_vlan.h> 74 #include <linux/spinlock.h> 75 #include <linux/mm.h> 76 #include <linux/of_address.h> 77 #include <linux/of_irq.h> 78 #include <linux/of_mdio.h> 79 #include <linux/ip.h> 80 #include <linux/tcp.h> 81 #include <linux/udp.h> 82 #include <linux/in.h> 83 #include <linux/net_tstamp.h> 84 85 #include <asm/io.h> 86 #ifdef CONFIG_PPC 87 #include <asm/reg.h> 88 #include <asm/mpc85xx.h> 89 #endif 90 #include <asm/irq.h> 91 #include <linux/uaccess.h> 92 #include <linux/module.h> 93 #include <linux/dma-mapping.h> 94 #include <linux/crc32.h> 95 #include <linux/mii.h> 96 #include <linux/phy.h> 97 #include <linux/phy_fixed.h> 98 #include <linux/of.h> 99 #include <linux/of_net.h> 100 101 #include "gianfar.h" 102 103 #define TX_TIMEOUT (5*HZ) 104 105 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 106 MODULE_DESCRIPTION("Gianfar Ethernet Driver"); 107 MODULE_LICENSE("GPL"); 108 109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp, 110 dma_addr_t buf) 111 { 112 u32 lstatus; 113 114 bdp->bufPtr = cpu_to_be32(buf); 115 116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT); 117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1) 118 lstatus |= BD_LFLAG(RXBD_WRAP); 119 120 gfar_wmb(); 121 122 bdp->lstatus = cpu_to_be32(lstatus); 123 } 124 125 static void gfar_init_tx_rx_base(struct gfar_private *priv) 126 { 127 struct gfar __iomem *regs = priv->gfargrp[0].regs; 128 u32 __iomem *baddr; 129 int i; 130 131 baddr = ®s->tbase0; 132 for (i = 0; i < priv->num_tx_queues; i++) { 133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base); 134 baddr += 2; 135 } 136 137 baddr = ®s->rbase0; 138 for (i = 0; i < priv->num_rx_queues; i++) { 139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base); 140 baddr += 2; 141 } 142 } 143 144 static void gfar_init_rqprm(struct gfar_private *priv) 145 { 146 struct gfar __iomem *regs = priv->gfargrp[0].regs; 147 u32 __iomem *baddr; 148 int i; 149 150 baddr = ®s->rqprm0; 151 for (i = 0; i < priv->num_rx_queues; i++) { 152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size | 153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT)); 154 baddr++; 155 } 156 } 157 158 static void gfar_rx_offload_en(struct gfar_private *priv) 159 { 160 /* set this when rx hw offload (TOE) functions are being used */ 161 priv->uses_rxfcb = 0; 162 163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX)) 164 priv->uses_rxfcb = 1; 165 166 if (priv->hwts_rx_en || priv->rx_filer_enable) 167 priv->uses_rxfcb = 1; 168 } 169 170 static void gfar_mac_rx_config(struct gfar_private *priv) 171 { 172 struct gfar __iomem *regs = priv->gfargrp[0].regs; 173 u32 rctrl = 0; 174 175 if (priv->rx_filer_enable) { 176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 177 /* Program the RIR0 reg with the required distribution */ 178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0); 179 } 180 181 /* Restore PROMISC mode */ 182 if (priv->ndev->flags & IFF_PROMISC) 183 rctrl |= RCTRL_PROM; 184 185 if (priv->ndev->features & NETIF_F_RXCSUM) 186 rctrl |= RCTRL_CHECKSUMMING; 187 188 if (priv->extended_hash) 189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN; 190 191 if (priv->padding) { 192 rctrl &= ~RCTRL_PAL_MASK; 193 rctrl |= RCTRL_PADDING(priv->padding); 194 } 195 196 /* Enable HW time stamping if requested from user space */ 197 if (priv->hwts_rx_en) 198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE; 199 200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT; 202 203 /* Clear the LFC bit */ 204 gfar_write(®s->rctrl, rctrl); 205 /* Init flow control threshold values */ 206 gfar_init_rqprm(priv); 207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL); 208 rctrl |= RCTRL_LFC; 209 210 /* Init rctrl based on our settings */ 211 gfar_write(®s->rctrl, rctrl); 212 } 213 214 static void gfar_mac_tx_config(struct gfar_private *priv) 215 { 216 struct gfar __iomem *regs = priv->gfargrp[0].regs; 217 u32 tctrl = 0; 218 219 if (priv->ndev->features & NETIF_F_IP_CSUM) 220 tctrl |= TCTRL_INIT_CSUM; 221 222 if (priv->prio_sched_en) 223 tctrl |= TCTRL_TXSCHED_PRIO; 224 else { 225 tctrl |= TCTRL_TXSCHED_WRRS; 226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT); 227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT); 228 } 229 230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 231 tctrl |= TCTRL_VLINS; 232 233 gfar_write(®s->tctrl, tctrl); 234 } 235 236 static void gfar_configure_coalescing(struct gfar_private *priv, 237 unsigned long tx_mask, unsigned long rx_mask) 238 { 239 struct gfar __iomem *regs = priv->gfargrp[0].regs; 240 u32 __iomem *baddr; 241 242 if (priv->mode == MQ_MG_MODE) { 243 int i = 0; 244 245 baddr = ®s->txic0; 246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) { 247 gfar_write(baddr + i, 0); 248 if (likely(priv->tx_queue[i]->txcoalescing)) 249 gfar_write(baddr + i, priv->tx_queue[i]->txic); 250 } 251 252 baddr = ®s->rxic0; 253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) { 254 gfar_write(baddr + i, 0); 255 if (likely(priv->rx_queue[i]->rxcoalescing)) 256 gfar_write(baddr + i, priv->rx_queue[i]->rxic); 257 } 258 } else { 259 /* Backward compatible case -- even if we enable 260 * multiple queues, there's only single reg to program 261 */ 262 gfar_write(®s->txic, 0); 263 if (likely(priv->tx_queue[0]->txcoalescing)) 264 gfar_write(®s->txic, priv->tx_queue[0]->txic); 265 266 gfar_write(®s->rxic, 0); 267 if (unlikely(priv->rx_queue[0]->rxcoalescing)) 268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic); 269 } 270 } 271 272 static void gfar_configure_coalescing_all(struct gfar_private *priv) 273 { 274 gfar_configure_coalescing(priv, 0xFF, 0xFF); 275 } 276 277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 278 { 279 struct gfar_private *priv = netdev_priv(dev); 280 int i; 281 282 for (i = 0; i < priv->num_rx_queues; i++) { 283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets; 284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes; 285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped; 286 } 287 288 for (i = 0; i < priv->num_tx_queues; i++) { 289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes; 290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets; 291 } 292 293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; 295 unsigned long flags; 296 u32 rdrp, car, car_before; 297 u64 rdrp_offset; 298 299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags); 300 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 301 do { 302 car_before = car; 303 rdrp = gfar_read(&rmon->rdrp); 304 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 305 } while (car != car_before); 306 if (car) { 307 priv->rmon_overflow.rdrp++; 308 gfar_write(&rmon->car1, car); 309 } 310 rdrp_offset = priv->rmon_overflow.rdrp; 311 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags); 312 313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16); 314 } 315 } 316 317 /* Set the appropriate hash bit for the given addr */ 318 /* The algorithm works like so: 319 * 1) Take the Destination Address (ie the multicast address), and 320 * do a CRC on it (little endian), and reverse the bits of the 321 * result. 322 * 2) Use the 8 most significant bits as a hash into a 256-entry 323 * table. The table is controlled through 8 32-bit registers: 324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is 325 * gaddr7. This means that the 3 most significant bits in the 326 * hash index which gaddr register to use, and the 5 other bits 327 * indicate which bit (assuming an IBM numbering scheme, which 328 * for PowerPC (tm) is usually the case) in the register holds 329 * the entry. 330 */ 331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) 332 { 333 u32 tempval; 334 struct gfar_private *priv = netdev_priv(dev); 335 u32 result = ether_crc(ETH_ALEN, addr); 336 int width = priv->hash_width; 337 u8 whichbit = (result >> (32 - width)) & 0x1f; 338 u8 whichreg = result >> (32 - width + 5); 339 u32 value = (1 << (31-whichbit)); 340 341 tempval = gfar_read(priv->hash_regs[whichreg]); 342 tempval |= value; 343 gfar_write(priv->hash_regs[whichreg], tempval); 344 } 345 346 /* There are multiple MAC Address register pairs on some controllers 347 * This function sets the numth pair to a given address 348 */ 349 static void gfar_set_mac_for_addr(struct net_device *dev, int num, 350 const u8 *addr) 351 { 352 struct gfar_private *priv = netdev_priv(dev); 353 struct gfar __iomem *regs = priv->gfargrp[0].regs; 354 u32 tempval; 355 u32 __iomem *macptr = ®s->macstnaddr1; 356 357 macptr += num*2; 358 359 /* For a station address of 0x12345678ABCD in transmission 360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and 361 * MACnADDR2 is set to 0x34120000. 362 */ 363 tempval = (addr[5] << 24) | (addr[4] << 16) | 364 (addr[3] << 8) | addr[2]; 365 366 gfar_write(macptr, tempval); 367 368 tempval = (addr[1] << 24) | (addr[0] << 16); 369 370 gfar_write(macptr+1, tempval); 371 } 372 373 static int gfar_set_mac_addr(struct net_device *dev, void *p) 374 { 375 int ret; 376 377 ret = eth_mac_addr(dev, p); 378 if (ret) 379 return ret; 380 381 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 382 383 return 0; 384 } 385 386 static void gfar_ints_disable(struct gfar_private *priv) 387 { 388 int i; 389 for (i = 0; i < priv->num_grps; i++) { 390 struct gfar __iomem *regs = priv->gfargrp[i].regs; 391 /* Clear IEVENT */ 392 gfar_write(®s->ievent, IEVENT_INIT_CLEAR); 393 394 /* Initialize IMASK */ 395 gfar_write(®s->imask, IMASK_INIT_CLEAR); 396 } 397 } 398 399 static void gfar_ints_enable(struct gfar_private *priv) 400 { 401 int i; 402 for (i = 0; i < priv->num_grps; i++) { 403 struct gfar __iomem *regs = priv->gfargrp[i].regs; 404 /* Unmask the interrupts we look for */ 405 gfar_write(®s->imask, 406 IMASK_DEFAULT | priv->rmon_overflow.imask); 407 } 408 } 409 410 static int gfar_alloc_tx_queues(struct gfar_private *priv) 411 { 412 int i; 413 414 for (i = 0; i < priv->num_tx_queues; i++) { 415 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q), 416 GFP_KERNEL); 417 if (!priv->tx_queue[i]) 418 return -ENOMEM; 419 420 priv->tx_queue[i]->tx_skbuff = NULL; 421 priv->tx_queue[i]->qindex = i; 422 priv->tx_queue[i]->dev = priv->ndev; 423 spin_lock_init(&(priv->tx_queue[i]->txlock)); 424 } 425 return 0; 426 } 427 428 static int gfar_alloc_rx_queues(struct gfar_private *priv) 429 { 430 int i; 431 432 for (i = 0; i < priv->num_rx_queues; i++) { 433 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q), 434 GFP_KERNEL); 435 if (!priv->rx_queue[i]) 436 return -ENOMEM; 437 438 priv->rx_queue[i]->qindex = i; 439 priv->rx_queue[i]->ndev = priv->ndev; 440 } 441 return 0; 442 } 443 444 static void gfar_free_tx_queues(struct gfar_private *priv) 445 { 446 int i; 447 448 for (i = 0; i < priv->num_tx_queues; i++) 449 kfree(priv->tx_queue[i]); 450 } 451 452 static void gfar_free_rx_queues(struct gfar_private *priv) 453 { 454 int i; 455 456 for (i = 0; i < priv->num_rx_queues; i++) 457 kfree(priv->rx_queue[i]); 458 } 459 460 static void unmap_group_regs(struct gfar_private *priv) 461 { 462 int i; 463 464 for (i = 0; i < MAXGROUPS; i++) 465 if (priv->gfargrp[i].regs) 466 iounmap(priv->gfargrp[i].regs); 467 } 468 469 static void free_gfar_dev(struct gfar_private *priv) 470 { 471 int i, j; 472 473 for (i = 0; i < priv->num_grps; i++) 474 for (j = 0; j < GFAR_NUM_IRQS; j++) { 475 kfree(priv->gfargrp[i].irqinfo[j]); 476 priv->gfargrp[i].irqinfo[j] = NULL; 477 } 478 479 free_netdev(priv->ndev); 480 } 481 482 static void disable_napi(struct gfar_private *priv) 483 { 484 int i; 485 486 for (i = 0; i < priv->num_grps; i++) { 487 napi_disable(&priv->gfargrp[i].napi_rx); 488 napi_disable(&priv->gfargrp[i].napi_tx); 489 } 490 } 491 492 static void enable_napi(struct gfar_private *priv) 493 { 494 int i; 495 496 for (i = 0; i < priv->num_grps; i++) { 497 napi_enable(&priv->gfargrp[i].napi_rx); 498 napi_enable(&priv->gfargrp[i].napi_tx); 499 } 500 } 501 502 static int gfar_parse_group(struct device_node *np, 503 struct gfar_private *priv, const char *model) 504 { 505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps]; 506 int i; 507 508 for (i = 0; i < GFAR_NUM_IRQS; i++) { 509 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo), 510 GFP_KERNEL); 511 if (!grp->irqinfo[i]) 512 return -ENOMEM; 513 } 514 515 grp->regs = of_iomap(np, 0); 516 if (!grp->regs) 517 return -ENOMEM; 518 519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0); 520 521 /* If we aren't the FEC we have multiple interrupts */ 522 if (model && strcasecmp(model, "FEC")) { 523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1); 524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2); 525 if (!gfar_irq(grp, TX)->irq || 526 !gfar_irq(grp, RX)->irq || 527 !gfar_irq(grp, ER)->irq) 528 return -EINVAL; 529 } 530 531 grp->priv = priv; 532 spin_lock_init(&grp->grplock); 533 if (priv->mode == MQ_MG_MODE) { 534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */ 535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps); 537 } else { 538 grp->rx_bit_map = 0xFF; 539 grp->tx_bit_map = 0xFF; 540 } 541 542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses 543 * right to left, so we need to revert the 8 bits to get the q index 544 */ 545 grp->rx_bit_map = bitrev8(grp->rx_bit_map); 546 grp->tx_bit_map = bitrev8(grp->tx_bit_map); 547 548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values, 549 * also assign queues to groups 550 */ 551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) { 552 if (!grp->rx_queue) 553 grp->rx_queue = priv->rx_queue[i]; 554 grp->num_rx_queues++; 555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i); 556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i); 557 priv->rx_queue[i]->grp = grp; 558 } 559 560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) { 561 if (!grp->tx_queue) 562 grp->tx_queue = priv->tx_queue[i]; 563 grp->num_tx_queues++; 564 grp->tstat |= (TSTAT_CLEAR_THALT >> i); 565 priv->tqueue |= (TQUEUE_EN0 >> i); 566 priv->tx_queue[i]->grp = grp; 567 } 568 569 priv->num_grps++; 570 571 return 0; 572 } 573 574 static int gfar_of_group_count(struct device_node *np) 575 { 576 struct device_node *child; 577 int num = 0; 578 579 for_each_available_child_of_node(np, child) 580 if (of_node_name_eq(child, "queue-group")) 581 num++; 582 583 return num; 584 } 585 586 /* Reads the controller's registers to determine what interface 587 * connects it to the PHY. 588 */ 589 static phy_interface_t gfar_get_interface(struct net_device *dev) 590 { 591 struct gfar_private *priv = netdev_priv(dev); 592 struct gfar __iomem *regs = priv->gfargrp[0].regs; 593 u32 ecntrl; 594 595 ecntrl = gfar_read(®s->ecntrl); 596 597 if (ecntrl & ECNTRL_SGMII_MODE) 598 return PHY_INTERFACE_MODE_SGMII; 599 600 if (ecntrl & ECNTRL_TBI_MODE) { 601 if (ecntrl & ECNTRL_REDUCED_MODE) 602 return PHY_INTERFACE_MODE_RTBI; 603 else 604 return PHY_INTERFACE_MODE_TBI; 605 } 606 607 if (ecntrl & ECNTRL_REDUCED_MODE) { 608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) { 609 return PHY_INTERFACE_MODE_RMII; 610 } 611 else { 612 phy_interface_t interface = priv->interface; 613 614 /* This isn't autodetected right now, so it must 615 * be set by the device tree or platform code. 616 */ 617 if (interface == PHY_INTERFACE_MODE_RGMII_ID) 618 return PHY_INTERFACE_MODE_RGMII_ID; 619 620 return PHY_INTERFACE_MODE_RGMII; 621 } 622 } 623 624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 625 return PHY_INTERFACE_MODE_GMII; 626 627 return PHY_INTERFACE_MODE_MII; 628 } 629 630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev) 631 { 632 const char *model; 633 int err = 0, i; 634 phy_interface_t interface; 635 struct net_device *dev = NULL; 636 struct gfar_private *priv = NULL; 637 struct device_node *np = ofdev->dev.of_node; 638 struct device_node *child = NULL; 639 u32 stash_len = 0; 640 u32 stash_idx = 0; 641 unsigned int num_tx_qs, num_rx_qs; 642 unsigned short mode; 643 644 if (!np) 645 return -ENODEV; 646 647 if (of_device_is_compatible(np, "fsl,etsec2")) 648 mode = MQ_MG_MODE; 649 else 650 mode = SQ_SG_MODE; 651 652 if (mode == SQ_SG_MODE) { 653 num_tx_qs = 1; 654 num_rx_qs = 1; 655 } else { /* MQ_MG_MODE */ 656 /* get the actual number of supported groups */ 657 unsigned int num_grps = gfar_of_group_count(np); 658 659 if (num_grps == 0 || num_grps > MAXGROUPS) { 660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n", 661 num_grps); 662 pr_err("Cannot do alloc_etherdev, aborting\n"); 663 return -EINVAL; 664 } 665 666 num_tx_qs = num_grps; /* one txq per int group */ 667 num_rx_qs = num_grps; /* one rxq per int group */ 668 } 669 670 if (num_tx_qs > MAX_TX_QS) { 671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n", 672 num_tx_qs, MAX_TX_QS); 673 pr_err("Cannot do alloc_etherdev, aborting\n"); 674 return -EINVAL; 675 } 676 677 if (num_rx_qs > MAX_RX_QS) { 678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n", 679 num_rx_qs, MAX_RX_QS); 680 pr_err("Cannot do alloc_etherdev, aborting\n"); 681 return -EINVAL; 682 } 683 684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs); 685 dev = *pdev; 686 if (NULL == dev) 687 return -ENOMEM; 688 689 priv = netdev_priv(dev); 690 priv->ndev = dev; 691 692 priv->mode = mode; 693 694 priv->num_tx_queues = num_tx_qs; 695 netif_set_real_num_rx_queues(dev, num_rx_qs); 696 priv->num_rx_queues = num_rx_qs; 697 698 err = gfar_alloc_tx_queues(priv); 699 if (err) 700 goto tx_alloc_failed; 701 702 err = gfar_alloc_rx_queues(priv); 703 if (err) 704 goto rx_alloc_failed; 705 706 err = of_property_read_string(np, "model", &model); 707 if (err) { 708 pr_err("Device model property missing, aborting\n"); 709 goto rx_alloc_failed; 710 } 711 712 /* Init Rx queue filer rule set linked list */ 713 INIT_LIST_HEAD(&priv->rx_list.list); 714 priv->rx_list.count = 0; 715 mutex_init(&priv->rx_queue_access); 716 717 for (i = 0; i < MAXGROUPS; i++) 718 priv->gfargrp[i].regs = NULL; 719 720 /* Parse and initialize group specific information */ 721 if (priv->mode == MQ_MG_MODE) { 722 for_each_available_child_of_node(np, child) { 723 if (!of_node_name_eq(child, "queue-group")) 724 continue; 725 726 err = gfar_parse_group(child, priv, model); 727 if (err) { 728 of_node_put(child); 729 goto err_grp_init; 730 } 731 } 732 } else { /* SQ_SG_MODE */ 733 err = gfar_parse_group(np, priv, model); 734 if (err) 735 goto err_grp_init; 736 } 737 738 if (of_property_read_bool(np, "bd-stash")) { 739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING; 740 priv->bd_stash_en = 1; 741 } 742 743 err = of_property_read_u32(np, "rx-stash-len", &stash_len); 744 745 if (err == 0) 746 priv->rx_stash_size = stash_len; 747 748 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx); 749 750 if (err == 0) 751 priv->rx_stash_index = stash_idx; 752 753 if (stash_len || stash_idx) 754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING; 755 756 err = of_get_ethdev_address(np, dev); 757 if (err) { 758 eth_hw_addr_random(dev); 759 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr); 760 } 761 762 if (model && !strcasecmp(model, "TSEC")) 763 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 764 FSL_GIANFAR_DEV_HAS_COALESCE | 765 FSL_GIANFAR_DEV_HAS_RMON | 766 FSL_GIANFAR_DEV_HAS_MULTI_INTR; 767 768 if (model && !strcasecmp(model, "eTSEC")) 769 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT | 770 FSL_GIANFAR_DEV_HAS_COALESCE | 771 FSL_GIANFAR_DEV_HAS_RMON | 772 FSL_GIANFAR_DEV_HAS_MULTI_INTR | 773 FSL_GIANFAR_DEV_HAS_CSUM | 774 FSL_GIANFAR_DEV_HAS_VLAN | 775 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET | 776 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH | 777 FSL_GIANFAR_DEV_HAS_TIMER | 778 FSL_GIANFAR_DEV_HAS_RX_FILER; 779 780 /* Use PHY connection type from the DT node if one is specified there. 781 * rgmii-id really needs to be specified. Other types can be 782 * detected by hardware 783 */ 784 err = of_get_phy_mode(np, &interface); 785 if (!err) 786 priv->interface = interface; 787 else 788 priv->interface = gfar_get_interface(dev); 789 790 if (of_property_read_bool(np, "fsl,magic-packet")) 791 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET; 792 793 if (of_property_read_bool(np, "fsl,wake-on-filer")) 794 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER; 795 796 priv->phy_node = of_parse_phandle(np, "phy-handle", 0); 797 798 /* In the case of a fixed PHY, the DT node associated 799 * to the PHY is the Ethernet MAC DT node. 800 */ 801 if (!priv->phy_node && of_phy_is_fixed_link(np)) { 802 err = of_phy_register_fixed_link(np); 803 if (err) 804 goto err_grp_init; 805 806 priv->phy_node = of_node_get(np); 807 } 808 809 /* Find the TBI PHY. If it's not there, we don't support SGMII */ 810 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 811 812 return 0; 813 814 err_grp_init: 815 unmap_group_regs(priv); 816 rx_alloc_failed: 817 gfar_free_rx_queues(priv); 818 tx_alloc_failed: 819 gfar_free_tx_queues(priv); 820 free_gfar_dev(priv); 821 return err; 822 } 823 824 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar, 825 u32 class) 826 { 827 u32 rqfpr = FPR_FILER_MASK; 828 u32 rqfcr = 0x0; 829 830 rqfar--; 831 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT; 832 priv->ftp_rqfpr[rqfar] = rqfpr; 833 priv->ftp_rqfcr[rqfar] = rqfcr; 834 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 835 836 rqfar--; 837 rqfcr = RQFCR_CMP_NOMATCH; 838 priv->ftp_rqfpr[rqfar] = rqfpr; 839 priv->ftp_rqfcr[rqfar] = rqfcr; 840 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 841 842 rqfar--; 843 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND; 844 rqfpr = class; 845 priv->ftp_rqfcr[rqfar] = rqfcr; 846 priv->ftp_rqfpr[rqfar] = rqfpr; 847 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 848 849 rqfar--; 850 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND; 851 rqfpr = class; 852 priv->ftp_rqfcr[rqfar] = rqfcr; 853 priv->ftp_rqfpr[rqfar] = rqfpr; 854 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 855 856 return rqfar; 857 } 858 859 static void gfar_init_filer_table(struct gfar_private *priv) 860 { 861 int i = 0x0; 862 u32 rqfar = MAX_FILER_IDX; 863 u32 rqfcr = 0x0; 864 u32 rqfpr = FPR_FILER_MASK; 865 866 /* Default rule */ 867 rqfcr = RQFCR_CMP_MATCH; 868 priv->ftp_rqfcr[rqfar] = rqfcr; 869 priv->ftp_rqfpr[rqfar] = rqfpr; 870 gfar_write_filer(priv, rqfar, rqfcr, rqfpr); 871 872 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6); 873 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP); 874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP); 875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4); 876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP); 877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP); 878 879 /* cur_filer_idx indicated the first non-masked rule */ 880 priv->cur_filer_idx = rqfar; 881 882 /* Rest are masked rules */ 883 rqfcr = RQFCR_CMP_NOMATCH; 884 for (i = 0; i < rqfar; i++) { 885 priv->ftp_rqfcr[i] = rqfcr; 886 priv->ftp_rqfpr[i] = rqfpr; 887 gfar_write_filer(priv, i, rqfcr, rqfpr); 888 } 889 } 890 891 #ifdef CONFIG_PPC 892 static void __gfar_detect_errata_83xx(struct gfar_private *priv) 893 { 894 unsigned int pvr = mfspr(SPRN_PVR); 895 unsigned int svr = mfspr(SPRN_SVR); 896 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */ 897 unsigned int rev = svr & 0xffff; 898 899 /* MPC8313 Rev 2.0 and higher; All MPC837x */ 900 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) || 901 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 902 priv->errata |= GFAR_ERRATA_74; 903 904 /* MPC8313 and MPC837x all rev */ 905 if ((pvr == 0x80850010 && mod == 0x80b0) || 906 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0)) 907 priv->errata |= GFAR_ERRATA_76; 908 909 /* MPC8313 Rev < 2.0 */ 910 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) 911 priv->errata |= GFAR_ERRATA_12; 912 } 913 914 static void __gfar_detect_errata_85xx(struct gfar_private *priv) 915 { 916 unsigned int svr = mfspr(SPRN_SVR); 917 918 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20)) 919 priv->errata |= GFAR_ERRATA_12; 920 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */ 921 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) || 922 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) || 923 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31))) 924 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */ 925 } 926 #endif 927 928 static void gfar_detect_errata(struct gfar_private *priv) 929 { 930 struct device *dev = &priv->ofdev->dev; 931 932 /* no plans to fix */ 933 priv->errata |= GFAR_ERRATA_A002; 934 935 #ifdef CONFIG_PPC 936 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2)) 937 __gfar_detect_errata_85xx(priv); 938 else /* non-mpc85xx parts, i.e. e300 core based */ 939 __gfar_detect_errata_83xx(priv); 940 #endif 941 942 if (priv->errata) 943 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n", 944 priv->errata); 945 } 946 947 static void gfar_init_addr_hash_table(struct gfar_private *priv) 948 { 949 struct gfar __iomem *regs = priv->gfargrp[0].regs; 950 951 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { 952 priv->extended_hash = 1; 953 priv->hash_width = 9; 954 955 priv->hash_regs[0] = ®s->igaddr0; 956 priv->hash_regs[1] = ®s->igaddr1; 957 priv->hash_regs[2] = ®s->igaddr2; 958 priv->hash_regs[3] = ®s->igaddr3; 959 priv->hash_regs[4] = ®s->igaddr4; 960 priv->hash_regs[5] = ®s->igaddr5; 961 priv->hash_regs[6] = ®s->igaddr6; 962 priv->hash_regs[7] = ®s->igaddr7; 963 priv->hash_regs[8] = ®s->gaddr0; 964 priv->hash_regs[9] = ®s->gaddr1; 965 priv->hash_regs[10] = ®s->gaddr2; 966 priv->hash_regs[11] = ®s->gaddr3; 967 priv->hash_regs[12] = ®s->gaddr4; 968 priv->hash_regs[13] = ®s->gaddr5; 969 priv->hash_regs[14] = ®s->gaddr6; 970 priv->hash_regs[15] = ®s->gaddr7; 971 972 } else { 973 priv->extended_hash = 0; 974 priv->hash_width = 8; 975 976 priv->hash_regs[0] = ®s->gaddr0; 977 priv->hash_regs[1] = ®s->gaddr1; 978 priv->hash_regs[2] = ®s->gaddr2; 979 priv->hash_regs[3] = ®s->gaddr3; 980 priv->hash_regs[4] = ®s->gaddr4; 981 priv->hash_regs[5] = ®s->gaddr5; 982 priv->hash_regs[6] = ®s->gaddr6; 983 priv->hash_regs[7] = ®s->gaddr7; 984 } 985 } 986 987 static int __gfar_is_rx_idle(struct gfar_private *priv) 988 { 989 u32 res; 990 991 /* Normaly TSEC should not hang on GRS commands, so we should 992 * actually wait for IEVENT_GRSC flag. 993 */ 994 if (!gfar_has_errata(priv, GFAR_ERRATA_A002)) 995 return 0; 996 997 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are 998 * the same as bits 23-30, the eTSEC Rx is assumed to be idle 999 * and the Rx can be safely reset. 1000 */ 1001 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c); 1002 res &= 0x7f807f80; 1003 if ((res & 0xffff) == (res >> 16)) 1004 return 1; 1005 1006 return 0; 1007 } 1008 1009 /* Halt the receive and transmit queues */ 1010 static void gfar_halt_nodisable(struct gfar_private *priv) 1011 { 1012 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1013 u32 tempval; 1014 unsigned int timeout; 1015 int stopped; 1016 1017 gfar_ints_disable(priv); 1018 1019 if (gfar_is_dma_stopped(priv)) 1020 return; 1021 1022 /* Stop the DMA, and wait for it to stop */ 1023 tempval = gfar_read(®s->dmactrl); 1024 tempval |= (DMACTRL_GRS | DMACTRL_GTS); 1025 gfar_write(®s->dmactrl, tempval); 1026 1027 retry: 1028 timeout = 1000; 1029 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) { 1030 cpu_relax(); 1031 timeout--; 1032 } 1033 1034 if (!timeout) 1035 stopped = gfar_is_dma_stopped(priv); 1036 1037 if (!stopped && !gfar_is_rx_dma_stopped(priv) && 1038 !__gfar_is_rx_idle(priv)) 1039 goto retry; 1040 } 1041 1042 /* Halt the receive and transmit queues */ 1043 static void gfar_halt(struct gfar_private *priv) 1044 { 1045 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1046 u32 tempval; 1047 1048 /* Dissable the Rx/Tx hw queues */ 1049 gfar_write(®s->rqueue, 0); 1050 gfar_write(®s->tqueue, 0); 1051 1052 mdelay(10); 1053 1054 gfar_halt_nodisable(priv); 1055 1056 /* Disable Rx/Tx DMA */ 1057 tempval = gfar_read(®s->maccfg1); 1058 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); 1059 gfar_write(®s->maccfg1, tempval); 1060 } 1061 1062 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue) 1063 { 1064 struct txbd8 *txbdp; 1065 struct gfar_private *priv = netdev_priv(tx_queue->dev); 1066 int i, j; 1067 1068 txbdp = tx_queue->tx_bd_base; 1069 1070 for (i = 0; i < tx_queue->tx_ring_size; i++) { 1071 if (!tx_queue->tx_skbuff[i]) 1072 continue; 1073 1074 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr), 1075 be16_to_cpu(txbdp->length), DMA_TO_DEVICE); 1076 txbdp->lstatus = 0; 1077 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags; 1078 j++) { 1079 txbdp++; 1080 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr), 1081 be16_to_cpu(txbdp->length), 1082 DMA_TO_DEVICE); 1083 } 1084 txbdp++; 1085 dev_kfree_skb_any(tx_queue->tx_skbuff[i]); 1086 tx_queue->tx_skbuff[i] = NULL; 1087 } 1088 kfree(tx_queue->tx_skbuff); 1089 tx_queue->tx_skbuff = NULL; 1090 } 1091 1092 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue) 1093 { 1094 int i; 1095 1096 struct rxbd8 *rxbdp = rx_queue->rx_bd_base; 1097 1098 dev_kfree_skb(rx_queue->skb); 1099 1100 for (i = 0; i < rx_queue->rx_ring_size; i++) { 1101 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i]; 1102 1103 rxbdp->lstatus = 0; 1104 rxbdp->bufPtr = 0; 1105 rxbdp++; 1106 1107 if (!rxb->page) 1108 continue; 1109 1110 dma_unmap_page(rx_queue->dev, rxb->dma, 1111 PAGE_SIZE, DMA_FROM_DEVICE); 1112 __free_page(rxb->page); 1113 1114 rxb->page = NULL; 1115 } 1116 1117 kfree(rx_queue->rx_buff); 1118 rx_queue->rx_buff = NULL; 1119 } 1120 1121 /* If there are any tx skbs or rx skbs still around, free them. 1122 * Then free tx_skbuff and rx_skbuff 1123 */ 1124 static void free_skb_resources(struct gfar_private *priv) 1125 { 1126 struct gfar_priv_tx_q *tx_queue = NULL; 1127 struct gfar_priv_rx_q *rx_queue = NULL; 1128 int i; 1129 1130 /* Go through all the buffer descriptors and free their data buffers */ 1131 for (i = 0; i < priv->num_tx_queues; i++) { 1132 struct netdev_queue *txq; 1133 1134 tx_queue = priv->tx_queue[i]; 1135 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex); 1136 if (tx_queue->tx_skbuff) 1137 free_skb_tx_queue(tx_queue); 1138 netdev_tx_reset_queue(txq); 1139 } 1140 1141 for (i = 0; i < priv->num_rx_queues; i++) { 1142 rx_queue = priv->rx_queue[i]; 1143 if (rx_queue->rx_buff) 1144 free_skb_rx_queue(rx_queue); 1145 } 1146 1147 dma_free_coherent(priv->dev, 1148 sizeof(struct txbd8) * priv->total_tx_ring_size + 1149 sizeof(struct rxbd8) * priv->total_rx_ring_size, 1150 priv->tx_queue[0]->tx_bd_base, 1151 priv->tx_queue[0]->tx_bd_dma_base); 1152 } 1153 1154 void stop_gfar(struct net_device *dev) 1155 { 1156 struct gfar_private *priv = netdev_priv(dev); 1157 1158 netif_tx_stop_all_queues(dev); 1159 1160 smp_mb__before_atomic(); 1161 set_bit(GFAR_DOWN, &priv->state); 1162 smp_mb__after_atomic(); 1163 1164 disable_napi(priv); 1165 1166 /* disable ints and gracefully shut down Rx/Tx DMA */ 1167 gfar_halt(priv); 1168 1169 phy_stop(dev->phydev); 1170 1171 free_skb_resources(priv); 1172 } 1173 1174 static void gfar_start(struct gfar_private *priv) 1175 { 1176 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1177 u32 tempval; 1178 int i = 0; 1179 1180 /* Enable Rx/Tx hw queues */ 1181 gfar_write(®s->rqueue, priv->rqueue); 1182 gfar_write(®s->tqueue, priv->tqueue); 1183 1184 /* Initialize DMACTRL to have WWR and WOP */ 1185 tempval = gfar_read(®s->dmactrl); 1186 tempval |= DMACTRL_INIT_SETTINGS; 1187 gfar_write(®s->dmactrl, tempval); 1188 1189 /* Make sure we aren't stopped */ 1190 tempval = gfar_read(®s->dmactrl); 1191 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); 1192 gfar_write(®s->dmactrl, tempval); 1193 1194 for (i = 0; i < priv->num_grps; i++) { 1195 regs = priv->gfargrp[i].regs; 1196 /* Clear THLT/RHLT, so that the DMA starts polling now */ 1197 gfar_write(®s->tstat, priv->gfargrp[i].tstat); 1198 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 1199 } 1200 1201 /* Enable Rx/Tx DMA */ 1202 tempval = gfar_read(®s->maccfg1); 1203 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); 1204 gfar_write(®s->maccfg1, tempval); 1205 1206 gfar_ints_enable(priv); 1207 1208 netif_trans_update(priv->ndev); /* prevent tx timeout */ 1209 } 1210 1211 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb) 1212 { 1213 struct page *page; 1214 dma_addr_t addr; 1215 1216 page = dev_alloc_page(); 1217 if (unlikely(!page)) 1218 return false; 1219 1220 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 1221 if (unlikely(dma_mapping_error(rxq->dev, addr))) { 1222 __free_page(page); 1223 1224 return false; 1225 } 1226 1227 rxb->dma = addr; 1228 rxb->page = page; 1229 rxb->page_offset = 0; 1230 1231 return true; 1232 } 1233 1234 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue) 1235 { 1236 struct gfar_private *priv = netdev_priv(rx_queue->ndev); 1237 struct gfar_extra_stats *estats = &priv->extra_stats; 1238 1239 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n"); 1240 atomic64_inc(&estats->rx_alloc_err); 1241 } 1242 1243 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue, 1244 int alloc_cnt) 1245 { 1246 struct rxbd8 *bdp; 1247 struct gfar_rx_buff *rxb; 1248 int i; 1249 1250 i = rx_queue->next_to_use; 1251 bdp = &rx_queue->rx_bd_base[i]; 1252 rxb = &rx_queue->rx_buff[i]; 1253 1254 while (alloc_cnt--) { 1255 /* try reuse page */ 1256 if (unlikely(!rxb->page)) { 1257 if (unlikely(!gfar_new_page(rx_queue, rxb))) { 1258 gfar_rx_alloc_err(rx_queue); 1259 break; 1260 } 1261 } 1262 1263 /* Setup the new RxBD */ 1264 gfar_init_rxbdp(rx_queue, bdp, 1265 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT); 1266 1267 /* Update to the next pointer */ 1268 bdp++; 1269 rxb++; 1270 1271 if (unlikely(++i == rx_queue->rx_ring_size)) { 1272 i = 0; 1273 bdp = rx_queue->rx_bd_base; 1274 rxb = rx_queue->rx_buff; 1275 } 1276 } 1277 1278 rx_queue->next_to_use = i; 1279 rx_queue->next_to_alloc = i; 1280 } 1281 1282 static void gfar_init_bds(struct net_device *ndev) 1283 { 1284 struct gfar_private *priv = netdev_priv(ndev); 1285 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1286 struct gfar_priv_tx_q *tx_queue = NULL; 1287 struct gfar_priv_rx_q *rx_queue = NULL; 1288 struct txbd8 *txbdp; 1289 u32 __iomem *rfbptr; 1290 int i, j; 1291 1292 for (i = 0; i < priv->num_tx_queues; i++) { 1293 tx_queue = priv->tx_queue[i]; 1294 /* Initialize some variables in our dev structure */ 1295 tx_queue->num_txbdfree = tx_queue->tx_ring_size; 1296 tx_queue->dirty_tx = tx_queue->tx_bd_base; 1297 tx_queue->cur_tx = tx_queue->tx_bd_base; 1298 tx_queue->skb_curtx = 0; 1299 tx_queue->skb_dirtytx = 0; 1300 1301 /* Initialize Transmit Descriptor Ring */ 1302 txbdp = tx_queue->tx_bd_base; 1303 for (j = 0; j < tx_queue->tx_ring_size; j++) { 1304 txbdp->lstatus = 0; 1305 txbdp->bufPtr = 0; 1306 txbdp++; 1307 } 1308 1309 /* Set the last descriptor in the ring to indicate wrap */ 1310 txbdp--; 1311 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) | 1312 TXBD_WRAP); 1313 } 1314 1315 rfbptr = ®s->rfbptr0; 1316 for (i = 0; i < priv->num_rx_queues; i++) { 1317 rx_queue = priv->rx_queue[i]; 1318 1319 rx_queue->next_to_clean = 0; 1320 rx_queue->next_to_use = 0; 1321 rx_queue->next_to_alloc = 0; 1322 1323 /* make sure next_to_clean != next_to_use after this 1324 * by leaving at least 1 unused descriptor 1325 */ 1326 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue)); 1327 1328 rx_queue->rfbptr = rfbptr; 1329 rfbptr += 2; 1330 } 1331 } 1332 1333 static int gfar_alloc_skb_resources(struct net_device *ndev) 1334 { 1335 void *vaddr; 1336 dma_addr_t addr; 1337 int i, j; 1338 struct gfar_private *priv = netdev_priv(ndev); 1339 struct device *dev = priv->dev; 1340 struct gfar_priv_tx_q *tx_queue = NULL; 1341 struct gfar_priv_rx_q *rx_queue = NULL; 1342 1343 priv->total_tx_ring_size = 0; 1344 for (i = 0; i < priv->num_tx_queues; i++) 1345 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size; 1346 1347 priv->total_rx_ring_size = 0; 1348 for (i = 0; i < priv->num_rx_queues; i++) 1349 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size; 1350 1351 /* Allocate memory for the buffer descriptors */ 1352 vaddr = dma_alloc_coherent(dev, 1353 (priv->total_tx_ring_size * 1354 sizeof(struct txbd8)) + 1355 (priv->total_rx_ring_size * 1356 sizeof(struct rxbd8)), 1357 &addr, GFP_KERNEL); 1358 if (!vaddr) 1359 return -ENOMEM; 1360 1361 for (i = 0; i < priv->num_tx_queues; i++) { 1362 tx_queue = priv->tx_queue[i]; 1363 tx_queue->tx_bd_base = vaddr; 1364 tx_queue->tx_bd_dma_base = addr; 1365 tx_queue->dev = ndev; 1366 /* enet DMA only understands physical addresses */ 1367 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1368 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size; 1369 } 1370 1371 /* Start the rx descriptor ring where the tx ring leaves off */ 1372 for (i = 0; i < priv->num_rx_queues; i++) { 1373 rx_queue = priv->rx_queue[i]; 1374 rx_queue->rx_bd_base = vaddr; 1375 rx_queue->rx_bd_dma_base = addr; 1376 rx_queue->ndev = ndev; 1377 rx_queue->dev = dev; 1378 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1379 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size; 1380 } 1381 1382 /* Setup the skbuff rings */ 1383 for (i = 0; i < priv->num_tx_queues; i++) { 1384 tx_queue = priv->tx_queue[i]; 1385 tx_queue->tx_skbuff = 1386 kmalloc_array(tx_queue->tx_ring_size, 1387 sizeof(*tx_queue->tx_skbuff), 1388 GFP_KERNEL); 1389 if (!tx_queue->tx_skbuff) 1390 goto cleanup; 1391 1392 for (j = 0; j < tx_queue->tx_ring_size; j++) 1393 tx_queue->tx_skbuff[j] = NULL; 1394 } 1395 1396 for (i = 0; i < priv->num_rx_queues; i++) { 1397 rx_queue = priv->rx_queue[i]; 1398 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size, 1399 sizeof(*rx_queue->rx_buff), 1400 GFP_KERNEL); 1401 if (!rx_queue->rx_buff) 1402 goto cleanup; 1403 } 1404 1405 gfar_init_bds(ndev); 1406 1407 return 0; 1408 1409 cleanup: 1410 free_skb_resources(priv); 1411 return -ENOMEM; 1412 } 1413 1414 /* Bring the controller up and running */ 1415 int startup_gfar(struct net_device *ndev) 1416 { 1417 struct gfar_private *priv = netdev_priv(ndev); 1418 int err; 1419 1420 gfar_mac_reset(priv); 1421 1422 err = gfar_alloc_skb_resources(ndev); 1423 if (err) 1424 return err; 1425 1426 gfar_init_tx_rx_base(priv); 1427 1428 smp_mb__before_atomic(); 1429 clear_bit(GFAR_DOWN, &priv->state); 1430 smp_mb__after_atomic(); 1431 1432 /* Start Rx/Tx DMA and enable the interrupts */ 1433 gfar_start(priv); 1434 1435 /* force link state update after mac reset */ 1436 priv->oldlink = 0; 1437 priv->oldspeed = 0; 1438 priv->oldduplex = -1; 1439 1440 phy_start(ndev->phydev); 1441 1442 enable_napi(priv); 1443 1444 netif_tx_wake_all_queues(ndev); 1445 1446 return 0; 1447 } 1448 1449 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv) 1450 { 1451 struct net_device *ndev = priv->ndev; 1452 struct phy_device *phydev = ndev->phydev; 1453 u32 val = 0; 1454 1455 if (!phydev->duplex) 1456 return val; 1457 1458 if (!priv->pause_aneg_en) { 1459 if (priv->tx_pause_en) 1460 val |= MACCFG1_TX_FLOW; 1461 if (priv->rx_pause_en) 1462 val |= MACCFG1_RX_FLOW; 1463 } else { 1464 u16 lcl_adv, rmt_adv; 1465 u8 flowctrl; 1466 /* get link partner capabilities */ 1467 rmt_adv = 0; 1468 if (phydev->pause) 1469 rmt_adv = LPA_PAUSE_CAP; 1470 if (phydev->asym_pause) 1471 rmt_adv |= LPA_PAUSE_ASYM; 1472 1473 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising); 1474 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 1475 if (flowctrl & FLOW_CTRL_TX) 1476 val |= MACCFG1_TX_FLOW; 1477 if (flowctrl & FLOW_CTRL_RX) 1478 val |= MACCFG1_RX_FLOW; 1479 } 1480 1481 return val; 1482 } 1483 1484 static noinline void gfar_update_link_state(struct gfar_private *priv) 1485 { 1486 struct gfar __iomem *regs = priv->gfargrp[0].regs; 1487 struct net_device *ndev = priv->ndev; 1488 struct phy_device *phydev = ndev->phydev; 1489 struct gfar_priv_rx_q *rx_queue = NULL; 1490 int i; 1491 1492 if (unlikely(test_bit(GFAR_RESETTING, &priv->state))) 1493 return; 1494 1495 if (phydev->link) { 1496 u32 tempval1 = gfar_read(®s->maccfg1); 1497 u32 tempval = gfar_read(®s->maccfg2); 1498 u32 ecntrl = gfar_read(®s->ecntrl); 1499 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW); 1500 1501 if (phydev->duplex != priv->oldduplex) { 1502 if (!(phydev->duplex)) 1503 tempval &= ~(MACCFG2_FULL_DUPLEX); 1504 else 1505 tempval |= MACCFG2_FULL_DUPLEX; 1506 1507 priv->oldduplex = phydev->duplex; 1508 } 1509 1510 if (phydev->speed != priv->oldspeed) { 1511 switch (phydev->speed) { 1512 case 1000: 1513 tempval = 1514 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); 1515 1516 ecntrl &= ~(ECNTRL_R100); 1517 break; 1518 case 100: 1519 case 10: 1520 tempval = 1521 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); 1522 1523 /* Reduced mode distinguishes 1524 * between 10 and 100 1525 */ 1526 if (phydev->speed == SPEED_100) 1527 ecntrl |= ECNTRL_R100; 1528 else 1529 ecntrl &= ~(ECNTRL_R100); 1530 break; 1531 default: 1532 netif_warn(priv, link, priv->ndev, 1533 "Ack! Speed (%d) is not 10/100/1000!\n", 1534 phydev->speed); 1535 break; 1536 } 1537 1538 priv->oldspeed = phydev->speed; 1539 } 1540 1541 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); 1542 tempval1 |= gfar_get_flowctrl_cfg(priv); 1543 1544 /* Turn last free buffer recording on */ 1545 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) { 1546 for (i = 0; i < priv->num_rx_queues; i++) { 1547 u32 bdp_dma; 1548 1549 rx_queue = priv->rx_queue[i]; 1550 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 1551 gfar_write(rx_queue->rfbptr, bdp_dma); 1552 } 1553 1554 priv->tx_actual_en = 1; 1555 } 1556 1557 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval)) 1558 priv->tx_actual_en = 0; 1559 1560 gfar_write(®s->maccfg1, tempval1); 1561 gfar_write(®s->maccfg2, tempval); 1562 gfar_write(®s->ecntrl, ecntrl); 1563 1564 if (!priv->oldlink) 1565 priv->oldlink = 1; 1566 1567 } else if (priv->oldlink) { 1568 priv->oldlink = 0; 1569 priv->oldspeed = 0; 1570 priv->oldduplex = -1; 1571 } 1572 1573 if (netif_msg_link(priv)) 1574 phy_print_status(phydev); 1575 } 1576 1577 /* Called every time the controller might need to be made 1578 * aware of new link state. The PHY code conveys this 1579 * information through variables in the phydev structure, and this 1580 * function converts those variables into the appropriate 1581 * register values, and can bring down the device if needed. 1582 */ 1583 static void adjust_link(struct net_device *dev) 1584 { 1585 struct gfar_private *priv = netdev_priv(dev); 1586 struct phy_device *phydev = dev->phydev; 1587 1588 if (unlikely(phydev->link != priv->oldlink || 1589 (phydev->link && (phydev->duplex != priv->oldduplex || 1590 phydev->speed != priv->oldspeed)))) 1591 gfar_update_link_state(priv); 1592 } 1593 1594 /* Initialize TBI PHY interface for communicating with the 1595 * SERDES lynx PHY on the chip. We communicate with this PHY 1596 * through the MDIO bus on each controller, treating it as a 1597 * "normal" PHY at the address found in the TBIPA register. We assume 1598 * that the TBIPA register is valid. Either the MDIO bus code will set 1599 * it to a value that doesn't conflict with other PHYs on the bus, or the 1600 * value doesn't matter, as there are no other PHYs on the bus. 1601 */ 1602 static void gfar_configure_serdes(struct net_device *dev) 1603 { 1604 struct gfar_private *priv = netdev_priv(dev); 1605 struct phy_device *tbiphy; 1606 1607 if (!priv->tbi_node) { 1608 dev_warn(&dev->dev, "error: SGMII mode requires that the " 1609 "device tree specify a tbi-handle\n"); 1610 return; 1611 } 1612 1613 tbiphy = of_phy_find_device(priv->tbi_node); 1614 if (!tbiphy) { 1615 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1616 return; 1617 } 1618 1619 /* If the link is already up, we must already be ok, and don't need to 1620 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1621 * everything for us? Resetting it takes the link down and requires 1622 * several seconds for it to come back. 1623 */ 1624 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) { 1625 put_device(&tbiphy->mdio.dev); 1626 return; 1627 } 1628 1629 /* Single clk mode, mii mode off(for serdes communication) */ 1630 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT); 1631 1632 phy_write(tbiphy, MII_ADVERTISE, 1633 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | 1634 ADVERTISE_1000XPSE_ASYM); 1635 1636 phy_write(tbiphy, MII_BMCR, 1637 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | 1638 BMCR_SPEED1000); 1639 1640 put_device(&tbiphy->mdio.dev); 1641 } 1642 1643 /* Initializes driver's PHY state, and attaches to the PHY. 1644 * Returns 0 on success. 1645 */ 1646 static int init_phy(struct net_device *dev) 1647 { 1648 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1649 struct gfar_private *priv = netdev_priv(dev); 1650 phy_interface_t interface = priv->interface; 1651 struct phy_device *phydev; 1652 struct ethtool_keee edata; 1653 1654 linkmode_set_bit_array(phy_10_100_features_array, 1655 ARRAY_SIZE(phy_10_100_features_array), 1656 mask); 1657 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); 1658 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); 1659 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) 1660 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask); 1661 1662 priv->oldlink = 0; 1663 priv->oldspeed = 0; 1664 priv->oldduplex = -1; 1665 1666 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0, 1667 interface); 1668 if (!phydev) { 1669 dev_err(&dev->dev, "could not attach to PHY\n"); 1670 return -ENODEV; 1671 } 1672 1673 if (interface == PHY_INTERFACE_MODE_SGMII) 1674 gfar_configure_serdes(dev); 1675 1676 /* Remove any features not supported by the controller */ 1677 linkmode_and(phydev->supported, phydev->supported, mask); 1678 linkmode_copy(phydev->advertising, phydev->supported); 1679 1680 /* Add support for flow control */ 1681 phy_support_asym_pause(phydev); 1682 1683 /* disable EEE autoneg, EEE not supported by eTSEC */ 1684 memset(&edata, 0, sizeof(struct ethtool_keee)); 1685 phy_ethtool_set_eee(phydev, &edata); 1686 1687 return 0; 1688 } 1689 1690 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb) 1691 { 1692 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN); 1693 1694 memset(fcb, 0, GMAC_FCB_LEN); 1695 1696 return fcb; 1697 } 1698 1699 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb, 1700 int fcb_length) 1701 { 1702 /* If we're here, it's a IP packet with a TCP or UDP 1703 * payload. We set it to checksum, using a pseudo-header 1704 * we provide 1705 */ 1706 u8 flags = TXFCB_DEFAULT; 1707 1708 /* Tell the controller what the protocol is 1709 * And provide the already calculated phcs 1710 */ 1711 if (ip_hdr(skb)->protocol == IPPROTO_UDP) { 1712 flags |= TXFCB_UDP; 1713 fcb->phcs = (__force __be16)(udp_hdr(skb)->check); 1714 } else 1715 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check); 1716 1717 /* l3os is the distance between the start of the 1718 * frame (skb->data) and the start of the IP hdr. 1719 * l4os is the distance between the start of the 1720 * l3 hdr and the l4 hdr 1721 */ 1722 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length); 1723 fcb->l4os = skb_network_header_len(skb); 1724 1725 fcb->flags = flags; 1726 } 1727 1728 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) 1729 { 1730 fcb->flags |= TXFCB_VLN; 1731 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb)); 1732 } 1733 1734 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride, 1735 struct txbd8 *base, int ring_size) 1736 { 1737 struct txbd8 *new_bd = bdp + stride; 1738 1739 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd; 1740 } 1741 1742 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base, 1743 int ring_size) 1744 { 1745 return skip_txbd(bdp, 1, base, ring_size); 1746 } 1747 1748 /* eTSEC12: csum generation not supported for some fcb offsets */ 1749 static inline bool gfar_csum_errata_12(struct gfar_private *priv, 1750 unsigned long fcb_addr) 1751 { 1752 return (gfar_has_errata(priv, GFAR_ERRATA_12) && 1753 (fcb_addr % 0x20) > 0x18); 1754 } 1755 1756 /* eTSEC76: csum generation for frames larger than 2500 may 1757 * cause excess delays before start of transmission 1758 */ 1759 static inline bool gfar_csum_errata_76(struct gfar_private *priv, 1760 unsigned int len) 1761 { 1762 return (gfar_has_errata(priv, GFAR_ERRATA_76) && 1763 (len > 2500)); 1764 } 1765 1766 /* This is called by the kernel when a frame is ready for transmission. 1767 * It is pointed to by the dev->hard_start_xmit function pointer 1768 */ 1769 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) 1770 { 1771 struct gfar_private *priv = netdev_priv(dev); 1772 struct gfar_priv_tx_q *tx_queue = NULL; 1773 struct netdev_queue *txq; 1774 struct gfar __iomem *regs = NULL; 1775 struct txfcb *fcb = NULL; 1776 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL; 1777 u32 lstatus; 1778 skb_frag_t *frag; 1779 int i, rq = 0; 1780 int do_tstamp, do_csum, do_vlan; 1781 u32 bufaddr; 1782 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0; 1783 1784 rq = skb->queue_mapping; 1785 tx_queue = priv->tx_queue[rq]; 1786 txq = netdev_get_tx_queue(dev, rq); 1787 base = tx_queue->tx_bd_base; 1788 regs = tx_queue->grp->regs; 1789 1790 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed); 1791 do_vlan = skb_vlan_tag_present(skb); 1792 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1793 priv->hwts_tx_en; 1794 1795 if (do_csum || do_vlan) 1796 fcb_len = GMAC_FCB_LEN; 1797 1798 /* check if time stamp should be generated */ 1799 if (unlikely(do_tstamp)) 1800 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 1801 1802 /* make space for additional header when fcb is needed */ 1803 if (fcb_len) { 1804 if (unlikely(skb_cow_head(skb, fcb_len))) { 1805 dev->stats.tx_errors++; 1806 dev_kfree_skb_any(skb); 1807 return NETDEV_TX_OK; 1808 } 1809 } 1810 1811 /* total number of fragments in the SKB */ 1812 nr_frags = skb_shinfo(skb)->nr_frags; 1813 1814 /* calculate the required number of TxBDs for this skb */ 1815 if (unlikely(do_tstamp)) 1816 nr_txbds = nr_frags + 2; 1817 else 1818 nr_txbds = nr_frags + 1; 1819 1820 /* check if there is space to queue this packet */ 1821 if (nr_txbds > tx_queue->num_txbdfree) { 1822 /* no space, stop the queue */ 1823 netif_tx_stop_queue(txq); 1824 dev->stats.tx_fifo_errors++; 1825 return NETDEV_TX_BUSY; 1826 } 1827 1828 /* Update transmit stats */ 1829 bytes_sent = skb->len; 1830 tx_queue->stats.tx_bytes += bytes_sent; 1831 /* keep Tx bytes on wire for BQL accounting */ 1832 GFAR_CB(skb)->bytes_sent = bytes_sent; 1833 tx_queue->stats.tx_packets++; 1834 1835 txbdp = txbdp_start = tx_queue->cur_tx; 1836 lstatus = be32_to_cpu(txbdp->lstatus); 1837 1838 /* Add TxPAL between FCB and frame if required */ 1839 if (unlikely(do_tstamp)) { 1840 skb_push(skb, GMAC_TXPAL_LEN); 1841 memset(skb->data, 0, GMAC_TXPAL_LEN); 1842 } 1843 1844 /* Add TxFCB if required */ 1845 if (fcb_len) { 1846 fcb = gfar_add_fcb(skb); 1847 lstatus |= BD_LFLAG(TXBD_TOE); 1848 } 1849 1850 /* Set up checksumming */ 1851 if (do_csum) { 1852 gfar_tx_checksum(skb, fcb, fcb_len); 1853 1854 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) || 1855 unlikely(gfar_csum_errata_76(priv, skb->len))) { 1856 __skb_pull(skb, GMAC_FCB_LEN); 1857 skb_checksum_help(skb); 1858 if (do_vlan || do_tstamp) { 1859 /* put back a new fcb for vlan/tstamp TOE */ 1860 fcb = gfar_add_fcb(skb); 1861 } else { 1862 /* Tx TOE not used */ 1863 lstatus &= ~(BD_LFLAG(TXBD_TOE)); 1864 fcb = NULL; 1865 } 1866 } 1867 } 1868 1869 if (do_vlan) 1870 gfar_tx_vlan(skb, fcb); 1871 1872 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb), 1873 DMA_TO_DEVICE); 1874 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1875 goto dma_map_err; 1876 1877 txbdp_start->bufPtr = cpu_to_be32(bufaddr); 1878 1879 /* Time stamp insertion requires one additional TxBD */ 1880 if (unlikely(do_tstamp)) 1881 txbdp_tstamp = txbdp = next_txbd(txbdp, base, 1882 tx_queue->tx_ring_size); 1883 1884 if (likely(!nr_frags)) { 1885 if (likely(!do_tstamp)) 1886 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1887 } else { 1888 u32 lstatus_start = lstatus; 1889 1890 /* Place the fragment addresses and lengths into the TxBDs */ 1891 frag = &skb_shinfo(skb)->frags[0]; 1892 for (i = 0; i < nr_frags; i++, frag++) { 1893 unsigned int size; 1894 1895 /* Point at the next BD, wrapping as needed */ 1896 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1897 1898 size = skb_frag_size(frag); 1899 1900 lstatus = be32_to_cpu(txbdp->lstatus) | size | 1901 BD_LFLAG(TXBD_READY); 1902 1903 /* Handle the last BD specially */ 1904 if (i == nr_frags - 1) 1905 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1906 1907 bufaddr = skb_frag_dma_map(priv->dev, frag, 0, 1908 size, DMA_TO_DEVICE); 1909 if (unlikely(dma_mapping_error(priv->dev, bufaddr))) 1910 goto dma_map_err; 1911 1912 /* set the TxBD length and buffer pointer */ 1913 txbdp->bufPtr = cpu_to_be32(bufaddr); 1914 txbdp->lstatus = cpu_to_be32(lstatus); 1915 } 1916 1917 lstatus = lstatus_start; 1918 } 1919 1920 /* If time stamping is requested one additional TxBD must be set up. The 1921 * first TxBD points to the FCB and must have a data length of 1922 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with 1923 * the full frame length. 1924 */ 1925 if (unlikely(do_tstamp)) { 1926 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus); 1927 1928 bufaddr = be32_to_cpu(txbdp_start->bufPtr); 1929 bufaddr += fcb_len; 1930 1931 lstatus_ts |= BD_LFLAG(TXBD_READY) | 1932 (skb_headlen(skb) - fcb_len); 1933 if (!nr_frags) 1934 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT); 1935 1936 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr); 1937 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts); 1938 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN; 1939 1940 /* Setup tx hardware time stamping */ 1941 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1942 fcb->ptp = 1; 1943 } else { 1944 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb); 1945 } 1946 1947 skb_tx_timestamp(skb); 1948 netdev_tx_sent_queue(txq, bytes_sent); 1949 1950 gfar_wmb(); 1951 1952 txbdp_start->lstatus = cpu_to_be32(lstatus); 1953 1954 gfar_wmb(); /* force lstatus write before tx_skbuff */ 1955 1956 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb; 1957 1958 /* Update the current skb pointer to the next entry we will use 1959 * (wrapping if necessary) 1960 */ 1961 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) & 1962 TX_RING_MOD_MASK(tx_queue->tx_ring_size); 1963 1964 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1965 1966 /* We can work in parallel with gfar_clean_tx_ring(), except 1967 * when modifying num_txbdfree. Note that we didn't grab the lock 1968 * when we were reading the num_txbdfree and checking for available 1969 * space, that's because outside of this function it can only grow. 1970 */ 1971 spin_lock_bh(&tx_queue->txlock); 1972 /* reduce TxBD free count */ 1973 tx_queue->num_txbdfree -= (nr_txbds); 1974 spin_unlock_bh(&tx_queue->txlock); 1975 1976 /* If the next BD still needs to be cleaned up, then the bds 1977 * are full. We need to tell the kernel to stop sending us stuff. 1978 */ 1979 if (!tx_queue->num_txbdfree) { 1980 netif_tx_stop_queue(txq); 1981 1982 dev->stats.tx_fifo_errors++; 1983 } 1984 1985 /* Tell the DMA to go go go */ 1986 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex); 1987 1988 return NETDEV_TX_OK; 1989 1990 dma_map_err: 1991 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size); 1992 if (do_tstamp) 1993 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 1994 for (i = 0; i < nr_frags; i++) { 1995 lstatus = be32_to_cpu(txbdp->lstatus); 1996 if (!(lstatus & BD_LFLAG(TXBD_READY))) 1997 break; 1998 1999 lstatus &= ~BD_LFLAG(TXBD_READY); 2000 txbdp->lstatus = cpu_to_be32(lstatus); 2001 bufaddr = be32_to_cpu(txbdp->bufPtr); 2002 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length), 2003 DMA_TO_DEVICE); 2004 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size); 2005 } 2006 gfar_wmb(); 2007 dev_kfree_skb_any(skb); 2008 return NETDEV_TX_OK; 2009 } 2010 2011 /* Changes the mac address if the controller is not running. */ 2012 static int gfar_set_mac_address(struct net_device *dev) 2013 { 2014 gfar_set_mac_for_addr(dev, 0, dev->dev_addr); 2015 2016 return 0; 2017 } 2018 2019 static int gfar_change_mtu(struct net_device *dev, int new_mtu) 2020 { 2021 struct gfar_private *priv = netdev_priv(dev); 2022 2023 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2024 cpu_relax(); 2025 2026 if (dev->flags & IFF_UP) 2027 stop_gfar(dev); 2028 2029 WRITE_ONCE(dev->mtu, new_mtu); 2030 2031 if (dev->flags & IFF_UP) 2032 startup_gfar(dev); 2033 2034 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2035 2036 return 0; 2037 } 2038 2039 static void reset_gfar(struct net_device *ndev) 2040 { 2041 struct gfar_private *priv = netdev_priv(ndev); 2042 2043 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state)) 2044 cpu_relax(); 2045 2046 stop_gfar(ndev); 2047 startup_gfar(ndev); 2048 2049 clear_bit_unlock(GFAR_RESETTING, &priv->state); 2050 } 2051 2052 /* gfar_reset_task gets scheduled when a packet has not been 2053 * transmitted after a set amount of time. 2054 * For now, assume that clearing out all the structures, and 2055 * starting over will fix the problem. 2056 */ 2057 static void gfar_reset_task(struct work_struct *work) 2058 { 2059 struct gfar_private *priv = container_of(work, struct gfar_private, 2060 reset_task); 2061 reset_gfar(priv->ndev); 2062 } 2063 2064 static void gfar_timeout(struct net_device *dev, unsigned int txqueue) 2065 { 2066 struct gfar_private *priv = netdev_priv(dev); 2067 2068 dev->stats.tx_errors++; 2069 schedule_work(&priv->reset_task); 2070 } 2071 2072 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 2073 { 2074 struct hwtstamp_config config; 2075 struct gfar_private *priv = netdev_priv(netdev); 2076 2077 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2078 return -EFAULT; 2079 2080 switch (config.tx_type) { 2081 case HWTSTAMP_TX_OFF: 2082 priv->hwts_tx_en = 0; 2083 break; 2084 case HWTSTAMP_TX_ON: 2085 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2086 return -ERANGE; 2087 priv->hwts_tx_en = 1; 2088 break; 2089 default: 2090 return -ERANGE; 2091 } 2092 2093 switch (config.rx_filter) { 2094 case HWTSTAMP_FILTER_NONE: 2095 if (priv->hwts_rx_en) { 2096 priv->hwts_rx_en = 0; 2097 reset_gfar(netdev); 2098 } 2099 break; 2100 default: 2101 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)) 2102 return -ERANGE; 2103 if (!priv->hwts_rx_en) { 2104 priv->hwts_rx_en = 1; 2105 reset_gfar(netdev); 2106 } 2107 config.rx_filter = HWTSTAMP_FILTER_ALL; 2108 break; 2109 } 2110 2111 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2112 -EFAULT : 0; 2113 } 2114 2115 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 2116 { 2117 struct hwtstamp_config config; 2118 struct gfar_private *priv = netdev_priv(netdev); 2119 2120 config.flags = 0; 2121 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; 2122 config.rx_filter = (priv->hwts_rx_en ? 2123 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE); 2124 2125 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2126 -EFAULT : 0; 2127 } 2128 2129 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2130 { 2131 struct phy_device *phydev = dev->phydev; 2132 2133 if (!netif_running(dev)) 2134 return -EINVAL; 2135 2136 if (cmd == SIOCSHWTSTAMP) 2137 return gfar_hwtstamp_set(dev, rq); 2138 if (cmd == SIOCGHWTSTAMP) 2139 return gfar_hwtstamp_get(dev, rq); 2140 2141 if (!phydev) 2142 return -ENODEV; 2143 2144 return phy_mii_ioctl(phydev, rq, cmd); 2145 } 2146 2147 /* Interrupt Handler for Transmit complete */ 2148 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue) 2149 { 2150 struct net_device *dev = tx_queue->dev; 2151 struct netdev_queue *txq; 2152 struct gfar_private *priv = netdev_priv(dev); 2153 struct txbd8 *bdp, *next = NULL; 2154 struct txbd8 *lbdp = NULL; 2155 struct txbd8 *base = tx_queue->tx_bd_base; 2156 struct sk_buff *skb; 2157 int skb_dirtytx; 2158 int tx_ring_size = tx_queue->tx_ring_size; 2159 int frags = 0, nr_txbds = 0; 2160 int i; 2161 int howmany = 0; 2162 int tqi = tx_queue->qindex; 2163 unsigned int bytes_sent = 0; 2164 u32 lstatus; 2165 size_t buflen; 2166 2167 txq = netdev_get_tx_queue(dev, tqi); 2168 bdp = tx_queue->dirty_tx; 2169 skb_dirtytx = tx_queue->skb_dirtytx; 2170 2171 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) { 2172 bool do_tstamp; 2173 2174 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2175 priv->hwts_tx_en; 2176 2177 frags = skb_shinfo(skb)->nr_frags; 2178 2179 /* When time stamping, one additional TxBD must be freed. 2180 * Also, we need to dma_unmap_single() the TxPAL. 2181 */ 2182 if (unlikely(do_tstamp)) 2183 nr_txbds = frags + 2; 2184 else 2185 nr_txbds = frags + 1; 2186 2187 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size); 2188 2189 lstatus = be32_to_cpu(lbdp->lstatus); 2190 2191 /* Only clean completed frames */ 2192 if ((lstatus & BD_LFLAG(TXBD_READY)) && 2193 (lstatus & BD_LENGTH_MASK)) 2194 break; 2195 2196 if (unlikely(do_tstamp)) { 2197 next = next_txbd(bdp, base, tx_ring_size); 2198 buflen = be16_to_cpu(next->length) + 2199 GMAC_FCB_LEN + GMAC_TXPAL_LEN; 2200 } else 2201 buflen = be16_to_cpu(bdp->length); 2202 2203 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr), 2204 buflen, DMA_TO_DEVICE); 2205 2206 if (unlikely(do_tstamp)) { 2207 struct skb_shared_hwtstamps shhwtstamps; 2208 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) & 2209 ~0x7UL); 2210 2211 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 2212 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2213 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN); 2214 skb_tstamp_tx(skb, &shhwtstamps); 2215 gfar_clear_txbd_status(bdp); 2216 bdp = next; 2217 } 2218 2219 gfar_clear_txbd_status(bdp); 2220 bdp = next_txbd(bdp, base, tx_ring_size); 2221 2222 for (i = 0; i < frags; i++) { 2223 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr), 2224 be16_to_cpu(bdp->length), 2225 DMA_TO_DEVICE); 2226 gfar_clear_txbd_status(bdp); 2227 bdp = next_txbd(bdp, base, tx_ring_size); 2228 } 2229 2230 bytes_sent += GFAR_CB(skb)->bytes_sent; 2231 2232 dev_kfree_skb_any(skb); 2233 2234 tx_queue->tx_skbuff[skb_dirtytx] = NULL; 2235 2236 skb_dirtytx = (skb_dirtytx + 1) & 2237 TX_RING_MOD_MASK(tx_ring_size); 2238 2239 howmany++; 2240 spin_lock(&tx_queue->txlock); 2241 tx_queue->num_txbdfree += nr_txbds; 2242 spin_unlock(&tx_queue->txlock); 2243 } 2244 2245 /* If we freed a buffer, we can restart transmission, if necessary */ 2246 if (tx_queue->num_txbdfree && 2247 netif_tx_queue_stopped(txq) && 2248 !(test_bit(GFAR_DOWN, &priv->state))) 2249 netif_wake_subqueue(priv->ndev, tqi); 2250 2251 /* Update dirty indicators */ 2252 tx_queue->skb_dirtytx = skb_dirtytx; 2253 tx_queue->dirty_tx = bdp; 2254 2255 netdev_tx_completed_queue(txq, howmany, bytes_sent); 2256 } 2257 2258 static void count_errors(u32 lstatus, struct net_device *ndev) 2259 { 2260 struct gfar_private *priv = netdev_priv(ndev); 2261 struct net_device_stats *stats = &ndev->stats; 2262 struct gfar_extra_stats *estats = &priv->extra_stats; 2263 2264 /* If the packet was truncated, none of the other errors matter */ 2265 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) { 2266 stats->rx_length_errors++; 2267 2268 atomic64_inc(&estats->rx_trunc); 2269 2270 return; 2271 } 2272 /* Count the errors, if there were any */ 2273 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) { 2274 stats->rx_length_errors++; 2275 2276 if (lstatus & BD_LFLAG(RXBD_LARGE)) 2277 atomic64_inc(&estats->rx_large); 2278 else 2279 atomic64_inc(&estats->rx_short); 2280 } 2281 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) { 2282 stats->rx_frame_errors++; 2283 atomic64_inc(&estats->rx_nonoctet); 2284 } 2285 if (lstatus & BD_LFLAG(RXBD_CRCERR)) { 2286 atomic64_inc(&estats->rx_crcerr); 2287 stats->rx_crc_errors++; 2288 } 2289 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) { 2290 atomic64_inc(&estats->rx_overrun); 2291 stats->rx_over_errors++; 2292 } 2293 } 2294 2295 static irqreturn_t gfar_receive(int irq, void *grp_id) 2296 { 2297 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2298 unsigned long flags; 2299 u32 imask, ievent; 2300 2301 ievent = gfar_read(&grp->regs->ievent); 2302 2303 if (unlikely(ievent & IEVENT_FGPI)) { 2304 gfar_write(&grp->regs->ievent, IEVENT_FGPI); 2305 return IRQ_HANDLED; 2306 } 2307 2308 if (likely(napi_schedule_prep(&grp->napi_rx))) { 2309 spin_lock_irqsave(&grp->grplock, flags); 2310 imask = gfar_read(&grp->regs->imask); 2311 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask; 2312 gfar_write(&grp->regs->imask, imask); 2313 spin_unlock_irqrestore(&grp->grplock, flags); 2314 __napi_schedule(&grp->napi_rx); 2315 } else { 2316 /* Clear IEVENT, so interrupts aren't called again 2317 * because of the packets that have already arrived. 2318 */ 2319 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK); 2320 } 2321 2322 return IRQ_HANDLED; 2323 } 2324 2325 /* Interrupt Handler for Transmit complete */ 2326 static irqreturn_t gfar_transmit(int irq, void *grp_id) 2327 { 2328 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id; 2329 unsigned long flags; 2330 u32 imask; 2331 2332 if (likely(napi_schedule_prep(&grp->napi_tx))) { 2333 spin_lock_irqsave(&grp->grplock, flags); 2334 imask = gfar_read(&grp->regs->imask); 2335 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask; 2336 gfar_write(&grp->regs->imask, imask); 2337 spin_unlock_irqrestore(&grp->grplock, flags); 2338 __napi_schedule(&grp->napi_tx); 2339 } else { 2340 /* Clear IEVENT, so interrupts aren't called again 2341 * because of the packets that have already arrived. 2342 */ 2343 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK); 2344 } 2345 2346 return IRQ_HANDLED; 2347 } 2348 2349 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus, 2350 struct sk_buff *skb, bool first) 2351 { 2352 int size = lstatus & BD_LENGTH_MASK; 2353 struct page *page = rxb->page; 2354 2355 if (likely(first)) { 2356 skb_put(skb, size); 2357 } else { 2358 /* the last fragments' length contains the full frame length */ 2359 if (lstatus & BD_LFLAG(RXBD_LAST)) 2360 size -= skb->len; 2361 2362 WARN(size < 0, "gianfar: rx fragment size underflow"); 2363 if (size < 0) 2364 return false; 2365 2366 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 2367 rxb->page_offset + RXBUF_ALIGNMENT, 2368 size, GFAR_RXB_TRUESIZE); 2369 } 2370 2371 /* try reuse page */ 2372 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page))) 2373 return false; 2374 2375 /* change offset to the other half */ 2376 rxb->page_offset ^= GFAR_RXB_TRUESIZE; 2377 2378 page_ref_inc(page); 2379 2380 return true; 2381 } 2382 2383 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq, 2384 struct gfar_rx_buff *old_rxb) 2385 { 2386 struct gfar_rx_buff *new_rxb; 2387 u16 nta = rxq->next_to_alloc; 2388 2389 new_rxb = &rxq->rx_buff[nta]; 2390 2391 /* find next buf that can reuse a page */ 2392 nta++; 2393 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0; 2394 2395 /* copy page reference */ 2396 *new_rxb = *old_rxb; 2397 2398 /* sync for use by the device */ 2399 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma, 2400 old_rxb->page_offset, 2401 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2402 } 2403 2404 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue, 2405 u32 lstatus, struct sk_buff *skb) 2406 { 2407 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean]; 2408 struct page *page = rxb->page; 2409 bool first = false; 2410 2411 if (likely(!skb)) { 2412 void *buff_addr = page_address(page) + rxb->page_offset; 2413 2414 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE); 2415 if (unlikely(!skb)) { 2416 gfar_rx_alloc_err(rx_queue); 2417 return NULL; 2418 } 2419 skb_reserve(skb, RXBUF_ALIGNMENT); 2420 first = true; 2421 } 2422 2423 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset, 2424 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE); 2425 2426 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) { 2427 /* reuse the free half of the page */ 2428 gfar_reuse_rx_page(rx_queue, rxb); 2429 } else { 2430 /* page cannot be reused, unmap it */ 2431 dma_unmap_page(rx_queue->dev, rxb->dma, 2432 PAGE_SIZE, DMA_FROM_DEVICE); 2433 } 2434 2435 /* clear rxb content */ 2436 rxb->page = NULL; 2437 2438 return skb; 2439 } 2440 2441 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) 2442 { 2443 /* If valid headers were found, and valid sums 2444 * were verified, then we tell the kernel that no 2445 * checksumming is necessary. Otherwise, it is [FIXME] 2446 */ 2447 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) == 2448 (RXFCB_CIP | RXFCB_CTU)) 2449 skb->ip_summed = CHECKSUM_UNNECESSARY; 2450 else 2451 skb_checksum_none_assert(skb); 2452 } 2453 2454 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */ 2455 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb) 2456 { 2457 struct gfar_private *priv = netdev_priv(ndev); 2458 struct rxfcb *fcb = NULL; 2459 2460 /* fcb is at the beginning if exists */ 2461 fcb = (struct rxfcb *)skb->data; 2462 2463 /* Remove the FCB from the skb 2464 * Remove the padded bytes, if there are any 2465 */ 2466 if (priv->uses_rxfcb) 2467 skb_pull(skb, GMAC_FCB_LEN); 2468 2469 /* Get receive timestamp from the skb */ 2470 if (priv->hwts_rx_en) { 2471 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 2472 u64 *ns = (u64 *) skb->data; 2473 2474 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2475 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns)); 2476 } 2477 2478 if (priv->padding) 2479 skb_pull(skb, priv->padding); 2480 2481 /* Trim off the FCS */ 2482 pskb_trim(skb, skb->len - ETH_FCS_LEN); 2483 2484 if (ndev->features & NETIF_F_RXCSUM) 2485 gfar_rx_checksum(skb, fcb); 2486 2487 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here. 2488 * Even if vlan rx accel is disabled, on some chips 2489 * RXFCB_VLN is pseudo randomly set. 2490 */ 2491 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX && 2492 be16_to_cpu(fcb->flags) & RXFCB_VLN) 2493 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 2494 be16_to_cpu(fcb->vlctl)); 2495 } 2496 2497 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring 2498 * until the budget/quota has been reached. Returns the number 2499 * of frames handled 2500 */ 2501 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, 2502 int rx_work_limit) 2503 { 2504 struct net_device *ndev = rx_queue->ndev; 2505 struct gfar_private *priv = netdev_priv(ndev); 2506 struct rxbd8 *bdp; 2507 int i, howmany = 0; 2508 struct sk_buff *skb = rx_queue->skb; 2509 int cleaned_cnt = gfar_rxbd_unused(rx_queue); 2510 unsigned int total_bytes = 0, total_pkts = 0; 2511 2512 /* Get the first full descriptor */ 2513 i = rx_queue->next_to_clean; 2514 2515 while (rx_work_limit--) { 2516 u32 lstatus; 2517 2518 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) { 2519 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2520 cleaned_cnt = 0; 2521 } 2522 2523 bdp = &rx_queue->rx_bd_base[i]; 2524 lstatus = be32_to_cpu(bdp->lstatus); 2525 if (lstatus & BD_LFLAG(RXBD_EMPTY)) 2526 break; 2527 2528 /* lost RXBD_LAST descriptor due to overrun */ 2529 if (skb && 2530 (lstatus & BD_LFLAG(RXBD_FIRST))) { 2531 /* discard faulty buffer */ 2532 dev_kfree_skb(skb); 2533 skb = NULL; 2534 rx_queue->stats.rx_dropped++; 2535 2536 /* can continue normally */ 2537 } 2538 2539 /* order rx buffer descriptor reads */ 2540 rmb(); 2541 2542 /* fetch next to clean buffer from the ring */ 2543 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb); 2544 if (unlikely(!skb)) 2545 break; 2546 2547 cleaned_cnt++; 2548 howmany++; 2549 2550 if (unlikely(++i == rx_queue->rx_ring_size)) 2551 i = 0; 2552 2553 rx_queue->next_to_clean = i; 2554 2555 /* fetch next buffer if not the last in frame */ 2556 if (!(lstatus & BD_LFLAG(RXBD_LAST))) 2557 continue; 2558 2559 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) { 2560 count_errors(lstatus, ndev); 2561 2562 /* discard faulty buffer */ 2563 dev_kfree_skb(skb); 2564 skb = NULL; 2565 rx_queue->stats.rx_dropped++; 2566 continue; 2567 } 2568 2569 gfar_process_frame(ndev, skb); 2570 2571 /* Increment the number of packets */ 2572 total_pkts++; 2573 total_bytes += skb->len; 2574 2575 skb_record_rx_queue(skb, rx_queue->qindex); 2576 2577 skb->protocol = eth_type_trans(skb, ndev); 2578 2579 /* Send the packet up the stack */ 2580 napi_gro_receive(&rx_queue->grp->napi_rx, skb); 2581 2582 skb = NULL; 2583 } 2584 2585 /* Store incomplete frames for completion */ 2586 rx_queue->skb = skb; 2587 2588 rx_queue->stats.rx_packets += total_pkts; 2589 rx_queue->stats.rx_bytes += total_bytes; 2590 2591 if (cleaned_cnt) 2592 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt); 2593 2594 /* Update Last Free RxBD pointer for LFC */ 2595 if (unlikely(priv->tx_actual_en)) { 2596 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue); 2597 2598 gfar_write(rx_queue->rfbptr, bdp_dma); 2599 } 2600 2601 return howmany; 2602 } 2603 2604 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget) 2605 { 2606 struct gfar_priv_grp *gfargrp = 2607 container_of(napi, struct gfar_priv_grp, napi_rx); 2608 struct gfar __iomem *regs = gfargrp->regs; 2609 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue; 2610 int work_done = 0; 2611 2612 /* Clear IEVENT, so interrupts aren't called again 2613 * because of the packets that have already arrived 2614 */ 2615 gfar_write(®s->ievent, IEVENT_RX_MASK); 2616 2617 work_done = gfar_clean_rx_ring(rx_queue, budget); 2618 2619 if (work_done < budget) { 2620 u32 imask; 2621 napi_complete_done(napi, work_done); 2622 /* Clear the halt bit in RSTAT */ 2623 gfar_write(®s->rstat, gfargrp->rstat); 2624 2625 spin_lock_irq(&gfargrp->grplock); 2626 imask = gfar_read(®s->imask); 2627 imask |= IMASK_RX_DEFAULT; 2628 gfar_write(®s->imask, imask); 2629 spin_unlock_irq(&gfargrp->grplock); 2630 } 2631 2632 return work_done; 2633 } 2634 2635 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget) 2636 { 2637 struct gfar_priv_grp *gfargrp = 2638 container_of(napi, struct gfar_priv_grp, napi_tx); 2639 struct gfar __iomem *regs = gfargrp->regs; 2640 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue; 2641 u32 imask; 2642 2643 /* Clear IEVENT, so interrupts aren't called again 2644 * because of the packets that have already arrived 2645 */ 2646 gfar_write(®s->ievent, IEVENT_TX_MASK); 2647 2648 /* run Tx cleanup to completion */ 2649 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) 2650 gfar_clean_tx_ring(tx_queue); 2651 2652 napi_complete(napi); 2653 2654 spin_lock_irq(&gfargrp->grplock); 2655 imask = gfar_read(®s->imask); 2656 imask |= IMASK_TX_DEFAULT; 2657 gfar_write(®s->imask, imask); 2658 spin_unlock_irq(&gfargrp->grplock); 2659 2660 return 0; 2661 } 2662 2663 /* GFAR error interrupt handler */ 2664 static irqreturn_t gfar_error(int irq, void *grp_id) 2665 { 2666 struct gfar_priv_grp *gfargrp = grp_id; 2667 struct gfar __iomem *regs = gfargrp->regs; 2668 struct gfar_private *priv= gfargrp->priv; 2669 struct net_device *dev = priv->ndev; 2670 2671 /* Save ievent for future reference */ 2672 u32 events = gfar_read(®s->ievent); 2673 2674 /* Clear IEVENT */ 2675 gfar_write(®s->ievent, events & IEVENT_ERR_MASK); 2676 2677 /* Magic Packet is not an error. */ 2678 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) && 2679 (events & IEVENT_MAG)) 2680 events &= ~IEVENT_MAG; 2681 2682 /* Hmm... */ 2683 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) 2684 netdev_dbg(dev, 2685 "error interrupt (ievent=0x%08x imask=0x%08x)\n", 2686 events, gfar_read(®s->imask)); 2687 2688 /* Update the error counters */ 2689 if (events & IEVENT_TXE) { 2690 dev->stats.tx_errors++; 2691 2692 if (events & IEVENT_LC) 2693 dev->stats.tx_window_errors++; 2694 if (events & IEVENT_CRL) 2695 dev->stats.tx_aborted_errors++; 2696 if (events & IEVENT_XFUN) { 2697 netif_dbg(priv, tx_err, dev, 2698 "TX FIFO underrun, packet dropped\n"); 2699 dev->stats.tx_dropped++; 2700 atomic64_inc(&priv->extra_stats.tx_underrun); 2701 2702 schedule_work(&priv->reset_task); 2703 } 2704 netif_dbg(priv, tx_err, dev, "Transmit Error\n"); 2705 } 2706 if (events & IEVENT_MSRO) { 2707 struct rmon_mib __iomem *rmon = ®s->rmon; 2708 u32 car; 2709 2710 spin_lock(&priv->rmon_overflow.lock); 2711 car = gfar_read(&rmon->car1) & CAR1_C1RDR; 2712 if (car) { 2713 priv->rmon_overflow.rdrp++; 2714 gfar_write(&rmon->car1, car); 2715 } 2716 spin_unlock(&priv->rmon_overflow.lock); 2717 } 2718 if (events & IEVENT_BSY) { 2719 dev->stats.rx_over_errors++; 2720 atomic64_inc(&priv->extra_stats.rx_bsy); 2721 2722 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n", 2723 gfar_read(®s->rstat)); 2724 } 2725 if (events & IEVENT_BABR) { 2726 dev->stats.rx_errors++; 2727 atomic64_inc(&priv->extra_stats.rx_babr); 2728 2729 netif_dbg(priv, rx_err, dev, "babbling RX error\n"); 2730 } 2731 if (events & IEVENT_EBERR) { 2732 atomic64_inc(&priv->extra_stats.eberr); 2733 netif_dbg(priv, rx_err, dev, "bus error\n"); 2734 } 2735 if (events & IEVENT_RXC) 2736 netif_dbg(priv, rx_status, dev, "control frame\n"); 2737 2738 if (events & IEVENT_BABT) { 2739 atomic64_inc(&priv->extra_stats.tx_babt); 2740 netif_dbg(priv, tx_err, dev, "babbling TX error\n"); 2741 } 2742 return IRQ_HANDLED; 2743 } 2744 2745 /* The interrupt handler for devices with one interrupt */ 2746 static irqreturn_t gfar_interrupt(int irq, void *grp_id) 2747 { 2748 struct gfar_priv_grp *gfargrp = grp_id; 2749 2750 /* Save ievent for future reference */ 2751 u32 events = gfar_read(&gfargrp->regs->ievent); 2752 2753 /* Check for reception */ 2754 if (events & IEVENT_RX_MASK) 2755 gfar_receive(irq, grp_id); 2756 2757 /* Check for transmit completion */ 2758 if (events & IEVENT_TX_MASK) 2759 gfar_transmit(irq, grp_id); 2760 2761 /* Check for errors */ 2762 if (events & IEVENT_ERR_MASK) 2763 gfar_error(irq, grp_id); 2764 2765 return IRQ_HANDLED; 2766 } 2767 2768 #ifdef CONFIG_NET_POLL_CONTROLLER 2769 /* Polling 'interrupt' - used by things like netconsole to send skbs 2770 * without having to re-enable interrupts. It's not called while 2771 * the interrupt routine is executing. 2772 */ 2773 static void gfar_netpoll(struct net_device *dev) 2774 { 2775 struct gfar_private *priv = netdev_priv(dev); 2776 int i; 2777 2778 /* If the device has multiple interrupts, run tx/rx */ 2779 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2780 for (i = 0; i < priv->num_grps; i++) { 2781 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2782 2783 disable_irq(gfar_irq(grp, TX)->irq); 2784 disable_irq(gfar_irq(grp, RX)->irq); 2785 disable_irq(gfar_irq(grp, ER)->irq); 2786 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2787 enable_irq(gfar_irq(grp, ER)->irq); 2788 enable_irq(gfar_irq(grp, RX)->irq); 2789 enable_irq(gfar_irq(grp, TX)->irq); 2790 } 2791 } else { 2792 for (i = 0; i < priv->num_grps; i++) { 2793 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 2794 2795 disable_irq(gfar_irq(grp, TX)->irq); 2796 gfar_interrupt(gfar_irq(grp, TX)->irq, grp); 2797 enable_irq(gfar_irq(grp, TX)->irq); 2798 } 2799 } 2800 } 2801 #endif 2802 2803 static void free_grp_irqs(struct gfar_priv_grp *grp) 2804 { 2805 free_irq(gfar_irq(grp, TX)->irq, grp); 2806 free_irq(gfar_irq(grp, RX)->irq, grp); 2807 free_irq(gfar_irq(grp, ER)->irq, grp); 2808 } 2809 2810 static int register_grp_irqs(struct gfar_priv_grp *grp) 2811 { 2812 struct gfar_private *priv = grp->priv; 2813 struct net_device *dev = priv->ndev; 2814 int err; 2815 2816 /* If the device has multiple interrupts, register for 2817 * them. Otherwise, only register for the one 2818 */ 2819 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2820 /* Install our interrupt handlers for Error, 2821 * Transmit, and Receive 2822 */ 2823 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0, 2824 gfar_irq(grp, ER)->name, grp); 2825 if (err < 0) { 2826 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2827 gfar_irq(grp, ER)->irq); 2828 2829 goto err_irq_fail; 2830 } 2831 enable_irq_wake(gfar_irq(grp, ER)->irq); 2832 2833 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0, 2834 gfar_irq(grp, TX)->name, grp); 2835 if (err < 0) { 2836 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2837 gfar_irq(grp, TX)->irq); 2838 goto tx_irq_fail; 2839 } 2840 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0, 2841 gfar_irq(grp, RX)->name, grp); 2842 if (err < 0) { 2843 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2844 gfar_irq(grp, RX)->irq); 2845 goto rx_irq_fail; 2846 } 2847 enable_irq_wake(gfar_irq(grp, RX)->irq); 2848 2849 } else { 2850 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0, 2851 gfar_irq(grp, TX)->name, grp); 2852 if (err < 0) { 2853 netif_err(priv, intr, dev, "Can't get IRQ %d\n", 2854 gfar_irq(grp, TX)->irq); 2855 goto err_irq_fail; 2856 } 2857 enable_irq_wake(gfar_irq(grp, TX)->irq); 2858 } 2859 2860 return 0; 2861 2862 rx_irq_fail: 2863 free_irq(gfar_irq(grp, TX)->irq, grp); 2864 tx_irq_fail: 2865 free_irq(gfar_irq(grp, ER)->irq, grp); 2866 err_irq_fail: 2867 return err; 2868 2869 } 2870 2871 static void gfar_free_irq(struct gfar_private *priv) 2872 { 2873 int i; 2874 2875 /* Free the IRQs */ 2876 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 2877 for (i = 0; i < priv->num_grps; i++) 2878 free_grp_irqs(&priv->gfargrp[i]); 2879 } else { 2880 for (i = 0; i < priv->num_grps; i++) 2881 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq, 2882 &priv->gfargrp[i]); 2883 } 2884 } 2885 2886 static int gfar_request_irq(struct gfar_private *priv) 2887 { 2888 int err, i, j; 2889 2890 for (i = 0; i < priv->num_grps; i++) { 2891 err = register_grp_irqs(&priv->gfargrp[i]); 2892 if (err) { 2893 for (j = 0; j < i; j++) 2894 free_grp_irqs(&priv->gfargrp[j]); 2895 return err; 2896 } 2897 } 2898 2899 return 0; 2900 } 2901 2902 /* Called when something needs to use the ethernet device 2903 * Returns 0 for success. 2904 */ 2905 static int gfar_enet_open(struct net_device *dev) 2906 { 2907 struct gfar_private *priv = netdev_priv(dev); 2908 int err; 2909 2910 err = init_phy(dev); 2911 if (err) 2912 return err; 2913 2914 err = gfar_request_irq(priv); 2915 if (err) 2916 return err; 2917 2918 err = startup_gfar(dev); 2919 if (err) 2920 return err; 2921 2922 return err; 2923 } 2924 2925 /* Stops the kernel queue, and halts the controller */ 2926 static int gfar_close(struct net_device *dev) 2927 { 2928 struct gfar_private *priv = netdev_priv(dev); 2929 2930 cancel_work_sync(&priv->reset_task); 2931 stop_gfar(dev); 2932 2933 /* Disconnect from the PHY */ 2934 phy_disconnect(dev->phydev); 2935 2936 gfar_free_irq(priv); 2937 2938 return 0; 2939 } 2940 2941 /* Clears each of the exact match registers to zero, so they 2942 * don't interfere with normal reception 2943 */ 2944 static void gfar_clear_exact_match(struct net_device *dev) 2945 { 2946 int idx; 2947 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0}; 2948 2949 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++) 2950 gfar_set_mac_for_addr(dev, idx, zero_arr); 2951 } 2952 2953 /* Update the hash table based on the current list of multicast 2954 * addresses we subscribe to. Also, change the promiscuity of 2955 * the device based on the flags (this function is called 2956 * whenever dev->flags is changed 2957 */ 2958 static void gfar_set_multi(struct net_device *dev) 2959 { 2960 struct netdev_hw_addr *ha; 2961 struct gfar_private *priv = netdev_priv(dev); 2962 struct gfar __iomem *regs = priv->gfargrp[0].regs; 2963 u32 tempval; 2964 2965 if (dev->flags & IFF_PROMISC) { 2966 /* Set RCTRL to PROM */ 2967 tempval = gfar_read(®s->rctrl); 2968 tempval |= RCTRL_PROM; 2969 gfar_write(®s->rctrl, tempval); 2970 } else { 2971 /* Set RCTRL to not PROM */ 2972 tempval = gfar_read(®s->rctrl); 2973 tempval &= ~(RCTRL_PROM); 2974 gfar_write(®s->rctrl, tempval); 2975 } 2976 2977 if (dev->flags & IFF_ALLMULTI) { 2978 /* Set the hash to rx all multicast frames */ 2979 gfar_write(®s->igaddr0, 0xffffffff); 2980 gfar_write(®s->igaddr1, 0xffffffff); 2981 gfar_write(®s->igaddr2, 0xffffffff); 2982 gfar_write(®s->igaddr3, 0xffffffff); 2983 gfar_write(®s->igaddr4, 0xffffffff); 2984 gfar_write(®s->igaddr5, 0xffffffff); 2985 gfar_write(®s->igaddr6, 0xffffffff); 2986 gfar_write(®s->igaddr7, 0xffffffff); 2987 gfar_write(®s->gaddr0, 0xffffffff); 2988 gfar_write(®s->gaddr1, 0xffffffff); 2989 gfar_write(®s->gaddr2, 0xffffffff); 2990 gfar_write(®s->gaddr3, 0xffffffff); 2991 gfar_write(®s->gaddr4, 0xffffffff); 2992 gfar_write(®s->gaddr5, 0xffffffff); 2993 gfar_write(®s->gaddr6, 0xffffffff); 2994 gfar_write(®s->gaddr7, 0xffffffff); 2995 } else { 2996 int em_num; 2997 int idx; 2998 2999 /* zero out the hash */ 3000 gfar_write(®s->igaddr0, 0x0); 3001 gfar_write(®s->igaddr1, 0x0); 3002 gfar_write(®s->igaddr2, 0x0); 3003 gfar_write(®s->igaddr3, 0x0); 3004 gfar_write(®s->igaddr4, 0x0); 3005 gfar_write(®s->igaddr5, 0x0); 3006 gfar_write(®s->igaddr6, 0x0); 3007 gfar_write(®s->igaddr7, 0x0); 3008 gfar_write(®s->gaddr0, 0x0); 3009 gfar_write(®s->gaddr1, 0x0); 3010 gfar_write(®s->gaddr2, 0x0); 3011 gfar_write(®s->gaddr3, 0x0); 3012 gfar_write(®s->gaddr4, 0x0); 3013 gfar_write(®s->gaddr5, 0x0); 3014 gfar_write(®s->gaddr6, 0x0); 3015 gfar_write(®s->gaddr7, 0x0); 3016 3017 /* If we have extended hash tables, we need to 3018 * clear the exact match registers to prepare for 3019 * setting them 3020 */ 3021 if (priv->extended_hash) { 3022 em_num = GFAR_EM_NUM + 1; 3023 gfar_clear_exact_match(dev); 3024 idx = 1; 3025 } else { 3026 idx = 0; 3027 em_num = 0; 3028 } 3029 3030 if (netdev_mc_empty(dev)) 3031 return; 3032 3033 /* Parse the list, and set the appropriate bits */ 3034 netdev_for_each_mc_addr(ha, dev) { 3035 if (idx < em_num) { 3036 gfar_set_mac_for_addr(dev, idx, ha->addr); 3037 idx++; 3038 } else 3039 gfar_set_hash_for_addr(dev, ha->addr); 3040 } 3041 } 3042 } 3043 3044 void gfar_mac_reset(struct gfar_private *priv) 3045 { 3046 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3047 u32 tempval; 3048 3049 /* Reset MAC layer */ 3050 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET); 3051 3052 /* We need to delay at least 3 TX clocks */ 3053 udelay(3); 3054 3055 /* the soft reset bit is not self-resetting, so we need to 3056 * clear it before resuming normal operation 3057 */ 3058 gfar_write(®s->maccfg1, 0); 3059 3060 udelay(3); 3061 3062 gfar_rx_offload_en(priv); 3063 3064 /* Initialize the max receive frame/buffer lengths */ 3065 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE); 3066 gfar_write(®s->mrblr, GFAR_RXB_SIZE); 3067 3068 /* Initialize the Minimum Frame Length Register */ 3069 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS); 3070 3071 /* Initialize MACCFG2. */ 3072 tempval = MACCFG2_INIT_SETTINGS; 3073 3074 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1 3075 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1, 3076 * and by checking RxBD[LG] and discarding larger than MAXFRM. 3077 */ 3078 if (gfar_has_errata(priv, GFAR_ERRATA_74)) 3079 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK; 3080 3081 gfar_write(®s->maccfg2, tempval); 3082 3083 /* Clear mac addr hash registers */ 3084 gfar_write(®s->igaddr0, 0); 3085 gfar_write(®s->igaddr1, 0); 3086 gfar_write(®s->igaddr2, 0); 3087 gfar_write(®s->igaddr3, 0); 3088 gfar_write(®s->igaddr4, 0); 3089 gfar_write(®s->igaddr5, 0); 3090 gfar_write(®s->igaddr6, 0); 3091 gfar_write(®s->igaddr7, 0); 3092 3093 gfar_write(®s->gaddr0, 0); 3094 gfar_write(®s->gaddr1, 0); 3095 gfar_write(®s->gaddr2, 0); 3096 gfar_write(®s->gaddr3, 0); 3097 gfar_write(®s->gaddr4, 0); 3098 gfar_write(®s->gaddr5, 0); 3099 gfar_write(®s->gaddr6, 0); 3100 gfar_write(®s->gaddr7, 0); 3101 3102 if (priv->extended_hash) 3103 gfar_clear_exact_match(priv->ndev); 3104 3105 gfar_mac_rx_config(priv); 3106 3107 gfar_mac_tx_config(priv); 3108 3109 gfar_set_mac_address(priv->ndev); 3110 3111 gfar_set_multi(priv->ndev); 3112 3113 /* clear ievent and imask before configuring coalescing */ 3114 gfar_ints_disable(priv); 3115 3116 /* Configure the coalescing support */ 3117 gfar_configure_coalescing_all(priv); 3118 } 3119 3120 static void gfar_hw_init(struct gfar_private *priv) 3121 { 3122 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3123 u32 attrs; 3124 3125 /* Stop the DMA engine now, in case it was running before 3126 * (The firmware could have used it, and left it running). 3127 */ 3128 gfar_halt(priv); 3129 3130 gfar_mac_reset(priv); 3131 3132 /* Zero out the rmon mib registers if it has them */ 3133 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3134 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1)); 3135 3136 /* Mask off the CAM interrupts */ 3137 gfar_write(®s->rmon.cam1, 0xffffffff); 3138 gfar_write(®s->rmon.cam2, 0xffffffff); 3139 /* Clear the CAR registers (w1c style) */ 3140 gfar_write(®s->rmon.car1, 0xffffffff); 3141 gfar_write(®s->rmon.car2, 0xffffffff); 3142 } 3143 3144 /* Initialize ECNTRL */ 3145 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS); 3146 3147 /* Set the extraction length and index */ 3148 attrs = ATTRELI_EL(priv->rx_stash_size) | 3149 ATTRELI_EI(priv->rx_stash_index); 3150 3151 gfar_write(®s->attreli, attrs); 3152 3153 /* Start with defaults, and add stashing 3154 * depending on driver parameters 3155 */ 3156 attrs = ATTR_INIT_SETTINGS; 3157 3158 if (priv->bd_stash_en) 3159 attrs |= ATTR_BDSTASH; 3160 3161 if (priv->rx_stash_size != 0) 3162 attrs |= ATTR_BUFSTASH; 3163 3164 gfar_write(®s->attr, attrs); 3165 3166 /* FIFO configs */ 3167 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR); 3168 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE); 3169 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF); 3170 3171 /* Program the interrupt steering regs, only for MG devices */ 3172 if (priv->num_grps > 1) 3173 gfar_write_isrg(priv); 3174 } 3175 3176 static const struct net_device_ops gfar_netdev_ops = { 3177 .ndo_open = gfar_enet_open, 3178 .ndo_start_xmit = gfar_start_xmit, 3179 .ndo_stop = gfar_close, 3180 .ndo_change_mtu = gfar_change_mtu, 3181 .ndo_set_features = gfar_set_features, 3182 .ndo_set_rx_mode = gfar_set_multi, 3183 .ndo_tx_timeout = gfar_timeout, 3184 .ndo_eth_ioctl = gfar_ioctl, 3185 .ndo_get_stats64 = gfar_get_stats64, 3186 .ndo_change_carrier = fixed_phy_change_carrier, 3187 .ndo_set_mac_address = gfar_set_mac_addr, 3188 .ndo_validate_addr = eth_validate_addr, 3189 #ifdef CONFIG_NET_POLL_CONTROLLER 3190 .ndo_poll_controller = gfar_netpoll, 3191 #endif 3192 }; 3193 3194 /* Set up the ethernet device structure, private data, 3195 * and anything else we need before we start 3196 */ 3197 static int gfar_probe(struct platform_device *ofdev) 3198 { 3199 struct device_node *np = ofdev->dev.of_node; 3200 struct net_device *dev = NULL; 3201 struct gfar_private *priv = NULL; 3202 int err = 0, i; 3203 3204 err = gfar_of_init(ofdev, &dev); 3205 3206 if (err) 3207 return err; 3208 3209 priv = netdev_priv(dev); 3210 priv->ndev = dev; 3211 priv->ofdev = ofdev; 3212 priv->dev = &ofdev->dev; 3213 SET_NETDEV_DEV(dev, &ofdev->dev); 3214 3215 INIT_WORK(&priv->reset_task, gfar_reset_task); 3216 3217 platform_set_drvdata(ofdev, priv); 3218 3219 gfar_detect_errata(priv); 3220 3221 /* Set the dev->base_addr to the gfar reg region */ 3222 dev->base_addr = (unsigned long) priv->gfargrp[0].regs; 3223 3224 /* Fill in the dev structure */ 3225 dev->watchdog_timeo = TX_TIMEOUT; 3226 /* MTU range: 50 - 9586 */ 3227 dev->mtu = 1500; 3228 dev->min_mtu = 50; 3229 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN; 3230 dev->netdev_ops = &gfar_netdev_ops; 3231 dev->ethtool_ops = &gfar_ethtool_ops; 3232 3233 /* Register for napi ...We are registering NAPI for each grp */ 3234 for (i = 0; i < priv->num_grps; i++) { 3235 netif_napi_add(dev, &priv->gfargrp[i].napi_rx, 3236 gfar_poll_rx_sq); 3237 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx, 3238 gfar_poll_tx_sq, 2); 3239 } 3240 3241 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { 3242 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3243 NETIF_F_RXCSUM; 3244 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | 3245 NETIF_F_RXCSUM | NETIF_F_HIGHDMA; 3246 } 3247 3248 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { 3249 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | 3250 NETIF_F_HW_VLAN_CTAG_RX; 3251 dev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3252 } 3253 3254 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 3255 3256 gfar_init_addr_hash_table(priv); 3257 3258 /* Insert receive time stamps into padding alignment bytes, and 3259 * plus 2 bytes padding to ensure the cpu alignment. 3260 */ 3261 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3262 priv->padding = 8 + DEFAULT_PADDING; 3263 3264 if (dev->features & NETIF_F_IP_CSUM || 3265 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) 3266 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN; 3267 3268 /* Initializing some of the rx/tx queue level parameters */ 3269 for (i = 0; i < priv->num_tx_queues; i++) { 3270 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE; 3271 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE; 3272 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE; 3273 priv->tx_queue[i]->txic = DEFAULT_TXIC; 3274 } 3275 3276 for (i = 0; i < priv->num_rx_queues; i++) { 3277 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE; 3278 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE; 3279 priv->rx_queue[i]->rxic = DEFAULT_RXIC; 3280 } 3281 3282 /* Always enable rx filer if available */ 3283 priv->rx_filer_enable = 3284 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0; 3285 /* Enable most messages by default */ 3286 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; 3287 /* use pritority h/w tx queue scheduling for single queue devices */ 3288 if (priv->num_tx_queues == 1) 3289 priv->prio_sched_en = 1; 3290 3291 set_bit(GFAR_DOWN, &priv->state); 3292 3293 gfar_hw_init(priv); 3294 3295 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { 3296 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon; 3297 3298 spin_lock_init(&priv->rmon_overflow.lock); 3299 priv->rmon_overflow.imask = IMASK_MSRO; 3300 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR); 3301 } 3302 3303 /* Carrier starts down, phylib will bring it up */ 3304 netif_carrier_off(dev); 3305 3306 err = register_netdev(dev); 3307 3308 if (err) { 3309 pr_err("%s: Cannot register net device, aborting\n", dev->name); 3310 goto register_fail; 3311 } 3312 3313 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) 3314 priv->wol_supported |= GFAR_WOL_MAGIC; 3315 3316 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) && 3317 priv->rx_filer_enable) 3318 priv->wol_supported |= GFAR_WOL_FILER_UCAST; 3319 3320 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported); 3321 3322 /* fill out IRQ number and name fields */ 3323 for (i = 0; i < priv->num_grps; i++) { 3324 struct gfar_priv_grp *grp = &priv->gfargrp[i]; 3325 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { 3326 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s", 3327 dev->name, "_g", '0' + i, "_tx"); 3328 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s", 3329 dev->name, "_g", '0' + i, "_rx"); 3330 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s", 3331 dev->name, "_g", '0' + i, "_er"); 3332 } else 3333 strcpy(gfar_irq(grp, TX)->name, dev->name); 3334 } 3335 3336 /* Initialize the filer table */ 3337 gfar_init_filer_table(priv); 3338 3339 /* Print out the device info */ 3340 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 3341 3342 /* Even more device info helps when determining which kernel 3343 * provided which set of benchmarks. 3344 */ 3345 netdev_info(dev, "Running with NAPI enabled\n"); 3346 for (i = 0; i < priv->num_rx_queues; i++) 3347 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n", 3348 i, priv->rx_queue[i]->rx_ring_size); 3349 for (i = 0; i < priv->num_tx_queues; i++) 3350 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n", 3351 i, priv->tx_queue[i]->tx_ring_size); 3352 3353 return 0; 3354 3355 register_fail: 3356 if (of_phy_is_fixed_link(np)) 3357 of_phy_deregister_fixed_link(np); 3358 unmap_group_regs(priv); 3359 gfar_free_rx_queues(priv); 3360 gfar_free_tx_queues(priv); 3361 of_node_put(priv->phy_node); 3362 of_node_put(priv->tbi_node); 3363 free_gfar_dev(priv); 3364 return err; 3365 } 3366 3367 static void gfar_remove(struct platform_device *ofdev) 3368 { 3369 struct gfar_private *priv = platform_get_drvdata(ofdev); 3370 struct device_node *np = ofdev->dev.of_node; 3371 3372 of_node_put(priv->phy_node); 3373 of_node_put(priv->tbi_node); 3374 3375 unregister_netdev(priv->ndev); 3376 3377 if (of_phy_is_fixed_link(np)) 3378 of_phy_deregister_fixed_link(np); 3379 3380 unmap_group_regs(priv); 3381 gfar_free_rx_queues(priv); 3382 gfar_free_tx_queues(priv); 3383 free_gfar_dev(priv); 3384 } 3385 3386 #ifdef CONFIG_PM 3387 3388 static void __gfar_filer_disable(struct gfar_private *priv) 3389 { 3390 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3391 u32 temp; 3392 3393 temp = gfar_read(®s->rctrl); 3394 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT); 3395 gfar_write(®s->rctrl, temp); 3396 } 3397 3398 static void __gfar_filer_enable(struct gfar_private *priv) 3399 { 3400 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3401 u32 temp; 3402 3403 temp = gfar_read(®s->rctrl); 3404 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT; 3405 gfar_write(®s->rctrl, temp); 3406 } 3407 3408 /* Filer rules implementing wol capabilities */ 3409 static void gfar_filer_config_wol(struct gfar_private *priv) 3410 { 3411 unsigned int i; 3412 u32 rqfcr; 3413 3414 __gfar_filer_disable(priv); 3415 3416 /* clear the filer table, reject any packet by default */ 3417 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH; 3418 for (i = 0; i <= MAX_FILER_IDX; i++) 3419 gfar_write_filer(priv, i, rqfcr, 0); 3420 3421 i = 0; 3422 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) { 3423 /* unicast packet, accept it */ 3424 struct net_device *ndev = priv->ndev; 3425 /* get the default rx queue index */ 3426 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex; 3427 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) | 3428 (ndev->dev_addr[1] << 8) | 3429 ndev->dev_addr[2]; 3430 3431 rqfcr = (qindex << 10) | RQFCR_AND | 3432 RQFCR_CMP_EXACT | RQFCR_PID_DAH; 3433 3434 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3435 3436 dest_mac_addr = (ndev->dev_addr[3] << 16) | 3437 (ndev->dev_addr[4] << 8) | 3438 ndev->dev_addr[5]; 3439 rqfcr = (qindex << 10) | RQFCR_GPI | 3440 RQFCR_CMP_EXACT | RQFCR_PID_DAL; 3441 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr); 3442 } 3443 3444 __gfar_filer_enable(priv); 3445 } 3446 3447 static void gfar_filer_restore_table(struct gfar_private *priv) 3448 { 3449 u32 rqfcr, rqfpr; 3450 unsigned int i; 3451 3452 __gfar_filer_disable(priv); 3453 3454 for (i = 0; i <= MAX_FILER_IDX; i++) { 3455 rqfcr = priv->ftp_rqfcr[i]; 3456 rqfpr = priv->ftp_rqfpr[i]; 3457 gfar_write_filer(priv, i, rqfcr, rqfpr); 3458 } 3459 3460 __gfar_filer_enable(priv); 3461 } 3462 3463 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */ 3464 static void gfar_start_wol_filer(struct gfar_private *priv) 3465 { 3466 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3467 u32 tempval; 3468 int i = 0; 3469 3470 /* Enable Rx hw queues */ 3471 gfar_write(®s->rqueue, priv->rqueue); 3472 3473 /* Initialize DMACTRL to have WWR and WOP */ 3474 tempval = gfar_read(®s->dmactrl); 3475 tempval |= DMACTRL_INIT_SETTINGS; 3476 gfar_write(®s->dmactrl, tempval); 3477 3478 /* Make sure we aren't stopped */ 3479 tempval = gfar_read(®s->dmactrl); 3480 tempval &= ~DMACTRL_GRS; 3481 gfar_write(®s->dmactrl, tempval); 3482 3483 for (i = 0; i < priv->num_grps; i++) { 3484 regs = priv->gfargrp[i].regs; 3485 /* Clear RHLT, so that the DMA starts polling now */ 3486 gfar_write(®s->rstat, priv->gfargrp[i].rstat); 3487 /* enable the Filer General Purpose Interrupt */ 3488 gfar_write(®s->imask, IMASK_FGPI); 3489 } 3490 3491 /* Enable Rx DMA */ 3492 tempval = gfar_read(®s->maccfg1); 3493 tempval |= MACCFG1_RX_EN; 3494 gfar_write(®s->maccfg1, tempval); 3495 } 3496 3497 static int gfar_suspend(struct device *dev) 3498 { 3499 struct gfar_private *priv = dev_get_drvdata(dev); 3500 struct net_device *ndev = priv->ndev; 3501 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3502 u32 tempval; 3503 u16 wol = priv->wol_opts; 3504 3505 if (!netif_running(ndev)) 3506 return 0; 3507 3508 disable_napi(priv); 3509 netif_tx_lock(ndev); 3510 netif_device_detach(ndev); 3511 netif_tx_unlock(ndev); 3512 3513 gfar_halt(priv); 3514 3515 if (wol & GFAR_WOL_MAGIC) { 3516 /* Enable interrupt on Magic Packet */ 3517 gfar_write(®s->imask, IMASK_MAG); 3518 3519 /* Enable Magic Packet mode */ 3520 tempval = gfar_read(®s->maccfg2); 3521 tempval |= MACCFG2_MPEN; 3522 gfar_write(®s->maccfg2, tempval); 3523 3524 /* re-enable the Rx block */ 3525 tempval = gfar_read(®s->maccfg1); 3526 tempval |= MACCFG1_RX_EN; 3527 gfar_write(®s->maccfg1, tempval); 3528 3529 } else if (wol & GFAR_WOL_FILER_UCAST) { 3530 gfar_filer_config_wol(priv); 3531 gfar_start_wol_filer(priv); 3532 3533 } else { 3534 phy_stop(ndev->phydev); 3535 } 3536 3537 return 0; 3538 } 3539 3540 static int gfar_resume(struct device *dev) 3541 { 3542 struct gfar_private *priv = dev_get_drvdata(dev); 3543 struct net_device *ndev = priv->ndev; 3544 struct gfar __iomem *regs = priv->gfargrp[0].regs; 3545 u32 tempval; 3546 u16 wol = priv->wol_opts; 3547 3548 if (!netif_running(ndev)) 3549 return 0; 3550 3551 if (wol & GFAR_WOL_MAGIC) { 3552 /* Disable Magic Packet mode */ 3553 tempval = gfar_read(®s->maccfg2); 3554 tempval &= ~MACCFG2_MPEN; 3555 gfar_write(®s->maccfg2, tempval); 3556 3557 } else if (wol & GFAR_WOL_FILER_UCAST) { 3558 /* need to stop rx only, tx is already down */ 3559 gfar_halt(priv); 3560 gfar_filer_restore_table(priv); 3561 3562 } else { 3563 phy_start(ndev->phydev); 3564 } 3565 3566 gfar_start(priv); 3567 3568 netif_device_attach(ndev); 3569 enable_napi(priv); 3570 3571 return 0; 3572 } 3573 3574 static int gfar_restore(struct device *dev) 3575 { 3576 struct gfar_private *priv = dev_get_drvdata(dev); 3577 struct net_device *ndev = priv->ndev; 3578 3579 if (!netif_running(ndev)) { 3580 netif_device_attach(ndev); 3581 3582 return 0; 3583 } 3584 3585 gfar_init_bds(ndev); 3586 3587 gfar_mac_reset(priv); 3588 3589 gfar_init_tx_rx_base(priv); 3590 3591 gfar_start(priv); 3592 3593 priv->oldlink = 0; 3594 priv->oldspeed = 0; 3595 priv->oldduplex = -1; 3596 3597 if (ndev->phydev) 3598 phy_start(ndev->phydev); 3599 3600 netif_device_attach(ndev); 3601 enable_napi(priv); 3602 3603 return 0; 3604 } 3605 3606 static const struct dev_pm_ops gfar_pm_ops = { 3607 .suspend = gfar_suspend, 3608 .resume = gfar_resume, 3609 .freeze = gfar_suspend, 3610 .thaw = gfar_resume, 3611 .restore = gfar_restore, 3612 }; 3613 3614 #define GFAR_PM_OPS (&gfar_pm_ops) 3615 3616 #else 3617 3618 #define GFAR_PM_OPS NULL 3619 3620 #endif 3621 3622 static const struct of_device_id gfar_match[] = 3623 { 3624 { 3625 .type = "network", 3626 .compatible = "gianfar", 3627 }, 3628 { 3629 .compatible = "fsl,etsec2", 3630 }, 3631 {}, 3632 }; 3633 MODULE_DEVICE_TABLE(of, gfar_match); 3634 3635 /* Structure for a device driver */ 3636 static struct platform_driver gfar_driver = { 3637 .driver = { 3638 .name = "fsl-gianfar", 3639 .pm = GFAR_PM_OPS, 3640 .of_match_table = gfar_match, 3641 }, 3642 .probe = gfar_probe, 3643 .remove_new = gfar_remove, 3644 }; 3645 3646 module_platform_driver(gfar_driver); 3647