1 /* 2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation 3 * Provides Bus interface for MIIM regs 4 * 5 * Author: Andy Fleming <afleming@freescale.com> 6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com> 7 * 8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc. 9 * 10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips) 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/string.h> 21 #include <linux/errno.h> 22 #include <linux/slab.h> 23 #include <linux/delay.h> 24 #include <linux/module.h> 25 #include <linux/mii.h> 26 #include <linux/of_address.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_device.h> 29 30 #include <asm/io.h> 31 #if IS_ENABLED(CONFIG_UCC_GETH) 32 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */ 33 #endif 34 35 #include "gianfar.h" 36 37 #define MIIMIND_BUSY 0x00000001 38 #define MIIMIND_NOTVALID 0x00000004 39 #define MIIMCFG_INIT_VALUE 0x00000007 40 #define MIIMCFG_RESET 0x80000000 41 42 #define MII_READ_COMMAND 0x00000001 43 44 struct fsl_pq_mii { 45 u32 miimcfg; /* MII management configuration reg */ 46 u32 miimcom; /* MII management command reg */ 47 u32 miimadd; /* MII management address reg */ 48 u32 miimcon; /* MII management control reg */ 49 u32 miimstat; /* MII management status reg */ 50 u32 miimind; /* MII management indication reg */ 51 }; 52 53 struct fsl_pq_mdio { 54 u8 res1[16]; 55 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/ 56 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/ 57 u8 res2[4]; 58 u32 emapm; /* MDIO Event mapping register (for etsec2)*/ 59 u8 res3[1280]; 60 struct fsl_pq_mii mii; 61 u8 res4[28]; 62 u32 utbipar; /* TBI phy address reg (only on UCC) */ 63 u8 res5[2728]; 64 } __packed; 65 66 /* Number of microseconds to wait for an MII register to respond */ 67 #define MII_TIMEOUT 1000 68 69 struct fsl_pq_mdio_priv { 70 void __iomem *map; 71 struct fsl_pq_mii __iomem *regs; 72 int irqs[PHY_MAX_ADDR]; 73 }; 74 75 /* 76 * Per-device-type data. Each type of device tree node that we support gets 77 * one of these. 78 * 79 * @mii_offset: the offset of the MII registers within the memory map of the 80 * node. Some nodes define only the MII registers, and some define the whole 81 * MAC (which includes the MII registers). 82 * 83 * @get_tbipa: determines the address of the TBIPA register 84 * 85 * @ucc_configure: a special function for extra QE configuration 86 */ 87 struct fsl_pq_mdio_data { 88 unsigned int mii_offset; /* offset of the MII registers */ 89 uint32_t __iomem * (*get_tbipa)(void __iomem *p); 90 void (*ucc_configure)(phys_addr_t start, phys_addr_t end); 91 }; 92 93 /* 94 * Write value to the PHY at mii_id at register regnum, on the bus attached 95 * to the local interface, which may be different from the generic mdio bus 96 * (tied to a single interface), waiting until the write is done before 97 * returning. This is helpful in programming interfaces like the TBI which 98 * control interfaces like onchip SERDES and are always tied to the local 99 * mdio pins, which may not be the same as system mdio bus, used for 100 * controlling the external PHYs, for example. 101 */ 102 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 103 u16 value) 104 { 105 struct fsl_pq_mdio_priv *priv = bus->priv; 106 struct fsl_pq_mii __iomem *regs = priv->regs; 107 unsigned int timeout; 108 109 /* Set the PHY address and the register address we want to write */ 110 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 111 112 /* Write out the value we want */ 113 iowrite32be(value, ®s->miimcon); 114 115 /* Wait for the transaction to finish */ 116 timeout = MII_TIMEOUT; 117 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 118 cpu_relax(); 119 timeout--; 120 } 121 122 return timeout ? 0 : -ETIMEDOUT; 123 } 124 125 /* 126 * Read the bus for PHY at addr mii_id, register regnum, and return the value. 127 * Clears miimcom first. 128 * 129 * All PHY operation done on the bus attached to the local interface, which 130 * may be different from the generic mdio bus. This is helpful in programming 131 * interfaces like the TBI which, in turn, control interfaces like on-chip 132 * SERDES and are always tied to the local mdio pins, which may not be the 133 * same as system mdio bus, used for controlling the external PHYs, for eg. 134 */ 135 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 136 { 137 struct fsl_pq_mdio_priv *priv = bus->priv; 138 struct fsl_pq_mii __iomem *regs = priv->regs; 139 unsigned int timeout; 140 u16 value; 141 142 /* Set the PHY address and the register address we want to read */ 143 iowrite32be((mii_id << 8) | regnum, ®s->miimadd); 144 145 /* Clear miimcom, and then initiate a read */ 146 iowrite32be(0, ®s->miimcom); 147 iowrite32be(MII_READ_COMMAND, ®s->miimcom); 148 149 /* Wait for the transaction to finish, normally less than 100us */ 150 timeout = MII_TIMEOUT; 151 while ((ioread32be(®s->miimind) & 152 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) { 153 cpu_relax(); 154 timeout--; 155 } 156 157 if (!timeout) 158 return -ETIMEDOUT; 159 160 /* Grab the value of the register from miimstat */ 161 value = ioread32be(®s->miimstat); 162 163 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum); 164 return value; 165 } 166 167 /* Reset the MIIM registers, and wait for the bus to free */ 168 static int fsl_pq_mdio_reset(struct mii_bus *bus) 169 { 170 struct fsl_pq_mdio_priv *priv = bus->priv; 171 struct fsl_pq_mii __iomem *regs = priv->regs; 172 unsigned int timeout; 173 174 mutex_lock(&bus->mdio_lock); 175 176 /* Reset the management interface */ 177 iowrite32be(MIIMCFG_RESET, ®s->miimcfg); 178 179 /* Setup the MII Mgmt clock speed */ 180 iowrite32be(MIIMCFG_INIT_VALUE, ®s->miimcfg); 181 182 /* Wait until the bus is free */ 183 timeout = MII_TIMEOUT; 184 while ((ioread32be(®s->miimind) & MIIMIND_BUSY) && timeout) { 185 cpu_relax(); 186 timeout--; 187 } 188 189 mutex_unlock(&bus->mdio_lock); 190 191 if (!timeout) { 192 dev_err(&bus->dev, "timeout waiting for MII bus\n"); 193 return -EBUSY; 194 } 195 196 return 0; 197 } 198 199 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 200 /* 201 * Return the TBIPA address, starting from the address 202 * of the mapped GFAR MDIO registers (struct gfar) 203 * This is mildly evil, but so is our hardware for doing this. 204 * Also, we have to cast back to struct gfar because of 205 * definition weirdness done in gianfar.h. 206 */ 207 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p) 208 { 209 struct gfar __iomem *enet_regs = p; 210 211 return &enet_regs->tbipa; 212 } 213 214 /* 215 * Return the TBIPA address, starting from the address 216 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar) 217 */ 218 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p) 219 { 220 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs)); 221 } 222 223 /* 224 * Return the TBIPAR address for an eTSEC2 node 225 */ 226 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p) 227 { 228 return p; 229 } 230 #endif 231 232 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 233 /* 234 * Return the TBIPAR address for a QE MDIO node, starting from the address 235 * of the mapped MII registers (struct fsl_pq_mii) 236 */ 237 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p) 238 { 239 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii); 240 241 return &mdio->utbipar; 242 } 243 244 /* 245 * Find the UCC node that controls the given MDIO node 246 * 247 * For some reason, the QE MDIO nodes are not children of the UCC devices 248 * that control them. Therefore, we need to scan all UCC nodes looking for 249 * the one that encompases the given MDIO node. We do this by comparing 250 * physical addresses. The 'start' and 'end' addresses of the MDIO node are 251 * passed, and the correct UCC node will cover the entire address range. 252 * 253 * This assumes that there is only one QE MDIO node in the entire device tree. 254 */ 255 static void ucc_configure(phys_addr_t start, phys_addr_t end) 256 { 257 static bool found_mii_master; 258 struct device_node *np = NULL; 259 260 if (found_mii_master) 261 return; 262 263 for_each_compatible_node(np, NULL, "ucc_geth") { 264 struct resource res; 265 const uint32_t *iprop; 266 uint32_t id; 267 int ret; 268 269 ret = of_address_to_resource(np, 0, &res); 270 if (ret < 0) { 271 pr_debug("fsl-pq-mdio: no address range in node %s\n", 272 np->full_name); 273 continue; 274 } 275 276 /* if our mdio regs fall within this UCC regs range */ 277 if ((start < res.start) || (end > res.end)) 278 continue; 279 280 iprop = of_get_property(np, "cell-index", NULL); 281 if (!iprop) { 282 iprop = of_get_property(np, "device-id", NULL); 283 if (!iprop) { 284 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n", 285 np->full_name); 286 continue; 287 } 288 } 289 290 id = be32_to_cpup(iprop); 291 292 /* 293 * cell-index and device-id for QE nodes are 294 * numbered from 1, not 0. 295 */ 296 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) { 297 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n", 298 np->full_name); 299 continue; 300 } 301 302 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id); 303 found_mii_master = true; 304 } 305 } 306 307 #endif 308 309 static const struct of_device_id fsl_pq_mdio_match[] = { 310 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE) 311 { 312 .compatible = "fsl,gianfar-tbi", 313 .data = &(struct fsl_pq_mdio_data) { 314 .mii_offset = 0, 315 .get_tbipa = get_gfar_tbipa_from_mii, 316 }, 317 }, 318 { 319 .compatible = "fsl,gianfar-mdio", 320 .data = &(struct fsl_pq_mdio_data) { 321 .mii_offset = 0, 322 .get_tbipa = get_gfar_tbipa_from_mii, 323 }, 324 }, 325 { 326 .type = "mdio", 327 .compatible = "gianfar", 328 .data = &(struct fsl_pq_mdio_data) { 329 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 330 .get_tbipa = get_gfar_tbipa_from_mdio, 331 }, 332 }, 333 { 334 .compatible = "fsl,etsec2-tbi", 335 .data = &(struct fsl_pq_mdio_data) { 336 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 337 .get_tbipa = get_etsec_tbipa, 338 }, 339 }, 340 { 341 .compatible = "fsl,etsec2-mdio", 342 .data = &(struct fsl_pq_mdio_data) { 343 .mii_offset = offsetof(struct fsl_pq_mdio, mii), 344 .get_tbipa = get_etsec_tbipa, 345 }, 346 }, 347 #endif 348 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE) 349 { 350 .compatible = "fsl,ucc-mdio", 351 .data = &(struct fsl_pq_mdio_data) { 352 .mii_offset = 0, 353 .get_tbipa = get_ucc_tbipa, 354 .ucc_configure = ucc_configure, 355 }, 356 }, 357 { 358 /* Legacy UCC MDIO node */ 359 .type = "mdio", 360 .compatible = "ucc_geth_phy", 361 .data = &(struct fsl_pq_mdio_data) { 362 .mii_offset = 0, 363 .get_tbipa = get_ucc_tbipa, 364 .ucc_configure = ucc_configure, 365 }, 366 }, 367 #endif 368 /* No Kconfig option for Fman support yet */ 369 { 370 .compatible = "fsl,fman-mdio", 371 .data = &(struct fsl_pq_mdio_data) { 372 .mii_offset = 0, 373 /* Fman TBI operations are handled elsewhere */ 374 }, 375 }, 376 377 {}, 378 }; 379 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match); 380 381 static int fsl_pq_mdio_probe(struct platform_device *pdev) 382 { 383 const struct of_device_id *id = 384 of_match_device(fsl_pq_mdio_match, &pdev->dev); 385 const struct fsl_pq_mdio_data *data = id->data; 386 struct device_node *np = pdev->dev.of_node; 387 struct resource res; 388 struct device_node *tbi; 389 struct fsl_pq_mdio_priv *priv; 390 struct mii_bus *new_bus; 391 int err; 392 393 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible); 394 395 new_bus = mdiobus_alloc_size(sizeof(*priv)); 396 if (!new_bus) 397 return -ENOMEM; 398 399 priv = new_bus->priv; 400 new_bus->name = "Freescale PowerQUICC MII Bus", 401 new_bus->read = &fsl_pq_mdio_read; 402 new_bus->write = &fsl_pq_mdio_write; 403 new_bus->reset = &fsl_pq_mdio_reset; 404 new_bus->irq = priv->irqs; 405 406 err = of_address_to_resource(np, 0, &res); 407 if (err < 0) { 408 dev_err(&pdev->dev, "could not obtain address information\n"); 409 goto error; 410 } 411 412 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name, 413 (unsigned long long)res.start); 414 415 priv->map = of_iomap(np, 0); 416 if (!priv->map) { 417 err = -ENOMEM; 418 goto error; 419 } 420 421 /* 422 * Some device tree nodes represent only the MII registers, and 423 * others represent the MAC and MII registers. The 'mii_offset' field 424 * contains the offset of the MII registers inside the mapped register 425 * space. 426 */ 427 if (data->mii_offset > resource_size(&res)) { 428 dev_err(&pdev->dev, "invalid register map\n"); 429 err = -EINVAL; 430 goto error; 431 } 432 priv->regs = priv->map + data->mii_offset; 433 434 new_bus->parent = &pdev->dev; 435 platform_set_drvdata(pdev, new_bus); 436 437 if (data->get_tbipa) { 438 for_each_child_of_node(np, tbi) { 439 if (strcmp(tbi->type, "tbi-phy") == 0) { 440 dev_dbg(&pdev->dev, "found TBI PHY node %s\n", 441 strrchr(tbi->full_name, '/') + 1); 442 break; 443 } 444 } 445 446 if (tbi) { 447 const u32 *prop = of_get_property(tbi, "reg", NULL); 448 uint32_t __iomem *tbipa; 449 450 if (!prop) { 451 dev_err(&pdev->dev, 452 "missing 'reg' property in node %s\n", 453 tbi->full_name); 454 err = -EBUSY; 455 goto error; 456 } 457 458 tbipa = data->get_tbipa(priv->map); 459 460 /* 461 * Add consistency check to make sure TBI is contained 462 * within the mapped range (not because we would get a 463 * segfault, rather to catch bugs in computing TBI 464 * address). Print error message but continue anyway. 465 */ 466 if ((void *)tbipa > priv->map + resource_size(&res) - 4) 467 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04x to contain TBI address)\n", 468 ((void *)tbipa - priv->map) + 4); 469 470 iowrite32be(be32_to_cpup(prop), tbipa); 471 } 472 } 473 474 if (data->ucc_configure) 475 data->ucc_configure(res.start, res.end); 476 477 err = of_mdiobus_register(new_bus, np); 478 if (err) { 479 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n", 480 new_bus->name); 481 goto error; 482 } 483 484 return 0; 485 486 error: 487 if (priv->map) 488 iounmap(priv->map); 489 490 kfree(new_bus); 491 492 return err; 493 } 494 495 496 static int fsl_pq_mdio_remove(struct platform_device *pdev) 497 { 498 struct device *device = &pdev->dev; 499 struct mii_bus *bus = dev_get_drvdata(device); 500 struct fsl_pq_mdio_priv *priv = bus->priv; 501 502 mdiobus_unregister(bus); 503 504 iounmap(priv->map); 505 mdiobus_free(bus); 506 507 return 0; 508 } 509 510 static struct platform_driver fsl_pq_mdio_driver = { 511 .driver = { 512 .name = "fsl-pq_mdio", 513 .of_match_table = fsl_pq_mdio_match, 514 }, 515 .probe = fsl_pq_mdio_probe, 516 .remove = fsl_pq_mdio_remove, 517 }; 518 519 module_platform_driver(fsl_pq_mdio_driver); 520 521 MODULE_LICENSE("GPL"); 522