xref: /linux/drivers/net/ethernet/freescale/fsl_pq_mdio.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3  * Provides Bus interface for MIIM regs
4  *
5  * Author: Andy Fleming <afleming@freescale.com>
6  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
7  *
8  * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
9  *
10  * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
11  *
12  * This program is free software; you can redistribute  it and/or modify it
13  * under  the terms of  the GNU General  Public License as published by the
14  * Free Software Foundation;  either version 2 of the  License, or (at your
15  * option) any later version.
16  *
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/module.h>
25 #include <linux/mii.h>
26 #include <linux/of_address.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_device.h>
29 
30 #include <asm/io.h>
31 #if IS_ENABLED(CONFIG_UCC_GETH)
32 #include <asm/ucc.h>	/* for ucc_set_qe_mux_mii_mng() */
33 #endif
34 
35 #include "gianfar.h"
36 
37 #define MIIMIND_BUSY		0x00000001
38 #define MIIMIND_NOTVALID	0x00000004
39 #define MIIMCFG_INIT_VALUE	0x00000007
40 #define MIIMCFG_RESET		0x80000000
41 
42 #define MII_READ_COMMAND	0x00000001
43 
44 struct fsl_pq_mii {
45 	u32 miimcfg;	/* MII management configuration reg */
46 	u32 miimcom;	/* MII management command reg */
47 	u32 miimadd;	/* MII management address reg */
48 	u32 miimcon;	/* MII management control reg */
49 	u32 miimstat;	/* MII management status reg */
50 	u32 miimind;	/* MII management indication reg */
51 };
52 
53 struct fsl_pq_mdio {
54 	u8 res1[16];
55 	u32 ieventm;	/* MDIO Interrupt event register (for etsec2)*/
56 	u32 imaskm;	/* MDIO Interrupt mask register (for etsec2)*/
57 	u8 res2[4];
58 	u32 emapm;	/* MDIO Event mapping register (for etsec2)*/
59 	u8 res3[1280];
60 	struct fsl_pq_mii mii;
61 	u8 res4[28];
62 	u32 utbipar;	/* TBI phy address reg (only on UCC) */
63 	u8 res5[2728];
64 } __packed;
65 
66 /* Number of microseconds to wait for an MII register to respond */
67 #define MII_TIMEOUT	1000
68 
69 struct fsl_pq_mdio_priv {
70 	void __iomem *map;
71 	struct fsl_pq_mii __iomem *regs;
72 	int irqs[PHY_MAX_ADDR];
73 };
74 
75 /*
76  * Per-device-type data.  Each type of device tree node that we support gets
77  * one of these.
78  *
79  * @mii_offset: the offset of the MII registers within the memory map of the
80  * node.  Some nodes define only the MII registers, and some define the whole
81  * MAC (which includes the MII registers).
82  *
83  * @get_tbipa: determines the address of the TBIPA register
84  *
85  * @ucc_configure: a special function for extra QE configuration
86  */
87 struct fsl_pq_mdio_data {
88 	unsigned int mii_offset;	/* offset of the MII registers */
89 	uint32_t __iomem * (*get_tbipa)(void __iomem *p);
90 	void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
91 };
92 
93 /*
94  * Write value to the PHY at mii_id at register regnum, on the bus attached
95  * to the local interface, which may be different from the generic mdio bus
96  * (tied to a single interface), waiting until the write is done before
97  * returning. This is helpful in programming interfaces like the TBI which
98  * control interfaces like onchip SERDES and are always tied to the local
99  * mdio pins, which may not be the same as system mdio bus, used for
100  * controlling the external PHYs, for example.
101  */
102 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
103 		u16 value)
104 {
105 	struct fsl_pq_mdio_priv *priv = bus->priv;
106 	struct fsl_pq_mii __iomem *regs = priv->regs;
107 	unsigned int timeout;
108 
109 	/* Set the PHY address and the register address we want to write */
110 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
111 
112 	/* Write out the value we want */
113 	iowrite32be(value, &regs->miimcon);
114 
115 	/* Wait for the transaction to finish */
116 	timeout = MII_TIMEOUT;
117 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
118 		cpu_relax();
119 		timeout--;
120 	}
121 
122 	return timeout ? 0 : -ETIMEDOUT;
123 }
124 
125 /*
126  * Read the bus for PHY at addr mii_id, register regnum, and return the value.
127  * Clears miimcom first.
128  *
129  * All PHY operation done on the bus attached to the local interface, which
130  * may be different from the generic mdio bus.  This is helpful in programming
131  * interfaces like the TBI which, in turn, control interfaces like on-chip
132  * SERDES and are always tied to the local mdio pins, which may not be the
133  * same as system mdio bus, used for controlling the external PHYs, for eg.
134  */
135 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
136 {
137 	struct fsl_pq_mdio_priv *priv = bus->priv;
138 	struct fsl_pq_mii __iomem *regs = priv->regs;
139 	unsigned int timeout;
140 	u16 value;
141 
142 	/* Set the PHY address and the register address we want to read */
143 	iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
144 
145 	/* Clear miimcom, and then initiate a read */
146 	iowrite32be(0, &regs->miimcom);
147 	iowrite32be(MII_READ_COMMAND, &regs->miimcom);
148 
149 	/* Wait for the transaction to finish, normally less than 100us */
150 	timeout = MII_TIMEOUT;
151 	while ((ioread32be(&regs->miimind) &
152 	       (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
153 		cpu_relax();
154 		timeout--;
155 	}
156 
157 	if (!timeout)
158 		return -ETIMEDOUT;
159 
160 	/* Grab the value of the register from miimstat */
161 	value = ioread32be(&regs->miimstat);
162 
163 	dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
164 	return value;
165 }
166 
167 /* Reset the MIIM registers, and wait for the bus to free */
168 static int fsl_pq_mdio_reset(struct mii_bus *bus)
169 {
170 	struct fsl_pq_mdio_priv *priv = bus->priv;
171 	struct fsl_pq_mii __iomem *regs = priv->regs;
172 	unsigned int timeout;
173 
174 	mutex_lock(&bus->mdio_lock);
175 
176 	/* Reset the management interface */
177 	iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
178 
179 	/* Setup the MII Mgmt clock speed */
180 	iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
181 
182 	/* Wait until the bus is free */
183 	timeout = MII_TIMEOUT;
184 	while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
185 		cpu_relax();
186 		timeout--;
187 	}
188 
189 	mutex_unlock(&bus->mdio_lock);
190 
191 	if (!timeout) {
192 		dev_err(&bus->dev, "timeout waiting for MII bus\n");
193 		return -EBUSY;
194 	}
195 
196 	return 0;
197 }
198 
199 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
200 /*
201  * Return the TBIPA address, starting from the address
202  * of the mapped GFAR MDIO registers (struct gfar)
203  * This is mildly evil, but so is our hardware for doing this.
204  * Also, we have to cast back to struct gfar because of
205  * definition weirdness done in gianfar.h.
206  */
207 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
208 {
209 	struct gfar __iomem *enet_regs = p;
210 
211 	return &enet_regs->tbipa;
212 }
213 
214 /*
215  * Return the TBIPA address, starting from the address
216  * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
217  */
218 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
219 {
220 	return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
221 }
222 
223 /*
224  * Return the TBIPAR address for an eTSEC2 node
225  */
226 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
227 {
228 	return p;
229 }
230 #endif
231 
232 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
233 /*
234  * Return the TBIPAR address for a QE MDIO node, starting from the address
235  * of the mapped MII registers (struct fsl_pq_mii)
236  */
237 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
238 {
239 	struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
240 
241 	return &mdio->utbipar;
242 }
243 
244 /*
245  * Find the UCC node that controls the given MDIO node
246  *
247  * For some reason, the QE MDIO nodes are not children of the UCC devices
248  * that control them.  Therefore, we need to scan all UCC nodes looking for
249  * the one that encompases the given MDIO node.  We do this by comparing
250  * physical addresses.  The 'start' and 'end' addresses of the MDIO node are
251  * passed, and the correct UCC node will cover the entire address range.
252  *
253  * This assumes that there is only one QE MDIO node in the entire device tree.
254  */
255 static void ucc_configure(phys_addr_t start, phys_addr_t end)
256 {
257 	static bool found_mii_master;
258 	struct device_node *np = NULL;
259 
260 	if (found_mii_master)
261 		return;
262 
263 	for_each_compatible_node(np, NULL, "ucc_geth") {
264 		struct resource res;
265 		const uint32_t *iprop;
266 		uint32_t id;
267 		int ret;
268 
269 		ret = of_address_to_resource(np, 0, &res);
270 		if (ret < 0) {
271 			pr_debug("fsl-pq-mdio: no address range in node %s\n",
272 				 np->full_name);
273 			continue;
274 		}
275 
276 		/* if our mdio regs fall within this UCC regs range */
277 		if ((start < res.start) || (end > res.end))
278 			continue;
279 
280 		iprop = of_get_property(np, "cell-index", NULL);
281 		if (!iprop) {
282 			iprop = of_get_property(np, "device-id", NULL);
283 			if (!iprop) {
284 				pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
285 					 np->full_name);
286 				continue;
287 			}
288 		}
289 
290 		id = be32_to_cpup(iprop);
291 
292 		/*
293 		 * cell-index and device-id for QE nodes are
294 		 * numbered from 1, not 0.
295 		 */
296 		if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
297 			pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
298 				 np->full_name);
299 			continue;
300 		}
301 
302 		pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
303 		found_mii_master = true;
304 	}
305 }
306 
307 #endif
308 
309 static const struct of_device_id fsl_pq_mdio_match[] = {
310 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
311 	{
312 		.compatible = "fsl,gianfar-tbi",
313 		.data = &(struct fsl_pq_mdio_data) {
314 			.mii_offset = 0,
315 			.get_tbipa = get_gfar_tbipa_from_mii,
316 		},
317 	},
318 	{
319 		.compatible = "fsl,gianfar-mdio",
320 		.data = &(struct fsl_pq_mdio_data) {
321 			.mii_offset = 0,
322 			.get_tbipa = get_gfar_tbipa_from_mii,
323 		},
324 	},
325 	{
326 		.type = "mdio",
327 		.compatible = "gianfar",
328 		.data = &(struct fsl_pq_mdio_data) {
329 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
330 			.get_tbipa = get_gfar_tbipa_from_mdio,
331 		},
332 	},
333 	{
334 		.compatible = "fsl,etsec2-tbi",
335 		.data = &(struct fsl_pq_mdio_data) {
336 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
337 			.get_tbipa = get_etsec_tbipa,
338 		},
339 	},
340 	{
341 		.compatible = "fsl,etsec2-mdio",
342 		.data = &(struct fsl_pq_mdio_data) {
343 			.mii_offset = offsetof(struct fsl_pq_mdio, mii),
344 			.get_tbipa = get_etsec_tbipa,
345 		},
346 	},
347 #endif
348 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
349 	{
350 		.compatible = "fsl,ucc-mdio",
351 		.data = &(struct fsl_pq_mdio_data) {
352 			.mii_offset = 0,
353 			.get_tbipa = get_ucc_tbipa,
354 			.ucc_configure = ucc_configure,
355 		},
356 	},
357 	{
358 		/* Legacy UCC MDIO node */
359 		.type = "mdio",
360 		.compatible = "ucc_geth_phy",
361 		.data = &(struct fsl_pq_mdio_data) {
362 			.mii_offset = 0,
363 			.get_tbipa = get_ucc_tbipa,
364 			.ucc_configure = ucc_configure,
365 		},
366 	},
367 #endif
368 	/* No Kconfig option for Fman support yet */
369 	{
370 		.compatible = "fsl,fman-mdio",
371 		.data = &(struct fsl_pq_mdio_data) {
372 			.mii_offset = 0,
373 			/* Fman TBI operations are handled elsewhere */
374 		},
375 	},
376 
377 	{},
378 };
379 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
380 
381 static int fsl_pq_mdio_probe(struct platform_device *pdev)
382 {
383 	const struct of_device_id *id =
384 		of_match_device(fsl_pq_mdio_match, &pdev->dev);
385 	const struct fsl_pq_mdio_data *data = id->data;
386 	struct device_node *np = pdev->dev.of_node;
387 	struct resource res;
388 	struct device_node *tbi;
389 	struct fsl_pq_mdio_priv *priv;
390 	struct mii_bus *new_bus;
391 	int err;
392 
393 	dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
394 
395 	new_bus = mdiobus_alloc_size(sizeof(*priv));
396 	if (!new_bus)
397 		return -ENOMEM;
398 
399 	priv = new_bus->priv;
400 	new_bus->name = "Freescale PowerQUICC MII Bus",
401 	new_bus->read = &fsl_pq_mdio_read;
402 	new_bus->write = &fsl_pq_mdio_write;
403 	new_bus->reset = &fsl_pq_mdio_reset;
404 	new_bus->irq = priv->irqs;
405 
406 	err = of_address_to_resource(np, 0, &res);
407 	if (err < 0) {
408 		dev_err(&pdev->dev, "could not obtain address information\n");
409 		goto error;
410 	}
411 
412 	snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
413 		(unsigned long long)res.start);
414 
415 	priv->map = of_iomap(np, 0);
416 	if (!priv->map) {
417 		err = -ENOMEM;
418 		goto error;
419 	}
420 
421 	/*
422 	 * Some device tree nodes represent only the MII registers, and
423 	 * others represent the MAC and MII registers.  The 'mii_offset' field
424 	 * contains the offset of the MII registers inside the mapped register
425 	 * space.
426 	 */
427 	if (data->mii_offset > resource_size(&res)) {
428 		dev_err(&pdev->dev, "invalid register map\n");
429 		err = -EINVAL;
430 		goto error;
431 	}
432 	priv->regs = priv->map + data->mii_offset;
433 
434 	new_bus->parent = &pdev->dev;
435 	platform_set_drvdata(pdev, new_bus);
436 
437 	if (data->get_tbipa) {
438 		for_each_child_of_node(np, tbi) {
439 			if (strcmp(tbi->type, "tbi-phy") == 0) {
440 				dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
441 					strrchr(tbi->full_name, '/') + 1);
442 				break;
443 			}
444 		}
445 
446 		if (tbi) {
447 			const u32 *prop = of_get_property(tbi, "reg", NULL);
448 			uint32_t __iomem *tbipa;
449 
450 			if (!prop) {
451 				dev_err(&pdev->dev,
452 					"missing 'reg' property in node %s\n",
453 					tbi->full_name);
454 				err = -EBUSY;
455 				goto error;
456 			}
457 
458 			tbipa = data->get_tbipa(priv->map);
459 
460 			/*
461 			 * Add consistency check to make sure TBI is contained
462 			 * within the mapped range (not because we would get a
463 			 * segfault, rather to catch bugs in computing TBI
464 			 * address). Print error message but continue anyway.
465 			 */
466 			if ((void *)tbipa > priv->map + resource_size(&res) - 4)
467 				dev_err(&pdev->dev, "invalid register map (should be at least 0x%04x to contain TBI address)\n",
468 					((void *)tbipa - priv->map) + 4);
469 
470 			iowrite32be(be32_to_cpup(prop), tbipa);
471 		}
472 	}
473 
474 	if (data->ucc_configure)
475 		data->ucc_configure(res.start, res.end);
476 
477 	err = of_mdiobus_register(new_bus, np);
478 	if (err) {
479 		dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
480 			new_bus->name);
481 		goto error;
482 	}
483 
484 	return 0;
485 
486 error:
487 	if (priv->map)
488 		iounmap(priv->map);
489 
490 	kfree(new_bus);
491 
492 	return err;
493 }
494 
495 
496 static int fsl_pq_mdio_remove(struct platform_device *pdev)
497 {
498 	struct device *device = &pdev->dev;
499 	struct mii_bus *bus = dev_get_drvdata(device);
500 	struct fsl_pq_mdio_priv *priv = bus->priv;
501 
502 	mdiobus_unregister(bus);
503 
504 	iounmap(priv->map);
505 	mdiobus_free(bus);
506 
507 	return 0;
508 }
509 
510 static struct platform_driver fsl_pq_mdio_driver = {
511 	.driver = {
512 		.name = "fsl-pq_mdio",
513 		.of_match_table = fsl_pq_mdio_match,
514 	},
515 	.probe = fsl_pq_mdio_probe,
516 	.remove = fsl_pq_mdio_remove,
517 };
518 
519 module_platform_driver(fsl_pq_mdio_driver);
520 
521 MODULE_LICENSE("GPL");
522